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ABSTRACT

Multi-level facility location problems

Camilo Ortiz Astorquiza Ph.D.

Concordia University, 2017

We study of a class of discrete facility location problems, called multi-level facility

location problems, that has received major attention in the last decade. These prob-

lems arise in several applications such as in production-distribution systems, telecom-

munication networks, freight transportation, and health care, among others. More-

over, they generalize well-known facility location problems which have been shown

to lie at the heart of operations research due to their applicability and mathematical

structure. We first present a comprehensive review of multi-level facility location

problems where we formally define and categorize them based on the types of deci-

sions involved. We also point out some gaps in the literature and present overviews

of related applications, models and algorithms. We then concentrate our efforts on

the development of solution methods for a general multi-level uncapacitated facility

location problem. In particular, based on an alternative combinatorial representa-

tion of the problem whose objective function satisfies the submodularity property, we

propose a mixed integer linear programming formulation. Using that same represen-

tation, we present approximation algorithms with constant performance guarantees

for the problem and analyze some special cases where these worst-case bounds are

sharper. Finally, we develop an exact algorithm based on Benders decomposition for

a slightly more general problem where the activation of links between level of facilities

is also considered part of the decision process. Extensive computational experiments

are presented to assess the performance of the various models and algorithms studied.

We show that the multi-level extension of some fundamental problems in operations

research maintain certain structure that allows us to develop more efficient algorithms

in practice.
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To Maria Cristina, Julio Vicente, Elisa and Ana Lućıa

Everything I am and will be

Nothing in the world takes place without optimization, and there is no doubt that all

aspects of the world that have a rational basis can be explained by optimization

methods.1

1Taken from Grötschel [79], who translated the statement by Leonhard Euler from 1744
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Chapter 1

Introduction

Facility location problems (FLPs) constitute a major area of interest for researchers

and practitioners in operations research (OR). FLPs have emerged since the second

half of the twentieth century, and are relevant to business, public service and theoret-

ical research. The common idea behind location problems is “the notion of optimal

choice within a spatial context” [96]. Thus, several applications find their place in this

extensively studied field. Moreover, the mathematical structure of some FLPs has

proven beneficial to develop solution methodologies that are broadly used today in

OR. Numerous books and surveys are witnesses of the importance of this area, both

theoretically and application-wise [see, for instance 52, 104]. In particular, discrete

FLPs have played a major role in locational analysis [127], that is, FLPs where the

location decisions are restricted to the vertices of an underlying network.

In this thesis we study of a class of discrete FLPs that has attracted increasing

attention in the last decade, called multi-level facility location problems (MLFLPs).

Perhaps, an important motivation for this interest in MLFLPs is the fact that they

generalize some fundamental FLPs such as the uncapacitated facility location problem

(UFLP) [46, 100] and the p-median problem (p-MP) [83], while retaining several

mathematical properties. In Chapter 2 we present a comprehensive review of the
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existing literature on MLFLPs, consisting of more than 60 articles among which more

than 40 date within the last ten years. We also discuss some of the gaps that appear in

the field that also motivated this work. Although the review paper attempts to cover

the entire spectrum of MLFLPs, in the other chapters of this thesis we concentrate

on the uncapacitated cases only.

In particular, we study a general class of MLFLP denoted multi-level uncapacitated

p-location problems (MUpLPs) along special cases and extensions. The MUpLP can

be defined as follows. Let I = {1, · · · ,m} be the set of customers, V1, · · · , Vk be the

sets of sites among which facilities of levels 1 to k can be selected (or opened), with

V = ∪kr=1Vr. Also, consider cij1···jk to be the profit associated with the allocation

of customer i to the sequence of facilities j1, · · · , jk, where jr ∈ Vr. Now, let p =

(p1, · · · , pk) be a vector of positive integers, and let fjr be the non-negative fixed cost

associated with opening facility jr at level r. The MUpLP consists of selecting a set

of facilities to open, such that no more than pr facilities are opened at level r and

of assigning each customer to a set of open facilities, exactly one at each level, while

maximizing the total profit minus the setup cost of the open facilities.

Note that the single-level version (i.e. k = 1) of the MUpLP corresponds to the

well-known uncapacitated p-location problem (UpLP) [45] which in turn subsumes

the UFLP and the p-MP. Thus, multi-level extensions of the UFLP and the p-MP

are also special cases of the MUpLP. Namely, the multi-level uncapacitated facility

location problem (MUFLP) [90, 153] is obtained when all cardinality constraints are

redundant, i.e. when pr = |Vr| for all r, and a generalization of the p-MP, called the

multi-level p-median problem (MpMP), is derived when all setup costs are set to zero,

that is, fjr = 0.

Yet another important class of MLFLPs arises when network design decisions such

as the activation of links in a network are considered. Thus, we also study a slightly

more general version of the MUpLP which includes additional costs for opening edges
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between levels of facilities. This problem is denoted as the MUpLP with edge costs

(MUpLP-E). Contreras and Fernández [39] review single-level problems where non-

trivial location and network design decisions are part of the optimization process.

The authors denoted them as General network design problems (GNDP). To the best

of our knowledge, the MUpLP and therefore the MpMP and the MUpLP-E have not

been defined before. Moreover, among the numerous publications relating MLFLPs

only a few are concerned with the development of exact algorithms for the MUFLP.

The objectives of this thesis can be summarized as follows.

• To define a general class of MLFLPs by identifying their main characteristics

and differentiating factors from related areas.

• To provide a comprehensive review on MLFLPs and an appropriate classifica-

tion scheme.

• To investigate the viability of extending some theoretical results previously ob-

tained for single-level FLPs to the MLFLPs.

• To introduce and computationally compare mathematical formulations for the

general MUpLP.

• To devise approximate and exact algorithms that efficiently attain optimal or

near-optimal solutions for instances of the MUpLP and the extended MUpLP-E.

This thesis contains five more chapters, four of which correspond to the articles

that have been published or submitted for revision in OR-related journals, followed

by the conclusions chapter. Hence, each chapter is self-contained and special caution

should be taken with the notation going between chapters. Nevertheless, we have

made some minor modifications to the notation as well as tables and figures from

the original versions of the papers in order to improve the coherence throughout this
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manuscript. However, some repetition can be found between chapters especially in

the corresponding introductory sections.

The remainder of this document is organized as follows. In Chapter 2 we present

a comprehensive review of MLFLPs. We first discuss the main characteristics of these

problems and show some similarities and differences with well-known related areas.

Based on the types of decisions that are involved in the optimization process, we

identify three different categories of MLFLPs. We thus present overviews of formu-

lations, solution methods, applications and the historical development of the field.

In Chapter 3, we introduce an alternative combinatorial representation for the MU-

FLP. An interesting observation is that the real-valued set function associated with

the classical representation of the problem does not satisfy the submodular prop-

erty, whereas the set function associated with the new representation does satisfy

this property. This corrects a previous conclusion stating that the MUFLP is not

submodular. In Chapter 4 we generalize this result to the MUpLP and exploit this

characterization to derive worst-case bounds for a greedy heuristic. We also obtain

sharper bounds for the special case of the MpMP. Moreover, we introduce a mixed

integer linear programming formulation for the problem based on the submodularity

property. We present results of computational experiments to assess the performance

of the greedy heuristic and that of the formulation and compare the models with

previously studied formulations. In Chapter 5 we study the more general MUpLP-E

where the selection of links between levels of facilities is part of the decision process.

We propose an exact algorithm based on a Benders reformulation to solve large-scale

instances of the problem and some particular cases. Extensive computational exper-

iments were carried out to assess the performance of several different variants of the

Benders algorithm. Conclusions follow in Chapter 6.
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Chapter 2

Multi-level facility location

problems

The content of this chapter was submitted for publication under the Invited Review

series entitled “Multi-level Facility Location Problems”, European Journal of Opera-

tional Research, March 2017 [138].

Abstract

We conduct a comprehensive review on multi-level facility location problems which

extend several classical facility location problems and can be regarded as a subclass

within the well-established field of hierarchical facility location. We first present the

main characteristics of these problems and discuss some similarities and differences

with related areas. Based on the types of decisions involved in the optimization

process, we identify three different categories of multi-level facility location problems.

We present overviews of formulations, algorithms and applications, and we trace the

historical development of the field.
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2.1 Introduction

Discrete facility location problems (FLPs) constitute a major area of interest for re-

searchers and practitioners in operations research (OR). The mathematical structure

of some FLPs, which has proven fruitful to the development of solution methodolo-

gies broadly used today in OR, combined with their applicability to real-life problems,

have made FLPs a core topic that has led to a vast number of publications, including

several books and surveys [see, for example 52, 56, 104, 127]. A subclass of FLPs

called multi-level facility location problems (MLFLPs) has attracted increasing at-

tention in the last two decades. However, to the best of our knowledge, no recent

publication consolidates the available material on this particular subject. Thus, we

felt that the time was adequate to discuss the main aspects of MLFLPs in order to

differentiate them from related topics and classify this rapidly emerging area. In this

article we review the most representative MLFLPs as well as their historical develop-

ment, models, solution methods and applications. For this purpose we survey over 60

OR-related studies published since the late 1970s, among which more than 40 have

appeared in the last decade.

In an MLFLP we are given a set of customers that have a service or product

requirement and a set of potential facilities partitioned into k levels. The goal is to

determine which facilities to open simultaneously at each level, so that customers

are assigned to one or multiple sequences of opened facilities, while optimizing an

objective function. Some of these problems generalize fundamental FLPs such as the

uncapacitated facility location problem (UFLP) [46, 100]. For example, in one of

the first papers on MLFLPs, Kaufman et al. [90] introduced the so-called warehouse

and plant location problem. Later, a slightly different version of that problem was

presented and denoted as the two-level uncapacitated facility location problem (TU-

FLP). A natural extension to more than two levels of facilities corresponds to the

6



multi-level uncapacitated facility location problem (MUFLP).

MLFLPs can also be viewed as a special case of an important class of problems

called hierarchical facility location problems (HFLPs), where systems involving dif-

ferent types of interacting facilities that provide services to a set of customers are

studied. Applications of HFLPs arise naturally in supply chain management (SCM)

[123], where the interactions between plants, warehouses, distribution centers, and

retail stores play a major role, and in health care systems [143] in which users must

be served from different levels of clinics and hospitals. Other examples arise in hi-

erarchical telecommunication networks [34, 77], freight transportation [68, 70], and

solid waste management systems [22]. The two surveys of Şahin and Süral [47] and

Zanjirani Farahani et al. [168] provide classifications and overviews of models, appli-

cations, and algorithms for HFLPs. Reference [47] covers the literature until 2004.

Reference [168] is more recent but does not present most of the papers on MLFLPs in

the broader context of HFLPs. Perhaps, one of the reasons for the exclusion of some

of these problems is that they are known under different names and can be confused

with similar, out-of-scope, problems. When preparing this survey, we have found that

the terms multi-echelon, multi-stage, multi-level, hierarchical, and multi-layer facility

location problems have all been used to refer to what we call MLFLPs.

The main contribution of this article is twofold. First, we formally define MLFLPs

in order to present a unified framework for this still-growing area of research, and to

differentiate it from other related areas within the field of facility location. Second, we

consolidate the main contributions in the context of MLFLPs with a comprehensive

review dating back to 1977 but with an emphasis on the last two decades. The paper

is organized as follows. Section 2.2 establishes the types of decisions that pertain

to MLFLPs and discusses the main characteristics of these problems. It also relates

them with well-known areas of research and describes some of the applications that

have been most relevant to MLFLPs. In Section 2.3 we present some of the historical
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milestones of the area and identify the main categories of MLFLPs that have been

studied. We also discuss some variants and summarize the main references. Sections

2.4 to 2.6 are divided following the proposed classification scheme for MLFLPs. In

each of the latter sections we provide overviews of the corresponding models and algo-

rithms. Conclusions follow in Section 2.7. To facilitate reading, Table 2.1 summarizes

the main abbreviations used throughout the paper.

OR: Operations research TUFLP: Two-level uncapacitated facility location problem
MILP: Mixed-integer linear programming TEUFLP: Two-echelon uncapacitated facility location problem
ILP: Integer linear programming TFLDP: Two-level facility location design problem
LP: Linear programming TECFLP-S: Two-echelon CFLP with single assignment constraints
PBF: Path-based formulation TCFLP: Two-level capacitated facility location problem
ABF: Arc-based formulation TUFLP-S: TUFLP with single assignment constraints
FLP: Facility location problem TCFLP-E: TCFLP with edge set-up costs
HFLP: Hierarchical facility location problem MUFLP: Multi-level uncapacitated facility location problem
GNDP: General network design problem MUFLP-E: MUFLP with edge set-up costs
UFLP: Uncapacitated facility location problem MUpLP: Multi-level uncapacitated p-location problem
CFLP: Capacitated facility location problem MUpLP-E : MUpLP with edge set-up costs
p-MP: p-median problem MFLDP: Multi-level facility location design problem
MLFLP: Multi-level facility location problem MpMP: Multi-level p-median problem

Table 2.1: Summary of the main abbreviations

2.2 Decisions, related problems and applications

We first discuss the types of decisions that are involved in an MLFLP. For this pur-

pose and for the sake of clarity when referring to these decisions, we introduce some

notation that is used to model an MLFLP. Let G = (V ∪I, E) be a graph with vertex

set V ∪ I and edge set E. The set I corresponds to the customers, and the set V is

partitioned into {V1, · · · , Vk}, corresponding to the sets of potential facilities at levels

1 to k. The edges always link two different levels. An MLFLP involves some of the

following decisions.

Design decisions: facility location and edge activation The location decisions

determine where to open the facilities. Given an underlying network G, facil-

ities may be located at both the vertices or the edges of the network. This

review focuses on discrete location problems, where it is assumed that facilities
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can only be located at the vertices of G. We refer to [75, 84, 163] for gener-

alizations of results of Hakimi [83] on node optimality properties for HFLPs.

The UFLP [46] and the p-MP [83] are well-known examples where facility lo-

cation decisions are involved. The network design decisions select the edges to

be activated. These edges are used to provide transportation services between

customers and facilities of the first level, and facilities between different levels.

Fixed-charged network design problems [110] are well-known problems involving

network design decisions, among others.

Tactical decisions: allocation and routing The allocation decisions determine

which facilities will be used to serve each customer. In FLPs, two types of

allocation strategies have been considered. In single allocation, each customer

is assigned to exactly one facility, whereas in multiple allocation each customer

is allowed to be assigned to more than one facility, if beneficial. The routing

decisions indicate the routes (or paths) on G that will be used to satisfy the

customer demands. We use the term route to indicate the sequence of edges

used to send flows between pairs of vertices. These types of decisions commonly

appear in network flow problems which have been widely studied [11]. Since

we consider different levels of facilities (Vr), the allocation decisions can also be

viewed as the assignment of customers to open facilities of the first level and

that of open facilities from one level to the next, sequentially. That is, a path

between customers and highest-level facilities is associated with a multi-level

allocation structure. Finally, observe that the network design and routing de-

cisions are also interrelated, since the edges that can be used in the paths are

determined by the network design decisions.

Both of the above types of decisions are directly related to the fixed and variable

costs. For example, when a vertex jr ∈ Vr is selected to locate a facility, a set-up

cost fjr is incurred. Analogously, when an edge {j1, j2} ∈ E is activated a set-up cost
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dj1j2 must be paid. The tactical decisions are affected by variable costs. A common

example is transportation costs which are generally related to the distances between

the vertices. Transportation (or distribution) costs cij1···jk are variable since they also

depend on the customer’s demands di and the sequence of used facilities j1, · · · , jk.

Some classical problems such as the UFLP involve set-up costs for opening facilities

and transportation costs for assigning customers directly to facilities.

In order to better define the scope of this survey, we further discuss the above types

of decisions in the context of MLFLPs. First, it is required that non-trivial facility

location decisions be taken at every level of the hierarchy, simultaneously. Other

problems involve two or more levels of facilities but only in one of them is the selection

of facilities considered. We present some examples of this type of problems in Section

2.2.1.2. Depending on the application, network design and routing decisions may be

explicitly considered or not, that is, the activation of edges and flow patterns are not

necessarily non-trivial decisions. More importantly, this type of decisions should not

be confused with routing decisions commonly encountered in similar problems such

as location-routing problems [12, 49], where tours or paths between vertices of the

same level in the network are considered. In the case of MLFLPs, there is no direct

interaction between customers, and no horizontal interactions between facilities of the

same level. This can be seen from the definition of the set E which corresponds to

links between facilities and customers of different levels. Typically the edges between

facilities of different levels are defined sequentially, i.e., for r = 1, · · · , k − 1, let

Er = {{a, b} ∈ E : a ∈ Vr and b ∈ Vr+1}, and let E0 = {{i, b} ∈ E : i ∈ I and b ∈

V1}. When this is the case we require a sequence of exactly one open facility at

each level. As we will discuss later in this section, this feature corresponds to what

is called a single flow pattern in the context of HFLPs. However, some problems

with multi-flow patterns are also considered as MLFLPs. These assign customers to

sequences of open facilities that can skip levels. Most of these multi-flow pattern
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problems can be modeled as single-flow-patterns by simply adding dummy vertices in

the corresponding missing levels [145, 153], at the expense of increasing the instance

size.

A common requirement in MLFLPs is that every served customer must be al-

located to an open facility of the kth level either directly or through a sequence of

open facilities, and every open facility of level r must be connected to an open facility

of level r + 1, except those of level k. When flow patterns are considered, the flow

between levels must go in one direction and there ought to be only one type of arc

available. Some HFLPs, especially those that arise in the framework of waste man-

agement systems, consider flows in two directions or more than one type of arc (see,

for instance[22, 130]). These types of problems lie outside the scope of this paper.

Another important feature that differentiates MLFLPs from similar problems is

that the set of vertices V ∪ I consisting of potential sites and customers is partitioned

from the input into k + 1 levels. This means that the set V is also partitioned into k

subsets, one for each level of facilities. Notably, in early works the partitioning of the

set V did not necessarily consist of pairwise disjoint sets [90, 145]. However, most of

the more recent papers assume pairwise disjoint sets. In any case, in contrast to some

HFLPs where one can open different facilities at any vertex of the network, including

those that model customer zones, in MLFLPs the sets Vr differ from Vr+1 for all r.

This also means that in MLFLPs the number of levels is not part of the decision

process and facilities of type r can only be located in Vr, i.e. the hierarchy is given as

an input of the problem. Note also that the hierarchy is imposed only on the vertices

and not on the edges, in contrast for instance to multi-level network design problems

where usually the network design decisions are predominant [19, 76]. Finally, in terms

of the objective function we restrict this review to those MLFLPs with median and

fixed charge objective (minisum) functions. We note that in recent years variations

of some MLFLPs allow the planner to have the option of incurring a penalty instead
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of serving all customers. Such penalties are included in the objective function and

take into account the benefit of deciding which customers to serve. Therefore, we do

not restrict MLFLPs to require each customer to be allocated to a sequence of open

facilities.

2.2.1 Related problems

Different classes of FLPs are related to MLFLPs. We next discuss some of the ar-

eas that we consider to be most relevant to this review and we point out the main

differences and similarities with MLFLPs.

2.2.1.1 Hierarchical facility location problems

We have already discussed some applications, definitions and references [47, 168] for

this class of FLPs. In particular, since we consider MLFLPs as a special case of

HFLPs, we have mentioned some of the differences between the two types of prob-

lems. We now emphasize other relevant differences between them. Hence we use the

classification scheme and terminology of HFLPs given in [47] in order to categorize

MLFLPs in that context. It is based on four criteria: flow pattern, service availability,

spatial configuration and objective. A flow pattern refers to the way in which a facility

at a given level receives or offers services or products to another facility at a different

level and is either single-flow or multi-flow. In a network with single-flow patterns,

the flow from or to the customers must pass through all higher levels until it reaches

its point of origin or destination, whereas in an multi-flow pattern, facilities of some

level may receive or send flow directly from or to any higher level. Service availability

specifies whether a higher-level facility provides all services offered by its lower-level

facilities plus another one (nested), or whether facilities at each level provide dif-

ferent services (non-nested). In the spatial configuration category a network can be

coherent or non-coherent. In a coherent network, an open facility of a lower-level
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must receive or send service from or to exactly one higher-level facility. Non-coherent

systems allow more than one higher-level facility serving a given lower-level facility.

Median, covering and fixed charge objectives are considered in HFLPs. Therefore,

for an MLFLP we have noted that the single-flow pattern is more common and in

principle a non-nested structure is considered. In terms of the coherency criterion

some papers have included certain assumptions while others simply impose single

assignment constraints which in both cases imply a coherent structure [for example,

34, 70, 136].

Three main differences thus arise between MLFLPs and HFLPs apart from those

mentioned above, namely the type of objective function, the type of demands and the

service availability criterion. First, we note that other HFLPs that consider covering

or pure median objectives typically appear in the context of having the same set

V as potential sites for all types of facilities. In MLFLPs it is common to observe

fixed-charge-type objective functions. On the other hand, the service availability

criterion which was first discussed by Narula [131], is strictly interrelated with the

presence of different types of demand. In some HFLPs the requirements from the

customers are services, and the same customer can demand different types of service

offered by certain types of facilities in the hierarchy. These problems are generally

motivated by health care applications where geographical zones require service from

regional hospitals, local hospitals or clinics. Examples of this feature are provided in

[126, 155]. In contrast, in MLFLPs there is only one type of demand, more in the

spirit of a production-distribution system where for instance, plants serve warehouses

which in turn serve customers. Therefore, we assume a non-nested configuration for

MLFLPs since we refer to different types of facilities instead of services, although this

is also application-dependent.
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2.2.1.2 Multi-echelon location-routing problems

The term multi-level is not the only one used in the context of MLFLPs. For exam-

ple, we found multi-echelon, multi-stage, multi-layer and multi-tier among the more

common terminologies. Typically the terms layer and level are used as synonyms,

referring to the sets Vr or types of facilities as we did above. On the other hand, the

term echelon is generally associated with distribution networks where products are

transported between each pair of levels. Such pairs are called echelons [21, 67, 107].

Multi-echelon FLPs are thus very similar to MLFLPs. In Section 2.3 we highlight

the main steps in the evolution of both terms. In fact, some of the papers that we

review as MLFLPs denote their problems as multi-echelon. There are two main char-

acteristics that we can use to differentiate the terminology in this case. The first one

is that although all of the multi-echelon problems involve a multi-level environment,

not all of them require facility location decisions at every level. For example, Geof-

frion [72] Klose [91, 92] and Li et al. [107] study two-echelon FLPs in which facilities

to be opened are only selected at one of the levels. This is partially because the

predominant decisions are made at the echelons, and these typically involve routing

variables. Indeed, the second differentiating feature lies precisely in the routing pat-

terns. In MLFLPs we are concerned with problems where facility, and sometimes

network design decisions, are predominant with no routing decisions between vertices

of the same level involved. Cuda et al. [49] recently reviewed two-echelon routing

problems. Another term that is generally related to echelons is the word tier, which

has mainly been used in the context of freight transportation systems and city logis-

tics [113, 114]. These problems also involve vehicle routing decisions and are therefore

out of the scope of this paper. The term stage has also been used in the MLFLPs

context. This is probably the most elusive one when trying to associate it to some-

thing in particular. To mention a few MLFLPs references, in [103, 118, 129] the term

stage is used when referring to what we denote as levels. However, in other papers it
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has been used in the sense of what we identified as echelons [e.g. 91, 92, 107]. Finally,

the term stages may also apply for dynamic FLPs and stochastic programs. In this

review we attempt to select those that are concerned with MLFLPs.

2.2.1.3 General network design problems

We note that the types of decisions involved in MLFLPs mentioned above are very

much in the spirit of those identified by Contreras and Fernández [39], who classi-

fied a broader class of optimization problems referred to as general network design

problems (GNDPs), where both the facility location and network design decisions are

predominant and non-trivial. Thus, MLFLPs can also be seen as a special case of

the more general class of GNDPs. However, these authors concentrated on single-

level problems, excluding MLFLPs from their study. Nonetheless, their classification

of GNDPs based on the type of demand can be useful for our study of MLFPLs.

Contreras and Fernández [39] present two main categories of GNDPs: problems that

involve User-Facility demands (UF), and those with User-User demands (UU). In

UF, facilities are the service providers to users and typically there are no interactions

between facilities. Therefore, demands are routed from facilities to users. On the

other hand in UU, facilities consolidate commodities that are routed from origins to

destinations and thus, they are used as intermediate locations. The network design

and routing decisions influence the optimal solution structure by deciding how to con-

nect users to facilities and facilities to each other. This means that in most UU cases

facilities interact with each other. An example of GNDPs with UU demands in which

there is a multi-level environment are the so-called hierarchical hub location problems

[14, 167]. In MLFLPs, from the perspective of GNDPs, we restrict our attention to

those problems that have a UF demand and incorporate non-trivial network design

decisions.
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2.2.1.4 Supply chain network design problems

MLFLPs also relate to the well-studied area of supply chain management [16, 150].

There has been a great effort to establish the importance of location problems in

SCM [50, 115, 123]. For instance, Melo et al. [123] review facility location models in

the context of SCM and identify features that such models must capture in order to

be consistent with the strategic decisions involved in SCM. In particular, the authors

discuss the importance of having a different types of facilities, very much like an

MLFLP, where the strategic decisions of the SCM system are considered. However,

SCM usually involve decisions on the inventory, procurement, production, routing,

etc, and thus, reviewing such a general class of problems is beyond the scope of this

paper. Nevertheless, MLFLPs can be considered as a simple version of a supply chain

network design problem where most of the tactical and operational decisions are not

involved.

2.2.2 Applications

Two types of applications arise frequently in MLFLPs-related papers. The first one

is concerned with production-distribution systems where customers require a product

that must be provided from first-level facilities (warehouses) which in turn is sent from

production plants. This line of research naturally evolved from some early works

where the warehouse and plant location problem was introduced [90, 145]. Some

variations include additional levels in the distribution network such as retail stores or

distribution centers and more sophisticated models in freight transportation [36, 68,

70]. Also note that the applications that motivate this type of MLFLP generally do

not exceed more than three levels of facilities. Some examples where a production-

distribution system is studied are [60, 67, 81, 103, 118, 119, 129, 140, 141, 153, 157,

164, 166]. However, other papers more involved in the development of approximation
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algorithms for the general k-level case also make reference to distribution systems

[9, 28, 35]. Moreover, an interesting variant of the problem arises when decision maker

determines whether to provide the service to each customer or to pay a penalty for

those that are not served [15, 29].

The second major application area emerges from the telecommunications industry

and the design of computer networks. In this case, one must decide where to locate

devices such as routers and multiplexers and how to allocate customers (terminals)

to a sequence of devices. Examples of references where this type of application is

discussed are [6, 7, 34, 51, 77, 80, 88, 89, 128]. Finally, other studies in the context

of MLFLPs have been motivated by applications in different fields. For instance,

waste disposal systems [21, 25, 26, 159], supply chain of disaster relief system [73],

and health care systems [48].

2.3 A classification scheme and overview of the re-

lated literature

We now present a classification scheme for MLFLPs based on the types of decisions

involved and on the different possible combinations of them. On the one hand, design

decisions correspond to (i) opening of facilities and (ii) activating edges, while on

the other hand, (iii) allocation and routing decisions are made to satisfy customer

demands. Since selecting which facilities are opened at each level is a requirement

of every MLFLP, we are left with the three possible combinations of (ii) and (iii) to

define our categories. Given that non-trivial decisions are closely related to the types

of costs (or profits) considered in the definition of each problem, we could also refer

to the corresponding category by type of cost. We have selected one fundamental

problem from each category in order to identify them more easily as follows. When

there are only design decisions (i) and (ii) involved, we refer to them as multi-level

17



facility location design problems (MFLDPs). When there are facility location and

tactical decisions (i) and (iii), we refer to the MUFLP. Finally, when all three types

of decisions are present, we refer to the MUFLP with edge set-up costs (MUFLP-E).

The latter is clearly a more general version combining the former two. In the following

example we sketch an instance of the three problems in a two-level environment

in order to illustrate this categorization. We summarize the main notation used

throughout the paper in Table 2.2.

Example 2.1. Consider an underlying network consisting of I = {i}, V1 = {11, 21}

and V2 = {12, 22} and all edges between I and V1 as well as those between V1 and

V2 exist. The fixed costs for opening facilities are f11 = 5, f21 = 10, f12 = 20, and

f22 = 25 and we assume that there are no fixed costs for opening edges between I and

V1. We analyze three scenarios, one for each of the aforementioned representative

problems in this two-level context (TFLDP, TUFLP, TUFLP-E). For the TFLDP

and the TUFLP-E, consider edge set-up cost d11112 = 5, d11122 = 10, d12112 = 3, and

d12122 = 5. For the TUFLP and the TUFLP-E let ci1112 = 10, ci1122 = 1, ci2112 = 5,

and ci2122 = 5 be the corresponding transportation costs. Therefore, we obtain three

different optimal solutions, one for each problem. For the TFLDP the optimal value is

30, opening facilities 11 and 12 as well as the edge {11, 12}. This solution is depicted

in Figure 2.1a. We have represented with darker colors open facilities and links.

Similarly, for the TUFLP and the TUFLP-E we have optimal values equals to 31 and

38, respectively. The corresponding solutions are shown in Figures 2.1b and 2.1c.

In Sections 2.4 to 2.6 we present formal definitions of the problems and discuss

the related variants and references in more detail for each category of MLFLPs. We

also present what we consider to be milestones of the field, and the trends that

they have defined. On our historical path towards defining those most representative

MLFLPs, we introduce some commonly used MILP formulations within each category,

and thus we illustrate the differences and relationships with each other as well as
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Figure 2.1: Three examples of two-level FLPs

their variations. Table 2.3 summarizes the main MLFLP publications and includes

side criteria such as capacitated/uncapacitated and the solution approach (exact or

approximate) that was applied in the corresponding reference. Some references may

therefore appear in more than one box of the table. We also include papers containing

polyhedral studies or introducing MILP formulations only in the “exact” columns.

From Table 2.3 we can observe that certain areas have received considerably more

attention than others. For example, in the uncapacitated cases an important number

of publications are concerned with the development of approximation algorithms,

except for the MUFLP-E variant. Thus, more research must be carried out to further

investigate whether adding fixed costs on the edges changes the problem drastically

from an approximation perspective. Also, in the uncapacitated case, we see that

models and exact algorithms have been proposed for almost all categories listed in

the table. However, only recently was an exact solution method designed for large-

scale instances of the general MUFLP-E with k > 2 [137]. On the other hand, in

the capacitated versions, the effort appears to have focused on the two-level variants.

This leaves aside only a few references where approximation algorithms have been

designed for the general case where k > 2.
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Table 2.2: Summary of main notation

Notation Definition
Sets G = (V ∪ I, E) graph with vertices V ∪ I and edges E

V set of potential sites
I set of customers
Vr set of potential sites of level r, for r = 1, · · · , k
Er set of edges between Vr and Vr+1, for r = 1, · · · , k − 1
E0 set of edges between I and V1
Q set of possible paths of facilities, exactly one from each level e.g.

q = j1, · · · , jk ∈ Q
Parameters k number of levels

fjr fixed cost for opening facility jr ∈ Vr, for r = 1, · · · , k
cij1···jk variable cost (or profit) for serving customer i through the sequence

j1 · · · jk
drab fixed costs for opening edge {a, b} ∈ Er for r = 1, · · · , k − 1
d0ij1 fixed costs for opening edge {i, j1} ∈ E0

pr maximum number of facilities to open at level r, for r = 1, · · · , k
hi demand of customer i ∈ I

βj1 , αj2 capacities at facilities j1 ∈ V1 and j2 ∈ V2, respectively
Variables yjr binary decision for opening facility jr ∈ Vr, for r = 1, · · · , k

xij1···jk binary (continuous) decision for assigning customer i ∈ I to se-
quence j1 · · · jk with jr ∈ Vr for r = 1, · · · , k

wrab binary decision for opening edge {a, b} ∈ Er for r = 0, · · · , k − 1
zriab binary decision determining whether the edge {a, b} ∈ Er is used

to serve customer i, for r = 1, · · · , k
vij1 binary decision if customer i is assigned to j1 ∈ V1. Also used as

amount of flow between i ∈ I and j1 ∈ V1
tjrjr+1 (fraction of) flow between jr ∈ Vr and jr+1 ∈ Vr+1, for r =

0, · · · , k − 1, with V0 = I
ηi continuous variable for the profit of serving customer i ∈ I
xq binary decision for opening path q ∈ Q

2.4 MLFLPs with tactical decisions

Perhaps the simplest version of an MLFLP, yet the most studied, is the TUFLP which

can be defined as follows. Assuming that all facilities are uncapacitated and given

fixed costs fjr for setting up facility jr, for r = 1, 2, as well as distribution costs cij1j2

for serving customer i through the pair j1, j2, the problem consists of determining

which facilities to open at each level so that every customer is served via a pair of

open facilities (j1, j2), while minimizing the total cost. Consider the binary decision

variables yjr equal to 1 if and only if facility jr ∈ Vr is open, and the continuous

variable xij1j2 equal to the fraction of the demand of customer i satisfied by second-

level facility j2 through first-level facility j1. The TUFLP can be formulated as
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Uncapacitated Capacitated
Heuristics Exact Heuristics Exact

MUFLP
k = 2 [69, 99, 128, 149,

169]
[3, 25, 48, 90,
103, 118, 145]

[7, 60, 81, 108,
129, 140, 141,
166]

[1, 2, 6, 26, 108,
119, 140, 141,
159, 164, 166]

k > 2 [4, 9, 10, 15, 27–
29, 55, 64, 66,
80, 94, 99, 106,
116, 117, 122,
125, 136, 153,
160, 161, 170]

[66, 97, 136, 153] [9, 28, 35, 53]

MUFLP-E
k = 2 [21, 67] [21, 34, 67, 70,

71]
[73, 88, 156] [73, 88, 157]

k > 2 [137]

MFLDP
k = 2 [128] [18, 34] [128] [34]
k > 2 [51, 64, 89]

Table 2.3: Summary of MLFLPs references

(F1-TUFLP) minimize
∑
i∈I

∑
j1∈V1

∑
j2∈V2

cij1j2xij1j2+
2∑
r=1

∑
jr∈Vr

fjryjr

subject to
∑
j2∈V2

∑
j1∈V1

xij1j2 = 1 i ∈ I (2.1)

∑
j1∈V1

xij1j2 ≤ yj2 i ∈ I, j2 ∈ V2 (2.2)

∑
j2∈V2

xij1j2 ≤ yj1 i ∈ I, j1 ∈ V1 (2.3)

xij1j2 ≥ 0 i ∈ I, j1 ∈ V1, j2 ∈ V2 (2.4)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, 2. (2.5)

Note that the variables xij1j2 are allowed to be declared as continuous since in the

uncapacitated case they will take integer values in any case [3]. However, the earliest

version of the problem that we were able to identify is a slightly different variant

which was denoted as the warehouse and plant location problem in the seminal work

of Kaufman et al. [90]. Assuming that V2 ⊆ V1, the authors imposed the additional

constraint that with each open plant there must be an open warehouse in the same
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location:

yj2 ≤ yj1 j1 ∈ V1, j2 ∈ V2.

A few years later, Ro and Tcha [145] introduced a modified version of this con-

straint by including a set of “adjunct” warehouses to each plant, thus enforcing the

constraint that if a plant is opened the associated warehouses are opened, but not

vice versa. When the sets of adjunct warehouses are empty, the problem corresponds

to what we call the TUFLP. The same year, Tcha and Lee [153] presented a problem

without this additional constraint, which is then a TUFLP. These authors also gen-

eralized the problem to k levels and denoted it as the MUFLP. They introduced an

MILP for the MUFLP which is nowadays referred to as path-based formulation (PBF),

where each sequence of facilities j1, j2, · · · , jk, with jr ∈ Vr, is called a path, and every

customer must be allocated to a path of open facilities. It is straightforward to de-

rive the corresponding MILP formulation for the MUFLP by extending the decision

variables yjr and xij1···jk for r = 1, · · · , k from those of the F1-TUFLP. We thus select

the MUFLP as the representative problem for those MLFLPs encompassed in this

category. We divide this section into the uncapacitated and the capacitated cases.

The former is in turn divided into three parts namely, formulations, exact algorithms

and heuristics.

2.4.1 Uncapacitated case

As for the single-level case, we follow the uncapacitated/capacitated criterion for

MLFLPs. This distinction is important since capacity constraints usually play a

major role in models and algorithms.
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2.4.1.1 Formulations

Two main families of MILP formulations are commonly used for MLFLPs. The first is

related to the PBF explained before that extends from the F1-TUFLP using variables

xij1···jk for the allocation of customers, and yjr variables for selecting facilities. The

second type of formulation is the so-called arc-based formulation (ABF). In contrast

with PBF, in an ABF the decision variables are in a sense split between levels, that is,

the variables are associated with arcs instead of paths. At this point it is important

to note that a path in k levels (a sequence of k facilities, one from each level), actually

coincides with arcs in the two-level case. Also, we refer to arcs and edges indistinctly

unless otherwise needed. Therefore, the initial formulation F1-TUFLP can be viewed

as a PBF or as an ABF, from which the extended versions are derived. For example,

Gabor and van Ommeren [66] introduced the following MILP for the MUFLP in

which decision variables are associated to arcs instead of paths. Assuming that the

sets Er contain all possible edges between levels r and r+ 1, for r = 1, · · · , k− 1 and

that cij1···jk = cij1 + · · · + cjk−1jk , let zriab = 1 if customer i uses the edge {a, b} ∈ Er,

yjr as defined before and vij1 = 1 if customer i is assigned to j1 ∈ V1. An ABF for

the MUFLP is then (F2-MUFLP)
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minimize
∑
i∈I

∑
j1∈V1

cij1vij1 +
∑
i∈I

k−1∑
r=1

∑
{a,b}∈Er

cabz
r
iab +

k∑
r=1

∑
jr∈Vr

fjryjr

subject to
∑
j1∈V1

vij1 = 1 i ∈ I (2.6)

∑
b∈V2

z1ij1b = vij1 {i, j1} ∈ E0 (2.7)

∑
b∈Vr+1

zriab =
∑

b′∈Vr−1

zr−1ib′a i ∈ I, a ∈ Vr, r = 2, · · · , k − 1 (2.8)

vij1 ≤ yj1 {i, j1} ∈ E0 (2.9)∑
a∈Vr−1

zr−1iab ≤ yb i ∈ I, b ∈ Vr, r = 2, · · · , k (2.10)

vij1 ≥ 0 {i, j1} ∈ E0 (2.11)

zriab ≥ 0 i ∈ I, {a, b} ∈ Er, r = 1, · · · , k − 1 (2.12)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, · · · , k. (2.13)

Note that the variables vij1 can be eliminated from the model either by consoli-

dating the sets of constraints (2.6) and (2.7) or by setting ziij1 = vij1 , in which case

(2.7) can be embedded in (2.8). However, we have opted to reproduce the model as

presented in [66]. When k = 2 we obtain the initial formulation F1-TUFLP described

above.

Other ABFs have been studied for the problem, in particular those that consider

variables wjrjr+1 representing the flow from facility jr ∈ Vr to facility jr+1 ∈ Vr+1, with

V0 = I. As we will discuss, this type of formulation is common in the capacitated

cases. One example in the uncapacitated variant arises in the seminal work of Aardal

et al. [3], which introduces an ABF for the TUFLP by defining wij1 =
∑

j2∈V2 xij1j2

and wj1j2 =
∑

i∈I xij1j2 . The authors compared the LP relaxations of the two formula-

tions concluding that the bound of the F1-TUFLP formulation is always better than
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that obtained with their ABF. This result typically generalizes to k levels, but the

size of a PBF grows much faster than that of an ABF. Aardal et al. [3] also conducted

a polyhedral study of the associated polytope of F1-TUFLP. In particular, they de-

veloped a characterization of the extreme points of its LP relaxation as well as results

extending all nontrivial facets of the single-level UFLP to the TUFLP. They proved,

among other results, that (2.2)–(2.4) define facets of the convex hull of the associated

polyhedral set of F1-TUFLP. Moreover, they introduced two classes of facet-defining

inequalities for a modified version of the F1-TUFLP and stated conditions under

which these inequalities also induce facets for the single-level case. However, these

results have never been extended to the case k > 2.

Another example of an ABF using the variables wjrjr+1 for the TUFLP was studied

by Maŕın [118]. Landete and Maŕın [103] also used the disaggregated version of

constraints (2.2) and (2.3) and introduced a reformulation of the TUFLP as a set

packing problem for which the corresponding polyhedral study was developed, along

with facet-defining inequalities and an algorithm. More recently, Kratica et al. [97]

and Marić et al. [117] independently introduced a new ABF for the MUFLP, very

much in the spirit of the ABF introduced in [3] for the two-level case. Kratica

et al. [97] provided computational results comparing on general purpose solvers the

performance of the new formulation with those of the PBF and of the F2-MUFLP.

Ortiz-Astorquiza et al. [136] presented a new type of MILP for a slightly more

general MUFLP in which for given values of pr, r = 1, · · · , k, cardinality constraints

(
∑

jr∈Vr yjr ≤ pr) are imposed at each level. They called this problem the multi-

level uncapacitated p-location problem (MUpLP) since it generalizes the well-known

UpLP presented by Cornuéjols et al. [45], which in turn subsumes the UFLP and the

p-median problem (p-MP) [83]. The multi-level version of the p-median problem is

denoted by MpMP. In [136], the authors developed the new formulation of the maxi-

mization version of the problem based on an alternative combinatorial representation
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given in [135], in which the objective function satisfies the submodularity property.

Thus, considering the variables ηi representing the profit (or cost) of serving customer

i ∈ I, and Q the set of all possible paths q = j1, · · · jk having exactly one facility at

each level, one can project out the variables xiq to xq from the PBF and obtain the

submodular formulation (SF-MUpLP)

maximize
∑
i∈I

ηi

subject to ηi ≤ ciqt +
∑
q∈Q

(ciq − ciqt)+xq i ∈ I, t = 0, · · · , |Q| − 1, (2.14)

∑
q∈Q:jr∈q

xq ≤Mryjr jr ∈ Vr, r = 1, · · · , k, (2.15)

∑
jr∈Vr

yjr ≤ pr r = 1, · · · , k, (2.16)

xq ∈ {0, 1} q ∈ Q, (2.17)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, · · · , k, (2.18)

where for each i ∈ I, and r = 1, · · · , k, 0 = ciq0 ≤ ciq1 ≤ · · · ≤ ciq|Q| and Mr

are sufficiently large numbers. Note that the disaggregated version of constraints

(2.16) may also be used. In [136] a computational comparison of formulations for the

MUpLP was carried out. Because of the large number of constraints (2.14) the authors

embedded the SF-MUpLP in a branch-and-cut framework exploiting an efficient way

of solving the separation problem. For comparison purposes, they considered the

PBF extension of the F1-TUFLP, the F2-MUFLP, the branch-and-cut SF-MUpLP

and the ABF of [97]. Their results showed that when the cardinality constraints

are predominant, the SF-MUpLP dominates the other three formulations in terms of

CPU time spent to obtain the optimal solution, while in the case of pr = |Vr|, i.e.

for the MUFLP, there is no clear dominance of one model over the others. While

the PBF grows considerably faster when k > 2, it is the one that yields the best LP
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bound, and therefore a smaller enumeration tree. The F2-MUFLP modified for the

general problem seems to take much longer when the cardinality constraints are active,

but it is rather efficient in the MUFLP case. The ABF of [97] and the submodular

formulation achieve a balance between memory usage and computing time spent when

the problem is more general. However, the experiments pointed to a better average

performance for the submodular formulation. Instances with up to 2,000 customers,

200 potential facilities, and four levels of hierarchy were solved to optimality.

2.4.1.2 Exact algorithms

All of the early works on MLFLPs introduced exact algorithms for different ver-

sions of the problem. For example, the three ground-setting papers [90, 145, 153]

presented branch-and-bound methods that extended those known for the single-level

case. However, the algorithms of [145, 153] were based on the assumption that the

submodular property extends directly from the single-level version. The correctness

of such methods was later discussed by Barros and Labbé [20] who showed that

the objective function of the representation of the corresponding problems does not

satisfy this property. More recently, Ortiz-Astorquiza et al. [135] introduced an al-

ternative combinatorial representation of the (maximization version of the problem)

whose objective function does satisfies submodularity.

Tcha and Lee [153] presented a modified version for the MUFLP of the dual

ascent procedure of Erlenkotter [57] known for the single-level UFLP. However, ever

since these solution methods were proposed, only a few papers have dealt with the

development of specialized exact solution algorithms for variants of the MUFLP.

The papers of Maŕın [118], Landete and Maŕın [103], Gendron et al. [70] and Ortiz-

Astorquiza et al. [137] are perhaps the exceptions. However, [70, 137] study the more

general case where fixed costs on the edges are considered, so these contributions will

be discussed in the following sections.
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As already mentioned, an ABF for the TUFLP was proposed in [118] from which

the authors studied several Lagrangian relaxations. The authors showed when the

so-called Lagrangian bound satisfied the integrality property, that is, the case when

the optimal value obtained from the Lagrangian dual coincides with that of the LP

relaxation. Moreover, they presented several results in which dominance relationships

between bounds of the different relaxations are given, and developed a bounding

procedure based on the lower bounds obtained by applying a subgradient optimization

procedure for one of the Lagrangian relaxations. They argued for the selection of a

relaxation based on a balance between dominance and ease of solution. Landete and

Maŕın [103] reformulated the TUFLP as a set packing problem and presented different

classes of facet-defining inequalities for the reformulation. Based on these inequalities,

they developed a branch-and-cut algorithm and compared its performance with that

of a general purpose solver.

2.4.1.3 Heuristics

Most research efforts towards the development of algorithms for MUFLP-related

problems have focused on heuristics. We can start by differentiating two main re-

search streams: heuristics without a performance guarantee, and ρ-approximation

algorithms i.e., polynomial-time heuristics that yield a feasible solution with an ob-

jective function value lying within a factor of ρ of the optimal value. Most of the

work on heuristics has focused on the latter stream.

In the area of heuristics without a bounded worst-case ratio, Korać et al. [94],

Marić [116], Marić et al. [117] presented algorithms for the MUFLP considering that

the costs c are metric (i.e. nonnegative, symmetric and satisfying the triangle in-

equality) and additive with respect to the k levels. In [116] a genetic algorithm is

presented including an implementation with a dynamic programming scheme to find

the sequences of open facilities to satisfy customers demands. According to the au-
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thors, the dynamic programming component is the main ingredient that enables the

genetic algorithm to solve large-scale instances within a short amount of time. Later,

in [94, 117] improvements on the genetic algorithm were introduced. For instance,

improving the implementation of the dynamic programming approach and incorporat-

ing local search procedures designed for the MUFLP, which are denoted as memetic

algorithms. Another memetic algorithm was designed by Mǐsković and Stanimirović

[128] to obtain solutions of the TUFLP using the formulation introduced in [103].

Gendron et al. [69] developed a metaheuristic for the two-level uncapacitated facil-

ity location problem with single assignment constraints, denoted TUFLP-S. In the

TUFLP-S the restrictions that each open first-level facility can be connected to at

most one open second-level facility are required. The authors developed what they

called a multi-layer variable neighborhood search metaheuristic for the TUFLP-S

and a similar variant with modular costs. The term multi-layer comes from partition-

ing the neighborhood structures into several layers, where for each layer a variable

neighborhood search scheme is applied. They compared the performance of their al-

gorithm with that of a MILP solved using a general purpose solver, and with that of

a slope-scaling heuristic based on the same formulation.

There also exist approximation algorithms with performance guarantee. However,

since there are two versions of the MUFLP and its variants namely, a maximization

and a minimization version, we must review them separately. The reason for this

additional classification comes from the fact that from an approximation perspective,

the maximization and minimization versions of an optimization problem are not nec-

essarily comparable. This was discussed in [86, 149] for the single-level case and in

[136, 170] for the multi-level case.

a) Maximization version

We note that in the maximization version of the MUFLP, the values of cij1···jk

correspond to the profit of serving customer i through path j1 · · · jk. This can be
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thought as ciq = bi −Diq, where bi is the price that client i ∈ I pays for the service,

and Diq is the total operational cost of serving client i through path q = j1 · · · jk.

Observe also that adding to ciq a constant γi for every possible path q does not

change the optimal solution. This is because in the MUFLP one must serve every

client and thus, having new values of c defined as c′iq = ciq + γi changes the cost

of every feasible solution by the same amount. This property is well known for the

single-level case [46]. The price bi can thus be seen as the corresponding constant γi

and therefore, only the costs are relevant for the decision, yielding the minimization

version of the problem. This is why from an optimization point of view, it seems to

be more common to work with the minimization version than with its maximization

counterpart. Moreover, note that the objective function

z =
∑
i∈I

k∑
r=1

∑
jr∈Vr

cij1···jkxij1···jk −
k∑
r=1

∑
jr∈Vr

fjryjr

can take positive or negative values and thus, a correcting factor in the definition of

measure of relative deviation for approximate solutions must be added [45].

Let z∗ be the optimal value of the problem and let zR be a sufficiently small

number, typically defined depending on the input of the problem, such that z∗ ≤ z ≤

zR, where z is the value of any feasible solution. Bumb [27] assumed that all costs

and profits are non-negative and presented an approximation algorithm based on the

technique of independently randomized rounding which yields a solution Z satisfying

Z − zR
z∗ − zR

≥ 0.47.

This worst-case bound was soon improved to 0.5 by Zhang and Ye [170]. Recently,

based on an alternative representation of the MUFLP [135] in which the objective

function satisfies the submodularity property, Ortiz-Astorquiza et al. [136] were able

to extend to the k-level case the constant-performance guarantees of Cornuéjols et al.
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[45] and Nemhauser et al. [134] derived for the single-level case. In [136], they studied

the MUpLP which includes as special cases the MUFLP and the Mp-MP. The authors

showed that when the profits c are additive, a polynomial time greedy algorithm

always yields a solution satisfying

Z − zR
z∗ − zR

≥ 1− 1

e
≈ 0.63.

Based on the foreseen difficulties of extending their algorithm to the general case

of k levels, Bumb [27] questioned whether there exists an approximation algorithm

with performance guarantee independent on the number of levels for the maximization

version, as was the case at the time for the minimization counterpart. The recent

result of [136] answers this question in a positively manner.

b) Minimization version

Since almost all the related papers assumed that the costs c are induced by a

metric on V ∪ I and are additive with respect to the levels as already mentioned,

in the remainder of this section we retain these assumptions unless otherwise stated.

We observe that Shmoys et al. [149] and Aardal et al. [4] were the first to present ap-

proximation algorithms with constant-performance guarantees for the two-level and

multi-level cases, respectively. These papers set the ground for a rich line of research.

In [149] a 3.16-approximation algorithm was introduced which was soon improved in

[4] to a 3-approximation algorithm for the general k-level case. However, the draw-

back of these algorithms seems to be that they are based on randomized rounding

of the optimal solution of an LP relaxation. Even if the algorithms have polynomi-

ally bounded running times, the LP relaxation contains an exponential number of

variables and thus, solving it may be difficult in practice. Guha et al. [80], Mey-

erson et al. [125] were the first to design efficient combinatorial algorithms capable

of finding a solution within a factor of O(log|I|) and 9.2 of the optimal value, re-
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spectively. They presented these results for the MUFLP as a special case of more

general network design problems. These worst-case bounds were improved by Bumb

and Kern [28] who developed a dual ascent algorithm for the MUFLP with a per-

formance guarantee of 6, and by Ageev [9] and Ageev et al. [10], using the result of

Edwards [55] who proved that any ρ-approximation algorithm for the UFLP leads

to a 3ρ-approximation algorithm for the MUFLP. This yielded combinatorial 4.83-

and 3.27-approximation algorithms for any k ≥ 2 with worst-case bounds of 2.8446

and 3.1678 for k = 2 and k = 3, respectively. Zhang [169] later combined tech-

niques such as randomized rounding, dual fitting and a greedy procedure to obtain

the best-to-date 1.77-approximation algorithm for the TUFLP. Moreover, the author

also obtained an O(ln|I|)-approximation algorithm for the non-metric TUFLP. In the

same year, Fleischer et al. [64] published their results which consisted of an O(lnk|I|)-

approximation algorithm for the non-metric MUFLP. A few years later, Gabor and

van Ommeren [66] described a 3-approximation algorithm for the MUFLP based on

LP-rounding using a new MILP formulation. The importance of this model lies in

its polynomial number of variables and constraints in contrast with the previous for-

mulation by [4]. Finally, since many techniques used for the development of such

algorithms extend from those applied to the single-level versions, a natural question

is whether the MUFLP is computationally harder than the UFLP. This question

remained open until recently when Krishnaswamy and Sviridenko [99] proved inap-

proximability results which showed that there exists no approximation algorithm with

performance guarantee better than 1.539 for the TUFLP unless P = NP . They also

showed that for the general case of k > 2, when k tends to infinity, the hardness

factor is 1.61.

Similarly, approximation algorithms with performance guarantee were developed

for variants of the MUFLP. For example, Wang et al. [160, 161] proposed a 4-

approximation algorithm based on LP-rounding techniques for the stochastic MUFLP,

32



that is, when demands are uncertain. Melo et al. [122] improved the performance

guarantee to 4 − o(1). Another variant of the MUFLP that has received attention

in the last few years is the so-called MUFLP with penalties [15, 29, 106], in which

the decision maker determines whether to provide the service to each customer or to

pay a penalty for those that are not served. In particular, Byrka et al. [29] presented

the MUFLP as a special case and provides the best known constant-performance

guarantee for k > 2 which tends to 3 when k is sufficiently large.

2.4.2 Capacitated case

Several features of single-level FLPs, including applications, solution methods and

variants of the problems have been extended to MLFLPs. However, since the number

of publications suggests that the uncapacitated cases have attracted more attention,

defining streams of research for the capacitated case seems more challenging. Here

we discuss the main contributions corresponding to the capacitated variant of the

TUFLP, called the two-level capacitated facility location problem (TCFLP). Analo-

gously to the uncapacitated case, it seems that the TCFLP is the one that has been

the most studied among capacitated MLFLPs. In this problem, capacities in one or

both levels of facilities are imposed, denoted by αj2 and βj1 . From the early works

on the TCFLP we note that of Aardal [1], who presented MILP formulation for the

problem and a polyhedral study. The same author [2] later introduced a reformula-

tion along with computational results. In contrast with the TUFLP, in this case a

more common formulation involves ABF or also called two-index formulations. Let

hi be the demand value for each i ∈ I, and let vij1 and tj1j2 be continuous variables

representing the flow to customer i from j1 and that of the plant j2 to warehouse j1,

respectively. Denoting by cij1 and cj1j2 the unit transportation costs from i to j1 and

from j1 to j2, respectively, the TCFLP can be formulated as
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(TCFLP) minimize
∑
i∈I

∑
j1∈V1

cij1vij1 +
∑
j1∈V1

∑
j2∈V2

cj1j2tj1j2 +
2∑
r=1

∑
jr∈Vr

fjryjr

subject to
∑
j1∈V1

vij1 ≥ hi i ∈ I (2.19)

∑
j2∈V2

tj1j2 ≥
∑
i∈I

vij1 j1 ∈ V1 (2.20)

∑
j1∈V1

tj1j2 ≤ αj2yj2 j2 ∈ V2 (2.21)

∑
j2∈V2

tj1j2 ≤ βj1yj1 j1 ∈ V1 (2.22)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, 2 (2.23)

vij1 ≥ 0, tj1,j2 ≥ 0 i ∈ I, j1 ∈ V1, j2 ∈ V2. (2.24)

Maŕın and Pelegŕın [119] compared a two-index and a three-index formulation for

the development of an exact algorithm for the TCFLP based on Lagrangian relax-

ations. More recently, Litvinchev and Ozuna Espinosa [108], Wildbore [164] developed

exact and approximate algorithms mainly based on Lagrangian relaxations along with

the corresponding computational results obtained for the TCFLP. Fernandes et al.

[60] introduced a genetic algorithm, while Guo et al. [81] proposed a hybrid evolution-

ary algorithm for the same version of the problem. Chen and Wang [35] designed an

approximation algorithm for the general k-level version. As in the uncapacitated case,

assuming that the values of c are induced by a metric, for k levels, Ageev [9], Bumb

and Kern [28], and Du et al. [53] developed ρ-approximation algorithms with values

of ρ equal to 12, 9 and k + 2 +
√
k2 + 2k + 5 + ε, respectively.

Other authors have studied some variations of the TCFLP. For example, Bloemhof-

Ruwaard et al. [26] solved a slightly different version of the problem in the context of

a waste disposal system, while Pirkul and Jayaraman [140] presented a MILP formu-
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lation and heuristic methods for a multi-commodity, single-source TCFLP in which

cardinality constraints are imposed at both levels. Pirkul and Jayaraman [141] consid-

ered the case without the single-source requirements. Yet another variant introduced

by Addis et al. [6, 7] is the TCFLP with single source constraints at both levels and

dimensioning of the facilities, that is, with modular capacities. The authors provided

exact and heuristic algorithms to solve instances with up to 200 customers and 50

potential sites of facilities. A similar version of the problem was studied by Wu et al.

[166] who developed a Lagrangian relaxation-based procedure. Finally, Wang and

Yang [159] and [129] considered variations of the TCFLP under uncertainty.

2.5 MLFLPs with network design and tactical de-

cisions

In the early 1990s, Gao and Robinson [67] introduced the term echelon in the context

of MLFLPs by presenting a new MILP for a variant of the TUFLP, denoted as two-

echelon uncapacitated facility location problem (TEUFLP). This formulation was

mainly motivated by the desire to extend the dual adjustment procedures of [57] for

the TUFLP, which Tcha and Lee [153] had previously been unable to achieve. This

modification of the problem can be viewed as if the fixed costs for opening warehouses

also depend on the plants from which they are served, that is, there is a fixed cost

associated with each pair of facilities from levels one and two, i.e. operating together.

Equivalently, this variant can be seen as having fixed costs for opening edges between

facilities of different levels associated with the selection of facilities at the first level.

Thus, the authors consider d1j1j2 to be the fixed costs for opening warehouse j1 and

supplying it from plant j2, and the binary variables w1
j1j2

= 1 if j1 is opened and

simultaneously served from j2. The TEUFLP can be formulated as

35



(F1-TEUFLP) minimize
∑
i∈I

∑
j1∈V1

∑
j2∈V2

cij1j2xij1j2 +
∑
j2∈V2

fj2yj2 +
∑
j2∈V2

∑
j1∈V1

dj1j2w
1
j1j2

(2.1), (2.4)

w1
j1j2
≤ yj2 j1 ∈ V1, j2 ∈ V2, (2.25)

xij1j2 ≤ w1
j1j2

i ∈ I, j1 ∈ V1, j2 ∈ V2, (2.26)

yj2 ∈ {0, 1} j2 ∈ V2, (2.27)

w1
j1j2
∈ {0, 1} j1 ∈ V1, j2 ∈ V2. (2.28)

Soon after, Barros and Labbé [21] introduced a general version of the problem

that subsumes both the TUFLP and the TEUFLP. The authors considered fixed costs

associated with opening facilities at both levels as well as those for activating edges

between facilities of different levels. Fixed costs for opening edges between customers

and first-level facilities are not considered in the problem. We denote this variant

as the TUFLP-E. The authors discussed three variants of a MILP formulation for

the problem and studied the relationships between the corresponding LP relaxations.

The TUFLP-E of [21] is formulated as

(F1-TUFLP-E) maximize
∑
i∈I

∑
j1∈V1

∑
j2∈V2

cij1j2xij1j2 −
2∑
r=1

∑
jr∈Vr

fjryjr −
∑
j2∈V2

∑
j1∈V1

d1j1j2w
1
j1j2

subject to (2.1), (2.4), (2.5), (2.25), (2.26), (2.28)

w1
j1j2
≤ yj1 j1 ∈ V1, j2 ∈ V2, (2.29)

or equivalently, exchanging constraints (2.25) and (2.29) by (2.2) and (2.3) when the

fixed costs are non-negative. They proved in [21] that using the sets of constraints

(2.2) and (2.3) yields a better LP bound. We also note that the authors formulated

the problem in the maximization form, perhaps for the first time for MLFLPs. The
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values of cij1j2 in this case actually correspond to profits, instead of transportation

costs. Indeed, as discussed by Cornuéjols et al. [46] for the single-level and by Ortiz-

Astorquiza et al. [136] for the multi-level case, the maximization and minimization

versions of the UFLP are equivalent from an optimization point of view. However,

from an algorithmic perspective, especially for approximation algorithms, this is not

the case as mentioned in Section 2.4.1.3. This version of the problem can be gener-

alized to the case of k levels, even including link activation costs between customers

and the set V1. We denote it as MUFLP-E, which is the representative problem of

this category.

We next review the main contributions to MLFLPs that involve non-trivial net-

work design and tactical decisions. We divide this section into the uncapacitated and

capacitated cases.

2.5.1 Uncapacitated case

Barros and Labbé [21] seem to have been the first to study the general version of the

problem. They developed a branch-and-bound procedure using the corresponding

upper and lower bounds obtained from different Lagrangian relaxations of two of the

formulations discussed, and those obtained from an extension of the greedy heuristic

proposed for the UFLP. This method also benefits from the efficient solution of a par-

ticular Lagrangian relaxation which coincides with a min-cut problem. The authors

presented comparative computational results with the previous special cases of [67]

and [153]. They observed that solving the proposed Lagrangian relaxations provides

an easier way to obtain better bounds than those yielded by the modified dual ascent

method for MLFLPs. However, this category of MLFLPs was put aside for some

years until very recently when Gendron et al. [70, 71] studied a more general version

of the problem of Chardaire et al. [34]. The MLFLP studied in [34] considers only

design costs in a two-level FLP where single assignment constraints between levels
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of facilities are imposed. The problem addressed in [70] additionally includes trans-

portation costs c since it appears as a subproblem in a more sophisticated MLFLP in

the context of freight transportation [68]. We refer to this variant as the TUFLP with

edge costs and single assignment constraints (TUFLP-E-S) which can be formulated

as F1-TUFLP-E-S

minimize
∑
i∈I

∑
j1∈V1

∑
j2∈V2

cij1j2xij1j2 +
2∑
r=1

∑
jr∈Vr

fjryjr +
∑
j2∈V2

∑
j1∈V1

d1j1j2w
1
j1j2

subject to
∑
j2∈V2

∑
j1∈V1

xij1j2 = 1 i ∈ I (2.30)

∑
j1∈V1

xij1j2 ≤ yj2 i ∈ I, j2 ∈ V2, (2.31)

∑
j2∈V2

xij1j2 ≤ yj1 i ∈ I, j1 ∈ V1, (2.32)

xij1j2 ≤ w1
j1j2

i ∈ I, j1 ∈ V1, j2 ∈ V2, (2.33)∑
j2∈V2

w1
j1j2
≤ 1 j1 ∈ V1, (2.34)

w1
j1j2
≤ yj1 j1 ∈ V1, j2 ∈ V2 (2.35)

xij1j2 ≥ 0 i ∈ I, j1 ∈ V1, j2 ∈ V2, (2.36)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, 2. (2.37)

As noted in [70], if the fixed costs are non-negative, one can project out the

variables yj1 for j1 ∈ V1 based on the set of constraints (2.34). Thus, yj1 =
∑

j2∈V2 w
1
j1j2

and the fixed costs fj1 can be embedded within the new edge costs lj1j2 = d1j1j2 + fj2

for each j1 ∈ V1. Constraints (2.35) are actually redundant but allow relaxing the

integrality conditions on the yj2 variables in addition to improving the LP bound.

After projecting out the variables yj1 the objective function becomes
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minimize
∑
i∈I

∑
j1∈V1

∑
j2∈V2

cij1j2xij1j2 +
∑
j2∈V2

fj2yj2 +
∑
j2∈V2

∑
j1∈V1

lj1j2w
1
j1j2

,

which coincides with that of the TEUFLP described in [67]. Also, when the set-up

costs on the edges d1j1j2 are zero, we obtain the TUFLP-S version of the problem.

However, in this case the single assignment constraints can be dropped under some

conditions on the costs cij1j2 [70, 136], yielding a class of instances for which the

TUFLP and the TUFLP-E are equivalent. In [70] a branch-and-bound procedure is

also developed based on specialized branching rules and a Lagrangian relaxation that

was not previously studied in [21, 34].

All the papers relating to MUFLP-E mentioned so far consider the two-level ver-

sion of the problem. Ortiz-Astorquiza et al. [137] recently introduced a general k-level

setting where all three types of costs are considered and cardinality constraints are

imposed at each level. This problem is denoted as MUpLP-E. In comparison with the

other two categories of MLFLP, little research has been carried out in this category,

especially in what regards the development of exact solution methods. These authors

developed an exact Benders-based algorithm decomposition scheme for the solution

of large-scale instances. The algorithm exploits the structure of the extended F2-

MUFLP formulation for the MUpLP-E in which the subproblems can be efficiently

solved. The authors conducted an extensive computational study on the impact of

different variations of the Benders decomposition procedure, such as implementing

Pareto-optimal cuts or using alternative feasibility cuts.

2.5.2 Capacitated case

The first articles to consider a TCFLP with fixed costs for opening edges are [156, 157].

Tragantalerngsak et al. [156] developed several Lagrangian heuristics for a two-level

CFLP with single source constraints (single assignment in the TUFLP) and capacities
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at the first-level facilities only. The MILP formulation described by the authors

resembles that of the TEUFLP of [67], where fixed costs on the edges between facilities

of different levels replace those of opening facilities in one level. In a sequel paper

[157], the same authors presented an exact algorithm for the problem based on the

previous Lagrangian relaxations. We refer to this problem as the TECFLP-S. It can

be formulated as

(TECFLP-S) minimize
∑
i∈I

∑
j1∈V1

∑
j2∈V2

cij1j2xij1j2+
∑
j1∈V1

∑
j2∈V2

dj1j2wj1j2
∑
j2∈V2

fj2yj2

subject to
∑
j1∈V1

∑
j2∈V2

xij1j2 = 1 i ∈ I (2.38)

∑
i∈I

hixij1j2 ≤ βj1 j1 ∈ V1, j2 ∈ V2 (2.39)

∑
j2∈V2

wj1j2 ≤ 1 j1 ∈ V1 (2.40)

xij1j2 ≤ wj1j2 j1 ∈ V1, j2 ∈ V2 (2.41)

wj1j2 ≤ yj2 (2.42)

xij1j2 , wj1,j2 , yj2 ∈ {0, 1} i ∈ I, j1 ∈ V1, j2 ∈ V2. (2.43)

Other related problems have also been studied. These are more general and typ-

ically include additional requirements. For example, Ignacio et al. [88] presented a

two-level capacitated facility location problem with edge costs (in E0 and E1) and

single-source constraints (TCFLP-E-S) in a computer network environment. There,

both levels of facilities, routers and concentrators, have capacities and fixed costs for

opening facilities at the two levels are considered. The authors designed an exact

solution method based on a Lagrangian relaxation an a tabu search heuristic. An-

other example of a TCFLP-E arises in the context of a disaster relief facility location

system in [73]. Ghezavati et al. [73] considered a more general version of the problem

where capacities are also imposed on the edges and studied the problem under some
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uncertain parameters. Finally, some related problems were addressed in [36, 68, 85].

Çinar and Yaman [36] introduced two variants of the so-called vendor location prob-

lem as special cases of capacitated MLFLPs. The work of Gendron and Semet [68]

was motivated by a freight transportation problem. It set the ground for the study

of different variants of the TUFLP which can be seen as a capacitated MLFLP. The

authors considered a multi-commodity two-level facility location problem with single-

source constraints, capacities in the arcs and modular transportation costs. Hinojosa

et al. [85] studied a multi-period TCFLP.

2.6 MLFLPs with network design decisions

The last category of MLFLPs that we review is concerned with non-trivial network

design decisions, but in which no tactical decisions are explicitly considered. We call

the MFLDP this “design-only” version of the problem, which can also be viewed as

a special case of the MUFLP-E. This problem is relevant to strategic supply chain

management. In such a scenario, only the design decisions are involved through

the fixed cost on facilities and edges and the allocation of customers is implicitly

given by the opening of the corresponding edge. MLFLPs belonging to this category,

either for two or k levels, have been studied by several authors [18, 34, 51, 64, 89].

Remarkably, with the exception of [34], none of the above references presents an exact

algorithm and all date from the last decade; three of them develop approximation

algorithms with performance guarantee, while [18] presents a polyhedral study for

a ILP formulation. In particular, the latter paper provides three families of valid

inequalities and extends to the TFLDP non-trivial facet defining inequalities for the

single-level UFLP. Moreover, the authors study integrality conditions of the polytope

associated with the TFLDP, that is, they introduce conditions on the graph G =

(V ∪ I, E) so that the LP relaxation of the problem outputs an integral solution.
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They also show how to determine whether a given graph G satisfies such conditions

using a polynomial time algorithm developed for the single-level case. For the two-

level case, we reproduce the version presented in [18] which uses the sets of arcs

Ar ⊆ Vr×Vr+1 between levels of facilities, considering A0 = I, to introduce their ILP

formulation:

(F1-TFLDP) minimize
∑

(i,j1)∈A0

d0ij1w
0
ij1

+
∑

(j1,j2)∈A1

d1j1j2w
1
j1j2

+
2∑
r=1

∑
jr∈Vr

fjryjr

∑
(i,j1)∈A0

w0
ij1

= 1 i ∈ I (2.44)

w0
ij1
≤ yj1 (i, j1) ∈ A0, (2.45)∑

(j1,j2)∈A1

w1
j1j2

= yj1 j1 ∈ V1, (2.46)

w1
j1j2
≤ yj2 (j1, j2) ∈ A1, (2.47)

w0
ij1
, w1

j1j2
∈ {0, 1} (i, j1) ∈ A0, (j1, j2) ∈ A1, (2.48)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, 2, (2.49)

where w0
ij1

and d0ij1 are the decision variables and costs for opening a link between

customer i and first-level facility j1, respectively. We make two remarks on the

above formulation. First, it corresponds to a more general version in which arcs

are considered between levels of facilities instead of taking the sets Vr × Vr+1. This

slightly more general version of the problem could also be reproduced for the MUFLP-

E. Second, constraints (2.46) ensure the allocation of open facilities of the first level

to those of the second one, and also enforce single assignment for open facilities of the

first level. This is important because in this case the number of edges adjacent to an

open facility yields a capacitated version of the problem. This follows from the fact

that there are no flow or transportation variables, but only design-type variables. For

this reason we exclude the uncapacitated/capacitated subdivision from this category.
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Fleischer et al. [64] developed a lnk |I|-approximation algorithm for the k-level

extension of the problem. The authors use general costs h, that is, they also consider

the non-metric case. Later, Drexl [51] presented a 3/2(3k − 1)-approximation algo-

rithm. They assumed that the costs h are induced by a metric and that the values of

fjr are non-negative. Kantor and Peleg [89] studied a similar version of the problem

in which edges need to be opened as well as facilities at each of the k levels, but only

in one level is there an associated fixed cost for opening facilities fjk . The authors

developed a (1 + 3β)(3β+1)k−1-approximation algorithm, where β ≥ 1 is a parameter

used to define the values of the costs h from the distances between vertices jr, jr+1 in

the graph.

Finally, Chardaire et al. [34], mainly motivated from a telecommunications ap-

plication, studied a variant of the two-level problem in which single-assignment con-

straints between levels of facilities are enforced. That is, each open facility of the

first level can be assigned to at most one open facility of the second level (coherent

structure in the HFLP classification). Following the notation of this article,

∑
j2∈V2

w1
j1j2
≤ 1 j1 ∈ V1.

The authors presented two MILP formulations and obtained lower bounds via a

Lagrangian relaxation, thus improving one of the formulations with a family of facet-

defining inequalities. They also developed a simulated annealing algorithm to improve

the upper bounds returned by the Lagrangian relaxation. Mǐsković and Stanimirović

[128] used the model of [34] to design a metaheuristic.

2.7 Conclusions

We have identified the main characteristics of MLFLPs, an important class of discrete

location problems that has received increasing attention in the last two decades. We
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have pointed out the main differences and similarities with well-known related areas

in an attempt to delimit the borders of this class of problems and thus the scope

of the survey. In the context of MLFLPs, we have identified three main categories

based on the types of decisions involved in the optimization process: MLFLPs with

tactical decisions, MLFLPs with network design and tactical decisions, and MLFLPs

with network design decisions only. These decisions are closely related to the types

of input costs to the problem. Using this classification scheme we have presented a

comprehensive review of the most relevant publications and we have discussed the

variations between problems along with formulations and algorithms. We have also

considered the uncapacitated/capacitated distinction to further identify where most of

the efforts in the area have been expended. We first observed that with one exception

[137], all papers concerned with the development of exact algorithms (or polyhedral

studies) refer to the special case where k = 2. Thus, all contributions related to the

most general versions of the problems arise from the approximate algorithms context.

In particular, a large number of papers have been published on the development

of approximation algorithms with performance guarantee for the MUFLP. Notably,

this same category of MLFLPs is the one that has received the most attention in

comparison with the other two.

Some recent publications have concentrated on different variants and extensions of

the main MLFLPs. For instance, we have mentioned some articles in which uncertain

parameters are included, as well as dynamic facility location problem where facilities

can be opened and closed at each time period, and MLFLPs with service penalties

where customers may not to be serviced. In many cases, fundamental MLFLPs arise

as subproblems of these more general versions. Other sophisticated models in SCM

and HFLPs also present MLFLPs as subproblems. Therefore, efficient algorithms

for MLFLPs may help solve related problems. The fact that MLFLPs generalize

well-known single-level FLPs while retaining several of their mathematical properties
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can be further exploited in the development of such algorithms. One important step

towards a more systematic growth of the field is the incorporation of a common set

of MLFLP instances, which would allow fairer algorithmic comparisons. Finally, we

consider that MLFLPs constitute a very promising research area, not only from a

theoretical and modeling point of view, but also in terms of devising efficient algo-

rithms.
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Chapter 3

Multi-level facility location as the

maximization of a submodular set

function

The content of this chapter is published as “Multi-level Facility Location as the Max-

imization of a Submodular Set Function”, European Journal of Operational Research,

247(3), 1013-1016, 2015 [135].

Abstract

In this paper we model the multi-level uncapacitated facility location problem as

two different combinatorial optimization problems. The first model is the classical

representation of the problem which uses a set of vertices as combinatorial objects

to represent solutions whereas in the second model we propose the use of a set of

paths. An interesting observation is that the real-valued set function associated with

the first combinatorial problem does not satisfy the submodular property, whereas

the set function associated with the second problem does satisfy this property. This

illustrates the fact that submodularity is not a property intrinsic to an optimization
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problem but rather to its mathematical representation.

3.1 Introduction

In this paper we introduce an alternative combinatorial representation for the multi-

level uncapacitated facility location problem (MUFLP) whose objective function satis-

fies the submodularity property. The contribution of this paper is twofold. First, we

correct a previous conclusion stating that the MUFLP is not submodular and also, we

illustrate the fact that submodularity is not an intrinsic property of an optimization

problem but rather of the set function of its mathematical representation. To the

best of our knowledge, this has not been clarified before in the literature and has led

to a misuse of the terminology and to misleading results.

Generally speaking multi-level facility location problems (MFLPs) consist of find-

ing the best set of facilities to open at each of the different levels (or type of facilities)

in order to maximize the total profit while satisfying the demand of every customer.

Several variants of MFLPs have been studied over the last four decades. Early works

addressing MFLPs are those of Calvo and Marks [31] and Kaufman et al. [90], who

introduced this family of discrete location problems and described mathematical pro-

gramming formulations to represent them. However, since most MFLPs are NP -hard,

several approximation algorithms have been developed for different versions of this

family of problems [see for instance, 4, 7, 10, 55]. Moreover, even for the single level

case, very recent approximation and exact algorithms for solving particular cases are

presented in [5] and [105], respectively, showing the continued interest in this funda-

mental class of problems for the location science community. For recent overviews

of models, classification criteria, solution techniques and references of Hierarchical

Facility Location Problems, a more general view of MFLPs, we refer the reader to

[47] and [168].
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We focus our attention on a class of MFLPs originally introduced by Kaufman

et al. [90] and then extended by Ro and Tcha [145] and Barros and Labbé [20]. Let

I = {1, · · · ,m} be the set of customers and V1, V2, · · · , Vk the sets of sites where

facilities of levels 1 to k can be selected (or open) and V = ∪ki=1Vi. Also, there are

fixed costs fjr associated with opening facility jr at level r and a profit cij1···jk obtained

from allocating customer i ∈ I to the sequence of facilities j1, · · · , jk. The MUFLP

consists of selecting a set of facilities to open at each of the k levels and of assigning

each customer to a set of facilities, exactly one at each level, while maximizing the

difference of the total profit minus the setup cost for opening the facilities. The

MUFLP can be modeled as the following combinatorial optimization problem. For

each nonempty subset R ⊆ V define

q(R) = −
k∑
r=1

∑
jr∈Rr

fjr

w(R) =
∑
i∈I

wi(R) =
∑
i∈I

max
j1∈R1,··· ,jk∈Rk

cij1···jk

and

v(R) = w(R) + q(R)

=
∑
i∈I

max
j1∈R1,··· ,jk∈Rk

cij1···jk −
k∑
r=1

∑
jr∈Rr

fjr ,

where R = ∪kr=1Rr, with R1 ⊆ V1, · · · , Rk ⊆ Vk. The MUFLP can then be stated as

the problem of selecting a set of nodes R ⊆ V such that v(R) is maximum, i.e.,

max
R⊆V

{v(R)} . (3.1)

Note that when k = 1, the MUFLP reduces to the classical uncapacitated facility

location problem (UFLP), a central problem in location theory [46]. A promising
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avenue of research has thus been the extension of well-known properties of the UFLP

for the multi-level case (i.e. k > 1). For instance, Aardal et al. [3] show that all

non-trivial facet defining inequalities for the UFLP also define facets for the MUFLP

when k = 2. [4], [28] and [169] use ideas previously developed for the UFLP, such

as dual ascent and adjustment techniques [57], in order to develop approximation

algorithms for the MUFLP. Frieze [65] and Babayev [17] show that the natural set

function representation v(R) is submodular and Nemhauser et al. [134] show that

w(R) is submodular and nondecreasing when k = 1. We recall the definition of

submodular and nondecreasing set functions [see, 134].

Let N be a finite set and f be a real-valued function defined on the set of subsets

of N and ρe(S) = f(S ∪ {e})− f(S) be the incremental value of adding element e to

the set S when evaluating the set function f .

Definition 3.1. .

a) f is submodular if ρe(S) ≥ ρe(T ), ∀S ⊆ T ⊆ N and e ∈ N \ T .

b) f is nondecreasing if ρe(S) ≥ ρe(T ) ≥ 0, ∀S ⊆ T ⊆ N and e ∈ N .

Although the maximization of a submodular set function is known to be NP -hard

[133], the submodular property has allowed the analytic study and development of

exact and approximate algorithms for several classes of optimization problems [74].

One milestone in facility location is the paper of Cornuéjols et al. [45] in which the

authors use this property to obtain worst-case bounds for greedy and local improve-

ment heuristics and for enumeration algorithms for the maximization version of the

location problem. Later, a result by Feige [59] implied that the best possible ap-

proximation guarantee for the UFLP was given precisely by the greedy algorithm,

unless P = NP . More generally, the submodularity property is used by Nemhauser

et al. [134] in order to extend the results of the greedy and local heuristics for the

problem of maximizing a submodular set function subject to a cardinality constraint.
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Nemhauser and Wolsey [132] presented a mixed integer programming formulation

and a cutting-plane algorithm to solve this class of problems based on submodular-

ity. Wolsey [165] applied this formulation to the UFLP and discussed its connections

with a Benders reformulation. Spielberg [151] studied simplification rules to reduce

the number of explored nodes in an enumeration tree when solving the UFLP to

optimality by branch-and-bound. More recently, Calinescu et al. [30] presented a

randomized approximation algorithm with worst-case bound for the problem of max-

imizing a submodular function subject to an arbitrary matroid and Kulik et al. [101]

introduced an approximation algorithm for the maximization of a non-decreasing sub-

modular function subject to multiple linear constraints. Also, Gupta and Könemann

[82] presented a survey of different approximation algorithms for network design, in-

cluding the results of the greedy heuristic based on submodularity. Contreras and

Fernández [40] showed how a general class of hub location problems can be modeled

as the minimization of a supermodular set function and used this representation to

develop mixed integer programming formulations and approximation algorithms to

solve these problems.

A similar approach to that of Spielberg [151] is used in Ro and Tcha [145] and

Tcha and Lee [153], where the submodularity property is assumed for the MUFLP,

and branch-and-bound methods using similar simplification rules are presented for

the two-level and the multi-level cases, respectively. However, Barros and Labbé [20]

provided a counter-example showing that the submodular property does not hold for

the set function v(R), and thus the authors concluded that part of the results obtained

in [145] and [153] were unfortunately wrong, also concluding that the MUFLP is not

submodular.
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3.2 An Alternative Combinatorial Representation

of the MUFLP

We next provide an alternative combinatorial representation of the MUFLP whose

objective set function is submodular. Note that for the case of problem (3.1), the

mathematical model is defined on the set of subsets of V . Such a model arises

naturally given that the MUFLP seeks to open a subset of facilities in V and to

assign each customer to exactly one facility at each level. However, an alternative

combinatorial representation is to use the set of paths connecting facilities between

different levels to represent the allocation paths of customers to their allocated facility

in each level.

Let G = (V ∪ I, E) be a graph with a vertex set V ∪ I partitioned into k+ 1 levels

where, as before, I represents the set of customers and V1, V2, · · · , Vk are the sets of

facilities from level 1 to level k, respectively. The set of edges E is also partitioned

as E = {E1, · · · , Ek}, where Ei = {e ∈ E : e = (s, t) with s ∈ Vi−1 and t ∈ Vi} for

i = 2, · · · , k, and E1 = {e ∈ E : e = (s, t) with s ∈ I and t ∈ V1}. Without loss of

generality, we assume that for each i = 2, · · · , k, the graphs induced by Vi−1 ∪ Vi are

complete, otherwise we could complete the graph by adding edges such that the total

profits of the corresponding new paths are zero. Moreover, we denote by P the set of

all possible simple paths (j1, j2, · · · , jk) in G starting at a vertex j1 ∈ V1, finishing at

a vertex jk ∈ Vk, and having exactly one element from each level. Let N = P ∪ V be

a finite set containing both the set of paths P and the subset of vertices V of G. Also,

consider the set Nr(S) to be the set of vertices of level r associated with the paths of

set S. Moreover, with an abuse of notation, we refer to each nonempty subset of N

as the pair (S,R) thus, (S,R) ⊆ N , where S ⊆ P and R ⊆ V . Note that (S,R) is not

a couple but a subset of N , which we denote as a pair in order to clearly differentiate

the elements taken from P and those taken from V. Now, we define

51



f(S,R) = −
k∑
r=1

∑
jr∈Rr

fjr

c(S,R) =
∑
i∈I

ci(S,R) =
∑
i∈I

max
(j1,j2,··· ,jk)∈S

cij1j2···jk

and

z(S,R) = c(S,R) + f(S,R)

=
∑
i∈I

max
(j1,j2,··· ,jk)∈S

cij1j2···jk −
k∑
r=1

∑
j∈Rr

fjr ,

where, as before, R = ∪kr=1Rr, with R1 ⊆ V1, · · · , Rk ⊆ Vk. The MUFLP can now be

stated as the problem of selecting a set of paths S ⊆ P and a set of nodes R ⊆ V

such that z(S,R) is maximum, i.e.,

max
(S,R)⊆N

{z(S,R) : Nr(S) = Rr, for r = 1, · · · , k} , (3.2)

where Nr(S) = {j ∈ Vr : j is a vertex of some path p ∈ S}. Observe that the

constraints of (3.2) state that for each edge e = (j, k) formed from a path p ∈ S, the

corresponding facilities j ∈ Vi−1 and k ∈ Vi must be open.

Before proving the submodularity of z(S,R), we recall some results on submodular

and nondecreasing set functions [see, 134].

Lemma 3.1. Let dj be the weight of j ∈ N . Then, the linear set function f(S) =

−
∑
j∈S

dj is submodular.

Lemma 3.2. A positive linear combination of submodular functions is submodular.

Using lemmas (3.1) and (3.2) we can now prove that the objective function of the

alternative combinatorial representation for the MUFLP satisties submodularity.

Proposition 3.1.
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a) c(S,R) =
∑
i∈I
ci(S,R) is submodular and nondecreasing.

b) z(S,R) = c(S,R) + f(S,R) is submodular.

Proof.

a) Let (S,R) ⊆ (T,Q) ⊆ N , with S ⊆ T ⊆ P and R ⊆ Q ⊆ V , and q =

(q1, q2, · · · , qk) ∈ P\T . For each i ∈ I, we have

max
(j1,··· ,jk)∈S∪{q}

cij1···jk − max
(j1,··· ,jk)∈S

cij1···jk = max{0, ciq1···qk − max
(j1,··· ,jk)∈S

cij1···jk}

≥ max{0, ciq1···qk − max
(j1,··· ,jk)∈T

cij1···jk}

= max
(j1,··· ,jk)∈T∪{q}

cij1···jk − max
(j1,··· ,jk)∈T

cij1···jk ,

where the inequality follows from max(j1,··· ,jk)∈S cij1···jk ≤ max(j1,··· ,jk)∈T cij1···jk .

Summing over i ∈ I and by Lemma 1(b) we obtain that c(S,R) is submodular.

Moreover, given that

max
(j1,··· ,jk)∈T∪{q}

cij1···jk − max
(j1,··· ,jk)∈T

cij1···jk ≥ 0,

for each T ⊆ P and q ∈ P \ T , c(S,R) is nondecreasing.

b) The function f(S,R) is submodular as a direct consequence of Lemma 3.1 and

when combined with Lemma 3.2, the submodularity of z(S,R) follows.

The above result shows that the MUFLP can be stated as the maximization of

a submodular set function subject to a set of constraints that ensure that the set of

selected paths S are associated with a set of open facilities R ⊆ V . Observe that

these constraints can be easily modeled by using a system of linear equations and

thus, problem (3.2) is a particular case of the more general problem of maximizing a
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submodular function subject to a linear set of constraints studied by Nemhauser and

Wolsey [132].

3.3 Example

To illustrate the structural differences between the vertex and the path-allocation

representations of the MUFLP we use the following example introduced in [20]. Let

k = 2, I = {1}, V1 = {11, 21}, V2 = {12, 22}, fj = 0 for all j ∈ V and the following

profit matrix:

c 12 22

11 1 1

21 100 1

An optimal solution for this two-level instance is obtained when facilities 21 and

12 are open with a total profit of 100. In the case of the set function v(R), note that

when R = {11, 22}, Q = {11, 12, 22}, and j = 21, we have

w(R ∪ {j})− w(R) = 1− 1 = 0 ≤ 99 = 100− 1 = w(Q ∪ {j})− w(Q).

That is, for R ⊂ Q and j ∈ V \Q, adding j to R does not increase w more than by

adding j to Q and thus, the submodularity property is not satisfied by w.

Figure 3.1 illustrates the vertex representation in which the possible allocations of

the customer to facilities are shown for R and Q. In this case, a simple path going from

the customer to a second level facility corresponds to an allocation path. The thick

lines represent the possible links between the customer and the first level facilities

and between the first and second level facilities induced by the set R (thereby, also

some of Q since R ⊆ Q). The thin lines represent the additional links induced by

the set Q \ R. Figure 3.1(a) depicts the available allocation paths associated with
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the initial sets R and Q. Note that path (1, 11, 12) induced by Q is the only one not

contained in the set of paths induced by R. However, from Figure 3.1(b) we observe

that when the element 21 is added to R and Q (i.e. 21 is open), two new allocation

paths become available for Q ∪ {21} but only one of them is available for the set

R ∪ {21}. This means that the incremental could be ρe(R) < ρe(Q), because of the

additional possible selection that is offered to the set Q∪ {21}, which is precisely the

case of this example.

(a) Q = {11, 12, 22} and R = {11, 22} (b) Q = {11, 12, 22, 21} and R = {11, 22, 21}

Figure 3.1: Vertex representation of the MUFLP

The above observation motivates the use of the allocation paths as the combina-

torial objects in the objective function z(S,R), instead of vertices. This will ensure

that when one path q is added to the set S, exactly one allocation path becomes

available for both sets, S and T , with S ⊆ T ⊆ P , and therefore,

c(S ∪ {q})− c(S) ≥ c(T ∪ {e})− c(T ) ≥ 0 for each q ∈ P\T.

For example, when S = {(11, 22)}, T = {(11, 12), (11, 22)}, R = {11, 22}, Q =

{11, 12, 22}, and q = (21, 12), we have

c(S ∪ {q}, R)− c(S,R) = 100− 1 = 99 ≥ 99 = 100− 1 = c(T ∪ {j}, Q)− c(T,Q).
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That is, for S ⊂ T and q ∈ P \ T , adding q to S increased c as much as adding q

to T .

Figure 3.2 illustrates the path-allocation representation, where the meaning of the

thin and thick lines is the same as before but for the corresponding sets S and T in this

case. In Figure 3.2(a) we have the configuration of possible patterns using the initial

sets S = {(11, 22)} and T = {(11, 22), (11, 12)}. Figures 3.2(b) and 3.2(c) represent

the updated allocation patterns when adding the elements (21, 12) and (21, 22) to both

S and T , respectively.

(a) (b) (c)

Figure 3.2: Path-allocation representation of the MUFLP

Note that in the vertex representation, when an element is added to the sets R and

Q, the change in the objective function can vary abruptly, since opening a new facility

implies that we can take any possible combination with the open facilities of another

level for the allocation of customers. However, in the path-allocation representation,

the change in the objective function when adding an element to S and T is controlled

by the fact that only one new possibility of allocation is being offered to the customers,

either through S or T .
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Chapter 4

Formulations and approximation

algorithms for multi-level

uncapacitated facility location

The content of this chapter received the final acceptance for publication in February

2017 and is reprinted by permission. Originally entitled “Formulations and approxi-

mation algorithms for multi-level uncapacitated facility location”, INFORMS Journal

on Computing. Forthcoming. Copyright 2017, the Institute for Operations Research

and the Management Sciences, 5521 Research Park Drive, Suite 200, Catonsville,

Maryland 21228 USA. [136]

Abstract

This paper studies multi-level uncapacitated p-location problems, a general class of

facility location problems. We use a combinatorial representation of the general prob-

lem where the objective function satisfies the submodular property, and we exploit

this characterization to derive worst-case bounds for a greedy heuristic. We also

obtain sharper bounds when the setup cost for opening facilities is zero and the
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allocation profits are non-negative. Moreover, we introduce a mixed integer linear

programming formulation for the problem based on the submodularity property. We

present results of computational experiments to assess the performance of the greedy

heuristic and that of the formulation. We compare the models with previously studied

formulations.

4.1 Introduction

Hierarchical facility location problems (HFLPs) constitute an important class of facil-

ity location problems (FLPs) that consider different hierarchies of facilities and their

interactions. Applications of HFLPs arise naturally in supply chain management [123]

and logistics [148], where the interactions between warehouses, distribution centers

and retail stores play a major role, and in health care systems [143] which typically

require serving users from different levels of clinics and hospitals. Other examples

arise in hierarchical telecommunication networks [34, 77]. The two recent surveys of

[47] and [168] provide overviews of classification, models, applications, and algorithms

for HFLPs.

Here we study a general class of HFLPs called multi-level uncapacitated p-location

problems (MUpLPs), which can be defined as follows. Let I = {1, · · · ,m} be the set

of customers, V1, · · · , Vk be the sets of sites among which facilities of levels 1 to k

can be selected (or opened), with V = ∪kr=1Vr. Also, consider cij1···jk to be the profit

associated with the allocation of customer i to the sequence of facilities j1, · · · , jk,

where jr ∈ Vr. Now, let p = (p1, · · · , pk) be a vector of positive integers, and let fjr be

the non-negative fixed cost associated with opening facility jr at level r. The MUpLP

consists of selecting a set of facilities to open, such that no more than pr facilities are

opened at level r and of assigning each customer to a set of open facilities, exactly

one at each level, while maximizing the total profit minus the setup cost of the open
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facilities.

The MUpLP subsumes the uncapacitated p-location problem (UpLP) [45] when

k = 1, which in turn, contains as special cases both the uncapacitated facility location

problem (UFLP) [100] and the p-median problem (p-MP) [83]. Thus, multi-level

extensions of the UFLP and the p-MP are also special cases of the MUpLP. Namely,

the well-known multi-level uncapacitated facility location problem (MUFLP) [90] is

obtained when all cardinality constraints are redundant, i.e. when pr = |Vr| for all

r, and to the best of our knowledge, a new generalization of the p-MP, called the

multi-level p-median problem (MpMP), is obtained when all setup costs are set to

zero, that is, fjr = 0.

The main contribution of this article is twofold. First, we state the MUpLP as the

maximization of a set function satisfying the submodular property, subject to a set

of linear constraints. This representation is used to obtain worst-case performance

results of a greedy heuristic for the MUpLP. Sharper bounds are obtained for the case

of the MpMP, in which the objective function is also non-decreasing. In particular,

we obtain a (1− 1/e)-approximation algorithm under some conditions on the profits

c. This bound is known to be the optimal approximation bound for the single-level

case if P 6= NP . Second, we introduce a mixed integer linear programming (MILP)

formulation for the MUpLP also based on submodularity. A series of computational

experiments are performed with a general purpose solver to compare the proposed for-

mulation with respect to other MILP formulations previously introduced for special

cases. Computational results on benchmark instances show the benefits and limita-

tions of our formulation when embedded into a standard cutting plane algorithm for

the general MUpLP and some special cases.

It is important to clarify that throughout this article we work with the maximiza-

tion version of these problems. Similar to the case of the MUFLP, the maximization

and minimization versions of the MUpLP are equivalent from an optimization point
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of view but not from the approximation algorithms perspective [see, 149, 170]. Thus,

our results for the MUpLP can be adapted to the corresponding minimization version,

except for those pertaining to the worst-case bounds of the greedy heuristics.

The remainder of the paper is organized as follows. Section 4.2 reviews the most

relevant literature on the MUpLP and on submodularity. Section 4.3 provides a rep-

resentation of the MUpLP as a combinatorial optimization problem and describes

some fundamental properties of this representation. The worst-case bounds of the

greedy heuristics are introduced in Section 4.4. In Section 4.5, we introduce a MILP

formulation for the MUpLP based on submodularity, and in Section 4.6 we present

computational experiments to compare the efficiency and limitations of the formula-

tions. Conclusions follow in Section 4.7.

4.2 Literature Review

We use the classification scheme of HFLPs given by [47] in order to categorize the

MUpLP. The classification is based on four criteria: flow pattern, service availability

(or varieties), spacial configuration and objective. Other schemes may consider extra

conditions such as capacity constraints or horizontal relationships between facilities

of the same level. A flow pattern refers to the way in which a facility at a given level

receives or offers services or products to another facility at a different level and is

either single-flow (SF) or multi-flow (MF). In a network with SF pattern, the flow

from or to the customers must pass through all higher levels until it reaches the

point of origin or destination, while in a MF pattern, facilities of some level may

receive or send flow directly from or to any higher level. Service availability specifies

whether a higher-level facility provides all services provided by its lower-level facilities

plus another one (nested), or whether facilities at each level provide different services

(non-nested). In the spacial configuration category a network can be coherent or non-
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coherent. In a coherent network, facilities of lower-level must receive or send service

from or to one and the same higher-level facility. Non-coherent systems allow more

than one higher-level facility serving a given lower-level facility. Median, covering

and fixed charge objectives are considered. Thus, for the MUpLP we identify an SF

pattern and in principle a non-coherent structure. However, throughout the paper

we make an assumption on the values of c which implies a coherent structure on

the optimal solution. This is discussed in more detail in Section 4.3. The service

availability criterion is application-dependent. Since we refer to different types of

facilities instead of services that have an SF pattern, we can assume a non-nested

configuration in this case. Moreover, what differentiates multi-level problems within

HFLPs is that the initial set of potential facilities is partitioned in the input, and

facilities of type r can only be opened in those potential sites of the set Vr. In a

general setting of a HFLP, different hierarchical services are sometimes assigned to

facilities that are not necessarily partitioned beforehand.

One of the most studied problems in this context is the MUFLP. Barros and

Labbé [21] present MILP formulations and a branch-and-bound algorithm based on

Lagragian relaxations for a more general two-level facility location including costs for

opening edges. Also, [70] and [34] study the two-level facility location problem with

single assignment constraints (coherent structure) including setup costs for the edges.

Aardal et al. [3] show that all non-trivial facet defining inequalities for the UFLP also

define facets for the two-level uncapacitated facility location problem. Aardal et al.

[4], Bumb and Kern [28] and Zhang [169] use ideas previously developed for the UFLP,

such as dual ascent and adjustment techniques, in order to develop approximation

algorithms for the MUFLP. Ageev et al. [10] present approximation algorithms with

worst-case bounds for the MUFLP. More recently, Krishnaswamy and Sviridenko [98]

presented inapproximability results for the MUFLP and showed that in the general

case, the two-level FLP is computationally harder than the UFLP. It is important
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to mention that in some of these references, the results are based on the equivalent

minimization version of the MUFLP in which the values of c are interpreted as the

costs of assigning customers to sequences of open facilities. However, recall that from

the perspective of approximation algorithms, the two versions of the MUFLP are not

equivalent [86, 149].

To the best of our knowledge, the definitions of MpMP and of the MUpLP just

presented are new. However, some closely related problems, including those defined

in the more general framework of HFLPs, have been studied. For instance, Teixeira

and Antunes [154], Weaver and Church [162] and Hodgson [87] mainly discuss nested

hierarchical p-median models. Serra and ReVelle [146, 147] and Alminyana et al. [13]

discuss a nested and coherent hierarchical structure combining two p-median problems

referred to as the pq-median problem. Edwards [55] studies a multi-level p-median

problem in which the cardinality constraint is only required at the highest level of

the facilities (Vk) and presents approximation results for the minimization version of

the problem.

Cornuéjols et al. [45] presented important results for single level FLPs, namely

worst-case bounds for greedy and local improvement heuristics for the maximization

version of the UpLP, including the UFLP and the p-MP as special cases. These

results were later generalized in the sequel of papers by Nemhauser et al. [134] and

[63] for the maximization of a non-decreasing submodular set function subject to a

cardinality constraint, and further to an independence system constraint. A result by

Feige [59] implies that the worst-case approximation bound of 1 − 1/e given by the

greedy heuristic for the combinatorial representation of the p-MP is the best possible

approximation guarantee, unless P = NP . Moreover, it is the best possible guarantee

for the maximization of a non-negative submodular function subject to a cardinality

constraint.

Relevant results involving submodularity include those of Nemhauser and Wolsey
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[132] who presented a MILP formulation, a cutting-plane and branch-and-bound algo-

rithms to solve the maximization of a submodular set function subject to a cardinality

constraint, using the p-MP as an example. Wolsey [165] applied this MILP formula-

tion to the UFLP and discussed its connections with a Benders reformulation. More

recently, Sviridenko [152] obtained the same worst-case bound of 1−1/e for the prob-

lem of maximizing a non-negative submodular set function subject to a knapsack

constraint. Later, Calinescu et al. [30] presented a randomized approximation algo-

rithm with worst-case bound for the problem of maximizing a monotone submodular

function subject to an arbitrary matroid, and Kulik et al. [101, 102] introduced ap-

proximation algorithms for the maximization of a non-decreasing and non-negative

submodular function subject to multiple linear and knapsack constraints. Contreras

and Fernández [40] showed some of the benefits of representing a class of hub loca-

tion problems as the minimization of a supermodular function subject to at most two

cardinality constraints.

Some of the first articles discussing submodularity for the development of solution

methods for the MUFLP are those of Ro and Tcha [145] and Tcha and Lee [153]

who assumed that the submodularity property extends directly from the single-level

cases. The correctness of such results was later discussed by Barros and Labbé [20]

who concluded that the combinatorial representation of the MUFLP did not satisfy

submodularity. However, other equivalent combinatorial optimization problems mod-

eling the MUFLP have an objective function that actually satisfies submodularity,

as was recently shown by Ortiz-Astorquiza et al. [135]. For a review on submodular

optimization we refer the reader to [158] and [74].
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4.3 Problem Definition and Submodular Proper-

ties

Let G = (V ∪ I, E ∪ EI) be a graph with a vertex set V ∪ I partitioned into k + 1

levels where I represents the set of customers and V1, · · · , Vk are the sets of potential

facilities from levels 1 to k. The set E consists of edges between Vr and Vr+1 for

r = 1, · · · , k − 1, and EI of those between I and V1. We assume, without loss of

generality, that all possible edges between Vr and Vr+1, as well as those between I

and V1, are in E ∪ EI . Now, let Q be the set of all possible simple paths having

exactly one vertex from each level, starting from some vertex j1 ∈ V1, finishing at

some vertex jk ∈ Vk and N = Q ∪ V . Moreover, abusing the notation, we refer to

each nonempty subset of N as the pair (S,R) thus, (S,R) ⊆ N , where S ⊆ Q and

R ⊆ V . Note that (S,R) is not a couple but a subset of N , which we denote as a

pair in order to clearly differentiate the elements taken from Q and those taken from

V . Now, we define

f(S,R) = −
k∑
r=1

∑
jr∈Rr

fjr , h(S,R) =
∑
i∈I

hi(S,R) =
∑
i∈I

max
(j1,··· ,jk)∈S

cij1···jk

and

z(S,R) = h(S,R) + f(S,R) =
∑
i∈I

max
(j1,··· ,jk)∈S

cij1···jk −
k∑
r=1

∑
j∈Rr

fjr ,

where, R = ∪kr=1Rr, with R1 ⊆ V1, · · · , Rk ⊆ Vk. The MUpLP can then be repre-

sented as the problem of selecting a (nonempty) set of paths S ⊆ Q and a set of

vertices R ⊆ V satisfying the cardinality constraints such that z(S,R) is maximum,
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that is,

max
(S,R)⊆N

{z(S,R) : Nr(S) = Rr, and |Rr| ≤ pr for r = 1, · · · , k} , (4.1)

where Nr(S) = {j ∈ Vr : j is a vertex in some path q ∈ S}, is the set of vertices of

level r associated with the paths of set S ⊆ Q. Observe that the first set of constraints

of (4.1) state that for each vertex jr on a path q ∈ S, the corresponding facility jr ∈ Vr

must be open. The second set of constraints are the cardinality constraints on the

number of open facilities at each level r. Also, note that adding a constant γi, for

every q ∈ Q to ciq does not change the optimal solution. This result follows because

in the MUpLP one must serve every client and thus, having new values of c, defined

as c′iq = ciq + γi changes every feasible solution in the same amount. This property

is well known for the single level case [see, 46]. Moreover, we can model the profits

as ciq = bi − Diq, where bi is the price that client i pays for the service and Diq is

the total operational cost of serving client i through path q. The price bi can then be

seen as the corresponding constant γi and therefore, only the costs are relevant for

the decision, yielding the minimization version of the problem. From an optimization

point of view, this is one of the reasons why it seems to be more common to work

with the minimization version than with its maximization counterpart.

A fundamental property of z is that of submodularity. Before formally stating this

result, we recall the definition of submodular and non-decreasing set functions [134].

Let X be a finite set and g be a real-valued function defined on the set of subsets of

X, and let ρe(W ) = g(W ∪ {e})− g(W ) be the incremental value of adding e to the

set W when evaluating the set function g.

Definition 4.1.

• g is submodular if ρe(W ) ≥ ρe(U), ∀W ⊆ U ⊆ X and e ∈ X \ U .

• g is submodular and non-decreasing if ρe(W ) ≥ ρe(U) ≥ 0, ∀W ⊆ U ⊆ X,
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e ∈ X.

The following result was proved by Ortiz-Astorquiza et al. [135].

Proposition 4.1.

• h(S,R) =
∑
i∈I
hi(S,R) is submodular and non-decreasing.

• z(S,R) = h(S,R) + f(S,R) is submodular.

The MUpLP can thus be stated as the maximization of a submodular set function

subject to a set of constraints ensuring that: i) the selected paths in S are associated

with a set of open facilities R ⊆ V , and ii) the number of open facilities at each level

r does not exceed the predetermined value pr. These constraints can be modeled by

using a system of linear equations and thus, problem (4.1) is actually a particular

case of the more general problem of maximizing a submodular function subject to a

linear set of constraints [see, 132].

We next present some special cases of the MUpLP that are of particular interest.

• When we eliminate the cardinality constraints on the facilities at every level,

i.e., pr = |Vr| for r = 1, . . . , k, the MUpLP reduces to the MUFLP:

max
(S,R)⊆N

{z(S,R) : Nr(S) = Rr, for r = 1, · · · , k} . (4.2)

• When we eliminate the setup costs for the location of the facilities, i.e., fjr = 0

for each j ∈ Vr and r = 1, . . . , k, the MUpLP reduces to the MpMP:

max
S⊆Q

{h(S,R) : |Nr(S)| ≤ pr, r = 1, · · · , k} . (4.3)

Note that for the MpMP no subsets of vertices from V must be selected but

only a subset of paths having an associated set of vertices on which the cardinality
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constraints are imposed. Thus, for this case instead of writing (S,R) ⊆ N we will

only write S ⊆ Q.

As in previous works, we assume that the profit (or cost) c is additive with respect

to the profits on the edges. Typically, this assumption is made for the minimization

version of the problem, where c corresponds to costs or more specifically distances

[for instance, 4]. However, since we consider ciq = bi − Diq, where Diq is the total

operational cost (e.g. distance) of assigning client i to path q, having additive costs

Diq relates directly with the additivity of the function c.

Assumption 4.1. We assume that c is additive. Thus, for each i ∈ I and jr ∈ Vr

for r = 1, · · · , k we have cij1···jk = cij1 + cj1j2 + · · ·+ cjk−1jk .

The above assumption holds throughout the paper unless otherwise stated. We

will also discuss some consequences on the results obtained when relaxing it. The

following propositions are direct consequences of it and the proofs are found in the

Online Supplement section. Also, we will present sharper bounds for a greedy heuris-

tic when we assume that c is non-negative.

Proposition 4.2. Under Assumption 4.1, there exists an optimal solution to the

MUpLP in which every open facility at level r is assigned to exactly one facility at

level r + 1, for r = 1, . . . , k − 1 (i.e. coherent structure).

Proposition 4.3. Under Assumption 4.1, there exists an optimal solution to the

MUpLP in which at most p1 paths are used.

Recall that the paths q ∈ Q are sequences of vertices from V1 to Vk and do not

include vertices from the set of clients I.

4.4 Worst-Case Bounds for Greedy Heuristics

We now present worst-case bounds of greedy heuristics for the MUpLP, as well as

some particular cases. Similar results are proved in [134] for the maximization of sub-
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modular functions subject to a single cardinality constraint. Recall that Assumption

4.1 holds throughout the paper unless otherwise stated.

4.4.1 A Greedy Heuristic for the MUpLP

We next describe a greedy heuristic for the MUpLP. Let (S,R)t denote the current

solution at iteration t, with St and Rt its corresponding subsets of paths and vertices,

respectively. Also, let ρA(S,R) = z((S,R)∪A)− z(S,R) be the incremental value of

adding subset A to the set (S,R) when evaluating the set function z and denote ρt

the maximum possible increment at iteration t. First, we note that a heuristic that

takes one element of N at iteration t as candidate to (S,R)t+1 does not necessarily

terminate with a feasible solution since in N there exist both paths and vertices.

We therefore consider a heuristic that constructs a feasible solution by adding at

each iteration a subset of elements of N satisfying the feasibility conditions, i.e.

Nr(S) = Rr, and |Rr| ≤ pr for r = 1, · · · , k, while increasing z the most. This is done

by considering as candidate subsets those containing exactly one path q ∈ Q with

its corresponding vertices N({q}) = ∪kr=1Nr({q}), that are not yet in the solution.

We define such subsets as Aq(R
t−1), where in general Aq(R) = {N({q}) \R} ∪ {q}

for q ∈ Q and R ⊆ V . In what follows, in order to simplify the notation, we

will write Nr(q) instead of Nr({q}), and Aq instead of Aq(R) when the selection of

R is obvious. Moreover, we define z(∅) as the worst possible value of z, i.e., z(∅) =∑
i∈I minq∈Q ciq−p1

(
maxq∈Q

∑
r:jr∈Nr(q)

fjr

)
, ensuring that at the first iteration there

is a positive change ρ0. The procedure is outlined in Algorithm 1.

Before proving the main results for the worst-case bound obtained for this greedy

heuristic we compute its running time.

Proposition 4.4. The greedy heuristic for the MUpLP can be executed in

O (p1|V1| (|V | log |V |+ |E|+ |I|)) time.
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Algorithm 1 Greedy Heuristic for the MUpLP.

Let (S,R)0 ← ∅, N0 ← N and t← 1
while t < p1 + 1 do

Select Aq∗(R
t−1) ⊆ N t−1 for which ρAq∗ ((S,R)t−1) = max

Aq⊆Nt−1
ρAq((S,R)t−1)

with ties broken arbitrarily. Set ρt−1 ← ρAq∗ ((S,R)t−1)
if ρt−1 ≤ 0 then

Stop with (S,R)t−1 as the greedy solution
else

Set (S,R)t ← (S,R)t−1 ∪ Aq∗(Rt−1) and N t ← N t−1 \ Aq∗(Rt−1)
end if
for r such that |Nr(S

t)| = pr do
Set N t ← N t \ {q = (j1, · · · , jk) : ∃jr ∈ Vr \Rt

r and jr ∈ q}
end for
t← t+ 1

end while
Stop with (S,R)t−1 as the greedy solution

Proof. At iteration t the subset Aq∗(R
t−1) ⊆ N t−1 can be efficiently identified by solv-

ing a series of shortest path problems as follows. We consider the auxiliary directed

acyclic graph Gt = (V t, ARCt), where V t = ∪kr=1V
t
r ,

ARCt =
{

(jr, jr+1) : jr ∈ V t
r , jr+1 ∈ V t

r+1, r = 1, . . . , k − 1
}
,

and V t
r is the set of vertices of level r that are either in the current solution or that

are available to enter the solution at iteration t, that is, those vertices of level r for

which the cardinality constraint is not binding. For each a ∈ ARCt, we define its

length as wjrjr+1 = fjr+1 − cjrjr+1 if jr+1 /∈ Rt−1 and wjrjr+1 = −cjrjr+1 if jr+1 ∈

Rt−1. This operation takes O(|E|) time. We then compute a candidate path q, and

its corresponding subset Aq(R
t−1), associated with each facility j ∈ V1 \ Rt−1

1 by

solving a shortest path problem between j and all nodes in Vk. This can be done

in O(|V | log |V | + |E|) time using the Fibonacci heap implementation of Dijkstra’s

algorithm [11]. Finally, we evaluate ρAq(Rt−1)((S,R)t−1) for each candidate path q.

This takes O(|I|) time for each of the at most |V1| paths. Therefore, each iteration of
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the algorithm takes a total of O(|V1| (|V | log |V |+ |E|+ |I|)) time. Given that there

are at most p1 iterations in the algorithm, the result follows.

Now, we have the following result which follows directly from Proposition 4.1.

Proposition 4.5. For (S,R) ⊆ (S ′, R′) ⊆ N and any subset A ⊆ N\(S ′, R′),

ρA(S,R) ≥ ρA(S ′, R′).

Moreover, since the set N is finite and given the definition of the function z, there

exists a θ ≥ 0 for which ρA(S,R) ≥ −θ for (S,R) ⊆ N and A ⊆ N \ (S,R). In the

case of having a non-decreasing set function (e.g. h) θ = 0.

Proposition 4.6. For all (S,R), (T,W ) ⊆ N such that ∪kr=1Nr(S) = R and

∪kr=1Nr(T ) = W ,

z(T,W ) ≤ z(S,R) +
∑
q∈T\S

ρAq(S,R) + |S\T |θ.

Proof. Let (S,R), (T,W ) ⊆ N , with |S\T | = β, |T\S| = α, such that ∪kr=1Nr(S) = R

and ∪kr=1Nr(T ) = W . Consider the sets Aq(R) with q ∈ T\S and similarly Bs(W )

with s ∈ S\T , as defined before. Recall that for simplicity we only write Aq for Aq(R)

when it is possible. Also, with an abuse of notation, we enumerate the paths q ∈ T \S

as q = 1, · · · , α and similarly those in S \ T as s = 1, · · · , β. Then

z((S,R) ∪ (T,W ))− z(S,R) ≤
∑
q∈T\S

ρAq(S,R), (4.4)

70



since z((S,R) ∪ (T,W ))− z(S,R) =

z((S,R) ∪ A1)− z(S,R) + z((S,R) ∪ A1 ∪ A2)− z((S,R) ∪ A1)

+ · · ·+ z((S,R) ∪ A1 ∪ · · · ∪ Aα)− z((S,R) ∪ A1 ∪ · · · ∪ Aα−1)

=
α∑
i=1

ρAi
((S,R) ∪ A1 ∪ · · · ∪ Ai−1) ≤

α∑
i=1

ρAi
(S,R) =

∑
q∈T\S

ρAq(S,R)

where the inequality follows from Proposition 4.5. Similarly, we obtain

z((S,R) ∪ (T,W ))− z(T,W ) ≥
∑
s∈S\T

ρBs((T,W ) ∪ (S,R)\Bs). (4.5)

Subtracting (4.5) from (4.4), we obtain

z(T,W ) ≤ z(S,R) +
∑
q∈T\S

ρAq(S,R)−
∑
s∈S\T

ρBs((T,W ) ∪ (S,R)\Bs).

Since ρ ≥ −θ, it follows that z(T,W ) ≤ z(S,R) +
∑

q∈T\S ρAq(S,R) + βθ.

Let Z be the optimal solution value of an instance of the MUpLP and let ZG be the

value of a solution obtained using Algorithm 1. Thus, ZG = z(∅)+ρ0+ρ1+· · ·+ρt∗−1,

with t∗ ≤ p1.

Proposition 4.7. If the greedy heuristic for the MUpLP stops after t∗ iterations then

Z ≤ z(∅) +
t−1∑
i=0

ρi + p1ρt + tθ t = 0, · · · , t∗ − 1, (4.6)

and also

Z ≤ z(∅) +
t∗−1∑
i=0

ρi + t∗θ if t∗ < p1.

Proof. By Proposition 4.6 we have z(T,W ) ≤ z(S,R)+
∑

q∈T\S ρAq(R)(S,R)+ |S\T |θ.

Now consider (T,W ) ⊆ N to be the optimal solution (i.e. Z = z(T,W )) and (S,R) =
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(S,R)t. Then, since for q ∈ T \ St and iteration t, ρAq(Rt)(S,R)t ≤ ρt, θ ≥ 0,

|St\T | ≤ t, |T\St| ≤ p1, and z((S,R)t) = z(∅) +
∑t−1

i=0 ρi, we have

Z = z(T,W ) ≤ z(∅) +
t−1∑
i=0

ρi + p1ρt + tθ for t = 0, · · · , t∗ − 1.

If t∗ < p1 and (S,R) = (S,R)t
∗

then,

Z ≤ z(∅) +
t∗−1∑
i=0

ρi + t∗θ,

since ρt∗ ≤ 0.

Thus, if the greedy heuristic is applied to MUpLP, using t = 0 in (4.6) and the

fact that in this case ZG = z(∅) + ρ0, we obtain

Z − ZG

Z − z(∅)
≤ p1 − 1

p1
.

A more general result for t∗ > 0 can be obtained by using the results described above,

as well as those of Lemma (4.1) and Theorem (4.1) part (a) from [134]. The proofs

are omitted because they can be followed with simple modifications.

Proposition 4.8. [see, Theorem 4.1 134] If the greedy heuristic for the MUpLP

terminates after t∗ iterations,

Z − ZG

Z − z(∅) + p1θ
≤ t∗

p1

(
p1 − 1

p1

)p1
≤
(
p1 − 1

p1

)p1
.

4.4.2 A Greedy Heuristic for the MpMP

Sharper bounds can be obtained for the particular case of the MpMP in which the

setup costs of the facilities are all equal to zero, i.e. f(S,R) = 0 and when the profits

c are non-negative. We consider an adaptation of the previous greedy heuristic for
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the MpMP which consists of finding a greedy solution by adding at each iteration

exactly one path q ∈ Q that increases h the most. The procedure is outlined in the

Online Supplement section.

Algorithm 2 has the same running time as Algorithm 1. Given that h is submodu-

lar and non-decreasing and f(S,R) = 0 in the MpMP, the results of Section 4.4.1 hold

for θ = 0. LetH be the value of an optimal solution of MpMP andHG be the value of a

particular solution obtained with Algorithm 2. Then, HG = h(∅)+ρ0+ρ1+· · ·+ρt∗−1,

with t∗ ≤ p1. Moreover, if we consider c ≥ 0, we have h(∅) = 0.

Proposition 4.9. If the greedy heuristic for the MpMP stops after t < p1 steps, then

the greedy solution is optimal.

The proof follows directly from the second part of Proposition 4.7 with θ = 0.

Similarly, in the trivial case in which pr = 1 for all r = 1, · · · , k, the greedy heuristic

yields an optimal solution. More importantly,

Proposition 4.10. If c ≥ 0 and the greedy heuristic is applied to MpMP, then

H −HG

H
≤
(
p1 − 1

p1

)p1
,

and the bound is tight.

It then follows that HG/H ≥ 1 −
(
p1−1
p1

)p1
≥ 1 − 1/e, which coincides with the

best worst-case bound for the single level p-MP. Thus, the same instances presented

in [45] that prove the tightness of the bound for one level can be used in this more

general setting.

4.4.3 A Greedy Heuristic for the MpMP with General Costs

We conclude this section by providing a worst-case bound of a greedy heuristic for

the MpMP when Assumption 4.1 is relaxed. We first note that MpMP is actually a
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particular case of the more general case studied in [63] of maximizing a submodular

function over an independence system described as the intersection of a finite number

of matroids. We recall the definitions of matroid and of independence system.

Definition 4.2. A matroid M is a pair (X,F ) where X is a finite ground set of

elements and F is a collection of subsets of elements of X, satisfying

• A ∈ F and B ⊆ A then B ∈ F .

• A,B ∈ F with |A| > |B| then ∃e ∈ A\B such that B ∪ {e} ∈ F .

Sets in F satisfying only the first condition are referred to as independence sys-

tems.

For the case of the MpMP represented in (4.3), we have seen that the objective

function satisfies submodularity and it is a non-decreasing set function. In terms of

the constraints, note that we have k cardinality constraints and it is straightforward

to see that in general, the pair (Q,F ) with F = {S ⊆ Q : |Nr(S)| ≤ pr for r =

1, · · · , k} does not form a matroid. However, the pair (Q,F ) satisfies the first part of

Definition 4.2. Thus, the combinatorial problem (4.3) of MpMP is a particular case

of the problem of maximizing a submodular non-decreasing set function subject to

an independence system. Given that Korte and Hausman [95] [see, 37] have shown

that every independence system can be written as the finite intersection of matroids,

problem (4.3) can actually be seen as a particular case of the problem studied by

Fisher et al. [63]. An interesting consequence of this is that one can directly obtain

worst-case bounds of a greedy heuristic presented in [63] that do not depend on the

number of matroids, but only on the cardinality of the smallest dependent set and on

that of the largest independent set in the independence system.

Proposition 4.11. If the greedy heuristic given in [63] is applied to MpMP, then

H −HG

H − h(∅)
≤
(
B − 1

B

)b
,
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where, B is the cardinality of the largest independent set in (Q,F ) and b + 1 is the

cardinality of the smallest dependent set.

If we relax Assumption 4.1, we have

H −HG

H − h(∅)
≤
(
p1 · · · pk − 1

p1 · · · pk

)minr{pr}

.

Note that if we consider Assumption 4.1, then B = p1. Together with the modifi-

cations previously presented for the greedy heuristic for the MpMP, we get b = p1.

Thus, we obtain the same result as in Proposition 4.10.

4.5 Formulations for the MUpLP

We next introduce a MILP formulation for the MUpLP that exploits the properties

of a submodular function. First we present the results required for the formulation

of the MpMP and then we extend these results for the more general MUpLP [see,

132, 165]. Recall that a given instance of the MUpLP can be transformed by adding

a constant γi to every path q ∈ Q, c′iq = ciq + γi, without affecting the optimal

solution. Therefore, in the following section we assume, without loss of generality,

that ciq ≥ 0 for every i ∈ I and q ∈ Q.

4.5.1 A Submodular Formulation for the MpMP

Recall that in general h(S,R) =
∑

i∈I h
i(S,R) =

∑
i∈I max(j1,··· ,jk)∈S cij1···jk , but since

h does not depend on R, in this section we use the notation h(S). Consider the

polyhedron X defined as

{(η, x, y1, · · · , yk) : η ≤ h(S)+
∑
q∈Q\S

ρq(S)xq, S ⊆ Q, x ∈ {0, 1}|Q|, yr ∈ {0, 1}|Vr|, η ∈ R},
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where the binary variables xq can be interpreted as xq = 1 if the path q ∈ Q is open

and 0 otherwise, and yr corresponds to the characteristic vector for each level r of

the facilities that are open.

Proposition 4.12. Let T ⊆ Q, Nr(T ) ⊆ Vr for all r, and (η, xT , yT1 , · · · , yTk )

where xT , yT1 , · · · , yTk are the incidence vectors of T and Nr(T ), respectively. Then,

(η, xT , yT1 , · · · , yTk ) ∈ X if and only if η ≤ h(T ).

The proof is given the Online Supplement section

Consider the following MILP formulation of MpMP:

(SF) maximize η

subject to η ≤ h(S) +
∑
q∈Q\S

ρq(S)xq ∀ S ⊆ Q (4.7)

∑
q∈Q:jr∈q

xq ≤Mryjr ∀ jr ∈ Vr, r = 1, · · · , k (4.8)

∑
jr∈Vr

yjr ≤ pr r = 1, · · · , k (4.9)

xq ∈ {0, 1} ∀ q ∈ Q (4.10)

yjr ∈ {0, 1} ∀ jr ∈ Vr, r = 1, · · · , k. (4.11)

Inequalities (4.7) are called the submodular constraints and compute the profit

of every S ⊆ Q. Constraints (4.8) are the linking constraints between x and y,

and inequalities (4.9) ensure the cardinality restrictions for each level. We have cho-

sen to present the aggregated version of inequalities (4.8) since we can exploit the

structure of the problem and take a “good” value for Mr, knowing that the opti-

mal solution will not have more than p1 paths (Proposition 4.3). Thus, we select

Mr = min{p1, |Q|/|Vr|} in order to have a tighter formulation. Further comments

on the selection of the aggregated constraints are given in the computational experi-

ments. Additionally, note that as in the single level p-MP, we can drop the integrality
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constraints on the x variables.

Proposition 4.13. (η∗, x∗, y∗) = (h(T ∗), xT
∗
, yT

∗
1 , · · · , yT ∗k ) is an optimal solution to

SF if and only if T ∗ is an optimal solution to Problem (4.3).

The proof is given in the Online Supplement section.

Also, note that since h(S) is the sum of |I| submodular set functions, one for each

i ∈ I, we can obtain a tighter formulation by replacing the objective function η by∑
i∈I η

i and constraints (4.7) with

ηi ≤ hi(S) +
∑
q∈Q\S

ρiq(S)xq ∀ i ∈ I, S ⊆ Q, (4.12)

where ρiq(S) = hi(S∪{q})−hi(S). Moreover, most of these inequalities are redundant.

First, note that for S ⊆ Q and i ∈ I given, the right-hand side of their associated

constraint (4.12) does not change if the summation is taken over all q ∈ Q. Also,

hi(S) = cis1···sk for some s1, · · · , sk ∈ S. For simplicity, we write cis for s ∈ S ⊆ Q.

Then, ρiq(S) = ciq − cis if ciq > cis or ρiq(S) = 0 if ciq ≤ cis. For any S, its associated

constraint (4.12) can thus be written as ηi ≤ cis +
∑

q∈Q(ciq− cis)+xq, for some s ∈ S

and χ+ = max {0, χ}. Therefore, if for each i ∈ I we consider the ordering 0 = ciq0 ≤

ciq1 ≤ · · · ≤ ciq|Q| , we may select only the sets Sq = {q} with q = q0, · · · , q|Q|−1 in

constraints (4.12). We prove this result in the following proposition.

Proposition 4.14. The MpMP can be formulated as

(SFD) maximize
∑
i∈I

ηi

subject to (4.8)− (4.11)

ηi ≤ ciqt +
∑
q∈Q

(ciq − ciqt)+xq ∀ i ∈ I, t = 0, · · · , |Q| − 1. (4.13)

Proof. Since constraints (4.13) are a subset of constraints (4.7), we only need to show
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that if (ζ, xT , yT ) does not satisfy constraints (4.7) (i.e ζ > hî(T ) for some î, by

Proposition 4.12) for a given T ⊆ Q, then (ζ, xT , yT ) is also infeasible with respect to

constraints (4.13). Thus, suppose hî(T ) = maxq∈T ciq = cîqt , then the associated tth

inequality (4.13) would be

ζ ≤ cîqt−1
+
∑
q∈Q

(cîq − cîqt−1
)+xTq = cîqt−1

+ cîqt − cîqt−1
= cîqt = hî(T ),

which contradicts ζ > hî(T ) and the result follows.

Finally, we consider the additional constraint

∑
q∈Q

xq ≤ p1, (4.14)

which explicitly incorporates Proposition 4.3 into the formulation. Even though this

constraint is redundant for SFD, preliminary computational experiments have shown

that it can help reduce the CPU time of a branch-and-cut algorithm. Note that the

LP relaxation is strengthened when this valid inequality is added. Thus, if we consider

the polyhedral sets associated with the LP relaxation of the constraints of SFD and

that obtained after the addition of equation (4.14), clearly the latter is contained in

the former. Moreover, consider the following fractional feasible solution values for

SFD, when Mr = p1 for all r and minr pr ≥ 2. Let xq = (p1 + ε)/|Q| for every q ∈ Q

and yjr = pr/|Vr| for all jr ∈ Vr, with ε ∈ (0, 1), then it is not difficult to show

that such solution does not satisfy equation (4.14) and therefore the corresponding

polyhedral set is strictly contained in the initial one.
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4.5.2 A Submodular Formulation for the MUpLP

Since z(S,R) = h(S,R) + f(S,R) where h is submodular and non-decreasing and f

is a linear function, we can reformulate the MUpLP as follows [see, 165]:

(SFML) maximize
∑
i∈I

ηi −
k∑
r=1

∑
jr∈Vr

fjryjr

subject to (4.8)− (4.11), (4.13), (4.14).

By removing constraints (4.9) from SFML we obtain a MILP for the MUFLP.

4.5.3 A Branch-and-Cut Algorithm

Typically, the instances of the well-known MUFLP consider relatively small values of

k (i.e. k = 2, 3, 4). Therefore, if we consider k a fixed value, then the total number of

paths is bounded by a polynomial in k, that is, |Q| = |V1| × · · · × |Vk| ≤ (maxr |Vr|)k.

However, one of the drawbacks of the SFD and SFML models is that even though

they contain a polynomial number of variables and constraints in the input of the

problem when k is fixed, the submodular constraints (4.13) are actually very dense.

Therefore, handling such constraints efficiently in a general purpose solver to solve

these models is desirable. Our aim is not to propose a specialized exact solution

algorithm for the MUpLP (or MpMP) but rather to treat constraints (4.13) in an

efficient way. The idea is to use a standard branch-and-cut algorithm in which only a

few constraints are initially considered. In our case, we have selected the least dense

constraints which correspond to t = |Q| − 1 for every i ∈ I. Then, we add additional

constraints (4.13) only when they are violated at fractional and integer solutions of

the enumeration tree.

Given a solution (η̄, x̄, ȳ) of the LP relaxation of formulation (4.8)–(4.11), and

(4.14), a separation problem must be solved for inequalities (4.13). A naive solution
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of the separation problem would be to inspect each of the remaining constraints. For

each i ∈ I, this sequential inspection can be carried out in O(|Q|2) time, but since

the right-hand side of (4.13) is a piecewise concave function, the separation problem

can be solved more efficiently.

Proposition 4.15. For each i ∈ I, the separation problem of inequalities (4.13) can

be solved in O(|Q|) time.

The proof is given in the Online Supplement section.

4.6 Computational Experiments

We have conducted a computational study in order to assess the empirical perfor-

mance of the greedy heuristics of Section 4.4 and of the SFD and SFML formulations

of Section 4.5 with a general purpose solver. All algorithms were coded in C and

run on an Intel Xeon E3 1240 V2 processor at 3.40 GHz and 24GB of RAM under

a Windows 7 environment. The formulations were implemented using the callable

library of CPLEX 12.6.2.

For our computational experiments, we have transformed benchmark instances

of the closely related UFLP to the multi-level case. In particular, we have used

instances with 1,000 customers and 100 potential facilities such as the capa, capb and

capc instances from the OR-Library [23]. The modification to multi-level instances

was carried out as follows. We have generated instances in which |V1| ≥ · · · ≥ |Vk| to

represent the level hierarchy of facilities, and we have selected the first |Vr| facilities

of the UFLP instance for the rth level facilities, with k = 2 and 3. The setup costs

for opening facilities were modified in order to be dependent on its level. Thus, a

value of fj is multiplied by r, so that higher level facilities are more expensive than

lower level facilities. We have also used the profits of customer allocations. However,

the OR-Library instances do not provide distances (profits) between facilities but
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only between customers and facilities. Therefore, we have constructed inter-facility

distances by taking the minimum two-hop distance between facilities via a customer

[as in 55]. We then transformed these distances into profits by simply subtracting

them from a sufficiently large constant. For every multi-level cap instance, three

values of p = (p1, · · · , pk) were selected. One relatively small or tight, one of medium

value and one with the same values of the potential facilities configuration, that is,

making the cardinality constraints redundant (as in the MUFLP).

We also considered another set of randomly generated instances with larger num-

bers of customers and potential facilities. We first generated the coordinates of po-

tential facilities and customers in the plane. We then computed the setup costs

fjr using RAND(50, 500) × r, where RAND(a, b) outputs a random real value be-

tween a and b and r is the level of the facility. The values of the profits c were

obtained after computing the Euclidean distances and subtracting them from a suf-

ficiently large number. The cjrjr+1 values range from 25 to 125. These instances

contain between 500 and 2,000 customers, between 100 and 200 potential facili-

ties, and between two and four levels. For these instances we considered four dif-

ferent values of p. Finally, we also present three instances for which we illustrate

that the bound obtained for the greedy heuristic for the MpMP is tight. These

instances are called tightC2, tightC3 and tightC4, and were constructed using the

profit matrices of [45]. All instances used in these experiments are available at

https://users.encs.concordia.ca/ icontrer/web/instances.html.

For comparison purposes, we have adapted three known MILP formulations for

the MUFLP to our more general MUpLP. These are a path-based formulation (PBF)

[4, 55], an arc-based formulation (ARB) [3, 66] and a flow-based formulation (FBF)

[97]. These formulations are provided in the Online Supplement.

All MILP formulations were executed using a standard branch-and-cut search

with single thread to make the comparisons as fair as possible. We also turned off
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the CPLEX heuristics, since this seems to yield a better performance irrespective of

the formulation. We provide CPLEX with the lower bound value obtained using the

greedy heuristic. The remaining parameters were set at their default values. It is also

important to mention that we present the results obtained for the SFD and the SFML

with the aggregated version of the linking constraints (4.8). While the disaggregated

version of the linking constraints, i.e. xq ≤ yjr , jr ∈ Vr, r = 1, · · · , k, q ∈ Q, jr ∈ q,

yields a better LP gap and sometimes outperforms the aggregated version, the latter

configuration solved more instances within the time limit. We also note that, for the

PBF the aggregated version performs better than the disaggregated one, but consumes

a considerable amount of memory. However, the aggregated version solved more

instances within the time limit and with the available memory than its disaggregated

counterpart.

Table 4.1 summarizes the comparison of SFD, FBF, ARB, PBF, and Algorithm

2 for the MpMP. A more detailed comparison is presented in Section 4 of the Online

Supplement. Table 4.1 describes the proportion of instances solved to optimality by

the corresponding formulation within a time limit of 1, 000 seconds. Each column

represents different types of instances solved. For example, in the column k = 2 we

provide the number of two level instances solved to optimality, whereas in the column

cap we provide the same information for the case of the multi-level cap instances.

Also, in the last three columns we have the average %gap and the shifted geometric

mean (SGM) for the CPU time and number of nodes explored in the enumeration

tree. For the formulations, we used %gap = 100(LPX − OPT )/(LPX), where OPT

is the optimal value and LPX is the LP bound obtained with formulation X. For the

heuristic, we used %gap = 100(BEST −OPT )/(OPT ), where BEST is the solution

value obtained with the greedy algorithm. We computed the two SGM values by

only considering those instances solved by the three formulations that solved the

most instances within the time limit, (i.e. SFD, ARB and FBF) since the PBF
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failed in most instances. For the computation of these values we used SGM =∏L
i=1(ti + s)1/L − s, with s = 10 and L equal to the number of instances considered.

Table 4.1: Summary of the computational results for the MpMP.

SGM SGM Avg.
k = 2 k = 3 k = 4 |I| = 500 |I|=1,000 |I|=1,500 |I|=2,000 cap Total sec nodes %gap

SFD 37/39 23/25 12/12 20/20 33/33 13/16 3/4 21/21 72/76 2.55 11.74 1.24
FBF 28/39 18/25 11/12 17/20 29/33 6/16 2/4 21/21 57/76 8.35 12.11 3.19
ARB 28/39 14/25 6/12 17/20 23/33 4/16 1/4 19/21 48/76 47.37 0.15 0.00
PBF 33/39 5/25 0/12 9/20 20/33 5/16 1/4 15/21 38/76 - - -

Greedy 17/39 12/25 7/12 8/20 23/33 4/16 1/4 15/21 36/76 0.01 - 1.33

From Table 4.1 and Table 1 of the Online Supplement we can see that SFD

outperforms the other three formulations on almost all test instances solved for the

MpMP, and has the lowest SGM time for the solved instances. It is the formulation

that solved the most instances to optimality (72 out of 76) within the time limit and

for each instance type taken separately. Five instances could only be solved by the

SFD and every instance solved by the other formulations was also solved by the SFD.

Although the %LP gap for the implementation of the SFD is not the tightest, it seems

that SFD exhibits the best trade-off between %LP gap, the number of explored nodes

and memory consumption. As we can see, the PFB and the ARB have a better %LP

gap than the SFD but are inefficient due to high memory consumption or CPU time.

They are in most cases slower than FBF and SFD. On the other hand, we noted that

the FBF has a low memory usage but has the worst LP gap on all instances and

therefore explores more nodes. However, it is the second formulation that solved the

most instances. Regarding the %gap of the greedy solution for the MpMP, we see

that the tightness of the worst-case bound is attained on the first three instances,

while the remaining solutions have a deviation never exceeding 2%.

Figure 4.1 shows the total number of solved instances of the MpMP with respect

to a continuous variation on the time, going from 0 to 1,000 seconds. After this time

limit very few instances are solved with any of the formulations. We observe that

all formulations reach a peak after a few seconds and then the concave curves start
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flattening. However, the SFD clearly outperforms the other three models, solving

more than 60 instances within less than 50 seconds.
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Figure 4.1: Comparison of the formulations in terms of the MpMP instances solved

Table 4.2 summarizes the results for the MUpLP. We have added one extra column

corresponding to the instances of the MUFLP. We have also removed from this part

of the experiments the first three instances which were only available for the MpMP

case and are used to show the tight bound obtained with the greedy heuristic. In

Table 4.4 of the Online Supplement section we provided the detailed information for

all instances.

Table 4.2: Summary of the Computational Results for the MUpLP.

SGM SGM Avg.
k = 2 k = 3 k = 4 |I| = 500 |I|=1,000 |I|=1,500 |I|=2000 cap MUFLP Total sec nodes %gap

SFML 27/36 15/25 9/12 15/20 27/33 8/16 1/4 18/21 10/20 51/73 54.44 425.79 4.44
FBF 17/36 13/25 12/12 15/20 25/33 2/16 0/4 21/21 13/20 42/73 66.03 67.41 7.63
ARB 25/36 16/25 6/12 17/20 25/33 4/16 1/4 21/21 20/20 47/73 86.01 0.36 0.00
PBF 30/36 4/25 0/12 9/20 19/33 5/16 1/4 15/21 14/20 34/73 - - -

Greedy 1/36 0/25 0/12 1/20 0/33 0/16 0/4 0/21 0/20 1/73 0.01 - 5.98

The results of Table 4.2 show that, even though the SFML solved more instances

in total, none of the formulations clearly dominates the others. For instance, on

the cap instances the FBF and ARB formulations performed better than the other

two, and for MUFLP instances, the ARB was the best one. The FBF model is also

more efficient in the memory consumption, which is particularly useful for instances
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Figure 4.2: Comparison of the formulations in terms of the MUpLP instances solved

with more levels. However, when we increased the number of customers or potential

facilities the performance of FBF deteriorates drastically, even when k = 2, where

the other formulations are faster. On the other hand, the SFML is more competitive

when the values of pr are not redundant.

Figure 4.2 shows the total number of solved instances of the MUpLP. We note

that for this more general problem, the gap between the curves is not as important

as it was for the MpMP. Moreover, for the first 60 seconds all models solve almost

the same number of instances, but the SFML maintains its dominance after 1,000

seconds. As was expected for the greedy solutions, the deviation from the optimal

value is much larger in comparison with the MpMP. However, these solutions may be

used as starting points in more elaborated heuristic procedures.

4.7 Conclusions

We have studied a general class of hierarchical facility location problems, called multi-

level uncapacitated p-location problems. These problems were modeled as the maxi-

mization of a submodular set function, subject to a set of linear constraints. This rep-

resentation was used to obtain worst-case performance results of some greedy heuris-
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tics for the general case called MUpLP and for the particular cases of the MpMP

in which sharper bounds were obtained. In particular, we obtained a (1 − 1/e)-

approximation algorithm for the case in which profits are non-negative and additive.

We have also introduced an integer linear programming formulation for the MUpLP

based on the submodular property. The results of our computational experiments

confirm the efficiency of the submodular formulation over previous formulations mod-

ified for the MpMP. Instances with up to 2,000 customers, 200 potential facilities, and

four levels of hierarchy were solved to optimality. Our results also show that for the

more general case of the MUpLP, none of the considered MILP formulations clearly

dominates the others.

Online Supplement

Greedy Heuristic

Since we only consider paths instead of the subsets Aq(R), we refer to elements in Q

instead of N .

Algorithm 2. Greedy Heuristic for the MpMP.

Let S0 = ∅, Q0 = Q and set t = 1.
while t < p1 + 1 do

Select q(t) ∈ Qt−1 for which ρq(t)(S
t−1) = maxq∈Qt−1 ρq(S

t−1) with ties settled
arbitrarily. Set ρt−1 = ρq(t)(S

t−1).
if ρt−1 ≤ 0 then

Stop with St−1 as the greedy solution
else

St ← St−1 ∪ q(t) and Qt ← Qt−1 \ q(t)
end if
for r such that |Nr(S

t)| = pr do
Set Qt ← Qt \ {q = (j1, · · · , jk) : ∃jr ∈ Vr \Rt

r and jr ∈ q}
end for
t← t+ 1

end while
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Proofs of the Propositions

Proof of Proposition 4.2

Proof. Suppose that every optimal solution does not satisfy the single assignment

property between lower to upper level facilities. Then, let (S∗, R∗) be an optimal

solution in which there exist (at least) two clients i1 and i2 that are assigned to the se-

quences of opened facilities q1 = j11 , · · · , js, j1s+1, · · · , j1k and q2 = j21 , · · · , js, j2s+1, · · · , j2k

respectively, where js is a facility of level s which is connected to two different facilities

j1s+1 and j2s+1 of level s+ 1, i.e. j1s+1 6= j2s+1.

Without loss of generality, assume that the profits associated with q1 and q2 from

level s to level k are such cjsj1s+1
+ · · · + cj1k−1j

1
k
≥ cjsj2s+1

+ · · · + cj2k−1j
2
k
. Then, we

can construct a new feasible solution (Ŝ, R̂) where client i2 is reassigned to path

q̂2 = j21 , · · · , js, j1s+1, · · · , j1k , such that

z(S∗, R∗) ≤ z(Ŝ, R̂),

which contradicts the assumption and the result follows.

Proof of Proposition 4.3

Proof. Suppose that there exists an optimal solution to the MUpLP containing more

than p1 paths, i.e. S∗ ⊆ Q such that |S∗| = p1 + 1. Then, since S∗ is feasible, at most

p1 facilities of level 1 should be open and be part of a path of S∗. This implies that

there exists a vertex of V1 that is in N1(S
∗) contained in at least two different paths

of S∗. This contradicts Proposition 2 and the result follows.
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Proof of Proposition 4.12

Proof. Suppose (η, xT , yT1 , · · · , yTk ) ∈ X, and let xTq denote the qth component of xT .

Then

η ≤ h(T ) +
∑
q∈Q\T

ρq(T )xTq = h(T ),

since xTq = 0 whenever q /∈ T . Conversely, now suppose that η ≤ h(T ). Since h is

submodular and non-decreasing on Q (Proposition 1), then by Proposition 6

h(T ) ≤ h(S) +
∑
q∈T\S

ρq(S) ∀S ⊆ Q,

thus, for this case h(T ) ≤ h(S) +
∑

q∈Q\S ρq(S)xTq ∀S ⊆ Q. Then, by hypothesis the

result follows.

Proof of Proposition 4.13

Proof. Suppose T ∗ ⊆ Q is an optimal solution to Problem (3), then η∗ = h(T ∗) ≥

h(S) for all feasible S ⊆ Q. In particular, η∗ ≤ h(T ∗). Then (η∗, xT
∗
, yT

∗
) ∈ X and

since T ∗ satisfies the cardinality constraints, the solution (η∗, xT
∗
, yT

∗
) is feasible for

the submodular formulation. Moreover, for any feasible set S ⊆ Q of (3), the solution

(ηS = h(S), xS, yS) is feasible for SF. Then, η∗ ≥ ηS. The converse proof is similar

and the result follows.

Proof of Proposition 4.15

Proof. We recall that the elements of Q are ordered by non-decreasing values of their

coefficients ciq. We denote the tth element according to that ordering as qt (ciqt). For

i ∈ I, consider the function associated with the right-hand side of (13), Fi(D) = D+∑
q∈Q(ciq−D)+x̄q, where D is one of the ciq values, i.e. D ∈ [minq∈Q ciq,maxq∈Q ciq] =

[ciq0 , ciq|Q|−1
]. The separation problem for i ∈ I is thus solved by minD Fi(D). Let
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dti be the corresponding right-hand side of the tth submodular constraint for i ∈ I.

Then,

dti = ciqt +
∑
q∈Q

(ciq − ciqt)+x̄q

= ciqt +

|Q|∑
s=t+1

(ciqs − ciqt)x̄qs = ciqt

1−
|Q|∑

s=t+1

x̄qs

+

|Q|∑
s=t+1

ciqsx̄qs .

For i ∈ I, consider t∗(i) = max{t :
∑|Q|

s=t+1 x̄qs ≥ 1}. For simplicity, we only refer to

this value as t∗, having in mind that there could be one different t∗ for each i ∈ I.

We now show that for i ∈ I, dt∗ ≤ dt for all t. If 0 ≤ t ≤ t∗, we have

dt∗ = ciqt∗

1−
|Q|∑

s=t∗+1

x̄qs

+

|Q|∑
s=t∗+1

ciqsx̄qs ≤ ciqt

1−
|Q|∑

s=t∗+1

x̄qs

+

|Q|∑
s=t∗+1

ciqsx̄qs

= ciqt

1−
|Q|∑

s=t+1

x̄qs +
t∗∑

s=t+1

x̄qs

+

|Q|∑
s=t+1

ciqsx̄qs −
t∗∑

s=t+1

ciqsx̄qs

≤ ciqt

1−
|Q|∑

s=t+1

x̄qs

+

|Q|∑
s=t+1

ciqsx̄qs = dt,

where the last inequality follows from
∑t∗

s=t+1(ciqt − ciqs)x̄qs ≤ 0. Similarly, it can be

shown that dt∗ ≤ dt if t∗ < t. Therefore, the minimum of Fi(D) occurs when D = ciqt∗

with t∗ = max{t :
∑|Q|

s=t+1 x̄qs ≥ 1}. Given that there are at most |Q| possible values

of ciq for each i ∈ I, the result follows.

MILP Formulations for the MUpLP

A Path-based Formulation

The path-based formulation has been widely studied in the past for the MUFLP.

Approximation algorithms have been developed based on this formulation [4, 10,
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53] and their performance have been computationally tested on relatively small and

medium sized instances [see e.g., 55, 97].

We define the following binary variables. The variable xiq = 1 if q = j1, · · · , jk ∈ Q

is assigned to i ∈ I and 0 otherwise. Also, yjr = 1 if facility jr of level r is open. The

MUpLP can be modeled as

(PBF) maximize
∑
i∈I

∑
q∈Q

ciqxiq −
k∑
r=1

∑
jr∈Vr

fjryjr

subject to
∑
q∈Q

xiq = 1 ∀ i ∈ I (4.15)

∑
q∈Q:jr∈q

xiq ≤ yjr ∀ i ∈ I, jr ∈ Vr, r = 1, · · · , k

(4.16)∑
jr∈Vr

yjr ≤ pr r = 1, · · · , k (4.17)

xiq ≥ 0 ∀ i ∈ I, q ∈ Q (4.18)

yjr ∈ {0, 1} ∀ jr ∈ Vr, r = 1, · · · , k.

(4.19)

Constraints (4.15) ensure that exactly one path is assigned to every customer,

while constraints (4.16) are the linking constraints which ensure that if a path is

assigned to a customer, then all the facilities in such path must be open. Constraints

(4.17) are the cardinality restrictions. Finally, note that the variables xiq can be

relaxed from binary to continuous variables, as for the UFLP. Note that the number

of variables is |I||Q|+ |V | and the number of constraints is |I|(1 + |V |) + k.

An Arc-based Formulation

The arc-based formulation was studied in [66] as a generalization of the one presented

by [3]. The authors define the binary variables xij1 = 1 if j1 ∈ V1 is assigned to
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customer i ∈ I and 0 otherwise, yjr as in the PBF is one if facility jr is open and

ziab = 1 if customer i ∈ I uses the arc (a, b) ∈ Vr × Vr+1 and 0 otherwise.

(ARB) maximize
∑
i∈I

∑
j1∈V1

cij1xij1 +
∑
i∈I

k−1∑
r=1

∑
(a,b)∈Vr×Vr+1

cabziab −
k∑
r=1

∑
jr∈Vr

fjryjr

subject to
∑
j1∈V1

xij1 = 1 ∀ i ∈ I (4.20)

∑
b∈V2

ziab = xia ∀ i ∈ I, a ∈ V1 (4.21)

∑
b∈Vr+1

ziab =
∑

b′∈Vr−1

zib′a ∀ i ∈ I, a ∈ Vr, r = 2, · · · , k − 1

(4.22)

xij1 ≤ yj1 ∀ i ∈ I, j1 ∈ V1 (4.23)∑
a∈Vr−1

ziab ≤ yb ∀ i ∈ I, b ∈ Vr r = 2, · · · , k

(4.24)∑
jr∈Vr

yjr ≤ pr r = 1, · · · , k (4.25)

xij1 ≥ 0 , ziab ≥ 0 ∀ i ∈ I, j1 ∈ V1, (a, b) ∈ Vr × Vr+1

(4.26)

yjr ∈ {0, 1} ∀ jr ∈ Vr, r = 1, · · · , k. (4.27)

Constraints (4.20) ensure that every customer is assigned to a first level facility.

The sets of equalities (4.21) and (4.22) ensure the creation and assignation of se-

quences of facilities for each customer. Constraints (4.23) and (4.24) are the linking

constraints, and they model the fact that if an arc or a facility of the first level are

assigned to a customer, the corresponding facilities must be open. In this case, the

91



variables x and z can be considered continuous without affecting the integer optimal

solution. Also, the number of variables is |I|(|V1| + |V | +
∑k−1

r=1 |Vr||Vr+1|) and the

number of constraints is |I|(1 +
∑k−1

r=1 |Vr|+ |V |) + k.

A Flow Based Formulation

The flow-based formulation was recently presented by Kratica et al. [97]. The vari-

ables yjr are the same as before and z is defined as follows: zabr = quantity of goods

that facility a in level r + 1 receives through facility b at level r. In this case, we

consider that level 0 corresponds to I.

(FBF) maximize
k∑
r=1

∑
a∈Vr+1

∑
b∈Vr

cabzabr −
k∑
r=1

∑
jr∈Vr

fjryjr

subject to
∑
b∈V1

zab0 = 1 ∀ a ∈ I (4.28)

∑
b∈Vr−1

zabr−1 =
∑
b∈Vr+1

zbar ∀ a ∈ Vr, r = 1, · · · , k − 1 (4.29)

zabr ≤ myb ∀ a ∈ Vr+1, b ∈ Vr r = 1, · · · , k − 1 (4.30)∑
jr∈Vr

yjr ≤ pr r = 1, · · · , k (4.31)

zijr ≥ 0 ∀ i ∈ Vr+1, j ∈ Vr, r = 0, · · · , k − 1 (4.32)

yjr ∈ {0, 1} ∀ jr ∈ Vr, r = 1, · · · , k. (4.33)

Similarly, constraints (4.28) and (4.29) define and assign the sequence of facilities

to every customer while inequalities (4.30) are the linking constraints. Also, the

number of variables is |V | +
∑k−1

r=1 |Vr||Vr+1| + |I||V1| and the number of constraints

is |I|+
∑k−1

r=1 |Vr|+
∑k

r=1 |Vr||Vr+1|+ k.
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Computational Results

We present in Table 4.3 the detailed computational results for the MpMP. The first

column describes the type of instance through its five subcolumns. The next 12

columns provide the CPU time in seconds needed to solve the instance, the percent

duality gap relative to the LP relaxation bound and the number of nodes in the

branch-and-cut tree for all four models. Finally, the last two columns provide the

percent deviation of the greedy bound with respect to the optimal solution value and

the optimal value obtained. Whenever CPLEX is not able to solve an instance within

1000 seconds, we write TIME in the corresponding entry of the table. If the computer

runs out of memory we write MEM. The instances for which the optimal value is left

blank are those where none of the formulations was able to solve it within 10 times

the time limit (i.e. 10,000 seconds).
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Table 4.3: Comparison of MILP formulations for the MpMP

Instance SFD FBF ARB PBF Greedy OPT.
Type Levels Customers Pot. Facil. P Sec BB nodes LP %gap Sec BB nodes LP %gap Sec BB nodes LP %gap Sec BB nodes LP %gap % gap

TightC2 2 2 3-1 2-1 0.01 0 0.00 0.01 0 0.00 0.01 0 0.00 0.02 0 0.00 25.00 4.00
TightC3 2 6 5-1 3-1 0.01 0 0.00 0.01 0 0.00 0.01 0 0.00 0.02 0 0.00 29.62 54.00
TightC4 2 12 7-1 4-1 0.01 0 0.00 0.01 0 0.00 0.01 0 0.00 0.02 0 0.00 31.64 768.00

capa 2 1000 70-30 2-1 0.53 0 0.45 4.76 2 6.79 70.47 0 0.00 43.07 0 0.00 0.53 55291.46
capa 2 1000 70-30 3-2 0.70 13 0.08 3.70 3 3.43 202.40 0 0.00 17.07 0 0.00 0.02 57282.10
capa 2 1000 70-30 70-30 0.02 0 0.00 0.16 0 0.00 3.85 0 0.00 2.57 0 0.00 0.00 59318.10
capa 2 1000 50-50 2-1 0.95 2 0.54 3.87 2 6.60 137.62 0 0.00 56.32 0 0.00 0.34 55291.46
capa 2 1000 50-50 3-2 2.25 36 0.12 2.90 0 3.21 30.03 0 0.00 21.47 0 0.00 0.00 57297.69
capa 2 1000 50-50 50-50 0.02 0 0.00 0.11 0 0.00 4.40 0 0.00 3.06 0 0.00 0.00 59197.50
capb 2 1000 70-30 2-1 0.61 0 0.10 5.74 0 8.78 35.33 0 0.00 38.52 0 0.00 0.00 54148.14
capb 2 1000 70-30 5-2 1.00 52 0.11 4.77 3 1.70 204.69 0 0.00 16.10 0 0.00 0.18 58347.59
capb 2 1000 70-30 70-30 0.02 0 0.00 0.16 0 0.00 3.85 0 0.00 2.53 0 0.00 0.00 59358.21
capc 2 1000 70-30 2-1 0.70 0 0.49 7.47 2 6.75 79.61 0 0.00 45.48 0 0.00 0.54 53964.64
capc 2 1000 70-30 3-2 1.81 19 0.07 4.71 0 4.53 328.99 0 0.00 20.98 0 0.00 0.00 55244.52
capc 2 1000 70-30 70-30 0.02 0 0.00 0.14 0 0.00 3.88 0 0.00 2.56 0 0.00 0.00 57868.14
capa 3 1000 55-30-15 2-1-1 4.28 11 0.60 4.76 0 6.53 419.71 0 0.00 MEM MEM MEM 0.00 56391.98
capa 3 1000 55-30-15 3-2-1 6.58 18 0.23 3.88 7 3.31 TIME TIME 0.00 MEM MEM MEM 0.00 58338.01
capa 3 1000 55-30-15 55-30-15 0.09 0 0.00 0.23 0 0.00 4.79 0 0.00 34.48 0 0.00 0.00 60333.88
capb 3 1000 60-30-10 2-1-1 4.65 5 0.00 2.87 0 8.51 147.45 0 0.00 MEM MEM MEM 0.00 55411.46
capb 3 1000 60-30-10 5-2-2 3.96 29 0.05 3.09 0 1.62 468.61 0 0.00 MEM MEM MEM 0.00 59580.61
capb 3 1000 60-30-10 60-30-10 0.08 0 0.00 0.23 0 0.00 4.62 0 0.00 24.98 0 0.00 0.00 60564.36
capc 3 1000 60-30-10 2-1-1 5.69 28 0.50 7.19 2 5.86 244.81 0 0.00 MEM MEM MEM 0.63 55070.27
capc 3 1000 60-30-10 5-2-2 9.19 94 0.10 4.06 0 2.02 TIME TIME 0.00 MEM MEM MEM 0.00 57316.09
capc 3 1000 60-30-10 60-30-10 0.08 0 0.00 0.25 0 0.00 4.79 0 0.00 43.90 0 0.00 0.00 58496.09

RAND 4 500 40-30-20-10 2-2-1-1 22.52 33 1.87 22.29 27 4.24 685.52 0 0.00 MEM MEM MEM 0.43 254133.58
RAND 4 500 40-30-20-10 3-3-3-3 10.31 10 0.01 0.69 0 1.89 708.05 0 0.00 MEM MEM MEM 0.00 260372.95
RAND 4 500 40-30-20-10 10-5-3-2 54.43 247 1.22 16.22 382 1.44 839.71 0 0.00 MEM MEM MEM 0.08 261566.17
RAND 4 500 40-30-20-10 40-30-20-10 1.48 0 0.00 0.09 0 0.00 2.48 0 0.00 MEM MEM MEM 0.00 265388.41
RAND 3 500 50-30-20 4-2-1 11.00 78 3.14 869.89 1517 5.06 680.16 0 0.00 MEM MEM MEM 0.21 189997.53
RAND 3 500 50-30-20 5-5-2 8.70 112 1.26 291.70 1069 2.81 745.60 3 0.01 MEM MEM MEM 0.39 194501.88
RAND 3 500 50-30-20 11-9-6 4.96 214 0.27 11.44 327 0.64 876.80 3 0.01 MEM MEM MEM 0.05 198841.46
RAND 3 500 50-30-20 50-30-20 0.14 0 0.00 0.11 0 0.00 2.28 0 0.00 30.30 0 0.00 0.00 200117.56
RAND 2 500 70-30 3-1 6.93 165 5.34 TIME TIME 9.77 127.77 3 0.11 90.31 3 0.11 0.00 121577.18
RAND 2 500 70-30 5-4 10.92 665 0.54 261.21 707 3.44 859.37 0 0.00 13.37 0 0.00 0.83 130102.25
RAND 2 500 70-30 10-2 40.27 684 4.86 TIME TIME 6.01 387.76 2 0.01 21.11 2 0.01 0.37 126632.92
RAND 2 500 70-30 70-30 0.02 0 0.00 0.08 0 0.00 1.97 0 0.00 1.28 0 0.00 0.00 134735.92
RAND 2 500 50-50 2-1 6.30 125 4.31 403.75 899 10.87 192.22 0 0.00 74.61 0 0.00 0.00 120632.62
RAND 2 500 50-50 5-5 0.50 24 0.02 0.95 0 3.08 11.15 0 0.00 11.75 0 0.00 0.34 131165.45
RAND 2 500 50-50 11-9 5.59 847 0.32 773.62 17458 1.24 17.80 2 0.00 16.52 2 0.00 0.13 133656.44
RAND 2 500 50-50 50-50 0.01 0 0.00 0.05 0 0.00 2.25 0 0.00 1.56 0 0.00 0.00 135339.65
RAND 4 500 60-30-20-10 4-2-1-1 99.97 106 3.12 767.20 604 4.27 TIME TIME 0.00 MEM MEM MEM 0.74 253757.25
RAND 4 500 60-30-20-10 8-2-2-1 200.08 192 3.51 TIME TIME 4.04 TIME TIME 0.00 MEM MEM MEM 0.91 254373.99
RAND 4 500 60-30-20-10 15-10-5-2 80.03 401 1.12 13.73 221 1.31 TIME TIME 0.00 MEM MEM MEM 0.10 261602.65
RAND 4 500 60-30-20-10 60-30-20-10 2.34 0 0.00 0.13 0 0.00 3.17 0 0.00 MEM MEM MEM 0.00 265088.22
RAND 4 1000 40-30-20-10 2-2-1-1 19.97 10 0.45 15.68 34 2.62 TIME TIME 0.00 MEM MEM MEM 0.00 515497.20
RAND 4 1000 40-30-20-10 3-3-3-3 12.29 7 0.00 1.54 0 1.22 TIME TIME 0.00 MEM MEM MEM 0.00 522919.72
RAND 4 1000 40-30-20-10 10-5-3-2 38.48 74 0.47 468.54 1955 0.69 TIME TIME 0.00 MEM MEM MEM 0.00 525698.59
RAND 4 1000 40-30-20-10 40-30-20-10 1.53 0 0.00 0.19 0 0.00 4.96 0 0.00 MEM MEM MEM 0.00 529364.59
RAND 3 1000 50-30-20 4-2-1 13.76 43 2.87 TIME TIME 4.95 TIME TIME 0.00 MEM MEM MEM 0.12 379605.89
RAND 3 1000 50-30-20 5-5-2 16.24 135 1.28 TIME TIME 2.96 TIME TIME 0.00 MEM MEM MEM 0.31 387546.69
RAND 3 1000 50-30-20 11-9-6 8.94 225 0.34 173.21 1152 0.87 TIME TIME 0.00 MEM MEM MEM 0.05 395917.40
RAND 3 1000 50-30-20 50-30-20 0.11 0 0.00 0.22 0 0.00 4.63 0 0.00 157.36 0 0.00 0.00 399382.14
RAND 2 1000 70-30 3-1 10.14 63 5.69 TIME TIME 9.89 511.03 0 0.00 269.15 0 0.00 0.00 243200.59
RAND 2 1000 70-30 6-6 0.72 21 0.00 3.62 0 2.27 TIME TIME 0.00 29.13 0 0.00 0.00 263774.28
RAND 2 1000 70-30 10-2 102.99 655 4.80 TIME TIME 5.93 TIME TIME 0.00 106.85 0 0.00 0.76 253903.07
RAND 2 1000 70-30 70-30 0.02 0 0.00 0.16 0 0.00 3.95 0 0.00 2.62 0 0.00 0.00 269897.17
RAND 3 1500 50-30-20 4-2-1 42.54 62 3.42 TIME TIME 5.25 TIME TIME 0.07 MEM MEM MEM 0.70 568051.40
RAND 3 1500 50-30-20 5-5-2 60.64 180 1.95 TIME TIME 3.28 TIME TIME 0.01 MEM MEM MEM 0.19 579839.88
RAND 3 1500 50-30-20 11-9-6 8.38 151 0.29 38.87 192 0.57 TIME TIME 0.01 MEM MEM MEM 0.05 596088.75
RAND 3 1500 50-30-20 50-30-20 0.11 0 0.00 0.34 0 0.00 6.96 0 0.00 MEM MEM MEM 0.00 599510.09
RAND 2 1500 70-30 3-1 33.22 75 5.47 TIME TIME 10.19 TIME TIME 0.00 528.73 0 0.00 1.69 363930.34
RAND 2 1500 70-30 5-4 124.08 1601 0.67 TIME TIME 3.85 TIME TIME 0.02 304.40 3 0.02 0.09 389635.00
RAND 2 1500 70-30 10-2 263.80 591 5.41 TIME TIME 6.60 TIME TIME 0.00 252.78 0 0.00 0.04 378467.47
RAND 2 1500 70-30 70-30 0.01 0 0.00 0.23 0 0.00 5.93 0 0.00 3.90 0 0.00 0.00 405229.72
RAND 3 1500 100-70-30 4-2-1 345.13 102 4.39 TIME TIME 6.96 TIME TIME 0.09 MEM MEM MEM 0.27 570422.86
RAND 3 1500 100-70-30 10-5-2 TIME TIME 2.98 TIME TIME 3.86 TIME TIME 0.00 MEM MEM MEM 0.26 589420.14
RAND 3 1500 100-70-30 35-9-6 TIME TIME - TIME TIME - TIME TIME - MEM MEM MEM - -
RAND 3 1500 100-70-30 100-70-30 1.03 0 0.00 0.91 0 0.00 33.82 0 0.00 MEM MEM MEM 0.00 613079.56
RAND 2 1500 120-80 3-1 153.60 162 5.82 TIME TIME 11.26 TIME TIME 0.20 MEM MEM MEM 0.57 365305.31
RAND 2 1500 120-80 6-6 6.33 91 0.01 61.33 0 3.30 TIME TIME 0.00 MEM MEM MEM 0.10 398033.28
RAND 2 1500 120-80 7-2 TIME TIME 4.74 TIME TIME 7.44 TIME TIME 0.00 MEM MEM MEM 0.00 381010.59
RAND 2 1500 120-80 120-80 0.05 0 0.00 0.47 0 0.00 31.09 0 0.00 19.89 0 0.00 0.00 411635.15
RAND 2 2000 120-80 4-1 323.24 168 6.72 TIME TIME 10.91 TIME TIME 0.09 MEM MEM MEM 0.14 488987.61
RAND 2 2000 120-80 7-2 TIME TIME - TIME TIME - TIME TIME - MEM MEM MEM - -
RAND 2 2000 120-80 10-10 14.74 245 0.02 53.34 0 2.13 TIME TIME 0.00 MEM MEM MEM 0.10 537210.26
RAND 2 2000 120-80 120-80 0.05 0 0.00 0.62 0 0.00 41.57 0 0.00 25.88 0 0.00 0.00 548888.20
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Table 4.4: Comparison of MILP formulations for the MUpLP

Instance SFML FBF ARB PBF Greedy OPT.
Type Levels Customers Pot. Facil. P Sec BB nodes LP %Dev Sec BB nodes LP %Dev Sec BB nodes LP %Dev Sec BB nodes LP %Dev %Dev.
capa 2 1000 70-30 2-1 1.79 9 3.72 4.15 0 16.81 26.65 0 0.00 33.09 0.00 0.00 0.16 48680.89
capa 2 1000 70-30 3-2 5.83 89 6.80 103.72 17 16.43 21.82 0 0.00 18.91 0.00 0.00 0.12 48899.33
capa 2 1000 70-30 70-30 449.51 12413 15.91 72.59 19 16.43 19.97 0 0.00 19.06 0.00 0.00 0.12 48899.33
capa 2 1000 50-50 2-1 2.54 19 4.05 3.84 5 16.41 38.14 0 0.00 41.82 0.00 0.00 0.28 48740.63
capa 2 1000 50-50 3-2 5.84 106 6.94 38.77 17 15.94 26.54 0 0.00 22.79 0.00 0.00 0.36 49013.55
capa 2 1000 50-50 50-50 401.15 12673 15.78 38.42 19 15.94 26.43 0 0.00 22.20 0.00 0.00 0.36 49013.55
capb 2 1000 70-30 2-1 2.81 36 1.47 5.88 2 12.80 31.92 0 0.00 54.88 0.00 0.00 0.33 51440.80
capb 2 1000 70-30 5-2 6.69 154 4.93 31.50 7 9.11 31.48 0 0.00 16.11 0.00 0.00 0.20 53614.63
capb 2 1000 70-30 70-30 143.38 14614 8.72 28.72 7 9.11 32.96 0 0.00 16.71 0.00 0.00 0.20 53614.63
capc 2 1000 70-30 2-1 2.23 18 1.31 5.60 2 9.54 41.68 0 0.00 30.12 0.00 0.00 0.32 52016.07
capc 2 1000 70-30 3-2 4.74 141 2.35 18.00 11 8.68 130.65 0 0.00 25.97 0.00 0.00 0.08 52508.38
capc 2 1000 70-30 70-30 922.76 85913 7.48 39.00 7 7.85 151.96 0 0.00 16.22 0.00 0.00 0.17 52984.68
capa 3 1000 55-30-15 2-1-1 21.58 23 4.68 7.30 3 23.16 254.30 0 0.00 MEM MEM MEM 1.00 45170.63
capa 3 1000 55-30-15 3-2-1 312.86 602 9.65 83.23 11 22.53 48.45 0 0.00 MEM MEM MEM 1.33 45541.44
capa 3 1000 55-30-15 55-30-15 TIME TIME 22.53 94.30 11 22.53 155.22 0 0.00 998.30 0.00 0.00 1.33 45541.44
capb 3 1000 60-30-10 2-1-1 17.55 10 1.39 3.92 0 14.91 62.57 0 0.00 MEM MEM MEM 0.86 50867.76
capb 3 1000 60-30-10 5-2-2 56.86 348 5.31 35.43 6 11.26 53.55 0 0.00 MEM MEM MEM 0.72 53047.51
capb 3 1000 60-30-10 60-30-10 TIME TIME 11.18 34.46 5 11.26 53.63 0 0.00 310.57 0.00 0.00 0.72 53047.51
capc 3 1000 60-30-10 2-1-1 21.34 54 1.36 7.82 3 10.86 160.68 0 0.00 MEM MEM MEM 0.48 51534.88
capc 3 1000 60-30-10 5-2-2 570.04 4909 4.51 143.83 27 10.04 702.50 0 0.00 MEM MEM MEM 0.54 52006.77
capc 3 1000 60-30-10 60-30-10 TIME TIME 9.89 152.49 30 10.04 758.16 0 0.00 454.98 0.00 0.00 0.54 52006.77

RAND 4 500 40-30-20-10 2-2-1-1 89.51 59 2.40 54.90 63 4.98 727.62 0 0.00 MEM MEM MEM 16.98 250301.90
RAND 4 500 40-30-20-10 3-3-3-3 85.96 46 1.33 44.46 178 3.47 659.65 0 0.00 MEM MEM MEM 18.23 254293.79
RAND 4 500 40-30-20-10 10-5-3-2 305.07 891 2.97 87.34 230 3.47 769.80 0 0.01 MEM MEM MEM 18.23 254279.21
RAND 4 500 40-30-20-10 40-30-20-10 679.12 2661 3.74 94.82 292 3.47 29.73 0 0.00 MEM MEM MEM 18.23 254293.79
RAND 3 500 50-30-20 4-2-1 48.19 408 3.71 602.25 953 5.99 763.09 5 0.06 MEM MEM MEM 1.00 187181.03
RAND 3 500 50-30-20 5-5-2 128.68 2070 3.02 TIME TIME 4.90 902.23 3 0.05 MEM MEM MEM 2.13 189357.10
RAND 3 500 50-30-20 11-9-6 TIME TIME 3.86 TIME TIME 4.56 527.34 2 0.00 MEM MEM MEM 2.48 190033.12
RAND 3 500 50-30-20 50-30-20 TIME TIME 4.63 862.65 2797 4.56 40.23 0 0.00 517.87 2.00 0.00 2.48 190033.12
RAND 2 500 70-30 3-1 10.08 137 5.77 TIME TIME 10.56 95.89 3 0.07 44.60 3.00 0.07 0.26 120201.82
RAND 2 500 70-30 5-4 26.55 1163 2.53 593.80 3051 5.68 500.26 5 0.03 21.15 5.00 0.03 5.36 126760.18
RAND 2 500 70-30 10-2 173.21 1202 5.77 TIME TIME 7.19 341.16 0 0.00 13.37 0.00 0.00 3.80 124730.94
RAND 2 500 70-30 70-30 77.66 7350 4.88 793.25 1574 5.07 19.00 3 0.00 9.42 3.00 0.00 5.95 127577.26
RAND 2 500 50-50 2-1 19.06 351 4.62 371.84 639 11.55 235.53 0 0.00 109.37 0.00 0.00 0.00 119374.93
RAND 2 500 50-50 5-5 5.74 257 2.16 392.11 2220 5.57 19.80 0 0.00 11.97 0.00 0.00 5.98 127436.17
RAND 2 500 50-50 11-9 111.84 6508 3.85 680.91 3696 5.03 10.44 0 0.00 8.47 0.00 0.00 6.51 128170.61
RAND 2 500 50-50 50-50 462.68 29586 4.96 TIME TIME 5.03 9.44 0 0.00 8.75 0.00 0.00 6.51 128170.61
RAND 4 500 60-30-20-10 4-2-1-1 443.91 353 3.45 959.14 421 5.00 TIME TIME 0.00 MEM MEM MEM 17.47 249988.31
RAND 4 500 60-30-20-10 8-2-2-1 TIME TIME 4.10 182.94 71 4.95 TIME TIME 0.00 MEM MEM MEM 17.51 250103.66
RAND 4 500 60-30-20-10 15-10-5-2 TIME TIME 3.31 199.06 260 3.65 TIME TIME 0.00 MEM MEM MEM 18.62 253526.11
RAND 4 500 60-30-20-10 60-30-20-10 TIME TIME 3.95 391.08 904 3.65 45.74 0 0.00 MEM MEM MEM 18.62 253526.11
RAND 4 1000 40-30-20-10 2-2-1-1 125.99 17 0.76 63.48 23 3.03 TIME TIME 0.00 MEM MEM MEM 5.72 511471.20
RAND 4 1000 40-30-20-10 3-3-3-3 132.15 28 0.65 35.62 35 2.04 TIME TIME 0.00 MEM MEM MEM 6.60 516694.46
RAND 4 1000 40-30-20-10 10-5-3-2 78.34 210 1.41 72.17 59 1.75 TIME TIME 0.00 MEM MEM MEM 6.84 518196.04
RAND 4 1000 40-30-20-10 40-30-20-10 197.70 988 1.84 127.14 379 1.75 66.28 0 0.00 MEM MEM MEM 6.84 518196.04
RAND 3 1000 50-30-20 4-2-1 52.20 199 3.01 TIME TIME 5.26 TIME TIME 0.00 MEM MEM MEM 0.79 377413.96
RAND 3 1000 50-30-20 5-5-2 169.65 1446 1.97 TIME TIME 3.79 TIME TIME 0.00 MEM MEM MEM 2.28 383252.89
RAND 3 1000 50-30-20 11-9-6 462.19 11965 2.57 TIME TIME 3.20 TIME TIME 0.00 MEM MEM MEM 2.88 385594.58
RAND 3 1000 50-30-20 50-30-20 TIME TIME 3.20 TIME TIME 3.20 90.14 2 0.00 TIME TIME 0.00 2.88 385594.58
RAND 2 1000 70-30 3-1 75.46 337 5.71 TIME TIME 10.16 365.54 0 0.00 116.61 0.00 0.00 1.56 242132.88
RAND 2 1000 70-30 6-6 3.49 94 1.50 TIME TIME 3.97 TIME TIME 0.00 37.72 0.00 0.00 7.84 258805.41
RAND 2 1000 70-30 10-2 TIME TIME 5.39 TIME TIME 6.65 TIME TIME 0.00 86.42 0.00 0.00 5.19 251578.41
RAND 2 1000 70-30 70-30 TIME TIME 3.55 TIME TIME 3.64 45.33 2 0.01 24.65 2.00 0.01 8.15 259695.92
RAND 3 1500 50-30-20 4-2-1 407.87 375 3.65 TIME TIME 5.54 TIME TIME 0.02 MEM MEM MEM 13.11 565487.40
RAND 3 1500 50-30-20 5-5-2 129.16 695 2.43 TIME TIME 3.82 TIME TIME 0.03 MEM MEM MEM 14.67 575818.92
RAND 3 1500 50-30-20 11-9-6 14.56 167 1.55 845.54 1818 1.91 TIME TIME 0.00 MEM MEM MEM 16.32 587209.46
RAND 3 1500 50-30-20 50-30-20 21.91 384 1.91 251.00 1650 1.91 76.64 0 0.00 MEM MEM MEM 16.32 587201.42
RAND 2 1500 70-30 3-1 511.74 689 5.75 TIME TIME 10.54 TIME TIME 0.02 455.15 3.00 0.02 3.05 362148.34
RAND 2 1500 70-30 5-4 51.59 746 1.25 TIME TIME 4.57 TIME TIME 0.00 148.19 0.00 0.00 8.69 386302.21
RAND 2 1500 70-30 10-2 TIME TIME 6.09 TIME TIME 7.39 TIME TIME 0.01 366.35 3.00 0.01 5.89 374898.37
RAND 2 1500 70-30 70-30 8.41 374 3.02 TIME TIME 3.11 46.80 0 0.00 25.40 0.00 0.00 10.05 392225.23
RAND 3 1500 100-70-30 4-2-1 TIME TIME - TIME TIME - TIME TIME - MEM MEM MEM - -
RAND 3 1500 100-70-30 10-5-2 TIME TIME - TIME TIME - TIME TIME - MEM MEM MEM - -
RAND 3 1500 100-70-30 35-9-6 TIME TIME - TIME TIME - TIME TIME - MEM MEM MEM - -
RAND 3 1500 100-70-30 100-70-30 TIME TIME 2.71 TIME TIME 2.72 414.06 0 0.00 MEM MEM MEM 10.87 595451.10
RAND 2 1500 120-80 3-1 TIME TIME - TIME TIME - TIME TIME - MEM MEM MEM - -
RAND 2 1500 120-80 6-6 10.00 87 0.93 TIME TIME 4.31 TIME TIME 0.00 MEM MEM MEM 11.94 393452.37
RAND 2 1500 120-80 7-2 TIME TIME - TIME TIME - TIME TIME - MEM MEM MEM - -
RAND 2 1500 120-80 120-80 TIME TIME 3.54 TIME TIME 3.59 335.14 0 0.00 181.97 0.00 0.00 12.60 396423.32
RAND 2 2000 120-80 4-1 TIME TIME - TIME TIME - TIME TIME - MEM MEM MEM - -
RAND 2 2000 120-80 7-2 TIME TIME - TIME TIME - TIME TIME - MEM MEM MEM - -
RAND 2 2000 120-80 10-10 27.19 319 1.08 TIME TIME 3.25 TIME TIME 0.00 MEM MEM MEM 8.60 530624.08
RAND 2 2000 120-80 120-80 TIME TIME 2.96 TIME TIME 2.98 370.47 0 0.00 437.49 0.00 0.00 8.85 532073.27
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Chapter 5

An exact algorithm for multi-level

uncapacitated facility location

The content of this chapter was submitted for publication under the title “An Exact

Algorithm for Multi-level Uncapacitated Facility Location”, Transportation Science,

January 2017, [137].

Abstract

We study a general class of multi-level uncapacitated p-location problems in which

the selection of links between levels of facilities is part of the decision process. An

exact algorithm based on a Benders reformulation is proposed to solve large-scale

instances of the general problem and some well-known particular cases. We exploit

the network flow structure of the reformulation to efficiently generate Pareto-optimal

cuts. Extensive computational experiments are performed to assess the performance

of several different variants of the Benders algorithm. Results obtained on benchmark

instances with up to 3,000 customers, 250 potential facilities and four levels confirm

its efficiency.
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5.1 Introduction

Multi-level facility location problems (MLFLPs) lie at the heart of network design

planning in transportation and telecommunications systems. Given a set of cus-

tomers that have a service requirement and a set of potential facilities partitioned

into k levels, MLFLPs consist of selecting a set facilities to open at each level so

that every customer is assigned to a sequence of opened facilities, exactly one from

each level, while optimizing an objective function. MLFLPs are a special case of

the important class of Hierarchical facility location problems (HFLPs) where different

hierarchies of facilities and their interactions are considered. Applications of HFLPs

arise naturally in supply chain management [123] where the interactions between

warehouses, distribution centers and retail stores play a major role, and in health

care systems [143] which usually require serving users from different levels of clin-

ics and hospitals. Other examples arise in hierarchical telecommunication networks

[34, 77], freight transportation [68, 70], and solid waste management systems [22].

The two surveys of Şahin and Süral [47] and Zanjirani Farahani et al. [168] provide

classifications as well as overviews of models, applications, and algorithms for HFLPs.

A fundamental problem of MLFLPs is the so-called warehouse and plant location

problem introduced by Kaufman et al. [90], also denoted as the two-level uncapaci-

tated facility location problem (TUFLP). A natural extension to more than two levels

of facilities corresponds to the multi-level uncapacitated facility location problem (MU-

FLP) studied by Aardal et al. [4]. Ortiz-Astorquiza et al. [136] recently introduced a

class of MLFLPs in which cardinality constraints are introduced at each level. This

problem is denoted as the multi-level uncapacitated p-location problem (MUpLP).

In this paper we present an extension of the MUpLP in which the selection of

links (or edges) between levels of facilities, with their associated set-up costs, is part

of the decision process. The problem is defined as follows. Let I = {1, · · · ,m} be the
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set of customers, and V1, · · · , Vk be the sets of sites among which facilities of levels

1 to k can be selected (or opened), with V = ∪kr=1Vr. Also, consider cij1···jk to be

the profit associated with the allocation of customer i to the sequence of facilities

j1, · · · , jk, where jr ∈ Vr. Now, let p = (p1, · · · , pk) be a vector of positive integers,

fjr be the non-negative fixed cost associated with opening facility jr at level r, and

drab be the cost of opening the edge between facilities a ∈ Vr and b ∈ Vr+1. The multi-

level uncapacitated p-location problem with edge set-up costs (MUpLP-E) consists of

selecting sets of facilities and edges to open, such that no more than pr facilities are

opened at level r and of assigning each customer to a set of open facilities, exactly one

at each level, while maximizing the total profit, minus the total setup cost. An edge

can be opened if both of the corresponding facilities are open. When a customer is

assigned to a set of opened facilities all the edges in the corresponding sequence must

be activated. We assume throughout the paper that the profits c are additive, that is,

cij1···jk = cij1 + · · ·+ cjk−1jk . Finally, we work with the maximization version of these

problems. Similar to the case of the MUFLP, the maximization and minimization

versions of the MUpLP-E are equivalent from an optimization point of view [170].

MUpLPs-E belong to a broader class of optimization problems referred to as gen-

eral network design problems (GNDPs) where both the facilty location and network

design decisions are predominant and non-trivial [39]. Examples of GNDPs are facil-

ity location-network design problems [42, 121], location-vehicle routing problems [12],

hub location problems [32, 38], and hub arc location problems [33, 40], among others.

However, to the best of our knowledge, only a few papers have focused on MLFLPs

that incorporate non-trivial network design decisions. For example, Barros and Labbé

[21] consider the TUFLP with set-up costs on the edges and present mixed integer lin-

ear programing (MILP) formulations and a branch-and-bound (BB) algorithm based

on Lagrangean relaxations to solve it. Gendron et al. [69] study a variant of the

TUFLP with set-up costs on the edges, denoted as TUFLP-S, in which single assign-
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ment constraints are considered. These constraints force each first-level facility to

be connected to at most one second-level facility. The authors present a multilayer

variable neighborhood search metaheuristic to solve the problem. Gendron et al. [71]

present six different MILP formulations for the TUFLP-S and computationally com-

pare them using several sets of benchmark instances. Gendron et al. [70] describe an

exact algorithm for the same TUFLP-S in which a Lagrangean relaxation is used as a

bounding procedure in an enumeration tree. For other MLFLPs that do not include

non-trivial network design decisions we refer to [136] and references therein.

The main contribution of this article is twofold. First, we introduce the MUpLP-

E, a general class of MLFLPs in which the selection of links between levels of facilities

is part of the decision process. Second, we present an exact branch-and-cut algorithm

based on a Benders reformulation to solve large-scale instances of the MUpLP-E. This

reformulation is obtained by projecting out a large set of binary variables from an

extension of the arc-based formulation introduced in [3] for the TUFLP. Exact sepa-

ration procedures are developed to efficiently generate feasibility and optimality cuts

at fractional and integer points. We show that the well-known cut-set inequalities

are sufficient to guarantee feasibility of the primal subproblem and thus, these can

replace the standard feasibility cuts. In addition, we exploit the network flow struc-

ture of the reformulation to efficiently generate Pareto-optimal cuts using different

strategies. In order to assess the performance of our algorithm, we have performed

extensive computational experiments on several sets of benchmark instances for the

general MUpLP-E and some special cases previously studied in the literature.

Our motivation for applying Benders decomposition [24] lies mainly in the problem

structure which will be analyzed in the paper. The increased attention that this

method has attracted in the last few years is noteworthy. It has been applied to

several supply chain problems, which embed sophisticated versions of MLFLP [for

example, 44, 124, 142]. Reference [72] is one of the earliest papers ever published in
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the field of supply chain management, and it also happens to be one of the first in

which the applicability of Benders decomposition is demonstrated. Moreover, it was

only very recently that Fischetti et al. [61, 62] computationally showed the importance

of a proper Benders implementation for single-level FLPs.

The remainder of the paper is organized as follows. Section 5.2 provides a formal

definition of the MUpLP-E and presents an MILP formulation. In Section 5.3 we de-

scribe the Benders reformulation, the branch-and-cut algorithm, and the separation

of the Benders cuts. In Section 5.4 we present the enhancements of the algorithm and

discuss the main characteristics of the problem that can be exploited in the imple-

mentation. Section 5.5 presents the results of extensive computational experiments

performed to compare different versions of the Benders algorithm to each other, to

that of the MILP formulation and to those of previously proposed methods for special

cases of the problem. Conclusions follow in Section 5.6.

5.2 Problem Definition

Let G = (V ∪I, E) be a graph with vertex set V ∪I partitioned into k+1 levels, where

I represents the set of customers, V is partitioned into {V1, · · · , Vk}, corresponding

to the sets of potential facilities at levels 1 to k, and E is the set of edges. Also, for

r = 1, · · · , k − 1, let Er = {{a, b} ∈ E : a ∈ Vr and b ∈ Vr+1}, and let E0 = {{i, b} ∈

E : i ∈ I and b ∈ V1}. Let cij1···jk be the profit associated with the allocation of

customer i to the sequence of facilities j1, · · · , jk and p = (p1, p2, · · · , pk) be a vector

of positive integers. Now, for r = 1, · · · , k, and r = 1, · · · , k−1, let fjr and drab be the

non-negative fixed cost associated with the opening of facility jr at level r and those

of opening the edge {a, b} ∈ Er, respectively. The MUpLP-E consists of selecting sets

of facilities and edges to open, so that no more than pr facilities are opened at level

r and of assigning each customer to a set of open facilities, exactly one at each level,
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while maximizing the total profit minus the total setup cost. An edge {a, b} ∈ Er can

be opened if both of the corresponding facilities are open. Also, when a customer is

assigned to a set of open facilities all the edges in the corresponding sequence must

be activated.

We assume that the profit (or cost) c is additive with respect to the profits on

the edges. Typically, this assumption is made for the minimization version of the

problem but as explained in [136], we can properly transform the problem to move

from one version to the other from an optimization point of view. Thus, the following

assumption holds throughout the paper unless otherwise stated.

Assumption 5.1. We assume that c is additive, that is, for all i ∈ I and jr ∈ Vr for

r = 1, · · · , k we have cij1···jk = cij1 + cj1j2 + · · ·+ cjk−1jk

When all the values of drab are set to zero, in conjunction with Assumption 5.1,

there exists an optimal solution satisfying the single-assignment property from lower

to upper level facilities. We now extend the arc-based formulation (ABF) [3, 66] to

the MUpLP-E as follows. We define binary location variables yjr equal to 1 if and

only if a facility is located at node jr, and binary link activation variables wrab equal

to 1 if and only if edge {a, b} ∈ Er is selected. We also define binary assignment

variables xia equal to 1 if and only if customer i ∈ I is assigned to first-level facility

a ∈ V1. Finally, for r = 1, · · · , k − 1, we introduce binary arc variables zriab equal to

one if customer i ∈ I uses the edge {a, b} ∈ Er and 0 otherwise. The MUpLP-E can

be stated as follows:

101



max
∑
i∈I

∑
j1∈V1

cij1xij1 +
∑
i∈I

k−1∑
r=1

∑
{a,b}∈Er

cabz
r
iab−

k∑
r=1

∑
jr∈Vr

fjryjr −
k−1∑
r=1

∑
{a,b}∈Er

drabw
r
ab

s. t.
∑

a∈V1:{i,a}∈E0

xia = 1 i ∈ I (5.1)

∑
b∈V2

z1iab = xia {i, a} ∈ E0 (5.2)

∑
b∈Vr+1:{a,b}∈Er

zriab =
∑

b′∈Vr−1:{b′,a}∈Er−1

zr−1ib′a i ∈ I, a ∈ Vr, r = 2, · · · , k − 1

(5.3)

xia ≤ ya {i, a} ∈ E0 (5.4)∑
a∈Vr−1:{a,b}∈Er−1

zr−1iab ≤ yb i ∈ I, b ∈ Vr, r = 2, · · · , k (5.5)

zriab ≤ wrab i ∈ I, {a, b} ∈ Er, r = 1, · · · , k − 1

(5.6)∑
jr∈Vr

yjr ≤ pr r = 1, · · · , k (5.7)

xia ≥ 0 {i, a} ∈ E1 (5.8)

zriab ≥ 0 i ∈ I, {a, b} ∈ Er, r = 1, · · · k − 1

(5.9)

yjr ∈ {0, 1} jr ∈ Vr, r = 1, · · · , k. (5.10)

wrab ∈ {0, 1} {a, b} ∈ Er, r = 1, · · · , k − 1.

(5.11)

Constraints (5.1) ensure that every customer is assigned to a first-level facility.

The equalities (5.2) and (5.3) ensure the assignment of sequences of facilities for each

customer. Constraints (5.4)–(5.6) are linking constraints between variables and (5.7)

are the cardinality constraints. Constraints (5.8)–(5.11) are the standard nonegativity
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and integrality conditions on the decision variables. In this case, the variables x

and z can be considered continuous without affecting the integer optimal solution.

Moreover, in order to simplify the notation, whenever there is no ambiguity we will

write
∑

b∈Vr+1
instead of

∑
b∈Vr+1:{a,b}∈Er

.

Some special cases of interest arise from the MUpLP-E. Clearly, when all fixed

costs for the edges drab are zero, we obtain the MUpLP, which subsumes the uncapac-

itated p-location problem (UpLP) [45] when k = 1, which in turn, contains as special

cases both the uncapacitated facility location problem (UFLP) [100] and the p-median

problem (p-MP) [83]. Thus, multi-level extensions of the UFLP and the p-MP are

also special cases of the MUpLP. Namely, the well-known multi-level uncapacitated

facility location problem (MUFLP) [90] is obtained when all cardinality constraints

are redundant, i.e. when pr = |Vr| for all r, and the multi-level p-median problem

(MpMP) is obtained when all setup costs are set to zero, that is, fjr = 0. Other

related formulation for the special case when k = 2, pr = |Vr| for all r, and d ≡ 0 was

the one presented by [21] and later used by [70], denoted as TUFLP-C. Note that

the following transformation of the ABF variables xia and ziab into the TUFLP-C

variables xbai for i ∈ I, a ∈ V1 and b ∈ V2 (considering that the corresponding edges

exists) is sufficient to prove the equivalence in the LP bounds of both formulations.

That is, xia =
∑

b∈V2 xbai and ziab = xbai.

5.3 Benders Decomposition for MUpLP-E

Benders decomposition is a well-known partitioning method applicable to mixed in-

teger programs [24]. It decomposes the original MILP problem into two simpler ones:

an integer master problem and a linear subproblem. The main idea of the method is

to reformulate the problem by projecting out a set of complicating variables to obtain

a formulation with fewer variables but typically with a huge number of constraints.
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These new constraints are usually referred to as Benders cuts and involve only the

variables kept in the reduced problem, plus one additional continuous variable. Given

that only a small subset of these constraints are usually active in an optimal solution,

a natural relaxation is obtained by dropping most of them and generate them on the

fly as needed.

The standard Benders decomposition algorithm is an iterative procedure in which

at every iteration a relaxed integer master problem, containing only a small subset of

Benders cuts, is optimally solved to obtain a valid dual bound. The linear subproblem

is then solved to obtain a primal bound and to determine whether additional Benders

cuts need to be incorporated to the master problem. With the addition of Benders

cuts at each iteration, new tentative solutions are generated by the master problem,

and new cuts are produced until the convergence of the bounds is attained, if an

optimal solution exists.

Although the standard Benders decomposition has been successfully implemented

to solve a variety of difficult optimization problems [see for instance, 41, 43, 144], for

other problems the method is clearly outperformed by other decomposition strategies,

such as Lagrangean relaxation and column generation. One of its major drawbacks

is the need to solve an integer master problem at each iteration. To overcome this

difficulty, modern implementations of Benders decomposition have considered the so-

lution of the Benders reformulation with a standard branch-and-cut framework, in

which Benders cuts are separated not only at integer solutions but also at fractional

solutions at the nodes of a single enumeration tree [see, 8, 58, 61, 120, and refer-

ences therein]. This results in the solution of a single integer program (the Benders

reformulation) in order to obtain an optimal solution to the original problem. This

is the approach we follow to develop an exact algorithm for MUpLP-E based on the

following Benders reformulation of the ABF previously presented.
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5.3.1 Benders Reformulation

Let Y denote the set of vectors (y, w) satisfying constraints (5.7), (5.10), and (5.11).

For any fixed (ȳ, w̄) ∈ Y , the primal subproblem (PS) in the space of the x and z

variables is

maximize
∑
i∈I

∑
j1∈V1

cij1xij1 +
∑
i∈I

k−1∑
r=1

∑
{a,b}∈Er

cabz
r
iab

subject to
∑
a∈V1

xia = 1 i ∈ I (5.12)

∑
b∈V2

z1iab = xia {i, a} ∈ E0 (5.13)

∑
b∈Vr+1

zriab =
∑

b′∈Vr−1

zr−1ib′a i ∈ I, a ∈ Vr, r = 2, · · · , k − 1 (5.14)

xia ≤ ȳa {i, a} ∈ E0 (5.15)

zriab ≤ w̄rab i ∈ I, {a, b} ∈ Er, r = 1, · · · , k − 1 (5.16)∑
a∈Vr−1

zr−1iab ≤ ȳb i ∈ I, b ∈ Vr, r = 2, · · · , k (5.17)

xia ≥ 0 {i, a} ∈ E0 (5.18)

zriab ≥ 0 i ∈ I, {a, b} ∈ Er, r = 1, · · · k − 1. (5.19)

Note that PS can be decomposed into |I| problems, one for each i ∈ I. Thus,

we can construct the corresponding dual subproblem (DSi) for each i ∈ I. Moreover,

for every PSi if we redefine the variables xia as z0iia, then constraints (5.13) can be

seen as a special case of (5.14). Let λ, βar, α
0
ia, α

r
ab, and θbr be the dual variables

associated with constraints, (5.12), (5.14), (5.15), (5.17), and (5.16), respectively. For

every i ∈ I, the DSi can be stated as follows:
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minimize λ+
∑
a∈V1

ȳaα
0
ia +

k∑
r=2

∑
b∈Vr

ȳbθbr +
k−1∑
r=1

∑
{a,b}∈Er

w̄rabα
r
ab

subject to λ− βa1 + α0
ia ≥ cia {i, a} ∈ E0 (5.20)

βar − βbr+1 + αrab + θbr+1 ≥ cab {a, b} ∈ Er r = 1, · · · , k − 2 (5.21)

βak−1 + αk−1ab + θbk ≥ cab {a, b} ∈ Ek−1 (5.22)

αrab ≥ 0 r = 0, · · · , k − 1, {a, b} ∈ Er (5.23)

θbr ≥ 0 r = 2, · · · , k, b ∈ Vr. (5.24)

There exists at least one solution in the set of feasible solutions associated with

DSi. This is true because for an infeasible PSi, the corresponding DSi is either

unbounded or infeasible. If the DSi is infeasible, then the PSi in the homogeneous

form is unbounded, which is a contradiction since in this case the homogeneous form

of the PSi yields a finite value. Thus, the DSi corresponding to an infeasible PSi

is unbounded. This is actually a special case of a classical result of network flow

problems [78]. We will discuss the connection with network flow problems in the

following sections. Therefore, we use the representation of each polyhedron associated

with DSi in terms of its extreme points and extreme rays to determine whether PS

is infeasible or feasible and bounded, we denote them EPi and EDi, respectively.

If, for a given (y, w) ∈ Y , there exists at least one i ∈ I and one extreme ray

(λ, α, θ) ∈ ERi for which

0 > λi +
∑
a∈V1

yaα
0
ia +

k∑
r=2

∑
b∈Vr

ybθbr +
k−1∑
r=1

∑
{a,b}∈Er

wrabα
r
ab,
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then DSi is unbounded and PSi is infeasible. However, if

0 ≤ λi +
∑
a∈V1

yaα
0
ia +

k∑
r=2

∑
b∈Vr

ybθbr +
k−1∑
r=1

∑
{a,b}∈Er

wrabα
r
ab,

for each i ∈ I and each extreme ray (λ, α, θ) ∈ ERi, then all DSi are bounded and

the PS is feasible. The optimal value of each DSi is then equal to

min
(λ,α,θ)∈EPi

λi +
∑
a∈V1

yaα
0
ia +

k∑
r=2

∑
b∈Vr

ybθbr +
k−1∑
r=1

∑
{a,b}∈Er

wrabα
r
ab.

Introducing extra continuous variables ηi for the overall profit of each customer

i ∈ I, the Benders reformulation (BR) associated with ABF is

maximize
∑
i∈I

ηi −
k∑
r=1

∑
jr∈Vr

fjryjr −
k−1∑
r=1

∑
{a,b}∈Er

drabw
r
ab

subject to

ηi ≤ λi+
∑
a∈V1

yaα
0
ia +

k∑
r=2

∑
b∈Vr

ybθbr +
k−1∑
r=1

∑
{a,b}∈Er

wrabα
r
ab i ∈ I, (λ, α, θ) ∈ EPi

(5.25)

0 ≤ λi+
∑
a∈V1

yaα
0
ia +

k∑
r=2

∑
b∈Vr

ybθbr +
k−1∑
r=1

∑
{a,b}∈Er

wrabα
r
ab i ∈ I, (λ, α, θ) ∈ ERi

(5.26)

(y, w) ∈ Y.

We note that BR contains only the binary design variables (y, w) and |I| addi-

tional continuous variables. Constraints (5.25) and (5.26) are the so-called Benders

optimality and feasibility cuts, respectively.
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5.4 An Exact Algorithm for MUpLP-E

In this section we present an exact branch-and-cut (B&C) algorithm based on BR

to solve MUpLP-E. We use several strategies to enhance the algorithm and speed

up its convergence. In particular, (i) we exploit the structure of the subproblem

to identify optimality cuts by efficiently solving several network flow problems, (ii)

we generate Pareto-optimal cuts using a variable core-point selection strategy, and

(iii) we introduce valid inequalities that help reduce the number of cuts added and

improve the overall performance of the algorithm.

5.4.1 Network Flow Structure

One important characteristic of well-known MILP formulations of single-level FLPs is

that the subproblems of a typical Benders decomposition algorithm possess a network

flow structure [111, 112]. This property conveniently extends to ABF and thus, can

also be exploited to efficiently solve the subproblems.

First note that for every (undirected) edge {a, b} ∈ Er, with a ∈ Vr and b ∈ Vr+1,

we can work instead with its associated (directed) arc (a, b), as if there was a flow

to be sent from each customer to the k-th level of facilities, without affecting the

optimal solution. In what follows, we refer to arcs (a, b) ∈ Vr × Vr+1 and edges

{a, b} ∈ Er indistinctly. For every i ∈ I, the corresponding constraints of PSi are

thus similar to those of a minimum cost flow problem. Equations (5.12)–(5.14) are

the well-known flow conservation constraints, while (5.15) and (5.16) enforce the arc

capacity constraints. In this case, inequalities (5.17) impose the capacity limits of

the vertices in the network. Finally, we add a dummy vertex D to the network

such that for every vertex a ∈ Vk the arcs (a,D) exist and they have arc capacities

equal to one. Also, we impose profits c and costs d equal to zero for these edges

and a flow demand of −1 for vertex D. Therefore, we can consider each PSi as a
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minimum cost flow problem with negative costs cab on the arcs (a, b) in which we

require a unit of flow to be sent from customer i and received by the dummy vertex.

That is, we include the extra redundant constraint
∑

a∈Vk z
k
iaD = −1 in PSi with the

corresponding variables. Moreover, it is well known that vertex capacity constraints

can be viewed as arc capacity constraints after a simple transformation on the graph

[see Chapter 2 of reference 11]. Thus, we replace every vertex a ∈ V that has a

capacity, with two copies a′ and a′′, and we link them by an arc (a′, a′′) which has the

corresponding vertex capacity and a profit ca′a′′ equal to zero. Vertex a′ receives all

the inflow associated with a, and a′′ sends all the vertex outflow.

In the transformed graph GT = (V T ∪ I, ET ) we have |V T | = 2|V | − |V1|+ 1 and

|ET | = |E|+|V \V1|+|Vk|. In what follows, we refer to the PSi with these modifications

as PSi-N. As before, for each i ∈ I we can obtain the dual of PSi-N. In this case,

we have one dual variable for every vertex pair in the transformed graph which we

denote as β1
ar and β2

ar for each a ∈ Vr, and r = 2, · · · , k, and β1
a1 for a ∈ V1, since

the vertices from the first level are not duplicated. The dual variables corresponding

to the customer and the dummy vertex are denoted by λ and λD, respectively. We

also have one dual variable for every arc, that is, αrab for those arcs in the original

network, and θbr for those between the duplicated vertices. Then, for every i ∈ I the

corresponding DSi-N is
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minimize λ− λD +
∑
a∈V1

ȳa1α
0
ia +

k∑
r=2

∑
b∈Vr

ȳbθbr +
k−1∑
r=1

∑
{a,b}∈Er

w̄rabα
r
ab +

∑
a∈Vk

ȳaα
k
aD

subject to λ− β1
a1 + α0

ia ≥ cia {i, a} ∈ E0 (5.27)

β2
ar − β1

br+1 + αrab ≥ cab {a, b} ∈ Er, r = 1, · · · , k − 1 (5.28)

β1
br − β2

br + θbr ≥ 0 b ∈ Vr, r = 2, · · · , k (5.29)

β2
ak − λD + αkaD ≥ 0 a ∈ Vk (5.30)

αrab ≥ 0 {a, b} ∈ Er, r = 0, · · · , k − 1 (5.31)

θbr ≥ 0 b ∈ Vr, r = 2, · · · , k. (5.32)

As before, feasibility and optimality cuts can be generated using the set of extreme

points and extreme directions of the set of feasible solutions of DSi-N. However, as

with single-level FLPs, the subproblems are solved in the primal space using a spe-

cialized algorithm for network flow problems such as the network simplex algorithm.

These are already well implemented in general purpose solvers which also provide

the values of the dual variables associated with the vertices of the network GT (i.e.

λ, λD, β). In order to obtain the rest of the dual variable values α and θ, for each

edge {a, b} ∈ ET , we consider the formula max{0, cab − βb + βa} [see Chapter 9, 11],

where βb and βa are the dual variables associated with the vertices a and b in the

transformed network.

5.4.2 Pareto-optimal Cuts

It is well known that when Benders decomposition is applied to network design and

facility location problems, the primal subproblem is typically degenerate. That is,

there are several possibilities for the selection of a Benders cut given a solution to

the master problem. Magnanti and Wong [109] proposed a procedure for obtaining

110



Pareto-optimal cuts, that is, cuts that are not dominated by any other cut. In this

section we refer to the primal and dual subproblems in the network flow problem form

(PS-N and DS-N), although the same procedure can be also applied to the original

PS and DS.

Let (ŷ, ŵ) be a core point of the set Y = {(y, w) : (5.7), (5.10), and (5.11)}, that

is, a point in the relative interior of its convex hull. For a given (ȳ, w̄), let Ui denote

the optimal value of DSi-N. To identify a Pareto-optimal cut that separates the point

(ȳ, w̄) using the procedure described by Magnanti and Wong [109], we must solve the

following Pareto-optimal subproblem (POi-N):

minimize λ− λD +
∑
a∈V1

ŷaα
0
ia +

k∑
r=2

∑
b∈Vr

ŷbθbr +
k−1∑
r=1

∑
{a,b}∈Er

ŵrabα
r
ab +

∑
a∈Vk

ŷaα
k
aD

subject to (5.27)− (5.32)

λ− λD +
∑
a∈V1

ȳa1α
0
ia +

k∑
r=2

∑
b∈Vr

ȳbθbr +
k−1∑
r=1

∑
{a,b}∈Er

w̄rabα
r
ab +

∑
a∈Vk

ȳaα
k
aD = Ui.

(5.33)

We note that constraints (5.33) guarantee that the optimal solution to POi-N

belongs to the set of optimal solutions to the original DS-N. That is, the separation

problem of the Benders optimality cuts is optimally solved to identify either a Pareto-

optimal inequality that is most violated by the point (ȳ, w̄) or conclude that none

exist.

The dual of POi-N, denoted as DPOi-N, can be obtained by using the correspond-

ing dual variable x0 of the additional constraint (5.33) as follows:
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maximize
∑
j1∈V1

cij1xij1 +
k−1∑
r=1

∑
{a,b}∈Er

cab z
r
iab + Uix0

subject to
∑
a∈V1

xia = 1 + x0 (5.34)

∑
b∈V2

z1iab = xia {i, a} ∈ E0 (5.35)

∑
b∈Vr+1

zriab =
∑

b′∈Vr−1

zr−1ib′a a ∈ Vr, r = 2, · · · , k − 1 (5.36)

∑
a∈Vk

zkiaD = −(1 + x0) (5.37)

xia ≤ x0ȳa + ŷa {i, a} ∈ E0 (5.38)∑
a∈Vr−1

zr−1iab ≤ x0ȳb + ŷb b ∈ Vr, r = 2, · · · , k (5.39)

zriab ≤ x0w̄
r
ab + ŵrab {a, b} ∈ Er, r = 1, · · · , k − 1 (5.40)

xia ≥ 0 {i, a} ∈ E0 (5.41)

zriab ≥ 0 {a, b} ∈ Er, r = 1, · · · k − 1 (5.42)

zkiaD ≥ 0 a ∈ Vk (5.43)

x0 ≥ 0. (5.44)

Even though x0 is unrestricted in sign, we note that the non-negativity conditions

(5.44) can be added given that the equality sign of (5.33) can be modified to a less than

or equal sign without affecting the optimal solution. This modification is particularly

useful to mitigate numerical stability issues that arise when solving POi-N.

Given that x0 affects the right-hand side of flow conservation and capacity con-

straints, this problem can be seen as a parametric minimum cost flow problem. How-

ever, Magnanti et al. [112] show how this type of problems can be solved by only one

minimum cost flow problem for each customer when setting x0 ≥
∑k−1

r=1

∑
{a,b}∈Er

ŵrab+
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∑k
r=1

∑
jr∈Vr ŷjr . Therefore, the only differences with respect to the original PSi-N

are the amount of flow to be sent and received (1 + x0), as well as the arc and node

capacities, which now depend on the core point and on x0. An additional benefit of a

priori fixing the value of x0 is that there is no need to actually solve PSi-N or DSi-N

to obtain Ui.

A slightly different procedure for generating Pareto-optimal cuts is given in [139].

It relies on two interesting observations about the original procedure proposed in

[109]. First, Papadakos [139] shows that there is no need to add the extra constraint

(5.33) to the Pareto-optimal subproblem to generate a Pareto-optimal cut and second,

the requirement on (ŷ, ŵ) of being a core point may also be relaxed. With respect to

the first point, the author argues that when the PS (and the DPO) is chosen instead

of the DS (and the PO) to obtain the corresponding coefficients of the Benders cuts,

typically because they can be handled more efficiently, and a ε-optimal solution to the

PS is obtained, the DPO then becomes numerically unbounded due to the additional

constraint (5.33). As for the second point, the author points out the practical difficulty

of finding valid core points for some problems and suggests the use of a different class

of points, referred to as Magnanti-Wong (MW) points, in order to obtain Pareto-

optimal cuts. For special cases, Papadakos [139] provide sufficient conditions for a

point to be an MW point. Moreover, he shows that any strict convex combination

of an MW point and a point in Y is also an MW point. That is, if (ŷ, ŵ) is an MW

point and (ȳ, w̄) ∈ Y , for any φ ∈ R such that 0 < φ < 1,

(ŷ, ŵ)
′
= φ(ŷ, ŵ) + (1− φ)(ȳ, w̄), (5.45)

is also an MW point. This expression can be used to generate a sequence of MW

points to construct different Pareto-optimal cuts by simply using as (ȳ, w̄) the current

solution of the restricted master problem and as (ŷ, ŵ) the MW point considered in
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the previous iteration of the Benders algorithm. The modified procedure presented in

[139] relies on the solution of a simplified version of the Pareto-optimal subproblem

POi-N that does not include constraint (5.33) and the use of an MW point updated

using (5.45) as explained above.

On one hand, this procedure has the potential benefit of avoiding the solution

of the original DP to obtain the value Ui used in constraint (5.33) before solving

the Pareto-optimal subproblem. On the other hand, given that constraint (5.33) is

relaxed from the model, it does not guarantee that the generated Pareto-optimal cut

will be even violated by the current solution to the master problem. The convergence

is thus guaranteed by limiting the number of possible updates to the MW point in

which at the last iteration, a classical Benders cut is generated.

In Section 5.5, we compare the impact of using Magnanti-Wong and Papadakos

procedures to generate Pareto-optimal cuts for MUpLP-E. In both procedures, we

use a dynamic core point (or MW point) selection strategy based on (5.45). We

also analyze the benefit of using such a strategy versus a static one when using the

Magnanti-Wong procedure.

5.4.3 Valid Inequalities

We recall that the set Y consist of the cardinality constraints on the number of

facilities at each level as well as of the integrality conditions on the y, w variables.

However, note that there are no explicit linking constraints that ensure that open links

are associated with open facilities and vise versa. When only few Benders cuts have

been added to the master problem, there may not be enough information yet to cause

the selection of a set of facilities and links such that these define a connected network

for each customer. Therefore, the PS will tend to be infeasible and several feasibility

cuts will have to be added before generating any optimality cut. To overcome this

difficulty, we introduce the following structural constraints that provide additional
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information to the BR:

∑
b∈Vr+1:{a,b}∈Er

wrab ≥ ya a ∈ Vr, r = 1, · · · , k − 1 (5.46)

wrab ≤ ya {a, b} ∈ Er, r = 1, · · · , k − 1 (5.47)

wrab ≤ yb {a, b} ∈ Er, r = 1, · · · , k − 1. (5.48)

Constraints (5.46) ensure that if a facility is opened at node a in level r, then

there must be at least one edge incident to a. Constraints (5.47)–(5.48) allow the

activation of only those edges that are incident to open facilities. These constraints,

although redundant for the BR, have shown to be useful in reducing the number of

feasibility cuts as well as the overall CPU time consumed by the test instances. Thus,

in our B&C algorithm we consider a slightly strengthened BF with Y = {(y, w) :

(5.7), (5.10), (5.11) and (5.46)− (5.48) are satisfied}.

Given that in any feasible solution of the ABF, for every customer there is at least

one path of opened edges with its corresponding facilities going from customer i ∈ I

to an opened facility to level k, then the following constraints are valid for ABF.

For each i ∈ I and every subset S ⊆ V ∪ {i} with i ∈ S,

∑
{a,b}∈δ(S)

wrab ≥ 1,

where δ(S) = {{a, b} ∈ E : a ∈ S and b /∈ S}. These constraints are the so-called

cut-set inequalities and provide alternative feasibility conditions for the BR. That

is, when PSi is infeasible (i.e. a feasibility Benders cut needs to be added) we can

find the cut-set of minimum value and include it to the BR in order to cut off that

solution. Moreover, note that these inequalities can be extended for the case in which

we solve each PSi as a network flow problem (PSi-N). Simply, using the transformed
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graph GT , we can think of the variables ya as wra′a′′ where a′ and a′′ are the duplicated

vertices for each a ∈ V \V1. Thus, we now have to select a set S from V T ∪{i} instead

of V ∪ {i}, and then for every i ∈ I and δ(S) ⊆ ET , the cut-set inequalities can be

restated as

∑
{a,b}∈δ(S)

(wrab + ya) ≥ 1, (5.49)

where δ(S) = {{a, b} ∈ ET : a ∈ S and b /∈ S}. These inequalities guarantee that

there is at least one path from each customer to the dummy vertex D, where a unit

of flow can be sent. Therefore, constraints (5.49) define sufficient conditions for the

feasibility of PS. Interestingly, every cut-set inequality can actually be mapped to an

extreme ray of the DS-N (or DS) as shown in following proposition.

Proposition 5.1. Every cut-set inequality of the form (5.49) corresponds to a Ben-

ders feasibility cut for DS-N.

Proof. For each i ∈ I and S ⊆ V T ∪ {i}, where S 6= ∅ and i ∈ S, consider the

following values for the dual variables. We set to one the variables associated with

a vertex in the graph GT , that is, λ, λD and β, only if the corresponding vertex is

not in the set S, and to zero otherwise. In this case, we always have λ = 0. For the

dual variables associated with edges {a, b} ∈ ET (i.e. α and θ), we set them to one

only if the edge {a, b} ∈ δ(S), or equivalently if a ∈ S and b /∈ S. Recall that the

edges defined between duplicated vertices {a′, a′′} are associated with the variables θ.

Then, it is not difficult to verify that for every subset S, using the above definition

of the dual variables, constraints (5.27)–(5.32) are satisfied in the homogeneous form.

This means that such a definition of the dual variables corresponds to an extreme ray

of the associated polyhedral set and thus defines a Benders feasibility cut for DS-N.

An important benefit of this alternative set of cut-set inequalities that guarantees
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the feasibility of PS is that they can be efficiently separated. To this end, we have

implemented the Edmonds-Karp algorithm [54] to compute the maximum flow be-

tween customer i ∈ I and the dummy vertex. If the maximum flow does not satisfy

the requirement, then we must obtain the values for a feasibility cut which can be

found with the minimum i−D cut in the network using the same algorithm. Another

important observation is that when working with k-partite complete graphs, the net-

works for each i ∈ I are identical. This means that the minimum i−D cut will be the

same for every i. Moreover, the extreme directions will be the same for each DSi-N

since the only change from one DS to another is the value of cia in the first set of

constraints. Therefore, when the graph is k-partitive complete and we need to add

feasibility cuts for a given solution, we only have to find one cut instead of |I|.

In Section 5.5 we compare the computational performance of using standard fea-

sibility cuts and cut-set inequalities. These experiments provide some insights into

another interesting non-trivial open question which is to determine whether every

feasibility cut actually corresponds to a cut-set inequality.

5.5 Computational Experiments

We have conducted an extensive computational study in order to assess the empirical

performance of the different variants of Benders decomposition described in Sections

5.3 and 5.4. All versions of the algorithm were coded in C and run on an Intel Xeon

E5 2687W V3 processor at 3.10 GHz under Linux environment. The algorithms were

implemented using the callable library of CPLEX 12.6.3 with its default settings us-

ing only one thread. As mentioned, all variants of the Benders algorithm have been

embedded within a B&C framework. For their implementation we use the lazycut-

callback and usercutcallback functions of CPLEX. That is, we considered integer and

fractional solutions to generate cuts. From now on, we refer to the above functions
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as LAZYC and USERC to simplify the notation. Also, for presentation purposes, we

only present summarized results of the experiments. The interested reader is referred

to the Online Appendix for the detailed results.

5.5.1 Benchmark Instances

We have performed our experiments on 265 instances. Ortiz-Astorquiza et al. [136]

previously presented 73 instances for the MUpLP (d = 0). For this study, we include

12 more which were generated following the same structure but with larger sets of

customers and potential facilities and we include set-up costs for the edges (i.e. d > 0)

in all 85 instances. We refer to this set of instances as CAP/RAND. We have also

tested the algorithms on two sets of 90 instances each, which were used in [70] for

the case where k = 2 and d = 0. Finally, we have tested the case in which we include

set-up costs on the edges for these instances. These sets of instances are referred to

as GAP and LGAP (Large GAP), respectively.

Some of the CAP/RAND instances were transformed from the capa, capb and

capc instances from the OR-Library [23] for the UFLP to their multi-level versions.

Out of the 85 instances, 21 correspond to the type CAP where each one has 1,000

customers and 100 potential facilities. The setup costs for opening facilities were

modified from the single level version in order to be dependent on its level and also

scaled down by a factor of 1,000. The CAP instances have variants with k = 2

and k = 3 and for each multi-level version instance, three values of p = (p1, · · · , pk)

were selected: a small one, a medium one and one with the same values of the

potential facilities configuration, that is, making the cardinality constraints redundant

(as in the MUFLP). The remaining 64 RAND instances were randomly generated

and range between 500 and 3,000 customers, between 100 and 250 potential facilities,

and between two and four levels. The cjrjr+1 values go from 25 to 125. For these

instances we considered four different values of p. Moreover, the original CAP/RAND
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instances were modified in order to have set-up costs on the edges drab. For every edge

{a, b} ∈ Er, we take [(far + fbr+1)/2]× 0.2 + µ, where µ is a pseudo-random number

between 10 and 100.

The procedure used to generate GAP instances for the two-level version from hard

instances for the UFLP [93] was initially presented by Landete and Maŕın [103] who

converted instances with 100 customers and 100 facilities into two-level 50× 50× 50

instances. The same idea was applied to the set LGAP with 150×150 to 75×75×75.

In the original sets GAP and LGAP the set-up cost for opening edges is zero. However,

it is important to mention that the underlying graphs are sparse, that is, not all the

edges are available in order to select the sequence of facilities for each customer. This

applies to the edges between first level and customers (E0). In this case we used the

same formula as for CAP/RAND instances for adding the set-up costs on the edges

of E1 for these sets of instances and we set pr = |Vr| for r = 1, 2.

5.5.2 Setting up Parameters

In this section we describe some of the features that we consider to play an important

role in the tuning of different versions of the Benders decomposition algorithm. Based

on preliminary experiments we found that the algorithm is relatively unstable in the

sense that variations of certain parameter values give rise to a different pool of cuts,

which affects the performance of the algorithm. Thus, we empirically defined tolerance

values and we assessed the impact on the changes of other parameters described in

this section.

First, as mentioned in Section 5.4, due to numerical errors, checking the feasibil-

ity of (ȳ, w̄) in PSi-N is not always sufficient since DPOi-N may yield an infeasible

solution. To overcome this problem we first tried changing the optimality tolerance of

the solver, and if the problem persists, we either reinitialized the core point or found

the corresponding values of the dual variables using the standard Benders optimality
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cut for that particular solution.

Moreover, in terms of tuning parameters we considered the following values in

order to filter some of the numerical errors and to avoid adding unnecessary cuts.

We defined the values TolMaxFlow, TolLAZYC and TolUSERC. The TolMaxFlow

value was set to 1E-6 and represents the tolerance on the maximum flow for the

Edmonds-Karp algorithm implemented in order to determine whether a solution is

primal feasible or not. The other two parameters correspond to the tolerances on the

violation of Benders optimality cuts by the current solution. In particular, we set

these values to 0.0001 and 0.1, respectively. Moreover, we noticed that in many cases

it is preferable to branch in the enumeration tree instead of keep adding USERC cuts

that are most of the time very similar to each other and do not improve the bound

efficiently. Therefore, we have included a maximum number of USERC cuts at the

root node and at every node, which we denote as MaxUSERCroot and MaxUSERC,

respectively. Similarly, we have set a maximum number of iterations per node in

the B&C tree, except for the root node, that we call MaxIterNode. Finally, we also

included a parameter denoted Depth which defines the frequency at which we solved

the separation problem in the enumeration tree and therefore the frequency of adding

Benders cuts. As its name indicates, this parameter is dependent on the depth of the

B&C tree. We considered the following values for tuning the parameters:

• MaxIterNode = {2, 5},

• {MaxUSERCroot,MaxUSERC} = {{8|I|, 2|I|}, {12|I|, 4|I|}, {80|I|, 20|I|}},

• DepthCAP/RAND = {5, 20},

• DepthGAP/LGAP = {25, 50},

• φ = {0.5, 0.7}.

120



Recall that φ is a real number between 0 and 1 in the convex combination equation

(5.45) to update the core point, and note that the values of Depth depend on the type

of instance. The reason for this is that the optimality gap for GAP/LGAP instances

when exiting the root node is typically large (around 12 to 18%), while for each of

the CAP/RAND instances it is less than 2%. Therefore, the number of nodes in

the branching tree for a GAP/LGAP instance would be much larger than for the

CAP/RAND instances.

It is well-known that considering the trade-off between solving the separation

problem and branching in the enumeration tree is of critical importance. Adding

Benders cuts too frequently could be rather counterproductive for those instances

that have a large optimality gap after the root node. It is not difficult to extend this

notion in a more general instance-independent implementation of the algorithm.

Testing all non-trivial configurations of parameters together with the many dif-

ferent variants of the Benders algorithm presented in Section 5.4 in the full set of in-

stances would require an unreasonable computational effort. Thus, in order to identify

the most promising version of the algorithm we have selected a subset of instances in

which we tested the performance of the different versions. Accordingly, we randomly

chose 16 instances out of the 174 instances (85 CAP/RAND and 89 feasible LGAP) of

main interest. The remaining 74 feasible GAP instances were solved within five sec-

onds for the ABF so we only chose one GAP instance for the preliminary tests. The

obtained results showed that on average, for most variants of the algorithm the best

configuration of parameters is MaxIterNode = 2, {MaxUSERCroot,MaxUSERC}=

{80|I|, 20|I|}, DepthCAP/RAND = 20, DepthGAP/LGAP = 50 and φ = 0.7. Additional

details for the preliminary comparison of the different configuration of parameters on

the 17 instances are presented in the Online Appendix.
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5.5.3 Analysis of Algorithmic Enhancements

We now present computational results obtained from a subset of chosen instances

to assess the impact of the proposed strategies to enhance the B&C algorithm. As

mentioned before, we randomly selected nine instances from CAP/RAND, seven from

LGAP and one from GAP. For these preliminary tests we imposed a time limit of

7,200 seconds (2 hours) and we used the parameters configuration described in Section

5.5.2. In all the tables the average values are computed on the instances solved by

the solution algorithms in comparison. We use the notation n/m to indicate that

n instances were solved out of m. We omit this information when all variants in

comparison solve all instances to optimality. Also, it is important to mention that for

the GAP/LGAP instances which are not originally defined on a k-partite complete

graph, it seems that solving the BR using only the edges that are in the network

outperforms an algorithm for which the instance is redefined to be k-partite complete.

Moreover, when defining the instances on sparse graphs, 17 out 180 (16 GAP and one

LGAP) are infeasible, which is consistent with the results of Gendron et al. [70].

We first evaluate the benefit of exploiting the network flow structure of the prob-

lem together with the two described procedures to generate Pareto-optimal cuts.

In particular, we test the performance of our algorithm when solving the subprob-

lems as network flow problem in the primal space or as a standard LP in the dual

space. Also, we compare the Magnanti-Wong and Papadakos procedures to generate

Pareto-optimal cuts. In Table 5.1 we summarize these comparisons. For all variants

compared in this experiments, we consider the generation of standard Benders fea-

sibility cuts and a dynamic core point selection strategy in which all components of

the initial approximate core point are set to one, i.e., yjr = 1 and wrab = 1. Although

strictly speaking this point is not a core point of Y , it is a very simple starting point

whenever the core point is updated using equation (5.45), which in turn approximates
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a valid core point of Y depending on the current solution ȳ, w̄.

Table 5.1: Comparison for Pareto-optimal cuts generation and subproblems solution

CAP/RAND GAP/LGAP
PO procedure Papadakos MW Papadakos MW
Solver Network LP Network LP Network LP Network LP
Inst. Solved 4/9 9/9 9/9 9/9 8/8 8/8 8/8 8/8
Av. CPU time - 283.9 7.7 133.7 97.9 58.4 22.5 39.7
Av. BB nodes - 7.2 1.6 2.9 3328.0 2439.6 2600.0 3102.3
Av Feas. cuts - 40.7 9.4 12.2 2309.1 1836.5 1528.1 2423.5
Av Opt. cuts - 26509.7 9958.9 10251.6 1419.6 805.9 182.6 355.8
Av. Subp. time - 277.7 4.0 130.1 1.0 6.1 0.2 2.8
Av. Feas. Time - 0.2 0.1 0.1 0.0 0.0 0.0 0.0

In Table 5.1, we left blank those values for which the corresponding variant did not

solve all instances tested within the time limit. Note that for both sets of instances,

in almost all criteria used in the comparison (i.e CPU time, BB nodes, etc), applying

the MW procedure when solving the subproblems as network flow problems appear to

be the best variant. However, the Papadakos procedure works better when the usual

LP solver of CPLEX is used instead. Moreover, this version provides the best average

number of BB nodes for the GAP/LGAP instances among all algorithms compared.

Table 5.2 compares three options for the core point selection strategy. In par-

ticular, we tested two dynamic variants with a variable approximate core point and

one static version with a fixed one during the entire procedure. For this comparison

we apply the MW procedure to generate optimality cuts and we use the standard

Benders feasibility cuts. For this case, we only work with the CAP/RAND subset

because the fixed core point that we found is only applicable to instances in which

the graph is k-partite complete. Thus, we consider two initial values for the (ap-

proximate) core point. One is where we set all variables to one as in the previous

experiment. The second (actual) core point that we take is defined when the graph

is k-partite complete. More precisely, we set yjr = 1/|Vr| and wrab = 0.5/|Vr| when

pr = 1, and when pr > 1 we take yjr = 1.5/|Vr| and wrab = 1/|Vr| for all the respective

values of r. It is not difficult to prove that this point is indeed a core point of Y .
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Table 5.2: Core Point comparison on nine CAP/RAND instances

Dynamic Static
all ones core point core point

Av. CPU time 7.7 10.1 14.1
Av. BB nodes 1.6 0.6 13.0
Av Feas. cuts 9.4 13.3 15.8
Av Opt. cuts 9958.9 9982.2 15227.8
Av. Subp. time 4.0 4.4 7.5
Av. Feas. Time 0.1 0.1 0.1

The results of Table 5.2 show that there is a reduction of almost 30% in the average

CPU time when passing from a static core point strategy to a dynamic one where it

is updated iteratively. Moreover, the selection of the point with all its values set to

one seems to be the best choice for this set of instances.

We next assess the advantages of including in BR the valid inequalities (5.46)–

(5.48). Table 5.3 compares two variants of the algorithm obtained by including con-

straints (5.46)–(5.48) in the Benders reformulation or not. The first variant, denoted

by DB, corresponds to a standard BR which considers Benders feasibility cuts, solving

the subproblems with the LP solver in the dual space and no procedure for generating

Pareto-optimal cuts. The second variant, denoted by MW, uses the Magnanti-Wong

procedure for generating Pareto-optimal cuts with a dynamic core point strategy, and

Benders feasibility cuts.

Table 5.3: Comparison of variants including and excluding valid inequalities

CAP/RAND GAP/LGAP
Including (5.46)–(5.48) Excluding (5.46)–(5.48) Including (5.46)–(5.48) Excluding (5.46)–(5.48)

DB MW DB MW DB MW DB MW
Inst. Solved 9/9 9/9 1/9 9/9 8/8 8/8 2/8 3/8
Av. CPU time 369.8 7.7 - 125.8 82.9 22.5 - -
Av. BB nodes 94.3 1.6 - 153.1 4099.6 2600.0 - -
Av Feas. cuts 97.7 9.4 - 2484.0 2377.4 1528.1 - -
Av Opt. cuts 49051.2 9958.9 - 62321.8 741.6 182.6 - -
Av. Subp. time 188.5 4.0 - 18.8 1.8 0.2 - -
Av. Feas. time 0.8 0.1 - 82.0 0.0 0.0 - -

Note that inequalities (5.46)–(5.48) have a determinant impact on the overall

performance of the algorithm, even for the straightforward implementation of Benders

within a B&C. Thus, in all the following comparisons we consider (5.46)–(5.48) as
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part of the BR. Similar to the results obtained in the previous experiment, from Table

5.3 we observe once more that the combination of generating Pareto-optimal cuts and

solving the subproblems as network flows makes an important difference when solving

the test instances in comparison with a standard implementation of Benders in a B&C

algorithm.

Another important variant that we have computationally tested is where cut-

set inequalities are used instead of the standard Benders feasibility cuts. Table 5.4

compares the performance of the two considered classes of cuts. For this experiments,

we use the Benders algorithm with the MW procedure and initialize all the values of

the approximate core point to one at the first iteration.

Table 5.4: Feasibility cuts comparison on subsets of instances

CAP/RAND GAP/LGAP
feasibility cuts cut-set inequalities feasibility cuts cut-set inequalities

Av. CPU time 7.7 20.3 22.5 18.2
Av. BB nodes 1.6 3.2 2600.0 2159.8
Av Feas. cuts 9.4 100.6 1528.1 366.0
Av Opt. cuts 9958.9 10966.4 182.6 223.6
Av. Subp. time 4.0 4.7 0.2 0.2
Av. Feas. time 0.1 0.0 0.0 0.0

All nine CAP/RAND and eight GAP/LGAP instances were solved to optimality

within the time limit for the two variants. It seems that the algorithm with standard

Benders feasibility cuts outperforms its counterpart with cut-set for the CAP/RAND

instances, and the opposite happens for the GAP/LGAP instances.

5.5.4 Particular Cases and Comparison with Other Solution

Procedures

In this section we present the results obtained when executing the most promising

versions of the algorithm on the complete sets of instances and we compare their

performance with those of the ABF and a direct implementation of Benders in a

B&C algorithm. Moreover, we provide results for some special cases of the MUpLP-
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E when fixing values of the input and we compare the best variant of the Benders

algorithm that we introduce with other solution algorithms proposed before for these

special cases.

From the previous section, we know that using the Magnanti-Wong procedure

for generating Pareto-optimal cuts with a dynamic approximate core point together

with solving the subproblems as network flow problems seems to be the most efficient

variant of our B&C algorithm. Following the notation of the previous section we

denote this variant as MW. For the CAP/RAND instances we only consider standard

Benders feasibility cuts while for GAP/LGAP we also compare the performance of

using the cut-set inequalities (5.49). Tables 5.5 and 5.6 summarize this comparison.

For all variants we use the configuration of parameters as described in Section 5.5.2.

We have included the corresponding results of the ABF and those of the ABF with

the extra constraints (5.46)–(5.48) denoted ABF+E. In particular, we present the

number of instances solved according to their type. For example, in Table 5.5, the

row k = 2 provides the number of two-level instances solved to optimality (out of

40) for each implementation, whereas row pr = |Vr| provides the same information

for those instances for which the cardinality constraints are redundant. Moreover, we

include in the last six rows the average values of the total CPU time, number of BB

nodes, number of total feasibility cuts added, number of total optimality cuts added,

CPU time spent in the PS/DS and CPU time spent in the separation of feasibility

cuts. We computed these values considering only the 55 solved instances within the

time limit by all four methodologies compared. In this case we imposed a time limit of

86,400 seconds (one day). We note that the number of cuts added may not correspond

to the final number of cuts in the model due to the automatic purges executed by

CPLEX.

Benders decomposition appears to be an appropriate solution methodology for

the MUpLP-E. In particular, we see that a tuned up straight-forward BR (DB) vari-
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Table 5.5: Summary of results on 85 CAP/RAND instances

ABF ABF+E DB MW
k = 2 30/40 29/40 33/40 40/40
k = 3 19/29 17/29 28/29 29/29
k = 4 13/16 12/16 16/16 16/16
|I| = 500 20/20 20/20 20/20 20/20
|I| = 1000 31/33 28/33 33/33 33/33
|I| = 1500 7/16 6/16 15/16 16/16
|I| = 2000 2/8 2/8 5/8 8/8
|I| = 3000 2/8 2/8 4/8 8/8

CAP 21/21 21/21 21/21 21/21
pr = |Vr| 23/23 23/23 20/23 23/23

total 62/85 58/85 77/85 85/85
Av. CPU time 13275.31 15432.36 288.27 4.75
Av. BB nodes 0.16 0.05 34.67 1.02
Av Feas. cuts - - 842.75 9.69
Av Opt. cuts - - 42404.25 13061.06

Av. Subp time - - 465.95 8.35
Av. Feas. time - - 17.82 0.16

ant already reduces the average CPU time from more than 13,000 to less than 300

seconds. Moreover, the algorithm with the enhancements described in Section 5.4

clearly outperforms the formulations and the DB approach. In comparison with the

AFB we observe a reduction of the average CPU time of more than three orders of

magnitude without a significant increase in the average number of BB nodes. Also,

the MW implementation solved all 85 CAP/RAND instances within the time limit,

whereas the ABF implementation only solved 62. Interestingly, in the MW version

the maximum CPU time for solving an instance was 351 seconds. That is, every

instance is solved within less than 400 seconds. On the other hand, in the ABF

case, only 10 instances were solved within that time limit. It is worth highlighting

that, although the redundant constraints (5.46)–(5.48) seem to be counterproductive

in terms of total time for the ABF in the CAP/RAND instances, they are highly

beneficial in reducing the CPU time when used in the BR for both sets of instances.

The complete results are presented in the tables of the Online Appendix.

We note that for the best version of the algorithm, we also assessed the algorithmic

performance using as an initial lower bound the one obtained with a modified greedy
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heuristic presented in [136] for the MUpLP-E. The modification on the heuristic

simply consists on subtracting from the objective value the values for the set-up

costs of the edges associated with the solution obtained with the greedy heuristic for

the MUpLP. However, the results of these experiments are omitted from the tables

because the improvement in CPU time and BB nodes is not considerable (less than

5%). Also, adding an initial set of Benders cuts obtained from a feasible solution

generated with the same heuristic did not improve the performance of the best versions

presented here.

Table 5.6 presents the summary of results for the modified GAP/LGAP instances.

In this case we omit the number of instances solved per type because all methods

were able to solve the 163 (feasible) instances within the time limit. Nevertheless,

we observe a reduction of approximately 90% in the average CPU time, which seems

to translate into a 25% increase in the average number of BB nodes when comparing

the ABF with the MW algorithm with the cut-set inequalities approach. Also note

that in the case of the GAP/LGAP instances in which the original graph is sparse,

the cut-set inequalities seem to perform better. There is an important reduction in

the number of optimality cuts, and correspondingly in the CPU time, when these

inequalities are used to ensure feasibility.

Table 5.6: Summary of results on 163 GAP/LGAP instances

ABF ABF+E DB MW
standard cut-set standard cut-set

GAP Av. CPU time 4.1 2.3 2.1 1.3 1.6 1.0
Av. BB nodes 228.8 83.8 308.4 199.3 283.1 188.9

GAPL Av. CPU time 574.1 215.3 315.9 169.8 103.3 47.2
Av. BB nodes 2822.9 1153.6 6081.4 5054.3 6042.9 4021.6

TOTAL Av. CPU time 315.3 118.6 173.5 93.3 57.1 26.2
Av. BB nodes 1645.2 667.9 3460.5 2850.2 3428.0 2281.6
Av Feas. cuts - - 2397.3 413.7 1991.8 385.4
Av Opt. cuts - - 681.0 635.5 209.4 183.4

Av. Subp. time - - 1.5 1.6 0.2 0.2
Av. Feas. Time - - 0.0 0.0 0.0 0.0

Tables 5.7 and 5.8 provide the results of the experiments when assessing the

performance of the Benders algorithm described above (MW), for previously studied
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cases of the MUpLP-E. First, in Table 5.7 we show the results for the GAP/LGAP

instances when there are no set-up costs on the edges. Recall that for these instances

we have pr = |Vr| for r = 1, 2 and k = 2.

Table 5.7: Summary of results on 163 GAP/LGAP instances with d = 0

ABF DB MW
standard cut-set

GAP Av. CPU time 1.5 2.5 1.7 1.3
Av. BB nodes 225.4 356.1 318.2 257.9

GAPL Av. CPU time 231.8 257.2 49.0 43.5
Av. BB nodes 3838.2 5967.0 5105.7 4743.3

TOTAL Av. CPU time 127.2 141.5 27.2 24.6
Av. BB nodes 2198.0 3419.7 2887.8 2823.3
Av Feas. cuts - 1871.6 284.6 422.4
Av Opt. cuts - 1061.6 1396.1 277.9

Av. Subp. time - 2.8 0.2 0.2
Av. Feas. Time - 0.0 0.0 0.0

In this case, we observe a reduction of almost 80% in the average CPU time

between ABF and the MW variant of the algorithm. Moreover, the solution method

proposed by [70] for these sets of instances shows an average CPU time over 1,100

seconds for LGAP instances, although the average number of BB nodes is less than

820. In comparison, the Benders algorithm yields an average CPU time of less than

44 seconds for the LGAP instances but almost 5,000 BB nodes on average. We also

note that the authors compared the performance of the algorithm proposed with a

slightly older version of CPLEX (12.6.1). However, for the GAP/LGAP instances,

they present the results of CPLEX yielding a smaller average CPU time than the

proposed algorithm.

Finally, Table 5.8 summarizes the results for three special cases of the MUpLP-E

namely, the MUpLP, the MpMP and the MUFLP (see Section 5.2). The first row for

each special case corresponds to the number of CAP/RAND instances solved within

two hours of CPU time. The averages of time and BB nodes are computed based

on the number of instances solved by all four methods in comparison. For this com-

parison we have included a new column named SF. In this column we provide the

results obtained when using the Submodular Formulation (SF) introduced by for the
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MUpLP. This formulation is embedded in a B&C framework and it was shown to

outperform other well-known MILP for the case of the MpMP and to be competitive

for the general MUpLP. It is important to mention that we have executed the ex-

periments following the configuration parameters of the authors, which showed to be

most beneficial for the SF. Thus, only for the SF, we turned off the CPLEX heuristics

and changed the default purge parameter of the USERC to filter. We also included

the bound obtained with the greedy heuristic.

Table 5.8: Special cases of MUpLP-E on 85 CAP/RAND instances

ABF DB MW SF
MUpLP 62/85 72/85 83/85 58/85

Av. CPU time 960.52 77.54 5.62 649.60
Av. BB nodes 0.37 17.65 7.80 6867.61

MpMP 62/85 77/85 85/85 76/85
Av. CPU time 1099.48 54.62 4.22 35.81
Av. BB nodes 0.05 1.62 10.39 93.18

MUFLP 23/23 20/23 23/23 12/23
Av. CPU time 314.65 551.18 9.34 -
Av. BB nodes 0.00 45.05 2.65 -

For Table 5.8 the number of solved instances by all methodologies is 51 and 61

for the MUpLP and the MpMP, respectively. For the MUFLP case we consider 20

solved instances although the SF was only able to solve 12 within the time limit of two

hours. We note that the Benders algorithm proposed outperforms the other methods

in comparison for all the special cases of the MUpLP-E on the CAP/RAND set of

instances.

5.6 Conclusions

We studied a general class of multi-level uncapacitated p-location problems in which

link activation decision between levels of facilities are considered. A sophisticated

exact algorithm based on a Benders reformulation was presented to solve large-scale

instances of the problem. The results of extensive computational experiments confirm

the efficiency of our Benders decomposition algorithm. In particular, we note that
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for the MUpLP-E, the Magnanti-Wong procedure using a dynamic core selection

strategy combined with a network solver approach for the subproblems appears to

be the most efficient variant. Instances with up to 3,000 customers, 250 potential

facilities, and four levels of hierarchy were solved to optimality. The best version

of the Benders algorithm was able to solve each CAP/RAND instance within less

than 360 seconds, reducing by more than three orders of magnitude the average

CPU time from that obtained using the ABF. Also, some hard benchmark instances

with large LP gaps were tested in the experiments. A 90% reduction in the average

CPU time was obtained compared with the ABF solved by CPLEX. Moreover, our

Benders algorithm outperformed state-of-the-art solution algorithms when solving

special cases of interests of the MUpLP-E.

Appendix

Computational Experiments

We introduce notation with which we refer to the different variants of the Benders

algorithm. We consider four main criteria to change between variants, namely: (i) Use

of a method for guaranteeing Pareto-optimal cuts, (ii) solution of the subproblems,

(iii) selection of feasibility cuts and (iv) updating of the core point. We note that for

all the variants we include the valid inequalities (5.46)–(5.48) and the implementation

of the algorithm is done via a B&C framework. For the first criterion we can select

among a Direct Benders (DB) or Magnanti-Wong (MW) approaches, or we can choose

to implement the Papadakos [139] (P) version in which we do not require an additional

constraint in the PO but also leads to pareto-optimal cuts. Thus, there are three

options in the first criterion namely, DB, MW and P. For the second criterion we can

decide to solve them with an standard LP solver or with a more specialized network

flow algorithm. We denote these two possibilities by Ls and Ns, respectively. In
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particular, we use a general purpose solver (CPLEX) which has already implemented

these two options. Also, for the third criterion we can select between using cut-set

inequalities and standard Benders feasibility cuts, which we denote by Cf and Bf,

respectively. Finally, for the MW versions we can choose to keep a fixed core point

throughout all iterations or we can update it as in equation (5.45). We call these two

options fixed (F) and variable (V). Finally for the core point criterion, we write (o)

when the initial approximate core point is set to all ones and (n) otherwise. Thus, an

implementation using a Pareto-optimal cuts with standard Benders feasibility cuts in

which we solve the subproblems with a network solver and that consider a variable

core point for every subproblem, is denoted as MW-Bf-Ns-V. Note that for the case

of DB we do not have core points and for the P version we always update the core

point accordingly. In those cases where the criterion is obvious or does not exist we

omit it from the variant name (i.e. DB-Bf-N).

Also, we tested different values for the configuration of parameters as discussed in

Section 5.5.2. In Table 5.9 we present the list of configuration tests used to tune the

different variants of the Benders algorithm. Note that in the row of Depth, we have

only used 5 or 20 which corresponds to the values used for the CAP/RAND instances

only. For the GAP/LGAP instances we used 25 and 50, respectively.

Table 5.9: Configuration tests

Parameter
Test

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

φ 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
MaxIterNode 2 2 2 2 5 5 5 5 5 5 2 2 2 2 5 5 5 5 5 5
MaxUSERC 8,2 8,2 80,20 80,20 8,2 8,2 80,20 80,20 12,4 12,4 8,2 8,2 80,20 80,20 8,2 8,2 80,20 80,20 12,4 12,4
Depth 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20

We preliminary tested the variants of the algorithm along with the configurations

of parameters in subsets of instances. We were able to determine that two of the most

beneficial configuration for most of the variants were test 4 and 8. Figure 5.1 shows

the average CPU time per instance for these tests. The dominance in terms of CPU

time of the MW method with the network solver approach is evident in comparison
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with the other versions. However, note that the MW method is actually the only one

that benefits from solving the subproblems with the network solver. For the other two

cases it seems that the Benders cuts obtained by solving the DS with the LP solver

yield a better performance. Thus, for the MW version the computational advantage

of generating Pareto-optimal cuts increases when the subproblems are solved more

efficiently.
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Figure 5.1: Average CPU times on nine CAP/RAND instances

Similarly, in Figure 5.2 we have summarized the results for a subset of the original

GAP/LGAP instances, that is, with d = 0. In this case the dominance of one variant

with a selection of one or two configuration tests is not as clear as before. Thus,

we have included in the figure one more configuration that yields good results for

certain variants. Although the best CPU times are again obtained for the MW

versions with a network solver, now the cut-set inequalities seem to make a greater

difference in comparison with the usual Benders feasibility cuts. This is also true

for the P versions which are in this case more competitive than they were with the

CAP/RAND instances.
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Figure 5.2: Average CPU times on eight GAP/LGAP instances with d = 0

The detailed computational results for the MUpLP-E are presented in Tables

5.10–5.14. Table 5.10 provides the results for the CAP/RAND instances where the

first column describes the type of instance through its five subcolumns. The next

10 columns provide the CPU time in seconds needed to solve the instance and the

number of nodes in the BB tree for all five methods. Whenever it is not possible to

solve an instance within 86,400 seconds, we write TIME in the corresponding entry of

the table. For the GAP/LGAP instances recall that for all of them k = 2, pr = |Vr|

for r = 1, 2 and |V1| = |V2|. For the GAP instances |V1| = 50 while for the LGAP

case |V1| = 75.
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Table 5.10: Computational comparison on CAP/RAND instances

Instance ABF ABF+E DB-Bf-Ls MW-Bf-Ns-V(n) MW-Bf-Ns-V(o)
Type Levels |I| Pot. Facilities p time BB nodes time BB nodes time BB nodes time BB nodes time BB nodes
capa 2 1000 70-30 2-1 4841.91 0 1437.97 0 92.23 4 3.02 0 1.10 0
capa 2 1000 70-30 3-2 4050.23 0 1314.10 0 123.46 7 4.08 3 2.03 2
capa 2 1000 70-30 70-30 4538.76 0 1448.20 0 56.85 0 4.33 3 1.32 0
capa 2 1000 50-50 2-1 897.54 0 672.63 0 263.82 9 4.61 0 2.93 0
capa 2 1000 50-50 3-2 772.30 0 779.33 0 107.75 14 3.47 0 3.03 0
capa 2 1000 50-50 50-50 909.35 0 1055.36 0 137.13 0 3.28 0 2.22 0
capb 2 1000 70-30 2-1 17122.61 0 8622.50 0 174.45 26 3.99 0 2.32 4
capb 2 1000 70-30 5-2 9456.22 0 3252.35 0 40.07 0 3.82 2 1.86 0
capb 2 1000 70-30 70-30 9439.91 0 3573.28 0 31.80 3 3.83 3 1.60 0
capc 2 1000 70-30 2-1 3850.60 0 7267.36 0 105.07 9 2.87 0 2.09 0
capc 2 1000 70-30 3-2 18754.39 0 24642.77 0 136.34 17 4.16 0 4.21 0
capc 2 1000 70-30 70-30 10328.28 0 6973.83 0 52.29 0 2.83 0 2.49 0
capa 3 1000 55-30-15 2-1-1 35332.49 0 25747.68 0 1096.40 28 3.76 0 1.69 0
capa 3 1000 55-30-15 3-2-1 25039.98 0 29976.38 0 573.85 7 2.95 0 2.97 0
capa 3 1000 55-30-15 55-30-15 33631.99 0 24204.30 0 337.96 67 4.12 0 3.00 4
capb 3 1000 60-30-10 2-1-1 21404.65 0 28086.94 0 1244.40 5 3.97 0 2.82 9
capb 3 1000 60-30-10 5-2-2 4648.88 0 7015.60 0 205.20 8 3.80 0 1.85 0
capb 3 1000 60-30-10 60-30-10 2472.56 0 5026.74 0 107.98 0 4.13 0 1.79 0
capc 3 1000 60-30-10 2-1-1 23897.40 0 13168.87 0 519.25 39 3.57 0 2.28 0
capc 3 1000 60-30-10 5-2-2 28942.66 0 12311.40 0 1718.33 70 6.13 0 3.64 6
capc 3 1000 60-30-10 60-30-10 20349.74 0 15726.67 0 602.35 332 6.70 0 4.08 8

RAND 4 500 40-30-20-10 2-2-1-1 7879.22 3 5326.62 0 143.61 57 11.00 5 4.29 2
RAND 4 500 40-30-20-10 3-3-3-3 9293.44 0 20665.58 0 29.82 0 2.78 0 2.49 0
RAND 4 500 40-30-20-10 10-5-3-2 12401.64 0 15997.58 0 26.13 0 2.31 0 1.97 0
RAND 4 500 40-30-20-10 40-30-20-10 343.87 0 601.11 0 23.54 0 1.35 0 2.86 0
RAND 3 500 50-30-20 4-2-1 42495.76 3 45443.68 0 84.05 64 3.87 0 3.34 0
RAND 3 500 50-30-20 5-5-2 26355.03 0 43806.22 0 56.22 0 3.18 0 3.34 0
RAND 3 500 50-30-20 11-9-6 8664.97 0 21689.68 0 23.44 0 1.88 0 1.63 0
RAND 3 500 50-30-20 50-30-20 228.20 0 355.76 0 21.55 0 1.97 0 2.04 0
RAND 2 500 70-30 3-1 720.53 0 785.58 0 17.97 0 2.62 0 1.53 0
RAND 2 500 70-30 5-4 7560.48 0 19114.86 0 30.55 6 2.28 0 1.89 0
RAND 2 500 70-30 10-2 11296.17 0 18085.45 0 37.89 0 1.64 0 1.34 0
RAND 2 500 70-30 70-30 79.13 0 79.35 0 19.42 73 2.29 4 1.93 5
RAND 2 500 50-50 2-1 2368.81 0 2917.60 0 33.15 0 2.56 0 2.77 0
RAND 2 500 50-50 5-5 153.24 0 143.54 0 17.56 0 1.95 0 2.19 0
RAND 2 500 50-50 11-9 63.62 0 84.15 0 10.51 3 1.38 0 1.52 0
RAND 2 500 50-50 50-50 63.33 0 78.67 0 10.94 0 1.52 0 0.96 0
RAND 4 500 60-30-20-10 4-2-1-1 56682.36 0 70814.31 0 164.45 0 8.91 0 4.39 0
RAND 4 500 60-30-20-10 8-2-2-1 45776.90 0 75466.96 0 91.90 0 5.04 0 5.20 0
RAND 4 500 60-30-20-10 15-10-5-2 16845.47 0 29530.55 0 48.14 0 2.82 0 2.45 0
RAND 4 500 60-30-20-10 60-30-20-10 452.01 0 986.65 0 66.57 0 2.13 0 2.46 0
RAND 4 1000 40-30-20-10 2-2-1-1 8099.98 0 12372.26 0 132.09 0 9.63 0 5.31 0
RAND 4 1000 40-30-20-10 3-3-3-3 34559.25 0 TIME TIME 83.84 8 5.49 2 3.30 0
RAND 4 1000 40-30-20-10 10-5-3-2 30432.15 0 52271.96 0 48.81 0 3.77 0 2.88 0
RAND 4 1000 40-30-20-10 40-30-20-10 644.24 0 862.38 0 42.08 2 1.70 0 2.55 0
RAND 3 1000 50-30-20 4-2-1 TIME TIME TIME TIME 77.64 3 6.85 0 5.35 0
RAND 3 1000 50-30-20 5-5-2 TIME TIME TIME TIME 112.57 0 6.37 0 5.54 0
RAND 3 1000 50-30-20 11-9-6 49009.40 0 TIME TIME 79.34 49 4.85 2 4.29 2
RAND 3 1000 50-30-20 50-30-20 339.28 0 450.09 0 62.83 13 5.03 3 4.26 3
RAND 2 1000 70-30 3-1 1949.38 0 2427.11 0 64.68 10 6.08 0 2.43 0
RAND 2 1000 70-30 6-6 20898.47 0 TIME TIME 20.89 7 3.16 0 3.36 0
RAND 2 1000 70-30 10-2 44272.87 0 73042.52 0 84.69 12 4.98 0 2.45 0
RAND 2 1000 70-30 70-30 104.04 0 94.87 0 19.64 12 1.70 0 1.69 0
RAND 3 1500 50-30-20 4-2-1 TIME TIME TIME TIME 148.87 2 13.89 0 8.52 0
RAND 3 1500 50-30-20 5-5-2 TIME TIME TIME TIME 231.30 95 15.14 3 19.51 6
RAND 3 1500 50-30-20 11-9-6 67288.70 0 TIME TIME 39.38 0 6.67 2 3.96 0
RAND 3 1500 50-30-20 50-30-20 351.08 0 458.99 0 33.34 4 2.29 0 3.14 2
RAND 2 1500 70-30 3-1 13683.47 0 15735.37 0 110.10 2 16.70 2 6.68 5
RAND 2 1500 70-30 5-4 TIME TIME TIME TIME 94.15 0 10.67 0 6.02 0
RAND 2 1500 70-30 10-2 TIME TIME TIME TIME 206.76 22 8.88 0 5.29 0
RAND 2 1500 70-30 70-30 169.87 0 172.13 0 24.08 8 2.24 0 2.46 0
RAND 3 1500 100-70-30 4-2-1 TIME TIME TIME TIME 1810.70 65 158.73 34 62.00 11
RAND 3 1500 100-70-30 10-5-2 TIME TIME TIME TIME 1027.68 48 53.98 0 36.62 0
RAND 3 1500 100-70-30 35-9-6 TIME TIME TIME TIME 388.11 28 25.46 0 24.58 0
RAND 3 1500 100-70-30 100-70-30 2282.82 0 2401.48 0 376.17 8 14.96 0 14.77 0
RAND 2 1500 120-80 3-1 77333.64 3 68823.59 3 2768.97 224 57.23 9 48.70 6
RAND 2 1500 120-80 6-6 TIME TIME TIME TIME 2221.19 394 29.15 0 29.08 0
RAND 2 1500 120-80 7-2 TIME TIME TIME TIME 6047.57 789 42.34 0 33.61 0
RAND 2 1500 120-80 120-80 2152.11 0 2818.64 3 TIME TIME 23.97 3 22.17 7
RAND 2 2000 120-80 4-1 TIME TIME TIME TIME 6977.17 800 169.67 355 72.30 20
RAND 2 2000 120-80 7-2 TIME TIME TIME TIME TIME TIME 57.63 0 51.33 0
RAND 2 2000 120-80 10-10 TIME TIME TIME TIME TIME TIME 41.91 0 29.51 0
RAND 2 2000 120-80 120-80 1487.73 0 1399.18 0 TIME TIME 14.45 0 20.60 2
RAND 4 2000 100-50-35-15 2-2-1-1 TIME TIME TIME TIME 1965.08 15 115.68 0 58.19 0
RAND 4 2000 100-50-35-15 6-5-3-1 TIME TIME TIME TIME 903.78 7 67.09 5 42.46 0
RAND 4 2000 100-50-35-15 12-7-5-3 TIME TIME TIME TIME 471.23 5 41.90 0 30.18 0
RAND 4 2000 100-50-35-15 100-50-35-15 13596.62 0 17901.84 0 381.37 6 16.38 0 20.93 0
RAND 2 3000 150-100 5-2 TIME TIME TIME TIME TIME TIME 361.30 0 351.43 5
RAND 2 3000 150-100 15-5 TIME TIME TIME TIME 5711.92 561 173.54 2 151.98 0
RAND 2 3000 150-100 65-12 TIME TIME TIME TIME TIME TIME 65.22 0 55.53 0
RAND 2 3000 150-100 150-100 4178.26 0 4071.47 0 TIME TIME 41.71 0 29.65 0
RAND 3 3000 120-80-50 5-3-2 TIME TIME TIME TIME TIME TIME 307.05 4 250.57 3
RAND 3 3000 120-80-50 15-8-3 TIME TIME TIME TIME 12064.88 1261 458.95 282 169.44 17
RAND 3 3000 120-80-50 45-27-6 TIME TIME TIME TIME 3232.42 139 102.60 0 65.91 2
RAND 3 3000 120-80-50 120-80-50 6475.84 0 7486.84 0 3021.45 758 35.12 0 41.02 0
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Table 5.11: Computational comparison GAP instances

ABF ABF+E DB-Bf-Ls DB-Cf-Ls MW-Bf-Ns-V(o) MW-Cf-Ns-V(o)
Instance time BB nodes time BB nodes time BB nodes time BB nodes time BB nodes time BB nodes
333GapC 2.78 116 1.26 25 1.58 132 0.98 80 1.27 83 0.64 29
431GapB 0.82 33 0.65 19 1.14 134 0.90 116 0.67 48 0.66 70
432GapA 1.63 60 1.72 42 2.34 442 1.17 173 1.40 345 1.10 225
433GapC 19.45 589 9.16 264 4.35 826 3.68 583 5.54 1446 2.32 382
531GapB 2.04 122 1.49 69 1.53 185 0.92 67 1.01 120 0.66 132
532GapA 4.85 237 2.60 84 2.61 376 2.51 620 1.73 471 1.57 443
533GapC 4.66 184 2.79 78 2.43 318 1.32 180 2.12 330 1.07 170
632GapA 0.65 39 0.64 27 0.93 60 0.81 91 0.72 68 0.53 61
633GapC 3.15 287 1.26 64 1.43 125 1.48 267 0.95 106 0.75 101
732GapA 3.35 228 1.83 95 1.51 245 1.20 173 1.33 209 0.89 162
733GapC 17.29 1267 6.52 366 7.26 1837 2.30 657 4.18 1513 1.72 763
832GapA 5.37 450 2.22 155 2.27 512 1.57 251 1.46 439 1.01 308
833GapC 4.39 253 2.56 109 2.08 193 1.55 222 1.45 154 0.98 174
931GapB 2.23 258 1.41 117 1.41 112 0.82 119 0.91 70 0.70 124
932GapA 4.15 294 1.28 29 1.60 198 1.08 127 1.26 142 0.77 124
933GapC 2.07 160 1.72 119 1.08 194 1.19 203 0.81 204 0.75 181
1031GapB 3.65 275 1.22 67 1.49 147 1.37 237 0.98 91 0.73 122
1032GapA 0.68 19 1.03 18 0.65 19 0.62 21 0.63 19 0.39 14
1033GapC 1.24 48 0.59 15 0.95 41 0.82 39 0.57 11 0.54 31
1132GapA 1.94 118 1.61 61 2.07 194 0.93 58 1.39 135 0.91 155
1133GapC 5.78 319 3.48 130 3.38 675 1.44 170 2.09 331 1.25 275
1231GapB 1.51 54 1.13 23 2.21 197 0.88 42 1.17 111 0.74 56
1232GapA 1.88 120 0.95 37 1.53 202 0.91 101 1.08 133 0.61 46
1233GapC 3.19 85 3.16 83 3.33 743 2.22 296 2.20 506 1.22 140
1331GapB 4.72 535 2.39 233 2.29 456 1.27 246 1.40 275 0.95 288
1332GapA 2.92 173 2.33 73 2.28 209 1.50 143 1.65 273 0.86 111
1333GapC 10.63 717 4.79 255 7.17 1557 2.03 491 4.06 1229 1.43 395
1431GapB 3.00 312 1.67 113 1.51 333 1.52 511 1.34 442 0.95 273
1432GapA 1.97 89 1.39 45 1.94 270 1.14 199 1.40 229 0.81 211
1433GapC 13.31 512 7.25 178 6.12 942 3.11 567 4.35 1194 2.54 636
1532GapA 5.42 304 3.73 121 1.69 270 1.17 165 1.10 127 0.82 68
1533GapC 4.70 235 3.07 109 1.83 172 1.48 168 1.22 147 1.10 178
1632GapA 5.67 243 3.72 132 2.66 443 1.55 225 1.75 390 0.89 129
1633GapC 5.20 175 3.32 97 2.26 299 1.69 293 2.01 347 1.21 255
1731GapB 3.23 250 1.10 41 1.17 162 1.09 121 1.12 205 0.67 134
1733GapC 15.22 683 5.19 176 4.22 1031 2.18 438 2.47 530 1.60 317
1832GapA 2.70 231 1.39 61 0.92 120 0.96 116 0.73 117 0.74 107
1833GapC 5.11 296 2.96 116 2.13 321 1.22 287 1.50 455 0.84 227
1932GapA 1.14 57 0.81 27 0.82 48 0.65 21 0.70 68 0.47 18
1933GapC 1.31 91 0.70 30 1.29 112 1.02 130 1.12 219 0.85 143
2031GapB 1.49 124 0.93 43 1.24 111 0.70 72 1.07 107 0.62 76
2032GapA 1.82 60 1.14 9 1.07 55 1.08 56 0.69 20 0.74 62
2033GapC 7.16 454 4.30 182 2.57 515 1.64 372 1.88 527 1.23 290
2132GapA 3.69 200 2.50 97 1.73 237 2.10 311 1.50 219 1.31 295
2133GapC 2.65 231 1.78 86 1.68 130 1.04 120 0.94 88 0.66 92
2232GapA 4.92 349 3.32 147 2.32 308 2.06 351 1.55 308 1.49 382
2233GapC 2.26 62 2.07 55 1.79 153 1.53 139 1.45 170 1.10 151
2331GapB 0.78 38 0.74 24 0.73 36 0.69 34 0.57 52 0.48 33
2332GapA 2.53 135 2.26 99 1.71 198 1.21 196 1.22 233 1.00 238
2333GapC 9.25 345 4.25 118 2.70 357 1.96 357 2.15 359 1.31 215
2431GapB 2.25 204 1.30 77 1.45 183 1.07 190 0.94 156 0.74 177
2432GapA 3.28 200 1.55 25 2.33 224 1.34 131 1.35 112 1.10 201
2433GapC 4.72 185 3.39 109 2.69 290 1.47 255 1.92 335 1.10 191
2532GapA 2.93 184 2.33 71 1.94 228 1.33 173 1.58 267 1.10 162
2533GapC 2.83 114 1.22 13 1.81 150 1.27 110 1.77 167 1.18 236
2632GapA 2.88 77 1.88 33 2.12 322 1.43 137 1.35 162 1.50 311
2633GapC 4.92 600 1.82 125 1.72 303 1.23 306 1.32 279 0.89 265
2731GapB 0.67 11 0.69 17 0.97 53 0.62 42 0.50 19 0.63 93
2732GapA 2.64 109 2.24 53 1.70 245 1.43 158 1.41 189 0.97 204
2733GapC 4.43 146 2.66 81 2.05 355 1.22 164 2.03 419 0.95 160
2831GapB 1.29 107 0.88 25 0.95 39 1.07 93 0.88 55 0.56 52
2832GapA 2.03 60 1.68 23 1.93 182 0.89 40 1.33 52 0.80 62
2833GapC 8.45 379 3.77 130 2.48 384 1.62 261 1.79 266 1.64 371
2931GapB 1.67 85 1.04 25 1.37 85 1.22 124 1.10 66 0.79 63
2932GapA 1.97 98 1.22 32 1.99 172 1.01 43 1.39 124 0.74 56
2933GapC 2.82 133 2.00 61 1.42 101 1.05 94 1.36 150 0.97 139
3032GapA 3.17 186 1.87 74 2.35 249 1.10 136 1.73 198 1.01 211
3033GapC 3.64 136 2.70 45 2.86 462 1.36 258 3.08 804 1.47 363
3131GapB 3.44 242 1.97 94 1.53 149 1.33 173 1.13 158 0.96 163
3132GapA 2.41 127 1.23 46 1.67 195 1.16 107 0.97 87 0.86 90
3133GapC 8.31 283 6.19 127 5.74 816 2.22 326 3.78 702 1.96 301
3231GapB 0.83 49 0.43 21 1.17 65 0.89 65 0.94 66 0.77 102
3232GapA 6.38 561 1.93 87 2.06 342 1.39 284 1.54 338 1.08 296
3233GapC 3.56 142 2.68 45 2.06 274 0.85 57 2.00 365 0.88 99
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Table 5.12: Computational comparison LGAP instances

ABF ABF+E DB-Bf-Ls DB-Cf-Ls MW-Bf-Ns-V(o) MW-Cf-Ns-V(o)
Instance time BB nodes time BB nodes time BB nodes time BB nodes time BB nodes time BB nodes
GapA0 683.10 4777 155.50 1273 74.57 4264 59.88 2750 29.70 4860 17.06 2592
GapA1 1016.04 6381 407.84 2793 217.89 9839 369.06 15285 76.27 7248 86.03 11433
GapA2 619.12 3383 129.00 834 54.69 2955 42.26 1698 30.61 5025 11.87 1404
GapA3 650.22 3454 179.94 1048 81.02 3485 176.44 13782 35.85 4363 43.21 5196
GapA4 105.62 745 64.96 564 21.09 968 10.19 497 5.53 509 5.58 544
GapA5 1319.43 7453 254.95 1514 373.32 13500 117.15 6944 61.40 6219 40.81 4584
GapA6 149.71 830 62.35 301 26.02 1502 20.94 1173 11.89 941 8.05 936
GapA7 1590.21 8782 674.19 4141 150.90 10229 141.59 6588 128.37 11418 39.82 5942
GapA8 966.51 6457 214.09 1571 171.31 5906 447.65 16429 38.15 4566 46.02 6585
GapA9 249.51 1773 131.63 851 47.29 3278 30.11 1788 28.73 4322 15.91 1918
GapA10 202.75 1481 99.26 663 49.56 1793 58.03 2830 11.27 1592 11.61 1902
GapA11 453.16 2948 202.59 1469 83.06 4139 52.55 4003 34.82 3950 29.78 3638
GapA12 172.48 711 75.72 259 28.26 1267 40.48 1582 23.32 2422 19.71 2263
GapA13 1259.98 7921 375.08 2785 225.48 5835 178.08 8121 74.78 9273 51.46 5533
GapA14 457.59 2564 105.53 686 76.08 2561 39.02 1362 13.27 1598 9.64 1269
GapA15 64.59 400 37.21 137 15.13 629 14.35 883 5.20 444 7.99 958
GapA17 1149.59 7485 632.90 4732 257.53 9915 318.19 12818 83.14 9718 71.76 8791
GapA18 44.16 210 25.33 90 8.58 333 15.84 1144 4.50 296 6.39 562
GapA19 103.30 707 60.21 371 31.62 1390 42.66 1938 10.91 1457 11.40 1371
GapB0 329.36 2726 156.45 1198 57.01 3019 40.10 2469 34.14 6563 24.71 3991
GapB1 153.94 515 107.92 364 85.13 4538 37.28 2028 26.52 2097 17.17 1481
GapB2 135.98 707 100.78 525 39.20 1452 19.84 1322 22.19 1654 10.21 1072
GapB3 443.73 2506 218.48 1464 241.46 6130 232.01 6369 182.33 21898 39.86 4653
GapB4 142.37 479 53.84 177 103.81 2922 51.90 2359 38.33 3834 24.43 1935
GapB5 135.17 663 73.69 293 37.71 1341 12.77 950 10.43 1072 9.06 987
GapB6 1453.05 5235 235.88 921 266.59 6174 137.24 3552 97.30 8142 65.43 5819
GapB7 502.27 1456 239.37 762 1511.32 13695 1576.83 29039 1232.78 35507 111.95 5838
GapB8 258.14 1118 108.63 488 78.34 2762 115.11 3841 23.28 2165 16.50 2046
GapB9 2481.82 12266 1169.28 7148 357.35 10643 426.77 9606 160.11 11381 137.97 11583
GapB10 430.82 1920 221.42 983 67.25 2991 87.53 3535 104.56 10363 24.04 2639
GapB11 289.88 1821 136.31 850 66.89 3408 47.62 1704 18.33 1559 16.79 1791
GapB12 279.63 2099 119.13 847 90.81 5025 43.34 2378 23.88 4139 13.49 1876
GapB13 150.53 655 98.04 352 51.77 1706 35.60 1391 21.15 1380 17.55 1200
GapB14 1426.84 7247 227.59 1670 378.43 11435 229.87 6587 49.51 4913 39.69 4923
GapB15 182.72 688 147.17 588 47.82 2652 46.56 2327 24.15 1637 34.31 2591
GapB16 338.46 1844 164.93 856 82.99 3216 124.10 7384 50.05 6335 35.71 3778
GapB17 172.90 592 98.50 313 52.18 1872 40.90 3819 23.59 1608 34.24 2760
GapB18 362.67 1511 145.57 629 86.24 2842 47.56 2253 31.09 2836 30.92 2470
GapB19 504.56 2067 262.97 1381 124.46 6792 86.89 3713 35.00 3322 31.20 3605
GapC0 1734.03 9701 771.22 5302 703.31 18537 202.28 10444 128.36 9097 62.03 8241
GapC1 119.87 350 51.74 125 31.01 1023 17.38 582 14.11 934 13.91 1083
GapC2 636.14 2892 268.06 1346 111.47 3880 106.62 6550 47.60 4391 26.84 3005
GapC3 255.65 688 166.20 379 122.20 3197 244.30 7190 60.78 3935 61.81 4427
GapC4 1113.72 3915 307.51 1379 323.91 8901 197.46 7123 324.81 22313 106.81 8616
GapC5 350.35 1652 163.98 744 185.31 5739 80.70 2370 62.08 5320 32.05 2703
GapC6 521.32 2860 254.84 1184 39.19 3533 76.40 2259 33.10 3807 30.56 2594
GapC7 2449.30 5834 635.10 1823 2810.47 25130 3229.30 35754 649.36 18702 676.58 24414
GapC8 270.68 701 292.18 935 170.67 4410 70.31 2465 98.40 6441 31.58 1919
GapC9 228.42 865 124.02 494 40.04 1387 52.23 1732 20.08 1358 18.65 1648
GapC10 214.66 825 114.02 464 143.54 4816 49.42 5222 27.13 1826 17.73 1678
GapC11 345.59 1296 158.06 662 108.62 5331 89.40 3323 54.34 6075 40.39 3727
GapC12 267.11 850 205.70 668 235.43 5161 65.28 4407 48.19 3406 37.76 4023
GapC13 78.66 189 83.48 222 15.94 432 19.04 779 10.49 702 16.40 1461
GapC14 299.87 988 138.77 537 69.77 1851 89.22 4283 26.02 1942 53.73 5896
GapC15 272.76 1285 98.48 485 42.90 1905 28.82 1463 11.47 1429 14.68 1926
GapC16 349.74 994 145.90 398 119.78 2272 64.26 2571 61.35 4496 27.58 2589
GapC17 1180.20 4703 290.82 1319 845.65 10389 156.33 5939 127.09 10503 77.22 6909
GapC18 402.56 1684 187.89 784 103.66 3162 122.25 3775 41.31 3553 22.89 2702
GapC19 472.60 2872 278.34 1743 295.92 17222 88.41 3862 51.37 6503 35.18 3966
GapA0U 1182.34 7063 171.13 1154 119.38 3883 53.51 2467 28.93 4073 20.68 2931
GapA1U 100.19 346 76.09 332 60.19 3572 132.68 6828 23.86 2300 11.79 1017
GapA2U 222.59 1424 109.37 662 28.20 1146 33.17 1803 13.58 1667 9.88 1269
GapA3U 938.46 5905 287.90 2064 363.71 19454 100.23 4087 56.64 5778 40.24 5706
GapA4U 138.61 1121 114.96 925 86.35 2852 50.51 1666 14.24 1758 10.46 2220
GapA5U 1455.73 10594 716.30 5008 194.72 6952 88.12 4190 73.45 8597 41.90 5418
GapA6U 140.73 998 87.08 460 52.41 2075 40.00 2159 14.29 1813 11.68 1299
GapA7U 315.96 2926 192.55 1777 80.82 3645 41.96 2910 19.71 3206 15.23 2450
GapA8U 272.98 1831 139.93 937 46.37 2173 31.89 1927 26.10 3652 19.08 3120
GapA9U 327.48 1999 77.82 496 52.54 2395 31.50 1677 12.17 1102 8.04 878
GapB0U 175.89 897 95.71 417 44.97 1977 51.73 2141 15.59 1644 13.68 1439
GapB1U 500.97 2518 205.88 928 126.45 4809 62.35 3161 89.06 7841 37.36 3276
GapB2U 1181.54 6560 282.48 1691 100.14 4358 108.05 5819 49.06 6742 37.77 3906
GapB3U 54.37 238 34.52 133 13.54 705 14.07 838 7.10 648 6.19 745
GapB4U 1424.40 9423 330.52 2346 224.46 10075 359.04 11934 56.66 6141 80.69 10102
GapB5U 127.30 495 135.10 576 212.00 4789 86.33 2201 182.20 12074 41.33 4373
GapB6U 1369.27 5026 432.64 1947 683.71 11483 254.05 7907 201.57 11922 97.36 8489
GapB7U 1492.97 5846 373.69 1627 1588.20 16288 322.93 9197 1753.78 45418 335.27 18986
GapB8U 1102.22 4711 271.36 1102 314.44 7906 84.13 3542 53.76 5390 55.42 4987
GapB9U 271.02 1480 171.68 1010 545.11 14427 143.56 9059 164.82 11993 44.51 5947
GapC0U 380.96 1325 170.14 573 373.29 17613 99.11 3424 43.90 4371 62.43 5294
GapC1U 506.71 2179 266.37 1155 200.38 5105 165.87 7468 123.57 7346 51.78 3301
GapC2U 92.69 531 80.23 357 21.20 862 11.44 493 7.41 670 8.03 824
GapC3U 603.83 2506 211.74 842 770.05 15095 79.74 3586 46.26 4640 38.20 4104
GapC4U 224.99 839 103.07 373 37.63 925 53.08 2803 17.44 1473 21.37 1646
GapC5U 2617.12 7482 680.56 2430 8002.82 47113 1653.59 28597 1153.13 35160 318.29 19091
GapC6U 79.19 319 95.31 350 20.62 1131 16.00 774 12.98 993 8.22 620
GapC7U 118.14 498 85.10 287 19.39 986 32.18 1061 17.84 1404 12.24 925
GapC8U 420.52 1635 302.20 1374 1311.41 17966 138.54 2902 59.97 5422 41.12 3914
GapC9U 257.51 800 146.78 456 83.83 2800 105.19 2876 37.24 3223 25.93 1657
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Table 5.13: Computational comparison GAP instances with d = 0

ABF DB-Bf-Ls DB-Cf-Ls MW-Bf-Ns-V(o) MW-Cf-Ns-V(o)
Instance time BB nodes time BB nodes time BB nodes time BB nodes time BB nodes
333GapC 0.71 47 1.94 249 0.96 51 1.58 160 0.97 67
431GapB 0.52 69 1.53 118 1.34 129 0.99 122 0.79 65
432GapA 0.59 52 1.99 255 1.79 316 1.02 164 1.04 109
433GapC 4.93 384 5.02 594 2.77 366 3.81 759 2.11 289
531GapB 1.03 175 1.56 206 1.29 206 1.00 133 0.94 190
532GapA 2.07 261 2.67 364 1.86 398 2.12 345 1.27 208
533GapC 3.85 581 3.45 489 2.12 382 1.86 303 1.37 272
632GapA 0.36 33 1.43 97 1.21 99 0.69 39 0.59 49
633GapC 0.91 150 2.68 526 1.23 130 2.11 457 0.94 108
732GapA 1.38 305 2.03 335 1.85 557 1.07 211 1.10 350
733GapC 4.28 792 3.88 716 3.28 781 2.41 745 2.40 885
832GapA 1.69 394 2.08 258 2.01 251 1.68 289 1.26 296
833GapC 1.71 304 2.54 335 2.28 443 1.49 314 1.60 338
931GapB 0.80 205 1.95 331 1.68 271 1.17 283 1.01 228
932GapA 0.96 126 2.76 438 1.19 90 1.54 202 0.90 82
933GapC 0.75 172 2.06 347 1.28 211 1.11 175 0.72 198
1031GapB 1.46 295 1.65 140 1.31 167 1.16 178 0.97 163
1032GapA 0.25 22 1.14 23 1.14 63 0.80 37 0.86 55
1033GapC 0.29 23 1.40 81 0.67 17 0.71 26 0.72 57
1132GapA 1.61 315 2.33 225 1.43 270 1.73 274 0.96 145
1133GapC 5.54 1099 3.25 825 2.33 643 2.51 807 2.15 784
1231GapB 0.37 22 1.62 84 0.81 18 1.51 141 0.75 67
1232GapA 0.72 102 2.45 359 2.02 276 1.54 215 1.20 174
1233GapC 0.83 46 1.79 192 1.73 195 1.40 199 1.57 289
1331GapB 1.02 272 3.83 612 1.83 364 1.24 327 1.23 337
1332GapA 0.99 167 1.94 259 2.20 276 1.41 140 1.24 200
1333GapC 4.41 820 4.54 937 3.21 991 3.29 886 2.45 846
1431GapB 0.75 183 2.69 606 3.86 415 2.04 552 2.90 520
1432GapA 0.68 91 2.32 286 1.43 133 1.25 157 1.05 247
1433GapC 4.41 562 3.51 580 3.76 964 3.50 839 2.28 564
1532GapA 0.86 61 1.64 189 1.08 74 1.06 91 1.21 285
1533GapC 1.83 269 2.63 335 1.88 307 1.66 295 1.31 252
1632GapA 1.91 212 2.28 318 2.14 292 1.85 287 1.69 428
1633GapC 2.32 352 4.51 931 2.23 351 2.97 719 1.74 417
1731GapB 0.86 164 1.33 174 1.12 137 0.96 83 1.03 212
1733GapC 3.28 416 5.17 943 3.50 666 2.86 639 2.23 470
1832GapA 0.84 132 1.52 137 1.46 127 1.16 160 1.06 102
1833GapC 3.70 633 3.39 647 2.95 806 2.02 707 1.81 512
1932GapA 0.52 93 1.02 55 1.29 69 0.66 49 0.60 29
1933GapC 0.48 90 1.72 341 2.20 310 1.75 264 1.42 432
2031GapB 0.38 66 1.38 95 1.51 80 1.35 135 1.07 121
2032GapA 0.78 71 1.83 158 1.34 116 1.61 207 0.93 99
2033GapC 4.52 1122 6.03 1604 2.71 870 3.47 1624 1.83 655
2132GapA 1.82 257 2.59 246 2.68 429 1.67 327 1.25 187
2133GapC 1.11 234 1.95 294 1.83 208 1.23 215 1.16 234
2232GapA 1.27 156 2.65 311 3.16 497 1.72 270 1.31 213
2233GapC 1.16 103 2.19 199 1.82 206 1.76 181 1.46 207
2331GapB 0.29 33 0.78 24 0.67 45 0.63 33 0.54 37
2332GapA 1.22 202 2.57 500 2.47 508 1.56 382 1.37 368
2333GapC 2.67 263 4.25 514 2.85 473 2.88 587 1.98 369
2431GapB 0.90 161 2.06 294 1.62 183 1.21 208 0.91 155
2432GapA 1.77 221 2.24 222 2.74 291 1.64 233 1.27 113
2433GapC 2.18 221 2.21 220 1.83 301 1.76 193 1.42 370
2532GapA 1.25 193 2.21 288 1.34 163 1.69 324 1.12 223
2533GapC 0.77 56 1.90 128 1.50 134 1.42 90 1.19 95
2632GapA 1.24 120 2.64 375 2.10 264 1.70 182 1.39 203
2633GapC 0.84 257 2.54 451 1.75 497 1.42 346 1.06 278
2731GapB 0.65 71 1.69 122 1.33 131 1.06 104 0.83 64
2732GapA 0.81 48 1.75 173 1.89 160 1.75 267 1.21 116
2733GapC 2.72 334 3.93 956 3.18 776 2.09 446 1.57 426
2831GapB 0.64 103 1.71 152 1.81 205 1.34 260 1.12 160
2832GapA 0.63 49 2.20 176 1.65 112 1.55 166 1.05 70
2833GapC 2.60 334 2.42 367 3.33 646 2.83 823 1.72 446
2931GapB 0.47 47 1.59 92 1.52 117 1.67 206 1.20 141
2932GapA 0.73 104 2.04 157 1.09 77 1.28 161 0.77 48
2933GapC 0.93 89 2.07 145 1.92 266 1.27 97 1.02 80
3032GapA 0.71 77 1.84 130 1.52 79 1.37 117 0.90 66
3033GapC 1.17 121 2.28 243 2.53 417 2.25 399 1.71 405
3131GapB 0.91 108 2.31 258 1.14 174 1.24 188 1.15 181
3132GapA 1.30 164 2.22 298 1.97 364 1.53 295 1.41 471
3133GapC 2.84 284 4.43 1023 2.41 377 3.62 809 1.96 404
3231GapB 0.27 12 1.66 83 0.73 42 0.82 34 0.73 76
3232GapA 1.94 456 3.08 636 2.60 524 1.77 482 1.23 300
3233GapC 0.76 49 3.12 484 2.57 243 1.94 382 2.01 383
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Table 5.14: Computational comparison LGAP instances with d = 0

ABF DB-Bf-Ls DB-Cf-Ls MW-Bf-Ns-V(o) MW-Cf-Ns-V(o)
Instance time BB nodes time BB nodes time BB nodes time BB nodes time BB nodes
GapA0 180.51 3598 206.89 6200 332.06 10782 69.91 10075 51.36 7051
GapA1 254.65 4298 518.42 11738 198.74 5376 52.11 5404 58.77 7912
GapA2 104.92 1632 51.50 1839 58.18 4050 15.17 1825 18.22 2406
GapA3 279.24 5786 116.14 5816 150.57 6215 39.96 4444 33.15 4240
GapA4 90.49 1983 27.62 1128 27.53 1140 6.12 800 6.93 813
GapA5 351.44 7282 1474.13 18487 290.18 11024 152.10 17926 110.05 16040
GapA6 25.83 497 36.67 1593 45.72 1542 9.34 1249 8.46 632
GapA7 673.16 14230 985.08 26893 570.78 11875 249.32 27138 87.90 11171
GapA8 233.24 4277 253.95 5653 113.17 4547 28.68 2819 31.58 3474
GapA9 192.42 3940 130.95 3502 79.98 3475 30.48 3857 16.94 2670
GapA10 80.28 1964 57.52 4706 69.41 2640 18.62 2411 17.64 2525
GapA11 290.59 5013 482.73 13463 192.75 6080 91.10 9537 72.61 13601
GapA12 294.77 5226 135.73 3213 126.72 4114 36.54 4902 25.97 2645
GapA13 753.77 18682 1005.50 27698 1439.72 41766 85.74 11575 137.77 16627
GapA14 62.78 1155 44.27 1628 40.81 1814 14.31 1893 21.58 2669
GapA15 53.17 1224 83.95 3846 83.90 3722 24.17 2820 30.37 4000
GapA17 347.50 6153 806.19 16242 256.85 6077 146.04 13576 53.64 5853
GapA18 29.46 563 19.63 1087 18.44 795 9.65 1089 12.06 1039
GapA19 31.71 619 112.02 3060 38.32 2037 11.77 1343 14.40 1639
GapB0 64.20 1514 108.57 3656 43.45 1778 12.89 1905 29.55 3681
GapB1 219.35 2386 62.00 2078 129.86 3310 24.92 3057 37.26 3392
GapB2 32.94 554 50.56 4020 67.67 2808 22.15 3684 21.67 2865
GapB3 144.92 2747 156.81 4558 114.52 4794 51.03 4657 46.40 4653
GapB4 29.76 326 73.52 2037 45.36 1422 14.58 1443 22.37 1868
GapB5 41.63 737 46.30 1173 18.23 978 15.00 1053 14.06 1300
GapB6 101.37 1234 96.10 3033 217.08 4956 26.88 2533 23.95 2234
GapB7 418.31 3537 337.37 6956 367.81 7293 85.06 6290 69.98 5603
GapB8 45.06 593 47.70 1762 94.51 3763 21.41 2179 26.21 2303
GapB9 784.66 10102 736.68 16135 412.11 14372 175.41 17731 88.72 10749
GapB10 115.05 1715 334.53 6094 92.50 3858 40.62 4347 29.57 4046
GapB11 73.87 1107 137.56 2839 133.89 3490 25.90 2809 27.07 2598
GapB12 380.74 7994 272.51 7181 316.04 6685 48.51 5926 65.02 6963
GapB13 56.75 729 66.99 1655 65.59 2772 18.94 1745 16.85 1680
GapB14 323.54 5379 276.74 10055 371.52 7900 63.17 9717 54.76 6432
GapB15 189.52 2937 144.69 3837 164.51 4748 60.71 5569 51.47 4162
GapB16 110.06 1872 120.79 3126 79.16 3020 30.82 3375 40.28 3814
GapB17 67.51 859 39.30 1359 55.72 1932 14.71 1101 17.96 1401
GapB18 112.37 1571 157.23 3555 217.06 5843 30.68 2845 73.54 7594
GapB19 183.18 2865 435.00 5194 229.34 7927 24.08 2238 34.46 3282
GapC0 656.67 11952 730.01 12613 1718.11 17191 110.22 12303 96.45 8452
GapC1 60.72 763 40.04 1378 65.59 1991 14.76 1132 12.55 1639
GapC2 190.81 2840 192.85 5690 118.91 4092 32.27 3614 32.25 3008
GapC3 80.59 841 114.49 2509 245.10 5585 39.18 3685 36.32 3539
GapC4 151.80 2002 325.22 5364 225.97 7310 46.06 4029 79.55 7462
GapC5 572.23 8238 340.60 8900 324.16 13383 86.84 8470 94.37 7523
GapC6 532.97 9362 474.99 8367 450.02 11545 54.17 7683 54.15 6170
GapC7 656.82 5840 654.17 7895 183.46 4384 85.65 4874 53.24 3666
GapC8 109.28 1030 128.60 2899 103.81 2209 75.98 7439 30.06 2032
GapC9 457.91 7741 576.43 9738 367.96 8002 45.30 4495 54.99 5846
GapC10 50.75 737 64.63 2056 56.33 1877 14.82 1420 25.66 3122
GapC11 129.17 1954 111.45 4956 118.78 2684 32.96 3577 36.88 3798
GapC12 120.30 1459 161.72 4017 162.13 4442 64.59 6322 53.04 5075
GapC13 62.97 620 81.43 1513 55.51 1428 15.81 1322 18.65 1447
GapC14 64.61 659 69.06 1689 210.63 3486 20.71 1958 29.07 2990
GapC15 446.99 8640 387.06 10909 464.01 8600 90.86 9768 72.41 9071
GapC16 311.47 3284 153.62 5820 190.83 4928 56.38 4800 33.65 3165
GapC17 199.93 2821 495.42 10481 325.08 15013 42.90 4767 76.42 8025
GapC18 175.99 2741 137.80 4290 387.79 7931 34.20 3168 39.36 4342
GapC19 359.34 7724 970.34 17147 621.00 12150 104.93 12240 58.47 6675
GapA0U 247.04 4182 144.39 4415 116.72 3087 33.54 3050 29.33 4273
GapA1U 40.64 482 29.13 1271 47.96 1497 14.54 1261 8.28 810
GapA2U 75.21 1669 51.26 1973 35.35 2268 13.34 1870 11.20 1647
GapA3U 635.70 14218 611.33 18192 584.43 15910 103.30 11463 120.07 18379
GapA4U 104.83 2840 84.15 4291 92.69 4129 21.53 4029 21.91 3506
GapA5U 401.88 7766 299.85 8351 188.75 6213 75.38 8068 42.06 4380
GapA6U 174.01 2950 52.34 2137 66.74 2864 15.22 1393 15.78 2037
GapA7U 218.87 4972 81.37 3738 87.05 4458 18.71 2140 18.91 2612
GapA8U 101.81 1973 116.71 4312 57.26 2797 31.77 3832 16.58 2321
GapA9U 195.76 3544 127.10 6034 126.51 4723 19.23 2102 19.88 2928
GapB0U 345.24 6844 193.40 3881 199.91 5199 31.74 3058 39.69 5111
GapB1U 128.95 1686 86.93 3573 90.87 2944 36.59 3381 29.41 2554
GapB2U 381.39 6203 119.02 5079 132.99 4917 33.88 4531 40.98 3984
GapB3U 29.71 383 46.29 1393 16.22 665 9.53 675 8.61 718
GapB4U 424.15 8107 269.06 5788 216.69 5753 48.34 5849 58.63 6238
GapB5U 369.94 5452 263.31 7345 218.22 6704 65.27 5527 66.20 7181
GapB6U 591.74 6829 491.47 6359 535.65 9656 75.64 6695 66.49 6034
GapB7U 232.56 3006 787.31 10413 453.05 9059 98.17 10343 53.99 4651
GapB8U 750.76 12510 858.13 14930 753.22 12720 138.27 12956 91.82 11758
GapB9U 84.58 1453 101.42 3537 122.17 5454 66.31 7790 28.49 3216
GapC0U 225.39 2956 180.79 4379 140.61 4195 32.52 3264 43.53 4074
GapC1U 187.04 2869 200.67 4871 473.38 6752 73.56 4344 99.99 6868
GapC2U 30.15 506 26.11 1155 22.82 1105 10.49 854 9.82 1018
GapC3U 158.19 2305 196.15 7898 87.91 4136 31.49 3535 44.07 3544
GapC4U 35.31 422 95.76 2045 48.04 1803 11.87 974 13.25 1340
GapC5U 626.71 7558 530.75 8288 1866.56 25748 79.03 7956 133.30 12640
GapC6U 71.04 1167 97.76 2326 60.90 2399 29.61 3022 20.78 2330
GapC7U 35.58 408 21.59 833 23.81 1075 16.54 1149 11.50 728
GapC8U 120.83 1579 120.81 3274 182.03 3983 123.92 10206 75.96 7266
GapC9U 387.38 4632 143.72 2655 250.91 4890 33.47 3141 39.75 3331
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Chapter 6

Conclusions

This thesis addressed an important class of discrete facility location problems (FLPs)

called multi-level facility location problems (MLFLPs). We concentrated our efforts

in a general class of MLFLPs, denoted multi-level uncapacitated p-location problems

(MUpLPs). In a sense, these problems can be considered fundamental given the fact

that they generalize well-known discrete FLPs while maintaining the mathematical

structure which enables the development of efficient solution methods. Moreover,

MLFLPs appear as subproblems in various application-driven research areas. Mo-

tivated by this increasing interest in the field, and by identifying that most general

versions of these problems lacked efficient exact algorithms to solve them, we em-

braced the challenge of this venture.

In Chapter 2 we reviewed the main references related to the field of MLFLPs,

including uncapacitated and capacitated variants. There, we clearly defined the class

of MLFLPs by identifying their main characteristics. We also pointed out the differ-

ences and similarities with well-known related areas. Based on the types of decisions

involved, we determined three main categories within the area and proposed a classi-

fication scheme. Moreover, for each category of MLFLPs we presented overviews of

formulations and solution algorithms. We noted that with the exception of one, all
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papers concerned with the development of exact algorithms (or polyhedral studies)

referred to the special case of two levels. Thus, all the work to solve the most gen-

eral versions of these problems comes from the approximation algorithms context. In

particular, an important number of papers have been published relating to the devel-

opment of approximation algorithms with performance guarantees for the multi-level

uncapacitated facility location problem (MUFLP).

In Chapter 3 we introduced an alternative combinatorial representation for the

MUFLP, which is one of the most representative MLFLPs. This new characterization

considers paths as elements of the ground set to be selected or opened, in contrast

with the classical one which uses the set of vertices. An important observation of

this new representation of the problem is that the corresponding objective function

satisfies the submodularity property. This clarified a previous conclusion from the

literature where the problem was proved not to possess this property referring to the

classical representation. Hence, we illustrated that the submodularity property is not

intrinsic to an optimization problem but rather to a set function of its mathematical

representation. Then, in Chapter 4 we were able to use this result pertaining to the

submodular property in the general case of the MUpLP. We proposed a new MILP

formulation which we denoted as submodular formulation and a greedy heuristic with

worst-case performance results. Although the area of approximation algorithms with

performance guarantees has been a rich field of research for MLFLPs, we were able

to improve the best-known bound for the maximization version of the problem and

develop sharper bounds for the multi-level p-median problem (MpMP). In particular,

we obtained a (1−1/e)-approximation algorithm for the case in which profits are non-

negative and additive. We also presented the computational results of our experiments

where we assessed the performance of the submodular formulation and that of the

greedy heuristic. The results confirm the efficiency of the submodular formulation

over previous formulations modified for the MpMP. Our results also show that for the
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more general case of the MUpLP, none of the considered MILP formulations clearly

dominates the others, although, on average, the submodular formulation performs

best.

Finally, in Chapter 5 we studied an extension of the MUpLP in which link acti-

vation decisions between levels of facilities are considered. We denoted this version

of the problem as MUpLP-E. We developed a sophisticated exact algorithm based on

a Benders reformulation to solve large-scale instances of the problem. We included

various techniques in order to enhance a straightforward implementation. Among

others, we considered diverse methods to identify Pareto-optimal cuts, we exploited

the network flow structure of the subproblems, considered updating the core point at

every iteration, and added valid inequalities to the model. The results of extensive

computational experiments confirm the efficiency of our Benders decomposition algo-

rithm. Instances of the MUpLP-E with up to 3,000 customers, 250 potential facilities,

and four levels of hierarchy were solved to optimality. We used two types of instances,

one randomly generated, where the best version of the Benders algorithm was able

to reduce by more than three orders of magnitude the average CPU time from that

obtained using an arc-based formulation in a state-of-the-art general purpose solver.

For the second, some hard benchmark instances with large LP gaps, a 90% reduction

in the average CPU time was obtained compared with the previous formulation.

Although this is an area of research that has received considerable attention,

we believe that there are several topics that are yet to be studied in this context.

Exploring more general and challenging versions of the problems in order to assess

the limits of these results is an important research avenue. Also, numerous variants

of the fundamental FLPs in one level have been studied from an applications and

theoretical point of view. Most of these versions could extend to the multi-level

environment. For instance, some recent papers in MLFLPs have considered uncertain

parameters, dynamic facility location where facilities can be opened and closed at each
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time period, or MLFLPs with service penalties where customers can be chose not to

be served. Another important step towards a more systematic growth of the field is

the incorporation of a common set of instances for MLFLPs that allows a more fair

comparison of the techniques implemented.
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[43] J.-F. Cordeau, G. Stojković, F. Soumis, and J. Desrosiers. Benders decompo-

sition for simultaneous aircraft routing and crew scheduling. Transportation

Science, 35(4):375–388, 2001.

[44] J.-F. Cordeau, F. Pasin, and M. M. Solomon. An integrated model for logistics

network design. Annals of Operations Research, 144:59–82, 2006.
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