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Abstract

Techniques for Detection and Tracking of Multiple Objects

Mohamed Naiel, Ph.D.

Concordia University, 2017

During the past decade, object detection and object tracking in videos have re-

ceived a great deal of attention from the research community in view of their many

applications, such as human activity recognition, human computer interaction, crowd

scene analysis, video surveillance, sports video analysis, autonomous vehicle naviga-

tion, driver assistance systems, and traffic management. Object detection and object

tracking face a number of challenges such as variation in scale, appearance, view

of the objects, as well as occlusion, and changes in illumination and environmental

conditions. Object tracking has some other challenges such as similar appearance

among multiple targets and long-term occlusion, which may cause failure in tracking.

Detection-based tracking techniques use an object detector for guiding the track-

ing process. However, existing object detectors usually suffer from detection errors,

which may mislead the trackers, if used for tracking. Thus, improving the perfor-

mance of the existing detection schemes will consequently enhance the performance

of detection-based trackers. The objective of this research is two fold: (a) to investi-

gate the use of 2D discrete Fourier and cosine transforms for vehicle detection, and

(b) to develop a detection-based online multi-object tracking technique.

The first part of the thesis deals with the use of 2D discrete Fourier and cosine

transforms for vehicle detection. For this purpose, we introduce the transform-domain

two-dimensional histogram of oriented gradients (TD2DHOG) features, as a trun-

cated version of 2DHOG in the 2DDFT or 2DDCT domain. It is shown that these

TD2DHOG features obtained from an image at the original resolution and a down-

sampled version from the same image are approximately the same within a multi-

plicative factor. This property is then utilized in developing a scheme for the de-
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tection of vehicles of various resolutions using a single classifier rather than multiple

resolution-specific classifiers. Extensive experiments are conducted, which show that

the use of the single classifier in the proposed detection scheme reduces drastically

the training and storage cost over the use of a classifier pyramid, yet providing a de-

tection accuracy similar to that obtained using TD2DHOG features with a classifier

pyramid. Furthermore, the proposed method provides a detection accuracy that is

similar or even better than that provided by the state-of-the-art techniques.

In the second part of the thesis, a robust collaborative model, which enhances the

interaction between a pre-trained object detector and a number of particle filter-based

single-object online trackers, is proposed. The proposed scheme is based on associat-

ing a detection with a tracker for each frame. For each tracker, a motion model that

incorporates the associated detections with the object dynamics, and a likelihood

function that provides different weights for the propagated particles and the newly

created ones from the associated detections are introduced, with a view to reduce the

effect of detection errors on the tracking process. Finally, a new image sample selec-

tion scheme is introduced in order to update the appearance model of a given tracker.

Experimental results show the effectiveness of the proposed scheme in enhancing the

multi-object tracking performance.
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Chapter 1

Introduction

1.1 General

The past decade has witnessed significant progress in the computational power and

storage capability of portable computers, reliability and speed of several types of com-

munication networks, and high-resolution digital cameras, as well as a huge increase

in the number of Internet and social media users. These developments have resulted

in an explosive growth in visual information that have introduced new challenging

problems in the computer vision field to automatically analyze and understand this

information. In this context, object detection and tracking in videos can be the two

main building blocks for several computer vision applications, such as human activity

recognition, human computer interaction, crowd scene analysis, video surveillance,

sports video analysis, autonomous vehicle navigation, driver assistance systems, and

traffic management.

In computer vision literature, various techniques have been introduced in order

to tackle the problem of detection of pedestrians and vehicles in images and videos.

There has been a great deal of work carried out in this field [1–4], especially, in

designing an object detector that takes into consideration the changes in scale, ap-

pearance, view of the objects, as well as partial occlusion, and changes in the il-
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lumination conditions. Multi-object tracking (MOT) is another challenging prob-

lem in computer vision, which has numerous applications such as automatic visual

surveillance, behavior analysis, and intelligent transportation systems. Recently,

detection-based tracking has received considerable attention [5]. In detection-based

tracking, an object detector that has been trained on a specific class (for example,

cars) is used to guide multiple object trackers. The main objective of multi-object

tracking techniques is to maintain the identity of the objects through a given video

sequence by solving an association problem among detections and trackers. Existing

object detectors usually suffer from false positive and missed detections, which may

misguide the tracker, when used for tracking. Thus, the design of an object detector

that offers a high detection accuracy is a pre-condition for obtaining a detection-based

tracker that is able to follow changes in the object appearance through time.

1.2 Literature Review

In this section, a review on some of the recent advances in detection and tracking of

multiple objects is presented.

1.2.1 Object Detection

For the purpose of object detection and recognition, several types of image features

and their representations, such as the histogram of oriented gradients (HOG) [6],

Haar-like features [7], interest-points based features [8–12], shape context [13], lo-

cal binary patterns [14], and 3D voxel patterns (3DVP) [15], have been introduced.

The various schemes for object detection may be categorized into three main types,

namely, sliding window-based methods, part-based methods, and interest point-based

methods.

In the sliding window-based methods, features of a certain type are obtained for the

entire object. For instance, in 1998 the Haar-wavelet basis functions were introduced
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by Papageorgiou et al. [7] for face or pedestrian detection. The Haar-wavelet was

used to extract an overcomplete set of features from the target object, followed by

a feature selection technique, where the support vector machine (SVM) classifier

was used. Later, Viola and Jones [16] introduced the Haar-like features for fast

computation of an approximated version from Haar-wavelet and used the adaptive

boosting (AdaBoost) technique for feature selection. These Haar-like features have

been employed widely in several application domains, such as face detection [17],

pedestrian detection [18], and object tracking [19].

In 2005, Dalal and Triggs [6] introduced a human detection algorithm that is

based on HOG features with a linear SVM for classification. Later, HOG features

have been investigated widely and used in the state-of-the-art techniques for ob-

ject detection and description [4]. Instead of the 1D vector representation of HOG

[6, 20, 21], several papers have adopted a 2D representation [22–24], since the latter

preserves the relations among the neighboring pixels or cells. In order to distinguish

the 2D representation from the 1D one, we will call it 2DHOG. Both the 1D and

2D representations of HOG capture the edge structure of the object and are robust

against illumination changes and background clutters. However, neither of these rep-

resentations is resolution invariant. Thus, detectors employing these representations

require extracting HOG or 2DHOG features at each scale from an image pyramid,

thus requiring a costly multi-scale scanning in the testing mode [22, 23].

There are several works that have been introduced to reduce the complexity of

computing the HOG features [23, 25–28]. For instance, Zhu et al. [25] introduced a

computationally fast method for obtaining HOG features using integral histograms

[29]. In this method, AdaBoost [30] was used with HOG as a feature selection tech-

nique from a large set of features, where the SVM classifier was used as a weak

classifier for every consistent set. However, AdaBoost requires expensive parameter

tuning, and thus, a high training cost. Dollár et al. [23] combined multiple fea-

ture channels, such as grayscale, gradient magnitude and 2DHOG, with a modified
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AdaBoost based on using the multiple-instance pruning algorithm [31] to overcome

the expensive parameter tuning of the original one [30]. Even though the integral

images and integral histograms were used for the fast computation of the channel

features, this method needs the extraction of features from an image pyramid, thus

resulting in a high computational cost in the testing mode.

Recently, Dollár et al. [32, 33] proposed a feature approximation technique, where

gradient histograms and color feature responses generated at one scale of an image

pyramid can be used to approximate the feature responses at nearby scales. This

method results in a speedup of extracting the features from the image pyramid over

the methods of [22, 23], with only a small reduction in the detection accuracy. In this

technique, the feature responses can be approximated with high accuracy within one

octave of the scales of the image pyramid. Later, authors in [34, 35] enhanced the

detection performance of [32] by constructing a classifier pyramid instead of an image

pyramid. However, since the methods in [34] and [35] are based on constructing a

classifier pyramid with multiple classifiers trained at different sizes of the object, they

require a high training and storage cost.

The part-based methods have received a great deal of attention from the research

community, as these schemes can handle partial occlusion, and represent targets with

several views [18, 24, 36–42]. The general idea in part-based techniques is that an

object of interest is divided into a number of components and every component is

detected separately, where a fusion rule is used for combining the results of multiple

detected components. For instance, Mohan et al. [18] considered the human body

to consist of four components (face, legs, and left and right arms) and proposed a

classifier for each of the components. In this method, a two-level detector was used.

In the first level, the Haar-wavelet was obtained, and for each body part a SVM

classifier was trained. Then in the second level, the responses of the four detectors

were fused using another SVM classifier to obtain the final decision.

In 2005, Felzenszwalb and Huttenlocher [38] introduced a learning technique for
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generic part-based models. Inspired by the pictorial structure representation in [43],

each local part of the object is assumed to encode the local part visual properties,

and a deformable configuration is used to represent the relationship between the

local parts. Later, Felzenszwalb et al. [24] have proposed a pictorial structure for

HOG features, referred to as deformable part-based model (DPM). In this method,

the locations of the parts are used as latent variables for a latent support vector

machine (LSVM) classifier to find the optimal object position. Later, several other

techniques adopted DPM [24] for vehicle detection [41, 44, 45], providing a high

detection accuracy. However, they require convolutions of the features of a given level

of the image pyramid with a number of part filters, resulting in a high computational

cost.

Some of the latest schemes in the area of object detection [15, 46, 47] have at-

tempted to overcome the problems concerning scale, aspect ratio or severe occlusion.

For example, the method in [46] has used a detection scheme based on the DPM

detector [24] and introduced a method for clustering the training data into a number

of similar occlusion patterns. These patterns have been used with different occlusion

strategies to train the LSVM classifier [24]. Later, Xiang et al. [15] have combined

3DVP object representation, which encodes the appearance, 3D shape, view-point,

the level of occlusion and truncation, with a boosting detector based on the detection

scheme in [33] in order to learn from the occluded and non-occluded 3DVPs obtained

from a training set. Recently, the authors in [47] have introduced region-based fea-

tures with a coordinate normalization scheme, referred to as regionlet features, and a

cascaded boosting classifier to deal with the problems of detecting objects of different

scales and aspect ratios. Even though these methods have been effective in dealing

with these problems, they suffer from high complexity either in the training mode, as

in [15, 47], or in the testing mode, as in [46].

The detection accuracy employing HOG or its variants in the spatial domain has

started to saturate [4]. Recently, the fast Fourier transform (FFT) has been used with

5



2DHOG in order to replace the costly convolution operation in the spatial domain

by multiplication in the FFT domain [48]. This scheme provides a speedup over the

spatial domain counterpart. However, it is based on training an object detector in

the spatial domain, which usually requires large storage and training cost.

In the interest point-based methods, local interest points are first detected and

then described [8–11, 49, 50], followed by the construction of a codebook for objects of

interest by using the features obtained from the detected image patches. For instance,

Leibe et al. [12] use a collaboration between object detection and object probabilistic

segmentation to extract features relevant to the object and the discarded background

regions. In this scheme, interest points are extracted, and then an implicit shape

model (ISM) is used to construct the codebook for all objects. The ISM allowed

learning the object model using a few training examples. However, the codebook

construction usually requires a high computational cost with large datasets.

1.2.2 Multi-Object Tracking

In the past decade, a lot of attention has been paid on detecting and tracking one

or more objects in videos. Recent advancement in object detection has facilitated

collaboration between the detection and tracking modules for multi-object tracking

[5]. Robust multi-object tracking involves the resolution of many problems such

as occlusion, appearance variation, and illumination change. A pre-trained object

detector that is robust to appearance variation of one specific class is often used as

a critical module of most multi-object tracking methods. Specifically, one detector

encodes the generic pattern information about a certain object class (for example,

cars), and a single tracker models the appearance of the specific target to maintain

the target identity in an image sequence. However, an object detector is likely to

generate false positives and negatives, thereby affecting the performance of the tracker

in terms of data association and online model update.
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In multi-object tracking, offline methods based on global optimization of all object

trajectories usually perform better than their online counterparts [51–59]; an experi-

mental evaluation of recent methods can be found in [60]. For instance, to solve the

data association problem, Brendel et al. [52] formulated this problem as finding the

maximum-weight independent set of a graph of tracklets, while Zamir et al. [55] used

generalized minimum clique graphs. In [59], this problem was solved by using a sliding

window of three frames to generate short tracklets. The minimum-cost network flow

is then used to optimize the overall object trajectories. For real-time applications,

online methods [5, 61–63] have been developed within the detection-based tracking

framework, where the data association between detections and trackers are carried

out online.

Online multi-object tracking can be carried out by using joint state-space models

for multi-targets [61, 64–68]. For instance, a mixture particle filter has been pro-

posed in [61] to compute the posterior probability via a collaboration between an

object detector and the proposal distribution of the particle filter. However, the joint

state-space tracking methods are of high computational complexity. The probability

hypothesis density filter [69] has been incorporated in visual multi-target tracking

[67, 70], since the time complexity is linear with respect to the number of targets.

However, it does not maintain the target identity, and consequently, requires an on-

line clustering method to detect the peaks of the particle weights and applies data

association to each cluster.

Numerous online multi-object tracking methods have dealt with the trackers in-

dependently [5, 63, 71–73]. In [5], a method based on a particle filter and two human

detectors with different features was developed, where the observation model depends

on the associated detection, the detector confidence density and the likelihood of ap-

pearance. In addition, Shu et al. [63] introduced a part-based pedestrian detector

for online multi-person tracking. These methods are likely to have low recall as the

detector and tracker are not integrated within the same framework.
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Particle filters suffer from the degeneracy problem [74], wherein after a few itera-

tions, except for one particle all the others have negligible weights. This problem has

been addressed by several authors [75–78] with effective proposal distributions and

re-sampling steps. Rui and Chen [76] used the unscented Kalman filter for generating

the proposal distribution, while Han et al. [79] used a genetic algorithm to increase the

diversity of the particles. Recently, the Metropolis Hastings algorithm [80] has been

used to sample particles from associated detections in the detection-based tracking

framework [78]. The above-mentioned methods do not exploit collaboration between

detectors and trackers [76, 79], nor do they consider the effect of false positive detec-

tions on the trackers [78].

1.3 Motivation

Detection accuracy of object detectors that are based on features obtained in the

spatial domain has started to saturate [4]. Not much effort has been made in using

transform-domain features with a view of improving the accuracy of object detection

or reducing the storage and training cost. An object detector usually suffers from

false positives and missing detections which affect the tracking process, when used

for tracking. In view of this, a careful study is needed to develop a more effective

collaborative model between detections and trackers in order to improve the tracking

process.

1.4 Objectives and Organization of the Thesis

The objective of this thesis is two fold: (i) to establish a relationship between the

TD2DHOG features obtained at two different resolutions and use this relationship

in developing a vehicle detection scheme that is able to tackle the problems of vari-

ations in the vehicle scale and view, and changes in illumination and environmental
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conditions at low training and storage costs, and (ii) to develop a robust and efficient

online detection-based multi-object tracking scheme.

In the first part of the thesis, a new vehicle detection scheme using transform-domain

2DHOG features is proposed [81, 82]. The method is based on extracting the 2DHOG

features from the input image and then applying 2D discrete Fourier or cosine trans-

form to these 2DHOG features. This is followed by a truncation process through

which only the low frequency coefficients, referred to as the transform-domain 2DHOG

(TD2DHOG) features, are retained. It is shown that the TD2DHOG features ob-

tained from an image at the original resolution and a downsampled version from the

same image are approximately the same within a multiplicative factor. This prop-

erty is then utilized in developing a scheme for the detection of vehicles of various

resolutions using a single classifier rather than multiple resolution-specific classifiers.

Extensive experiments are conducted on three vehicle detection datasets, namely,

UIUC car detection dataset [83], the USC multi-view car detection dataset [28], and

the LISA 2010 dataset [84]; the results show that the use of the single classifier in

the proposed detection scheme reduces drastically the training and storage costs over

the use of a classifier pyramid, yet providing a detection accuracy similar to that

obtained using TD2DHOG features with a classifier pyramid. Furthermore, the pro-

posed method provides a detection accuracy that is similar to or even better than

that provided by the state-of-the-art techniques.

In the second part of the thesis, a robust collaborative model that enhances the

interaction between a pre-trained object detector and a number of particle filter-based

single-object online trackers is presented [85, 86]. For each frame, an association be-

tween a detection and a tracker is constructed. For each tracker, a motion model that

incorporates the associated detections with the object dynamics, and a likelihood

function that provides different weights for the propagated particles and the newly

created ones sampled from the associated detections are introduced, with a view to

reduce the effect of detection errors on the tracking process. Finally, a new image
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sample selection scheme is introduced in order to update the appearance model of a

given tracker. Extensive experiments are conducted on seven challenging sequences,

namely, the PETS09-S2L1, PETS09-S2L2 [87], UCF Parking Lot (UCF-PL) dataset

[63], Soccer dataset [62], Town Center dataset [88], and Urban as well as Sunny se-

quences from LISA 2010 dataset [84], which show that the proposed scheme generally

outperforms state-of-the-art methods.

The organization of the thesis is as follows: In Chapter 2, we present a brief

overview on 2DHOG features, and the effect of image resampling on the 2DHOG

features. In Chapter 3, TD2DHOG features are defined and a method of extract-

ing the TD2DHOG features is presented. It is shown that the TD2DHOG features

obtained from an image at the original resolution and a downsampled version from

the same image are approximately the same within a multiplicative factor. A model

for the multiplicative factor has been proposed and the parameters for this model

are determined using various vehicle detection datasets. Then, this model is used in

proposing a scheme for vehicle detection of different resolutions using a single classi-

fier rather than a classifier pyramid. Extensive experiments are conducted to study

the performance of the proposed scheme for vehicle detection. In Chapter 4, a robust

online multi-object tracking scheme in the particle filter framework is presented. In

this scheme, a robust collaborative model for the interaction between a number of

single-object online trackers and a pre-trained object detector is presented. A novel

image sample selection scheme is introduced to update each tracker by using relevant

samples from its trajectory. Also, a data association method with partial occlusion

handling by using diverse generative models composed of sparsity-based generative

model, and two-dimensional principal component analysis (2DPCA) generative model

is presented. Extensive experiments are conducted to study the effectiveness of the

proposed scheme in enhancing the multi-object tracking performance. Chapter 5

concludes with the highlights of the contributions of the thesis, followed by some

suggestions for future work.
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Chapter 2

Review of Background Material

In this chapter, we present a brief review of the material required for the development

of the proposed object detection and tracking schemes in subsequent chapters.

2.1 Two-Dimensional HOG Features

Two-dimensional histogram of oriented gradients (2DHOG) features are similar to

the HOG features introduced by Dalal and Triggs [6], the difference being the way in

which the features are represented, namely, in a 2D matrix format in the case of the

former and a 1D vector format in the case of the latter. The 2DHOG features have

been used in a number of papers [22–24].

Figure 2.1 shows block diagram for the extraction process of 2DHOG features from

an input car image of size (32× 96). Let us consider an image, I, of size (M1 ×M2),

and divide it into non-overlapping cells of size (η1 × η2) pixels. The 2DHOG features

are computed from the input image as follows. First, we convolve the image I with the

filter L = [−1, 0, 1] and its transpose L� to obtain the gradients gx(i, j) and gy(i, j),

in the x and y directions, respectively, where i and j denote the pixel indices. Then,

we compute the magnitude Γ(i, j) and the orientation θ(i, j) of the gradient at (i, j)
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as

Γ(i, j) =
√

gx(i, j)2 + gy(i, j)2

θ(i, j) = arctan (gy(i, j)/gx(i, j))
(2.1)

Next, the orientation θ(i, j) is quantized into β bins such that the quantized orienta-

tion θ̂(i, j) ∈ Ω and Ω = [0, π/β, ..., (π − π/β)]. Then, the 2DHOG features for the

lth layer, hl(̂i, ĵ), can be computed using the equation

hl(̂i, ĵ) =
∑îη1

i=(̂i−1)η1+1

(∑ĵη2
j=(ĵ−1)η2+1

Γ(i, j)δl(i, j)
)

(2.2)

where

δl(i, j) =

⎧⎪⎨
⎪⎩
1, if θ̂(i, j) = Ω(l)

0, otherwise

(2.3)

î and ĵ being the cell indices, 1 ≤ î ≤ M̃1 = M1/η1, 1 ≤ ĵ ≤ M̃2 = M2/η2, such that

M̃1 and M̃2 are integers. Thus, the 2D representation for the HOG features results

in β-layers, hl (l = 1, 2, ..., β), where the spatial relation between neighboring cells is

maintained, and the size of each layer is (M̃1 × M̃2).

2.2 Effect of Image Resampling on Channel Fea-

tures

Statistics of resampled images in the spatial domain have been studied in [89, 90].

Recently, the effect of image resampling on 2D channel features in the spatial domain,

such as color image, gradient magnitude and 2DHOG, has been studied by Dollár et

al. in [32, 33]. In this section, we give a brief description of the work in [33], which will

be used later in developing the proposed detection scheme in the subsequent chapter.
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Figure 2.2: Block diagram illustrating the approximate relationship between the re-

sampled features of an image at a given resolution and the features extracted from a

resampled version of the same image.

Let Is = P(I, s) denote the input image I resampled by a factor s, where s < 1

represents downsampling, s > 1 represents upsampling, and P represents the re-

sampling operator in the spatial domain. The exact channel features extracted from

the image at the original resolution, and the same image at a different resolution

can be represented by z = Λ(I), and zs = Λ(Is), respectively, where Λ denotes a 2D

spatial-domain feature extractor. It has been shown in [33] that resampling the image

I by a factor s, Is = P(I, s), followed by computing the exact 2D channel features,

zs = Λ(Is), can be approximated by resampling the feature channel, z, followed by a

multiplicative factor, γ, that is modeled by using the power law [33] as

zs = Λ(P(I, s)) ≈ z̃s = γP(z, s) (2.4)

where

γ = a0s
−λ (2.5)

and a0 and λ depend on the channel type, and are empirically determined. This

relationship is illustrated by the block diagram of Figure 2.2. The values of a0 and

λ are not necessarily the same for the case of upsampling and downsampling for the
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same channel type.

For object detection using a single detection window, one constructs an image

pyramid encompassing different scales, and then extracts the features from every scale

in the pyramid. The use of the approximation in (2.4) allows the features generated

at one scale from the image pyramid to approximate the features at nearby scales,

thus reducing the cost of feature computation.

2.3 Summary

In this chapter, background material that is required for the investigation carried out

in the succeeding chapters has been described. First, a brief description of 2DHOG

features has been presented. Then, the work done by Dollár et al. in [33] to study

the effect of image resampling on the channel features in the spatial domain has been

briefly discussed.
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Chapter 3

Transform-Domain
Two-Dimensional HOG Feature
and its use in Vehicle Detection

In this chapter, we introduce the concept of transform-domain 2DHOG features

and use it to propose a new vehicle detection scheme [81, 82]. In Section 3.1,

we study the effect of downsampling a grayscale image on its DFT and DCT ver-

sions. In Section 3.2, transform-domain 2DHOG (TD2DHOG) features are defined

and a method of extracting these features is presented. A relationship between the

TD2DHOG features obtained from an image at the original resolution and a down-

sampled version from the same image is established. In Section 3.3, we use this

relationship in proposing a scheme for vehicle detection of different resolutions using

a single classifier rather than a classifier pyramid. In Section 3.4, the performance

of the proposed vehicle detection scheme is studied by carrying out extensive experi-

ments using a number of publicly available vehicle detection datasets and compared

with that of the state-of-the-art techniques. Finally, Section 3.5 summarizes the work

of this chapter.
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3.1 Effect of Downsampling a Grayscale Image on

its Transformed Version

In this section, we study the effect of downsampling a grayscale image on its DFT

and DCT versions, and these results are then used in Section 3.2 to investigate the

effect of image downsampling on transform-domain 2DHOG features.

3.1.1 Effect on the DFT Version

Let the N-point 1DDFT for the discrete time sequence, z[n] ∈ R, be denoted as ZN [k],

where n = 0, 1, ..., N − 1, k = 0, 1, ..., N − 1, N is an even integer multiple of K, and

K being an integer. Let an ideal low pass filter of unity gain and a cutoff frequency

Nc ≤ N/(2K) be used in order to bandlimit the signal. By downsampling z by K in

the time domain, the downsampled signal ẑ of length N̂ = N/K is obtained. Then,

the N̂ -point 1DDFT is employed on the downsampled signal, ẑ, in order to obtain

the downsampled signal in the frequency domain, ẐN̂ . Now, the relations between

the original signal and its downsampled version in the time domain and that in the

frequency domain are given by

ẑ[n] = z[Kn] (3.1)

ẐN̂ [k] =
1

K

K−1∑
i=0

ZN

[
k + iN̂

]
(3.2)

where n = 0, 1, ..., N̂ − 1, and k = 0, 1, ..., N̂ − 1. It is clear from (3.2) that the

downsampled signal in the 1DDFT domain, ẐN̂ , is represented by a sum of K shifted

copies of the original signal in the 1DDFT domain, ZN , scaled by the factor 1/K

[91]. Figure 3.1 illustrates an example of this in the DFT domain, when N = 16,

N̂ = 8, K = 2, and Nc = 4. Since the original signal is bandlimited, then for
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k = 0, 1, ..., c1 − 1, c1 ≤ Nc, the contribution of the summation shown in (3.2) is only

coming from the first copy of ZN at i = 0, and so we have

ZN [k] = KẐN̂ [k] (3.3)

This result confirms that given in [92].

We now consider a 2D signal. Let g ∈ R
2 represent a grayscale image in the

spatial domain of size (N1 ×N2), where N1 and N2 are even integer multiples of K1

and K2, respectively, K1 and K2 being integers. Assume that an ideal low pass filter

of unity gain and cutoff frequencies Nc1 ≤ N1/(2K1) and Nc2 ≤ N2/(2K2) is used

to bandlimit the original signal. Downsampling g by a factor K1 in the y direction,

and K2 in the x direction results in ĝ[n,m] = g[K1n,K2m] of size (N̂1 × N̂2), where

n and m represent the spatial domain discrete sample indices, 0 ≤ n ≤ N̂1 − 1,

0 ≤ m ≤ N̂2 − 1, N̂1 = N1/K1 and N̂2 = N2/K2. We now take the 2DDFT of g

and ĝ to obtain GN1,N2 and ĜN̂1,N̂2
corresponding to the 2DDFT coefficients of the

original image and that of its downsampled version, respectively. Similar to the case

of 1DDFT, the relation between GN1,N2 [u, v] and ĜN̂1,N̂2
[u, v] can be expressed as

ĜN̂1,N̂2
[u, v] =

1

K1K2

∑
i

∑
j

GN1,N2 [u+ iN̂1, v + jN̂2] (3.4)

where u = 0, 1, ..., N̂1−1, v = 0, 1, ..., N̂2−1, i = 0, 1, ..., K1−1, and j = 0, 1, ..., K2−1.

It is seen from this equation that the downsampled image in the 2DDFT domain is

represented by a sum of K1 ×K2 shifted copies of the original image in the 2DDFT

domain and scaled by the factor 1/(K1K2). Let c1 and c2 denote the maximum fre-

quencies retained by the truncation operator. For u = 0, 1, ..., c1−1, v = 0, 1, ..., c2−1,

c1 ≤ Nc1 , and c2 ≤ Nc2 the contribution of the summation shown in (3.4) is from the

copy corresponding to i = j = 0, and we can obtain the following relation

GN1,N2 [u, v] = K1K2ĜN̂1,N̂2
[u, v] (3.5)
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From the above equation it is seen that the ratio between a grayscale image in the

2DDFT domain and that of its downsampled version is K1K2.

3.1.2 Effect on the DCT Version

In [93] the N-point 1DDCT, XN , for the discrete time sequence, x ∈ R, is given by

XN [k] = Γ̂N [k]
N−1∑
n=0

x[n] cos
π(2n+ 1)k

2N
(3.6)

where Γ̂N [k] =
√
1/N for k = 0, and Γ̂N [k] =

√
2/N for 0 < k ≤ N −1. The N-point

1DDCT can be computed by 2N-point 1DDFT for a sequence, y[n], as follows. First,

let x[n] be a bandlimited signal and y[n] be defined as

y[n] =

⎧⎪⎨
⎪⎩
x[n], 0 ≤ n ≤ N − 1

0, N ≤ n ≤ 2N − 1

(3.7)

The 1DDFT is employed on y in order to obtain Y2N . It has been shown in [93] that

the signal XN [k] in the 1DDCT domain is related to Y2N [k] by

XN [k] = Γ̂N [k]Re(Y2N [k]e
−j πk

2N ) (3.8)

where k = 0, 1, ..., N−1, and Re() is a function which returns the real part of an input

complex number. Let an ideal low pass filter of gain unity and a cutoff frequency

Nc ≤ N/K be used in order to bandlimit the signal Y2N , where N is an even integer

multiple of K, and K being an integer. Let E2N [k] be a 1D signal in the 1DDFT

domain, and be defined as E2N [k] = Y2N [k]e
−j πk

2N . From the downsampling theorem

given by (3.2), downsampling E2N [k] by a factor K in the 1DDFT domain is obtained

as:

Ê2N̂ [k] =
1

K

K−1∑
i=0

E2N

[
k + i2N̂

]
(3.9)
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where Ê2N̂ is of length 2N̂ = 2N/K, and k = 0, 1, ..., N − 1. Figures 3.2 (a) and (b)

illustrate an example for E2N [k] and Ê2N̂ [k], respectively, whereN = 8, K = 2, N̂ = 4,

and Nc = 4. Now, the downsampled signal in the 1DDCT domain, X̂N̂ of length N̂ ,

can be obtained as follows:

X̂N̂ [k] = Γ̂N̂ [k]Re(Ê2N̂ [k]) (3.10)

= Γ̂N̂ [k]Re(
1

K

K−1∑
i=0

Y2N [k + i2N̂ ]e−j
π(k+i2N̂)

2N ) (3.11)

Let c1 denote the maximum frequency retained by the truncation operator. Since Y2N

is bandlimited to the maximum frequency Nc ≤ N/K, then for k = 0, 1, ..., c1 − 1,

where c1 ≤ Nc, the contribution of the summation shown in (3.11) is coming only

from i = 0 copy, and so we can simplify the above relation as

X̂N̂ [k] =
1

K
Γ̂N̂ [k]Re(Y2N [k]e

−j πk
2N ) (3.12)

=
Γ̂N̂ [k]

KΓ̂N [k]
Γ̂N [k]Re(Y2N [k]e

−j πk
2N ) =

√
1/N̂

K
√
1/N

XN [k] (3.13)

=
1√
K

XN [k] (3.14)

Thus, the relation between a 1DDCT transformed signal and its downsampled version

in the 1DDCT domain can be expressed as

XN [k] =
√
KX̂N̂ [k] (3.15)

where 0 ≤ k ≤ c1 − 1.

We now extend the above result for 1DDCT to the case of 2DDCT. The 2DDCT
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for a grayscale image in the spatial domain, g ∈ R
2, is given by

GN1,N2 [u, v] =Γ̂N1 [u]Γ̂N2 [v]

N2−1∑
m=0

N1−1∑
n=0

g[n,m] cos

(
π(2n+ 1)u

2N1

)

× cos

(
π(2m+ 1)v

2N2

) (3.16)

where 0 ≤ u ≤ N1−1, 0 ≤ v ≤ N2−1, Γ̂N1 [k] =
√
1/N1 for k = 0 and Γ̂N1 [k] =

√
2/N1

for 0 < k ≤ N1−1. LetN1 andN2 be even multiples ofK1, andK2, respectively, where

K1 and K2 are the downsampling factors in the y and the x directions, respectively.

Let g[n,m] be a bandlimited signal, and the signal a ∈ R
2, of size (2N1 × 2N2), be

defined as

a[n,m] =

⎧⎪⎨
⎪⎩
g[n,m], 0 ≤ n ≤ N1 − 1, 0 ≤ m ≤ N2 − 1

0, otherwise

(3.17)

The N1 × N2-point 2DDCT can be computed by 2N1 × 2N2-point 2DDFT for a

signal, a[n,m], as follows. First, the 2DDFT is employed on a[n,m] in order to

obtain A2N1,2N2 . Similar to the 1DDCT case, the relation between the signal in the

2DDCT domain GN1,N2 [u, v], and A2N1,2N2 [u, v] can be expressed as

GN1,N2 [u, v] = Γ̂N1 [u]Γ̂N2 [v]Re(A2N1,2N2 [u, v]e
−j( πu

2N1
+ πv

2N2
)
) (3.18)

where 0 ≤ u ≤ N1 − 1, 0 ≤ v ≤ N2 − 1. Let c1, c2 denote the maximum frequencies

retained by the truncation operator, where c1 < N̂1, c2 < N̂2, N̂1 = N1/K1, and

N̂2 = N2/K2. Assume A2N1,2N2 is bandlimited to the maximum frequencies (N̂1, N̂2).

Then, the downsampled signal in the 2DDCT domain, ĜN̂1,N̂2
, can be obtained as

ĜN̂1,N̂2
[u, v] =

1

K1K2

Γ̂N̂1
[u]Γ̂N̂2

[v]Re(A2N1,2N2 [u, v]e
−j( πu

2N1
+ πv

2N2
)
)

=
Γ̂N̂1

[u]Γ̂N̂2
[v]

K1K2Γ̂N1 [u]Γ̂N2 [v]
Γ̂N1 [u]Γ̂N2 [v]Re(A2N1,2N2 [u, v]

× e
−j( πu

2N1
+ πv

2N2
)
)

=
1√

K1K2

GN1,N2 [u, v] (3.19)
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where 0 ≤ u ≤ c1 − 1 and 0 ≤ v ≤ c2 − 1. Thus, the relation between the 2DDCT

coefficients of the original image and that of the downsampled version is given by

GN1,N2 [u, v] =
√

K1K2ĜN̂1,N̂2
[u, v] (3.20)

where N̂1 = N1/K1, N̂2 = N2/K2, u = 0, 1, ..., c1 − 1, v = 0, 1, ..., c2 − 1, c1 ≤ N1/K1,

and c2 ≤ N2/K2.

3.2 Transform-Domain 2DHOG Features

In this section, we first define 2DHOG features in the transform domain. Then,

utilizing the results derived in Section 3.1, we investigate the relationship between

the transform-domain 2DHOG features obtained from an image of a given resolution

and those obtained from a downsampled version of the same image.

3.2.1 Extraction of TD2DHOG Features

Consider an input image I of size (M1 ×M2). Let it be divided into non-overlapping

cells of size (η1 × η2), where M1 and M2 are integer multiples of powers of 2, and η1

and η2 are integer powers of 2. Now, 2DHOG features are computed by following the

steps explained in Section 2.1, resulting in β layers, where each layer corresponds to

a certain quantized gradient orientation from 0◦ to 180◦. The 2DHOG features of the

lth layer, denoted by hl, is of size (M̃1 × M̃2), M̃1 and M̃2 being integer multiples of

powers of 2. Each 2DHOG layer, hl, is partitioned into a number of non-overlapping

blocks, Nx and Ny in the x and y directions, respectively, where Nx and Ny are

integers. Let hl
ıj, of size (b × b), represent the 2DHOG features of the (ı, j)th block

of the lth layer, where 1 ≤ ı ≤ Ny, 1 ≤ j ≤ Nx, b being an integer power of 2. The

24



block-partitioned 2DHOG features in the lth layer can be represented as

hl =

⎡
⎢⎢⎢⎣
hl
11 ... hl

1Nx

...
. . .

...

hl
Ny1

... hl
NyNx

⎤
⎥⎥⎥⎦ (3.21)

This block partitioning is known to offer a robustness to partial occlusion [14, 21].

To illustrate let us consider an image of size 32× 96, a cell size of 4× 4, and β = 5.

If b = 8, then Nx = M̃2/b = M2/(η2b) = 3, and Ny = M̃1/b = M1/(η1b) = 1. Hence,

each of the five layers is partitioned into 3 blocks of size 8 × 8. However, if b = 4,

then Nx = 6 and Ny = 2; that is, each of the layers is partitioned into 12 blocks of

size 4× 4.

Next, we apply the appropriate 2D transform, 2DDFT or 2DDCT, on each block

resulting in 2DHOG of the corresponding block in the transform domain. Let Hl
ıj =

T (hl
ıj), where T (.) represents the transform. The corresponding 2DHOG features in

the transform domain can be represented as

Hl =

⎡
⎢⎢⎢⎣
Hl

11 ... Hl
1Nx

...
. . .

...

Hl
Ny1

... Hl
NyNx

⎤
⎥⎥⎥⎦ (3.22)

Let φc1c2(.) denote the 2D truncation operator in the transform domain that

truncates the coefficients corresponding to the frequencies greater than the frequencies

c1 and c2. By applying φc1c2(.) on each block, Hl
ıj, we can obtain the truncated

features as Ĥl
ıj = φc1c2(H

l
ıj) of size (c1 × c2). Then, these features can be represented

as

Ĥl =

⎡
⎢⎢⎢⎣
Ĥl

11 ... Ĥl
1Nx

...
. . .

...

Ĥl
Ny1

... Ĥl
NyNx

⎤
⎥⎥⎥⎦ (3.23)

where the size of Ĥl is (M̂1 × M̂2), M̂1 = c1Ny and M̂2 = c2Nx. We call the above
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truncated transform-domain 2DHOG features given by Ĥl as TD2DHOG features.

We refer to the TD2DHOG features as DFT2DHOG and DCT2DHOG features when

the 2D transform used is 2DDFT and 2DDCT, respectively. The scheme for obtaining

the DCT2DHOG features is illustrated in Figure 3.3 for an image of size 32×96 with

a cell size of 4 × 4, β = 5, and 2DDCT is employed with block size b = 8, and

c1 = c2 = 4. It is noted that for this example the size of Ĥl is 4× 12.

3.2.2 Effect of Image Downsampling on TD2DHOG Features

In Section 3.1, we obtained the relation between the original image and its downsam-

pled version when they are transformed by 2DDFT or 2DDCT. Now, in order to study

the effect of image downsampling on the features in the transform domain, we use the

block diagram shown in Figure 3.4. For the original image I, a 2DHOG feature extrac-

tion operator Λ(.) is employed to obtain z = Λ(I). Then, we apply to z an appropriate

2D transform (2DDFT or 2DDCT), with a block size b× b, followed by a truncation

operation retaining the c×c low frequency coefficients for each block. The TD2DHOG

features so obtained are denoted by Ẑ = T̂ (z), where T̂ represents the transform oper-

ation followed by the truncation operation. Let I1/K denote the image I downsampled

by a factor K in both the x and y directions. Since I1/K = P(I, 1/K), P representing

the downsampling operator, the features extracted from the downsampled image is

given by z1/K = Λ(P(I, 1/K)). We now obtain the features Ẑ1/K = T̂1/K(z1/K) in the

transform domain, where the features z1/K = Λ(I1/K), and T̂1/K represents the trans-

form operation with a block size (b/K)× (b/K) followed by the truncation operation

to retain the (c× c) low frequency coefficients.

The relationship between the transform coefficients of the features obtained from

the image at the original resolution Ẑ and that of its downsampled version Ẑ1/K can

now be obtained as follows. Equations (2.4) and (2.5) are now used to approximate

z1/K as

z1/K ≈ P(z, 1/K)a′0K
λ (3.24)
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Input image

HOG

2DHOG

Block partitioned 2DHOG 

2DDCT
For every block

Truncation process

DCT2DHOG features

Partitioning operation

Figure 3.3: Scheme for obtaining the DCT2DHOG features for an input car image of

size 32× 96 using β = 5, cell size 4× 4, 2DDCT block size b = 8 and c1 = c2 = 4.
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2DDFT/
2DDCT

Truncation2DHOG 
Feature Extractor

2DDFT/
2DDCT

Truncation2DHOG 
Feature Extractor

Figure 3.4: Block diagram showing the effect of downsampling an input image by an

integer factor K in both the x and y directions on the transform-domain 2DHOG

features, where α is a multiplicative factor that allows the features extracted from

the lower resolution image to approximate the features extracted from the image at

the original resolution.
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where a′0 and λ are computed empirically for each channel type. Next, performing

the transform operation T̂1/K on both sides of (3.24), we obtain

T̂1/K(z1/K) ≈ T̂1/K(P(z, 1/K))a′0K
λ

i.e.,

Ẑ1/K ≈ T̂1/K(P(z, 1/K))a′0K
λ (3.25)

Then, the ratio between the features in the transform domain obtained from the

original image and its resampled version is

Ẑ

Ẑ1/K

≈ 1

a′0K
λ
× T̂ (z)

T̂1/K(P(z, 1/K))
(3.26)

where the first term, 1/(a′0K
λ), represents the power law effect, while the second term,

T̂ (z)/T̂1/K(P(z, 1/K)), represents the transform domain resampling effect which is

the ratio of the transform-domain coefficients of the channel feature, z, and that of

its resampled version, P(z, 1/K).

Let a0 = 1/a′0 and assume the term T̂ (z)/T̂1/K(P(z, 1/K)) can be represented by

(3.5) and (3.20), in case of 2DDFT and 2DDCT, respectively. Then, the transform-

domain coefficients of the original resolution, Ẑ, can be approximated by using the

transform-domain coefficients at a lower resolution, Ẑ1/K , as

Ẑ ≈ α(K)Ẑ1/K (3.27)

where

α(K) =

⎧⎪⎨
⎪⎩
a0K

2−λ, for 2DDFT

a0K
1−λ, for 2DDCT

(3.28)

In order to improve the approximation accuracy of expression in (3.27), we introduce
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an additive correction term a1, such that α is of the form

α(K) =

{
a0K

2−λ + a1, for 2DDFT (3.29a)

a0K
1−λ + a1, for 2DDCT (3.29b)

The constants a0, a1, and λ are computed empirically in the training mode for the

2DHOG channel. The usefulness of α(K) given by (3.29) lies in the fact that the

features extracted from a lower resolution test image can be utilized to approximate

the features of the test image extracted at a higher resolution by multiplying the

former by α(K), which is a function of the downsampling factor, K, and the type of

transform.

Estimation of a0, a1,and λ

Given a training set ofNt images, the parameters a0, a1, and λ for the 2DHOG channel

can be estimated as follows. First, at each value of the downsampling factor, K =

1, 2, 4, ..., the multiplicative factor of the ith image sample, α̂i(K), is obtained as the

factor that minimizes the mean square error (MSE) as

min
α̂i(K)

1

NyNxc2β

∑
l,j,k,u,v

(Ẑi,j,k,l[u, v]− α̂i(K)Ẑi,j,k,l
1/K [u, v])2 (3.30)

where i = 1, ..., Nt, 0 ≤ u, v ≤ c− 1, u and v are the frequency indices of the (j, k)th

block, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nx, and l = 1, 2, ..., β. Then, the average value of

the estimated multiplicative factor α̂(K) is obtained as α̂(K) = (1/Nt)
∑Nt

i=1 α̂
i(K).

Finally, the values of the estimated multiplicative factor α̂(K) are used to obtain the

model parameters, a0, a1, and λ, of α(K) by using the least squares curve fitting. In

Section 3.4.1, we compute empirically the values of a0, a1, and λ.
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3.3 Scheme for Vehicle Detection

In this section, we propose a new vehicle detection scheme by using the results of the

previous section concerning TD2DHOG features so as to employ a single classifier

trained on vehicles of high resolution in order to detect vehicles of the same or lower

resolution, instead of training multiple resolution-specific classifiers, as in [34, 82].

In order to detect vehicles of different resolutions in a given test image, an image

pyramid of depth one octave is constructed, and TD2DHOG features are extracted

at each scale from the image pyramid with blocks of different sizes. We now present

our methods for training and testing of the proposed vehicle detection scheme.

3.3.1 Training Mode

In order to take advantage of the fact that the transform-domain coefficients of the

original resolution can be approximated by using the transform-domain coefficients

at a lower resolution as given by (3.27), the training data is upsampled by a factor

of R, R being an integer power of 2. Even though upsampling of the training data

will cause an increase in the training cost, it has been observed from our experiments

that training a classifier on TD2DHOG features obtained at a high resolution of

images offers a detection accuracy higher than that achieved by the same classifier

when trained on TD2DHOG features extracted from the same training set at a lower

resolution. This is because of the fact that in the testing mode, going from a higher

resolution to a lower resolution results in a smaller approximation error for TD2DHOG

features than when going the other way around.

Figure 3.5 (a) shows the training scheme for the proposed vehicle detector, where

the training data is upsampled by a factor R in both the x and y directions. Let the

set of the training data upsampled by R be denoted as IR = {Ii,R, i = 1, 2, ..., Nt},

where Nt denotes the number of training image samples. Then, the size of the ith

training image sample is (RM1×RM2). Assume the 2DHOG features of the lth layer,
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hl
i,R, (i = 1, 2, ..., Nt and l = 1, 2, ..., β), are extracted by using the same cell size for

all the resolutions (η1 × η2), then the size of the lth 2DHOG layer of the ith training

image sample is RM̃1 × RM̃2, i.e., increased by the same factor R. Similarly, the

block size used to compute the corresponding TD2DHOG features is increased by the

same factor R, i.e., bR = Rb0. We call b0 as the base block size, which is defined as

the block size at R = 1. Let Ĥl
i,R, i = 1, 2, ..., Nt, denote the TD2DHOG features of

the lth layer, where the size of Ĥl
i,R is (M̂1 × M̂2). It is important to note that, in the

training phase we do not multiply TD2DHOG features by the multiplicative factor

α(K), and we use the value of α(K) computed from (3.29) in the detection phase.

After the extraction of the TD2DHOG features, 2DPCA [94] is employed on each

layer in order to maintain the relation between the neighboring blocks. Let the

training data consist of Npos and Nneg training image samples, corresponding to the

positive and negative classes, respectively. The training data can be denoted as

{(Ĥl
i,R, yi), i = 1, 2, ..., Nt}, l = 1, 2, ..., β, where yi ∈ {+1,−1} refers to the class label

for the ith image sample. The covariance matrix, of size (M̂2 × M̂2), is first obtained

for the TD2DHOG features of the lth layer as

Covl =
1

Nt

Nt∑
i=1

(Ĥl
i,R − H̄l

R)
�(Ĥl

i,R − H̄l
R) (3.31)

where

H̄l
R =

1

Nt

Nt∑
i=1

Ĥl
i,R (3.32)

Note that Covl is a nonnegative definite matrix. Next, we obtain the rl eigenvectors

of Covl that correspond to the rl dominant eigenvalues. The number of eigenvectors,

rl, is chosen so that the sum of the magnitude of the retained eigenvalues represents

at least 90% of the sum of the magnitude of all the eigenvalues. The eigenvectors are

used to form the matrix Vl
R of size (M̂2×rl). Next, the TD2DHOG features of the lth

layer of the ith training image sample are projected onto the constructed matrix Vl
R
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in order to obtain the matrix Ql
i,R = Ĥl

i,RV
l
R of size (M̂1×rl), and Ql

i,R is vectorized1

to obtain the corresponding feature vector ql
i,R of size (1 × M̂1rl). Then, for the ith

training image sample, the feature vectors from different layers, ql
i,R, are concatenated

to obtain the feature vector, fi,R, of size (1 × r), where fi,R = [q1
i,R, ...,q

β
i,R] for i =

1, 2, ..., Nt.

Let the set of training features obtained after applying 2DPCA be denoted as

FR = {fi,R, i = 1, 2, ..., Nt}, and the set of the eigenvectors used to generate these

features be denoted as VR = {Vl
R, l = 1, 2, ..., β}. Then, we train a classifier, TR,

for the upsampling factor R by using the corresponding features FR. We use one

of the two state-of-the-art classifiers: a support vector machine with fast histogram

intersection kernel (FIKSVM) [22, 95] or boosted decision tree classifier (BDTC)

[96, 97].

3.3.2 Testing Mode

In the testing phase, we first obtain an image pyramid of depth of one octave from

the given input test image. The test image at each scale of the image pyramid, is then

scanned by using a number of detection windows of different sizes as (RM1

K
× RM2

K
),

where R is the upsampling factor at which the detector has been trained and K =

1, 2, 4, ..., an integer power of 2. Figure 3.5 (b) shows the proposed vehicle detection

scheme when applied to a test image by assuming R = 2 and K = 1 and 2. Now

for each detection window, we obtain the TD2DHOG features for different layers,

{Ĥl
test, l = 1, 2, ..., β} by using a block size btest = bR

K
; the size of each Ĥl

test is (M̂1 ×

M̂2). Then, the TD2DHOG features of each layer are multiplied by the multiplicative

factor α(K) as

H̃l
test = α(K)Ĥl

test (3.33)

1The vectorization function is defined as Mat2Vec: Rμ×ν → R
ρ, where ρ = μν is the dimension

of the vector, and (μ× ν) is the order of the input matrix. The inverse of the vectorization function
is defined as Vec2Mat: Rρ → R

μ×ν .
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TD2DHOG
Extractor Classifier2DPCATraining 

images

Image pyramid

TD2DHOG
Extractor Classifier2DPCA

TD2DHOG
Extractor

(a)

(b)

Positive class Negative class

First detection window
Second detection window

Figure 3.5: (a) The scheme for training the proposed vehicle detector with training

images of size 64×64, where R is the upsampling factor in both the x and y directions.

(b) Proposed vehicle detection scheme for a sample test image, where the different

colors in the image pyramid represent different scanning window sizes (here we have

used only two window sizes, 128× 128 and 64× 64).
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where H̃l
test is of size (M̂1 × M̂2), and α(K) is given by (3.29), which allows the

TD2DHOG features obtained from a low resolution detection window to approx-

imate the TD2DHOG features obtained at a higher resolution, indicating an ap-

proximate invariance of the TD2DHOG features within a multiplicative factor, when

the image resolution is changed. Next, the TD2DHOG features of the lth layer,

H̃l
test, is projected onto the corresponding matrix Vl

R in order to obtain the matrix

Ql
test = H̃l

testV
l
R of size (M̂1 × rl). Then, Ql

test is vectorized to obtain the corre-

sponding feature vector ql
test of size (1× M̂1rl). This is followed by concatenating the

features, ql
test, for different layers to obtain the feature vector, ftest, of size (1 × r),

where ftest = [q1
test, ...,q

β
test].

Now, the trained classifier TR, namely, FIKSVM [22, 95] or BDTC [96, 97], is used

to provide for each feature vector ftest a detection score corresponding to the input

detection window. Finally, similar to [22], a non-maximum suppression technique

is used to combine several overlapped detections for the same object. This avoids

detecting the same vehicle more than once, and allows detecting vehicles with different

aspect ratios.

Figure 3.6 (a) illustrates the scanning scheme for the proposed vehicle detector

in the case of R = 2, and K = 1 and 2. Hence, in this example, the test image at

each scale of the image pyramid is scanned by using two detection windows of sizes

(2M1×2M2) and (M1×M2). The proposed vehicle detector requires training a single

classifier at the highest detection window size, namely, (2M1×2M2). The methods in

[34, 82] use a similar scanning strategy; however, they require constructing a classifier

pyramid in order to classify detection windows of different sizes. It is to be noted

that the scanning scheme used in several state-of-the-art object detectors [6, 22, 23]

requires the extraction of features at each scale of an image pyramid of depth often

more than one octave, even though the scheme employs one detection window and

a single classifier. Figure 3.6 (b) shows an example of this scanning scheme, when

the image pyramid is of depth two octaves. The proposed vehicle detection scheme
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(a) (b)

Figure 3.6: (a) An illustration of the proposed scheme for scanning an image pyra-

mid of depth one octave with two detection windows and a single classifier. (b) An

illustration of the scheme for scanning an image pyramid of depth two octaves with

one detection window and a single classifier.
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reduces the cost of training a classifier pyramid, as a single classifier trained on images

of a given resolution can be used to detect vehicles of the same or lower resolutions.

In addition, it reduces the storage requirements that are associated with training

multiple resolution-specific classifiers.

3.4 Experimental Results

We first carry out a number of experiments to validate, as mentioned in Section 3.2,

the model for the multiplicative factor α(K) using the UIUC car detection dataset

[83]. Then, we study the performance of the proposed algorithm for vehicle detection

in images using the UIUC car detection dataset [83], the USC multi-view car detection

dataset [28], the LISA 2010 dataset [84] and the HRI roadway dataset [98]. We also

compare the performance of our algorithm with that of some of the existing methods.

The UIUC car detection dataset [83] consists of 1050 training images of size 40×

100 divided into a set of 550 car images with side views, and a set of 500 other

images, none of which is the image of a car with a side view. In order to facilitate

the computation of the TD2DHOG features, the training images in this dataset are

cropped by removing pixels from the first and last four rows and from the first and

last two columns in order to reduce the size of each image from 40× 100 to 32× 96.

The testing images in this dataset consist of 108 multi-scale images. The dataset

consists of partially occluded cars, objects with low contrast, as well as highly textured

background. Since the dataset includes a balanced number of positive and negative

training images, the FIKSVM [95] is used as the baseline classifier for the proposed

detector.

The USC multi-view car detection dataset [28] consists of cars with several views.

The training data consists of 2462 positive training images of size 64× 128, while the

testing data consists of 196 images containing 410 cars of different sizes and views.

In order to complete the training dataset, we collect 9512 negative training image
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samples from the CBCL street scenes dataset [99]. Since the USC dataset consists of

cars with different views, BDTC [96, 97] is chosen as the baseline classifier.

The LISA 2010 dataset [84] consists of test sequences of size 480×704 for rear view

vehicles of different sizes, and this dataset has been captured under several illumina-

tion conditions. The first sequence (1600 frames) is taken on a high-density highway

during a sunny day (H-dense), which includes vehicles in partial occlusions, heavy

shadows, and some background structures are confused with the positive class, while

the second (300 frames) on a medium-density highway on a sunny day (H-medium),

where this sequence includes challenges similar to H-dense but at a lower density.

The dataset does not include training data; therefore, we collect training images of

size 64× 64 from other datasets as follows: (1) 9013 images of vehicles in rear/front

views from KITTI dataset [100], and USC multi-view car detection dataset [28], and

(2) 8415 negative image samples from CBCL street scenes dataset [99]. As in [84],

we collect a number of hard negative image samples from the test sequences (229

image samples from H-medium, and 806 image samples from H-dense). Due to the

large number of training samples and the wide variation in the background structures,

BDTC [96, 97] is used as the baseline classifier on this dataset.

The HRI roadway dataset [98] consists of five test sequences of size 600 × 800

for vehicles on urban and highway areas. This dataset has been captured under

several challenging weather and lighting conditions. Sequence I (908 frames) has

been captured during a cloudy day, while Sequence II (917 frames) has been captured

during a sunny day. Sequences III (611 frames), IV (411 frames) and V (830 frames)

have been captured during a heavy rainy day, a dry midnight, and afternoon after a

heavy snow, respectively. Since the HRI dataset does not have its own training set, in

order to test the proposed scheme on a sequence of this dataset, the classifier in the

proposed scheme is trained by employing the training set used in the case of LISA

2010 dataset along with the hard negative samples collected from the first 100 frames

of this sequence of the HRI dataset.
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3.4.1 Validation for the Model of α(K)

We now validate the model of α(K) given by (3.29) by making use of the block

diagram of Figure 3.4 and the scheme introduced in Section 3.2.2 for estimating the

channel parameters a0, a1 and λ. For this purpose, we first consider the UIUC car

detection dataset [83] and choose Nt = 550 car images. Since we do not have access

to high resolution versions of these car images, they are upsampled by a factor R = 8.

Now, we give the procedure to estimate the value of α(K) for the 2DHOG features in

the 2DDFT domain. We first obtain the 2DHOG features of an upsampled image1,

Iu, using the steps outlined in Section 2.1, assuming η1 = η2 = 4, and β = 5, 7 or 9.

We then apply 2DDFT on block-partitioned 2DHOG features given by (3.21) for each

of the layers, assuming the block size to be b = Rb0 = 8b0, b0 ∈ {4, 8, 16}. This is

followed by a truncation operation retaining the (c × c) low frequency coefficients,

where c = 4, to obtain the 2DHOG features in the 2DDFT domain. Then, the whole

operation is repeated after downsampling Iu by a factor K, K = 1, 2, 4, and 8, but

with a block size of b/K. As explained in Section 3.2.2, the multiplicative factor of

the ith image sample, α̂i(K), is obtained as the factor that minimizes the mean square

error (MSE) given by (3.30). Then, the four values of the estimated multiplicative

factor α̂(K), K = 1, 2, 4, and 8, are used to obtain the model parameters, a0, a1, and

λ, of α(K) by using the least squares curve fitting2. The above procedure is repeated

to find the model parameters, a0, a1, and λ, of α(K) for the 2DHOG features in the

2DDCT domain.

Table 3.1 summarizes the values of the parameters, a0, a1, and λ, for the above

two cases for block size b0 = 4, 8, 16 along with the corresponding mean square errors,

when the number of layers, β, is 5, 7, or 9. It is seen from this table that irrespective

of the transform used, the errors are insignificant. Figure 3.7 shows the plots of α(K)

1The toolbox [97] has been used to calculate the 2DHOG.
2The MATLAB function lsqcurvefit is used, http://www.mathworks.com/help/optim/ug/

lsqcurvefit.html
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for the 2DHOG features for β = 7. It is seen from these plots that the proposed model

is not sensitive to the block size b0. It has been observed that α(K) is insensitive to

b0 for the other values of β also.

Similar studies have been conducted using Nt = 1000 positive training images

from the USC multi-view car detection dataset, and Nt = 1000 positive training

images, collected as mentioned earlier in this section, for the LISA 2010 dataset. It

has been found that for both these datasets, α(K) is insensitive to b0 irrespective of

whether β = 5, 7 or 9.

It is to be noted that had we used the same model for α(K) as given by (3.29)

also for the case of grayscale (GS) channel in the 2DDFT and 2DDCT domains and

repeated the above procedures, we would obtain the values of a0, a1 and λ. These

values for the 2DDFT and 2DDCT domains are also included in Table 3.1 using the

UIUC car detection dataset. It is seen from this table that for the case of the grayscale

channel, λ ≈ 0, a0 ≈ 1 and a1 ≈ 0, and thus,

α(K) ≈

⎧⎪⎨
⎪⎩
K2, for 2DDFT

K, for 2DDCT

(3.34)

Equation (3.34) has been found to be equally true in the case of the other two datasets,

namely, the USC multi-view car detection dataset and the LISA 2010 dataset. It is

seen that the two expressions on the right side of (3.34) are the same as that given

by (3.5) and (3.20), respectively, when K1 = K2 = K. Thus, the proposed model

for α(K) given by (3.29) for the TD2DHOG features is also valid for the grayscale

images in the transform domain. These results show the versatility of the model for

α(K) in representing channels other than the 2DHOG channel.
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Table 3.1: The estimated channel parameters for grayscale image (GS) and 2DHOG

features, where b0 = 4, 8, or 16, and MSE refers to the mean square error of the curve

fitting

GS 2DHOG

2DDFT 2DDCT
2DDFT 2DDCT

β = 5 β = 7 β = 9 β = 5 β = 7 β = 9

b 0
=

4

λ 0.00635 −0.00436 0.51538 0.53305 0.54992−0.79613−0.85311−0.87422

a0 1.00846 0.99210 0.51819 0.52523 0.53464 0.01179 0.00950 0.00834

a1 −0.01189 0.00850 0.52819 0.52095 0.51050 0.98753 0.99027 0.99170

MSE 0.00001 0.00000 0.00251 0.00252 0.00243 0.00000 0.00000 0.00000

b 0
=

8

λ 0.00060 −0.00085 0.51906 0.53351 0.54607−0.81072−0.87074−0.89513

a0 1.00055 0.99831 0.51119 0.51558 0.52167 0.01048 0.00846 0.00751

a1 −0.00067 0.00183 0.53831 0.53411 0.52742 0.98901 0.99134 0.99245

MSE 0.00000 0.00000 0.00286 0.00291 0.00286 0.00000 0.00000 0.00000

b 0
=

16

λ 0.00036 0.00011 0.52324 0.53168 0.53758−0.79483−0.83676−0.85726

a0 1.00043 1.00014 0.51639 0.51853 0.52071 0.01107 0.00959 0.00883

a1 −0.00057−0.00014 0.53153 0.52958 0.52731 0.98824 0.98991 0.99077

MSE 0.00000 0.00000 0.00269 0.00273 0.00273 0.00000 0.00000 0.00000
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Figure 3.7: The multiplicative factor α(K) for K = 1, 2, 4, 8, where (a) and (b)

represent the case of the 2DHOG features in the 2DDFT and 2DDCT domains,

respectively.
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3.4.2 Vehicle Detection using TD2DHOG Features

In this section, we study the detection performance of the proposed scheme using

the datasets mentioned earlier. Further, the detection performance of the proposed

technique is compared with that of several state-of-the-art techniques. The 2DHOG

is obtained assuming η1 = η2 = 4 from which the TD2DHOG features are obtained.

In case of using a single classifier, the TD2DHOG features multiplied by the factor

α(K) given by (3.29) are used, where the classifier is trained on TD2DHOG features

obtained from training images upsampled by a factor R and used to classify images in

the detection windows of the same or lower resolutions. We refer to this scheme using

a single classifier (SC) as TD2DHOG-SC. Also, we consider the case of using multiple

classifiers trained on TD2DHOG features at different values of R in order to classify

images in the detection windows at the same resolution at which the classifier has been

trained. We refer to this scheme using a classifier pyramid (CP) as TD2DHOG-CP.

Unless specified otherwise, each octave of an image pyramid is considered to have 12

scales. Each scale is scanned by shifting the detection window(s) by 8R pixels in each

of the x and y directions.

a) UIUC Car Detection Dataset

On this dataset the equal error rate (EER) is used for evaluation, EER being the

detection rate at the point of equal precision and recall; we use the methodology

given in [83] to calculate the precision and recall.

Choice of the Transform: In this experiment, we evaluate the detection perfor-

mance of the proposed TD2DHOG-SC by using 2DDFT or 2DDCT. The TD2DHOG

features are obtained assuming btrain = Rb0, R = 2, b0 = 4, c = 4, btest = 4, 8 and

β = 5, 6, ..., 11. Figure 3.8 shows that DCT2DHOG-SC exhibits a better performance

irrespective of β. Similar results have been obtained for other datasets. In view of

this, we will henceforth consider only DCT2DHOG features in all the experiments.
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Choice of b0, c, and β: We now study the performance of the proposed DCT2DHOG-

SC for different values of b0, c and β, in order to make an appropriate choice for these

parameters. Figure 3.9 shows the EER values of the proposed DCT2DHOG-SC for

b0 = 4, c = 2 or 4; b0 = 8, c = 2, 4 or 8 with β = 5, 6, ..., 11 and btest = b0 and 2b0. It

is observed from this figure that the highest EER value is achieved at three different

parameter settings, b0 = 4, c = 4, β = 7, b0 = 4, c = 4, β = 9, and b0 = 8, c = 8, β = 7.

We choose the parameter setting b0 = 4, c = 4, β = 7, since it retains the lowest

number of eigenvectors compared to that of the other two parameter settings and

thus it offers the lowest detection complexity. It has also been observed that in the

case of DCT2DHOG-CP, the parameter setting b0 = 4, c = 4 and β = 7 also provides

the best EER value.

Performance Evaluation: We first consider the case of the DCT2DHOG-SC scheme.

In this case, the single classifier trained at R = 2 is used to classify the test images

in detection windows with the same or lower resolutions (by making use of α(K),

which is obtained using Table 3.1 and (3.29b)), where the test block sizes used are

btest = 8 and 4.

Now, we consider the case of DCT2DHOG-CP. In this case, we construct a

classifier pyramid trained at R = 1 and 2. These two classifiers are used to classify

the test images in detection windows of the corresponding two resolutions, where

btest = 4 and 8, respectively.

For each of the above cases, EER values are computed and are given in Table 3.2.

The EER values corresponding to several state-of-the-art schemes, namely, Gabor

filter-based technique [101], implicit shape model [12], bag of words with spatial

pyramid kernel [102], discriminative parts with Hough forest [103], contour cue-based

technique [104], HOG-based technique of [28], aggregated channel feature (ACF) and

ACF-Exact [33], and Multi-resolution 2DHOG [95] are also included in Table 3.2. It

is seen from this table that the performance of either of the two proposed schemes is

better than that of the others in [12, 28, 33, 95, 101–104].
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Figure 3.8: Comparing the EER values of the DFT2DHOG-SC and DCT2DHOG-SC

on UIUC dataset.
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Figure 3.9: EER value of the proposed scheme DCT2DHOG-SC at c = 2, 4 or 8

obtained on the UIUC dataset, where β = 5, 6, ..., or 11, and the base block size

b0 = 4 or 8.
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Table 3.2: Equal Error Rate on UIUC car detection dataset

Method EER

DCT2DHOG-SC(b0 = 4, c = 4, β = 7) 99.28%

DCT2DHOG-CP(b0 = 4, c = 4, β = 7) 99.28%

Lampert et al. [102] 98.60%

Gall and Lempitsky [103] 98.60%

Wu et al. [104] 97.80%

Dollár et al. [33] (ACF - Exact)∗ 97.12%

Dollár et al. [33] (ACF)∗ 95.68%

Maji et al. [95]∗ 95.68%

Kuo and Nevatia [28] 95.00%

Leibe et al. [12] 95.00%

Mutch and Lowe [101] 90.60%

Note: ∗ denotes the results obtained by utilizing the code provided by the authors

of the paper. The best and the second best results are shown in boldface and

underscored, respectively.

b) USC Multi-view Car Detection Dataset

For this dataset, as in [28], the PASCAL visual object classes (VOC) criterion [105,

106] is used for the evaluation purpose with an overlap threshold of 0.5. To compare

the performance of our method to that of some recent schemes, the average preci-

sion (AP) is used as an evaluation metric. In this dataset, the training images are

upsampled by a factor of R = 1 and 2 in the case of using DCT2DHOG-CP, and

by a factor of R = 2 in the case of using DCT2DHOG-SC. The performance of the

proposed DCT2DHOG-SC scheme using this dataset is studied for b0 = 4, c = 4;

b0 = 8, c = 4 or 8; and β = 5, 7 or 9, and btest = b0 and 2b0. It is observed that the

highest AP value is achieved at two parameter settings, b0 = 8, c = 4, β = 9 and

b0 = 8, c = 8, β = 9. We choose the parameter setting b0 = 8, c = 4 and β = 9, since
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Table 3.3: Average Precision on USC Multi-view Car Dataset

Method AP

DCT2DHOG-SC(b0 = 8, c = 4, β = 9) 90.44%

DCT2DHOG-CP(b0 = 8, c = 4, β = 9) 89.92%

ACF - Exact [33]∗ 89.31%

ACF [33]∗ 89.64%

Multi-resolution 2DHOG [95] - BDTC∗ 89.38%

Kuo and Nevatia [28] 85.61%

Wu and Nevatia [107] 52.55%

Note: ∗ denotes the results obtained by utilizing the code provided by the authors

of the paper. The best and the second best results are shown in boldface and

underscored, respectively.

it retains a lower number of 2DDCT coefficients than that of the other parameter

setting, and thus it provides a lower detection complexity. Therefore, this parameter

setting is chosen for both the DCT2DHOG-SC and DCT2DHOG-CP schemes.

Figure 3.10 shows sample qualitative results for the proposed scheme on this

dataset. It shows that the proposed scheme can detect cars in different views and

resolutions. Table 3.3 shows that the performance of the proposed technique is better

than that of the method in [28] which uses HOG with Gentle AdaBoost, and that

of the method in [107] which is based on using Edgelet feature with cluster boosted

tree classifier, where the latter is evaluated using [28]. Further, the performance of

the proposed method is slightly better than that of the implementations of the meth-

ods in [33], or that of the multi-resolution 2DHOG features presented in [95] when

used with BDTC. The proposed scheme achieves AP values of 90.44% in the case of

DCT2DHOG-SC, and 89.92% in the case of DCT2DHOG-CP. Thus, DCT2DHOG

with a single classifier exhibits a high detection performance, while requiring the

training of only a single classifier, instead of multiple classifiers for each resolution.
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Figure 3.10: Sample results for the proposed scheme when applied on USC multi-view

car dataset, where colors represent: (blue) true positive, and (red) false positive.
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c) LISA 2010

In this dataset, the same evaluation metrics presented in [84] are used, namely, true

positive rate (TPR) or recall, false detection rate (FDR) or (1 - precision), average

false positive per frame (AFP/F), average false positive per object (AFP/O), and

average true positive per frame (ATP/F). These metrics are computed at the point

of equal precision and recall. True positive detections are computed by using the

PASCAL VOC criterion [105, 106] with an overlap threshold of 0.5.

On both the H-dense and H-medium sequences, the single classifier trained at R =

2 is used in the case of DCT2DHOG-SC and two classifiers trained at R = 1 and 2

are used in the case of DCT2DHOG-CP. As in our experiments on USC multi-view

car detection dataset, the parameter setting chosen for both the DCT2DHOG-SC

and DCT2DHOG-CP schemes on LISA 2010 dataset is b0 = 8, c = 4, β = 9, and

btest = 8 and 16, since, these two datasets contain similar environmental conditions

and the same type of classifier, namely, BDTC, is used in the detection process.

Table 3.4 gives the detection performance of the proposed method, from which it

is clear that the performance of DCT2DHOG using a single classifier is almost as good

as that of using classifier pyramid. Table 3.4 also lists the performance of some of the

other methods, namely, the Haar-like features-based technique presented in [84], ACF

and ACF-Exact [33], and multi-resolution 2DHOG [95]. From this table, it can be

seen that the proposed scheme on H-medium sequence provides a performance better

than that of the schemes of [33, 84, 95], while for the H-dense sequence, our scheme

provides 92.67% TPR at 6.03% FDR, which is better than that of the methods in

[33, 95]. The proposed method and the methods in [33, 95] are trained with hard

negative samples collected from the CBCL street scenes dataset [99], while the method

in [84] is trained on private data from sunny highway environment. The detection

performance of the proposed scheme can be improved by using an online learning

technique to incorporate the false positive samples in the learning process.

Figure 3.11 (a) shows sample qualitative results for the proposed scheme when
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Table 3.4: The performance for the proposed scheme on LISA dataset

Method TPR FDR AFP/F ATP/F AFP/O

H
-d
en
se

DCT2DHOG-SC 92.67% 6.03% 0.26 4.06 0.06

DCT2DHOG-CP 92.67% 6.03% 0.26 4.06 0.06

Sivaraman and Trivedi [84] 93.50% 7.10% 0.32 4.2 0.07

ACF - Exact [33]∗ 87.43% 12.54% 0.55 3.83 0.13

ACF [33]∗ 86.75% 13.23% 0.58 3.8 0.13

Multi-resolution 2DHOG [95]∗ 73.24% 26.76% 1.17 3.21 0.27

H
-m

ed
iu
m

DCT2DHOG-SC 98.11% 1.89% 0.06 2.94 0.02

DCT2DHOG-CP 98.22% 1.78% 0.05 2.95 0.02

Sivaraman and Trivedi [84] 98.80% 10.30% 0.37 3.18 0.11

ACF - Exact [33]∗ 93.11% 6.89% 0.21 2.79 0.07

ACF [33]∗ 94.33% 5.67% 0.17 2.83 0.06

Multi-resolution 2DHOG [95]∗ 77.44% 19.70% 0.57 2.32 0.19

Note: ∗ denotes the results obtained by utilizing the code provided by the authors

of the paper. The best and the second best results on each dataset are shown in

boldface and underscored, respectively.
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applied on the H-dense sequence. As mentioned earlier, this sequence contains heavy

shadows, vehicles in partial occlusions and some background structures are confused

with the positive class. The proposed scheme can detect correctly 92.67% from the

vehicles under these challenging conditions. Figure 3.11 (b) shows the corresponding

results for the H-medium sequence, which includes challenges similar to that of the

H-dense sequence but at a lower density. It is clear that the proposed technique can

detect vehicles of various resolutions, under different illumination and background

conditions.

d) HRI Roadway Dataset

For this dataset, the evaluation metrics presented in Section (3.4.2.c) are used. As in

our experiments on the USC multi-view car detection dataset and LISA 2010 dataset,

the single classifier trained at R = 2 is used in the case of DCT2DHOG-SC and two

classifiers trained at R = 1 and 2 are used in the case of DCT2DHOG-CP for all the

five test sequences of the HRI dataset. Also, the same parameter setting is chosen

for both the DCT2DHOG-SC and DCT2DHOG-CP schemes, namely, b0 = 8; c = 4;

β = 9, and btest = 8 and 16. The choice of these parameters is made since these three

datasets contain similar challenging conditions and the type of the classifier used is

the same, namely, BDTC.

Table 3.5 shows the detection performance of DCT2DHOG-SC, DCT2DHOG-CP,

and other state-of-the-art techniques, namely, ACF and ACF-Exact [33], and multi-

resolution 2DHOG [95]. From this table, it can be seen that for sequences I, II and

IV either of the DCT2DHOG-SC and DCT2DHOG-CP schemes provides TPR val-

ues better than that in case of the schemes in [33, 95], whereas for the sequences

III and V, the DCT2DHOG-SC scheme yields TPR values higher than that in case

of DCT2DHOG-CP or when the schemes of [33] and [95] are used. Note that the

sequences III and V have been captured in heavy rain and snowy conditions, respec-

tively.
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(a)

(b)

#40 #56 #134 #277

#343 #446 #510 #1578

Figure 3.11: Sample qualitative results for the proposed method on LISA 2010

dataset, such that (a) Highway-dense sequence, (b) Highway-medium or sunny se-

quence: (blue) true positive, and (red) false positive.
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Table 3.5: The performance for the proposed scheme on HRI dataset

Method TPR FDR AFP/FATP/FAFP/O
S
eq
u
en
ce

I

DCT2DHOG-SC 78.13% 21.88% 0.16 0.56 0.22

DCT2DHOG-CP 78.13% 21.88% 0.16 0.56 0.22

ACF - Exact [33]∗ 68.29% 31.71% 0.48 1.04 0.32

ACF [33]∗ 66.67% 33.33% 0.52 1.04 0.33

Multi-resolution 2DHOG [95] - BDTC∗ 68.97% 31.03% 0.36 0.80 0.31

S
eq
u
en
ce

II

DCT2DHOG-SC 67.86% 32.14% 0.20 0.42 0.32

DCT2DHOG-CP 67.86% 32.14% 0.20 0.42 0.32

ACF - Exact [33]∗ 65.63% 34.38% 0.39 0.75 0.34

ACF [33]∗ 60.61% 39.39% 0.45 0.69 0.39

Multi-resolution 2DHOG [95] - BDTC∗ 53.85% 46.15% 0.29 0.34 0.46

S
eq
u
en
ce

II
I DCT2DHOG-SC 72.73% 27.27% 0.30 0.80 0.27

DCT2DHOG-CP 66.67% 33.33% 0.37 0.73 0.33

ACF - Exact [33]∗ 66.67% 20.00% 0.29 1.18 0.17

ACF [33]∗ 72.41% 19.23% 0.31 1.31 0.17

Multi-resolution 2DHOG [95] - BDTC∗ 45.45% 54.55% 0.60 0.50 0.55

S
eq
u
en
ce

IV

DCT2DHOG-SC 73.33% 26.67% 0.20 0.55 0.27

DCT2DHOG-CP 80.00% 20.00% 0.15 0.60 0.20

ACF - Exact [33]∗ 63.16% 36.84% 0.50 0.86 0.37

ACF [33]∗ 63.16% 36.84% 0.50 0.86 0.37

Multi-resolution 2DHOG [95] - BDTC∗ 73.33% 26.67% 0.20 0.55 0.27

S
eq
u
en
ce

V

DCT2DHOG-SC 66.67% 33.33% 0.22 0.44 0.33

DCT2DHOG-CP 62.16% 37.84% 0.02 0.03 0.38

ACF - Exact [33]∗ 64.00% 23.81% 0.36 1.14 0.20

ACF [33]∗ 61.54% 23.81% 0.33 1.07 0.19

Multi-resolution 2DHOG [95] - BDTC∗ 51.85% 48.15% 0.32 0.34 0.48

Note: ∗ denotes the results obtained by utilizing the code provided by the authors

of the paper. The best and the second best results on each dataset are shown in

boldface and underscored, respectively.
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e) Discussion

In this section, we present an evaluation of the proposed scheme in terms of the cost for

the training and testing schemes. For a fair comparison, we use 2DPCA and FIKSVM

or 2DPCA and BDTC as the main building blocks when 2DHOG or DCT2DHOG

features are used. In the experiments that follow, the same values of η1, η2, b0, c, and β

that have been used to obtain the detection accuracy on the corresponding dataset are

used. It should be noted that in practical situations, the choice of these parameters

depends on the targeted vehicle view. In case the side view of the vehicles is of

interest, the parameter settings recommended for obtaining DCT2DHOG features are

b0 = 4, c = 4, and β = 7 and FIKSVM can provide a fast and accurate classification

scheme. In the case of detecting vehicles with different views, such as the situations

that exist in urban and highway scenarios, the recommended parameter settings are

b0 = 8, c = 4, and β = 9 and BDTC is preferred, since it can be trained on a large

number of samples and can capture large intra-class variations that exist within the

positive class samples.

Training Cost: In this experiment, we compare the training cost of the proposed

DCT2DHOG against that of 2DHOG at six different resolutions. Table 3.6 lists the

overall training time1 of the proposed DCT2DHOG at six resolutions along with that

of 2DHOG. It is seen from this table that the training time for the proposed scheme

is less than that of 2DHOG by at least 49.79% when a classifier pyramid is used, and

by at least 74.33% when a single classifier trained at R = 2 is employed. Table 3.7

gives the storage requirement of the proposed scheme and that of the 2DHOG-based

scheme for classifiers trained at the six different resolutions considered. It is seen from

this table that the storage requirement for the proposed scheme is lower than that of

2DHOG-based scheme in case of the UIUC dataset by 64.18% when the size of the

detection window is 64 × 192, whereas both these schemes achieve the same storage

for the cases of USC and LISA 2010 datasets. Note that the FIKSVM classifier is used
1Using modern computer of 2.9GHz CPU, and 8G RAM
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Table 3.6: Feature extraction and classifier training times (in seconds) for the pro-

posed DCT2DHOG method and for the 2DHOG method

Dataset UIUC USC LISA 2010

M1 ×M2 32×96 64×192 64×128 128×256 64×64 128×128

DCT2
DHOG

FET 8.00 9.72 245.87 283.91 85.03 107.22

CTT 6.75 5.71 14.32 13.49 7.63 7.76

TT 14.75 15.43 260.19 297.40 92.66 114.98

2DHOG

FET 8.53 11.76 604.70 2133.36 291.74 806.56

CTT 7.36 32.46 54.14 170.76 52.01 141.11

TT 15.89 44.22 658.84 2304.11 343.74 947.67

Reduction in TT (CP) 49.79% 81.18% 83.92%

Reduction in TT (SC) 74.33% 89.96% 91.10%

Note: FET: Time in seconds for feature extraction, CTT: Time in seconds for

training a classifier, TT: Average training time in seconds, Reduction in TT (CP)

and (SC) refer to the amount of reduction in TT of DCT2DHOG-CP method over

2DHOG method, and DCT2DHOG-SC method over 2DHOG method, respectively.

for the UIUC dataset and BDTC is used for the USC and LISA 2010 datasets. It is

observed from Tables 3.6 and 3.7, in order to detect vehicles of different resolutions,

the proposed DCT2DHOG-SC requires only a single classifier instead of multiple

ones, resulting in a reduction in terms of the training cost by at least 44.63% and the

storage requirement by at least 50.00% compared with that of DCT2DHOG-CP.

It is to be pointed out that the reduction in the training and storage costs is

achieved by the proposed vehicle detector in comparison with that of the 2DHOG

counterpart using a classifier pyramid with almost no loss in the detection accuracy.

Detection Time: Table 3.8 gives a comparison of the feature extraction time as well

as the detection time (in seconds) of the proposed transform-domain based detector
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Table 3.7: Storage requirements (in MByte) for the proposed DCT2DHOG method

and for the 2DHOG methods

Dataset UIUC USC LISA 2010

M1 ×M2 32×96 64×192 64×128 128×256 64×64 128×128

DCT2DHOG 1.51 2.16 0.21 0.21 0.21 0.21

2DHOG 1.51 6.03 0.21 0.21 0.21 0.21

Reduction in storage (CP) 51.33% 0.00% 0.00%

Reduction in storage (SC) 71.35% 50.00% 50.00%

Note: Reduction in storage (CP) and (SC) refer to the amount of reduction in

storage of DCT2DHOG-CP method over 2DHOG method, and DCT2DHOG-SC

method over 2DHOG method, respectively.

(Method A) with that of the spatial-domain counterparts (Methods B and C) on the

three vehicle detection datasets, UIUC [83], USC [28] and LISA 2010 [84]. We use test

images of size 480× 640. We assume that each octave of an image pyramid consists

of 8 scales, and that each scale is scanned by shifting the detection window(s) by 16

pixels in each of the x and y directions. This generates 1398, 1141 and 1365 detection

windows per frame for UIUC, USC and LISA 2010 datasets, respectively.

Method A in Table 3.8 corresponds to the proposed method, where the DCT2DHOG-

2DPCA features are used to train a single classifier at R = 2. Further, two detection

windows of different sizes are used to scan an image pyramid of depth one octave and

the same classifier is used to classify DCT2DHOG-2DPCA features obtained from

images within these detection windows after incorporating the multiplicative factor

α(K) given by (3.29b).

Method B corresponds to the traditional method that uses a single classifier

trained on features obtained in the spatial domain, namely, 2DHOG-2DPCA fea-

tures, at R = 1. Further, it uses a single detection window to scan an image pyramid

of depth two octaves. Then, the 2DHOG-2DPCA features obtained from an image

57



within a detection window are classified by the trained classifier.

Method C corresponds to a spatial domain method which uses 2DHOG-2DPCA

features to train two classifiers at R = 1, and 2. Further, two detection windows of

different sizes are used to scan an image pyramid of depth one octave. Then, the two

classifiers trained at R = 1 and 2 are used to classify images within the detection

windows of the same resolution at which the classifier is trained.

For the UIUC dataset, the first detection window is of size 32×96 and the second

one of size 64× 192. For this dataset, the range of vehicle size that can be detected

by using the method A, B or C is 32 × 96 to 128 × 384. For USC and LISA 2010

datasets the corresponding window sizes are 64× 128 and 128× 256, and 64× 64 and

128× 128, respectively.

It is seen from Table 3.8 that the proposed transform-based method provides a

minimum of 4.69% reduction in the feature extraction time and a minimum of 17.82%

reduction in the detection time over that of the two spatial-domain methods B and

C for the UIUC dataset and very much higher reductions for the other two datasets.

Finally, it is worth mentioning that the classification time of the proposed method

represents on average about 65% of the total detection time. Thus, further gains in

the detection speed could be achieved by reducing the classification time.
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Table 3.8: Average feature extraction and detection time in seconds for Methods A,

B and C applied to three datasets

Dataset UIUC USC LISA 2010

Range of vehicle size
32× 96 64× 128 64× 64

to 128×384 to 256×512 to 256×256

Number of detection
1398 1141 1365

windows per frame

Method
A FET 0.061 0.077 0.059

DT 0.143 0.212 0.218

Method
B FET 0.064 0.112 0.122

DT 0.174 0.397 0.475

Method
C FET 0.073 0.130 0.137

DT 0.301 0.376 0.375

Min. reduction in FET 4.69% 31.25% 51.64%

Min. reduction in DT 17.82% 43.62% 41.87%

Note: FET: feature extraction time in second, DT: detection time in second, Min.

reduction in FET and DT refer to the minimum amount of reduction in FET and

DT of Method A over those of Methods B and C.
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3.5 Summary

In this chapter, we have introduced transform domain features of two-dimensional

histogram of oriented gradients of images, referred to as TD2DHOG features [81, 82].

Then, we have studied the effect of image downsampling on the TD2DHOG features.

It has been shown that the TD2DHOG features obtained from a high resolution

image can be approximated by using the TD2DHOG features obtained from the

image at a lower resolution by multiplying the latter by a factor that depends on

the downsampling factor. A model for this multiplicative factor has been proposed

and validated experimentally in the case of 2DDFT and 2DDCT domains. Next, a

novel vehicle detection scheme using these TD2DHOG features has been proposed.

It has been shown that the use of TD2DHOG features reduce the cost of training

a classifier pyramid, since a single classifier can be used to detect vehicles of the

same or lower resolution at which the classifier has been trained, instead of training

multiple resolution-specific classifiers. Experimental results have shown that when

the proposed TD2DHOG features are used with the multiplying factor and a single

classifier for vehicle detection, it provides a detection accuracy similar to that obtained

using these features with a classifier pyramid; however, the use of a single classifier has

a significant advantage over the use of a classifier pyramid in that the former results

in substantial savings in training and storage costs. In addition, the proposed method

provides a detection accuracy that is similar or even better than that provided by the

state-of-the-art techniques.
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Chapter 4

Online Multi-Object Tracking via
Robust Collaborative Model and
Sample Selection

In this chapter, we develop a collaborative model for interaction between a number of

single-object online trackers and a pre-trained object detector, and use it in proposing

a novel online multi-object tracking (MOT) scheme [85, 86] that is robust to the false

positives and missed detections. In Section 4.1, we present a general architecture for

the proposed multi-object tracking scheme, consisting of a pre-trained object detector,

a data association module and a number of single-object trackers. In Section 4.2 the

proposed tracking scheme is presented. First, we introduce the particle filter which

uses the proposed collaborative model. Next, the appearance model of the proposed

tracker, which uses discriminative and generative appearance models, is presented.

A new image sample selection scheme is then introduced to update each tracker by

using relevant samples from its trajectory. Finally, a data association scheme that

can handle partial occlusion is introduced. In Section 4.3, extensive experiments on

benchmark datasets are conducted to evaluate the performance of the proposed multi-

object tracking scheme and compare it with that of the state-of-the-art methods.

Finally, a summary of the work presented in this chapter is provided in Section 4.4.
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4.1 General Architecture of the Proposed Scheme

The proposed multi-object tracking scheme consists of three main components: a

pre-trained object detector, a data association module and a number of single-object

trackers. Figure 4.1 shows the block diagram of the proposed scheme, wherein only

one single-object tracker is shown. The object detector is applied on every frame

and supports the data association module with a set of detections D
t at time t. The

object tracker adopts a hybrid motion model, and a particle filter with a collaborative

model is used to estimate the target location. The appearance model consists of a

sparsity-based discriminative classifier (SDC) with holistic features, a sparsity-based

generative model (SGM) with local features, and a 2DPCA-based generative model

(PGM) with holistic features. The SDC is used to compute each sample confidence

score of the particle filter, while the SGM and PGM are used to solve the data

association problem. Each tracker also contains a sample selection scheme to update

the appearance model with high confidence key samples. Finally, the data association

module is used to construct the similarity matrix S to match detections, dt ∈ D
t,

with existing trackers, bt ∈ B
t
e, at time t. Furthermore, it determines initialization,

termination and on-hold states of the trackers, and supports the tracker with key

samples from the target trajectory.

In this chapter, we used the fast pedestrian detector (FPD) [32] for multi-person

tracking. In Section 4.3, we used other pre-trained detectors, such as the vehicle

detector proposed in Chapter 3 [81, 82], and the method in [33] to measure the

tracking performance on several detection conditions and different types of objects.

4.2 Tracking Scheme

Each object tracker is based on the particle filter tracking framework that uses the

sparse representations and 2DPCA as the appearance model. We incorporate two
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measurements from the detector and tracker into the particle filter, and propose a

novel collaborative model that directly affects the likelihood function to obtain the

posterior estimate of the target location. We construct the appearance model of the

target by using discriminative and generative appearance models, for the likelihood

function and the data association. In the following, we use a gate function Gbt to

represent the state of the tracker bt when associated to the detection dt at time t.

The gate function is defined as

Gbt =

⎧⎪⎨
⎪⎩
1, if bt is associated with dt at time t

0, otherwise

(4.1)

4.2.1 Particle Filter using the Robust Collaborative Model

In the Bayesian tracking framework, the posterior at time t is approximated by a

weighted sample set {xi
t,w

i
t}Ns

i=1, where w
i
t is the weight of particle, x

i
t, and Ns is the

total number of particles. The state x consists of translation (x, y), average velocity

(vx, vy), scale ŝ, rotation angle θ, aspect ratio η, and skew direction φ.

In the proposed method of tracking, we adopt a hybrid motion model based on the

first-order Markov chain and the associated detection. The new candidate state xdt
t at

time t is provided to the motion model if a detection is successfully associated to the

tracker (i.e., Gbt = 1), and the initial velocity is set to be the average velocity of the

tracker particles. The candidate state at time t, xt, relates to the set of propagated

particles Xbt and the set of associated detection Xbt,dt by

xt =

⎧⎪⎨
⎪⎩
Fxt−1 + xQ if xt ∈ Xbt

xdt
t + xP if xt ∈ Xbt,dt

(4.2)

where xQ and xP are the Gaussian noise vectors, Ns = NP
s + NΓ

s , and NP
s and NΓ

s

are the cardinality of Xbt and Xbt,dt , respectively. In the above equation, F denotes
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the transition matrix of size 8× 8, which is defined as

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.3)

The measurement model of the proposed particle filter consists of two types. The

first type is available every time t from the propagated particles zbt1:t. The second

type is from the newly created particles zdtt that are available at time t when a

detection window, dt, is associated to a tracker, bt (i.e., Gbt = 1). Since it is difficult

to sample particles from the posterior distribution directly, we use an importance

density [108, 109] to obtain the candidate samples, xi
t, from this distribution. In

the proposed scheme, when the tracker bt is associated to a detection dt at a given

time t, then the candidate particles are sampled from the importance distribution,

q(xi
t|xi

1:t−1, z
bt
t , z

dt
t ), that depends on the previous states, xi

1:t−1, and the two types of

measurements, zbtt and zdtt . The posterior probability of the candidate location, given

the available measurements, can be approximately expressed as

p(xt|zbt1:t, zdtt ) ≈
Ns∑
i=1

w i
tδ(xt − xi

t) (4.4)

where

w i
t ∝ w i

t−1

p(zbtt , z
dt
t |xi

t)p(x
i
t|xi

t−1,x
dt
t )

q(xi
t|xi

1:t−1, z
bt
t , z

dt
t )

(4.5)

and p(xi
t|xi

t−1,x
dt
t ) is the transition probability. In the proposed method, the particles
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are resampled every time t, and then we have w i
t−1 = 1/Ns, ∀i, and we ignore w i

t−1

term. Let the importance density be proportional to the prior as

q(xi
t|xi

1:t−1, z
bt
t , z

dt
t ) ∝ p(xi

t|xi
t−1,x

dt
t ) (4.6)

Using (4.6), (4.5) reduces to

w i
t ∝ p(zbtt , z

dt
t |xi

t) (4.7)

In the current frame, since the propagated particles sampled at time t corresponding

to the tracker position in the previous frame and the particles sampled at time t from

the associated detection are independent, the particle weights satisfy

w i
t ∝

⎧⎪⎨
⎪⎩
p(zbtt |xi

t) if xi
t ∈ Xbt

p(zdtt |xi
t) if xi

t ∈ Xbt,dt

(4.8)

where p(zbtt |xi
t) and p(zdtt |xi

t) are the likelihoods of the i
th candidate state xi

t, in case of

xi
t belongs to the set of propagated particles Xbt and that of the set of newly created

ones Xbt,dt , respectively. By normalizing the particle weights, the resulting state

estimate is represented as a weighted average of the candidate locations. This makes

the proposed scheme more robust to noisy detection results compared to maximum

a posteriori methods.

When there is no detection associated with a tracker (i.e., Gbt = 0), the proposed

particle filter reduces to the bootstrap particle filter [74, 109]. In such a case, the

particle weights satisfy [109]

w i
t ∝ p(zbtt |xi

t) (4.9)
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a) Robust Collaborative Model

The object detector applies computationally expensive space-scale search to the entire

image to localize specific class of objects, and proposes candidate locations that have

high probability of existence. To exploit high confidence associated detections, we

incorporate a set of new particles, Xbt,dt , in the likelihood function, to allow the

object detector to guide the trackers. Let HSDC(x
i
t) denote SDC tracker confidence

score of candidate xi
t. The likelihood of the measurement, zt, can be computed by

p(zt|xi
t) = πiHSDC(x

i
t) (4.10)

where

πi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− γCF if Gbt = 1,xi
t ∈ Xbt

γCF if Gbt = 1,xi
t ∈ Xbt,dt

1 otherwise, i.e., Gbt = 0

(4.11)

and γCF ∈ [0, 1] is the collaborative factor. In (4.10), the particles from the associated

detections and previously propagated particles are weighted differently. Figure 4.2

shows the effect of changing the collaborative factor value. Figure 4.3(a) and (b) show

an example of particle weights for the detector particles and the propagated particles

using γCF = 0.54. If Gbt = 1 and γCF > 0.5, the weight πi allows the detector to guide

the tracker by giving more weights to the newly associated particles than the propa-

gated particles. However, a detector may have false positives, and thus, the tracker

should not depend completely on the detector. From our experiments, we find that

the proposed scheme with the value of γCF between 0.5 and 0.85 performs best. If

the detector suffers from missing detections (i.e., Gbt = 0), the likelihood function in

(4.10) will only depend on the previously propagated particles xi
t ∈ Xbt , which repre-

sent the bootstrap particle filter [74]. Our collaborative model is based on the hybrid

67



Full dependence on
propagated particles

Proposed 
collaborative 

model

Full dependence on 
associated detections 

(tracking-by-detection)

0.0 0.5 1.0

= 0 0 <          < 1 = 1

Figure 4.2: Effect of changing the collaborative factor γCF .

motion model that incorporates associated detections with object dynamics. In con-

trast, the motion model adopted in [5] depends only on propagated particles, and the

likelihood function depends on tracker appearance model and the detector confidence

density. The collaborative model in [61] only exists in the proposal distribution and

the likelihood is without weighting collaborative factor.

b) Resampling

In each frame, the set of candidate particles {xi
t,w

i
t}Ns

i=1 are resampled to avoid the

degeneracy problem. The resampling process also allows the detector to guide the

tracker effectively. As each tracker resamples particles based on particle weights

computed from the proposed collaborative model (4.10), the propagated particles with

low weights are replaced with newly created particles from the associated detections.

4.2.2 Appearance Model

In the proposed method, the SGM and SDC are used in a way different from that in

[110]. First, we do not use the collaboration between SGM and SDC [110], instead

we use SGM with PGM to compute the similarity matrix of the data association

module for occlusion handling (4.23), and the modified SDC model is used to com-

pute the likelihood of the particle filter (4.10). The number of particles in the filter
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(a)

x
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w

(b)

Figure 4.3: Effect of the proposed collaborative model on the tracker particles. (a)

Illustrates the candidate particles proposed by the object detector (masked as gray)

and propagated particles (colored). (b) Particles weights for new (masked as gray)

and propagated particles (colored).
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is usually larger than the number of detections and trackers at time t, and the com-

putational complexity of SDC is lower than SGM. Therefore, the resulting tracker

is more efficient. Second, our SDC uses the downsampled grayscale image without

the feature selection method used in [110]. Third, our SDC confidence measure de-

pends on the sparsity concentration index [111]. Finally, we propose the key sample

selection scheme to update the appearance models with high confidence samples.

a) Sparsity-based Discriminative Classifier

We construct a discriminative sparse appearance model to compute the confidence

score as used in (4.10). The initial training samples are collected in a similar way

to [110], where each SDC tracker is initialized using Np positive samples drawn from

the object center with a small variation from the center of the detection state xd
t ,

and Nn negative samples are taken from the annular region surrounding the target

center without overlap with a detection window dt. Next, each sample is normalized

to a canonical size of (m1 × m2), and vectorized to be one column of the matrix

A ∈ R
r×N t

, where r = mn and N t = Np + Nn + N t
p,u + N t

n,u, such that N t
p,u and

N t
n,u denote the buffer size of the selected key samples up to time t. Let the measure-

ment corresponding to the candidate location xi
t be denoted by zit ∈ R

r. We obtain

the sparse coefficients α̃i for the ith candidate by solving the following optimization

problem,

min
α̃i

∥∥zit −Aα̃i
∥∥2

2
+ λSDC

∥∥α̃i
∥∥
1

(4.12)

We compute the classifier confidence score by

HSDC(x
i
t) = exp

(
−(εi+ − εi−)

σ

)
ΩSCI(α̃

i) (4.13)

where εi+ =
∥∥zit −A+α̃

i
+

∥∥2

2
is the reconstruction error of the candidate zit with respect

to the template set of the positive class A+, and the sparse coefficient vector of the ith

candidate that corresponds to the positive class, α̃i
+. Similarly, εi− =

∥∥zit −A−α̃
i
−

∥∥2

2
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is the reconstruction error of the same candidate zit with respect to the template set

of the negative class A−, and the corresponding sparse coefficient vector α̃i
−. The

parameter σ adjusts the confidence measure, and ΩSCI(α̃
i) represents the sparsity

concentration index (SCI) [111] defined as

ΩSCI(α̃
i) =

J ·maxj‖δ
′

j(α̃
i)‖1/‖α̃i‖1 − 1

J − 1
∈ [0, 1] (4.14)

where δ
′

j is a function that selects the coefficients corresponding to the jth class and

suppresses the rest, and J is the number of classes (J = 2 in this work). The SCI

checks the validity of a candidate such that it can be represented by a linear combi-

nation of the training samples in one class. When the sparse coefficients concentrate

in a certain class, the SCI value is high. This index allows each tracker to assign high

weights to candidates resembling the positive training samples, and rejects others

related to other targets or background structures.

The SDC tracker is updated every Ru frames using the selected key samples, Kt
u

(Section 4.2.3). At each key sample location, we collect positive and negative samples

as part of the initialization process. To leverage between computational load and

memory requirement, we set the maximum number of positive and negative samples.

If the number of positive, N t
p,u or negative, N t

n,u samples exceeds the limit, we replace

the old samples (other than those collected in the first frame) with the new selected

key samples.

b) Sparsity-based Generative Model

We use a sparsity-based generative model to measure similarity in the data association

module. Figure 4.4 illustrates the block diagram of the proposed SGM in the training

and test modes. The training template consists of M local patches, {yi}Mi=1 and
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each patch of size m̂1 × m̂2. These M patches are vectorized1 and quantized into

Nk centroids using the k-means algorithm to construct the dictionary D ∈ R
r̂×Nk

(r̂ = m̂1m̂2). For the ith patch, yi, the sparse-coefficients, β̃i ∈ R
Nk×1, is computed

by

min
β̃i

∥∥∥yi −Dβ̃i

∥∥∥2

2
+ λSGM

∥∥∥β̃i

∥∥∥
1

(4.15)

The adopted SGM is concerned with representing the appearance of the positive

class of the tracker by using the sparse coefficients of M local patches of the object

and candidate location c, where each location is represented by a sparse histogram

feature vector ρ = [β̃1, β̃2, . . . , β̃M ]T , and ρc = [β̃c
1, β̃

c
2, . . . , β̃

c
M ]T , corresponding to

the initial object and the candidate location, respectively. To handle occlusion, the

patch reconstruction error, {εi =
∥∥∥yc

i −Dβ̃c
i

∥∥∥2

2
}Mi=1, is used to suppress the coefficients

of occluded patches. Let ψi be the non-occlusion indicator for the ith patch and is

computed by

ψi =

⎧⎪⎨
⎪⎩
1Nk,1 if εi < ε0

0Nk,1 otherwise

(4.16)

where 1Nk,1, and 0Nk,1 denote the vector of size Nk of ones and zeros. The final

histogram can be represented by ϕ = ψ � ρ, and ϕc = ψ � ρc, corresponding to

the training template, and the candidate location, where � denotes the element-wise

multiplication. By taking the spatial representation into consideration, the resulting

histogram, ϕ can handle occlusion effectively. Figure 4.5 illustrates the effect of the

partial occlusion handling scheme. If the reconstruction error is greater than the

threshold, ε0, then the non-occlusion indicator, ψ, suppresses these patches. The

generative model similarity, GSGM(bt, c), between the candidate ϕc and the model ϕ

is measured by using the intersection kernel.

As in [110], the dictionary, D, is fixed during the tracking process, while the

1The vectorization function is defined as Mat2Vec: Rm1×m2 → R
r, where r = mn is the dimen-

sion of the vector, and (m1 ×m2) is the order of the input matrix. The inverse of the vectorization
function is defined as Vec2Mat: Rr → R

m1×m2 .
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(a) (b) (c)

Figure 4.5: Sample results for SGM partial occlusion handling scheme, where the

marked patches with the same tracker color are the patches at which SGM recon-

struction error is greater than the SGM error threshold.

sparse histogram of the initial template, ρinitial, is updated every update rate, Ru.

The sparse histogram is updated by

ρnew = μρinitial + (1− μ)ρK (4.17)

where μ is the learning rate, and ρK represents the sparse histogram corresponding

to the selected key sample from the set Kt
u that provides the maximum similarity

to the training templates (see Section 4.2.3 for the sample selection scheme). This

conservative update scheme by using the confidence key samples and maintaining the

initial template provide effective tracking.

c) 2DPCA-based Generative Model

In addition to part-based SGM, we use a holistic generative model based on the

2DPCA scheme [94], referred to as PGM, to solve the data association problem. The

reason being that a combination of PGM and SGM increases the tracking performance

(see Section 4.3). For each tracker bt, we use N positive samples, {Yj}Nj=1 each of

size m1 × m2, where samples are taken from the positive class of the initial target

location, or selected key samples, Kt
u.
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The image covariance matrix Cov is defined by

Cov =
1

N

N∑
j=1

(Yj − Ȳ)�(Yj − Ȳ) (4.18)

where Ȳ is the average image of all training samples, and Cov is the nonnegative

definite matrix. The objective of 2DPCA is to find the optimal orthonormal matrix,

Vopt, that maximizes the total scatter in the learned subspace. The total scatter

criterion J(V) is defined by

J(V) = V�CovV (4.19)

The optimal projection matrix Vopt is composed of the r1 eigenvectors of matrix Cov

corresponding to the first r1 largest eigenvalues, where the vectors are stacked together

in matrix V of size m2 × r1. We extract features of the jth training example, Yj,

through projecting on matrix V, as Fj = YjV, and then we vectorize the resulting

feature matrix and have the feature vector f j of size 1×m1r1.

For each candidate location, we project the candidate sample, Yc, using the matrix

V, and vectorize the resulting matrix to obtain the test feature vector f c of size

1×m1r1. The nearest neighbor classifier is used to infer the index of the jth training

example, ĵ closest to the test vector f c

ĵ ← argmin
j∈{1,2,...,N}

‖f c − f j‖2 (4.20)

where ‖.‖2 denotes the l2-norm. The reconstruction error between the test image and

the training examples is εPGM = ‖aĵ − ac‖2, where aĵ = Mat2Vec(FĵV�) and ac =

Mat2Vec(FcV�). The similarity between the test and training features is computed

by

GPGM = exp(−εPGM/σ̂2) (4.21)
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Figure 4.6: (Top) Reconstructed nearest neighbor training samples by PGM. (Mid-

dle) Reconstructed patches at candidate locations. (Bottom) Absolute reconstruction

error, where the pixel with brighter color means high error value.

Figure 4.6 shows a sample intermediate output from the proposed PGM scheme.

The PGM is able to retrieve the closest training patches in 2DPCA feature subspace,

which provides accurate similarity measures in (4.21).

Similar to SDC tracker, PGM is updated every Ru frames, by using the initial

positive and the selected key samples at time t, where N = Np + N t
p,u. To update

2DPCA feature space, we used a batch learning technique. In this scheme, we update

the optimal projection matrix, Vopt, and extract the feature vectors, {f j}Nj=1. While

the incremental 2DPCA learning has been used in [112], we find that batch learning

performs more efficiently than the incremental learning scheme, since we replace some

samples every update rate with newly selected key samples.
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4.2.3 Sample Selection

We propose a sample selection scheme to learn and adapt the appearance model for

each tracker by using the samples with high confidence from the object trajectory,

in a way similar to existing methods [5, 63, 113]. Examples for key sample locations

in the object trajectory are shown in Figure 4.7, where two scenarios for the key

samples are selected from the tracker history. The sample selection scheme alleviates

the problem of including occluded samples for more effective model update and thus,

reduces the drifting problem. The proposed sample selection scheme is based on the

following criteria:

1. We measure the goodness of the key samples. A good key sample is one at

which the tracker bt does not intersect with other trackers or nearby detections

except the associated detection dt. We denote the set of good key samples at

time t by Kt
g.

2. We use the online trained SDC tracker to measure the similarity between the

current appearance model of the tracker, bt, and the ith good key sample Kt
g,i ∈

Kt
g by

SDC(bt, K
t
g,i) = exp(−(εi+ − εi−)/σ

2) (4.22)

where εi+ =
∥∥zit −A+α̃

i
+

∥∥2

2
, εi− =

∥∥zit −A−α̃
i
−

∥∥2

2
, and α̃i

+ and α̃i
− are computed

by using (4.12).

3. If SDC(bt, K
t
g,i) > s0 ≥ 0, where s0 is the SDC similarity threshold, then this key

sample is selected for the model update. The final set of selected key samples,

Kt
u, which have high similarity with the SDC tracker, are used to update the

tracker appearance model (Section 4.2.2). It should be observed that when

s0 = 0, all the samples are selected.
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Key sample

Time

Sp
ac

e

Object trajectory

(a)

(b) (c)

Figure 4.7: (a) Key samples in the object trajectories and occlusion issues that should

be handled, (b and c) Examples for key samples selected from object trajectories,

using a sequence from the PETS09-S2L1 dataset.
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4.2.4 Data Association

The similarity matrix S for data association measures the relation between a tracker

bt ∈ B
t
e and a detection dt ∈ D

t by

S(bt, dt) = G(bt, dt)O(bt, dt) (4.23)

where G(bt, dt) = GSGM(bt, dt) + GPGM(bt, dt) considers the appearance similarity

between the tracker bt and detection dt, and O(bt, dt) represents the overlap ratio

between the tracker and the detection to suppress confusing detections, where the

overlap ratio is based on the PASCAL VOC criterion [105].

The association is computed online by using the Hungarian algorithm [114] to

match a tracker to a detection in a way similar to existing methods [5, 63]. The

proposed data association scheme iteratively finds the maximum in the matrix S,

and associates the tracker bt to a detection dt if S(bt, dt) is larger than a threshold

s1. The row and the column corresponding to S(bt, dt) are removed. As the object

detector is likely to miss some objects, using the similarity threshold, s1, can alleviate

the tracker to be updated with confusing nearby detections. Furthermore, we select

a number of key samples to update the appearance model (Sections 4.2.3 and 4.2.2).

We initialize new trackers with non-associated detection windows if the maximum

overlap with other existing trackers is less than O1 to avoid creating multiple trackers

for the same target.

Re-detection Module

A pre-trained object detector usually suffers from false positives and negatives, thereby

causing trackers to drift. On the other hand, a tracker does not perform well in the

presence of heavy occlusion or background clutters. To handle these challenging

cases, we introduce the inactive or on-hold states before tracker termination in case

the tracker misses a high number of detections.
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Let the set of trackers on-hold be denoted as B
t
h. When the tracker does not

estimate the target location at an inactive state, we adopt the PGM (Section 4.2.2)

to measure the similarity between the tracker on-hold bt ∈ B
t
h and the new can-

didate location. When the tracker is in the inactive state bht , it still can be reini-

tialized after checking the similarity with the new un-associated detection, dut by

Sh(b
h
t , d

u
t ) = GPGM(bht , d

u
t ) (where GPGM is computed by (4.21)). The inactive tracker

is reactivated if Sh(b
h
t , d

u
t ) > s2, where s2 is a pre-defined threshold. During the inac-

tive state, the proposed tracker can re-identify lost targets and discriminate among

trackers using the 2DPCA feature space learned from selected key samples.

4.3 Experimental Results

4.3.1 Datasets

We evaluate the tracking performance of the proposed algorithm using seven chal-

lenging sequences, namely, the PETS09-S2L1, PETS09-S2L2 [87], UCF Parking Lot

(UCF-PL) dataset [63], Soccer dataset [62], Town Center dataset [88], and Urban as

well as Sunny sequences from LISA 2010 dataset [84], and compare it with that of

several state-of-the-art online multi-object tracking methods.

The PETS09-S2L1 sequence consists of 799 frames of 768×576 pixels recorded at 7

frames per second with medium crowd density. The PETS09-S2L2 sequence consists

of 442 frames with the same resolution and frame rate as the PETS09-S2L1 sequence,

but it contains heavy crowd density and illumination changes. The target objects

undergo scale changes, long-term occlusion, and with similar appearance. The ground

truth (GT) data from [115, 116] and [117] are used for evaluating the tracking results

on PETS09-S2L1 and PETS09-S2L2, respectively. The Soccer sequence consists of

155 frames of 960× 544 pixels recorded at 3 to 5 frames per second. The challenging

factors of this sequence include heavy occlusion, sudden change of motion direction of

players, high similarity among players of the same team, and scale changes. The GT

data provided by [62] are used for evaluation. On the PETS09-S2L1, PETS09-S2L2
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and Soccer sequences, the FPD detector [32] is used as the baseline detector for the

proposed tracking scheme.

The UCF-PL dataset consists of 998 frames of 1920× 1080 pixels recorded at 29

frames per second with medium crowd density, long-term occlusion, and targets of

similar appearance. On this dataset, the detection results of the part-based pedestrian

detector proposed in [63] are used for evaluation based on the GT data provided by

[118].

The Town Center dataset consists of 4500 frames of 1080×1920 pixels recorded at

25 frames per second. The dataset contains medium crowd density, heavy occlusion,

and scale changes. In [88], two categories of GT annotations are provided based

on the full body and head regions of pedestrians. On this dataset, the aggregated

channel feature (ACF) detector proposed by Dollár et al. [33] is used for performance

evaluation. In the case of the full body of pedestrians, it has been observed that

the ACF detector does not perform well on this sequence as the false positive rate

is high. To alleviate this problem, the first 500 frames of this sequence are used

to collect hard-negative samples related to the background clutters, and the ACF

detector is re-trained using both the INRIA dataset [6] and hard-negative samples.

In case of tracking multiple people based on the head regions, the positive training

examples provided in [88] and negative samples collected from the first 500 frames of

this sequence are used to train the ACF detector.

The Urban and Sunny sequences from the LISA 2010 dataset [84] contain car

images of 704 × 480 collected at 30 frames per second from a camera mounted on a

moving vehicle. The Urban sequence (300 frames) was captured from an urban area

with a low traffic density on a cloudy day, while the Sunny sequence (300 frames) was

captured from a highway with medium traffic density on a sunny day. The challenging

factors of these sequences include the effect of camera vibration, illumination changes,

and the targets’ scale changes; the GT data are provided by [84]. The pre-trained

vehicle detector proposed in [81, 82] is used for evaluation on this dataset.
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4.3.2 Qualitative Results

In this section, we study the qualitative performance of the proposed tracking scheme

using the datasets mentioned above. Figures 4.8 and 4.9 show some of the tracking

results and videos are available at https://users.encs.concordia.ca/~rcmss/.

PETS09-S2L1: Figure 4.8(a) shows the sample tracking results of the proposed

scheme on the PETS09-S2L1 sequence. The proposed method performs well despite

several short-term occlusions, scale and pose changes. Furthermore, it should be

mentioned that the pre-trained FPD detector [32] misses objects that are close to the

camera or those located far from the camera.

PETS09-S2L2: Figure 4.8(b) shows that non-occluded targets are tracked well al-

though targets with long-term occlusions or located far from the camera are missed.

Again, it should be mentioned that the FPD detector [32] misses numerous detections

in this sequence due to the high crowd density.

Soccer: This sequence contains soccer players with similar visual appearance and

fast motion. The FPD detector [32] is not trained to detect the soccer players at

different poses. Nevertheless, the proposed scheme performs well with accurate short

tracklets, as shown in Figure 4.8(c).

UCF-PL: This sequence contains crowds of medium density, with occlusions. Figure

4.8(d) shows some tracking results for the proposed scheme using the detector in [63].

Despite the challenges of the sequence, the proposed tracking scheme maintains long

trajectories.

Town Center: The crowd density of this sequence is medium with a number of long-

term occlusions. Figures 4.8(e) and (f) show sample tracking results corresponding to

full body and head, respectively. While it is difficult to track the full human body due

to heavy occlusions, or the head due to false positives, the proposed method performs

well.
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#81 #94 #137

(a)

(b)

(c)

(d)

(e)

(f)

#114 #226 #397

#28 #72 #116

#146 #235 #428

#103 #1968 #2169

#433 #1340 #2226

Figure 4.8: Sample tracking results for five sequences, the arrangement from top to

bottom as (a) and (b) PETS09-S2L1, and PETS09-S2L2, respectively, (c) Soccer

sequence, (d) UCF-PL sequence, (e) Town Center dataset (body), and (f) Town

Center dataset (head).
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LISA 2010: Figures 4.9(a) and (b) show the sample results of our tracker using the

detector in [81, 82] on the Urban and Sunny sequences. The Urban sequence contains

only one vehicle, but there is illumination change and the effect of camera vibrations.

The Sunny sequence contains, on average, three non-occluded vehicles with different

velocities. In spite of these challenges, the proposed scheme tracks the vehicles very

well in both cases.

4.3.3 Quantitative Results

We use the CLEAR MOT metrics [119] including multiple object tracking accuracy

(MOTA), multiple object tracking precision (MOTP), false negative rate (FNR), false

positive rate (FPR), and identity switches (IDSW) for evaluating the performance of

the proposed tracker. We use the overlap threshold of 0.5 for all experiments. For this

study, we set the various parameters to be NP
s = 150, NΓ

s = 100, Np = N t
p,u = 10,

Nn = N t
n,u = 20, Ru = 10, λSDC = 0.02, λSGM = 0.01, σ̂ = 104, ε0 = 0.8, μ = 0.6,

σ̂ = 5×106, s0 = 1.0, s1 = 2.5, s2 = 0.7, and O1 = 0.2. For the multi-person tracking

sequences, namely, PETS09-S2L1, PETS09-S2L2, UCF-PL, Soccer, and Town Center

(Body), we use m1 = 32, m2 = 16, M = 84, m̂1 = m̂2 = 6 and Nk = 50. Further,

for the multi-head tracking sequence, namely, Town Center (Head), as well as the

multi-vehicle tracking sequences, namely, Urban and Sunny, we use m1 = m2 = 16,

M = 16, m̂1 = m̂2 = 6 and Nk = 16.

Effect of the Collaborative Factor: To measure the effect of the proposed col-

laborative model, we changed the value of the collaborative factor γCF in the interval

[0, 1] in increments of 0.2. Figure 4.10 shows the performance of the proposed method

with different values of γCF for the PETS09-S2L1 sequence. When γCF = 0, the like-

lihood function of the particle filter is based completely on the propagated particles,

and the proposed method does not perform well due to the degeneracy problem.

When γCF = 1, the likelihood function is based on the associated detections, and the
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tracker does not perform well due to false positives and missed detections. The pro-

posed method performs best for this sequence when γCF = 0.8, as can be seen from

Figure 4.10. It is worth noting that for high tracking performance, the value of γCF

should be adjusted according to the detector used. For detectors with high precision

and recall (the ones used in the PETS09-S2L1, UCF-PL, Town Center (Head), Ur-

ban and Sunny sequences), the proposed tracker provides a high MOTA value when

γCF is in the interval of [0.65, 0.85]. On the other hand, when the detector has low

precision and recall (the ones used in the case of PETS09-S2L2, Soccer and Town

Center (Body) sequences), the proposed tracker provides a high MOTA value when

γCF is in the interval of [0.5, 0.6].

Number of Key Samples: We analyze the effect of the number of key samples

retained on MOTA using the PETS09-S2L1 sequence. The appearance model (SDC,

SGM, and PGM) is updated online at an update rate Ru of 10. Figure 4.11 shows

the performance of the proposed tracker when the number of key samples retained is

varied. We choose the number of retained key samples to be 20 at which the highest

MOTA performance is exhibited, as seen from Figure 4.11.

Key Sample Selection: To demonstrate the strength of the proposed sample selec-

tion scheme, we examine the performance of the proposed tracking scheme by varying

the SDC similarity threshold, s0, from 0 to 1.5 in increments of 0.1. Figure 4.12 shows

the performance of the proposed scheme at different SDC tracker similarity threshold

values. When s0 = 1, the proposed tracker exhibits the best performance in terms of

MOTA. If 0 ≤ s0 < 1, the performance is not as good in view of the fact that only a

few or none of the key samples are rejected, and hence, occluded samples are likely to

be selected. When s0 > 1.2, the proposed tracker performs worse than that at s0 = 1,

since a large number of key samples are rejected. As such, we choose s0 = 1.0 for all

the experiments.
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Figure 4.10: Performance of the proposed method on the PETS09-S2L1 sequence for

different values of the collaborative factor γCF .
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Figure 4.11: MOTA vs. number of retained key samples for the proposed tracker on

the PETS09-S2L1 sequence.
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Effect of Tracker Re-detection: We analyze the effect of using the re-detection

module on multi-object tracking. Figure 4.13 shows that the proposed method with

tracker re-detection scheme achieves slightly lower FNR and FPR than that obtained

without using the tracker re-detection scheme, while maintaining approximately the

same performance in terms of MOTA and MOTP values. The tracker re-detection

scheme aims to reduce the number of identity switches and maintains long trajectories,

without reducing the tracking performance.

Generative Appearance Models: We study the tracking performance of the pro-

posed method by using several types of generative models to solve the data association

problem in (4.23). These generative models are (1) SGM, as outlined in Section 4.2.2,

which is based on local patch features (by substituting in (4.23) by G = GSGM); (2)

2DPCA generative model, as proposed in Section 4.2.2, which is based on holistic

features (by substituting in (4.23) by G = GPGM); (3) combination of SGM and

2DPCA generative models as mentioned in Section 4.2.4; (4) principal component

analysis (PCA)1 generative model (instead of using the 2DPCA generative model);

and (5) combination of SGM and PCA generative models.

The main differences between 2DPCA versus PCA are as follows. The covariance

matrix in the case of 2DPCA can be computed directly from the image samples in

2D matrices rather than 1D vectors as in the case of PCA [94, 120]. The complex-

ity for computing the covariance matrix using a 2DPCA-based appearance model

is O(mn2N), whereas the corresponding complexity using a PCA-based appearance

model is O(m2n2N), when a set of N image samples, each of size m × n pixels, is

used. Further, it may be pointed out that 2DPCA encodes the relationship among

neighboring rows in a given set of image samples [120]. Such a relationship should

have a positive effect on the tracking performance.

Table 4.1 shows the results on the seven sequences. Overall, the proposed scheme

with SGM in conjunction with 2DPCA performs better than that by using SGM with

1The function pcaApply from toolbox [97] has been used to calculate the PCA.
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Figure 4.12: Performance of the proposed tracking scheme with respect to the SDC

similarity threshold, s0, using the PETS09-S2L1 sequence.
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Figure 4.13: Performance of the proposed method with and without tracker

re-detection on the PETS09-S2L1 sequence.
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PCA. In most sequences, the method of using SGM with 2DPCA or SGM with PCA

performs better than that using only SGM. On a machine with 2.9 GHz CPU, the

average tracking time per frame (over all the seven sequences without counting the

time for object detection) for the proposed tracker with SGM and 2DPCA is 2.88 s

whereas the corresponding time in the case of SGM and PCA is 2.90 s. Hence, this

improvement in the performance of the proposed tracker is achieved without loss in

speed.

4.3.4 Performance Comparison

In this section, we evaluate the performance of the proposed algorithm with two online

multi-object tracking methods in [121, 122] using the seven challenging sequences

described in Section 4.3.1. Table 4.2 shows the performance of these two methods

(using the original source code) along with that of the proposed tracker in terms of the

various CLEAR MOT metrics. In addition, the performance of the proposed scheme

is compared with the reported results of state-of-the-art online multi-object tracking

methods [63, 71, 88, 123–126] using the sequences considered in these papers.

On the PETS09-S2L1 and PETS09-S2L2 sequences, the proposed scheme pro-

vides the second highest MOTA values. It also offers the highest and second highest

MOTP values on the PETS09-S2L1 and PETS09-S2L2 sequences, respectively. This

can be attributed to the proposed update mechanism, and the inactive or on-hold

states of the tracker.

For the Soccer sequence, the proposed scheme performs better than the methods

in [121, 122] despite fast camera motion and the presence of similar objects in the

scenes. For the UCF-PL sequence, the MOTA value of the proposed method is higher

than that of the methods in [63, 121, 122], using the same detector as in [63]. On the

other hand, the MOTP value of the proposed technique is close to that of [63]. In

addition, the proposed method has lower values for FNR and FPR than the methods

in [63, 121, 122] do.
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For the Town Center dataset, the proposed scheme is first evaluated to track the

full body of pedestrians. In this case, the proposed scheme yields the second highest

MOTP, FNR and FPR values compared to the methods in [63, 71, 88, 121, 122].

Next, the proposed scheme is evaluated on tracking the heads of pedestrians from

the same dataset. The head regions in this sequence are less occluded than the full

body, although the head detector has higher FPR than the full-body detector. As

shown in Table 4.2, the proposed method performs well against other approaches

[88, 121, 122, 126] in terms of MOTA. For the Urban and Sunny sequences from

LISA 2010 dataset, the proposed scheme provides a better performance than that

provided by the methods in [121, 122] for tracking multiple vehicles on-road.

We note that the proposed scheme uses grayscale images as features, whereas the

methods in [63, 71, 124] are based on the color or gradient information of the targets.

In addition, the proposed scheme does not require the detector confidence density or

a gate function in the data association step as in [5, 124], where the gate function

provides higher weight for detections located in the direction of motion of the target.
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4.4 Summary

In this chapter, we have presented a robust collaborative model that enhances the

interaction between a pre-trained object detector and a number of single-object online

trackers in the particle filter framework. The proposed scheme is based on incorpo-

rating the associated detections with the motion model, in addition to the likelihood

function providing different weights for the propagated and the newly created parti-

cles sampled from the associated detections, offering a reduction on the effect of the

detector errors on the tracking process. We have exploited sparse representation and

2DPCA to construct diverse features that maximize the appearance variation among

the trackers. Furthermore, we have presented a conservative sample selection scheme

to update the appearance model of every tracker. Experimental results on bench-

mark datasets have shown that the proposed scheme outperforms state-of-the-art

multi-object tracking methods in most of the cases.
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Table 4.1: Performance of the proposed scheme using different generative models.

Sequence Generative model MOTA MOTP FNR FPR IDSW

PETS09-S2L1

SGM 89.08% 79.89% 5.11% 5.42% 17
PCA 89.86% 79.97% 5.04% 4.76% 16
SGM + PCA 90.12% 80.55% 5.34% 4.30% 13
2DPCA 89.81% 79.82% 5.40% 4.41% 20
Proposed 92.13% 80.62% 3.19% 4.33% 14

PETS09-S2L2

SGM 36.43% 71.19% 39.38% 26.31% 263
PCA 45.69% 71.74% 35.92% 20.25% 218
SGM + PCA 44.35% 71.54% 36.04% 21.30% 237
2DPCA 46.06% 71.77% 36.59% 19.33% 221
Proposed 46.88% 71.66% 34.92% 19.43% 258

Soccer

SGM 67.36% 70.28% 16.72% 14.49% 45
PCA 70.33% 70.64% 18.85% 10.28% 38
SGM + PCA 70.21% 70.99% 18.20% 11.03% 36
2DPCA 71.13% 70.73% 17.00% 10.66% 49
Proposed 73.54% 70.77% 16.20% 9.45% 38

UCF-PL

SGM 82.30% 71.84% 10.77% 6.27% 16
PCA 82.14% 71.88% 10.44% 6.56% 21
SGM + PCA 83.29% 71.81% 10.64% 5.40% 16
2DPCA 81.89% 71.75% 11.47% 5.90% 18
Proposed 85.02% 71.89% 8.70% 5.65% 15

Town Center (Body)

SGM 69.41% 73.82% 17.08% 12.81% 444
PCA 70.19% 73.83% 18.18% 11.08% 351
SGM + PCA 69.83% 73.89% 19.29% 10.37% 320
2DPCA 71.24% 74.02% 18.02% 10.21% 337
Proposed 70.16% 73.93% 19.35% 9.95% 342

Town Center (Head)

SGM 70.32% 68.86% 14.96% 14.48% 164
PCA 72.15% 68.71% 14.25% 13.37% 163
SGM + PCA 69.37% 68.78% 15.62% 14.77% 166
2DPCA 70.43% 68.82% 15.06% 14.29% 158
Proposed 74.54% 69.15% 13.02% 12.21% 158

LISA10 Urban

SGM 100.00% 82.67% 0.00% 0.00% 0
PCA 100.00% 82.68% 0.00% 0.00% 0
SGM + PCA 100.00% 82.68% 0.00% 0.00% 0
2DPCA 100.00% 82.68% 0.00% 0.00% 0
Proposed 100.00% 82.68% 0.00% 0.00% 0

LISA10 Sunny

SGM 97.22% 78.28% 0.78% 1.98% 0
PCA 97.22% 78.28% 0.78% 1.98% 0
SGM + PCA 97.22% 78.28% 0.78% 1.98% 0
2DPCA 97.22% 78.28% 0.78% 1.98% 0
Proposed 97.22% 78.28% 0.78% 1.98% 0

Average

SGM 76.51% 74.60% 13.10% 10.22% -
PCA 78.45% 74.72% 12.93% 8.53% -
SGM + PCA 78.05% 74.81% 13.24% 8.64% -
2DPCA 78.47% 74.73% 13.04% 8.35% -
Proposed 79.94% 74.87% 12.02% 7.87% -

Note: The best and the second best results on each dataset are shown in boldface and
underscored, respectively. The proposed method is SGM + 2DPCA.
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Table 4.2: Performance measures of CLEAR MOT metrics.

Sequence Method MOTA MOTP FNR FPR IDSW

PETS09-S2L1

Proposed 92.13% 80.62% 3.19% 4.33% 14
Yoon et al. [121]∗ 66.64% 57.46% 17.99% 15.14% 34
Bao and Yoon [122]∗ 89.94% 79.34% 4.83% 4.73% 23
Zhang et al. [71] 93.27% 68.17% - - 19
Zhou et al. [123] 87.21% 58.47% - - -
Breitenstein et al. [124] 79.70% 56.30% - - -
Gerónimo et al. [125] 51.10% 75.00% 45.20% - 0

PETS09-S2L2

Proposed 46.88% 71.66% 34.92% 19.43% 258
Yoon et al. [121]∗ 26.85% 47.99% 51.27% 28.86% 218
Bao and Yoon [122]∗ 45.98% 71.77% 35.73% 19.06% 325
Zhang et al. [71] 66.72% 58.21% - - 215

Soccer
Proposed 73.54% 70.77% 16.20% 9.45% 38
Yoon et al. [121]∗ 29.99% 53.77% 52.89% 26.19% 10
Bao and Yoon [122]∗ 54.25% 69.26% 35.45% 12.64% 24

UCF-PL

Proposed 85.02% 71.89% 8.70% 5.65% 15
Yoon et al. [121]∗ 29.50% 45.33% 38.04% 33.95% 15
Bao and Yoon [122]∗ 82.84% 73.33% 10.31% 6.49% 15
Shu et al. [63] 79.30% 74.10% 18.30% 8.70% -

Town Center (Body)

Proposed 70.16% 73.93% 19.35% 9.95% 342
Yoon et al. [121]∗ 62.93% 48.66% 20.00% 17.14% 330
Bao and Yoon [122]∗ 79.07% 73.46% 11.19% 9.44% 307
Benfold and Reid [88] 61.30% 80.30% 21.00% 18.00% -
Zhang et al. [71] 73.61% 68.75% - - 421
Shu et al. [63] 72.90% 71.30% - - -

Town Center (Head)

Proposed 74.54% 69.15% 13.02% 12.21% 158
Yoon et al. [121]∗ 73.90% 70.16% 17.23% 9.49% 126
Bao and Yoon [122]∗ 70.65% 69.97% 16.31% 13.07% 320
Poiesi et al. [126] 54.60% 63.70% 23.80% 21.70% 285
Benfold and Reid [88] 45.40% 50.80% 29.00% 26.20% -

LISA10 Urban
Proposed 100.00% 82.68% 0.00% 0.00% 0
Yoon et al. [121]∗ 99.33% 81.98% 0.33% 0.33% 0
Bao and Yoon [122]∗ 98.33% 82.52% 1.67% 0.00% 0

LISA10 Sunny
Proposed 97.22% 78.28% 0.78% 1.98% 0
Yoon et al. [121]∗ 92.89% 77.20% 6.89% 0.24% 0
Bao and Yoon [122]∗ 97.00% 77.83% 2.67% 0.34% 0

Note: ∗ denotes the results obtained by utilizing the code provided by the authors of the
paper, where the detection results and GT annotations that have been used with the
proposed scheme are used. The best and the second best results on each dataset are

represented in boldface and underscored, respectively.
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Chapter 5

Conclusion

5.1 Concluding Remarks

Multi-object detection and tracking has many promising applications in the field

of computer vision, such as human activity recognition, human computer interac-

tion, crowd scene analysis, video surveillance, sports video analysis, autonomous ve-

hicles navigation, driver assistance systems, and traffic management. In this thesis, a

novel object detection technique using the two-dimensional discrete Fourier or cosine

transform and a detection-based online multi-object tracking technique have been

developed.

In the first part of the thesis, a new vehicle detection scheme using transform-domain

2DHOG features has been proposed. This scheme is based on extracting from the

input image the transform domain based features, referred to as the transform-domain

2DHOG (TD2DHOG) features. It has been shown that the TD2DHOG features so

obtained at an original resolution and a downsampled version of the same image are

approximately the same within a multiplicative factor. This property has been then

utilized in developing a scheme for the detection of vehicles of various resolutions us-

ing a single classifier rather than multiple resolution-specific classifiers. Experimental

results on three vehicle detection datasets, namely, UIUC car detection dataset [83],
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the USC multi-view car detection dataset [28], and the LISA 2010 dataset [84], have

shown that the use of the single classifier in the proposed detection scheme reduces

the training cost by at least 44.63% and the storage requirement by at least 50.00%

over the use of a classifier pyramid, yet provides a detection accuracy similar to that

obtained using TD2DHOG features with a classifier pyramid. In addition, the pro-

posed method provides a detection accuracy that is similar to or even better than

that provided by the state-of-the-art techniques. Experimental results have shown

that the proposed scheme works well under several challenging conditions such as

variation in scale, appearance, view of the objects, as well as partial occlusion, and

changes in illumination conditions.

In the second part of the thesis, a collaborative model between a pre-trained object

detector and a number of single-object online trackers has been presented and used

to develop a detection-based online multi-object tracking scheme. For each frame,

an association a detection and a tracker has been constructed. For each tracker, a

motion model that incorporates the associated detections with object dynamics, and a

likelihood function that provides different weights for the propagated particles and the

newly created ones from the associated detections have been proposed. An effective

sample selection scheme has been introduced to update the appearance model of a

given tracker. It has been shown that the proposed collaborative model, which weights

differently the propagated and the newly created particles, improved the multiple

object tracking accuracy (MOTA), false negative rate (FNR) and false positive rate

(FPR) of the proposed tracker by 4.63%, 49.48% and 20.56%, respectively, over that

of the tracker which weights the two sets of particles equally. Experimental results

on seven challenging sequences, namely, the PETS09-S2L1, PETS09-S2L2 [87], UCF

Parking Lot (UCF-PL) dataset [63], Soccer dataset [62], Town Center dataset [88],

and Urban as well as Sunny sequences from LISA 2010 dataset [84], have shown that

the proposed scheme generally outperforms the state-of-the-art methods.
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The study undertaken in this thesis has shown that two-dimensional transform-

domain based features can be used to design an object detector that not only reduces

the storage and training costs, but also offers a high detection accuracy; further,

the effect of detection errors on the tracking process can be alivated by using a

collaborative model that depends on the propagated particles and the newly-created

ones from the associated detections. Thus, this study may enable further work in the

design of transform-domain based features that are able to tackle the challenges of

orientation, aspect-ratio and scale change in object detection and tracking problems,

as well as in building a collaborative model for multi-object tracking that includes

more challenging conditions such as heavy-occlusion and various motion patterns.

5.2 Scope for Future Investigation

The research work presented in this thesis can be extended in a number of ways. The

spatial domain two-dimensional HOG features can be replaced by other features such

as gradient magnitude or color features prior to taking the DFT or DCT transform.

The transform used itself could be other transforms such as wavelet, curvelet or

contourlet. Depending on the spatial domain features and the transform used the

relationship between the transformed features at two different resolutions could be

investigated. Unlike the work of this thesis in which the detection is carried out

using the frequency domain features, the detection process could be investigated

using some suitable spatial domain features. In this thesis, tracking algorithms have

been developed using spatial domain features. The use of frequency domain features

could also be investigated for the purpose of multi-object tracking. Finally, instead of

extracting the spatial domain features individually for each frame, a tracking scheme

could be developed in which the motion information is used to determine the features

of the succeeding frames.
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