
Coin Wear Estimation and Automatic Coin Grading

Parmida Atighehchian

A Thesis

in

The Department

of

Computer Science & Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science & Software Engineering) at

Concordia University
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Abstract

Coin Wear Estimation and Automatic Coin Grading

Parmida Atighehchian

In numismatic studies, coin grading is referred to as the set of detailed experiments on a coin in

order to estimate its quality, which is the most important factor to estimate the coin’s value. Usu-

ally, the task is done by three expert numismatists to minimize personal biases. Each numismatist

tests the coin’s wear, coloration, and toning under different lighting conditions. Coin grading is a

sensitive task to be done by humans. There are different parameters that can define the coin’s value,

however, dependent on the numismatist expert conducting the test, some parameters are neglected

and some are given a heavier weight, which makes the procedure very subjective. A computer-

aided algorithm for coin grading is considered an asset to help conduct more objective coin grading

experiments.

We propose a coin wear estimation algorithm, which is fully based on features extracted from

the digital images of coins. Apart from coin grading, the proposed algorithm is useful to find and

dismiss the heavily worn out currency from the market. As online trading is getting more and more

popular among coin collectors, it has become easier for individuals to sell a low-quality coin instead

of a high-quality one or foist fake copies instead of real coins. This study is concentrated on the

feasibility of having a computer-aided program to conduct coin grading. The required specifications

for the dataset are fully investigated and the final dataset is collected after lots of experiments. In

our proposed method, SIFT key points are used to distinguish the amount of wear on the coins.

These key points are known for their high accuracy in shape detection problems. Our approach in

using these descriptors to estimate the amount of wear on the coins attains a high accuracy of 93%.
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Chapter 1

Introduction

1.1 What is Coin Grading

Coins have been one of the fundamental elements of human civil life since ancient times. In the

recent century, coin collecting and trading has evolved as a big business and many ”Numismatic

Institutions” have started to work on this business. Similar to other goods, there should be a valid

scaling system to evaluate the quality of the coins for sale. The word ”Numismatics” is referred

to as any study related to coins[2], and the main responsibilities of numismatic institutions are to

evaluate the quality of the coins. The process of evaluating the coin’s relative quality and condition

is named as coin grading in numismatic studies[2]. The numismatic institutions act as third-parties

in the coin collecting market. These institutions grade the coins, independent of both the buyer and

the seller’s influence. The most well-known numismatic institutions are the American Numismatic

Association Certification Service (ANACS), the Professional Coin Grading Service (PCGS), and

the Numismatic Guaranty Corporation (NGC).

Early coin grading was as simple as assigning the coins to one of the defined three categories:

• Good: The details on the coin are still recognizable but the texture is worn out.

• Fine: Mint luster can be seen to some extent.

• Uncirculated: The features are very sharp and the luster band is fully recognizable.
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Today coin collecting has evolved as an independent market and the above simple three level

scaling system can not serve the demand of this big market anymore. Today’s grading scales are

much more complicated. There are several grading standards that are commonly used such as the

European grading system and the American Numismatic Association (ANA) grading standards.

These grading standards find their roots in the well-known ”Sheldon grading scale” in which a

scale of 1 to 70 is given to a coin based on its quality. Most of today’s grading standards have more

or less the same body structure as ”Sheldon grading scale”, which makes the standard universal

and legitimate. A more detailed description of the main structure of the commonly used grading

systems is given in Appendix A.

1.1.1 Principal Components of Coin Grading

There exists more than sixty grading standards and increasingly more coin specialists use these

standards as their guide to grade. Grading is a procedure, which is mainly based on experience.

There are so many different elements that may be considered when grading a coin. All these

elements have more or less tangible definitions which give an overall sense when studying the coin.

The most common elements are listed below:[2]

• Eye appeal: This is considered one of the important factors in deciding the grade of a coin.

It is affected by several different parameters, such as the amount of luster, coloration, and

toning. Luster is referred to as the reaction of light when it hits the mint-state coin’s die ero-

sion lines. It usually creates an appealing reflection of the light when moving the coin under

the light and is a positive element in grading especially for the mint-state series. Coloration

and toning are referred to as the change of color in different coins based on the amount of

reactive metals used for them (mostly copper and silver). It might cause a change in red

color of copper coins, turning it more brown or it can create a beautiful hue on the surface

of a silver coin. The first effect is not appealing to the eyes and has a negative impact on

the final grade whereas the latter has a positive impact in grading. Coloration and toning are

considered especially when dealing with ancient coins’ grading.
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• Contact and Detracting marks: These marks are caused by mishandling or cleaning the coins

with improper materials. These marks appear on coins on the market very soon after their

release; however, a collector can prevent these marks to appear on his collection to some

extent. The severity of these marks has an important role in assigning the coin to one of the

described grading levels in Appendix A. Scratches and wear effects will fall into this category

as well. These marks have a greater weight when deciding among the Fine category levels

(see Appendix A).

• Strike marks: In the process of striking a coin, the designed die is used several times until it

is changed. Therefore, even the mint-state coins do not have the same grade as the quality of

the die and the strike is important. When the coin has a sharper profile and a greater deal of

details, the higher the grade is. Die flaws are also considered as a negative factor in deciding

among the mint-state categories. Depending on the severity of the marks, the coin’s grade

varies.

• Obverse and Reverse grade: Although both the obverse and the reverse of a coin have impor-

tant roles in defining the final grade, the attention is mostly directed to the front. Generally,

the obverse defines the category of the coin’s grade; however, when there is a tie between two

coins based on their obverse, the reverse plays its role. A rule of thumb is to consider two

times higher importance for the obverse, although it can be changed based on the specialist’s

opinion [2][3].

An important fact to be considered is that not all of these parameters are always taken into ac-

count when a professional is grading a coin and that is where experience comes in. An experienced

coin specialist goes for the most important elements to consider for each type of coin. Even if we

want to be precise and quantitative, it is impossible based on the given factors as the first factor is

very subjective and experience oriented. Therefore, the whole procedure of grading a coin, even

when graded based on three different specialists’ opinions, could be questionable in some cases.

This brings us to a need for a computer-aided algorithm which can facilitate the work and gives a
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higher confidence to the final stated grade.

1.2 Problem Definition and Motivation

Coin grading as explained in sections 1.1 is only used for the coin collecting market. However,

a deeper look to the field reveals other important applications which brings us to the point to feel

the urge of having a more stable system for grading. Apart from being an essential component in

coin collecting market, coin grading can be used in:

(1) Detecting counterfeit coins

(2) accelerating the process of rejecting damaged coins at banks

(3) improving numismatic institutions grading systems

(4) Offering a quality measurement tool for online coin buyers

Coin collectors are not the only group who are facing the problem of detecting and dealing with

counterfeit coins. In some countries, counterfeit coins are made and fed into the system as part of

the daily purchases. China and Denmark have been facing lots of problems in their banking and

trading system. While Canadian coins might seem to be cheap, they are not far from being faked.

In a report by Royal Canadian Mounted Police in 2006, a company making counterfeit Toonies and

Loonies has been spotted near Montreal. Nowadays, counterfeiting is not a rudimentary process

any more. In many cases a counterfeit coin can not be distinguished by its weight, color, dimension

or any other physical measurements, which brings us to precise study of the coin’s pattern as a

solution for modern counterfeit detection. Although the planchet (the round metal disk which is

getting struck) is available to everyone, the die itself is where the major differences between a

genuine and a counterfeit coin could be found. Usually the counterfeit coins tend to be worn out

faster than the genuine ones and die mistakes are a lot more common in them. Figure 1.1 is an

example of such case. The coin on the left is the genuine while the coin on the right is a fake one.

This is where coin grading is beneficial.
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(a) A genuine coin with sharp and clear edges (b) A fake coin with a poor quality design

Figure 1.1: Comparison between a genuine and a fake Danish coin

Coin grading can also be beneficial in banks to spot and dismiss heavily worn out coins off the

market. The main problem in today’s coin grading is that it is dependent on human decisions and

experience. As mentioned in the previous section, there are lots of elements to be considered when

grading a coin and it is only based on the grader’s opinion to choose which ones to consider. Coin

grading is a sensitive task to be done by humans, since most of the time it involves a huge drop

in the coin’s price when it is graded as a lower quality coin. Although having three professional

graders will help to balance personal judgments on the final grade, an automatic grading system

will definitely be a better option to have a more objective grading system. A computer-aided coin

grading system is also useful for collectors. As online trading is growing, a system that provides

a reliable grade based on the digital image provided on the coin trading website is crucial. Online

trading is where most false information could be provided and the computer-aided coin grading can

prevent fraud within the coin collection business.

Automatic coin grading is not an easy task, especially when the goal is to only use digital

images. The challenges involved in this field of study can be listed as below:
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• In coin grading, eye-appeal has an important role, which is a really hard factor to incorporate

in image studies. However, except for the use in the numismatic institutions as a grading

system, generally a coin wear quality estimator needs to be focused on the overall wear, and

detracting marks to cover the applications listed above.

• Finding equivalent image processing measurements for common grading factors and a proper

scale to find out which one has a greater weight in different situations is not a trivial task.

• The algorithm needs to be general and not dependent on a specific design. This reveals

another big challenge that the design differences shall be managed differently from marks and

scratches. Using image processing techniques, this matter is the most challenging concept.

In other words, to have an algorithm which is only triggered by the wear changes.

• The algorithm should have enough precision to at least successfully distinguish among the

different existing general labels of uncirculated, almost uncirculated, extremely fine, very

fine, and fine.

• Dealing with images has the disadvantage of having illumination effects in the case of coin

studies. Illumination variance affects the accuracy to a high extent by false detection of

scratches as edges or false classification of a worn out edge as a sharp one and vice versa due

to uneven lighting or changes in the material of the different parts of the coin as in the case

of Toonies.

1.3 Literature Review

Coin grading is a fresh topic in coin studies literature and not many studies could be found

to be directly focused on the topic. However, the other related studies could be very useful to be

reimplemented in a compatible fashion to this study or to inspire us to chose a suitable approach.

Among the related studies, ”coin recognition” and ”counterfeit detection” are the most relevant.
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In [4] and [5], a summary of the existing image processing methods for coin recognition is

provided. Reference [4] is focused on the different methods proposed for modern and ancient coins.

There are two main segmentation steps proposed for coin studies. Using the Hough transform

algorithm, which is proposed in [6] is an exact solution given for perfectly round shaped coins.

However, the edge detection methods followed by morphological processing, which was used in

[7], is applicable to any shape, which makes it more suitable for ancient coins studies. The three

main challenges included in every coin study are about how to handle illumination, scale, and

rotation changes. Different coins have different diameters, which although this is an important

feature used in most mechanical forensic detection systems, it cannot be considered as a stable

feature in image studies of coins unless the camera is set up properly and the setup is not changed

through the whole process of image capturing. Either by a fixed setup or direct input of the diameter,

this physical measurement together with the thickness of the coin have been used in so many studies

to uplift the recognition rate [8][9][6][10]. Other studies chose to have a scale correction step prior

to their algorithm in the preprocessing step. Some studies have a step to correct the rotation changes

using correlation and registration techniques [10]. Using rotation invariant features is an intelligent

approach, which was used in many recent studies [8][9][11][12]. The features are either by nature

rotation invariant [11][12] or extracted in a concentric ring structure, which is the trick to make the

features invariant to rotation[8][9][13][14][15].

The differences between ancient coins and modern coins affect all the processing steps from

coin extraction to feature selection. The main challenge is the arbitrary shape of ancient coins,

which makes the Hough transform useless for extraction step. The texture and wear of ancient

coins are severely damaged and they are either hammered or cast whereas modern coins are minted.

Generally speaking, mint is a much more precise procedure, which leads coins from the same type

to have stable common features and makes the coin recognition algorithms to be more straight

forward and a lot easier to be generalized. However, it is completely a different case in ancient

coin recognition. Based on the mentioned textural and casting procedure differences, the intraclass

variance in this category of coins is much larger. This is an indication of larger texture variation
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in ancient coins which differs the problem-solving method from the one for modern coins [4][11].

There are many features used in coins studies including, but not limited to, edge information-based

features, gradient features, texture features and shape context-based features. Below is a summary

of the most important coin recognition methods used in the literature.

1.3.1 Edge Information and Contour-based Algorithms

Perhaps the implementation of Dagobert was a peak in the studies concentrating on numis-

matics and coin recognition. This automatic coin recognition system was developed to have speed

together with high accuracy for the recognition of coins from 30 different classes [8]. The coin edge

image is compared to a pre-selected list of master coins and the largest correlations are selected to

identify the coin’s type probable categories. The final category is selected using three rotation in-

variant features, edge-angle distribution and edge-distance distribution, which are compared to the

center and are calculated on the concentric rings, and counting the occurrence of different rotation-

invariant patterns on the circles centered at edge pixels. The diameter and the thickness are also

calculated as the physical measurements which help the procedure of pre-selection of the master

coins. The final reported accuracy on a testing set of 12949 coin images is 99.24% .

Maaten et al. in [9] developed a fully automatic coin recognition system that was tested on

the famous MUSCLE dataset. The training set used in this study contains images from 20000

coins, which fall into 692 different classes. The testing set contains images for 5000 coins. Both

the training and the testing sets contain images from obverse and reverse of each coin. The main

challenge for their study, apart from speed, was to have a correct rejection mechanism. For this

reason the testing set contains coins that are not categorized in any of the training set classes.

Their algorithm follows the routine procedure of coin recognition, which includes segmentation,

feature extraction, classification, and validation. In order to have the speed, segmentation includes

thresholding, edge detection, and morphological processing. The extracted statistical edge-based

features fall into three categories of edge distance distributions, edge angle distribution, and edge

angle-distance distribution. The first and the third features are extracted in circular concentric
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divisions of the coin, which certifies the rotation invariance. In order for the second feature to be

rotation invariant, the magnitude of the Fourier transform of the histograms extracted for each pie

shape division on the coin is calculated. The 3-nearest neighbors classifier is used to classify the

obverse and the reverse of the coins separately. The final decision is made by a voting system based

on the resulting label for each side of the coin. The accuracy gained for this experiment is 72% and

misclassification rate is reported for only 2%.

1.3.2 Gradient-based Algorithms

Reference [6] is concentrated on the use of gradient angle information for coin recognition.

Despite the dataset used in [8] and [9], in their dataset the coin and the background color are

identical. This makes the coin extraction step a bit more challenging and urges the use of the Hough

transform in their study. In the feature extraction step, Reisert et al. [6] indicate the disadvantage of

using the edge magnitude information and base their features on the edge orientation information.

They claim that using the magnitude has the disadvantage of not being consistent with respect

to illumination changes. The edge extraction methods are also error prone towards low-quality

images. The Fourier transform of the edge direction is then used as the feature for comparison to

speed up the process. As in most of other references, the k-nearest neighbors algorithm is used for

the classification. The final recognition rate for a benchmark of 10000 coins is 97.24%. However,

the physical measurements such as thickness and radius are still used in the procedure to have more

confidence on the rejection criteria.

1.3.3 Eigenspace Approach

In [10], Huber et al. use the eigenspace to classify the coins. Rotation invariance is gained

by cross-correlation of each image to the reference image and finding the rotation angle. How-

ever, physical measurements such as diameter and the thickness are involved in categorizing the

coins in the first place and selection of the references. The eigenspaces are selected based on the
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referred physical measurements, meaning each eigenspace defines a portion of thickness and di-

ameter range. Using eigenspace eliminates the illumination undesirable changes to an acceptable

extent for coin recognition. The final decision is made using Bayesian fusion classifier and using

both the obverse and the reverse of the coins. The accuracy reported for their experiment is 93.23%

and a final rate of 6.77% for false decision.

1.3.4 Texture-based Recognition

Zaharieva et al. [11] use an adaptive thresholding algorithm for segmentation of ancient coins.

Both the shape context matching and SIFT features are used and the results are compared. The

final result using SIFT shows a 93.93% classification rate for a dataset of 350 coins containing 3

different types of coins. No recognition rate is reported for shape context matching method due to

the need for qualification of the proposed algorithm using a much larger dataset. This shows the

reliability of SIFT features even using a limited number of images. Another study in [16] shows the

concentric dense feature extraction, using the LIDRIC features (Local Image Descriptor Robust to

Illumination Changes). The LIDRIC features are known to be reliable against illumination changes.

The scale correction is handled with a coin segmentation step prior to that and in order to have

more reliable results, the geometric displacement of the recognized key points should not be more

than a threshold. The results show an improvement comparing to the other works using SIFT and

bag of visual words. Other available literature focuses on extracting different textural features

accompanying with the geometrical information. Reference [13] uses local binary pattern features,

Gray level co-occurrence matrix and a combination of both in a concentric ring and fan shape

structure. Shen et al. [14] compare the result of coin classification using different texture features.

In their experiments statistics of the local binary pattern and a set of Gabor wavelets of concentric

ring structure sections are used as features. The wavelet coefficients are recognized as a common

texture descriptor feature [15][17]. The aim is to break down the image with respect to frequency

and direction. The chosen direction(s) for wavelet decomposition and the number of frequency

levels to break down the image is decided based on the highest result in accuracy. To deal with the
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rotation changes concentric ring structure is used in [15]. The wavelet decomposition has generally

shown high accuracy rate for texture recognition apart from the type of images in the dataset. Using

the Gabor feature coefficients extracted in a concentric ring structure and comparing the extracted

feature vector is another proposed method for coin recognition [18].

1.3.5 Character-based Recognition

In 2013, Kavelar et al. [19] proposed a pipeline for coin legend recognition using SIFT fea-

tures. In their study, they claimed that OCR techniques fail to recognize the characters when the

text and the background share an identical color. Therefore, in their proposed coin legend recogni-

tion pipeline, they encourage the use of SIFT features in the presence of the SVMs as the classifier.

In order to deal with the illumination changes, the features for the opposite lighting angle of the

same character are mapped to each other. In their study, the training set consists of 900 images

with the resolution of 100 × 100 and 90 test images. Their proposed pipeline reaches to the accu-

racy rate of 75.6%. Using the proposed pipeline, Kavelar et al. [12] have used SIFT descriptors to

read the Roman Republican coins’ legends and classify the coins accordingly. Characters on the

Romanian coins are categorized in 18 classes. As described in their proposed method for character

recognition, SIFT features are used. Although the features are rotation invariant, the experiments

have shown a lift in the accuracy rate when the rotation is fixed. The algorithm is tested on dif-

ferent datasets and the recognition rates changes between 29% to 67%. Despite the fact that the

recognition rates are not considered desirable, they claim that the algorithm has the advantage that

is not limited to the text recognition on the flat surfaces and bimodal images. Anwar et al. [20]

give an interesting approach for classification of ancient coins based on bag of visual words and

SIFT features. However, as for coin classification, spatial information makes noticeable changes in

the final decision, Anwar et al. introduce merging the spatial information with SIFT key points us-

ing different geometrical coin partitioning as rectangular tiling, log-polar tiling, and circular tiling.

Based on their experiments adding the spatial information will outperform the usage of a sole bag

of visual words. For a dataset of 3900 coins with 550 different types, an accuracy rate of 95% is
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reported for their study. An extension of this study is given in [21], in which a larger dataset is

tested. The different parameters such as the size of the pixel stride, number of features per image

to construct the visual word and size of the visual vocabulary are tested. The SVM one-vs-all is

used to train the dataset.

1.3.6 Recognition using Neural Network

Neural network is a powerful algorithm which has a long history in coin recognition. In com-

bination with other features to increase the precision of the recognition [22][23][24], it has shown

a promising path for coin recognition. Given a large dataset, and using back propagation system

a high accuracy of 96.3% is reported to recognize between 1 TL and 2 EURO coins [25]. Using

similar approach and extract a feature vector from the pattern averaging step, back propagation

neural network gives an accuracy of 97.74% to recognize four different indian coins [23].

1.3.7 Counterfeit Detection

Counterfeit detection studies conducted at Center of Pattern Recognition and Machine Intelli-

gence at Concordia (CENPARMI) started in 2015 and have made a great contribution to the field

of numismatic studies by publicizing the pattern recognition techniques used in coin recognition in

[3]. Reference [26] is concentrated on the counterfeit detection using different statistical contour-

based features on the legend of the coin such as relative distances of the characters to the centroid,

stroke width, and the distance to the centroid for each character to recognize the counterfeit. In

[27], Khazaee et al. propose a novel approach for counterfeit detection using the energy from the

decomposed signals of hight-map images. Their proposed method using an SGD classifier gives a

true positive rate of 97.8% with the false positive rate as low as 7.8%.
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1.4 Outline of This Study

In this thesis, the feasibility of having a completely automatic coin grading system is inves-

tigated. No physical measurements have been used for the study and decisions have been made

solely using the digital images. The coin grading is a different topic from coin recognition; how-

ever, the features used in the coin recognition literature can be reused in a compatible manner with

this study. It is worth mentioning that color variation factors are neglected in this study so that the

outcome can be as general as possible to cover all the proposed applications. Hence, the concen-

tration is on the texture differences for different levels of coin degradation. The texture differences

can vary from wear to appearance of scratches and bumps on the surface of the coins.

Chapter 2 is concentrated on the dataset preparation. The image acquisition techniques have

been investigated and a proper setup for coin grading data collection is proposed.

Chapter 3 proposes the preprocessing pipeline for this thesis. The coin extraction and scale

correction have been included in this chapter, also rotation and illumination correction approaches

have been proposed and used in for the verification of the final results.

Chapter 4 is focused on the visual differences on the coins with different degradation levels.

Although the visual differences are noticeable, the conclusion indicated in the last chapter shows

the limitation of utilizing only visual features for coin grading.

Chapter 5 talks about the feasibility of having an automatic grading system showing the distri-

bution of coins’ texture with respect to their principal components. The SIFT features are intro-

duced as a perfect choice for this type of texture study and the reasoning behind this selection is

provided.

The whole algorithm is thoroughly tested from different aspects and the validity of the algorithm

despite the limitations for the project is proved in chapter 6.

The contributions of this thesis and the possible future improvements are listed in chapter 7.

Through out the thesis, some numismatic terminologies are frequently used. A complete list

of these words together with their definitions are given in Appendix A. A summarized Sheldon

grading scale table compatible to the quality classes used in this thesis is also provided at the end.
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Chapter 2

Dataset Collection

2.1 Dataset Preparation

Numismatic studies involve collecting a proper dataset as the first step. The dataset should be

large in number to contain enough data samples in each output class. In studies based on image

processing and pattern recognition techniques, this addresses the most important part of the prob-

lem which needs to be solved, since the validity of the final results is highly dependent on the

variety of the dataset and the numbering of the available samples in each class. Computer-aided

coin grading is a new subject in the field of numismatic studies, and there exists no such dataset to

serve the purpose of this study. Therefore one needs to go through the procedure of data collection.

Collection of coins with different texture qualities is highly challenging compared to other coin

studies such as coin recognition and fake coin detection, because the output classes for the latter

named studies are completely known whereas the output classes for coin grading even if studied by

the coin specialists are very subjective and could be changed even based on the variety of different

wear qualities within the dataset. The involved challenges in data collection specific to this study

are:
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(1) Class frequency: The optimum dataset should contain coins with different qualities. It is

almost impossible to create a dataset from ancient coins, since the good quality and mint-state

samples are impossible to be found in large scale. Therefore, the dataset should be created

from the current currency.

Figure 2.1: Examples of two different patterns in Toonies

(2) Within-class variance: The changes in the designs of the obverse and reverse in different

coins is much more impressive (from the pattern recognition point of view) than the changes

in the field wear. This causes a negative impact on the final result of the study since the

main parameter’s (the field wear) changes are much less than other changes in the coins.

As a result, the study should be focused on one certain kind of coin. Even in one specific

kind of currency, different designs are found from year to year (see Figure 2.1). Focusing on

Toonies, for example, the year’s spot and the queen’s shape are changing from year to year

on the obverse of the coin (see Figure 2.2). Investigating into a specific year revealed that

even in a certain year small variations in the obverse/reverse design pattern may be found

(see Figure 2.3). To decrease the within-class variations, these changes should be kept as

low as possible however we cannot limit the changes too much, since collecting a dataset
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Figure 2.2: Year’s spot displacement and small pattern variations in Toonies

of coins with different qualities is almost impossible considering the limitations of time and

resources. Therefore, the data collection is focused on the years which have the most similar

obverse design patterns. Differences such as displacement of the year on the coin, having

maple leaf marks on some coins, and the small changes in the design pattern of same year

coins are tolerable.
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Figure 2.3: Small pattern differences in the same year stamped coins

(3) Shortage in resources: The coin stores only sell the currency in sealed packages. The high

quality coins were collected from coin stores and coin dealers. However, lower quality coins

are very hard to find. The banks provide coins in rolls which contain different qualities and

texture patterns. The same problem exists with regard to grocery stores and shops. The low

quality coins were then collected from the banks going through the exhausting process of

buying rolls of coins, taking out the coins with the desired quality and year and returning the

reminder to the banks. This process was done over and over again to prepare a valid dataset

for this study. In this selection process, only coins from 2009, 2011, 2013 and 2015 (because

of the acceptable range of variance and similarity existing within the coins from these years)

and with a noticeable amount of wear (since the high quality coins were already acquired

from the coin stores) were considered as interesting candidates.

Due to the above challenges in data collection, the procedure was extremely frustrating and

time consuming. We managed to prepare 129 coin samples containing different qualities. The

coins were then labeled by a coin specialist based on their qualities according to the ”Sheldon

scale”. These labels are used in classification, which is discussed in chapter 5.
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2.2 Coin Image Acquisition

Image processing and pattern recognition based numismatic studies are mainly focused on coin

classification. The very first step in this pipeline is image acquisition. Image acquisition is one of

the most challenging and important steps in coin studies as the final results are highly dependent on

the quality of the images. Different studies in numismatics need to deal with different challenges.

In coin grading studies, the coin image acquisition challenges could be listed as below:

(1) Resolution: Coin grading requires images in which the resolution is high enough to include

any single default in the coins. Low resolution images usually do not reveal many of the

small bumps and scratches on the texture of the coins. On the other hand, very high resolution

images will include a significant amount of noise which is not desirable either. Therefore,

it is important to investigate and find the required resolution with respect to the study. The

dependency of the different numismatic studies on the resolution of the images varies a lot.

For example, in coin recognition studies the images can be as low resolution as 100 by 100

pixels, so that the different patterns on the coin images are distinguishable. The acquired

images for coin grading and fake coin detection studies should be of high resolution since

small details and changes in the texture and the profile of the coins are considered to be

important factors in these studies. In coin grading, the issue is more sensitive since even the

small scratches and wear effects should be taken into account.

(2) Luster band effect: In coin photography the most challenging part is how to deal with the light

reflection. Coins minted in different years usually contain different percentages of metals and

sometimes even the metal type is changed. Each metal reflects a certain portion of received

light, which affect the final image in different ways such as over magnifying some bumps

and scratches, underestimation of edges or scratches, and false visualization of background

texture as edges or scratches. These effects are much more important when it comes to coin

grading, as the base of the study is concentrated on the amount of wear and the severity of

the defaults on the coin.
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The factors which should be considered carefully in coin photography are listed in [28] and

summarized below:

Exposure

The amount of light allowed to touch the camera sensor during the photo shooting. Darker

scenes need longer exposure.

Camera Lens

The two main specifications of the camera lens, focal length and aperture, affect the quality of

the images directly. The focal length is referred to as ”the distance from the optical center of the

lens to the object” and aperture ”limits the amount of brightness of the images” [28].

International Standards Organization (ISO) Sensitivity

ISO in cameras sets the sensitivity of the camera sensor to the light. Darker scenes need a

higher ISO setting; when the high ISO setting is used, more noise will also be captured. Therefore,

a wise choice of ISO especially for coin photography is recommended.

Camera Stand

In order to have a uniform dataset and fine circular images of the coins, a stand is required in

coin photography. The stand should be set up at a proper distance from the coin, so that the best

result in terms of details of the image is acquired.

Illumination and Supporting Surface

Light setup has a significant impact on coin photography. Due to the metallic surface of the

coin, reflections and handling them are challenging. Moreover, in one coin (especially the Toonies,

which are the targets of this study) different types of metals are used. The amount of light reflection

from each metal varies from one to another. Therefore, the lighting system should be designed to
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minimize the amount of reflection and give the best relative illumination for all parts of the coin.

Furthermore, the color of the supporting surface should be chosen so that it neither casts shadows

and nor affect the camera’s light calibration.

2.2.1 Dataset Specifications

The dataset created for this study consists of Canadian Toonies, which are all gathered and

photographed at CENPARMI. Based on the photography details released by numismatic centers as

in [29], and trying more than five different setups to create a good set of images for the study, the

following setup is proposed for the experiments regarding coin grading.

To achieve the desired image resolution, a ”CANON 60MM F2.8 MACRO EF-S” camera lens

is used. Ring light had shown the best outcome when the camera is set to the exposure of 1/25 (s)

and ISO of 100. Ring light gives an equal distribution of light on the surface of the coin. Also,

the black construction paper that is used as the background will minimize the effect of camera

inner calibration that leads to low visual representation of the details. The selected background

also eliminates the shadow casting on the outer edges of the coin, and the combination of all these

setups will assure that the relative intensity of the different parts are more or less kept, meaning

severe magnification or underestimation of the edges/scratches do not exist in the resulting images.

An example of the final resulting images can be found in Figure 2.4a. Comparing this image

with a sample from one of the most well-known coin datasets created for coin recognition in Figure

2.4b, one can easily observe significant details which are necessary for this study in CENPARMI

photographed coin image. The other difference which is not shown in the images is the size of the

image and the coin in the image. The initial resolution of the camera for CENPARMI photographed

coins is set to take images of size 2000 × 2000 pixels approximately, which leads to coins with

approximate radius of 700 pixels. This allowed us to have substantial details included in our images,

so that the coins could be comparable in terms of texture quality, whereas in MUSCLE or similar

datasets the resolution is limited to 640 × 576 pixels, in which the maximum coin sample radius is

roughly about 200 pixels. The final prepared set of images contains 129 images from the obverse
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(a) A sample of well-known MUSCLE dataset [30] (b) A sample of CENPARMI photographied Toonies

Figure 2.4: Comparison of CENPARMI and MUSCLE dataset

side of the Toonies. The reverse has almost half of the importance of the obverse in coin grading,

and is only included for a more detailed study covering all the aspects of coin grading, which is

out of the scope of this thesis. The images consist of Toonies from 2009, 2011, 2013 and 2015.

The portraits on these Toonies are slightly different from each other and even within one class, for

example 2009, slight changes in the dimension of the queen’s head can be found. The intention of

choosing similar portrait designs, was to be able to distinguish the small textural differences exist

among the different groups of coins by filtering the larger scale changes. However, as for the small

changes in the dimension and facial lines of the queens even within these most similar designs the

proposed algorithm shall be more biased towards the texture quality.

The prepared dataset is then graded by a coin specialist and the coins are labeled based on their

quality. Below an illustration of the different quality levels existing among the dataset, is given.

• Uncirculated (UC): Extremely sharp and shiny edges. The field is smooth all over the coin.

The field can be affected by the visible mint-marks. In some cases, several minor scratches

might be traced (Figure 2.5a).
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• Choice Extremely Fine (EF+): The design edges are a bit smoother than the almost uncir-

culated coins. The field around the design is almost clear. The field surrounding the legend

has some scratches (Figure 2.5b).

• Very Fine (VF): The design edges are severely worn out and although the design is complete,

small details are missing from the hair and the neckles of the queen. The field is full of small

bumps and scratches and sometimes big and deep scratches can be traced on the coin. Due

to the wear some parts of the legend are buried into the field (Figure 2.5c).

(a) An uncirculated sample (b) A choice extremely fine sample (c) A very fine sample

Figure 2.5: Samples of different quality degradation levels exist in CENPARMI dataset
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Chapter 3

General Preprocessing

3.1 Problem Definition

Given the explanations in the previous chapters, the problem of coin grading is categorized as

a texture detection problem. As mentioned in section 1.4, the coin grading problem is a much

broader topic. However, the focus of this study, is on the quality detection and feasibility of having

a computer-aided grading system to have a general approach responding to the other applications

listed in section 1.2 as well as coin grading. Also, as mention in section 2.2.1, the dataset fall into

three main quality categories based on the Sheldon scale (see Appendix A), which for a complete

coin grading study, the dataset shall fully cover the different quality categories in sufficient number.

Therefore, some elements of coin grading such as ”eye appeal” and ”luster” detection are not

covered and the focus is on wear quality detection.

CENPARMI Canadian coins dataset has some challenges to deal with, prior to using them in

the main algorithm:

(1) Slight differences in the size and resolution of images

(2) The scale of the coin’s image with respect to the whole image keeps changing from image to

image

(3) The edge detection in some images is adversely affected by negative illumination changes
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(4) The illumination setups of different images are not exactly the same due to changes in the

material of the coins and slight lighting setup changes in each set of data acquisition

3.2 Preprocessing Steps

To deal with the above listed problems, the following preprocessing steps have been considered

for this dataset:

(1) Image normalization,

(2) Background elimination, and

(3) Illumination removal.

3.2.1 Image Normalization

Image normalization is the key step in order to make a stable dataset. As the images in the

CENPARMI Toonies dataset are nearly similar in size, normalization will not affect the effective

features in the images. The applied image normalization process is summarized in Figure 3.1. The

following procedure could have been done using the Hough transform to detect the coin and crop

the image to the bounding box of the detected coin. However, comparing the performance of both

methods, the Hough transform was two times slower than our proposed work flow. As a result, the

Hough transform is suggested only for the parts where a detailed answer is required.
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Figure 3.1: Image Normalization work flow

Down Sampling

The original image matrices have about 2000 rows and 2000 columns, which is noticeably

large for image processing algorithms. In order to speed up the preprocessing steps, the images are

down sampled by a factor of 4, which breaks the resolution down to 500 × 500. The color images

are converted to the gray-scale which contains sufficient information for the following processing

steps. The preprocessing steps are implemented on the down sampled gray-scale images, and the

final result will be scaled back to the original image size. Figure 3.2 illustrates the down sampled

gray-scale image.
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Figure 3.2: Comparison between the original and the gray-scale down sampled image.

Binarization

The only goal of binarization in this part is to have a rough approximation of the size and

the shape of the coin, as well as facilitate the image morphological processing to be done in the
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following steps. As in this step, we do not care about the inner edges of the coin, any edge-

image that extracts enough information concerning the outer boundary of the coin while keeping

the performance of the preprocessing is a good choice. Therefore, Canny edge detection is used

as it is one of the fastest algorithms to get a binarized image. The level of details is adjustable by

changing the parameters of the Canny to give the freedom to have as much detail as possible. This is

important since due to the negative effect of illumination in the images, other edge detectors simply

neglect some parts of the boundary. On the other hand, Canny leaves it up to the user to decide how

much detail should be kept, and this will lead to having an almost connected outer boundary when

a large amount of detail is preserved in the images. This boundary then can easily get completely

connected using an appropriate structural element and morphological closing operation. The result

of Canny is illustrated in Figure 3.3a.

(a) Binarized image using Canny (b) Closing the gaps in the outer contour

Figure 3.3: Extraction of the outside boundary of the coin

Morphological Closing

The outer boundary of the coin is not fully connected, and any attempt to use shape detection

will end up only filling the holes which are fully connected. Using morphological closing with

a disk shape structural element of size 3 pixels, the outer edge will be connected. As mentioned
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earlier, we do not care about the effect of closing on the inner edges at this point, as the important

factor is to have a fully connected outer contour to extract the bounding box of the coin.

Elimination of Isolated Noise and Extraction of the Corresponding Mask

Using the outer boundary of the coin, the inner region of the coin is completely filled by 1 in

the binary image. This will create a mask filtering everything other than the coin. However, some

isolated noise can be found in Figure 3.4a, which should be removed to have a perfect circular shape

mask. With the help of connected components detection and knowing that the isolated noises are

the connected components with less than 500 pixels, the connected components are detected and

this noise is eliminated. Finally, a clean mask can be extracted as in Figure 3.4b. To remove the

zigzag pattern from the outer boundary edge of the mask, erosion is applied. A disk shape structural

element of size 4 pixels is used in this step.

(a) Morphological Filling (b) Noise Removal

Figure 3.4: Coin mask extraction

Crop the Image to the Outer Boundary of the Coin

Now that the clean mask is extracted, the bounding box of the shape is detected (Figure 3.5a)

using the minimum and maximum coordinates of the circle in each direction. The bounding box
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size is then scaled by the factor of 4 to be fit to the original image and the gray-scale image will

be cropped with respect to the scaled bounding box (Figure 3.5). The last step is to normalize the

gray-scale image to 650 × 650 pixels. This makes sure that the size of the coins is kept the same

in all the images. Therefore, it is easy to set the Hough transform configuration only for one coin

and apply it to the whole dataset for the next step of preprocessing. The whole procedure is done

so that it can be transmitted to the colored image, and have the colored image as the output in case

of the need for further investigations on color images.

(a) Extracting the bounding box of
the mask

(b) Scaled bounding box to the
original 2000×2000 image

(c) cropping and scaling down to
650×650

Figure 3.5: Final result of normalization

3.2.2 Background Elimination

Background elimination means to keep the target pattern in the study which is also called fore-

ground and eliminate all other patterns which are also called background. This step is required

in order for the texture study to be concentrated on the coin and its variations. Although in the

photography step a dark background was chosen, it still contains slight variations of light which

could be problematic in edge detection and feature extraction steps. In this step, the coin extraction

shall be more precise as the details of the foreground shall be kept. Below, the steps chosen to do

the task are demonstrated:
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Figure 3.6: Background elimination process

The same mask extracted in the previous section is used for the first step. The reasoning behind

having another Hough transform step is that sometimes the mask is not a fine circle as the illumi-

nation effect on the outer contour of the coin is too high and the morphological approaches can be

misleading. The Hough transform is a mathematical algorithm which is not affected by the pho-

tographic parameters. In this algorithm, which is based on a three dimensional voting system, the

centroid and the radius of the circle are estimated. Based on these estimations, the circle is easily

extracted. Normalizing the images prior to background removal will help to have a closer estima-

tion for the coin radius in the images. As per previous discussion, all the images are cropped and

normalized to 650 × 650 so that the image’s edges touch the coin’s outer contour. Therefore, the

radius of the coin is approximately 325 pixels. This rough estimation reduces the computation cost

of the Hough transform by decreasing the number of tries in the algorithm to find the radius with

maximum number of votes. In order to have a precise approximation, it is usually recommended to

use the edge-image and apply the voting system on the binary image. We also save the computation

cost, by using the circular mask instead of the edge-image. The circular mask is a rough estimation

of the coin and since that is the only circle we are looking for, keeping so many misleading edges is

careless. The initial image and the final image are shown in Figure 3.8 and the step by step practice
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can be followed in Figure 3.7.

(a) Detected mask with morphological processing (b) Detected circle using Hough transform

(c) The fine circle mask (d) Foreground pattern

Figure 3.7: Background removal

When the coin’s circle is detected everything outside the detected circle is set to zero and a pre-

cise circle shape mask is created. In this step, one can easily eliminate the background by applying

the mask on the image. Finally, the image is cleaned up, meaning all the illumination effects on the

background and outside the coin are removed to produce an image which only contains the coin.
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(a) Original normalized image (b) Background removed image

Figure 3.8: Background removal

3.2.3 Illumination Removal

As discussed earlier in this chapter, changes in illumination in different areas of the image are

not desirable. Such changes may cause several undesirable effects on rating the coin based on the

images.

(1) Underestimation of some edges when the illumination on the ”field” of the coin is changing.

This may cause too much resemblance of the ”field” to the ”legends” or ”portrait” and mis-

lead the edge detector incorrectly identifying the main edges. It may also cause the scratches

to not show up as strong in some cases. An example of this effect is illustrated in Figure

3.10a. The legends in the left side of the coin have stronger edges whereas they are not well

defined in the right side.

(2) Over-magnification of some edges is another issue as a result of reflection. An example of

this effect is demonstrated in Figure 3.10b in which the field texture is represented similarly

to heavy scratches. The coin itself is a mint-state coin on which the die marks are noticeable,
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however, due to the misleading illumination effect, the marks are represented like heavy

scratches. It is also noticeable that the legends are not bold, although the coin is a mint-state.

(3) The coins’ base metals and the portion of used metals keep changing every year. Sometimes

the change is noticeable in the colors of the metals. This effect in coin photography and in

gray-scale images is represented by a different intensity level. Having a larger difference

between the intensity levels of the legends and the surrounding field leads to having a cleaner

edge image. This causes the coin in Figure 3.10c to be graded as a higher quality level than

the one in Figure 3.10b, although they are both categorized as uncirculated coins.

Due to the listed effects, it is suggested to remove the illumination when the algorithm is not

illumination invariant. The designed approach to eliminating the illumination changes from the

images is depicted in Figure 3.9.

Figure 3.9: Illumination Elimination process
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(a) (b)

(c) (d)

Figure 3.10: Undesirable effects of illumination on the coin images

As presented in the diagram, the main goal is to remove the illumination variations. The back-

ground of the coin is estimated using a Gaussian low-pass filter. The desired filter will remove

all the details from the image and will only display a vague image which contains the intensity
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variations in different areas. The sigma value for the used Gaussian filter is set to 15 and the Gaus-

sian function is sampled in a window filter of size 61 × 61. Removing this image from the main

image will reveal the high points that we would like to keep, since the information of the image

is saved in these points. In order to have a smooth background, the mean value of the estimated

background image is used to be added to the high value image as the new background. As a result,

the illumination changes in the background will be removed to a good extent and at the same time

the important information of the image will be kept. The result of such procedure is represented in

Figure 3.11.

Figure 3.11: Result of illumination correction
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Chapter 4

Traditional Image Analysis for Coin

Grading

4.1 Introduction

In the past decade, machine learning algorithms have emerged and evolved fast. They have

found their place in almost all of the existing research studies and have become the main assessment

of almost all studies in just a few years. This is even more tangible in image processing and pattern

recognition studies as the learning algorithm is an inseparable part nowadays. However, we shall

not forget that for years image processing and pattern recognition studies were done without the

help of learning algorithms. Pattern recognition and image processing, themselves are powerful

tools to analyze the images and for every study to be legitimate, there is a need to investigate

the traditional approaches. In this section, we propose an image analysis approach for a rough

estimation of the coin’s surface wear. As discussed in chapter 3, the images are already corrected

with respect to scale and translation. However, the rotation changes was not in the scope of the

previous sections to be fixed as the proposed method was rotation invariant. In this chapter, first

the angular differences within the images are fixed to achieve rotation invariance. Using the edge

image and the registration techniques the scratches, bumps and defaults on the coin’s surface are
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estimated.

4.2 Wear Detection Algorithm

The flowchart depicted in Figure 4.1 shows the steps for this approach. The main difference

between registration techniques and feature extraction techniques (which an example of that dis-

cussed in chapter 5), is that the small changes which were negligible in the previous section such

as the year’s spot on different coins, and different obverse patterns are of high importance in reg-

istration and should be prohibited. For this reason, the steps below are repeated for each group of

coins from 2009, 2011, 2013, and 2015 separately.

Figure 4.1: Wear detection using image registration

4.2.1 Rotation and Alignment

Correlation and Registration

There exist so many different methods to align two coins. The common approach is to use

correlation to detect the rotation angle. First a template coin is selected. A test coin, is rotated

each time by a fixed degree and the correlation between the test image and the template image is

calculated. The rotated version of the test image which results in the highest correlation, is selected

37



and the rotation angle is recorded. The coin images captured in CEPARMI do not have more than 3

degrees of angular difference due to the precise setup used in the image acquisition step. Therefore,

for each group of images belonging to the coins from a specific year in the dataset a sample coin is

selected and the remaining coins from that year are compared to the sample coin by only rotating

them up to 3 degrees in both clockwise and counter clockwise directions taking 0.1 degree steps.

Since the coin’s design has a lot of details, it is suggested that the correlation is calculated only on

the legends. Therefore, the inner circle of the coin is discarded from the correlation computations.

Also, the edge image gives a better response in this step since the illumination is not constant for

the entire set of coins, the calculations on the gray-scale image leads to an increase of the error

rate. Due to the small pattern variations even in the coins from the same year, this approach failed

to give the best rotation in some cases. Therefore, a more stable method is implemented.

Matching Key Points for Alignment

Key points are strong stable points of the image which can be used for extracting objects in

different images and match them together. SIFT algorithm (see section 5.2.1) is a powerful method

to extract stable key points and chances that these key points fail to match the right key point in the

other image, is very low in CENPARMI dataset. However, it is not rational to do all the process

of detection and matching the SIFT key points for aligning the coins. Speed-Up Robust Features

(SURF) are the speed up version of SIFT. These features use Hessian matrix for localization which

is faster than SIFT, however it has the disadvantage of being rotation invariant for only up to 15

degrees angular difference between the images. Since the maximum angular difference in our

dataset is 3 degrees, this is not a problem. Again a template image is chosen for each group of

coins. The SURF key points and their locations for each of the template and the test images are

calculated. The key points are matched between the test and template images using the Euclidean

distance. When all the key points are matched, the rotation matrix that results in the new locations

of the key points in the test image, is calculated. The inverse of the calculated rotation matrix is

then applied on the test image to rotate and align it with the template image. Since this method is
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focused on a subset of pixels in the images which have the most important information, it is not

misled by the illumination changes and small differences in the patterns, and therefore the resulting

images have been satisfying.

4.2.2 Creating an ATLAS Image

In registration techniques, it is very important to choose the right template to which all the other

images are compared. As discussed in chapter 3, section 3.2.3, even images of the mint-state coins

are not considered as good templates because the mint struck marks are usually magnified and

are represented similar to the scratches. This leads us to create an ATLAS image as the template

(master) image. In medical image processing, it is usually hard to acquire images from certain

angles or images with certain illumination pattern. In such cases, an ATLAS image is created

which is the result of combining different images from the same object so that the resulting image

has the required specifications. In this study the required specifications of an ATLAS image is to

have an almost fine texture together with clear edges on the design and the legends. In order to

create such an image:

(1) All the images should be aligned (reasoning behind the previous step)

(2) Averaging on the aligned images will result in a fine template image

The resulting ATLAS image has:

• sharp and clear edges on the main design, the legends and the rim

• almost a fine and smooth field with no scratches and smoothed struck marks

• corrected illumination changes to an acceptable extent

Figure 4.2 shows an uncirculated image from 2009 and the created ATLAS image for this year.

As it can be seen, the field marks on the uncirculated coin can be estimated as possible scratches

making it not a good choice to be the master coin. However, the ATLAS image has a very fine field

texture and sharp legend edges which are desirable to be selected as the master coin.
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(a) Uncirculated coin image (b) ATLAS image

Figure 4.2: Comparison between an uncirculated coin and a created ATLAS image

4.2.3 Create a Blob Image from the ATLAS

The whole idea is to compare the ATLAS image and a test image to look for the texture defaults

and estimate its wear quality based on this comparison. In this procedure good edge images are

required for both the ATLAS and the test image. An edge image is considered to be good if all

the main edges are detected and there is no false positive answers (i.e. a detected edge which is

not an edge in the source image) resulting from intensity changes. That leads to an almost clean

edge image for the ATLAS and an edge image showing all the bumps and scratches on top of the

main edges in the test image. Among the existing edge detection methods, Canny is the best choice

for this study since the different parameters can determine the amount of details required. The

higher threshold of Canny is set to 0.2 and the lower threshold is the scaled of higher threshold by

the factor of 0.4. In order to deal with the small changes in the profile patterns, the ATLAS edge

image is not directly used in the next step. Instead, the blob image is extracted using morphological

closing and a disk structural element of size 3 to close all the open edges. This is followed by a

dilation process with a disk structure of size 6 to have a blob image. In the last step an opening
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process is implemented on the image to remove the unnecessary connections. Figure 4.3 indicates

the clean edge image calculated using the ATLAS image and the created blob image.

(a) Result of Canny on the ATLAS image (b) Coin with smooth surface

Figure 4.3: Creating the blob master image

4.3 Wear Estimation

To estimate the wear and quality of the coin, all the details including bumps and scratches are

important. The edge image of a test image is calculated using Canny with the same parameters as

in the previous step. The edge image is then compared to the created blob image and the defaults

are extracted. An estimation of the wear is then given to the coin based on the number of regions

and the density of each region. The bumps are usually small connected components which are

distributed over a large area on a heavily worn out coin. The scratches on the other hand are

concentrated on a small region but they have a dense group of pixels creating them. Figure 4.4

and 4.5 show the result of a heavily worn out coin and an almost uncirculated coin after comparing

with the blob image extracted in the previous part and the defaults of each coin are extracted and

illustrated.

As demonstrated in Figure 4.4, the blemishes in a heavily worn out coin are distributed all over
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Figure 4.4: Extracting blemishes from a worn out coin

Figure 4.5: Extracting blemishes from an almost uncirculated coin

the coin’s surface which is an estimation of the wear on the field. It also contains certain regions

of densely concentrated pixels which are the scratches. On the other hand, Figure 4.5 shows that

an uncirculated coin has almost a fine field. It is categorized as almost uncirculted rather than

uncirculated only because of certain dense regions which show some scratches on the surface.

Therefore, this method can differentiate between an uncirculated, almost uncirculated, an a worn

out coin by assigning a scale to the coin based on its wear density. Both Figures start from the

original image (most left), edge-image, the extracted belimeshes from each image, and the final

image shows the result of reduction of the blemishes from the edge-image. As it is expected, the

final cleaned edge-image of a worn out coin is very different from its original edge-image, whereas

for the case of almost uncirculated coin, the differences are not noticeable.

In order to have a quantitative measure for what just discussed, one shall notice that the blem-

ishes are getting more important as they get further from the design. This is because this method is

an edge-based estimation of the wear and in some cases the blemishes on the design might not be

the actual blemishes on the coin. Therefore, as we get further from the design the chance of having
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the actual bumps and scratches extracted is higher. Considering the two coins in Figure 4.6, the

procedure is explained on the images of an uncirculated (left) and a very fine coin (right).

Figures 4.6a and 4.6b clearly show the differences between the quality of an uncirculated and

a very fine coin. The edge extraction results using canny, are shown in Figures 4.6c and 4.6d

respectively. After comparing with the blob image, the extracted blemishes from each image are

represented in Figures 4.6e and 4.6f.

The images illustrated in the last row of Figure 4.6, contain some noise as well. Therefore, in

the next step the connected components containing less than 1000 pixels are rejected from both of

them. The remained components are then weighted by the density of the pixels in each component.

However, the wear needs to be inversely weighted with respect to the distance from the center of

the image for the sake of making sure that the field wear is given a higher importance than the wear

in design area. We used a Gaussian weighting kernel in this step. Having the weighted pixels now,

the sum of all these pixels are calculated and the result is normalized in the scale of 0 to 1, to give a

quantitative grade for the amount of detected wear on the coin. Using this method, the uncirculated

coin receives a grade of 0 (meaning no wear is detected) and the very fine coin receives a grade of

0.8386.
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(a) Uncirculated coin (b) Very fine coin

(c) (d)

(e) (f)

Figure 4.6: Extracting the wear on an uncirculated (left) and a circulated (right) coin
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4.4 Limitations

This algorithm provides a good understanding of the overall amount of blemishes on the coin

with respect to the other existing coins. However, the limitation of this method led us to choose a

more reliable algorithm provided in the following chapters. The limitations of this algorithm are

listed as:

(1) The resulting wear grade will change if more heavily worn out coins or coins with different

levels of quality are added to the existing collection.

(2) The algorithm is not design invariant and therefore, the procedure must be repeated for each

set of coins with a specific design separately.

(3) This algorithm does not provide detailed grading of coins with high quality (i.e. the dif-

ferences among the uncirculated and almost uncirculated coins are hard to detect with this

algorithm). Since, the algorithm is not biased with respect to the wear on the main edges of

the coin.
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Chapter 5

Application of Texture Analysis in Coin

Grading

5.1 Preliminary Data Analysis

5.1.1 Dataset Labeling

As discussed in chapter 1, the process of grading a coin is very subjective. In human grading,

usually three graders’ judgments on a coin are used before stating the final label. It is also worth

mentioning that not all the parameters mentioned in previous sections have the same weight for

grading the coins. The goal of this study is to create an algorithm which has a similar judgment

ability of a coin specialist, hence it is important to understand the coin specialist’s mindset. In

order to fulfill this prerequisite, with the help of Dr. Suen, we were able to find a coin specialist

who carefully investigated and labeled our dataset. The main factor that coin specialists consider

in grading the coins is the overall amount of wear, scratches, bumps and also the wear of certain

defined high points for each type of coin. Based on the listed parameters, the problem is clearly

categorized in the texture analysis type of study. In the following subsection, the preliminary texture

analysis attempts are described. The results from this section, helped us to understand the small

differences among the data classes and lead us to choose a compatible set of features for this study
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which is described in details later on in section 5.2.

5.1.2 Principal Component Analysis Algorithm

Principal Component Analysis (PCA) is a statistical technique widely used in both image recog-

nition/classification and data compression. The main goal of PCA is to describe the data in terms

of certain unit vectors which magnify the variance within the data; in other words, PCA detects

the patterns in the data so that their differences are highlighted. Along with this purpose, it also

provides dimensionality reduction [31]. In order to find a representation of data which signifies the

variance, PCA uses the two concepts of covariance and eigenvectors.

Covariance

The covariance between every two features is defined as below:

cov(x, y) =
n∑
i=1

(Xi − X̄)(Yi − Ȳ )

(n− 1)
(1)

In the above formula, Xi and Yi are the ith values of features x and y. X̄ and Ȳ are the data

mean values. As it is well-defined, the standard deviation and variance are measurements of how

spread out the data is in a one dimensional space. When it comes to more than one dimension

(i.e. more than one feature), covariance is the key to measuring the correspondence between every

two features. The most important thing about the covariance value is it’s sign. The negative sign

indicates that the features are inversely related, whereas the positive value means they are directly

related. A zero value for covariance means that the features are independent from each other.

Eigenvectors

An eigenvector is defined for a transformation so that when the transformation is applied on

eigenvector the resulting vector is a scale of eigenvector. For an n× n size matrix, n eigenvectors

could be found. All the eigenvectors are perpendicular to each other, which could create the basis
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vectors of another space, meaning the data could be expressed in terms of these vector. The value

by which the eigenvector is scaled when multiplied to the transformation is called the eigenvalue.

In order to find the principal components which make the most significant differences within

the dataset, the following steps should be taken:

(1) Subtract the mean

(2) Calculate the covariance matrix

(3) Calculate the eigenvectors and eigenvalues of the covariance matrix

(4) Choose the components and format the dataset

(5) Extract the feature vector

5.1.3 Coin Dataset Analysis and Classification

As discussed in the previous section, PCA is a powerful data analyser which can determine the

dominant components of the data that produce the maximum variance within the dataset in a new

space. In this step, the dataset is studied and using PCA the dominant components are recognized.

These dominant components are then used to classify the data into two groups of uncirculated

(UC) and circulated coins. As described in section 2.2.1, the dataset is already labeled in three

different quality classes. The characteristics of the classes are fully described in the same section.

In this preliminary test, the goal is to first verify whether the differences between the texture of

the uncirculated coins and the two other classes, referred to as circulated coins in this section,

are bold enough to be recognized without using a proper feature vector. The sum of gray-scale

intensities for each row and each column of the image is calculated and the vector which contains

these values is fed to PCA for each image. Based on the result of principal component analysis,

86% of the variance among the images fall in to the first two components; however, to make sure

having an accurate clustering result and not losing too much information, 40 out of 96 components

were used to group the coins. These components were then used to classify the data using support
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vector machine with a linear kernel. The accuracy in this step was 60%. Noting that the PCA

is not invariant to rotation, scale, translation and illumination, the next step to improve the result

is to correct the illumination changes in the dataset. As discussed in chapter 3, the images are

corrected with respect to scale and translation. Also, due to the camera setup and data acquisition

process, the images are almost aligned within the range of maximum 5 degrees error. This small

rotation difference is corrected using the registration technique explained late in chapter 4.2.1. The

dataset is then corrected with respect to illumination changes as discussed in section 3.2.3. Testing

the above algorithm on the illumination and rotation corrected images, improved the accuracy to

81.8%. Therefore, a rough texture analysis can easily differentiate between an uncirculated and a

circulated coin.

In the next step, the 40 dominant components are used as the input of an unsupervised learning

algorithm as k-means. The goal of this test was to understand whether the computerized methods

could be efficient enough to respond to one of the most subjective areas of numismatics which is

coin grading. To visualize the clusters, only the first two components are used, due to facilitation

of the visualization and knowing that these two components are the dominant elements to define

the distribution of the dataset in the new domain. Figure 5.1 shows the result of grouping the 96

training sets in to different numbers of clusters. Figure 5.1 illustrates the dataset being classified

in different number of clusters and described with respect to its first two principal components.

The cyan and yellow colors in Figure 5.1b show the coins which were classified as circulated and

uncirculated respectively. The same definitions have been shown in black and white in Figure 5.1a.

The different outer edge colors of circles show the different clusters recognized by k-means. In this

concept, the misclassification is defined as a circulated coin classified with the uncirculated coins,

and vice versa.
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(a) clustering into five groups (b) clustering into four groups

Figure 5.1: Results of clustering the coins in groups using PCA and k-means

Based on the size of the training set, an attempt is made to categorize the coins into 3, 4 and

5 clusters. After testing each clustering result for 10 iterations, the average number of misclassifi-

cation for 5 clusters was 15 and the average number of misclassification for 4 clusters was 4 and

5 misclassification for 3 clusters. This was an interesting outcome to compare with the result of

coin specialist’s labeling. The coin specialist could group the data into 3 main groups identified as

”UC” (Uncirculated), ”EF+” (Choice Extra Fine), and ”VF” (Very Fine). This would not of course

change the fact that the whole dataset could be categorized in 3 main groups based on the quality

and the texture. A low misclassification error for 4 clusters, is related to the problem of illumination

in the dataset. As explained in section 2.2, small variations in the setup and material of some coins

made their intensity range to be very different than others. A result of 4 class is related to that set

of uncirculated coins which had different intensity range, since the feature vector selected in this

part is not stable with respect to illumination changes, the 4 number of clusters is considered as a

measurement error. As a conclusion, computer-aided programs, if designed properly, are fully ca-

pable of recognizing the quality and categorizing the coins in a more accurate and reliable manner

which is not dependent on the human misperceptions and errors.
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5.2 SIFT Key Points as Wear Detectors

As fully described previously, a proper texture descriptor feature set is the main requirement

for quality evaluation of the coins. The primarily needs for the selected features are to be rotation,

illumination and scale invariant.

Our initial dataset was created under a fixed setup in which the size variation among the images

was limited to 400 pixels. Hence, the preprocessing step of scale and translation correction to have

images with exact same size of 600 × 600 pixels did not negatively affect our data stability. In

cases, where the data is not created with such a precision, the scale correction might have the effect

of losing the resolution and precision in some images when image stretching and interpolation is

required.

Due to the same reason, rotation correction is not recommended in coin grading studies. Ro-

tation correction involves finding the rotation angle and creating a rotated version of image with

interpolation techniques, which again in coin grading studies even small changes in the textural

details will affect the result of the grading. As mentioned in the beginning chapters, our data is ac-

quired under a fixed direction and the maximum angular difference among the images is 3 degrees.

As our data is acquired specifically based on the requirements of this thesis, having a rotation,

scale invariant feature set is not an asset. However, this study is the base of a new challenge in

numismatic studies and hence, the generalization is the key to have a valid and stable algorithm.

Therefore, the mentioned requirements, drive the attention to the Scale Invariant Feature Transform

technique (SIFT).

5.2.1 SIFT Algorithm

The Scale-Invariant Feature Transform (SIFT) introduced by Lowe [32] has been successfully

used in a wide range of image processing studies. These shape descriptors have been used in many

studies related to face recognition [33][34], landmark and objection detection [35][36]. The scale

and rotation invariant characteristics of these features have been the main reason for their popularity
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since 2004, and in many cases they have boosted the result of classification noticeably. In recent

studies, applications of SIFT descriptors on texture analysis problems have been investigated and

showed promising results [37][38][39]. We propose using the SIFT descriptors for coin quality

estimation and grading purposes. The nature of this study, is different from other textural studies

as the feature points are variable even among the images within the same class. In the rest of this

chapter, we focus on the explanation of the SIFT implementation and how it is a proper feature for

our purpose. The following diagram shows how the SIFT descriptors are extracted from a given

image.

Figure 5.2: SIFT Algorithm Diagram

Based on the depicted diagram, the algorithm consists of several steps:

(1) Creating a scale space

The goal of having a scale space is to simulate the effect of changing camera focus while

taking pictures from the same scene and therefore providing the requirements of extracting

scale-invariant features. The creation of scale space is described as progressively blurring

out the image using a Gaussian filter and by progressively, it means that at each new scale

the σ parameter in the Gaussian is multiplied by a constant value (similar to the effect of

zooming out the camera). SIFT algorithm takes the scale space construction to another level

by continuously resizing the original image to half of its size and creating the scale space for

each new image. The common practice is to start from the double sized image. Each of these

resized images, is called a new octave and at each octave the image is progressively blurring

out to create the different scales of that image. Lowe [32] suggests that the best outcome of

52



the SIFT is given using 4 octaves and 5 scales, which yields to a total of 20 images. However,

the number of octaves and scales is dependent on the size of the original image.

(2) Finding extrema points

The octaves are formed from blurred out images using Gaussian filters with different scales.

In order to detect stable extrema points, and save the computation cost at the same time, dif-

ference of Gaussian images are calculated using the difference between two consecutive scale

images [32]. The Gaussian kernels in the previous step, work as a blob detectors, and with

changing the σ value, they try to find the correct scale in which the extrema points could be

extracted. Equation 2 is the formulation of Gaussian kernel in which σ is the scale parameter.

The difference of Gaussian images are calculated as in Equation 3. Here, the scale parameter

of the next blurred image is k times of the previous one. G is the Gaussian kernel described

in Equation 2 and I is the original image. D is the calculated Difference Of Gaussian (DOG).

Note that, having 5 scales in each octave, we can generate a total of 16 (4 × 4) DOG images

which is enough to locate the extrema points.

G(x, y, σ) =
1

2πσ2
e(−

x2+y2

2σ2
) (2)

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (3)

When the DoG images are created an extrema point is detected comparing every pixel with

its eight neighbors in the same image (space invariant) and with its nine neighbors in the

previous and next scale (scale invariant). We do not look for extrema in the lower most and

topper most scale images.

(3) Extrema localization

Once the key points are detected, their locations are estimated in order to have more accurate
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results. Using the 3-dimensional Taylor expansion described in Equation 4, the closest esti-

mation for the location of the key points is calculated. This is also called subpixel estimation.

D(X0 + h) = D +
∂D

∂X

T ∣∣∣
X=X0

h+
1

2
hTH(X)h (4)

In above formula, D is the DOG value in the location of X0 = (x0, y0, σ0) and h is the

required offset to find the subpixel location.

(4) Elimination of poor key points

Having a stable set of key points in a strong pattern recognition algorithm is an asset. In order

to make sure that the detected key points are stable, the low contrast key points and the edge

points are eliminated from the set. The edge points are not considered stable, since even if

not located properly, Difference of Gaussian has a very big response in these locations. The

reminder is the set of key points with strong interest. In order to do so, the gradients of the

key points along x and y directions are calculated. If the area around the key point has no

variation, the values of both gradients are small. This is the case of having low contrast key

point. If the key point is located on an edge, the value of one of the derivatives is large and the

other one is small. At last, the interesting key points are located, where the gradient response

in both directions is large.

(5) Orientation assignment

An orientation should be assigned to each key point to satisfy the rotation invariant claim

of the algorithm. To do so, a histogram of gradient magnitude in a window around the key

point is created. The size of the window is defined considering the scale, the bigger the scale,

the larger neighborhood around the key point shall be considered. The histogram contains

36 bins to cover the 360 degrees and is weighted by the magnitude of gradient with respect

to each direction. The peak of the histogram is set as the key point’s orientation and all

other bins with 80 percent of the peak are considered as the new key points. Therefore,

in the same location and scale more than one key point with different orientations could
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be recognized, which makes the algorithm more stable. The formula used to calculate the

magnitude and the orientation of the gradient for each neighbor pixel are shown in Equations

5 and 6. The notation L is used for the scale images calculated in the first step by convolve

with the Gaussian kernels.

m(x, y) =
√

[L(x+ 1, y)− L(x− 1, y)]2 + [L(x, y + 1)− L((x− 1), y)]2 (5)

θ(x, y) = arctan (L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y)) (6)

(6) Extract key point descriptors

Finally, to describe the key points in terms of scale, rotation and illumination invariant fea-

tures, a 16×16 neighborhood of the key point is selected. The magnitude and the orientation

of gradient for each pixel in this block is calculated. To achieve the rotation invariant, the key

point’s orientation is subtracted from all calculated gradient orientations in the big block. It

is then divided into subblocks of the size 4 × 4 and an 8-bin orientation histogram is calcu-

lated for each subblock. The histogram calculation is similar to the previous step, however

a Gaussian kernel is multiplied to the main block prior to the creation of histograms, to re-

duce the effect of the neighbors which are far from the key point. Adding the calculated

histograms for each sub-block, one after another in a vector of size 128, the SIFT feature

vector is created. This vector is normalized and the values which are bigger than 0.2 are

thresholded. The thresholded vector is normalized again. Thresholding removes the effect of

sudden illumination changes and makes the vector illuminatin invariant as well.

5.2.2 SIFT in Automatic Coin Wear Detection

Apart from being an object detector, SIFT has already been proven to be a powerful texture

detector [37][38][39]. Azhar et al. in [39] used SIFT to classify Batik images. They achieved

an average of 97.67% accuracy in normal images. However, these studies only cover recognition

of well-defined textures. As for the coins, the challenge is that the textural changes are relevant
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to the other existing quality classes. There is also no rule on where on the coin the change is

happening, meaning all the coin’s field might have the same amount of wear or the wear can also

be concentrated on certain spots.

In coin wear detection, there are several parameters that define the amount of wear on the coins:

(1) The overall amount of scratches and bumps on the field of the coin

(2) The sharpness of design and legend’s edges

Based on the SIFT introduction given in the beginning of this chapter, we claim that these

features are capable of recognizing the wear on the coin and in other words, have the unique speci-

fications which make them suitable choice for coin grading.

The SIFT key points include the stable and strong corner points. This is very interesting, since

as the coin is worn out, the edges will not be sharp any more. A lot of other edge or gradient based

features, will still focus on a worn out edge and therefore, another assistant feature set focused

on the field is required to be used along with them. However, the SIFT will be less and less

concentrated on the main patterns where the edges are worn out, as the strong corner points are

hard to detect. This is also an advantage that the SIFT is not looking for edge key points because of

the same reason. In fact, as the coin quality decreases, the amount of overall bumps and scratches

on the field increases and therefore, there will be more interesting points to be detected on the field.

On the other hand, the concentration of the key points on the design and legend will decrease.

When the key points were tested, the practical results were completely align with the theoretical

claim given above.

To solve our coin grading problem, we extracted the SIFT key points for 4 randomly selected

coins (two uncirculated and two circulated). An average of 2000 to 3000 SIFT key points are

detected for each image depending on the level of details. To test the effectiveness of these features

for our problem, 50 key points for each coin were selected and visualized on the images. Below,

two coin images with different texture qualities are illustrated.
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(a) Coin with scratches and bumps (b) Coin with smooth surface

Figure 5.3: Distribution of SIFT key points on coins with different wear qualities

Glancing at the visualized SIFT key points on the coins illustrated in Figure 5.3, one can easily

notice that the key points in Figure 5.3a are more distributed over the field of the coin and shows the

defaults in the field texture, whereas the key points in Figure 5.3b are more focused on the corners

and edges of the coin’s stamp. Moreover, the fact that the design in Figure 5.3a is more worn out

gives less key points on the edges and the corners of the design in this coin. Thus we can suggest

that if trained well, SIFT key point descriptors can be extremely useful features in classifying the

coins with respect to the quality of the wear and the worn out scale.

After making sure that the SIFT descriptors can be beneficial features to discriminate between

different coin wear qualities, the algorithm should be tested. Each SIFT key point is described by

a histogram of length 128 bins as described in subsection 5.2.1. Hence, the whole image will be

shown by a matrix (n × 128) in which n is the number of key points detected in that image. It

is obvious that the number of key points in one image is different from the number of key points

in another image, since it depends on several parameters such as sharpness of the edges, number

of bumps, scratches, and so on. As these parameters vary in different images, we would expect

extracting different numbers of key points from each image. On average, a total number of 1500
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to 4500 key points were extracted from each image in our dataset depending on the severity of the

named parameters. In this step, each image is described by a matrix of key points. To train most of

the machine learning algorithms a feature vector is required. Therefore, we shall think of a way to

change these feature matrices to meaningful feature vectors for each image.

Figure 5.4: Changing the matrix of key points into a feature vector

Two different scenarios were used to make the matrix of features suitable for learning algo-

rithms and the results of each method were investigated.

Method #1

The key points in the training set are labeled based on the image label, meaning that all the key

points (i.e. rows in a matrix) extracted from an image inherit the same label as the original image.

As discussed in section 5.1.3, the dataset could easily be categorized as uncirculated and circulated

coin classes. In this part, the random forest learning algorithm is used due to its reputation for

being stable against over-fitting. All the key points extracted from all the images in the training set

are then fed to the random forest as the training set. The test set contains the key point descriptors

extracted from each test image meaning each row from the extracted key point descriptor matrix

behaves as individual test data. As anticipated, the label of each test image is then estimated based

on the votes of the labels of its key points.

The result was a training error of 0 a testing error of 38%, which is clearly the case for over-

fitting. Therefore, using PCA we reduced the dimension of the data from 128 to 52 in order to deal

with the problem. The reduced dimensionality features were still facing over-fitting issue.
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Over-fitting and Hoeffding Inequity

Over-fitting is one of the most challenging problems to deal with in machine learning problems.

It occurs when the feature size is too large with respect to the data. It is not totally related to the

size of the dataset however, size is one important factor. To clarify, if the dataset has a large size

but does not require many features to describe the differences among classes, or if the dataset is

too small, in both scenarios a large feature set leads to over-fitting. In machine learning problems

Inequity 7 describes this complex relation between the size of the feature set and the dataset. In this

inequity, M represents the number of features and N is the number of training data examples. In

order to prevent the over-fitting, the difference between the training error (E(in)) and testing error

(E(out)) must be smaller than an ε value.

Therefore, to prevent over-fitting either:

N is large

, or

M is be in small to compensate for ε.

P [E(in)− E(out) > ε] ≤ 2Me−2ε
2N (7)

Getting back to our dataset, the training set has 100 samples, which is a small number with

respect to the study. Therefore, it will generally over-fit for large feature vectors. In our case,

through trial and error, we determined that the number of features should be fewer than 8 to be able

to control over-fitting. This brought us to the second approach.

Method #2

A common approach in the literature of using the SIFT key point descriptor matrix in a feature

vector is to take advantage from Bag of Visual Words (BoVW). BoVW, which is described below,

helps to build a meaningful feature vector using the key point descriptors matrix to be fed to any

learning algorithm for classification. The common practice in using SIFT descriptors as the features
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for classification of patterns could be summarized in the following steps:

(1) Extracting the matrix of key point descriptors

(2) Using BoVW to group these key points into clusters (vocabularies)

(3) Create the dictionary of features (bag of features) for each image

(4) Forming a matrix of features using the bag of features created for each image

(5) Using the matrix of features to classify and determine the class of the test images

Bag of Visual Words

In text recognition bag of words is a well-known technique to create a histogram of words

for the text, which helps through the process of recognizing the text. Bag of visual words is the

application of the same approach in image recognition, which is the reason for calling it bag of

visual words instead of bag of words. The technique is presented in the diagram below:
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Figure 5.5: Creating the bag of visual words for the each of the three images

As depicted in Figure 5.5 the technique can be summarized in the following steps:

(1) Extracting the SIFT descriptors from all of the images and put them all together in one big

SIFT matrix

(2) Grouping the descriptors in a defined number of clusters using an unsupervised clustering

technique like k-means

(3) For a given image, after extracting the descriptors, assign each of them to one of the defined

clusters in the previous step

(4) Creating a histogram of distribution of the descriptors in the given clusters from second step
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It is worth mentioning that in step (2) the clusters are the visual words and we create a dictionary

of visual words’ counts in this process, which represents the feature vector for the image. BoVW

helps reducing the feature vector size to any desired size since the number of clusters is decided

more or less by the programmer. In our study, the SIFT descriptors are extracted from all the images

in the training set. It has been suggested in the literature [21], not to all the extracted descriptors to

construct the visual words. This is because of too much similarity increases the error in finding the

correct centers for the clusters. From Equation 7, it is already known in our study that the number

of clusters should not exceed 8.

5.3 Classification

Through the previous sections, the images were prepared and the useful information from the

images was extracted. The goal of classification is to:

(1) Verify the validity and the reliability of the selected features for the purpose of the study

(2) Complete the computer-aided algorithm designed to perform a task without or with minimal

human interference

The choice of a good classifier with respect to the topic and the dataset is another crucial el-

ement in each study. One should have a good understanding of the existing classifiers, and their

applications in order to choose the ones, which are compatible to the study. Coin grading is about

matching the coins with the right existing label (i.e. quality level). This is a supervised study and

among the supervised classifiers, Neural Network has been proved to be one of the most powerful

ones, when it is trained with a large scale dataset. However, this is not a valid solution for our prob-

lem, since the dataset is limited to 129 coins. In the SIFT literature, a combination of SIFT and

SVM has given the best results in terms of validity, stability and accuracy [20][21]. There are also

so many studies, in which a combination of SIFT and K-NN are used. These two classifiers, are

selected to be the main algorithms for this study and will be explained in the following subsections.
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For specific occasions, like the one with over-fitting, other classifiers which are known to be stable

against the issue, are used. Below, the two selected classifiers for this study are described.

5.3.1 Support Vector Machine (SVM)

Initially, SVM is a binary classifier. The main intention of SVM is to find a hyperplane, with

the largest margin between the two classes. Considering xj as the linearly separable feature points

and yj ∈ {±1} as the labels, the hyperplane is defined as below. β, the weight vector, and b, the

bias, are the parameters of the hyperplane.

f(X) = Xprimeβ + b = 0 (8)

In order to have the maximum margin (i.e. maximum distance to the hyperplane), the following

optimization problem is solved [40]:

max
β,b,||β||=1

M

subject to yi(x′iβ + b) ≥M, i = 1, . . . , N.

(9)

which is summarized into solving the below Lagrangian optimization problem to find the weight

vector β and the bias b:

min
β,b

L(β) = 1/2||β||2 −
N∑
i=1

αi[yi(β
Txi + b)− 1] (10)

As in any other Lagrangian problem, Equation 10 is solved by taking the derivative of the

equation with respect to β and b separately and set it to zero. The obtained amounts for β and b are

substituted in 10 and yields a solution to a simpler optimization problem:

LD =
N∑
i=1

αi − 1/2
N∑
i=1

N∑
k=1

αiαkyiykx
T
i x

T
k subject to αi ≥ 0 (11)

The above explanation is limited to the linearly separable feature points. For a nonlinearly
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separable set of points, the data is transformed to a higher dimensional space. In a higher space the

dataset is then linearly separable and the formula in 12 could be applied using the transformed data

points.

LD =
N∑
i=1

αi − 1/2
N∑
i=1

N∑
k=1

αiαkyiyk < h(xi), h(xk) > subject to αi ≥ 0 (12)

Therefore, the kernel that transforms the data plays the main role in finding a suitable hyper-

plane. The proper kernel must be selected with respect to the dataset. When the proper kernel is

selected, the hyperplane is calculated and transformed to the source space. Therefore, the data is

again separated with the largest margin.

For multi-classification problems, SVM can be used by integrating the binary structure into

a one against the rest of the classes form. Each time, one of the classes is labeled as 1 and the

remaining classes are labeled as −1. The optimum hyperplane for each class against the rest of the

classes is designed and the procedure continues for all the existing classes. SVM is recognized for

its efficiency and reliability even with a small dataset.

5.3.2 K-Nearest Neighbors (k-NN)

K-nn is a supervised classifier which is classified as a lazy learning algorithm. The whole

procedure of learning in this classifier is done in the classification step and for this reason it is a

costly algorithm for large scale dataset. K-nn is a powerful algorithm and for small scale dataset

where the cost is not an issue, it is a good choice. For each feature point in the testing set, k-

nn finds the k nearest neighbors for that point among the training set based on a defined distance

measurement. The neighbors vote for the label of that feature point and the majority of the votes

defines the label for the test point.
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Chapter 6

Results and Discussion

In this chapter, different tests and the results are presented. In the first set of tests, the dataset is

classified into two general groups of ”Uncirculated” and ”Circulated” coins to verify the validity of

the presented algorithm. In the next set of tests, the labels provided by the coin specialist are used

to classify the coins into the three classes of ”Uncirculated”, ”Choice Extremely Fine” and ”Very

Fine” quality groups (defined in section 2.2.1). The final results of this section look promising and

show the reliability and validity of the method. The performance of the selected machine learning

algorithm is also obtained and verified. Through this study, out of 129 coins, 100 are used as the

training set and the reminder is used as the testing set. The effects of illumination changes are

tested separately.

6.1 Binary Classification Test

In this first set of tests, the coins which were categorized as ”UC” are labeled as ”Uncirculated”

and the reminder which includes ”EF+”, ”VF” are labeled as ”Circulated”. Table 6.1 illustrates the

distribution of the samples of two existing classes in training and testing sets.
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Table 6.1: Distribution of classes in training and testing sets

Type Number of Uncirculated samples Number of Circulated samples

Training Set 64 36

Testing Set 20 9

Based on the discussions in chapter 5, section 5.2.2, the SIFT key points are extracted from each

of the images in the training set. In order to find the best number of visual words (clusters) in which

the key points of training set are best distributed, three tests are done. In each test, a percentage

of randomly selected key points (from the whole extracted key points in training set) are used to

build 3, 4 and 5 visual words and check how many visual words would give the highest accuracy

for the data. The lowest percentage of key points tested for clustering is 50% and the highest is

90%. If choosing less than 50% of the key points, a large portion of information is neglected and

going higher than 90% causes too much resemblance in the data which is not a good factor for

unsupervised clustering. Clustering the key points into more than 5 groups sometimes failed. The

procedure was tested with both SVM and k-nn and the final results are demonstrated in the Tables

6.2 and 6.3 respectively. As can be noticed, for each percentage of used key points in clustering

step and number of visual words, the clustering with k-means is tested 3 times. This is due to the

fact that for unsupervised clustering, there is always a certain amount of uncertainty in the final

result which can be removed by re-doing the test and averaging out the results from different tests.

In most cases, repeating the test 3 times, gives the fair result and specially as we are not facing a

huge dataset, 3 tests enable us to judge the final result of each step.
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Table 6.2: Final accuracy of the algorithm using SVM

% key points used for constructing the VWs No. Visual Words Test 1 Test 2 Test 3 Ave. ACC

50%

3 89.6552 93.1034 89.6552 90.8046

4 89.6552 89.6552 86.2069 88.50577

5 86.2069 82.7586 79.3103 82.7586

70%

3 89.6552 72.4138 93.1034 85.05747

4 86.2069 86.2069 86.2069 86.2069

5 79.3103 75.8621 93.1034 82.7586

90%

3 89.6552 93.1034 93.1034 91.954

4 89.6552 89.6552 86.2069 88.50577

5 82.7586 89.6552 89.6552 87.35633

Table 6.3: Final accuracy of the algorithm using 5-NN

% key points used for constructing the VWs No. Visual Words Test 1 Test 2 Test 3 Ave. ACC

50%

3 93.1034 93.1034 93.1034 93.1034

4 93.1034 96.5517 96.5517 95.4023

5 89.6552 86.2069 89.6552 88.5058

70%

3 89.6552 86.2069 93.1034 89.6552

4 90.1034 93.1034 96.5517 93.2528

5 89.6552 86.2069 86.2069 87.3563

90%

3 86.2069 93.1034 93.1034 90.8046

4 93.1034 96.5517 96.5517 95.4023

5 86.2069 86.2069 86.2069 86.2069

Based on the discussions in chapter 3, the scale invariant property is already provided for the

67



images. Also, the bigger angular difference among the coin images in the dataset is up to 3 de-

grees. This is not a noticeable difference to fool SIFT algorithm and therefore, we can confidently

say that the tests are scale and rotation invariant. However, the illumination changes in the im-

ages are significant. Although SIFT is claimed to be illumination invariant as well as rotation and

scale invariant, this property is tested for this study. To do so, the illumination changes in the

images are removed using the steps proposed in chapter 3. The SIFT algorithm is then applied to

the new images and the results of binary quality classification is illustrated in the Tables 6.4 and 6.5.

Table 6.4: Final accuracy using SVM on images with corrected illumination

% key points used for constructing the VWs No. Visual Words Test 1 Test 2 Test 3 Ave. ACC

50%

3 86.2069 86.2069 86.2069 86.2069

4 96.5517 96.5517 96.5517 96.5517

5 89.6552 93.1034 96.5517 93.1034

70%

3 89.6552 86.2069 89.6552 88.5058

4 93.1034 75.8621 96.5517 88.5057

5 96.5517 93.1034 93.1034 94.2528

90%

3 86.2069 89.6552 89.6552 88.5058

4 86.2069 96.5517 86.2069 89.6552

5 93.1034 96.5517 93.1034 94.2528
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Table 6.5: Final accuracy using 5-NN on images with corrected illumination

% key points used for constructing the VWs No. Visual Words Test 1 Test 2 Test 3 Ave. ACC

50%

3 89.6552 93.1034 93.1034 91.954

4 96.5517 93.1034 96.5517 95.4023

5 96.5517 93.1034 93.1034 94.2528

70%

3 93.1034 93.1034 93.1034 93.1034

4 96.5517 93.1034 96.5517 95.4023

5 89.6552 89.6552 89.6552 89.6552

90%

3 93.1034 93.1034 93.1034 93.1034

4 86.2069 96.5517 86.2069 89.6552

5 89.6552 93.1034 89.6552 90.8046

Comparing the results extracted from the gray-scale images in Tables 6.2 and 6.3 with the ones

extracted from the illumination corrected images in Tables 6.4 and 6.5, the accuracy rates calculated

for k-nn are more consistent. To find out the best percentage of key points which should participate

in the constructing the visual words, the average accuracy of all 9 tests for each percentage of

used key points is calculated. The higher accuracy for tests with k-nn in both gray-scale and

illumination corrected images goes for using 50% of the key points. Comparing the results of SVM

tests, corrected illumination images vote for using 50% of data, whereas the gray-scale images

vote for using 90% of key points. This does not only indicate that k-nn results are more consistent

but also reveals that using only 50% of all extracted key points from the training set gives us

sufficient information to cluster the key points extracted from different parts of the coin and be able

to compare them to the relevant key points from other coins. Also, calculating the variance of the

accuracies for each test related to a specific number of visual words, shows that on average using

3 clusters is enough for classifying the information. At last, the difference between the results of

the illumination corrected images and the results provided in Tables 6.2 and 6.3 is negligible and

shows that SIFT features are illumination invariant.
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6.1.1 Classification quality measurements

Accuracy is not always enough to show the validity of the classification. It is also dependent

on the number of instances in each class. If the size of instances in the existing classes is too

much different from each other, the class with a higher number of instances has a greater weight in

changing the result of calculated accuracy. Some other factors to evaluate a classifier’s performance

are investigated below.

Confusion Matrix

Confusion matrix is a tool in machine learning that shows different types of error measurements

for a learning system by representing the false positive and the false negative cases. It also shows

the performance of the algorithm by representing the true positive and true negative cases all in one

matrix. Here, we have selected to show the confusion matrices for the second tests from Tables 6.2

and 6.3 which use 90% of the key points and 4 clusters (defined as test 90.4.2).

SVM Circulated Uncirculated
Circulated 7 1
Uncirculated 2 19

(a) SVM test 90.4.2

K-NN Circulated Uncirculated
Circulated 8 0
Uncirculated 1 20

(b) K-NN test 90.4.2

Table 6.6: Confusion Matrix of test 90.4.2

Matthew Correlation Coefficient

As illustrated in Table 6.6, the true positive (upper left cell) and true negative (lower right

cell) cases in both of the tests are a lot more than false negative (topper right measure) and false

positive (lower left) cases. There are several defined quantitative measurements. Each could verify

the performance of the learning algorithm from a different aspect and in different situations. The

Matthew correlation coefficient is a performance measurement for binary classification when the
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two classes are very different in size. The Matthews correlation coefficient is defined below:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(13)

In the above formulation, TP stands for True Positive, TN for True Negative, FP for False

Positive and FN for False Negative. All these variables can be extracted from the confusion matrix.

Calculating the MCC for SVM and k-NN using their confusion matrices, MCC for SVM is 0.75

and 0.92 for k-NN. The result shows:

(1) k-NN algorithm has a better performance on our dataset, therefore the accuracy of k-nn cases

is more reliable.

(2) Since both SVM and k-NN produce performance results which are a lot higher than 0, in the

range between -1 to 1, the algorithm is valid and is proposed to be used for automatic quality

detection

6.2 Evaluation Based on Three Levels of Quality

The results in section 6.1 proves the validity of the proposed algorithm to evaluate the coin’s

quality. The coins in this study are clearly divisible into three quality classes. In order to have

a clear decision boundary, the coins are tested to be classified into three different quality classes,

which were labeled by the coin specialist (section 2.2.1).

The first class contains the ”UC” labeled samples. The second class includes the ”EF+” labeled

samples and the last class contains a combination of ”VF”. The tests results are provided below.
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Table 6.7: Final accuracy of the algorithm using SVM with a linear kernel

% key points used for constructing the VWs No. Visual Words Test 1 Test 2 Test 3 Ave. ACC

50%

3 89.6552 89.6552 89.6552 89.6552

4 89.6552 89.6552 89.6552 89.6552

5 93.1034 93.1034 93.1034 93.1034

70%

3 89.6552 89.6552 89.6552 89.6552

4 93.1034 89.6552 89.6552 90.8046

5 93.1034 93.1034 93.1034 93.1034

90%

3 89.6552 89.6552 89.6552 89.6552

4 93.1034 89.6552 89.6552 90.8046

5 93.1034 93.1034 93.1034 93.1034

Table 6.8: Final accuracy of the algorithm using SVM with an RBF kernel

% key points used for constructing the VWs No. Visual Words Test 1 Test 2 Test 3 Ave. ACC

50%

3 89.6552 89.6552 89.6552 89.6552

4 96.5517 96.5517 96.5517 96.5517

5 86.2069 86.2069 86.2069 86.2069

70%

3 86.2069 86.2069 89.6552 87.3581

4 96.5517 96.5517 96.5517 96.5517

5 86.2069 86.2069 86.2069 86.2069

90%

3 89.6552 89.6552 89.6552 89.6552

4 96.5517 96.5517 96.5517 96.5517

5 93.1034 86.2069 86.2069 88.5075
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Table 6.9: Final accuracy of the algorithm using 5-NN

% key points used for constructing the VWs No. Visual Words Test 1 Test 2 Test 3 Ave. ACC

50%

3 86.2069 86.2069 86.2069 86.2069

4 82.7586 89.6552 82.7586 85.0575

5 89.6552 86.2069 89.6552 88.5067

70%

3 89.6552 89.6552 86.2069 88.5067

4 89.6552 82.7586 82.7586 85.0575

5 89.6552 89.6552 82.7586 87.3563

90%

3 86.2069 86.2069 86.2069 86.2069

4 89.6552 82.7586 89.6552 87.3563

5 90.1034 89.6552 89.6552 90.8046

In these tests, we used RBf or Gaussian kernel for SVM tests in addition to linear kernel. The

reason behind this has been introduced in section 5.1.3. Figure 5.1 shows that the dataset is not

easily separable to 3 or 4 classes with linear hypothesis. Calculating the variance of accuracies for

each set of 3 tests related to a percentage of key points and a number of visual words, SVM with

RBF kernel shows less changes in the final result. Comparing the provided results for k-NN and

SVM for classifying in 3 levels of quality, SVM results show better accuracy and more consistency

(less variance) through the 3 tests. In other words, when the decision making is more complex,

SVM shows a better performance.
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Chapter 7

Conclusion

7.1 Contributions and Discussions

This thesis is focused on the feasibility of building an automatic detection of low quality and

damaged coins using their digital images. The quality of the coins in numismatic studies are de-

termined based on several factors such as the overall amount of wear, scratches and bumps, color

change, struck marks and so on. However, these estimations are not totally solid and can vary based

on different perspectives. The aim of an automatic wear estimation is to prevent such judgments

while being consistent through the whole procedure.

First, the new dataset and image acquisition software are built from scratch to provided the

principal requirements of this thesis. The different aspects of coin photography and challenges

have been investigated and the negative impacts of lighting and camera setup on the images have

been minimized. The images are cut and scaled automatically and a scale invariant dataset is

created using the following techniques: morphological processing, Hough transform, bounding

box extraction, and normalization.

Second, as the purpose of the project is to investigate the feasibility and propose an algorithm to

do automatic wear detection, the most important factors to estimate the wear quality are determined.

The wear quality is mainly estimated based on the overall wear, scratches and bumps. Therefore,
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the existing texture features have been studied and some have been tested for their performance on

this subject. Since illumination changes are not avoidable in coin studies, the study has narrowed

down to using SIFT features which are illumination invariant. Other textural features such as local

binary patterns which are also used in many studies have failed to reach the goal of this study.

Third, two different approaches to use SIFT features have been tested and the algorithm for

wear detection has been proposed and implemented. The algorithm has been tested in several ways

to check its validity and feasibility. The challenges with respect to the quantity and variety of the

dataset and the over-fitting are recognized and the proper solutions to keep the validity of the overall

process are proposed.

At last, to complement the study of this subject, a wear estimation algorithm has been proposed

which illustrates that having a good estimation of the coin’s quality is mostly related to the overall

amount of wear as the main parameter. It also claims that image processing and pattern recognition

approaches reveal a great deal of precision which human eye is incapable of distinguishing details

in that scale. This responds to the first question of this thesis which is the feasibility of such study

and in fact, it indicates the need of having a computerized algorithm for this area of numismatics.

The conclusion of this thesis is summarized below:

• Visual image processing and pattern recognition approach, could give an estimation of the

overall wear of the field. However, the quality of the coin also depends on the wear on the

design, and legends which more complicated procedures are needed to handle these param-

eters. Apart from that, the rotation, scale and illumination changes shall be handled in the

data preprocessing step. The detected wear pixels should be analysed using a proper scaling

system to be able to give a valid estimation on the field wear.

• On the other hand, SIFT features are scale, rotation and illumination invariant which makes

them a perfect choice for the numismatic studies. SIFT features are shown to handle the

changes in the wear as the coin quality is degraded. They choose the most stable key points

which also helps prevent the undesirable effect of noise in the images. All these, helps

the different complicated algorithms in the visual image processing approach to be handled
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automatically using SIFT key points.

• A lot of changes in the patterns of the coins have been handled in this study, using SIFT

features, and choosing the right number of clusters for the BoVW algorithm afterwards.

• The SIFT feature extraction process is fast which makes the algorithm to have the capability

to be used in real world applications.

7.2 Future Work

As stated in the introduction of this thesis, this study is completely new with respect to the

other studies in the field of numismatics. Therefore, some aspects are left for the future work on

this subject. The proposition for future work of this subject can be summarized in the following

items:

• The factors considered in this thesis are concentrated on the wear and defaults on the coin.

However, the other factors such as color changes, eye appeal and so on shall be put into

investigation to be added to the proposed algorithm for a complete grading system.

• The dataset used for this study is limited in number and quality variation. A larger dataset

with wider variation in the quality shall be used for a better robustness against changes in the

coin profile’s patterns. If the dataset is large enough, the algorithm is capable to be trained to

look for the defaults on the coins and neglect any changes in the main pattern.

• Finally, an algorithm to be completely robust to scale, rotation, illumination and coin’s design

and legends pattern changes should include a deep learning step. We propose the combination

of SIFT key points and deep learning as a new road for discovery in this subject which has

the capability to be tested against more complicated applications such as classifying a test

coin based on the 70-level quality scale system currently used by the expert numismatists.
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Appendix A

Numismatic Terminology and Sheldon

Grading Scale

A.1 Numismatic Terminology

Apart from the ”Head” and the ”Tail”, a coin has so many major parts which shall be defined.

The terminology used in this thesis is consistent and based on the below definition [41]:

• Background - Everything in the image excluding the main object e.g. the coin.

• Foreground - The main object of the study e.g. the coin.

• Obverse - The ”Head” of the coin.

• Reverse - The ”Tail” of the coin.

• Portrait - The main part of the design which usually includes the face of a public figure.

• Field - The flat area that surrounds coin’s design.

• Legend - The principal lettering on the coin usually containing the name of the country, or

the name of the figure whose portrait is on the obverse of the coin.
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• Relief - Generally refers to parts of the coin which are struck in higher positions with respect

to the rest of the coin. Coins are built in different degrees of relief.

• Rim -The boundary of the coin which is a bit higher than the relief to protect the design from

wear.

• Edge - The third surface of the coin.

• Planchet - The metal disk used to die a coin design on it.

Figure A.1 shows the obverse of a Toonie.

Figure A.1: The important parts of an obverse of a Toonie
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A.2 Sheldon Grading Scale

The Sheldon scale is a grading scale devised to facilitate the coin trading and coin collection

business. It is initially devised to set price differences for different categories of coins. The cate-

gories go further than what is explained in Table A.1. Table A.1 is summarized to cover the wording

definition specific to this thesis.

Table A.1: Sheldon Grading Scale [1]

Scale Grade Label Specifications

1 Poor (PO) The coin’s type is barely recognizable as it is heavily worn out

2 Fair (FR) Some small details are distinguishable

3-3.5 Almost Good (AG) The letters are readable although the coin is heavily worn out

4 Good (G) The design is visible however in many sections, the coin is worn out flat

6 Choice Good (G+) Rim and the lettering are complete

8 Very Good (VG) Slight details are visible although the coin is flat

10 Choice Very Good (VG+) Slightly clearer design details

12 Fine (F) Considerable wear with a bold design

20-25 Very Fine (VF) Moderate wear mostly on relief and high points. The major details are visible

30-35 Choice Very Fine (VF+) All lettering and main features are sharp with even amount of light wear

40 Extremely Fine (EF) Light wear on the design with all the features sharp and clear

45 Choice Extremely Fine (EF+) Light wear on the high points. All the design details are clear. A bit of mint luster is noticeable.

50 Almost Uncirculated (AU) Slight wear only on high points. Half of mint luster is visible.

60 Uncirculated (UC/MS60) No trace of wear but may have some contact marks or lack a bit of the mint luster
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