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Abstract

Analysis of Single Event Upsets Propagation at Register Transfer Level

in Combinational and Sequential Circuits Based on Satisfiability

Modulo Theories

Ghaith Kazma

The progressive scaling of semiconductor technologies has led to significant perfor-

mance improvements in digital designs. However, ultra-deep sub-micron technologies

have increased the vulnerability of VLSI designs to soft errors. In order to allow a

cost-effective reliability aware design process, it is critical to assess soft error reliabil-

ity parameters in early design stages. This thesis proposes a new technique to model,

analyze and estimate the propagation of Single Event Upsets (SEUs) in combinational

and sequential designs described at the Register Transfer Level (RTL) using Satisfi-

ability Modulo Theories (SMT). The propagation of SEUs through RTL bit-vector

constructs is modeled as a Satisfiability problem using the SMT theory of bit-vectors.

At first, for combinational designs, two different analysis techniques, concrete and

abstract modeling, are used in order to investigate the efficiency and accuracy of a

data type reduction technique for soft error analysis. To analyze the vulnerability

of the combinational circuits, we compute the Soft Error Rate (SER), which is a

summation of the propagation probabilities. Concrete modeling uses two versions

of the design, one faulty and one fault-free, in order to analyze SEU propagation.

Abstract modeling uses a data type reduction technique to evaluate the difference in

performance and accuracy over the first method. Experimental results demonstrate

that the loss in accuracy due to abstract modeling depends on the design behavior.

However, abstract modeling allows to reduce processing time significantly.
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Following this first approach, the methodology is then extended to model and

analyze SEU propagation in sequential circuits at RTL. In order to estimate the

vulnerability of sequential circuits to soft errors, the methodology must be adapted

to represent state transitions. To do so, we present an approach that uses circuit

unrolling. This approach uses multiple unrolled copies of the design to represent

the various state transitions. The fault propagation is then analyzed through a cer-

tain number of states. Useful information regarding the vulnerability to SEUs of

the sequential circuit can then be generated. The propagation probabilities can be

computed from the SEU injection cycle to multiple subsequent cycles. These results

are then used to estimate the circuit Soft Error Rate (SER). Experimental results

demonstrate the effectiveness and the applicability of the proposed approach.

Finally, we present a new methodology to estimate digital circuit vulnerability to

soft errors at Register Transfer Level (RTL). Single Event Upsets (SEUs) propagation

through RTL bit-vector operations is modeled and analyzed using a different modeling

approach based on Satisfiability Modulo Theories (SMTs). The objective of this new

approach is to improve the efficiency of the analysis. For instance, the bit-vector

reduction operators and arithmetic operators were modeled in SMT to include the

fault propagation properties. This approach uses only one copy of the design to do

the analysis. This means that the fault propagation properties are embedded within

the SMT equivalent of the RTL constructs themselves, and therefore does not require

two-copies of the design to analyze. In order to illustrate the practical utilization

of our work, we have analyzed different RTL combinational circuits. Experimental

results demonstrate that the proposed framework is faster than other comparable

contemporary techniques. Moreover, it provides more accurate and detailed results

of the circuit vulnerability allowing a more efficient applicability of fault tolerance

techniques.
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Chapter 1

Introduction

A Single Event Upset (SEU) is a type of Single Event Effect (SEE). SEEs can be

caused by galactic cosmic rays, cosmic solar particles or trapped protons in radiation

belts [3]. SEEs induced by heavy ions, protons, and neutrons can seriously affect

the reliability of electronic devices. For this reason, this has stimulated research on

understanding and reducing the effects of SEEs by means of mitigation techniques

[4]. Cosmic ray neutrons were recently found to cause errors even at ground level [5].

SEUs are a major source of soft errors in digital designs and modern electronic

systems. Soft errors induced by SEUs have become one of the most challenging issues

that impact the reliability of modern electronic systems. Digital circuits are more

vulnerable to SEUs as the technology scales down. It is important to analyze and

estimate the impact of SEUs on the behavior of digital designs.

In this section we present the motivation behind our work. We first discuss why

there is a need to develop better and more efficient techniques to analyze the impact

of SEUs in digital circuit early in the design cycle. We then discuss the contributions

and the outline of this thesis.
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1.1 Motivation

Soft errors induced by Single Event Effects (SEEs) such as Single Event Upsets (SEUs)

and Single Event Transients (SETs) have become one of the most challenging issues

that impact the reliability of modern electronic systems. The Soft Error Rate (SER)

per chip has been reported to increase 100-fold from the 180nm to the 16nm CMOS

technology nodes [6].

Aggressive technology scaling over the last several decades has made it harder for

designers to guarantee the correct functionality of chips in the field. Although expo-

nential growth in the number of transistors per chip has brought tremendous progress

in the performance of semiconductor devices, it has increased their vulnerability to

soft errors. Soft errors due to SEUs are one of the major reliability concerns in digital

designs. There is, therefore, a growing need to analyze and estimate the impact of

soft errors at an early stage in the design cycle.

A single particle hit on the state elements of a digital circuit can propagate through

the circuit and affect the output at different clock cycles. Thus, in order to achieve cost

efficient and reliable computing, it is crucial to take the reliability into consideration

alongside the conventional area, power, and performance metrics in the design flow.

Moreover, analyzing soft errors in digital circuits is even more important due to

the increased demand of commercial off the shelf (COTS) electronic components for

avionics.

SEUs were responsible for the catastrophic failure and the recall of many safety

critical systems. Such systems include implantable cardiac pacemakers [7] and im-

plantable cardiac defibrillators [8].

This kind of failure has made it critical to analyze the vulnerability to soft errors

and to apply efficient fault mitigation techniques to circuits used in critical systems.

It is much more efficient for designers to apply fault mitigation techniques, such as

Triple Modular Redundancy (TMR) [9], early in the design cycles.

Most contemporary techniques analyze the effect of SEUs and SETs at circuit
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level and gate level. SETs are affected by logical masking, electrical masking and

latching window masking, while SEUs are only affected by logical masking. SETs are

pulses with a certain duration and therefore, they can be masked due to electrical

masking. For an SET or an SEU to propagate, it must be on a sensitized path from

the location where it occurred to a primary output or a state element. This means

that it should not be masked by the logical operations of the gates on its propagation

path. For an SET, depending on the electrical properties of the gates it goes through

on its propagation path, its duration (or pulse width) can be attenuated and masked

before reaching a latch. If the pulse does not reach the state elements within the

latching window, it is said to be masked by the latching window.

SEUs occur directly at the state elements, i.e., a bit-flip due to a direct particle

hit, occurs at the latch itself. In this case, only logical masking can prevent an

SEU from propagating to the primary outputs of a combinational circuit, or other

state elements at subsequent clock cycles. Consequently, RTL descriptions of digital

circuits provide sufficient information to analyze the propagation of SEUs, since only

information regarding logical masking properties is required.

Early in the design cycle, digital circuits are defined at higher abstraction levels.

This work deals with the soft error analysis of circuits described at Register Transfer

Level (RTL). At RTL, circuit level details are not available and therefore this work

focuses on the analysis of SEUs propagation in combinational and sequential circuits.

Conventionally, analyzing soft error glitches was done at circuit level, which re-

quires a level of detail not available early in the design flow. However, applying

mitigation techniques at later stages in the design cycle can be very costly. For this

reason, there is an important need to develop techniques to analyze the impact of

SEUs earlier.

At circuit level, parameters extraction and detailed simulations can provide a

certain level of accuracy for phenomena such as electrical masking and SET width

variation. However, when dealing with SEUs, this level of detail is not necessary.

Moreover, the analysis at circuit level is very computationally intensive and would be
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intractable at the chip level. In other words, this type of analysis could be conducted

on hundreds of transistors at most. Moreover, this type of approach are not applicable

to RTL level constructs, due to a much higher level of abstraction. Therefore, the

techniques at circuit level are not efficient to model SEU propagation at RTL.

At gate level, several techniques have been developed to analyze the effects of

SEUs and SETs. Performing such analysis at the gate level requires the synthesis of

RTL designs to gate level to be able to analyze their vulnerability to SETs and SEUs.

Some of these techniques are very resource hungry and fail to analyze complex digital

designs.

At RTL, the state of the art is lacking in techniques to analyze the soft error rates.

At higher level of abstraction, the work focuses on analyzing the propagation of SEUs,

since in RTL descriptions, loading and timing details are not available. Although some

techniques allow the analysis of SEUs at high level, they still require the synthesis of

RTL designs, due to their inability to model the higher level constructs used at RTL,

e.g. case statements, if statements and linear arithmetic.

As we will see in Section 2.2.2, some techniques have recently been proposed to

analyze SEU propagation at RTL. Researchers have proposed modeling approaches

that use probabilistic model checking while other techniques use Boolean Satisfiability

(SAT) modeling to analyze soft errors at RTL. Some of these techniques fail to handle

moderately sized circuits while others cannot handle high level RTL constructs. Such

techniques will still require the synthesis of the design from RTL to gate level in order

to be applicable.

To summarize, due to the risks caused by SEUs in safety critical systems, it has

become crucial to develop new techniques to analyze the impact of SEUs on digital

circuits. This will give designers better insight regarding design vulnerability to soft

errors early in the design stages. Most available techniques can only deal with the

analysis of SEU propagation at gate level and circuit level. However, in order to apply

efficient fault mitigation techniques, it is important to obtain Soft Error vulnerability

in digital designs in early stages of design.

4



1.2 Thesis Contribution

In previous work, SEUs are analyzed at gate level and RTL through simulation based

techniques and formal based techniques. Simulation based techniques often suffer

from accuracy problems. In fact, even for small designs, simulation for all input vec-

tors to study fault propagation becomes intractable which results in loss of accuracy.

In formal based techniques, several methodologies were proposed. Such tech-

niques include modeling the SEU propagation at RTL as Discrete Time Markov

Chains (DTMCs) such as [10] and [2]. Those properties are then verified against

the constructed model using the PRISM model checker [11]. Some techniques use

SAT Solvers to model the propagation of SEUs at RTL such as [1]. Using Pure

Boolean SAT to model RTL constructs require to convert most RTL operations to

Pure Boolean form. Therefore, those techniques require the synthesis of the design

into a gate level netlist to be able to analyze the SEU propagation using a set of

assertions.

In this work, we propose a new modeling and analysis approach to verify the

propagation of SEUs using Satisfiability Modulo Theories (SMTs). Our approach is

significantly faster than simulation based techniques while still offering great accu-

racy. Our technique is used to compute propagation probabilities and the Soft Error

Rate (SER). The SER is essentially a measure to estimate the overall vulnerability

of a circuit. Our work focuses on the logical masking property since at RTL, the

information for electrical masking and latching window masking is not available. We

model and analyze the fault propagation problem into a satisfiability problem using

SMT and the Microsoft Z3 SMT solver [12].

We investigate the benefits and disadvantages of using a data type reduction tech-

nique with our proposed SMT modeling of SEU propagation. We also investigate the

advantages of using SMT modeling over Pure Boolean SAT modeling when analyzing

high level RTL circuits. SMTs allow to model RTL constructs into SMT format and

verify the SEU propagation against a set of assertions. The advantage of SMT over
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SAT, is that SAT based techniques require the use of synthesis tools, to take the RTL

hardware description and produce a gate level netlist in order to apply the SAT level

modeling.

We use our approach to analyze the vulnerability of combinational circuits at

first, then the technique is extended and applied to sequential circuits. At first,

the developed SMT model will use two copies of the design, one fault-free and one

faulty version. The SEU is injected at one version and the outputs are compared

to check fo fault propagation. For analyzing SEU propagation in sequential circuits,

the combinational part of the design is unrolled to simulate the propagation of SEU

through several clock cycles.

To improve our first modeling approach, we developed a library of SMT functions

using Microsoft Z3’s Python API [12]. The purpose of this new approach, is to create

Python functions that use SMT operations to model the basic Verilog and VHDL

RTL operations by including the fault propagation properties within the functions.

This allows to directly model RTL designs without requiring two copies of the design.

In addition to the proposed modeling, we investigate the applicability of the pro-

posed analysis by analyzing the vulnerability of several benchmark circuits from the

ISCAS85 benchmarks [13] for combinational circuits and from the ITC99 benchmarks

[14] for the sequential circuits.

To the best of our knowledge, techniques to model the propagation of SEUs at

RTL using SMT have not been previously proposed. Our work was published in [15],

[16] and [17].

1.3 Thesis Outline

The rest of this thesis is organized into four more chapters. In Chapter 2, we pro-

vide some preliminaries on the subject. We start by describing what SEEs are and

discussing the difference between SETs and SEUs. Then we introduce the current

state of the art at gate level and at RTL. Following this we describe what is Boolean
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Satisfiability (SAT) and Satisfiability Modulo Theories (SMTs) and their applications.

In Chapter 3, we present our first approach at modeling combinational circuits

using SMTs. To investigate the vulnerability to Soft Error, we use an approach

involving two copies of the circuits under test. We also investigate the impact of a

data type reduction technique on the accuracy and efficiency of the analysis. In order

to do so, two modeling techniques are developed, concrete and abstract modeling.

In Chapter 4, we model and investigate the propagation of SEUs in sequential

circuits. The modeling proposed in this chapter allows the analysis of SEUs propaga-

tion from each vulnerable node to the output of subsequent cycles of the sequential

circuit. This is done by using multiple unrolled copies of the design to represent

multiple state transitions of the sequential circuit. Moreover, the proposed modeling

and analysis provides an early estimate of the Soft Error Rate (SER) of the design

based on an approximate model counting approach.

In Chapter 5, we present a new modeling approach which embeds the fault prop-

agation properties within the SMT model of the RTL design itself. In this approach,

one copy of the design is used. For the analysis, an SMT model approximate counter is

used to investigate the propagation of SEUs. Moreover, to investigate the efficiency

of SMT versus Pure Boolean SAT in modeling RTL circuits, a comparison of the

performance of the two modeling approaches is done on different sizes of arithmetic

circuits.
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Chapter 2

Preliminaries and Related Works

In this chapter we discuss the preliminaries and the related works. The goal of

this chapter is to give the reader the required information to better understand the

motivation behind our work and the tools required.

First, we define the Single Event Upset (SEU) and the logical masking effect.

Next, we present the various state of art techniques at the gate level and Register

Transfer level (RTL). We also provide an overview of Boolean Satisfiability (SAT)

and Satisfiability Modulo Theories (SMT) as well as their respective most popular

solver engines.

2.1 Single Event Upsets

A Single Event Upset (SEU) is a type of Single Event Effect (SEE). SEEs can be

divided into two main categories: Destructive SEEs and Non-Destructive SEEs, also

known as Hard Errors and Soft Errors respectively. This work focuses on the Non-

Destructive SEEs (Soft Errors) and more specifically on SEUs. The two main types of

Non-Destructive SEEs are Single Event Upsets (SEUs) and Single Event Transients

(SETs). Both of those single events change the state of a device without affecting its

functionality. In other words, an SET or an SEU can potentially propagate to one or

several outputs, thus causing an error, but the overall functionality of the circuit is
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not permanently affected.

In combinational logic, SETs are transient pulses generated in a gate that may

propagate in a combinatorial circuit path and eventually be latched. SETs cause data

on a wire to change logic for a short period of time. They are represented as a pulse

with a certain duration and polarity, i.e., a pulse from logic "0" to logic "1" or logic

"1" to logic "0".

In memory devices, single event effects are called SEUs. An SEU is said to have

occurred when a change in the state of a storage element such as memory or registers

has occurred. SEUs have no pulse width, since they affect memory elements, when

they occur, the value of the bit is flipped. On the other hand, in combinational

logic, SETs are transient pulses that occur in a gate and may propagate through the

combinational path and be latched by a flip-flop. SETs may potentially never be

latched in a flip-flop if their pulse width is not strong enough.

The propagation of SETs through combinational designs is affected by logical,

electrical and temporal masking (latching window masking) while the propagation

of SEUs is only affected by logical masking. The low-level circuit details, that are

required to analyze electrical masking and temporal masking, are not yet available

in RTL descriptions of designs. Therefore, at RTL, the vulnerability of circuits can

only be analyzed due to SEUs.

The effects that can prevent an SEE from propagating to an output are logical

masking, electrical masking and latching window masking. It is important to note

that all three effects can prevent an SET from propagating due to its nature, i.e.,

a pulse with a certain width. On the other hand, only logical masking affects SEU

propagation, which are bit-flips that occur at flip-flops. The masking effects can be

described as follows:

1. Logical masking: An SET or SEU can propagate if the input vector opens a

sensitized path so that it reaches the design output.

2. Electrical masking: An SET requires a minimum width, which can be affected
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by the gates on its propagation path, in order to reach the primary outputs or

flip-flops.

3. Latching window masking: An SET can be latched by a register if it reaches

the registers within the latching window with a large enough pulse width.

Soft errors occur when an SEU reaches the primary outputs of a design. SEUs

can only be affected by logical masking. As mentioned earlier, logical masking can

be described as follows: to cause an error, an SEU must propagate on a sensitized

path from the location where it occurred to a primary output or a latch. When an

SEU reaches the input of a gate, the fault will be logically masked if at least one of

the other inputs of the same gate has a controlling value. This will prevent the SEU

to reach any of the outputs and causing an error.

The same logic that is applied to these basic gate level operations is applicable

to the equivalent logical operators at RTL. Different operators have different control-

ling logic and different logical masking probabilities. The NOT operator will always

propagate an error since its output depends on only one input. The propagation

probability for the AND, OR, NAND and OR operators depends on the number of

inputs of the operator. The AND and NAND operators have a controlling logic of

"0" while the OR and NOR operators have a controlling logic of "1". For example,

for an AND operator with 2 inputs, if one of the inputs has a logic value "0" (control-

ling logic), the output of the operator will be "0" regardless of the value of the other

input. Therefore, an error at the other input will be logically masked. Furthermore,

an SEU will always propagate through an XOR and XNOR operators.

Higher level synthesizable RTL constructs have an equivalent gate level represen-

tation. Therefore, any information regarding logical masking that is acquired from

RTL descriptions of designs is equivalent to information gathered at the gate level.

This is due to the fact that logical masking only depends on the logical operations

of the circuit. The logical masking effect depends on the inputs, since for different

input vectors, different paths are sensitized.
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In the following chapters, the computation of the SEU propagation probabilities

will be used to compute the Soft Error Rate (SER). We will explain in more de-

tails, how the propagation probabilities will be computed when analyzing some RTL

benchmark circuits.

2.2 State of the Art

There has been considerable progress in functional verification of digital designs.

However, the same cannot be said about non-functional verification. Non-functional

verification investigates the behavior of designs in the presence of different uncertain-

ties. Investigating non-functional properties is challenging due to the complexity of

the modeling and the analysis. Moreover, many details about the uncertainties are

not available at high abstraction levels.

In this section, we present the state of the art available at the gate level and RTL.

Certain techniques analyze SEU propagation while other deal with SET propagation.

It should be noted that, techniques that are used to model SET propagation can

also be applied to analyze SEUs, since those techniques usually cover the effects of

logical masking. The propagation of SET through combinational designs is affected

by logical masking, electrical masking and temporal masking. As discussed in Section

2.1, logical masking occurs while the SET or SEU is propagating through a gate and

at least one of the other inputs has a controlling logic value (e.g., "0" for a NAND

gate). Electrical masking occurs when the duration of the SET pulse is less than the

threshold of the gates on its path before reaching a latch. Temporal masking occurs if

the SET pulse arrives at the flip-flop input outside of the latching window of registers.

On the other hand, SEUs occur at registers, and their propagation is only af-

fected by logical masking, which is an effect that most technique that deal with SET

propagation cover.
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2.2.1 Techniques at Gate Level

Several techniques have been proposed at the gate level to deal with the analysis of

SEUs. Those include simulation based techniques such as [18], [19], [20], [21] and

formal based techniques such as [22], [23], [24]. More recently, formal techniques

using an SMT based approach at gate level have been proposed such as [25].

Simulation based techniques have serious shortcomings as they are very time con-

suming for large circuits with many primary inputs. Furthermore, these techniques

have their drawbacks in terms of accuracy. This is mainly because their accuracy is

determined by the ratio of the simulated sample size over the total vector space size.

These approaches have a scalability problem and cannot be applied on all types of

designs.

The problem with the techniques developed to analyze SEU and SET propagation

at gate level is that they cannot be applied at earlier stages in the design. RTL de-

scriptions of digital circuits contain higher level constructs such as if statements, case

statements and linear arithmetic operators that cannot be handled by the above tech-

niques. In the next section, we present a literature review on the current techniques

that deal with SEU propagation at RTL.

2.2.2 Techniques at Register Transfer Level

At Register Transfer Level (RTL), there is far less techniques to analyze SEU propa-

gation. However, some techniques to analyze SEU propagation have been proposed.

Those include fault simulation techniques such as [18] [26] and formal verification

methods such as [10], [1], [2].

However, the techniques to analyze SEU propagation at gate level are not appli-

cable at an early design stage. Moreover, simulation techniques at RTL are very time

consuming. Even formal based techniques fail to handle moderately sized circuits. For

instance, existing formal based techniques, such as Reduced Ordered Binary Decision
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Diagrams (ROBDDs) [23] and Multi-Terminal BDDs (MTBDDs) [2], are computa-

tionally expensive i.e., suffer from a state explosion problem.

Formal verification based techniques are resource hungry when used to analyze a

complex digital design at RTL. For example, formal techniques run out of memory,

even when trying to analyze moderate size designs, e.g., a 14-bit adder [10].

Some techniques have been developed to analyze SEU propagation at RTL using

Pure Boolean SAT such as [1]. Those techniques require the conversion of the SEU

propagation in a behavioral description into an instance of a SAT problem. In order

to do this, they require intermediate steps, since pure Boolean SAT cannot support

various RTL constructs. The RTL description of the circuit is modified to include

the fault propagation properties using a method that uses two copies of the design

and compares the outputs using an XOR operation. The resulting RTL description

is then converted to an equivalent conjunctive normal form (CNF) which is sent

to a SAT solver. The CNF is the equivalent SAT Boolean function converted to a

product-of-sums. It contains the logical AND of the set of clauses that represent the

formula. This conversion requires two intermediate steps. The modified RTL Verilog

description is converted to SMV format using the Cadence SMV tool [27]. Then

tools in the AIGER library [28] were used to convert from SMV format to CNF. The

resulting CNF file can then be sent to a SAT solver.

In this work we overcome this limitation by using SMT to model SEU propagation.

The basic RTL constructs can be modeled directly into SMT format which does not

require intermediate conversions steps.

2.3 Boolean Satisfiability (SAT)

SAT is an abbreviation for the Boolean Satisfiability Problem. The SAT problem is

the problem of determining whether theres exists a variables assignment such that

a given propositional formula evaluates to True. In other words, the problem is to

determine whether values (True or False) can be assigned to the variables of the
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formula for it to be True (satisfiable). If no such assignment can be found, then the

formula is said to be UNSAT, or unsatisfiable.

The problem of Boolean Satisfiability (SAT) is not only of interest in computer

science, since it has also received great attention in other areas where it has seen

significant practical applications [29].

Boolean Satisfiability (SAT) is often used an increasing number of applications in

Electronic Design Automation (EDA) as well as many other engineering fields [30].

More specifically, SAT has been used to formulate EDA problems such as test pattern

generation, circuit delay computation, logic optimization, combinational equivalence

checking, bounded model-checking and functional test vector generation.

Some well known SAT solvers include: MiniSat [31], MiniSat2 [32], PicoSAT [33],

RSat 2.0 [34] and Glucose [35].

2.4 Satisfiability Modulo Theories (SMT)

The advent of Satisfiability Modulo Theories (SMTs) [36] solved the problem of being

restricted to a pure Boolean representation, which is not efficient and sometimes

inadequate when representing several classes of systems. SMT is an extension of the

SAT decision problem, where the formulas are expressed in first-order logic, with

associated background theories. SMTs have been used to model and solve software

and hardware engineering problems. In this work, we show how linear arithmetic and

bit-vector theories can be used to model SEUs propagation.

SMT solvers that support the theory of bit-vectors provides concrete models for

bit-vector operations. Bit-vectors can be used to model designs directly on the word-

level. This proves to be useful when converting bit-vector RTL operations to SMT

operations.

High level behavioral and structural RTL descriptions of circuits include a variety

of RTL operations not available at gate level. This includes arithmetic operations
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operations, if statements and case statements. SMT solvers support bit-vector arith-

metic operations such as addition, subtraction, multiplication and division. Moreover,

they support If-Then-Else statements (ITE ).

Some modern SMT solvers include: Microsoft Z3 [12], Boolector [37], Yices [38],

Yices2 [39] and CVC4 [40].

2.5 Summary

In this chapter, we discussed the preliminaries required to better understand our

proposed methodology. We described SEUs and their effects on modern digital cir-

cuits. Then we discussed the related works dealing with the analysis of SEUs both

at the gate level and RTL level. There are far more techniques developed to tackle

this problem at gate level. We described Boolean Satisfiability (SAT) and Satisfia-

bility Modulo Theories (SMT) in order to understand the main differences and our

motivation behind using SMT to model the problem of SEU propagation.
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Chapter 3

Concrete and Abstract SMT

Modeling and Analysis of SEUs

Propagation in Combinational

Circuits

3.1 Introduction

In this chapter, a methodology is proposed to analyze Single Event Upset (SEU)

propagation in combinational designs described at Register Transfer level (RTL). In

this approach we use a well-known technique that utilizes two copies of a given design,

one fault-free and one faulty, where an SEU is injected. The accuracy of the two-

versions modeling approach was proven in [1]. The outputs of both copies are then

compared to check if they are different. In that case, the SEU propagated to the

output and caused an error.

Our methodology utilizes Satisfiability Modulo Theories (SMT) to model SEU

propagation in RTL designs as a Satisfiability problem. We propose two modeling

approaches to analyze the vulnerability of RTL designs to SEUs, i.e., concrete mod-

eling and abstract modeling.
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1. Concrete Modeling of SEU Propagation: In this approach, the generated

SMT models preserve the full functionality of the RTL description and is mod-

eled using the SMT theory of bit-vectors. Two copies of the generated SMT

model are used, the first is a fault-free version and the second is a faulty version

where an SEU is injected. The outputs of both circuits are compared to check

if the SEU caused an error at the output.

2. Abstract Modeling of SEU Propagation: In this approach, based on a

SEU injection scenario, the SMT model is reduced to improve the scalability

by adapting the data type reduction technique used in [2]. This technique is a

form of abstraction which comprises two main elements. First, bit-vectors are

reduced to 1-bit signals and second, operators are abstracted with a simplified

error propagation model. As shown later, this simplified error propagation

model is often quite pessimistic because it predicts propagation over whole bit-

vectors rather than specific bits.

The proposed technique starts by translating the Verilog RTL behavioral descrip-

tion of the design into an SMT equivalent model. RTL operations such as logical,

reduction, arithmetic, if statements and case statements are converted into their

SMT equivalent using the theories of bit-vectors and linear arithmetic. Then, based

on the adopted modeling approach, the proposed methodology allows the analysis

of SEUs propagation using a set of assertions. To estimate the vulnerability of dig-

ital circuits, we compute the Soft Error Rate (SER). The SER is a summation of

the propagation probabilities of SEUs injected at individual bits, therefore it can be

greater than 1.

Experimental results demonstrate that the loss in accuracy due to abstract mod-

eling depends on the design behavior. For example, for some circuits, the loss in ac-

curacy (percentage difference between the computed SERs) was around 187%, while

for other circuits it was as low as 0.03%. The percentage of error for individual in-

jection scenarios cannot exceed 100% since the propagation probabilities range from
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0 to 1. Since we are computing the percentage difference between the SERs, our

values can exceed 100%. However, abstract modeling allows reducing processing time

significantly and an average reduction factor of 67.33 is reported. The reported re-

sults demonstrate that the abstract modeling technique yields considerable speed-up

in computation time at a certain cost in accuracy. The generated results are used to

investigate the trade-off between the speed-up of abstract modeling and the accuracy

of concrete modeling.

The rest of this chapter is organized as follows. Section 3.2 explains the data type

reduction technique used and how it affects the accuracy of SEU propagation analysis.

Section 3.3 explains our proposed modeling and the analysis of SEUs propagation at

RTL. In Section 3.4, we explain our experiments and results. Section 3.5 concludes

by summarizing the analysis and experiments.

3.2 Data Type Reduction

Existing formal analysis methods can be combined with different reduction techniques

to improve their scalability. SEUs propagation behavior at RTL can be reduced using

a data type reduction technique. The data type reduction technique proposed in [2]

is adapted to our SMT model to investigate its effect on our modeling approach. In

this work, we define the data type reduction technique used as follows:

1. For a bit-vector signal, if one bit is faulty, then the whole vector is considered

faulty. In other words, a multi-bit signal is considered as a 1-bit signal.

2. SEU propagation through register transfer operations such as addition and mul-

tiplication is modeled to transparently propagate from inputs to outputs. This

modeling loses track of the exact location of faults. For example, in an addition

involving two input n-bit signals A and B and output C, a fault occurring at

bit k of signal A, cannot propagate to bit i of output C, given i < k. These

details would be abstracted when using a data type reduction technique. A
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faulty input signal in an addition operation will automatically imply a faulty

output, without providing details regarding specific bit vulnerabilities.

3. For a case statement or a block of if statements, which represents a multiplexer,

if the selection signal is faulty, then the output is considered to be faulty as well,

regardless of the values of the input signals. If one of the input signal is faulty,

the output will be faulty if the selection signals currently select the faulty input.

The main issue with the utilization of such a reduction technique is that we lose

track of the exact error location. In other words, it is not possible to identify the

specific faulty bits in the bit-vector signals.

To better understand the impact of such modeling, consider the RTL signal as-

signment shown in Listing 3.1. The bit-vectors next_addr and start_addr are

32-bit signals.

next_addr = start_addr + 4 ;
addr_msb = next_addr [ 3 1 : 1 6 ] ;
addr_lsb = next_addr [ 1 5 : 0 ] ;

Listing 3.1: RTL Assignment Example

Instead of performing an SEU injection at every bit of the 32-bit start_addr

signal, the signal is reduced to a single bit. It is assumed that if start_addr is

faulty, then next_addr is faulty.

However, a certain output of the circuit may only depend on the value of certain

bits of the next_addr signal while the fault is present in some other bits. In Listing

3.1, the addr_msb signal depends on the uppermost 16 bits of next_addr while

addr_lsb depends on the lower 16 bits. In this case, the output may mistakenly be

considered faulty for several SEU injection scenarios.

As another example, consider the 2-bit RTL multiplexer shown in Figure 3.1.

If the select signal sel is faulty, then the output y is considered as faulty. However,

in this example, a faulty sel signal can cause at most 2 bits of y to be faulty.
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Figure 3.1: Example of Fault Propagation in a 2-bit Multiplexer

If sel[0] signal is faulty, then this fault will only propagate to y[2] and y[3]. The

propagation of the fault is conditional on having an active path from the sel signal

to the output i.e., the fault is not logically masked. Given sel[0] is faulty, an error

will occur at y[3] only if sel[1] is "0". On the other hand, a fault at sel[0] will

always propagate to y[2], regardless of the state of sel[1]. Similarly, a fault at sel[0]

will never propagate to outputs y[0] and y[1]. However, this level of detail is fully

abstracted when using this data type reduction technique. Therefore, the computed

vulnerability of the circuit is inaccurate.

3.3 Proposed Methodology

The proposed methodology introduces a new formal modeling and analysis of SEU

propagation at RTL using Satisfiability Modulo Theories. In this section, we propose

two modeling approaches: concrete and abstract modeling.

The main steps of both approaches are presented in Figure 3.2. For both modeling

techniques, the RTL signals and operations are converted into SMT format. The SMT

solver used to model and analyze the propagation of SEUs in the RTL circuits given is

Microsoft’s Z3 [12]. In order to automate the analysis steps such as fault injection and
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SEU propagation probability computation, we used Python scripting. Microsoft’s Z3

provides a Python API for such application.

Generate Concrete SMT Model in 
Python

Duplicate Design into Fault-Free 
and Faulty Version

Inject SEU at One Version of The 
Design

All Injection Sites?

No

Yes

Compute SEU Propagation 
Probabilities

Compare the Outputs of the Two 
Versions

RTL Verilog Structural Description

Abstract RTL Constructs Based on 
Fault Propagation Properties

Generate Abstract SMT Model in 
Python

Inject SEU at an Input Signal

Check for Faulty Output

Compute the SER of the Design

No

Concrete Modeling Abstract Modeling

Figure 3.2: Main Steps of the Proposed Methodology

3.3.1 Concrete Modeling

The modeling and analysis starts with an RTL Verilog description of the designs

under test.
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Generate Concrete SMT Model in Python

The first step in our methodology for the concrete modeling approach, shown in

Figure 3.2, is to convert the RTL Verilog description into a Python SMT model. The

SMT library includes operators supporting the theory of bit-vectors, which allows

us to model basic bit-vector arithmetic and bitwise operations. Therefore, all RTL

bit-vector operations were modeled using the SMT library. The circuit under test will

be modeled as a Python function and maps the RTL constructs to equivalent SMT

operations. The input parameters of the Python function representing the circuit are

the primary inputs of the circuit and the function will return the outputs as shown

in Listing 3.2.

def c i r c u i t (PI ) :
. . .
C i r cu i t Logic
. . .
return PO

Listing 3.2: Python Function Defining the Combinational Circuit

Duplicate design into fault-free and faulty version

The generated model is then duplicated into one version considered as the fault-free

and the other as the faulty version as shown in Figure 3.3. The SEUs are injected

at the inputs of the faulty version of the circuit. The inputs of the combinational

circuits are assumed to be latched. The outputs of the faulty and fault-free versions

of the combinational circuits are compared to check if the SEU caused an error at the

output.

This is done in the SMT Python model by having two sets of inputs (i.e. PI and

PI_f) and two sets of outputs (i.e. PO and PO_f) to represent the fault-free and

faulty versions as shown in Listing 3.3.
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Figure 3.3: Proposed Modeling of SEU Propagation Using the Fault-Free and Faulty
Versions Model

PO = c i r c u i t (PI )
PO_f = c i r c u i t (PI_f )

Listing 3.3: Python Functions of the Fault-Free and Faulty Versions

Inject SEU at one version of the design

The input vectors of both versions are asserted to be equal except for 1 bit. For

a n-bit input vector A, all bits are asserted to be equal except for a bit k, where

k < n − 1 as shown in Listing 3.4. The variable formula is a list containing all the

assertions for a specific injection scenario. The next step is to add the assertions for

fault propagation then check for the Satisfiability of the conjunction of all assertions

added to the formula.

def injectSEU (k ) :
formula = [ ]
for i in range (n ) :

i f ( i == k ) :
formula . append ( Extract ( i , i , PI ) != Extract ( i , i , PI_f ) )

else :
formula . append ( Extract ( i , i , PI ) == Extract ( i , i , PI_f ) )

return formula

Listing 3.4: Fault Injection Function
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Compare the outputs of the two versions

In [1], the fault injection and output comparison mechanisms are added to the design

in the RTL description of the design and then the whole design is converted into a SAT

instance. The outputs of the fault-free design and the faulty version are compared

using an XOR operation. Every output bit of the fault-free version is XORed with

its corresponding output bit in the faulty version. For each XOR operation, if the

output is a "1", it means that the SEU propagated to this specific output bit. The

outputs of the XOR operations are then ORed together to generate one output. This

output bit is a "1" if the injected SEU propagated to at least one output, otherwise

it is a "0". The RTL Verilog was then converted into SMV format and then the SMV

format was converted to CNF which is then sent to the SAT Solver.

In our modeling, the RTL Verilog designs are directly converted into SMT format

without intermediate conversion steps. Therefore, SEU propagation is analyzed by

simply verifying that the outputs of the faulty and fault-free versions are not equal

as shown in Listing 3.5.

formula . append (PO != PO_f)

Listing 3.5: Fault Propagation Assertion

In this assertion, we verify if under any input condition the injected SEU will lead

to an error at the output, i.e., the output of the faulty version is not equal to the

output of the fault-free version.

3.3.2 Abstract Modeling

In this approach, we adapt the data type reduction technique used in [2]. The pur-

pose of this approach is to investigate the effect and the applicability of a data type

reduction technique on the modeling proposed in Section 3.3.1. The main steps of

this modeling technique are shown in Figure 3.2.

The first steps starts by abstracting all RTL signals and operations based solely
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on fault propagation properties, i.e., the correct functionality of the circuit is not

preserved. The multi-bit vectors are reduced to smaller bit-vectors. This results in a

much smaller circuit and a smaller input vector search space.

RTL assignments, such as in Listing 3.1, are reduced to 1-bit operations. This is

equivalent to a transparent channels, i.e., a faulty start_addr will result in a faulty

next_addr signal. Since bit-level information is not available using the data type

reduction technique, this directly implies faulty addr_msb and addr_lsb signals.

3.3.3 Estimate SER due to SEUs

In order for an SEU to result in a soft error, it must reach the primary outputs of the

design. In other words, an active path must exist between the node or register where

the SEU originates and the primary outputs of the circuit. If no active path exists, an

SEU is said to be logically masked by the logical operation on its propagation path.

The probability that the injected SEU propagates to the output is computed as

shown in equation (1). This probability is computed by dividing the total number of

satisfying assignments (i.e., Num_Assignments) over the reduced randomized search

space N of the total number of possible input vectors.

P (SEUi) =
Num_Assignmentsi

N
(1)

The Soft Error Rate (SER) is a rate used to classify the vulnerability of digital

circuits to Soft Errors. In this specific case, we define the SER as being the summation

of the propagation probabilities of all injections scenarios to any output.

Therefore, the Soft Error Rate (SER) of a design, which has m fault injection

sites, is calculated as follows:

SER =
m−1∑
i=0

P (SEUi) (2)
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3.3.4 SMT Model Count

In equation (1), Num_Assignments, represents all satisfiable assignment for a given

formula representing an SEU injection scenario. This number is computed iteratively

by generating all solutions as shown in Listing 3.6. After generating the formula

that includes the fault injection and propagation assertions, the total model count

is computed and divided over the total search space to compute the vulnerability

(denoted as vuln).

In this function we generate all satisfiable assignments using Z3’s Python API. In

order to do so, we generate a satisfiable assignment for the current injection scenario,

and then add a new constraint that prevents the previous model from being generated

again. This is repeated until the formula becomes unsatisfiable. This algorithm is

shown in Listing 3.6.

def genModels ( formula ) :

s = So lve r ( )
s . add ( formula )
count = 0

while ( s . check ( ) == sat ) :
m = s . model ( )
b lock = [ x != m. eval ( x ) for x in va r i a b l e s ]
s . add (Or( block ) )
count += 1

return count

Listing 3.6: Function to Generate All Satisfiable Assignments of a Given Formula

3.3.5 Examples

As an example, the proposed methodology was implemented on the 4-bit magnitude

comparator circuit shown in Figure 3.4 to illustrate its main steps and investigate the

results.
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Figure 3.4: RTL Structure of the 74L85 Benchmark That is a 4-bit Magnitude Com-
parator

The comparator has 11 inputs and 3 outputs. The Verilog behavioral model of

the circuit is shown in Listing 3.7.

module 74L85 (ALBi , AGBi , AEBi , A, B, ALBo, AGBo, AEBo) ;

input [ 3 : 0 ] A, B;
input ALBi , AGBi , AEBi ;
output ALBo, AGBo, AEBo;
wire [ 4 : 0 ] CSL, CSG;

assign CSL = ∼A + B + ALBi ;
assign ALBo = ∼CSL [ 4 ] ;
assign CSG = A + ∼B + AGBi ;
assign AGBo = ∼CSG[ 4 ] ;
assign AEBo = ( (A == B) && AEBi ) ;

endmodule

Listing 3.7: RTL Verilog Description of the 74L85 4-bit Magnitude Comparator Cir-
cuit
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The RTL Verilog description of the module is then translated into an equivalent

SMT model. Using Microsoft Z3’s Python API, the description of the circuit is defined

within a Python function as shown in Listing 3.8. The function’s input parameters

are the primary inputs of the designs and it returns the outputs as a tuple, which is

a sequence of objects in Python.

def c i r c u i t (ALBi , AGBi , AEBi , A, B) :

CSL = ZeroExt (1 ,A) + ZeroExt (1 ,B) + ZeroExt (4 ,ALBi)
ALBo = ∼Extract (4 , 4 ,CSL)
CSG = ZeroExt (1 ,A) + ZeroExt (1 ,∼B) + ZeroExt (4 ,AGBi)
AGBo = ∼Extract (4 , 4 ,CSG)
AEBo = BVRedAnd(∼(A ^ B) ) & AEBi

return ALBo, AGBo, AEBo

Listing 3.8: Python Function Definition of the 74L85 4-bit Magnitude Comparator
Circuit

In the main part of the program we create SMT bit-vector variables defining the

inputs of the design for both the faulty and fault-free versions. Both sets of inputs are

used as inputs to the function defining the circuit shown in Listing 3.8. The tuples

returned are then unpacked into the outputs of the fault-free and faulty versions. The

main part of the program is shown in Listing 3.9.

A = BitVec ( 'A ' , 4)
B = BitVec ( 'B ' , 4)
ALBi = BitVec ( 'ALBi ' , 1)
AGBi = BitVec ( 'AGBi ' , 1)
AEBi = BitVec ( 'AEBi ' , 1)

A_f = BitVec ( 'A_f ' , 4)
B_f = BitVec ( 'B_f ' , 4)
ALBi_f = BitVec ( 'ALBi_f ' , 1)
AGBi_f = BitVec ( 'AGBi_f ' , 1)
AEBi_f = BitVec ( 'AEBi_f ' , 1)

ALBo, AGBo, AEBo = c i r c u i t (ALBi , AGBi , AEBi , A, B)
ALBo_f , AGBo_f, AEBo_f = c i r c u i t (ALBi_f , AGBi_f , AEBi_f , A_f , B_f)

Listing 3.9: Python Two-Versions Model of the 74L85 4-bit Magnitude Comparator
Circuit
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The fault injection and propagation assertions are then added to the formula as

previously shown in Listing 3.4 and Listing 3.5. The propagation probabilities are

then computed for every injection scenario. The results for the 74L85 are shown in

Table 1.

Table 1: SEUs Propagation Probabilities for the 74L85 4-bit Magnitude Comparator
Circuit

Primary Inputs (PIs) Propagation Probability P (SEUi)

A[3] 0.765625

A[2] 0.53125

A[1] 0.28125

A[0] 0.15625

B[3] 0.765625

B[2] 0.53125

B[1] 0.28125

B[0] 0.15625

ALBi 0.0625

AGBi 0.0625

AEBi 0.0625

Soft Error Rate (SER) 3.65625

It is possible to verify the computed propagation probabilities and the SER by

analyzing the design structure. An SEU injected at input signal AEBi can only

propagate to output AEBo under the condition that the input bit-vectors A and B

are equal, i.e., A == B. There exists a total of 128 input vector combinations that
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satisfy this condition out of a total of 211 which results in a propagation probability

of 0.0625. When using concrete modeling, the computed SER is 3.65.

When using abstract modeling, we reduce the bit-vectors A and B to 1-bit signals

and compute the propagation probabilities. It is assumed that all the bits of an n-bit

signal have equal vulnerabilities, and that the vulnerability of each bit is equal to the

computed vulnerability of the reduced bit-vector. This will results in a propagation

probability of 1 for SEUs injected at inputs A and B. Assuming equal vulnerability

for all the bits, this results in an SER of 10.5. Using abstract modeling in this cases

results in a loss in accuracy of 187.2%. However, the computation time is 0.6 seconds

while for concrete modeling the computation time is 17.55 seconds.

As another example, the proposed methodology was implemented on the 74283

Fast Adder circuit shown in Figure 3.5.
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Figure 3.5: RTL Structure of the 74283 Benchmark that is a Fast Adder Circuit

This circuit has 9 inputs and 5 outputs. The Verilog behavioral model of the

circuit is shown in Listing 3.10.

The RTL Verilog description of the module is then translated into an equivalent

SMT model. Using Microsoft Z3’s Python API, the description of the circuit is defined

within a Python function as shown in Listing 3.11.
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module 74283 (C0 , A, B, S , C4 ) ;

input [ 3 : 0 ] A, B;
input C0 ;
output [ 3 : 0 ] S ;
output C4 ;
wire [ 4 : 0 ] CS ;

assign CS = A + B + C0 ;
assign S = CS [ 3 : 0 ] ;
assign C4 = CS [ 4 ] ;

endmodule

Listing 3.10: RTL Verilog Description of the 74283 Fast Adder Circuit

def c i r c u i t (C0 , A, B) :

CS = ZeroExt (1 ,A) + ZeroExt (1 ,B) + ZeroExt (4 ,C0)
S = Extract (3 , 0 ,CS)
C4 = Extract (4 , 4 ,CS)

return S , C4

Listing 3.11: Python Function Definition of the 74283 Fast Adder Circuit

The main part of the program is shown in Listing 3.12. The 74283 Fast Adder

Circuit has two 4-bit input vectors A and B, and a 1-bit input C0. An SEU injected

at those inputs will always propagate to one of the two outputs S and C4. This will

result in a uniform propagation probability of 1 for all bits of all inputs, which results

in an SER of 9.0.

When using abstract modeling, we reduce the input bit-vector signals A and B

to 1-bit signals. When computing the propagation probabilities using the abstract

model, we obtain the same value in SER of 9.0. The computation time for concrete

modeling in this case is 6.56 seconds while for abstract modeling it is 0.14 seconds.

We used these two examples to provide a detailed step-by-step description of our

methodology. Moreover, these two examples show that abstract modeling, which

utilizes our proposed adaptation of a data type reduction technique, can sometimes
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A = BitVec ( 'A ' , 4)
B = BitVec ( 'B ' , 4)
C0 = BitVec ( 'C0 ' , 1)

A_f = BitVec ( 'A_f ' , 4)
B_f = BitVec ( 'B_f ' , 4)
C0_f = BitVec ( 'C0_f ' , 1)

S , C4 = c i r c u i t (C0 , A, B)
S_f , C4_f = c i r c u i t (C0_f , A_f , B_f)

Listing 3.12: Python Two-Versions Model of the 74283 Fast Adder Circuit

result in great improvement in computation time with little or no loss in accuracy.

However, in other cases it can result in significant loss in accuracy of the computed

SER.

In the next section we apply our proposed approach on more ISCAS85 benchmarks

to investigate its efficiency on larger designs.

3.4 Experimental Results

In this section, we report the experiments used to validate the proposed methodology

and its efficiency. The proposed modeling and analysis are fully automated using the

Microsoft Z3 SMT solver [12] and Python scripts. Our experiments were performed

on a workstation with an Intel(R) Core(TM) i7-6820HQ running at 2.70 GHz and

with 16 GB RAM.

3.4.1 Accuracy Analysis

The goal of this analysis is to evaluate the loss in accuracy when the abstract modeling

technique is used. For this analysis, different ISCAS85 benchmarks [13] and MSI

components in the 74xxx series were analyzed. In order to compare the accuracy,

the same designs were modeled, analyzed, and their SERs were estimated under both

modeling techniques. The results of this analysis are reported in Table 2. The second
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column shows the number of primary inputs of the design. The third column shows the

number of input multi-bit signals. For example, the MSI component 74283 has three

input signals: two 4-bit input signals and one 1-bit input signal, that is, 9 primary

inputs. The computed SERs based on concrete modeling and abstract modeling are

presented in columns 4 and 5 of Table 2 respectively. The percentage difference in

the computed SERs is presented in column 6 of Table 2.

Table 2: Comparison Between the SER of the Concrete Modeling Technique and the
Abstract Modeling Technique

Circuit PIs Signals
Concrete

SER

Abstract

SER

Percentage

Difference

74283 9 3 9 9 0

74182 9 3 4.57 8.25 80.36

74181 14 5 7.02 5.37 23.44

74L85 11 5 3.65 10.5 187.67

c432 36 4 6.88 8.46 22.97

c499 41 3 32.00 32.01 0.03

It is observed that in some cases the difference in the computed SER varies greatly

when the abstract modeling is used, depending on the analyzed design. For example,

the difference in the computed SER can be as high as 187.67% in the case of the MSI

component 74L85. On the other hand, the difference can be as low as 0 for the case

of the 74283 circuit.

This difference in the estimated SERs between the concrete and the abstract

modeling techniques can be explained by the following reasons:

• The concrete modeling allows the injection of SEUs at every input bit of the

design. Therefore, the vulnerability of every bit is obtained and summed up to
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obtain the exact SER of the whole design. However, with the abstract modeling,

we do not have access to the affected bits and therefore, the whole vector is

assumed to be faulty. This assumption will lead to an over approximation in

the SER in most cases since all the bits are treated as equally critical.

• With the concrete modeling, the propagation of the SEUs can be accurately

traced. However, when the abstract modeling is used, we can only keep track

of the fault state of the whole signal. Therefore, tracking faults at every bit

becomes impossible since the correct functionality of the circuit is lost and only

error propagation properties at the level of signals is available.

• With the concrete modeling, it is possible to exhaustively analyze the input

vector search space for each injection scenario, to obtain an accurate SER value.

However, with the abstract modeling such analysis is not possible and only

an over approximation or an under approximation of the percentage of input

vectors that affects the SEU propagation is generated.

Next, we investigate how much the performance can be improved at a cost in

accuracy when using abstract modeling instead of concrete modeling.

3.4.2 Performance Analysis

The second analysis compares the performance in terms of computation time for both

the abstract and the concrete modeling. Although it is known that abstraction re-

duces computation time, the goal here is to investigate the trade-off between the loss

in accuracy and the gained speed-up in analysis time. Table 3 shows the computation

times for analyzing the same circuits using the two modeling approaches. The fourth

and fifth column represent the computation times of the concrete and abstract mod-

eling, respectively. The average speed-up of the abstract modeling over the concrete

modeling for all circuits analyzed is around 67.33.
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Table 3: Comparison Between the Computation Time for the Concrete Modeling
Technique and the Abstract Modeling Technique

Circuit PIs Signals
Concrete

CPU Time (sec)

Abstract

CPU Time (sec)

Speed

Up

74283 9 3 6.56 0.14 46.86

74182 9 3 3.14 0.18 17.06

74181 14 5 370.65 2.29 162.21

74L85 11 5 17.5 0.6 29.17

c432 36 4 505.25 3.54 142.50

c499 41 3 92.94 14.98 6.20

Average - - 166.01 3.62 67.33

Table 4 represents the ratio of the loss in accuracy in the estimated SER over the

gain in the analysis time. A small ratio implies a better trade-off, i.e., a small loss in

SER accuracy over a large speed-up of the analysis time.

Based on the results, it can be observed that the abstract modeling has a different

impact based on the design behavior. For example, the best trade-off was observed

in the case of the 74283 and the c499. For the c499 design, the speed-up is around

6 while the percentage of the loss in accuracy is only 0.03%. This is due to the fact

that, all the bits in every input signal have equal vulnerabilities. However, for the

case of the 74L85 benchmark, the speed-up is around 29 while the percentage of the

loss in accuracy is around 187%. This can be partially explained by the fact that this

design is a comparator, i.e., with the abstract modeling many of the injected SEUs are

considered to propagate to the output while they should have been logically masked.
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Table 4: The Ratio of the Speed-Up in CPU Time over the Percentage Difference in
Computed SER

Circuit PIs Signals

Percentage

Difference

in SER

Speed

Up

in CPU Time

Ratio

74283 9 3 0 46.86 0

74182 9 3 80.36 17.06 4.71

74181 14 5 23.44 162.21 0.144

74L85 11 5 187.67 29.17 6.43

c432 36 4 22.97 142.50 0.161

c499 41 3 0.031 6.20 0.005

3.5 Summary

In this chapter, we proposed a new methodology to investigate the vulnerability

of combinational designs at RTL due to SEUs. The SMT theories of bit-vectors are

utilized. Two modeling techniques were used in order to evaluate the efficiency of SMT

modeling for SEU propagation: concrete modeling and abstract modeling. Concrete

modeling preserves the functionality of the design. Abstract modeling uses data type

reduction to reduce complex bit-vector operations to simpler Boolean operations. In

the experiments, the two modeling approaches are compared. Our results show that

based on the design behavior, abstract modeling can be used to generate acceptable

estimates of the SER in a shorter time. For example, for the c499, an SER with

0.03% inaccuracy can be generated with a computation time that is 6 times less than

concrete modeling. Later in this work, we propose a different modeling method to

improve the efficiency of our computation. Moreover, in order to handle larger designs,

we will use an approximate model counting approach. In the next section, we extend

the modeling approach proposed in this chapter to handle sequential circuits.
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Chapter 4

SMT Modeling and Analysis of SEUs

Propagation in Sequential Circuits

4.1 Introduction

In this chapter, we introduce a new methodology to estimate the vulnerability of

sequential circuits to SEUs at RTL. This method is applicable on RTL word-level

designs, without requiring synthesis or conversion to pure Boolean logic. This chapter

introduces a new modeling of SEUs propagation as a Satisfiability problem using

Satisfiability Modulo Theories (SMTs) similar to what is proposed in chapter 3. The

model is extended to handle SEU propagation through state elements. The basic

RTL operations (e.g. logical operators, reduction operators, arithmetic operators,

and conditional statements) are modeled in the presence of SEUs. The proposed

methodology allows the analysis of SEUs propagation from each vulnerable node to

the output of subsequent cycles of the sequential circuit. Moreover, the proposed

modeling and analysis provides an early estimate of the Soft Error Rate (SER) of the

design based on an approximate model counting approach.

The rest of this chapter is organized as follows. In Section 4.2 we discuss ap-

proximate model counting. In Section 4.3 we present our proposed SMT modeling

for sequential circuits. In Section 4.4 we explain our methodology for computing the
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SER. In Section 4.6, we explain our experiments and results. Section 4.7 concludes

this work.

4.2 Approximate Model Counting

If the constructed SMT model satisfies the set of assertions being verified, the SMT

solver generates a satisfiability assignment. In such assignment, each variable in

the model is assigned a valid value such that the SMT model satisfies the verified

assertions. However, when dealing with real systems with a large number of variables,

model counting (#SAT), i.e., counting the number of satisfying assignments of a first

order logic formula, is a problem of significant theoretical and practical complexity.

Different methods to reduce the complexity of this problem and to eliminate the

need for exact model counting were proposed. One of the main approaches in this

area is approximate model counting. This is used in tools such as ApproxCount [41],

SearchTreeSampler [42], SE [43], SampleSearch [44].

Recently, a new technique that is based on approximate model counting was pro-

posed. This technique was successfully implemented in a tool called SMTApproxMC

[45]. The accuracy and the scalability of this tool were demonstrated through dif-

ferent experiments. Results show that SMTApproxMC [45] scales to formulas with

tens of thousands of variables. Moreover, based on the desired level of confidence,

SMTApproxMC [45] can provide bounds that are close to the exact model count.

Later in this chapter, we will explain the utilization of this tool in our method to

efficiently provide more accurate estimations of the soft error rate due to SEUs.

4.3 SMT Modeling of Sequential Circuits

In this section, we explain the proposed modeling of SEU propagation at RTL. First

we explain proposed SMT modeling of the combinational part of the sequential circuit.

Next, we explain the unrolling of the sequential circuits. The main steps of the
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proposed methodology are shown in Figure 4.1.

Duplicate the Generated SMT Model Circuit Function

Inject an SEU and Assert the Output is Faulty

All SEU Sites?
No

Yes

Generate SMT2 Format of the CNF Formula 

Compute the Number of SMT Assignments

Compute the SER at the Current Stage

RTL VHDL Behavioral Description

Add Another Copy of the Unrolled Circuit

Desired Number of Stages?

Exit

No

Yes

Generate SMT Model of the Circuit Using Z3's Python API

Figure 4.1: Main Steps of the Proposed Methodology for the Analysis of SEU Prop-
agation in Sequential Circuits

4.3.1 SMT Modeling of the Combinational Part

The proposed methodology starts with a fully synthesizable RTL VHDL description

of the sequential circuit. The VHDL description is converted into an SMT formula.
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Thereafter, two copies of the generated SMT formula are made. Similarly to chapter

3, these two duplicates will represent a fault-free version and a faulty version of the

design, where the SEU will be injected at the state elements.

The SMT theory of bit-vectors and linear arithmetic allow us to model the various

RTL constructs directly into an SMT formula.

If Statements and Case Statements

For example, the if statements can be modeled using SMT ITE (If-Then-Else) state-

ments. The ITE statement has the following format: If "statement" then "state-

ment" else "statement". For example, for a generic if statement such as the one

shown in Listing 4.1, it can be modeled as two nested ITE statements as shown in

Listing 4.2. Note that in Microsoft Z3’s Python API, the ITE statement function is

called If with a capital I to differentiate from the regular Python if statement.

Arithmetic Operators

SMT supports arithmetic operation on bit-vectors and integer variables. This allows

arithmetic operations such as addition, subtraction, multiplication and division to

be directly modeled as SMT operations For example, the assignment F <= A + B

in Listing 4.1 is assigned in the nested ITE statement of Listing 4.2 as a bit-vector

addition in SMT.

Concatenate and Slice Operators

SMT supports bit-vector concatenation and extraction. For example, in Listing 4.1,

the assignment F <= C(3 downto 0) can be converted into SMT format using the

Extract SMT function as shown in Listing 4.2. Similarly, the bit-vector concatenation

F <= D & E can be performed in SMT format using the Concat SMT function as

shown in Listing 4.2.

40



i f (A = 1) and (B = 2) then
F <= A + B;

e l s i f (A >= 5) then
F <= C(3 downto 0 ) ;

else
F <= D & E;

end i f ;

Listing 4.1: VHDL If Statement

F = I f (A == 1 && B == 2 , A + B,
I f (A >= 5 , Extract (3 , 0 ,C) ,

Concat (D,E) ) )

Listing 4.2: SMT Modeling of Different RTL Constructs

4.3.2 Unrolling of the Sequential Circuit

In order to investigate the propagation of SEUs in a sequential circuit, the combina-

tional part must be unrolled to simulate state transitions. The goal of this unrolling

approach is to investigate SEU propagation through different states.

The circuit unrolling approach is used in existing sequential analysis techniques,

e.g., [46] and [47]. Figure 4.2 shows the result of unrolling both the faulty and fault-

free version of the sequential circuit for analyzing SEU propagation. The steps of this

unrolling approach are the following:

1. The sequential design is unrolled by making k number of copies of its com-

binational part. Registers are replaced with wires and each copy (or stage)

represents a state of the design.

2. Two copies of the unrolled circuit are generated, one to be used as faulty and

the other one as fault-free.

3. An SEU will be injected at one of the state lines in the first stage of the faulty

copy of the unrolled circuit. Thereafter, the outputs of each stage of the faulty

and the error-free version of the design are compared for each fault injection as

shown in Figure 4.2.
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Figure 4.2: Methodology for Fault Propagation Analysis in Sequential Circuits Using
Unrolling

def c i r c u i t (PI , CSprev ) :

. . .
C i r cu i t Logic
. . .

return PO, CSnext

Listing 4.3: Python Function Defining the Circuit

Using Microsoft’s Z3 [12] Python API, the functions which are modeling the com-

binational part are defined using SMT constructs as shown in Listing 4.3. This is

similar to how the circuit is defined in Python as a function as described in chapter 3.

However, the difference when modeling sequential circuits is that the function has an

additional input parameter and returns an extra value. The function’s input parame-

ters are the primary inputs and the previous state, i.e., PI and CSprev respectively.

The outputs of the function are the primary outputs and the next state, i.e., PO and

CSnext respectively.
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PO1, CS1 = c i r c u i t (PI0 , CS0)
PO2, CS2 = c i r c u i t (PI1 , CS1)
. . .
POn, CSn = c i r c u i t (PIn , CSn)

PO1_f , CS1_f = c i r c u i t (PI0 , CS0_f)
PO2_f , CS2_f = c i r c u i t (PI1 , CS1_f)
. . .
POn_f , CSn_f = c i r c u i t (PIn , CSn_f)

Listing 4.4: SMT Circuit Unrolling

The unrolling is done as shown in Listing 4.4. The primary inputs PI0, PI1, ...,

PIn are defined as SMT variables. The initial state, CS0, is assumed to be free,

therefore it is also defined as a variable. As shown in Figure 4.2, the output state of

the first copy of the circuit, i.e. CS1, is used as an input of the next copy until we

have unrolled the circuit n times.

The chain of unrolled copies is also duplicated to represent the fault-free and

faulty versions of the circuits. At every stage, the fault-free outputs PO1, PO2, ...,

POn are compared to the faulty versions PO1_f, PO2_f, ..., POn_f to check if

the injected SEU at the initial stage (CS0) has reached an output. Based on design

criticality and behavior, it is possible to define a threshold at which the analysis stops

and no further unrolled copies are required. As discussed in [47], unrolling the circuit

two times leads to negligible approximation error.

4.4 SEU Propagation and SER Estimation

In this chapter, we use a different approach to compute the Soft Error Rate (SER).

First we compute the propagation probabilities from every input bit to every output

bit, and not to the output as a whole. This provides more details on the vulnerability

of a circuit. Moreover, we compute the SER for the outputs at every cycle following

the injection cycle of the SEU. In this section, the proposed analysis of SEU propaga-

tion is explained in detail. First we explain how SEUs are injected into our proposed
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SMT model. Thereafter, we explain how the SER is computed.

4.4.1 Soft Error Rate Calculation

We define the SER as the summation of the vulnerability of each output at every

stage. Therefore, an SER is generated for every stage following the injection stage

(i.e. stage 0). We define the vulnerability of every output as the summation of the

propagation probabilities of every injected SEU. The probability of propagation of an

SEU injected at register bit i to an output j at stage k is given by equation (3). It

is the total number of satisfiable assignments (Num_Assignments), i.e. initial state

and input vectors that allow the SEU to propagate to the output over the size of the

search space (N ).

P (SEUi−→j,k) =
Num_Assignmentsi−→j,k

N
(3)

Therefore, the vulnerability of an output j at stage k for a circuit which has m

vulnerable register bits, is calculated as shown in equation (4).

V uln(j, k) =
m−1∑
i=0

P (SEUi−→j,k) (4)

Finally, the SER of a sequential circuit at stage k, which has n outputs, is calcu-

lated as shown in equation (5).

SER(k) =
n−1∑
j=0

V uln(j, k) (5)

4.4.2 SEU Injection and Propagation

In order to compute the SER, SEU injection and propagation assertions are added to

the model presented in Section 4.3. To inject faults and check for propagation to a

specific output bit, the initial register state and the unrolled circuits shown in Listing

4.4 are duplicated, into fault-free and faulty versions. The outputs are then compared

at every stage.
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The function defined to inject an SEU at bit i, for an initial state register variables

called regs_0 is defined in Listing 4.5. The formula will be asserted when checking

for satisfiability of the fault propagation scenario. In this function, we add a list of

assertions to the original formula. This function asserts that the initial states of the

faulty and fault-free versions are equal, except for one bit i.

def injectSEU ( i ) :
formula = [ ]
for j in range ( regLength ) :

i f ( j == i ) :
formula . append ( Extract ( j , j , CS0) != Extract ( j , j , CS0_f ) )

else :
formula . append ( Extract ( j , j , CS0) == Extract ( j , j , CS0_f ) )

return formula

Listing 4.5: Function to Inject SEU

In order to check if an SEU was able to propagate to the output at stage k, we

must assert that the output of the fault-free copy is not equal to the output of the

faulty copy, i.e. POk != POk_f.

4.4.3 Soft Error Rate Computation

In order to compute the vulnerability of every output and the final SER, we compute

the propagation probability for every possible SEU injection site to every output. For

every stage of the unrolling the function computeSER is called. This function takes

three inputs: i, variables, and vulnMatrix. The variable i represents the stage for

which we are computing the SER.

The variable variables is a list of the variables of the current SMT formula. For

example, at stage 0, the variables of the SMT formula will be the initial register state

(i.e. CS0) and the primary inputs of stage 0 (i.e. PI0). For stage 1, the variables

will be the initial register state (i.e. CS0), the primary inputs for stage 0 (i.e. PI0)

as well as the primary inputs of stage 1 (i.e. PI1). For example in Figure 4.2, we

see that the output PO1 depends only on PI1 and CS0, while PO2 depends on
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CS0, PI1 and PI2 etc. These variables are required to compute the propagation

probability since they represent the search space. The size of the search space for

stage k is 2CS0+k∗PI .

The function computeSER in Listing 4.6 loops through every register bit and

injects a fault at bit i, then for every output j, it asserts that bit j of the fault-free

output is not equal to bit j of the faulty output. The vulnerability is then computed

using the function genModels, which takes as input the formula and the list of

variables. This probability is then stored in a matrix (vulnMatrix). The SER at

any given stage, is simply the sum of vulnerabilities. In Listing 4.6, after generating

the formula that includes the fault injection and propagation assertions, the total

model count is computed using the function genModels and divided over the total

search space to compute the vulnerability (denoted as vuln).

def computeSER( stage , va r i ab l e s , vulnMatrix ) :
SER = 0
for i in range ( regLength ) :

for j in range ( outLength ) :

formula = injectSEU ( i )
formula . append ( Extract ( j , j ,PO[ s tage ] )

!= Extract ( j , j ,PO_f [ s tage ] ) )
vuln = genModels ( formula , v a r i a b l e s )

/ 2∗∗numOfBits ( v a r i a b l e s )
vulnMatrix [ s tage ] [ i ] [ j ] = vuln
SER += vuln

return SER

Listing 4.6: Function to Compute the SER

4.4.4 SMT Model Count

In Listing 4.6, after generating the formula that includes the fault injection and prop-

agation assertions, the total model count is computed using the function genModels

and divided over the total search space to compute the vulnerability (denoted as
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vuln). In our analysis we performed this step in two ways and compared the results.

Exhaustive Method

In this method we generate all satisfiable assignments using Z3’s Python API. In

order to do so, we generate a satisfiable assignment for the current injection scenario,

and then add a new constraint that prevents the previous model from being generated

again. This is repeated until the formula becomes unsatisfiable. This algorithm is

shown in Listing 4.7.

def genModels ( formula ) :

s = So lve r ( )
s . add ( formula )
count = 0
while ( s . check ( ) == sat ) :

m = s . model ( )
b lock = [ x != m. eval ( x ) for x in va r i a b l e s ]
s . add (Or( block ) )
count += 1

return count

Listing 4.7: Function to Generate All Satisfiable Assignments of a Given Formula

Approximate Method

Exhaustive model generation becomes unusable when unrolling for several cycles. The

number of variables increases linearly thus increasing the search space exponentially.

For this reason, we used the SMTApproxMC tool [45] discussed in Section 4.2 to

perform the same analyses on different circuits.

The results obtained from the exhaustive method and the approximate method

will be used to investigate the trade-off in accuracy and performance.
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4.5 Example

In order to illustrate the methodology described in the previous subsection, we analyze

the vulnerability of a simple 4-bit unsigned up counter with synchronous reset. The

VHDL RTL description of the circuit is shown in Listing 4.8.

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . std_logic_unsigned . a l l ;

entity counter i s
port ( c lk , r e s e t , en : in s td_log i c ;

cout : out s td_log ic_vector (3 downto 0 ) ) ;
end counter ;

architecture r t l of counter i s
signal count : s td_log ic_vector (3 downto 0 ) ;
begin

process ( c lk , load )
begin

i f ( c lk ' event and c l k = '1 ') then
i f ( r e s e t = '1 ' ) then

count <= "0000" ;
e l s i f ( en = '1 ' ) then

count <= count + 1 ;
end i f ;

end i f ;
end process ;

cout <= count ;
end r t l ;

Listing 4.8: VHDL RTL Description of a 4-bit Unsigned Up Counter with Syn-
chronous Reset

When unrolling a circuit multiple times, the search space becomes exponentially

large, so for this reason we chose a small circuit to illustrate the procedure in our

example. The circuit has three primary inputs, load, en and cin. The cin signal is

a 4-bit input bit-vector of the value to be loaded into the counter registers. The load

signal is used as a synchronous data from the primary input cin into the registers.
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The en is used as an enable signal for the up counter, i.e., the counter circuit will

count up only if en is set to high.

As discussed earlier, Z3 supports boolean, bit-vector, linear arithmetic and ITE

(if-then-else) operators which greatly facilitates the modeling of VHDL behavioral

descriptions. Most sequential designs contain several if-then-else statements and case

statements. The 4-bit counter in Listing 4.8 can be modeled in SMT using one ITE

statement as shown in Listing 4.9. The ITE statement in Microsoft Z3’s Python API

is written as If with a capital I. We concatenate the primary inputs into one vector

PI and the registers of the previous state into one vector CSprev and extract the

appropriate bits inside the function defining the combinational part of the circuits.

This is done in order to keep the code in the main function of the program unchanged

and only require modifying the function defining the circuit.

def c i r c u i t ( PIs , CSprev ) :
r e s e t = Extract (0 , 0 , PIs )
en = Extract (1 , 1 , PIs )

count = CSprev

count_next = I f ( r e s e t == 1 , BitVecVal ( 0 , 4 ) ,
I f ( en == 1 , count + 1 ,

count ) )

POs = count
CSnext = count_next

return POs , CSnext

Listing 4.9: Python SMT Description of a 4-bit Unsigned Up Counter with Syn-
chronous Reset

Since the design will be unrolled to represent the state transitions, note that the 4-

bit register count, which represents the current state is an input to the SMT function

representing the sequential design. The next state of count, called count_next is

then evaluated using an ITE statement and returned as an output.

SEUs are then injected at the state elements, i.e. at every bit in the registers.
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The SEU propagation probability is then computed from every injection site to every

output of the design for the desired number of subsequent clock cycles. In Table 5

and Table 6, we present the results of this analysis for the 4-bit Unsigned Up Counter

with Synchronous Reset. The columns represent the output bits at every stage and

the rows represent the bits of the initial stage register. As discussed earlier, the initial

stage represents the stage at which the SEU is injected.

From the description of the circuit, it can be seen that an SEU injected in any of

the bits of the register count will only be visible at that same bit at the output cout

of the current cycle. The SER for stage 0 can be calculated to be 4.0 as shown in

Table 5. For stage 1, an SEU injected at bit 0 of the register count will be masked

only if the reset signal is asserted, i.e. its propagation probability is 0.5. In Table 5

and Table 6, we show the propagation probabilities and the SERs for 5 clock cycles

following SEU injection.

Table 5: SER of 4-bit Unsigned Up Counter with Synchronous Reset for Stage 0 and
Stage 1

Stages Stage 0 Stage 1

Regs cout[3] cout[2] cout[1] cout[0] cout[3] cout[2] cout[1] cout[0]

count[3] 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0

count[2] 0.0 1.0 0.0 0.0 0.0625 0.5 0.0 0.0

count[1] 0.0 0.0 1.0 0.0 0.0625 0.125 0.5 0.0

count[0] 0.0 0.0 0.0 1.0 0.0625 0.125 0.25 0.5

Vul 1.0 1.0 1.0 1.0 0.6875 0.75 0.75 0.5

SER 4.0 2.6875

The advantage of computing the SER and the specific register vulnerabilities using
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Table 6: SER of 4-bit Unsigned Up Counter with Synchronous Reset for Stage 2 and
Stage 3

Stages Stage 2 Stage 3

Regs cout[3] cout[2] cout[1] cout[0] cout[3] cout[2] cout[1] cout[0]

count[3] 0.25 0.0 0.0 0.0 0.125 0.0 0.0 0.0

count[2] 0.0625 0.25 0.0 0.0 0.046875 0.125 0.0 0.0

count[1] 0.0625 0.125 0.25 0.0 0.0390625 0.078125 0.125 0.0

count[0] 0.03125 0.0625 0.125 0.25 0.015625 0.03125 0.0625 0.125

Vul 1.0 1.0 1.0 1.0 0.6875 0.75 0.75 0.5

SER 1.46875 0.7734375

this approach, is that it provides detailed values for all the possible propagation paths

from injections sites to specific output bits. This information can be used for designing

more reliable circuits and applying fault mitigation techniques on the most critical

paths.

In the following section, we conduct experiments on larger sequential circuits in

order to investigate the efficiency of approximate model counting performed by the

SMTApproxMC tool [45].

4.6 Experimental Results

The proposed analysis is performed using Python scripting and Z3 [12] SMT solver.

The SMTApproxMC tool [45] was used to generate approximate model counts. The

proposed methodology was implemented on some ITC99 benchmark circuits [14].

Experiments were conducted on a workstation with an Intel(R) Core(TM) i7-6820HQ

running at 2.70 GHz and with 16 GB RAM.
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First, we investigate the computation time and accuracy of approximate model

counting using the SMTApproxMC tool [45] by analyzing some circuits from the

ITC99 benchmarks. In order to evaluate the accuracy, we computed the SERs using

exhaustive model counting and approximate model counting. For the exhaustive

method, we generate all satisfiable assignments using Z3’s Python API. In order to

do so, we generate a satisfiable assignment for the current injection scenario, and

then add a new constraint that prevents the previous model from being generated

again. This is repeated until the formula becomes unsatisfiable. For the benchmark

circuits b01 (FSM that compares serial flows) and b02 (FSM that recognizes BCD

numbers) the SER was computed for a certain number of stages following the SEU

injection stage (stage 0). Figure 4.3 (a) and (c) show the computation time required

to compute the SER using the exhaustive model counting versus approximate model

counting using SMTApproxMC.

Using exhaustive model counting, the computation times are 1408 seconds and

3110 seconds for computing the SER of stage 7 of the b01 and stage 13 of the b02

respectively. On the other hand, computing the same SERs using SMTApproxMC [45]

takes approximatively 7.2 seconds and 8.3 seconds respectively. Figure 4.3 (b) and (d)

show the SER computed at every stage for the b01 and b02 using exhaustive model

counting versus SMTApproxMC [45]. It can be observed that the loss in accuracy

is on average 7.7% for the b01 and 0.1% for the b02. The SMTApproxMC [45] tool

provides accurate results at a significant gain in computation time.

The analysis using SMTApproxMC [45] was also performed on other ITC99 bench-

mark circuits [14]. The results are presented in Table 7, which lists the tested circuits,

the number of PIs and FFs of each circuit, the number of stages unrolled, the com-

puter SER as well as the computation time. In our results, we unrolled an arbitrary

number of times. The results demonstrate that the SER can be computed for several

cycles following the SEU injection cycle. The computation time rises exponentially

with the total search space which increases exponentially with the number of unrolled

stages. The size of the search space for stage k is 2CS0+k∗PI , where CS0 represents
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Figure 4.3: Comparison of the Computation Time and SER Between Exhaustive
Model Counting and SMTApproxMC

the size of the current state registers of the initial stage (SEU injection stage) and PI

the number of primary inputs. Small designs such as the b02 can be unrolled for 20

stages and require a computation time of 74 seconds while larger designs such as the

b10 require 2432 seconds to unroll for 3 stages.

4.7 Summary

A new methodology based on SMT is proposed for estimating the soft-error vulnera-

bility of sequential circuits at RTL. The proposed SMT model is able to capture fault
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Table 7: Computation Times and SERs for ITC99 Benchmark Circuits

circuit PIs POs FFs Stages Comp. Time (s) SER

b01 2 2 5 11 354 5.28 ×10−4

b02 1 1 4 20 74 3.92 ×10−7

b03 4 4 30 3 1698 1.62 ×10−3

b06 2 6 9 11 402 5.46 ×10−4

b09 1 1 28 3 385 3.90 ×10−2

b10 11 6 17 3 2432 9.77 ×10−11

propagation properties directly at RTL descriptions of digital circuits. This allows

to evaluate the effect of SEUs and compute the SER early in design stages. We have

compared the trade-off in computation time versus accuracy of the latter and found

out that a significant improvement in performance can be achieved (up to 37 times

faster) at a reasonable cost in accuracy (as low as 0.1% error). Moreover, the tech-

nique was applied on some ITC99 benchmarks to demonstrate its applicability for

investigating the vulnerability of sequential circuits early in the design stages.
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Chapter 5

Efficient SMT Modeling and Analysis

of SEUs Propagation in

Combinational Circuits

5.1 Introduction

In this chapter, we introduce a new methodology to evaluate the vulnerability of dig-

ital circuits to soft errors due to SEUs at RTL. A new modeling of SEUs propagation

as a Satisfiability problem using Satisfiability Modulo Theories (SMTs) is proposed.

The behavior of the basic RTL operations (such as logical, reduction, arithmetic, and

case statement) in the presence of SEUs is modeled.

The proposed methodology allows the analysis of SEUs propagation from each

vulnerable node to the output. This is done by evaluating the generated SMT model

of the RTL design against a set of assertions.

Using this efficient approach, our goal is to improve the scalability of the modeling

proposed in Chapter 3. Moreover, we investigate the advantages of using SMT model-

ing over SAT modeling when dealing with SEU propagation in combinational circuits

in more details. We take advantage of the improved scalability to analyze larger de-

signs and compute a more detailed analysis of the propagation paths of SEUs. The
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computation times to analyze the ISCAS85 benchmarks [13] circuits at RTL are com-

pared with the results provided in [1]. Moreover, to gain better insight on how much

more efficient SMT modeling is over SAT modeling, we investigate the computation

time required to analyze arithmetic circuits such as adders, subtractors, multipliers

and dividers. Finally, we will compute the SERs based on our new approach with

and without applying the same data type reduction technique presented in Section

3.2 to better understand how it affects the computer SER.

Our results demonstrate that our technique is more efficient than existing formal

based techniques that use pure Boolean representation to model SEU propagation

[1]. Moreover, the results demonstrate that our SMT modeling maintains a high level

of accuracy compared to techniques such as [10], [2]. Experimental results demon-

strate that the proposed framework is about 4 times faster than other comparable

contemporary techniques. Moreover, it provides more accurate and detailed results

of the circuit vulnerability allowing a more efficient applicability of fault tolerance

techniques.

The rest of this chapter is organized as follows. Section 5.2 explains our new

proposed modeling of SEUs propagation at RTL using only one copy of the circuit.

In Section 5.3, we explain the analysis used in this chapter and the Soft Error Rate

(SER) estimation approach. In Section 5.4 we use an exmaple to demonstrate the

applicability of our proposed methodology. In Section 5.5, we explain our experiments

and results. Section 5.6 concludes this work.

5.2 Modeling of RTL Constructs

In this section, we explain a new SMT modeling approach of SEU propagation in

RTL combinational circuits. This approach will use only one copy of the design. The

RTL signals and different constructs are modeled in a way that includes the fault

propagation properties. In order to do so, a new library of SMT function is developed

that keeps track of fault propagation while preserving the original functionality of the
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circuits.

The modeling of SEUs propagation through the basic RTL constructs is explained

in details. In this section, we use capital symbols (e.g., A) to represent bit-vector

variables. Reduction operators will be represented using single symbols (e.g., & for

reduction AND and | for reduction OR).

5.2.1 Bit-Vector Signals

In order to keep track of the exact bits that are affected by an SEU, RTL bit-vectors

are modeled using a data type consisting of two bit-vectors in SMT format. Say we

have a 4-bit vector A, the first vector represents the logic state of the bits (e.g., Al)

and the second vector represents the fault state of the bits (e.g., Af ). For example, in

Figure 5.1, Al = "0100" and Af = "0011" indicates that the error free logic state of

bit-vector A is "0100" and there are two errors at bits 0 and 1, i.e., the faulty value

of A is "0111".

5.2.2 Logical Operators

Logical operators are encoded as bit-vector operations over the logic and fault states

of the input bit-vectors. The operations describing the propagation of faults include

the case where the two inputs are faulty. This will never occur at the primary inputs,

since only one SEU is injected at a time. This work does not consider MBUs (Multiple

Bit Upsets). However, the case where the two inputs of an RTL Logical operator are

faulty is needed to consider re-convergent faults. An SEU occurring at a primary

input can re-converge into two errors on its propagation path to the outputs.

Logical AND Operator

For an AND operator with inputs A, B and output C, the logic state of C is given

by:

Cl = Al ∧Bl
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The bits of Cf are "1" (i.e., faulty) under any of the following two conditions.

The first condition is if the corresponding bits of either input is faulty and the other

is of non-controlling logic. For an AND operator, the non-controlling logic value is

"1", i.e. if a bit is faulty and the other bit is of value "1", the fault propagates to the

output of that specific bit. The second condition is if the corresponding bits of both

inputs are faulty and of equal logic value. Therefore, the fault state of C is given by:

Cf = (Af ∧Bl ∧Bf )|(Bf ∧ Al ∧ Af )|(Af ∧Bf ) ∧ (Al ⊕Bl)

In the example in Figure 5.1, Cl = "0100", which is the result of the logical AND

operation over bit-vectors Al and Bl. The fault state Cf = "0001" indicates that

only the LSB of Cl is faulty, since the fault at Al[1] was logically masked due to the

controlling logic value of B (i.e., Bl[1] = "0").

SMT LOGICAL 
AND OPERATOR

A
Al="0100"
Af="0011"

B
Bl="0101"
Bf="0000"

C
Cl="0100"
Cf="0001"

Figure 5.1: SMT Logical And Operator

Logical NAND Operator

For an NAND operator with inputs A, B and output C, the logic state of C is given

by:

Cl = Al ∧Bl

Similar to the AND operator, the bits of Cf are "1" (i.e., faulty) under any of

the following two conditions. The first condition is if the corresponding bits of either

input is faulty and the other is of non-controlling logic. The second condition is if
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the corresponding bits of both inputs are faulty and of equal logic value. Therefore,

the fault state of C for a NAND operator is given by the same equation as that of

a AND operator, i.e.:

Cf = (Af ∧Bl ∧Bf )|(Bf ∧ Al ∧ Af )|(Af ∧Bf ) ∧ (Al ⊕Bl)

Logical OR Operator

For an OR operator with inputs A, B and output C, the logic state of C is given by:

Cl = Al ∨Bl

The non-controlling logic for an OR operator is "0", i.e. if one bit is faulty, then

the fault will only propagate to the output of the corresponding bit given the other

bit is of value "0", otherwise it will be logically masked. Similarly to the AND and

NAND operators, the fault will also propagate given the two inputs are faulty and

of equal value. Therefore, the fault state of C for a OR operator is given by:

Cf = (Af ∧Bl ∧Bf )|(Bf ∧ Al ∧ Af )|(Af ∧Bf ) ∧ (Al ⊕Bl)

Logical NOR Operator

For an NOR operator with inputs A, B and output C, the logic state of C is given

by:

Cl = Al ∨Bl

The non-controlling logic for an NOR operator is the same as for an OR operator,

i.e. "0". Therefore, the fault state of C for a NOR operator is given by the same

equation as that of an OR operator, i.e.:

Cf = (Af ∧Bl ∧Bf )|(Bf ∧ Al ∧ Af )|(Af ∧Bf ) ∧ (Al ⊕Bl)
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Logical XOR Operator

For an XOR operator with inputs A, B and output C, the logic state of C is given

by:

Cl = Al ⊕Bl

In an XOR operator, if only one of the inputs is faulty, the fault will always

propagate. This can easily be seen from the truth table of an XOR operation. If

the state of one bit is changed, the output will always change, regardless of the sate

of the other bit. However, contrary to other operators, if both inputs happen to be

faulty, the fault will be masked at the output. Therefore, the fault state of C for a

XOR operator is given by:

Cf = (Af ∧Bf )|(Bf ∧ Af )

Which can be simplified as:

Cf = Af ⊕Bf

Logical XNOR Operator

For an XNOR operator with inputs A, B and output C, the logic state of C is given

by:

Cl = Al ⊕Bl

Similarly to the XOR operator, a fault will only propagate to the output bits of

an XNOR operator given only one of the inputs is faulty. Therefore, the fault state

of C for a XOR operator is given by:

Cf = Af ⊕Bf

Logical NOT Operator

For a NOT operator with input A and output C, the logic state of C is given by:

Cl = Al
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In a NOT operator, fault propagation is transparent, i.e., a faulty input always

causes a faulty output. Therefore, the fault state of C for a NOT operator is given

by:

Cf = Af

Logical Operators SMT Function Table

The following table summarizes the SMT functions that represent the logic state and

fault states of RTL logical operators.

Table 8: Logical Operators SMT Function Table

Logical

Operator

Logic

State

Fault

State

AND Cl = Al ∧Bl Cf = (Af ∧Bl ∧Bf )|(Bf ∧ Al ∧ Af )|(Af ∧Bf ) ∧ (Al ⊕Bl)

NAND Cl = Al ∧Bl Cf = (Af ∧Bl ∧Bf )|(Bf ∧ Al ∧ Af )|(Af ∧Bf ) ∧ (Al ⊕Bl)

OR Cl = Al ∨Bl Cf = (Af ∧Bl ∧Bf )|(Bf ∧ Al ∧ Af )|(Af ∧Bf ) ∧ (Al ⊕Bl)

NOR Cl = Al ∨Bl Cf = (Af ∧Bl ∧Bf )|(Bf ∧ Al ∧ Af )|(Af ∧Bf ) ∧ (Al ⊕Bl)

XOR Cl = Al ⊕Bl Cf = Af ⊕Bf

XNOR Cl = Al ⊕Bl Cf = Af ⊕Bf

NOT Cl = Al Cf = Af

5.2.3 Reduction Operators

These operators are unary i.e., they perform a bit-wise operation on one operand and

produce a 1-bit output. In our model, the output of a reduction operator is faulty if at

least one bit of the input vector is faulty, all the non-faulty bits are of non-controlling

logic and the logic states of all the faulty bits are equal.
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Reduction AND Operator

For example, for a reduction AND with input A and output B, the logic state of B

is the reduced AND operation over the logic state of A as follows:

Bl = &Al

Before showing the fault state of output B for a reduction AND operator, we will

use the following example. If we have a 4-bit input A with the following logic and

fault states:

Al = "0101"

Af = "1010"

For B to be faulty (Bf = "1") the following two conditions must be satisfied.

First, at least one bit of A is faulty which is determined by performing a reduced OR

operation over Af . Second, all the non-faulty bits have a "1" logic value and the logic

state of all the faulty bits is equal. This second conditions has two cases:

1. The first case is that the non-faulty bits are "1" and faulty bits are "0". The

formula representing this condition is &(Al ⊕ Af ).

2. The second case is that the non-faulty bits are "1" and faulty bits are "1". The

formula representing this condition is &Al.

Therefore, the fault state of B is given by:

(|Af ) ∧ (&(Al ⊕ Af ) ∨&Al)

The correct output of the reduction AND operation on the bit-vector Al is "0".

However, since bits 3 and 1 are faulty, using the equation describing the fault state of

B, the output of B is found to be faulty, i.e. Bf = "1". This is because, a bit flip at

bits 3 and 1, will result in the logic state of A being "1111". Therefore the reduced

AND operation will output a value of "1" instead of "0".

62



For the above example, the output B will be given by the following logic and fault

states:

Bl = "0"

Bf = "1"

Reduction OR Operator

For example, for a reduction OR with input A and output B, the logic state of B is

the reduced OR operation over the logic state of A as follows:

Bl = |Al

If we have a 4-bit input A with the following logic and fault states:

Al = "0000"

Af = "0100"

For B to be faulty (Bf = "1") the following two conditions must be satisfied.

First, at least one bit of A is faulty which is determined by performing a reduced OR

operation over Af . Second, all the non-faulty bits have a "0" logic value and the logic

state of all the faulty bits is equal. This second conditions has two cases:

1. The first case is that the non-faulty bits are "1" and faulty bits are "0". The

formula representing this condition is &(Al ⊕ Af ).

2. The second case is that the non-faulty bits are "1" and faulty bits are "1". The

formula representing this condition is &Al.

Therefore, the fault state of B is given by:

(|Af ) ∧ (&(Al ⊕ Af ) ∨&Al)

The correct output of the reduction OR operation on the bit-vector Al is "0".

However, since bit 2 is faulty, using the equation describing the fault state of B, the
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output of B is found to be faulty, i.e. Bf = "1". This is because, a bit flip at bit 2,

will result in the logic state of A being "0100". Therefore the reduced OR operation

will output a value of "1" instead of "0".

For the above example, the output B will be given by the following logic and fault

states:

Bl = "0"

Bf = "1"

5.2.4 Arithmetic Operators

The SMT theory of bit-vectors allows arithmetic operations to be performed on bit-

vectors. It is therefore possible to perform the multiplication, division, addition, and

subtraction operations (i.e. *, /, +, -) on both the faulty and non-faulty values of

the signals to keep track of the faulty bits. To obtain the faulty value of signal A, we

simply perform a logical XOR operation with its fault state:

Al ⊕ Af

In the case of an addition C = A+B, the non-faulty result is evaluated using as:

Cl = Al +Bl

The faulty result is evaluated using (Al ⊕ Af ) + (Bl ⊕ Bf ). From this, the fault

state of C is computed by performing a logical XOR operation over the two vectors:

Cf = (Al +Bl)⊕ ((Al ⊕ Af ) + (Bl ⊕Bf ))

5.2.5 If Statements and Case Statements

These are modeled using Boolean implication operators (i.e., =>) or using if-then-

else (i.e., ite) operators. In order to keep track of the faulty bits in the output, if

the select signal is faulty, both the faulty and non-faulty outputs are compared to

compute the fault state vector.

64



5.2.6 Concatenation, Extraction, and Extension

For concatenation operations, i.e., A :: B, the logic states and the fault states are

concatenated using the SMT concatenation operator as follows:

Al :: Bl

Af :: Bf

For bit extraction, the bits are simply extracted along with their corresponding

fault bits using the SMT extract operator. For signed and unsigned extension, an

SMT sign-extend and unsigned-extend operation is applied on both the logic and

fault states of the bit-vectors respectively. For example, given:

Al = "1011"

Af = "1000"

If we apply a 4-bit sign extension, the result is:

Al = "11111011"

Af = "11111000"

5.3 Analysis of SEUs Propagation and SER Estima-

tion

The main steps of our methodology are shown in Figure 5.2. We start with an RTL

description of the circuit we wish to analyze, then we apply the data type reduction

technique if desired. The SMT Model in Python is then generated using the SMT

Library of basic RTL functions that was described in the previous section. Following

that, we inject an SEU and compute the propagation probabilities either using an

exhaustive model counting approach or the SMTApproxMC tool [45]. These steps

are repeated for all injections scenarios.
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Generate SMT Model in Python 

Inject SEU

All SEU Sites

SMT Library of 
Basic RTL Functions 
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Compute SEU Propagation Probabilities

Compute the SER of the Design

RTL Verilog Behavior Description

Figure 5.2: Main Steps of the Proposed Modeling and Analysis of SEU Propagation
at RTL

The first step in our methodology, is to convert the RTL behavioral Verilog de-

scription into a Python SMT model using our basic RTL function libraries. Those

libraries were developed using the Microsoft Z3 [12] Python API. Then, SEU is in-

jected at one bit by setting its corresponding fault state bit to "1". The next step

is to convert the design into the SMT2 format, which is then fed to the SMTAp-

proxMC tool [45] to perform the following tasks: 1) verify SEUs propagation to the

output using the Boolector SMT solver; 2) estimate the number of input vectors that

allow the SEU injected at node i to reach output j, which is equal to the number of

satisfiability assignments (i.e., Num_Assignmentsi−→j). Thereafter, the probability
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that an injected SEU at input i propagates to an output j is computed as shown in

equation (6).

P (SEUi−→j) =
Num_Assignmentsi−→j

N
(6)

In equation (6), Num_Assignmentsi−→j is the number of satisfiable SMT assign-

ments for the current injection scenario and N is the total number of input vectors.

This analysis is performed for all possible inputs and outputs combinations. There-

fore, the vulnerability of an output j for a circuit which has m vulnerable nodes, is

calculated as shown in equation (7).

V uln(j) =
m−1∑
i=0

P (SEUi−→j) (7)

Finally, the Soft Error Rate (SER) of a circuit, which has n outputs, is calculated

as shown in equation (8).

SER =
n−1∑
j=0

V uln(j) (8)

5.4 Example

As an example, the proposed methodology was implemented on the 74L85 4-bit mag-

nitude comparator circuit shown in Figure 5.3 to illustrate its main steps and in-

vestigate the results. This circuit implements a magnitude comparator by a carry

function with an inverted input. In this circuit, common elements of the three com-

parator functions, i.e., A < B, A > B and A = B are combined.

A high level description of the circuit in Verilog was converted into an SMT

equivalent formula using the developed libraries. The propagation probabilities from

every input to every output were evaluated. These probabilities are shown in Table

9. Using the probabilities obtained from this analysis, it is then possible to identify

the most critical bits (i.e, input and output flip-flops) for SEU propagation. In other

words, we can identify the inputs from which SEUs have the highest probabilities
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Figure 5.3: RTL Structure of the 74L85 Benchmark that is a 4-bit Magnitude Com-
parator

to propagate to a given output. Using these results, it is also possible to identify

not only the most vulnerable bits, but the propagation paths as well. For example,

SEUs injection at inputs A[3] and B[3] have the highest probability to propagate to

ALBo and AGBo. Such results can be very useful for any SEU tolerant technique to

selectively harden the most vulnerable bits in order to achieve the desired SER with

minimum area overhead.

The probability of SEU propagation from each input bit to each output is com-

puted based on equation (6). Using equation (7), the vulnerability of each output

is computed and the results are reported in the last row of Table 9. Thereafter, the

SER of the circuit is evaluated to be equal to 4.4375 based on equation (8). Note

that vulnerabilities are sums of probabilities that are not disjoint and they can add

up to values larger than 1.

In Chapter 3, an SMT implementation of the two-versions technique was pro-

posed. The goal of the new modeling approach proposed in the current chapter, is to
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Table 9: SEU Propagation Probabilities and Derived Vulnerabilities for the 74L85
4-bit Magnitude Comparator Circuit

ALBo AGBo AEBo Vulnerability

A[3] 0.5 0.5 0.0625 1.0625

A[2] 0.25 0.25 0.0625 0.5625

A[1] 0.125 0.125 0.0625 0.3125

A[0] 0.0625 0.0625 0.0625 0.1875

B[3] 0.5 0.5 0.0625 1.0625

B[2] 0.25 0.25 0.0625 0.5625

B[1] 0.125 0.125 0.0625 0.3125

B[0] 0.0625 0.0625 0.0625 0.1875

ALBi 0.0625 0 0 0.0625

AGBi 0 0.0625 0 0.0625

AEBi 0 0 0.0625 0.0625

Vulnerability 1.9375 1.9375 0.5625 4.4375

investigate how using only one copy of the design by including the fault propagation

properties within the model can improve the analysis.

The statistics class of Microsoft Z3 SMT solver allows to track statistical infor-

mation about the solver objects. For example, we can track the amount of memory

used by a solver object to solve a given set of assertions. It is also possible to track

the number of conflicts encountered by the solver to find the satisfiable assignments.

The number of conflicts indicate the number of assignments made by the theory sub-

solvers that make the formula false. When checking a formula for satisfiability, the
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solver object attempts to find a satisfiable assignment. Given a list of clauses to

satisfy, the solver picks a variable, sets it to a value, and repeats this for all variables

while building a decision graph. If setting a variable to a certain value leads to a con-

flict, i.e. certain clauses become unsatisfiable, the solver backtracks to the previous

level in the decision graph, and sets the variable to another value. If the formula is

satisfiable, a high number of conflicts means that the solver tried a lot of assignments

for different variables that did not satisfy the formula, which means that the solver

did not explore the search space efficiently. A high number of conflicts implies a larger

portion of the search space was traversed by Z3.

In order to investigate the difference between two-versions modeling proposed

in chapter 3 and the modeling proposed in the current chapter, we analyzed the

computation time, memory consumption and the number of conflicts that the solver

encountered when exhaustively computing all satisfiable assignment for the 74L85.

When using the technique proposed in this chapter, our results demonstrate a speed-

up in computation time of 1.1. Moreover, we observe a decrease in the number of

conflicts of 82% and a decrease in memory consumption of about 2%.

In the next subsection we analyze more ISCAS85 benchmarks using the tool SM-

TApproxMC [45]. We will compare our results to the results in [1]. We will observe

that when using approximate model counting and analyzing much larger circuit, the

improvement in computation time becomes much larger.

5.5 Experimental Results

In this section, we report results from experiments performed to validate the pro-

posed methodology and its efficiency. The proposed modeling and analysis is fully

automated using the Z3 SMT solver [12], the SMTApproxMC tool [45], and Python

scripts. Our experiments were performed on a workstation with an Intel(R) Core(TM)

i7-6820HQ running at 2.70 GHz and with 16 GB RAM.

Typically, SEU analysis is done using two versions of a circuit, a fault-free version
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and a faulty version. A fault is injected by flipping a single bit in the faulty version

of the circuit. The outputs of the two versions are then compared to check if the

SEU reached the output. The accuracy of the two-versions modeling approach was

proven in [1]. In order to validate the accuracy of our technique, we implemented the

two-versions based modeling using SMT to compare the results with the modeling

proposed in Section 5.2. Moreover, we applied the data type reduction described

in Section 3.2 on our model in order to evaluate the loss in accuracy due to this

reduction technique. It is assumed that the inputs of the circuits are latched, i.e., the

data comes from registers, where the SEUs will be injected.

5.5.1 Performance Analysis

The first detailed analysis consisted of investigating the applicability and the perfor-

mance of our methodology. Different behavioral descriptions of the ISCAS85 bench-

marks [13] and MSI components in the 74xxx series were analyzed. The results are

reported in Table 10. The computation times are compared with the results pre-

sented in [1] (shown in the second column) which are based on pure Boolean SAT.

Moreover, we compare the computation time of the modeling proposed in Section 5.2

with the computation time of the two-versions modeling that was implemented using

SMT as well. As expected, it can be observed that the proposed SMT modeling and

analysis provides a better solution to analyze SEUs at RTL in comparison with the

pure Boolean SAT implementation. It is observed that our methodology is on average

about 4 times faster.

On the other hand, analyzing the fault propagation of SEUs using a fault-free

and faulty versions of the RTL circuit implicitly doubles the number of inputs and

operations in the resulting model. Therefore, this technique results in significant

modeling redundancy. As discussed in the example of Section 5.4, using the approach

proposed in this chapter over using two versions of the designs reduces the size of

the formula and reduces the number of conflicts encountered by the SMT solver.

Moreover, using our proposed modeling instead of two-versions modeling significantly
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Table 10: Comparison of the Computation Time between the Proposed Methodology,
the Technique Proposed in [1] and the Two-Versions Technique

Circuit
Technique in [1]

Comp. Time (s)

Two-Versions

Comp. Time (s)

Proposed

Methodology

Comp. Time (s)

74283 0.27 0.25 0.13

74182 0.22 0.15 0.11

74181 9.36 7.01 1.29

74L85 8.68 6.45 1.22

c432 266.80 245.22 114.22

c499 46.80 42.11 22.92

c1908 - 432.64 345.78

c2670 - 733.43 548.54

c3540 - 335.11 245.98

reduced the computation time.

Another analysis was conducted to compare our technique with the technique

proposed in [1] for larger designs. In this analysis, we implemented the modeling

proposed in [1] using the SAT formulation and our proposed modeling using the SMT

formulation. Results demonstrate that with SAT based modeling, the computation

time grows exponentially with the design size. Figure 5.4 shows the time required

to analyze the propagation of an SEU injected at the input of arithmetic circuits

using the modeling proposed in [1] (called Boolean in Figure 5.4(a)) and our proposed

modeling for various circuit sizes. For example, analyzing SEUs propagation for a 128-

bit multiplication using the technique in [1] can take up to 1920.0 seconds, whereas
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Figure 5.4: Comparison of the Computation Time Between the Boolean Based Mod-
eling and the Proposed SMT Modeling for Different Sizes of Arithmetic Operations

analyzing the same size operation using our technique takes only 57.6 seconds.

5.5.2 Accuracy Analysis

The accuracy of our method was compared with the technique proposed in [2], which

employs a data reduction technique. This comparison was done in Section 3.4. How-

ever, in the current section, we use a different formula to compute the SER. For this

reason, we did another comparison to investigate the impact of using our adaptation

of the data type reduction technique that was discussed in Section 3.2.
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We also validate our results by comparing the SERs computed with our method-

ology with those computed with the two-versions technique. In Table 11, the results

in the first column represent the SER values computed when using the data type

reduction technique [2] discussed in Section 3.2. The two-versions modeling and the

modeling proposed in Section 5.2 do not use any reduction. Therefore, comparing the

results of column 1 to those of columns 2 and 3, we can observe a large inaccuracy in

the computed SER when using the data reduction technique.

Table 11: Comparison of the Computed Soft Error Rate (SER) Between the Proposed
Methodology, the Technique Proposed in [2] and the Two-Versions SMT Modeling

circuit
Technique in [2]

SER

Two-Versions

SER

Proposed

Methodology

SER

74283 22.5 16.1 16.1

74182 20.75 5.72 5.72

74181 28.0 18.31 18.31

74L85 13.5 4.44 4.44

c432 25.56 13.89 13.50

c499 32.01 31.23 32.22

c1908 95.65 78.88 81.53

c2670 157.65 127.54 130.00

c3540 96.81 41.59 44.70

We illustrate the reason behind the loss in accuracy when using the data type

reduction technique by analyzing the Program Counter (PC) address datapath of

the MIPS architecture shown in Figure 5.5. The main issue when using data type
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reduction is that it assumes all the bits in an input register have equal propagation

probabilities. Based on the technique proposed in [2], it is estimated that all SEUs

injected at PC propagate through this datapath with a probability of 1. Our analysis

shows that these results provide an over approximation of the actual SEU propagation

probabilities in this circuit. Given equal probability of R-type, jump, and branch

instructions, our results show that an SEU at the 2 LSBs will only propagate given R-

type or branch instructions (i.e., probability of 2/3). An error occurring at bits [27 : 2]

has a propagation probability slightly above 2/3 since these bits are always used for

regular and branch type instructions. SEUs that occur when the current instruction

is a jump instruction have a small propagation probability through the addition. In

Pseudo-Direct Addressing for a jump instruction, the current PC is incremented by 4,

then the four most significant bits are concatenated with the 26 least significant bits of

the jump instruction, shifted by 2 to the left i.e., PC ← PC[31 : 28] :: IR[25 : 0] :: 00.

In this case, an SEU occurring at bits [27 : 2] of the current PC address will be

masked if the current instruction is a jump and the error does not propagate through

the carries to reach the four MSBs. An SEU occurring on the four MSBs of the PC

address, will always propagate to the computed effective address, because these 4

bits are always used to compute the next PC address. This analysis illustrates the

accuracy of our technique that provides detailed vulnerabilities of the specific register

bits.

PC [31:0]

4 +

imm16
Sign 
ext

+

0

1

out

branch

:target 1

0

out next_PC [31:0]

jump

Figure 5.5: Program Counter Datapath
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Columns 2 and 3 of table 11 represent the SERs computed using the two-versions

technique and the modeling proposed in Section 5.2. The small difference in computed

SER values can be justified by the model count estimation technique used in the

SMTApproxMC tool [45], and not by the modeling accuracy. For small circuits where

the SMTApproxMC tool [45] is able to generate all solutions, then the SER generated

using the proposed methodology is exactly equal to the SERs of the two-versions

models. However, for large circuits, the SMTApproxMC tool [45] randomly partitions

the solution space of a given formula into smaller cells of roughly the same size using

word-level hash functions. This causes small variations in the computed probabilities

of two equivalent formulas.

5.6 Summary

In this chapter, we proposed a new methodology to investigate the vulnerability of

combinational circuits to SEUs at RTL. SMT libraries of RTL constructs (e.g., arith-

metic operations and conditional statements) are built to model SEU propagation.

The proposed modeling significantly reduces the complexity of the analysis compared

to other techniques while improving the accuracy. For instance, the CPU time re-

quired to compute the SER of ISCAS85 RTL benchmarks is on average about 4 times

faster than with other techniques that use pure Boolean SAT to model SEU prop-

agation. Moreover, this speed-up increases exponentially with larger circuits such

as multipliers. The proposed technique improves the accuracy by providing detailed

vulnerability information for specific bits in comparison with techniques that apply

data type reduction.
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Chapter 6

Conclusion and Future Work

In this work, we presented a methodology to analyze SEU propagation in digital

circuits at RTL using SMTs. The purpose of our work was to investigate the efficiency

of SMT modeling for the analysis of SEU propagation. In Chapter 3 we presented a

first approach to analyze the vulnerability of combinational circuits to SEUs using an

SMT modeling that uses two versions of the design. In Chapter 4 we extended our

modeling technique to be applicable to sequential circuits. In Chapter 5, we enhanced

the modeling technique presented in Chapter 3 and presented a new technique that

uses only one version of the design.

6.1 Conclusion

In Chapter 3, we presented our first modeling approach to investigate SEU prop-

agation in combinational circuits. We converted some combinational circuits from

the ISCAS85 benchmark into SMT format. We then used to copies of the design,

one fault-free and one faulty version where we injected an SEU. This technique is

widely used in the current literature for fault simulation. In this first approach, we

computed the vulnerability of the circuits by exhaustively generating all satisfiable

assignments to a given SMT formula that represents the circuits under test. This

approach proved to be inefficient due to exponentially increasing input vector search
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space. To overcome this, a randomly restricted input search was used at a cost in ac-

curacy. Moreover, we investigated the effect of using a data type reduction technique

on our modeling. We adapted our own version of the data type reduction technique

presented in [2] into our SMT model and compared the results. Our comparison

showed that this reduction technique resulted in some performance improvement but

at a significant cost in accuracy.

In Chapter 4, the modeling approach proposed in Chapter 3 was extended to

analyze sequential circuits. This approach still uses two versions of the design to

investigate the propagation of SEUs. To analyze SEU propagation across multiple

cycles, we adapted the circuit unrolling on our SMT model. Moreover, in this chapter

we investigated the efficiency of approximate model counting over the exhaustive

method proposed in Chapter 3. In order to do so, we used the recently used SMT

approximate model counting tool SMTApproxMC [45]. This approach proved to be

efficient as it significantly improved the computation time required to analyze some

sequential RTL circuits from the ITC99 benchmark. This performance improvement

was achieved with minimal impact on the accuracy of the computed SER.

In Chapter 5, we presented a more efficient modeling approach than the technique

presented in Chapter 3. In this approach, instead of using two copies of the design

and compare the outputs, only one copy is used. The fault propagation properties are

embedded within the signals themselves. A new library mapping the RTL operations

to SMT operations is defined. The new defined functions take as input the logic

state as well as the fault state of signals. This modeling approach proved to be an

improvement over the first approach used. It resulted in better computation times.

Moreover, some of the SMT Solver characteristics were enhanced as well, such as

memory consumption and number of conflicts encountered.

6.2 Future Work

Some of the worth mentioning extensions of our work are outlined as follows:
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• The purpose of gaining information regarding the vulnerability of digital cir-

cuits early in the design stages is to apply faulty mitigation techniques. Such

techniques include Triple Modular Redundancy (TMR) [9] or gate hardening.

Our technique allows an efficient analysis of the most vulnerable path for SEU

propagation at RTL. Using this information, it is possible to perform a more

targeted application of TMR on the most vulnerable paths. As a future work,

our methodology can be extended to identify those paths and apply TMR to

obtain the best trade-off in terms of SER reduction and area overhead.

• The data type reduction approach in this work is a naive approach to reducing

the circuit under test for SEU propagation analysis. One possible enhancement

would be to enhance this reduction technique to minimize or eliminate the accu-

racy lost in the analysis while maintaining significant performance improvement.

The improved data type reduction should allow to reduce the redundant parts

of a circuit to improve performance, while still providing the ability to compute

the vulnerability of every individual register bit. One possible idea, is to iden-

tify the bits which have a common operation on their path and reduce those

specific bits into one bit, rather than reducing whole signals into one bits.

• Another possible area of improvement is regarding SMT model counting. Al-

though not related to our modeling approach or to SEU propagation analysis

specifically, SAT and SMT model counting is a well known area of interest. Our

approach can handle fairly large circuits, but if we want to deal with very large

designs, it is imperative to dig in the area of model counting and improve the

current techniques available.

• Our proposed technique currently handles SEUs only. Nevertheless it can easily

be extended to analyze Multiple Bit Upsets (MBUs). It is only required to

modify the initial fault injection assertions to do so. Instead of asserting single

bits to be faulty, the tool can be modified to assert multiple bits to be faulty

and investigate their effect on combinational and sequential circuits.
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Appendix A

Python SMT Library of RTL

Constructs

This Appendix contains the Python SMT Library of RTL constructs with embedded

SEU propagation properties. The signals are represented as a Python List of two bit-

vectors. The element 0 of the list represent the logic state of the signal and element

1 of the list represent the fault state of the signal. For example, for a signal A, A[0]

contains the SMT bit-vector variable representing the logic state of A (i.e. Al) and

A[1] contains the SMT bit-vector variable representing the fault state of A (i.e. Af ).

A.1 Logical AND Operator

def and2 (A,B) :
l o g i c = A[ 0 ] & B[ 0 ]
f a u l t = (A[1 ]&B[0]&∼B[ 1 ] ) | (B[1 ]&A[0]&∼A[ 1 ] ) |

( (A[1 ]&B[ 1 ] ) & ∼(A[ 0 ] ^ B [ 0 ] ) )
return [ l o g i c , f a u l t ]

Listing A.1: Python Function Defining the Logical AND Operator
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A.2 Logical OR Operator

def or2 (A,B) :
l o g i c = A[ 0 ] | B [ 0 ]
f a u l t = (A[1 ]&∼B[0]&∼B[ 1 ] ) | (B[1 ]&∼A[0]&∼A[ 1 ] ) |

( (A[1 ]&B[ 1 ] ) & ∼(A[ 0 ] ^ B [ 0 ] ) )
return [ l o g i c , f a u l t ]

Listing A.2: Python Function Defining the Logical OR Operator

A.3 Logical XOR Operator

def xor2 (A,B) :
l o g i c = A[ 0 ] ^ B [ 0 ]
f a u l t = A[ 1 ] ^ B [ 1 ]
return [ l o g i c , f a u l t ]

Listing A.3: Python Function Defining the Logical XOR Operator

A.4 Logical NOT Operator

def not1 (A) :
l o g i c = ∼A[ 0 ]
f a u l t = A[ 1 ]
return [ l o g i c , f a u l t ]

Listing A.4: Python Function Defining the Logical NOT Operator

88



A.5 Reduced AND Operator

def redand (A) :
l o g i c = BVRedAnd(A[ 0 ] )
c1 = BVRedOr(A[ 1 ] )
c2 = BVRedAnd(A[ 0 ] ^ A[ 1 ] )
c3 = BVRedAnd(A[ 0 ] )
f a u l t = c1 & ( c2 | c3 )
return [ l o g i c , f a u l t ]

Listing A.5: Python Function Defining the Reduced AND Operator

A.6 Reduced OR Operator

def redor (A) :
l o g i c = BVRedOr(A[ 0 ] )
c1 = BVRedOr(A[ 1 ] )
c2 = BVRedAnd(∼(A[ 0 ] ^ A[ 1 ] ) )
c3 = BVRedAnd(∼A[ 0 ] )
f a u l t = c1 & ( c2 | c3 )
return [ l o g i c , f a u l t ]

Listing A.6: Python Function Defining the Reduced OR Operator

A.7 Signed Extend Operator

def s ignExtend (n ,A) :
l o g i c = SignExt (n ,A[ 0 ] )
f a u l t = SignExt (n ,A[ 1 ] )
return [ l o g i c , f a u l t ]

Listing A.7: Python Function Defining the Signed Extend Operator
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A.8 Unsigned Extend Operator

def unsignExtend (n ,A) :
l o g i c = ZeroExt (n ,A[ 0 ] )
f a u l t = ZeroExt (n ,A[ 1 ] )
return [ l o g i c , f a u l t ]

Listing A.8: Python Function Defining the Unsigned Extend Operator

A.9 Concatenation Operator

def concat_f (∗ args ) :
l o g i c = args [ 0 ] [ 0 ]
f a u l t = args [ 0 ] [ 1 ]
a rgs = args [ 1 : ]
for arg in args :

l o g i c = Concat ( l o g i c , arg [ 0 ] )
f a u l t = Concat ( f au l t , arg [ 1 ] )

return [ l o g i c , f a u l t ]

Listing A.9: Python Function Defining the Concatenation Operator

A.10 Extract Operator

def extract_f ( high , low ,A) :
return [ Extract ( high , low ,A[ 0 ] ) , Extract ( high , low ,A [ 1 ] ) ]

Listing A.10: Python Function Defining the Extract Operator
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A.11 Addition Operator

def add (A,B, n ) :
A_faulty = A[ 0 ] ^ A[ 1 ]
B_faulty = B[ 0 ] ^ B[ 1 ]
C_logic = A[ 0 ] + B[ 0 ]
C_faulty_logic = A_faulty + B_faulty
C_fault_state = C_logic ^ C_faulty_logic
return [ Extract (n , 0 , C_logic ) , Extract (n , 0 , C_fault_state ) ]

Listing A.11: Python Function Defining the Addition Operator

A.12 Subtraction Operator

def add (A,B, n ) :
A_faulty = A[ 0 ] ^ A[ 1 ]
B_faulty = B[ 0 ] ^ B[ 1 ]
C_logic = A[ 0 ] − B[ 0 ]
C_faulty_logic = A_faulty − B_faulty
C_fault_state = C_logic ^ C_faulty_logic
return [ Extract (n , 0 , C_logic ) , Extract (n , 0 , C_fault_state ) ]

Listing A.12: Python Function Defining the Subtraction Operator

A.13 Multiplication Operator

def add (A,B, n ) :
A_faulty = A[ 0 ] ^ A[ 1 ]
B_faulty = B[ 0 ] ^ B[ 1 ]
C_logic = A[ 0 ] ∗ B [ 0 ]
C_faulty_logic = A_faulty ∗ B_faulty
C_fault_state = C_logic ^ C_faulty_logic
return [ Extract (n , 0 , C_logic ) , Extract (n , 0 , C_fault_state ) ]

Listing A.13: Python Function Defining the Multiplication Operator
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A.14 Division Operator

def add (A,B, n ) :
A_faulty = A[ 0 ] ^ A[ 1 ]
B_faulty = B[ 0 ] ^ B[ 1 ]
C_logic = A[ 0 ] / B [ 0 ]
C_faulty_logic = A_faulty / B_faulty
C_fault_state = C_logic ^ C_faulty_logic
return [ Extract (n , 0 , C_logic ) , Extract (n , 0 , C_fault_state ) ]

Listing A.14: Python Function Defining the Division Operator
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Appendix B

Python Soft Error Analysis Scripts

This Appendix contains the code of the script for automated SEU injection and

propagation analysis. The following code computes the SER. In order to run the

script, the Microsoft Z3 Python API [12] must be downloaded and imported. This

script computes the propagation probability for every injection site. It also computes

and outputs the vulnerability of every output as well sa the value of the Soft Error

Rate (SER) of the circuit under test. In order to use the following script, the design

must be defined in Python format using our Python SMT library functions.

for o in range (0 , n_out ) : ## For Every Output
print ( o ) ## Print Output Under Test
for i in range (0 , n_in ) : ## For Every Input

print ( s imp l i f y ( Extract ( i , i , inputs ) ) ) ## Print Input
formula = [ Extract ( o , o , outputs ) != 0 ]
for j in range (0 , n_in ) :

i f j == i :
formula . append ( Extract ( j , j , inputs ) == 1)

else :
formula . append ( Extract ( j , j , inputs ) == 0)

print ( genModels (And( formula ) , vr ) / (2 . 0∗∗ n_in ) )

Listing B.1: Python Script for SER Computation

In order to use approximate model counting, the tool SMTApproxMC [45] must

be downloaded and run separately. The tool only takes as input SMT2 format of SMT

formulas. Our library includes a function to convert any given formula into SMT2
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format. The resulting output must be saved in a file which can be sent directly into

the SMTApproxMC tool [45].

def toSMT2Format ( f ) :
return Z3_benchmark_to_smtlib_string ( f . ctx_ref ( ) , "" ,

"QF_BV" , "" , "" , 0 , ( Ast ∗ 0 ) ( ) , f . as_ast ( ) )

Listing B.2: Python Function to Convert Formula into SMT2 Format
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