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Abstract 

A bioinformatics characterization of secondary metabolism and alkyl citric acid pathway 

reconstruction in Aspergillus niger NRRL3 

Sylwester Palys 

Secondary metabolites (SMs) from fungi have become an integral part of various scientific and 

medical fields as well as providing economic benefits.  The genes involved in the biosynthesis of 

fungal and bacterial SMs are often co-localized in closely linked clusters that are generally 

dormant under laboratory conditions.  Genomics technologies are being intensively used to 

identify SM gene clusters, and suggest methods to promote their expression.  These efforts have 

already been used to discover new natural products, reveal the biosynthetic underpinnings of 

known products, and establish methods to eliminate toxic substances from industrially relevant 

organisms.  An important aspect of SM gene cluster characterization is the development of 

methods to overproduce known compounds which are difficult to synthesize in the lab.  This 

thesis presents the annotation of SM gene clusters in the sequenced genome of Aspergillus niger 

NRRL3.   Using our cluster data as a guide to induce production of secondary metabolites 

through the overproduction of clustered transcription factors, we confirm the identity of the 

regulators that are involved in the biosynthesis of the fumonisins, TAN-1612/BMS-192548, and 

the azanigerones which were also used as positive controls.  Additionally, we discovered three 

previously uncharacterized regulators of compounds whose masses correspond to the 

malformins, pyrophen, and the alkyl citric acids hexylitaconic acid, 2-carboxymethyl-3-

hexylmaleic acid and the tensyuic acids.   Selecting the alkyl citric acids for further investigation, 

we obtained a transcriptomic profile to define the genes of the alkyl citric acid gene cluster in A. 

niger.  Using the identified compounds from mass spectrometry and NMR as well as the 

functional annotations of our defined cluster, I reconstruct a biosynthetic pathway for the alkyl 

citrates I identified.  I then tested the robustness of my reconstruction by successfully predicting 

the accumulation of two early precursors, 2-hexylcitric acid (log2 fold change = 2.982 ± 0.15, p-

value < 0.01) and its anhydride (log2 fold change = 3.792 ± 0.26, p-value < 0.01), as well as the 

elimination of all downstream compounds.   
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Introduction 

1.1 Secondary metabolism; an overview 

 

Secondary metabolism is the energy expenditure of a cell for metabolic processes not 

required for survival of the organism [1].  Bacteria, fungi and plants produce wide varieties of 

secondary metabolites (SMs) and any single species may possess the ability to produce many 

SMs from different SM classes.  These classes include fatty acids, polyketides, small peptides, 

terpenes, sugars, and alkaloids [2-4].   

With respect to the cellular functions of these molecules, a relatively small number of SM 

compounds have a known role.  In some cases, organisms use SMs as defense mechanisms or as 

offensive measures against other organisms competing for space and other resources.  Other 

cases see SMs used as signalling molecules between organisms.  In addition to the advantages 

provided to the producing organisms, SMs have been exploited for a multitude of uses in human 

society [5].  This is particularly true in the pharmaceutical industry which has seen a renewed 

interest in biosynthesized compounds from secondary metabolism [6] 

1.2 The impact of secondary metabolites on human society 

 

The biological properties of some of the discovered SMs from fungi, plants and bacteria, 

sometimes referred to as natural products, have been indispensable in medicine.  These include 

pharmaceuticals like the antibiotics penicillin and vancomycin, anti-cancer drugs like 

griseofluvin and cholesterol lowering agents like lovastatin [7-10].  Secondary metabolism is 

also used by industry for the production of food additives like caffeine from plants and citric acid 

and gluconic acid from fungi [11-13].   However, not all SMs are created equal; some SMs have 

toxic properties which can cause neural, liver and kidney tissue damage as well as death in 

animals [14, 15]. An overview of some of the well-known SMs including toxins is shown in 

Figure 1.  The useful but also hazardous properties of SMs have helped prompt research into this 

aspect of metabolism. 
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Figure 1. Examples of SMs from a variety of classes produced in bacteria (tetracycline), fungi 

(penicillin, gliotoxin, aflatoxin, kojic acid) and plants (caffeine, nicotine, limonene, eucalyptol, 

jasmonic acid) [16-22].   

 

1.3 General organization of secondary metabolite genes 

 

The genes involved in the production of SMs in bacteria and fungi are often co-localized 

in clusters.   Each gene cluster can produce several related compounds [23].  In plants, these 

genes typically do not cluster; however, recent research shows that in some plant species 

clustering of SM genes does occur [24].   The clustered genes themselves can be highly varied 

but contain some important commonalities.  Clusters usually encode a “backbone” enzyme that 

assembles the core molecular structure of a SM, “tailoring enzymes” which modify the core 

molecule(s) to their final product(s) and in some cases, regulatory and transporter genes 

facilitating cluster activation and metabolite extracellular transport respectively [25, 26] (Figure 

2).   
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Figure 2. General structure of a SM gene cluster and the mechanism of SM production.  (1) 

Outside stimulus induces production of a clustered transcription factor or some transacting 

regulator.  (2) Transcription and translation of all cluster constituents.  (3) Backbone enzyme 

begins by generating the backbone molecule.  (4) Backbone molecule is modified by tailoring 

enzyme to generate the final products. (5) Metabolite may be exported by a clustered transporter. 

 

Backbone enzymes in secondary metabolism can be subdivided into multiple classes 

defining the SM type that will be generated.  These include the polyketide synthases (PKS) 

making polyketides, non-ribosomal peptide synthetases (NRPS) making short peptides, hybrid 

PKS-NRPS (HPN) combining polyketides and peptides, tryptophan dimethylallyl transferases 

(DMAT) making alkaloids, sesquiterpene cyclases cyclizing terpenes, and fatty acid synthases 

(FAS) making fatty acids [27-30].   

Tailoring enzymes are separate from backbone enzymes but their encoding genes often 

co-localize in the same cluster.  These enzymes carry out chemical reactions which add to the 

diversity of SMs.  Examples include the linking of methyl groups to alcohol groups by o-

methyltransferases and the relocation of carbon-carbon double bonds by isomerases [31, 32].   

While there are many tailoring enzymes on offer, many SM clusters despite producing distinct 

compound products will contain common enzyme types.  Enzymes like P450 monooxygenases 

and methyltransferases are present in numerous clusters that produce diverse classes of SMs 

(Table 1).  Moreover, as previously mentioned, a transporter and/or transcription factor (TF) 

gene is present in the gene cluster which facilitates SM cellular export and cluster expression 

respectively [33].   
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Table 1.  Common tailoring enzymes observed in PKS, NRPS and HPN clusters which have 

been experimentally characterized. 

 

Compound Transcription 
factor 

Transporter Cytochrome 
P450 

FAD 
dependent 

protein 

NAD 
dependent 

protein 

Methyl/ 
acetyl 

transferase 

Acetylaranotin [34] 0 1 0 0 0 1 

Aflatoxin [35] 2 2 4 0 1 2 

Apicidin [36] 1 1 2 0 0 1 

Aspyridone [37] 1 1 2 1 0 0 

Compactin [38] 1 1 1 0 0 0 

Cercosporin [39] 3 1 0 3 1 1 

Cyclopiazonic acid [40] 1 1 1 0 0 1 

Cytochalasin E [41] 1 0 0 0 0 0 

Equisetin [42] 0 1 1 0 0 1 

Echinocandin B [43] 1 3 1 0 0 0 

Hexadehydro-asterchome [44] 2 1 1 1 0 1 

Pneumocandin B0 [45] 1 1 2 0 0 1 

Pseurotin A [46] 0 0 1 0 0 1 

Pyranonigrin E [47] 1 0 0 1 1 1 

 

1
FAS alpha subunits not shown but are present in aflatoxin and apicidin clusters. Production of 

Gluconic Acid by Some Local Fungi. 
 

1.4 The backbone enzymes 

1.4.1 PKS structural organization 

 

Most PKS enzymes are multi-domain proteins or protein complexes.  To be considered a 

canonical PKS, the enzyme must contain a minimal set of domains. The minimal set includes the 

keto-synthase domain (KS), the acyl-transferase domain (AT) and the acyl-carrier protein 

domain (ACP) [48].   In addition to this minimal set, reducing or optional domains may be 

present.  These help generate diversity in polyketide core molecules through different 

combinations of ketone, alcohol and alkene bond reduction but are not required to produce a 

polyketide [49].  The reducing domains include the dehydratase domain (DH), the keto-reductase 

domain (KR), and the enoyl reductase domain (ER).  In some cases, methyltransferase (MT) 
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domains (adding methyl groups) and thioesterase domains (performing terminal cyclization and 

polyketide-enzyme release reactions) may also be present [50] (Figure 3).   

 

Figure 3. General structure of a PKS backbone enzyme.  The ketone, alcohol and alkene bond 

reduction reactions are depicted.  Blue and red squares represent minimal and reducing/optional 

domains respectively.  Modified from Kehr, J.C., et al [51]. 

 

There are three generally recognized types of PKS enzymes.  These are designated type I 

(further broken down into iterative and modular), type II and type III [52, 53].  Modular type I 

PKSs are multi-protein production lines with each protein or module containing various 

combinations of minimal and reducing PKS domains.  Each module is typically used only once 

during the elongation process to form the complete backbone molecule. Type I modular PKSs 

are the common form found in bacterial species.   

Type I iterative PKS enzymes are single unit large proteins containing all minimal 

domains and sometimes reducing domains.  Each domain can be used multiple times in an 

iterative elongation process creating a growing polyketide chain [53].  Following each elongation 

iteration adding two carbons from a malonyl-CoA extender unit, the reducing domains reduce 

ketone groups in the polyketide to alcohols, to double bonds or finally to single bonds [54].  The 

iterative type I PKSs can be further subdivided into subclasses based on which reducing domains 
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are present.  The PKSs containing just the minimal set of domains (KS, AT and ACP) and 

sometimes a TE or MT domain are considered non-reducing.  The non-reducing type I iterative 

PKSs can also contain starter unit acyl transferase (SAT) and product template (PT) domains.  

The SAT domain allows a non-reducing PKS to use different starting compounds in the first 

iteration of polyketide production while the PT domain facilitates polyketide cyclization [55].  

Structures resulting from the cyclization reactions of PT domains may to some extent predicted 

by the size of the catalytic pocket within the domain [55]. Type I iterative PKSs that have 

reducing domains make up the other three subclasses.  A PKS is highly reducing when all 

reducing domains (DH, KR and ER) are present, partially reducing when some reducing domains 

are present (KR and/or DH) [50] or a 6-methylsalicylic acid synthase PKS when a DH and KR 

domain is present but not MT or TE domains [56, 57].  

These different classes of type I iterative PKS enzymes will produce polyketides with 

differing structures and functional groups. The highly reducing PKS enzymes generally produce 

backbone compounds where most or all keto groups are fully reduced to alkane single bonds 

[58].  For partially reducing PKSs, the backbone compounds are partially reduced polyketides 

containing alcohol groups and alkene carbon-carbon bonds [59]. Non-reducing PKSs produces 

backbone compounds that are “true” polyketides containing only keto groups on the hydrocarbon 

chain.  Additional downstream modifications also tend to produce aromatic/cyclic configurations 

of these polyketides.  Lastly, the 6-methylsalicylic acid synthase PKS produces only 6-

methylsalicylic acid, a small tetraketide used in multiple SM pathways [56, 59].   

The type II and type III PKSs are all single domain proteins and like their multi-domain 

counterparts can in some cases reuse those domains iteratively to produce polyketides [52, 60].  

In type II PKSs all minimal and reducing domains may be present, but these exist as protein 

complexes where each domain is contained in a separate protein.  With the type III PKSs, 

sometimes referred to as chalcone synthases, only a single protein is produced which contains a 

KS domain.  These KS domain proteins exist as a homodimer of two identical KS domain 

containing proteins.  Overall, in filamentous fungi PKS enzymes are generally of the type I 

iterative form.  In some species of fungi the type III PKS may also be present but these enzymes 

are more commonly found in plants.  In the case of the type II PKSs, these can be found in 

bacterial species [53, 61].   
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1.4.1.1 General PKS assembly of polyketides (PK) in fungi 

 

The process of assembly of the polyketide begins by activation of the ACP domain in a 

PKS by a phosphopantetheinyl transferase (PPTase) enzyme transferring a phosphopantetheinyl 

arm to a conserved serine residue.  An acyl starter unit, usually an acetyl-CoA, is loaded onto a 

conserved cysteine residue of the AT domain which then transfers the unit to the KS domain 

aided by the ACP.  Next, the AT domain catalyzes the loading and subsequent transfer of a 

malonyl-CoA extender unit to the phosphopantetheinyl arm of the ACP domain.  Other extender 

units may also be used like the methylmalonyl-CoA [62].  The KS domain then carries out a 

Claisen condensation reaction losing CO2 to form a diketide with its loaded starter and the 

extender unit on the ACP domain.  In highly reducing PKSs and partially PKSs the polyketide is 

reduced by the actions of DH, KR and/or ER domains (Figure 3).  In some PKSs, MT domains 

can also add methyl groups to the growing polyketide.  The polyketide is then transferred back to 

the KS domain and the process continues with another extender unit until a specific length is 

reached.  In some cases, chain length is determined by a chain length factor (CLF) subunit of the 

KS domain.  At the end of the last iteration, the polyketide releases spontaneously or via a TE 

domain if present.  In many non-reducing PKSs the SAT domain selects a starter unit other than 

acetyl-CoA.  For example, a 6-carbon (C6) fatty acid is used to initiate aflatoxin biosynthesis.  

Unlike most bacterial PKSs, in fungi the iterative PKS can use both the minimal and reducing 

domains multiple times.  The sequence of reducing domains can also be varied.  For instance, in 

the first iteration the keto group may be fully reduced to an alkane but in the next iteration the 

keto group may only be reduced to an alcohol or not reduced at all. While much is known about 

the iterative process of polyketide assembly in fungi, prediction of the number of iterations to 

deduce chain length remains elusive.  Only general statements can be made concerning the 

reduction state of the backbone molecule [17, 63-65].  A general mechanism of backbone 

compound biosynthesis is presented in Figure 4.  
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Figure 4.  Schematic of polyketide assembly.  The SAT and PT domains are omitted but the 

action of the SAT domain in non-reducing PKSs occurs in step 1 loading a non-acetyl-CoA 

starter unit.  The point at which the PT domain acts is currently unclear.   Modified from Rasmus 

J. N. F. [65]. 
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1.4.2 NRPS structural organization 

 

Non-ribosomal peptide synthetases in fungi produce amino acid based SMs in an 

assembly line fashion without the use of a ribosome.  The NRPS selects amino acids and 

incorporates them into a growing peptide chain.  These enzymes comprise multiple fused 

modules, each composed of several domains (Figure 5). Unlike ribosomal peptide synthesis, 

which can also produce SM peptides [66], NRPSs do not require RNA template for biosynthesis 

and can also incorporate non-proteinogenic amino acids into the peptide chain such as D-amino 

acids.  Three types of NRPS systems have been defined: The linear form where all domains are 

used once during assembly, the iterative form where sites can be reused cyclically during 

assembly, and the non-linear form where some modules and/or domains in the same NPRS can 

be reused [50]. 

 

 

Figure 5. General structure of an NRPS backbone enzyme.  Amino acid adenylation is 

depicted.  Blue and red circles represent minimal and reducing domains respectively.  Modified 

from Kehr, J.C., et al [51]. 

 

Like in the PKS backbone enzymes, NRPSs have minimal domains.  There are three 

minimal domains in an NRPS: the adenylation domain (A domain), a peptidyl carrier protein or 

+ AMP 
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thiolation domain (PCP or T domain), and a condensation domain (C domain).  Each A domain 

selects a single amino acid and then activates it by adenylation from ATP hydrolysis. The T 

domain acts as a placeholder for the peptide chain and is similar in function to the ACP domain 

in PKSs.  Lastly, the C domain carries out the peptide bond reaction joining amino acids to the 

growing peptide [67].   

The NRPS enzymes like PKS enzymes can be further broken down into linear, iterative 

and non-linear NRPS forms.  Unlike the PKS enzymes the subclass distinctions of NPRS 

enzymes is not so clear but some general inferences can be drawn.  The general organization of 

domains in linear NRPSs is made up of sequential A-T-C modules: A-T-C--A-T-C--A-T-C… 

etc. In iterative NRPSs, each domain is reused and the generated SM peptide is composed of 

repeating amino acid subunits; these systems are generally considered linear with iterative 

function near the C-terminus.  The C-terminus of iterative NRPSs may contain multiple T and/or 

C domains presenting as C-A-T--C-A…T-T-C or A-T-C--A-T…C-A-T-C-T-C-T-C.  With non-

linear systems, domains can be used once or multiple times which makes prediction of the SM 

difficult.  The domain organization of these systems is highly varied for example: A-T-E-C--A-

C-A-C-A-C--A-T-E-C-T-C-T and C-A--T-A-T-C--A-T-E-C--A-T-E [2, 68].    

Minimal domains tend to appear together as a module, fused together in fungi while in 

bacteria they can be separate entities [69]. Optional domains may also be present within NRPS 

modules generating further product diversity.  These domains can include some of the domains 

present in PKSs (MT, Te, and reductases) but also domains unique to NRPSs like epimerization 

(E) domains converting amino acids from the L to D configuration and cyclization (Cyc) 

domains catalyzing cyclization reactions in the nascent peptide chain [50, 70] (Figure 5).  

Some NRPS enzymes hold to the rule of collinearity.  This rule states that the amino acid 

sequence of a non-ribosomal peptide product is determined by the structure and sequence of the 

modules and their domains from its parent NRPS.  The collinearity rule generally applies to the 

linear NRPSs class only and can allow  prediction of peptide length and composition  from the 

order of the domains, the amino acid substrate specificity of the individual A domains in each 

module and the order of the modules themselves [50, 70].  This rule has been used to predict the 

structure of novel compounds from NRPS A domain sequences. For example, orphamide A was 

predicted from the protein sequence of A domains, and subsequently isolated and verified [71]. 
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1.4.2.1 General NRPS assembly of non-ribosomal peptides (NRP) in fungi 

 

In linear models, the initial step in NRP synthesis is the selection of an amino acid by the 

A domain of the first NRPS module.  The selected amino acid is converted into an aminoacyl-

AMP derivative by the action of the A domain and ATP hydrolysis.  The adenylated amino acid 

is transferred to the T domain, which is activated by the addition of a phosphopantetheinyl (PPT) 

arm by a PPTase; much like the ACP domain in PKS enzymes.  Next the selection of another 

amino acid by the A domain of the second module is carried out and subsequently transferred to 

the T domain of that module.  The C domain of the second module carries out the amide bond 

formation between the first T domain and the second.  The reactions proceed in the same manner 

across subsequent modules until peptide release sometimes aided by a TE domain.  Optional 

domains can also be present. Epimerization domains can carry out reconfigurations of stereo 

centers while Cyc domains facilitate cyclization reactions in the nascent peptide (Figure 6).  This 

sequence of events accounts for why most linear NRPS initiation modules lack a C domain since 

the condensation reaction between the first and second modules is catalyzed by the C domain in 

the second module [72].   
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Figure 6. NRPS peptide assembly overview.  Activation of the T domain by a PPTase through 

phosphopantetheinyl transfer (A).  The A domain selects an adenylated amino acid and transfers 

it to the T domain (B).   The C domain forms a peptide bond between one amino acid and 

another amino acid selected by a downstream module in the same way as the initial module (C).  

Modified from 2013.igem.org/wiki/index.php?title=Team:Heidelberg/NRPS&oldid=353123 [73] 

 

 

 

 

+ AMP 
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1.4.3 HPN, NRPS-like and PKS-like structural organization 

 

Hybrid PKS-NRPS enzymes in filamentous fungi can take two forms.  One form has both 

a PKS and NRPS enzyme produced by separate genes in the same cluster.  These backbone 

enzymes ultimately fuse their products into a single hybrid polyketide-non ribosomal peptide. 

The HPN generating pneumocandin is an example of this form, fusing a polyketide with amino 

acid residues [45, 50].  The other HPN form derives from a single gene that encodes both a PKS 

and an NRPS module.  The HPN enzyme that produces pseurotin and equisetin are two examples 

of this form [42, 46, 50] (Figure 7).  Fused HPNs typically start with a PKS module followed by 

a single NRPS module with the domains C-A-T.  The PKS portion of the HPN also tends to be a 

highly reducing class, but partially reducing forms are also known.  Production of hybrid 

molecules proceeds as previously described for the polyketide and peptide components.  The 

attachment of the polyketide chain to the selected amino acid is accomplished by a C domain of 

an NPRS module [74]. 

 

Figure 7. General structure of both HPN backbone enzyme forms. Blue and red represent 

minimal and reducing domains respectively.  Squares and circles respectively represent the PKS 

and NRPS domains.  Modified from Kehr, J.C., et al [51]. 

 

Genes encoding type 1 iterative PKS and all NRPS class enzymes that are missing one or 

more minimal domains are found in fungi [75, 76]. The NRPS enzymes missing minimal 
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domains are referred to as NRPS-like while PKS enzymes missing at least one minimal domain 

are referred to as PKS-like.  The NPRS-like enzymes can still participate as backbone enzymes 

in SM biosynthesis.  This has been recently demonstrated in the production of the dipeptide 

atromentin fusing two modified tyrosine residues [77]. Unlike the type III PKS and NRPS-like 

backbone enzymes, PKS-like enzymes have no known function to our knowledge but may be 

active from trans-acting single domain surrogates like in the case of trans AT domains in bacteria 

[78].  Their genes may in fact be remnants of full-length PKS or HPN genes whose products 

contain at least the minimal domains.  For example, a PKS-like gene found in the genome of A. 

niger ATCC 1015 appears to be remnant of the PKS gene known to be involved in ochratoxin 

production in A. niger CBS 513.88 [75].   

1.4.4 Fatty acid synthase structural organization and assembly 

 

The FAS enzymes of filamentous fungi can be involved in both primary and secondary 

metabolism. However, distinct forms of FASs are used for each type of metabolism [28].  The 

domain complement of FAS is very similar to PKS enzymes with an additional PPT domain that 

for PKS enzymes is usually a separate enzyme encoded by a separate gene [79]. Only one known 

iterative PKS from Saccharopolyspora erythraea appears to violate this rule [80]. The 

malonyl/palmitoyl transferase (MPT) domain in fungal FAS enzymes is another domain not 

present in PKS enzymes.  Its function is to transfer a hydrocarbon chain back to a coenzyme A 

(CoA) following the completion of chain elongation [80, 81].  Lastly, unlike the PKS, the fungal 

FAS exists as a heterodimer consisting of an alpha subunit with domains MPT-ACP-KR-KS-

(PPT) and a beta subunit with domains AT-ER-DH-MPT [80].   

Fatty acid assembly is analogous to polyketide assembly using acetyl-CoA starter and 

malonyl-CoA extender units to build hydrocarbon chains [82].  The FAS can also incorporate a 

variety of starter units like the non-reducing PKS [83].  A notable difference between these two 

classes of backbones is that chain elongation in FASs typically occurs after full reduction of the 

keto group from the malonyl unit to a single carbon-carbon bond while in PKSs extension can 

occur with or without keto reduction [84]. 
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1.4.5 Structure and function of tryptophan dimethylallyl transferases and sesquiterpene cyclases. 

 

The DMAT and sesquiterpene cyclase enzymes in contrast to the preceding backbone 

enzymes contain only one catalytic/biosynthetic domain.  Despite being single domain enzymes, 

the genes coding for these two backbone classes are also found in SM gene clusters like PKS and 

NRPS genes (68, 69).  In terms of core molecule production, the DMAT enzymes produce 

alkaloids while sesquiterpene cyclases produce cyclized terpenoid compounds.  Biosynthesis by 

DMATs and sesquiterpene cyclases differ in the backbone metabolites they generate.  The 

DMAT generates a modified tryptophan residue (attached dimethylallyl group), while the 

sesquiterpene cyclase cyclizes an assembled sesquiterpenes such as farnesyl in tricothecene 

biosynthesis [85, 86]. 

1.5 Bioinformatics approaches to identifying and annotation SM clusters 

 

With the advent of genomics, many aspects of annotation have become automated.  

Today, automated annotation includes a host of software applications to identify SM clusters.  

These applications use common features from experimentally characterized SM clusters to 

define new clusters in sequenced genomes.  For instance, software such as SMURF and 

antiSMASH locate backbone enzyme genes in genome sequences and work outward adding 

neighbouring tailoring genes found in experimentally verified clusters to the cluster being 

defined if they appear nearby [87, 88].  Agreement between various SM cluster defining software 

can be problematic and ultimately requires manual input to refine the cluster edges (Figure 8) 

[27].  As a first approach, however, software such as SMURF and antiSMASH can reduce the 

time needed to locate and define clusters compared to solely manual methods [87, 88].  

Additionally, applications such as Sybil use orthology of SM gene clusters between sequenced 

genomes of different species to help guide manual definition of their boundaries.  Using Jaccard 

clustering methods (BLASTP queries of all proteins from all the selected genomes against each 

other) Sybil identifies orthologues between species.  This is based on the premise that all the 

genes contained in a specific SM cluster shared between different species (%ID’s between 

species > 80%) will produce the same SM and be fully retained from species to species.  For 

instance, two clusters from two species matched up in Sybil show that seven of the genes 

matchup between them (%ID for each gene >80%) genes outside these seven do not match.  
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Based on this observation the cluster in both species has only seven genes and the boundaries can 

now be drawn  [89].  Sybil provides graphical results to help reveal possible clusters edges 

defined at junctions where the orthology ends in all matched genomes (Figure 8).   

 

 

Figure 8. Sybil display of the experimentally determined cluster producing gliotoxin in 

Neosartorya fischeri compared to other genomes (A).  The complete cluster appears in two A. 

fumigatus strains (top and middle) with the junctions of non-orthologous and orthologous genes 

(either ends of the red bar) defining the experimentally determined edges of the gliotoxin cluster.  

The Sybil result in B shows an unknown cluster predicted using the same method that showed 

proof of concept in A; the edges are again defined at orthologous/non-orthologous junctions ends 

of the red bar) across all matched genomes. Taken from Inglis, D.O., et al [27] 
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1.5 Filamentous fungi produce thousands of “orphan compounds” and contain a wealth of 

“cryptic” SM clusters 

 

Filamentous fungi are prolific producers of natural products with identified compounds 

numbering in the thousands [90].  The genes and/or gene clusters responsible for the production 

of many of these compounds are unknown.  Compounds for which the biosynthetic processes are 

unknown are referred to as “orphan compounds” [91].  Many of these orphan compounds have 

useful properties and determining their genetic underpinnings could allow their overproduction.  

For example, the tensyuic acids and hexylitaconic acid are orphan compounds discovered in A. 

niger that have a number of useful biological properties.  Hexylitaconic acid, known since the 

1980’s has been shown promote plant growth [92] while tensyuic acid C has shown potential as 

an anti-parasitic and antibiotic compound [93, 94].  Determining the biosynthetic pathway for 

these compounds could help devise strategies for their overproduction.  This has been shown 

recently in Cercospora nicotianae where knowledge of the biosynthetic pathway for cercosporin, 

a polyketide, was used to produce mutants which accumulate various precursor compounds [95].  

The ability to overproduce these useful SMs can reduce the cost of their production by reducing 

the need for purification and improve their adoption in health, environmental and industrial 

applications.   

A key step in pathway reconstruction is to locate the parent gene cluster of a 

compound(s) to determine the enzymes involved.  Many of the clusters annotated in the 

sequenced genomes of fungi have unknown functions. These clusters are referred to as “cryptic” 

[96].  By annotating the set of SM clusters in a particular species, the search for the genetic 

underpinnings of particular orphan compounds can be narrowed down.   Then, through analysing 

the tailoring and backbone genes within clusters, their functions can be used to match a particular 

orphan compound with its cryptic cluster.   In a recent work, a P450 monooxygenase and an o-

methyltransferase enzyme was used as a guide to a specific non-reducing PKS containing cluster 

responsible for the production of a set of orphan polyketides referred to as the kotanins in A. 

niger [97]. 
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1.6 Aspergillus niger NRRL3 as a model fungus for SM research 

 

With 228 of its 13870 genes having gene onotology references to secondary metabolism 

[27], A. niger has good potential for identifying gene clusters involved in the production of 

orphan compounds as well as for novel compound discovery. Compared to other well studied 

Aspergilli, the number of SM clusters in A. niger (84) exceeds that annotated in the genomes of 

A. nidulans (66), A. fumigatus (34), and A. oryzae (73) making it a good candidate for the study 

of SM production.   Aspergillus niger and related species are also known to produce over 140 

SMs 68 of which have not been tied to their gene clusters (Table 2.) [98].  This leaves the 

biosynthetic pathways for many of these orphan compounds available for characterization.    

 

Table 2. Secondary metabolite compounds isolated from Aspergillus niger. 

Polyketides Orphan Non ribosomal peptides Orphan 

* 8′-O-Demethylisonigerone 
 

Malformin A1  X 

* 8′-O-Demethylnigerone  
 

Malformin A2 X 

* 10,10′-Bifonsecin B 
 

Malformin B1a  X 

* Aurasperone A  
 

Malformin B1b  X 

* Aurasperone B  
 

Malformin B2  X 

* Aurasperone C  
 

Malformin B3 X 

* Aurasperone D 
 

Malformin B4  X 

* Aurasperone E  
 

Malformin B5  X 

* Aurasperone F  
 

Malformin C X 

* Aurasperone G 
 

Cyclo-l-Ala-l-Leu X 

* Asperpyrone A  
 

Cycloleucomelon X 

* Asperpyrone B 
 

Atromentin X 

* Asperpyrone C  
   

* Dianhydroaurasperone C  
 

Terpenes Orphan 

* Flavasperone 
 

Asperrubrol X 

* Flaviolin 
 

Yanuthone A  
 

* Fonsecinone A 
 

Yanuthone B 
 

* Fonsecinone B  
 

Yanuthone C 
 

* Fonsecinone C  
 

Yanuthone D 
 

* Fonsecinone D  
 

Yanuthone E 
 

* Fonsecin (TMC-256B1) 
 

Nafuredin X 

* Fonsecin B (TMC-256B2) 
 

Asperenone X 
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* Fonsecin monomethyl ether  
 

22-Deacetylyanuthone A 
 

* Isoaurasperone A 
 

1-Hydroxyyanuthone A 
 

* Isonigerone  
 

1-Hydroxyyanuthone C  
 

* Nigerone 
   

* Rubrofusarin 
 

Alkaloids Orphan 

* TMC-256A1 
 

Aspernigrin A X 

* TMC-256C1 
 

Aspernigrin B X 

** Bicoumanigrin 
 

Pyrophen X 

** Demethylkotanin 
 

Tensidol A X 

** Orlandin  
 

Tensidol B X 

** Kotanin 
 

Nygerone A X 

** 7-Hydroxy-4-methoxy-5-
methylcoumarin   

Nigragillin 
 

X 

Hexahydroxy-5H,6H,7H-benzopyrene-
1,11-dione 

X Nigerazine A X 

3′,4′,5,7-Tetrahydroxy-8-methoxy 
isoflavone 

X Nigerazine B  X 

4,9-Dihydroxyperylene-3,10-quinone X Diketopiperazine dimer X 

8-Hydroxygenistein X Asperic acid  X 

Agglomerin [99] 
 

Aspernigerin X 

Asnipyrone A  X Asperazine X 

Asnipyrone B X 
  

Asperyellone X PK/NRP hybrids Orphan 

Azanigerone A [100] 
 

Pyranonigrin A  
 

Azanigerone B [100] 
 

Pyranonigrin B  
 

Azanigerone C [100] 
 

Pyranonigrin C  
 

Azanigerone D [100] 
 

Pyranonigrin D  
 

Azanigerone E [100] 
 

Pyranonigrin E [47] 
 

Azanigerone F [100] 
 

Ochratoxin A 
 

BMS-192548 
 

Ochratoxin α 
 

Carlosic acid [99] 
 

Ochratoxin β 
 

Differenol A  X Nigerasperone A X 

Fumonisin B2 
 

Nigerasperone B X 

Fumonisin B4 
 

Nigerasperone C X 

Funalenone  X Aspergillin  X 

Iso-T-2 toxin X 
  

Orobole X Fatty acids Orphan 

Nigerapyrone A [101] X 
2-Carboxymethyl-3-
hexylmaleic anhydride 

X 

Nigerapyrone B [61, 101] X 2-hexylcitric acid X 

Nigerapyrone C [101] X Hexylitaconic acid X 
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Nigerapyrone D [101] X Tensyuic acid A [93] X 

Nigerapyrone E [101] X Tensyuic acid B X 

Nigerapyrone F [101] X Tensyuic acid C X 

Nigerapyrone G [101] X Tensyuic acid D X 

Nigerapyrone H [101] X Tensyuic acid E X 

Nigerloxin X Tensyuic acid F X 

Sorbic acid X 
  

TAN-1612 [102] 
 

Other Orphan 

  
(+)-Parasorbic acid  

 

  
2-Phenylethanol 

 

  

2-Methylene-3-hexyl-
butanedioic acid  

X 

  

3-Methyl-8-hydroxy-4-
decanoate 

X 

  4-Hydroxymandelic acid 
 

  
d-Galactonic acid 

 

  
Glyoxylic acid 

 

  Glutaric acid 
 

  
Glycolic acid  

 

  Hydroxypyruvic acid  
 

  Fumaric acid  
 

  
p-Methoxyphenylacetic acid X 

  Phenoxyacetic acid  X 

  
Phenylacetic acid X 

  
Pisolithin B  X 

 

1
Table modified from Nielsen, K.F., et al [98]. 

2
Orphan compounds are marked with an X.   

3
Compounds without associated reference were sourced from Nielsen, K.F., et al [98]. 

4
Where available, compounds have been categorized according to Nielsen, K.F. et al [98] or 

from literature searches.  All other compounds categorized based on typical backbone molecular 

structure and composition for each class. 

  * Compound is produced by albA/fwnA PKS and its associated tailoring enzymes based on 

literature and core structure similarity [103-105].   

** Compound is produced by the ktnA PKS cluster based on literature and core structure 

similarity [97].  
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1.7 Expression, analysis and biosynthetic pathway reconstruction of SM clusters 

 

While in silico cluster definition can serve as an initial approximation of the genes within 

a given cluster, ultimately experimental verification is required to test the robustness of 

predictions.  Expression data in the form of RT-PCR or RNA-seq can be used to support cluster 

predictions [100, 106].  Transcriptomic data from RNA-seq may also be useful in identifying 

non-clustered genes involved in secondary metabolite production since it takes into account gene 

expression data of the entire genome.   

The expression of SM clusters in nature can occur from a wide variety of internal and 

external stimuli [107].  Under laboratory conditions however, many SM clusters remain silent 

and activating their expression can prove challenging [108].  Attempts to induce cluster 

expression have met with some success through methods such as overexpressing a clustered 

transcription factor or a global transcription factor [100, 109], modification of the epigenome 

[110], or heterologous expression in other hosts including Saccharomyces cerevisiae, A. nidulans 

and A. oryzae [102, 111].  Developing strategies to solve the expression problem is an active 

area of research that may prove beneficial in the discovery of novel compounds and serve as a 

means to overproduce valuable known compounds.  Alternately, the determination of the clusters 

responsible for producing known toxins may provide a means for their removal from industrially 

relevant organisms like A. niger used in the production of food additives [12].   Malformin for 

instance, which causes cell-cycle arrest in mammalian cells,  has been known to be produced by 

A. niger since at least the 1950’s [112] but the determination of the underlying genes responsible 

for its production remain elusive.   

1.8 Rationale for pursuing research in fungal secondary metabolism 

 

Research into fungal secondary metabolism is of vital importance not only to human 

health but also to the various chemical products used in human society.  Understanding the 

mechanisms of SM production has the potential to reduce health risks in microbial food 

production, develop new lifesaving drugs (particularly as antibiotic resistance is becoming a 

health issue), and increasing production of those drugs and other commodities.  These are just 

some of the aspects that highlight the need for additional research into this field of biology. 
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1.8.1 Toxic substances can be produced from organisms used in industry for food production 

 

Toxins produced by fungi can pose public health risks, particularly when fungi are used 

in industry [15, 113].  The elimination of these toxins may mitigate some of the risks.  For 

example, the filamentous fungus Aspergillus niger is grown in large fermentation vats and its 

metabolic processes are exploited for the production of a variety of  food additives like citric acid 

[12].  Some strains however also produce a variety of unwanted toxins such as fumonisin and 

ochratoxin.  Given the consumption of food additives produced in A. niger, compounds like 

fumonisin and ochratoxin pose potential health risks to people and livestock [113].  With the 

prior annotation of the fumonisin gene cluster in A. niger and other species of filamentous fungi, 

the production of fumonisins may potentially be eliminated by targeted gene deletion [114].  

However, while true for some toxins, many toxins produced in A. niger as well as other 

filamentous fungi used in industry have no known genetic underpinnings and still pose potential 

risks to public health.   

1.8.2 Secondary metabolism and antibiotic resistance 

 

The discovery of novel compounds is becoming an increasing priority in university 

research particularly with respect to antibiotics since the pharmaceutical industry has begun 

diverting funds to more profitable areas [115, 116].  Over the last few decades two main issues 

have been occurring in the public health field that are prompting investigations into the current 

state of  available antibiotics.  First, the number of new antibiotics being discovered has been 

falling [116] and second the rates of bacterial resistance to current antibiotics is on the rise [117].  

In fact, bacterial species like methicillin resistant Staphylococcus aureus are now resistant to 

many antibiotics resulting in several difficult to treat diseases [118].  These two aspects of an 

unfolding health crisis are generating a pressing need to discover new compounds.   Current 

research in this area is not keeping pace with the build-up of resistance by microorganisms to 

existing antibiotics [119]. 

One potential avenue to finding new antibiotics is to examine the secondary metabolism 

of microorganisms.  Many of the antibiotics discovered in the past, like penicillin, are produced 
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from the secondary metabolism of fungi [120]. With the advent of genomics, recently sequenced 

genomes of various fungi reveal that they possess genes capable of generating  numerous new 

secondary metabolites, some of which could be potential antibiotics [121].  This fact alone 

illustrates that research into secondary metabolism is a potential “gold mine” for not only 

generating new antibiotics, but also other novel compounds.  

The threat of not just antibiotic resistance but other medical issues as well, is bringing 

pressure to bear on researchers to discover novel compounds.  One advantage of using 

filamentous fungi for novel compound discovery is the number of orphan clusters within their 

genomes.  To put this into perspective, the genome of A. niger contains at approximately 80 SM 

clusters (strain dependent) but only about 10%, from diverse SM classes, have had their 

metabolic products experimentally determined [27, 47, 97, 99, 100, 102, 122-124].  Figure 9 

shows the variation in chemical structure of some of the known products generated by A. niger 

including orphan compounds.   

 

 

Figure 9. Secondary metabolites (A) and toxins (B) produced by Aspergillus niger.  Orphan 

compounds include malformin, tensyuic acid B, asperenone and pyrophen. 
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1.8.3 Manipulation of SM pathways can overproduce desired products 

 

Many secondary metabolites are complex molecules and consequently their chemical 

synthesis can be very expensive.  For this reason, having organisms like A. niger produce desired 

SMs can substantially cut costs of production [125].  Enter metabolic engineering; using the 

knowledge from experimentally verified pathways, researchers are now able to manipulate these 

pathways on a genetic level towards accumulating desired compounds.  Varieties of methods and 

techniques have been employed to accomplish this goal.  These include pathway gene deletions 

resulting in terminations at particular biosynthetic steps, elimination of competing pathways by 

gene deletion to increase the resources available for the desired pathway and de novo pathway 

design by combining enzymes from similar pathways to generate compounds in non-native hosts 

[126].   

1.10 Objectives of this study 

 

Addressing the challenges of natural product production, we propose an overall objective 

to develop a strategy to discover the genetic underpinnings of orphan compounds and use this 

information to engineer strains that can overproduce their intermediates as well as the 

compounds themselves.   

This overarching objective is broken down into four sub-objectives.  First to identify and 

catalog the clusters and their genes that are responsible for the production of secondary 

metabolites in the genome of A. niger NRRL3.  Secondly, to overexpress transcription factor 

genes predicted to regulate SM clusters (clustered transcription factors) within A. niger NRRL3 

in an effort to generate their secondary metabolites.  Thirdly, to reconstruct biosynthetic 

pathways for compounds for which the genetic underpinnings are currently unknown.  Lastly, to 

generate deletion mutants based on reconstructed pathways to accumulate intermediate 

compounds and test the robustness of our pathway reconstruction method by predicting the 

metabolic outcomes of the deleted genes. 
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Materials and Methods 

2.1 Bioinformatics methods 

2.1.1 Backbone enzyme identification 

 

All backbone enzymes were initially identified via BLASTP searches using previously 

characterized backbone enzyme sequences from other Aspergilli as queries (E-value ≥ 1x 10
-5

).  

All hits were evaluated for acceptance into their respective categories by protein domain content 

using the online applications Pfam (http://pfam.xfam.org/), conserved domain database (CDD) 

(http://www.ncbi.nlm.nih.gov/cdd/), and InterProScan 5 

(http://www.ebi.ac.uk/interpro/search/sequence-search).  Domain annotations for each enzyme 

were accepted when at least two databases agreed on annotation.  Sequences were accepted as 

PKS, NRPS and HPN enzymes when at least all respective minimal domains were present with 

the exception of PKS NRRL3_01804 whose ACP domain does not have a complete 

GX(H/D)S(L/I) (GP) amino acid motif but which still may be functional based on previous 

work with non-canonical ACP domains [29, 127].   The PKS-like and NRPS-like enzymes were 

accepted when at least two databases agreed on at least two domains which are contiguous for 

specific enzyme categories and at least one was a minimal domain.  For domains which were not 

documented in the domain databases, multiple sequence alignments were performed to confirm 

the presence of previously published amino acid motifs and conserved residues.  This process 

was limited to start unit acyl transferase [128] (SAT), product template [129] (PT) and FAS ACP 

domains [80].   

An additional round of BLASTP searches was subsequently carried out using isolated 

domain pairs (from enzymes in the first round) which appear contiguously within enzyme 

categories and contain at least one minimal domain (E-value cut-off of 1x10
5
).  This was done to 

find more backbone enzymes by reducing gap penalties from BLAST alignments. I surmised that 

using domain pairs that are always contiguous in each backbone class would have fewer and 

shorter gaps when used as a query sequence compared to using the full backbone enzyme 

incurring small gap penalties.  For instance, a BLAST search using a full non-reducing PKS 

against the genome would incur a gap penalty when aligned with a highly reducing PKS due to 

the intervening reducing domains between the AT and ACP domains in the highly reducing PKS.  
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Even a highly reducing PKS may incur gap penalties when aligned with another such PKS from 

uncommon domains like MT or alcohol dehydrogenase domains.  This process was particularly 

helpful with NRPS enzymes given the higher variability in their domain organization than PKS 

enzymes.  

For FAS enzymes, given the lack of variation in their domain organization compared to 

PKS enzymes, the FAS alpha and beta subunit enzymes were accepted into their respective 

categories if the prospective enzyme contained the general domain architecture (the PPT domain 

notwithstanding) of the fungal FAS alpha or beta domains as outlined by Jenni, S. et al [80].  All 

DMAT, sesquiterpene cyclase, and type III PKS single domain enzymes were accepted based on 

InterProScan families (IPR017795, IPR024652 and IPR011141 respectively) and CDD domains 

(PT-DMATS_CynD, Isoprenoid_Biosyn_C1 and BH0617 respectively). 

2.1.2 Backbone enzyme comparison between A. niger NRRL3 and A. niger CBS 513.88 

 

To compare closely related strains in terms of secondary metabolite genes, protein 

sequences of identified enzyme backbone classes from A. niger NRRL3 as well as A. niger CBS 

513.88 were used as queries against each other’s genomes to identify counterparts and unique 

enzymes between the strains.  Annotated enzymes from A. niger CBS 513.88 were obtained from 

the AspGD website (http://www.aspergillusgenome.org/) Backbone enzymes with %ID ≥ 85 (E-

value ≥ 1x 10
-5

) from BLASTP queries were designated counterparts and all others were 

considered unique to either strain.   

2.1.3 Backbone enzyme remnant and remnant cluster analysis 

 

In order to determine if backbone-like enzymes had complete counterparts in other 

species, PKS-like and NRPS-like enzyme sequences as well as all possible singlet domain types 

in the multi-domain secondary metabolite backbone enzymes were used as queries against the 

fungal genomes available at the AspGD website (%ID ≥ 50, E-value ≥ 1x 10
-5

)).  Any backbone-

like enzyme which had a full counterpart in another species was labelled as a remnant.   

We next examined the homology of other genes around identified remnant backbone 

genes in species with complete counterparts to identify missing, if any, SM cluster genes.  



27 
 

Homology was visualized using the Sybil online application at the AspGD website 

(http://aspgd.broadinstitute.org/cgi-bin/asp2_v3/shared/index.cgi?site=asp2_v9).  Since the Sybil 

application could not find homologues of the remnant enzymes (possibly due to their highly 

truncated structure), accessory enzymes in their vicinity were used as anchor points for Sybil 

homology searches.  

2.1.4 Secondary metabolite cluster definition 

 

Secondary metabolite clusters were defined using the clusters which were previously 

annotated in A. niger CBS 513.88 as a reference [27].  These clusters were modified to 

incorporate our updated gene annotation data and took precedence over the original annotations 

including those defined by Sybil synteny alignments.  Apart from automated backbone discovery 

(by SMURF and antiSMASH) and syntenic cluster definition, all methods for cluster definition 

in this study followed those outlined for CBS 513.88 [27] for those clusters whose backbone 

enzymes were unique to this study. 

2.1.5 Assignment of secondary metabolites to annotated SM clusters and mitochondrial peptide 

localization sequences 

 

Metabolic products were assigned to specific PKS, NRPS and HPN clusters based on 

experimentally defined orthologous clusters or backbones.  Experimentally defined backbone 

enzymes with known clusters and metabolic products were used as a query sequence for 

BLASTP against the NRRL3 genome.  The experimentally defined backbone enzymes which 

had a match in the NRRL3 genome (%ID ≥ 40%, query coverage ≥ 80%) were set aside and 

their accompanying accessory enzymes were then queried against the NRRL3 genome.  

Backbone and accessory enzymes from literature were assigned an A. niger NRRL3 counterpart 

where % sequence identity was ≥ 80%, 50% and 40% (E-value ≥ 1x 10
-5

) for other A. niger 

strains, other species of Aspergillus, and non-Aspergillus filamentous fungi respectively (query 

coverage ≥ 80%).  Where BLASTP top hits from other genomes were co-localized in A. niger 

NRRL3, the group was accepted as an orthologous cluster.   Lastly, to determine subcellular 

localization sequences for mitochondrial proteins, we used the targetP 1.1 online application 
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(http://www.cbs.dtu.dk/services/TargetP/) to look for mitochondrial targeting and processing 

peptides in protein sequences [55]. 

2.2 Methods for alkyl citric acid cluster investigation 

2.2.1 Strains and culture conditions 

 

Aspergillus niger PY11 (cspA− pyrG− ΔGla::hiG), a derivative of NRRL3, was used for 

all fungal transformations and overexpression studies.  The culture conditions and transformation 

protocol used for this study have been described previously [130].   The DH5α strain of E. coli 

was used for propagation of cloned plasmids. For metabolite production, conidia (2x10
6
 

conidia/mL) from A. niger transformants were inoculated into liquid MM “J” medium [130] and 

incubated without shaking at 30°C for 5 days.  For transcriptome analysis, conidia at 2x10
6
/mL 

were inoculated in minimal medium [131] containing 2% fructose, 0.1% yeast extract and 0.1% 

casamino acids.  Cultures were incubated at 30°C and with shaking at 220 rpm. After 24 hours of 

growth, mycelia were collected by gravity filtration using Miracloth (EMD Millipore – 475855, 

Darmstadt, Germany) through a Buchner funnel. Following washing with water, approximately 

one teaspoon (~5 mL) of mycelia was transferred to 50 mL of minimal medium containing 2% 

maltose. Shaking cultures containing the mycelia were incubated at 30°C and at 220 rpm for 2 

hours, harvested by filtration as above.  The harvested mycelia were then frozen in liquid 

nitrogen for RNA extraction. 

2.2.2 Construction of overexpression vectors 

 

Two plasmid vectors were constructed to overexpress the regulator genes within our 

defined clusters.  The difference between them is the marker gene used for selection of A. niger 

transformants (Figure 10).  In the first vector, the plasmid ANIp7 [132] was amplified by PCR 

using primers containing a 21-nucleotide adapter sequence (Figure 10, Table 3).  The plasmid 

insert transcription factor was prepared by PCR from genomic DNA obtained using a GeneJET 

Genomic DNA Purification Kit (Thermo K0721, Thermo Scientific, Grand Island, NY USA).  

Adapter sequences from insert and vector amplification primers were designed to be 

complementary allowing for annealing for ligation-independent cloning [133].  This vector was 

used for the initial screening to identify SM regulators and for transcriptome analysis. In the 
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second expression vector, the pyrG selection marker was replaced by an amdS selection marker 

(Figure 10, Table 3) and was used for overexpression of the NRRL3_11765 transcription factor 

to construct a strain which would subsequently be used for gene deletions.  Gene deletions were 

then selected by using the pyrG marker prior to screening. 

 

 

 

Figure 10. Overexpression cassette containing the NRRL3_11765 transcript ion factor.  The 

cassettes contain the bacterial ampicillin selection marker (bla), a promoter/terminator (GlaPr, 

GlaTt) and the fungal selection markers pyrG for the initial screen and amdS for expression in 

deletion strains.  Numbered bent arrows indicated the primers (with the adapter sequences at the 

5’ end) used for construction of the plasmid and insert fragments; refer to numbers in Table 3 for 

primer sequences.    
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Table 3.  The list of primers used for plasmid and gene deletion cassette assembly.   Underlined 

sections represent adapter sequences. 

No. Primer Name Sequence 5' --> 3' 

1 NRRL3_11765 Fw  TACTTCCAATCCAATCCATTTGACGATATGGCTACTCCCCGCGCATC 

2 NRRL3_11765 Re TTATCCACTTCCAATCCATTTGTCACTGCATCAATCCCAACGCAG 

3 ANIp7 Fw AAATGGATTGGAAGTGGATAACTTAATTAAGTTTAAACG 

4 ANIp7 Re AAATGGATTGGATTGGAAGTACTGATCTAGCGTGTAATG 

5 5' NRRL3_11766 Fw AATTCCCAGCTCCAAGTGC 

6 5' NRRL3_11766 Re AAATGGATTGGAAGTGGATAACGGAGACTTCTGATGAATATGTGG 

7 3' NRRL3_11766 Fw AAATGGATTGGATTGGAAGTACGCCAATCTTGACCAGGATG 

8 3' NRRL3_11766 Re  ACATTTGGTCGGGATAACAACAAC 

9 pyrG sel. marker Fw TTATCCACTTCCAATCCATTTGCCCCTTTTAGTCAATACCG 

10 pyrG sel. marker Re TACTTCCAATCCAATCCATTTGCGCAACTTCCTCGAGAAC 

11 NRRL3_11766 ext Fw ATTCTCACCTATGCAGGCAC 

12 NRRL3_11766 ext Re  CCATGCTCGAGGGTAAAAGC 

13 5' NRRL3_03750 Fw AAATCCGCATGAAGAGGACC 

14 5' NRRL3_03750 Re AAATGGATTGGAAGTGGATAACTCCAGGACAAACAAGAGGCAC 

15 3' NRRL3_03750 Fw AAATGGATTGGATTGGAAGTACCGTGGAGTATTTGTTCGGAATG 

16 3' NRRL3_03750 Re AGTTAGACTGGTATTCATTAAGGAGAG 

17 NRRL3_03750 ext Fw ACTTACCATTGCTTTAGTGATCC 

18 NRRL3_03750 ext Re GACTTTCCTGACTTGCAACTC 

19 5' NRRL3_08383 Fw GGGATTCAAGGGGTAAATGGAAC 

20 5' NRRL3_08383 Re AAATGGATTGGAAGTGGATAACCCCTCATAGCACGACGAAATC 

21 3' NRRL3_08383 Fw AAATGGATTGGATTGGAAGTACGAGGAATGGAATCTACTTTTGGTG 

22 3' NRRL3_08383 Re TTGTTGATTTCCGGCGTAAGC 

23 NRRL3_08383 ext Fw CTGGTTGGATCGTTGTTTTG 

24 NRRL3_08383 ext Re TCTCATTCCTCATCCCCTC 

   

2.2.3 Gene deletion cassette construction and verification in A. niger NRRL3_11765 

overproducing strain 

 

Three linear cassettes were designed to delete a 2-methylcitrate dehydratase gene 

(NRRL3_11766), a monooxygenase gene (NRRL3_03750), and an o-methyltransferase gene 

(NRRL3_08383) thought to be involved in NRRL3_11765 upregulated pathway (Figure 11-13).  

The cassettes consisted of two homologous DNA sequences flanking each target gene and fused 

with an intervening pyrG selection marker by overlap PCR.  The overlap PCR used the same 

primer adapter sequence as described in section 2.2.2 (Table 3).  Genomic sequence information 
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used in this study was obtained from the A. niger genome resource at www.fungalgenomics.ca. 

Deletion mutants were screened by PCR using primers binding upstream of the 5’ flank and 

downstream of the 3’ flank (Figure 11-13).  
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Figure 11. (A) Deletion cassette for NRRL3_11766.  Crossed lines indicate regions of 

homologous recombination between the cassette sequence (top) and the target gene sequence 

(bottom).  Genome coordinates of 5’ and 3’ flanks are shown above each flank.  A gray shaded 

box in the target gene sequence indicates the area of overlap between the 3’ flank and 

NRRL3_11766.  Numbered arrows within cassettes indicate the primers used for PCR 

amplification of DNA fragments for their assembly (refer to numbers in Table 3 for primer 

sequences).   Numbered arrows outside of 5’ and 3’ flanks indicate primers used for PCR 

verification of homologous recombination in transformants.  Bent arrows indicate primers with 

adapter sequences. (B) Gene ruler 1kb plus.  (C) Result of PCR product screen for the 

NRRL3_11766 gene deletion (KO) and wildtype (wt) strains using primers 11 and 12. 
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Figure 12 (A) Deletion cassette for NRRL3_03750.  Crossed lines indicate regions of 

homologous recombination between the cassette sequence (top) and the target gene sequence 

(bottom).  Genome coordinates of 5’ and 3’ flanks are shown above each flank.  A gray shaded 

box in the target gene sequence indicates the area of overlap between the 3’ flank and 

NRRL3_03750.  Numbered arrows within cassettes indicate the primers used for PCR 

amplification of DNA fragments for their assembly (refer to numbers in Table 3 for primer 

sequences).   Numbered arrows outside of 5’ and 3’ flanks indicate primers used for PCR 

verification of homologous recombination in transformants.  Bent arrows indicate primers with 

adapter sequences. (B) Gene ruler 1kb plus.  (C) Result of PCR product screen for the 

NRRL3_03750 gene deletion (KO) and wildtype (wt) strains using primers 17 and 18. 
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Figure 13. Deletion cassette for NRRL3_08383.  Crossed lines indicate regions of homologous 

recombination between the cassette sequence (top) and the target gene sequence (bottom).  

Genome coordinates of 5’ and 3’ flanks are shown above each flank.  A gray shaded box in the 

target gene sequence indicates the area of overlap between the 3’ flank and NRRL3_08383.  

Numbered arrows within cassettes indicate the primers used for PCR amplification of DNA 

fragments for their assembly (refer to numbers in Table 3 for primer sequences).   Numbered 

arrows outside of 5’ and 3’ flanks indicate primers which were used for PCR verification of 

homologous recombination in transformants.  Bent arrows indicate primers with adapter 

sequences. 

 

2.2.4 Transcriptome sequencing and analysis 

 

Total RNA was extracted from frozen (by liquid nitrogen) mycelia using TRIzol reagent 

(Thermo Scientific, Grand Island, NY USA) as described [134].   A cDNA library was 

constructed using an Illumina TruSeq Stranded   mRNA Sample Preparation Kit and sequenced 

to generate 100-bp reads on an Ilumina HiSeq 2000 system at the McGill University Génome 

Québec Innovation Centre.  Differential gene expression analysis was carried out using the 

DEseq Bioconductor software package [135].  Genes were considered significantly up or down 

regulated due to NRRL3_11765 overexpression when p-value < 2x10
-4

. Genes expressed at very 
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low levels, below 10 fragments per kilobase of transcript per million (FPKM), in both the control 

and overexpression strains were removed from analysis.   

2.2.5 Preparation of metabolites for mass spectrometric analysis 

 

To prepare extracellular metabolites in growth media for mass spectrometry, mycelia 

were removed following cultivation by centrifugation at 16,000 x g for 45 minutes.  The 

supernates were transferred to fresh tubes and mixed with an equal volume of 99% purity grade 

cold methanol (CH3OH) (-20°C). After resting on ice for 10 minutes, the samples were 

centrifuged at 16,000 x g for 45 minutes to remove precipitated proteins.  The resulting 

supernates were transferred to fresh tubes and mixed with an equal volume of 0.1% formic acid.   

For the preparation of intracellular metabolites, fungal mycelia were ground with liquid 

nitrogen by mortar and pestle.  The ground powder was dissolved in water and sonicated while 

on ice for 5 minutes, with alternate cycles consisting of 5 seconds off and 15 seconds on.  After 

sonication, 1 mL of the samples were centrifuged at 16,000 x g for 45 minutes and the supernates 

were prepared for mass spectrometry analysis as described for extracellular metabolites and 

transferred to amber vials with inserts for HPLC and mass spectrometry (Wheaton Co, Product 

09-2200-101, Millville, NJ USA). 

2.2.6 Analysis of metabolites by mass spectrometry 

 

Electrospray LC-MS analyses were performed on a 7-Tesla Finnigan LTQ-FT-ICR mass 

spectrometer (Thermo Electron Corporation, San Jose, CA).  Ionization voltage used was 4900 V 

in positive mode and 3700 V in negative mode.  Scan range was from 100 to 1400 m/z at a 

50000-resolution setting.  The solvent delivery system used was a Series 200 auto sampler and 

micropump (Perkin Elmer, Waltham, MA).  Injection volume was 10 µL and flow rate was 250 

µL/minute.  Reversed-phase liquid chromatography (RPLC) separation was performed using an 

Eclipse C18 3.5 µm, 2.1 x 150 mm column (Agilent, Santa Clara, CA).  The solvents used to 

generate the gradient during reversed-phase liquid chromatography (RPLC) separation were 0.1 

% formic acid in water for Solvent A and 0.1% formic acid in acetonitrile for Solvent B.  The 

gradient was used to elute the metabolites: 5% B isocratic for 1 minute, increased to 95% B in 10 
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minutes, isocratic at 95% for 1 minute, decreased to 5% B in 0.1 minute, and isocratic at 5% for 

5.9 minutes.              

Total ion chromatograms, with a range of 190m/z – 300m/z, were generated using the 

XcaliburTM software version 2.2 (Thermo Scientific 2011).  Aligned peak identification and 

extracted ion chromatograms (EICs) construction were carried out using Maven (2011 version 

6.12) scanning at a minimum peak intensity threshold of 5x10
4
 and a mass tolerance of 5 ppm 

[136].  Peak identification was carried out primarily on positive mode mass spectra for 

consistency using a manually assembled database (“secondary metabolite database”) of 

secondary metabolites from literature searches. Negative mode EICs were used instead where an 

identified compound could not be detected above threshold in positive mode. 

2.2.7 Analysis by nuclear magnetic resonance (NMR) 

 

Secondary metabolites from A. niger overexpressing transcription factor NRRL3_11765 

(chaR
OE

) were extracted from 700 ml of culture with 1L of ethyl acetate (EtOAc) to remove 

sugars and other solutes from growth media. The extract was dried in vacuo to yield an oily 

material (6g) which was dissolved in 1 mL of chloroform (CHCl3), and then applied to a silica 

gel column (57 × 508 mm, 250g, Zeoprep 60, 40 - 60 mm). Elution factions included 100:0, 

100:1, 75:1, 50:1, 25:1, 1:1, and 0:100 (v/v) of CHCl3- CH3OH solvents, 250ml each. The 2-

carboxymethyl-3-hexylmaleic acid (5.3 g) compound was eluted in the two first fractions (100:0, 

100:1), while hexylitaconic acid (150 mg) and the hydroxylated form of hexylitaconic acid (200 

mg) were collected from fractions 75:1 and 25:1, respectively. Hexylcitraconic acid (100 mg) 

and the carbonylated form of hexylitaconic acid (6 mg) were eluted at fraction 50:1 in different 

collection tubes. All these SMs were dissolved in CDCl3 (Sigma-Aldrich) for structural 

investigation by NMR, except the hydroxylated hexylitaconic acid (a polar molecule), which was 

dissolved in CD3OD (Sigma-Aldrich) for later NMR investigation.  

Twenty millilitres of culture filtrate from the chaR
OE 

strain containing a 2-methylcitrate 

dehydratase deletion (NRRL3_11766) were extracted twice with 40 mL of EtOAc. The extract 

was dried in vacuo to a brown powder. Twenty four milligrams of the powder were dissolved in 

3 mL of 1:1 mixture of acetonitrile containing 0.1% trifluoroacetic acid (TFA) and 0.1% TFA in 

high-pressure liquid chromatography (HPLC)-grade water which were later used as HPLC 
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solvent mobile phase A and B, respectively. The resulting preparation was injected (95 

µL/injection) into an Eclipse-C18 column (4.6 × 150 mm) and the flow rate was set at 1 

mL/minute.  The HPLC gradient included a linear increase from 10% to 95% of mobile phase B 

in 10 minutes, and a constant condition of 95% B in 2 minutes. Mobile phase B was returned to 

10% in 1 minute and then held for 6 minutes to allow the column re-equilibration process. The 

detector was set at a wavelength of 210 nm. Under this condition, hexylcitric acid and its 

anhydride were co-eluted at 6.9 minute. The collected fraction, from 6.6 minute to 7.1 minute, 

was extracted with EtOAc and concentrated to yield 20 mg of yellow syrup. For NMR analysis 

the syrup was dissolved in dimethyl sulphoxide-d6.  All NMR spectra were recorded with a 

Varian VNMRS-500 MHz (Department of Chemistry and Biochemistry, Concordia University, 

Montreal, Quebec, Canada) at 25°C. 
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Results   

3.1 Secondary metabolite genes and gene clusters in A. niger NRRL3 genome.   

3.1.1 Secondary metabolite backbone genes and clusters defined for A. niger NRRL3.   

 

Bioinformatics analysis of the A. niger NRRL3 genome revealed a total of 96 secondary 

metabolite backbone genes assembled into 84 gene clusters (Table 4).   
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Table 4. Secondary metabolite clusters of A. niger NRRL3 and A. niger CBS 513.88.  

Secondary metabolite gene cluster NRRL 3 CBS 513.88 Description 
Domain(s) of backbone 

enzymes 

Azanigerone cluster NRRL3_00140 An09g01790 esterase/lipase AzaC 
 

Azanigerone cluster NRRL3_00141 An09g01800 acyltransferase AzaD 
 

Azanigerone cluster NRRL3_00142 An09g01810 ketoreductase AzaE 
 

Azanigerone cluster NRRL3_00143 An09g01820 AMP-dependent CoA ligase AzaF 
 

Azanigerone cluster NRRL3_00144 An09g01830 FAD-dependent oxygenase AzaG 
 

Azanigerone cluster NRRL3_00145
a
 An09g01840 salicylate monooxygenase AzaH 

 
Azanigerone cluster NRRL3_00146 An09g01850 cytochrome P450 AzaI 

 
Azanigerone cluster NRRL3_00147 An09g01860 polyketide synthase AzaA SAT-KS-AT-ACP-MT-KR 

Azanigerone cluster NRRL3_00148
a
 An09g01870 fungal-specific transcription factor AzaR 

 
Azanigerone cluster NRRL3_00149 An09g01880 zinc-type alcohol dehydrogenase AzaJ 

 
Azanigerone cluster NRRL3_00150 An09g01900 haem-degrading HbpS-like protein 

 
Azanigerone cluster NRRL3_00151 An09g01910 MFS-type efflux transporter AzaK 

 
Azanigerone cluster NRRL3_00152 An09g01920 FAD-dependent oxygenase AzaL 

 

Azanigerone cluster NRRL3_00153
a
 An09g01930 polyketide synthase AzaB 

KS-AT-DH-MT-KR-ER-KR-

ACP 

Carlosic acid and agglomerin cluster NRRL3_11025 An08g03730 oxoglutarate/iron-dependent dioxygenase CaaD 
 

Carlosic acid and agglomerin cluster NRRL3_11026 An08g03740 trans enoylreductase CaaB 
 

Carlosic acid and agglomerin cluster NRRL3_11027 An08g03750 major facilitator superfamily protein 
 

Carlosic acid and agglomerin cluster NRRL3_11028 An08g03760 SnoaL-like domain-containing protein 
 

Carlosic acid and agglomerin cluster NRRL3_11029
a
 An08g03770 fungal-specific transcription factor CaaR 

 
Carlosic acid and agglomerin cluster NRRL3_11030 An08g03780 cytochrome P450 CaaC 

 

Carlosic acid and agglomerin cluster NRRL3_11031 An08g03790 
hybrid polyketide synthase/non-ribosomal peptide synthetase 

CaaA 

KS-AT-DH-MT-KR-ACP--C-

Rpt-A-(T)-(Te) 

Conidial pigmentation gene NRRL3_00462
a
 An09g05730 polyketide synthase AlbA/FwnA SAT-KS-AT-PT-ACP-ACP-Te 

Conidial pigmentation gene NRRL3_01039
a
 An14g05350 hydrolase AygA/OlvA 

 
Conidial pigmentation gene NRRL3_01040

a
 An14g05370 multicopper oxidase BrnA 

 
Conidial pigmentation gene NRRL3_02783

a
 An01g14010 multicopper oxidase Mco1A 
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Fumonisin cluster NRRL3_02178 An01g06820 bifunctional P-450:NADPH-P450 reductase Fum6 
 

Fumonisin cluster NRRL3_02179 An01g06830 short-chain dehydrogenase/reductase family protein 
 

Fumonisin cluster NRRL3_02180 An01g06840 AMP-dependent synthetase/ligase Fum10 
 

Fumonisin cluster NRRL3_02181 An01g06850 iron-containing alcohol dehydrogenase Fum7 
 

Fumonisin cluster NRRL3_02182 An01g06860 phytanoyl-CoA dioxygenase Fum9 
 

Fumonisin cluster NRRL3_02183 An01g06870 aminotransferase, class I/class II Fum8 
 

Fumonisin cluster NRRL3_02184 An01g06880 NAD-dependent epimerase/dehydratase family protein Fum13 
 

Fumonisin cluster NRRL3_02185 An01g06890 non-ribosomal peptide synthetase-like protein Fum14 T-C 

Fumonisin cluster NRRL3_02186 An01g06900 fungal-specific transcription factor Fum21 
 

Fumonisin cluster NRRL3_02187 An01g06910 cytochrome P450 Fum15 
 

Fumonisin cluster NRRL3_02188 An01g06920 ABC transporter Fum19 
 

Fumonisin cluster NRRL3_02189 An01g06930 polyketide synthase Fum1 KS-AT-DH-MT-ER-KR-ACP 

Fumonisin cluster NRRL3_02190 An01g06940 major facilitator superfamily protein 
 

Kotanin cluster NRRL3_07482 An04g09570 major facilitator superfamily protein 
 

Kotanin cluster NRRL3_07483 An04g09560 cell wall mannoprotein 1-like protein 
 

Kotanin cluster NRRL3_07484 An04g09550 flavin monooxygenase-like protein 
 

Kotanin cluster NRRL3_07485
a
 An04g09540 cytochrome P450 KtnC 

 
Kotanin cluster NRRL3_07486

a
 An04g09530 polyketide synthase KtnS SAT-KS-AT-PT-ACP 

Kotanin cluster NRRL3_07487
a
 An04g09520 O-methyltransferase KtnB 

 
NRRL3_00030 cluster NRRL3_00025 An09g00390 FAD-dependent oxidoreductase domain-containing protein 

 
NRRL3_00030 cluster NRRL3_00026 An09g00400 amino acid/polyamine transporter I family protein 

 
NRRL3_00030 cluster NRRL3_00027 An09g00420 HAD-like domain-containing protein 

 
NRRL3_00030 cluster NRRL3_00028 An09g00430 fungal-specific transcription factor 

 
NRRL3_00030 cluster NRRL3_00029 An09g00440 hypothetical protein 

 
NRRL3_00030 cluster NRRL3_00030 An09g00450 non-ribosomal peptide synthetase-like protein A-T-NADB 

NRRL3_00036 cluster NRRL3_00036 An09g00520 non-ribosomal peptide synthetase T-C-A-T-C-Rpt 

NRRL3_00036 cluster NRRL3_00037 An09g00530 FAD-binding domain-containing protein 
 

NRRL3_00036 cluster NRRL3_00038 An09g00540 hypothetical protein 
 

NRRL3_00036 cluster NRRL3_00039 An09g00550 major facilitator superfamily protein 
 

NRRL3_00036 cluster NRRL3_00040 An09g00560 cytochrome P450 family protein 
 

NRRL3_00036 cluster NRRL3_00041 An09g00570 NAD(P)-binding domain-containing protein 
 

NRRL3_00036 cluster NRRL3_00042 An09g00580 fungal-specific transcription factor 
 

NRRL3_00036 cluster NRRL3_00043 An09g00590 FAD-binding domain-containing protein 
 



41 
 

NRRL3_00036 cluster NRRL3_00044 An09g00600 NmrA-like family protein 
 

NRRL3_00036 cluster NRRL3_00046 NFG hypothetical protein 
 

NRRL3_00036 cluster NRRL3_00048 An09g00620 short-chain dehydrogenase/reductase family protein 
 

NRRL3_00102 cluster NRRL3_00099 An09g01260 fatty acyl-CoA reductase-like protein 
 

NRRL3_00102 cluster NRRL3_00100 An09g01270 cytochrome P450 
 

NRRL3_00102 cluster NRRL3_00101 An09g01280 cell wall mannoprotein 1-like protein 
 

NRRL3_00102 cluster NRRL3_00102 An09g01290 polyketide synthase KS-AT-DH-MT-ER-KR-ACP 

NRRL3_00102 cluster NRRL3_00103 An09g01300 
organic solute transporter subunit alpha/transmembrane protein 

184 family protein  

NRRL3_00102 cluster NRRL3_00104 An09g01310 fungal-specific transcription factor 
 

NRRL3_00102 cluster NRRL3_00105 An09g01320 FAD-binding domain-containing protein 
 

NRRL3_00102 cluster NRRL3_00106 An09g01330 squalene cyclase family protein 
 

NRRL3_00102 cluster NRRL3_00107 An09g01340 cytochrome P450 family protein 
 

NRRL3_00135/NRRL3_00138/NRRL3_00159 cluster NRRL3_00134 An09g01680 RTA-like protein 
 

NRRL3_00135/NRRL3_00138/NRRL3_00159 cluster NRRL3_00135 An09g01690 non-ribosomal peptide synthetase A-T-C-C-A-T-C 

NRRL3_00135/NRRL3_00138/NRRL3_00159 cluster NRRL3_00136 An09g01700 
ABC transporter type 1, transmembrane domain-containing 

protein  

NRRL3_00135/NRRL3_00138/NRRL3_00159 cluster NRRL3_00137 An09g01710 alpha/beta hydrolase fold-1 domain-containing protein 
 

NRRL3_00135/NRRL3_00138/NRRL3_00159 cluster NRRL3_00138 An09g01740 fatty acid synthase beta subunit AT-ER-DH-MPT 

NRRL3_00135/NRRL3_00138/NRRL3_00159 cluster NRRL3_00154 An09g01940 RTA-like protein 
 

NRRL3_00135/NRRL3_00138/NRRL3_00159 cluster NRRL3_00139 An09g01760 HotDog domain-containing protein 
 

NRRL3_00135/NRRL3_00138/NRRL3_00159 cluster NRRL3_00155 An09g01950 cytochrome P450 
 

NRRL3_00135/NRRL3_00138/NRRL3_00159 cluster NRRL3_00156 An09g01970 oxidoreductase domain-containing protein 
 

NRRL3_00135/NRRL3_00138/NRRL3_00159 cluster NRRL3_00157 An09g01990 branched-chain amino acid aminotransferase-like protein 
 

NRRL3_00135/NRRL3_00138/NRRL3_00159 cluster NRRL3_00158 An09g02000 cytochrome P450 family protein 
 

NRRL3_00135/NRRL3_00138/NRRL3_00159 cluster NRRL3_00159 An09g02010 fatty acid synthase alpha subunit MPT-ACP-KR-KS 

NRRL3_00166 cluster NRRL3_00166 An09g02100 polyketide synthase-like protein 
[KR-KS-AT-DH-ACP]-ACP-

MT-Te  

NRRL3_00166 cluster NRRL3_00167 An09g02120 isochorismatase family protein 
 

NRRL3_00166 cluster NRRL3_00168 An09g02150 FAD-binding domain-containing protein 
 

NRRL3_00204 cluster NRRL3_00202 An09g02580 major facilitator superfamily protein 
 

NRRL3_00204 cluster NRRL3_00203 An09g02590 cytochrome P450 
 

NRRL3_00204 cluster NRRL3_00204 An09g02610 sesquiterpene cyclase  Isoprenoid_Biosyn_C1 
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NRRL3_00204 cluster NRRL3_00205 An09g02620 fungal-specific transcription factor 
 

NRRL3_00410 cluster NRRL3_00405 An09g05050 gurmarin/antimicrobial peptide-like protein 
 

NRRL3_00410 cluster NRRL3_00406 An09g05060 fungal-specific transcription factor 
 

NRRL3_00410 cluster NRRL3_00407 An09g05070 major facilitator superfamily protein 
 

NRRL3_00410 cluster NRRL3_00408 An09g05080 aminotransferase class I and II family protein 
 

NRRL3_00410 cluster NRRL3_00409 An09g05100 impact family protein 
 

NRRL3_00410 cluster NRRL3_00410 An09g05110 non-ribosomal peptide synthetase-like protein A-T-Te 

NRRL3_00410 cluster NRRL3_00411 An09g05120 carboxylesterase family protein 
 

NRRL3_00410 cluster NRRL3_00412 An09g05130 catechol oxidase 
 

NRRL3_00410 cluster NRRL3_00413 An09g05140 NmrA-like family protein 
 

NRRL3_00410 cluster NRRL3_00414 An09g05150 
intradiol ring-cleavage dioxygenase core domain-containing 

protein  

NRRL3_00430 cluster NRRL3_00430 An09g05340 polyketide synthase KS-AT-DH-ER-KR-ACP 

NRRL3_00430 cluster NRRL3_00431 An09g05350 tannase/feruloyl esterase family protein 
 

NRRL3_00755 cluster NRRL3_00755 An14g01910 hybrid polyketide synthase/non-ribosomal peptide synthetase 
KS-AT-DH-MT-KR-ACP--C-

Rpt-A-(T) 

NRRL3_00755 cluster NRRL3_00756 An14g01940 zinc-type alcohol dehydrogenase superfamily protein 
 

NRRL3_00755 cluster NRRL3_00757 An14g01950 alcohol acetyltransferase/N-acetyltransferase family protein 
 

NRRL3_00755 cluster NRRL3_00758 An14g01960 anoctamin-like protein 
 

NRRL3_00998 cluster NRRL3_00997 An14g04840 methyltransferase VrtF-like protein 
 

NRRL3_00998 cluster NRRL3_00998 An14g04850 hybrid polyketide synthase/non-ribosomal peptide synthetase A-T--KS-AT-KR-ACP 

NRRL3_01334 cluster NRRL3_01332 An13g03060 CDR ABC transporter domain-containing protein 
 

NRRL3_01334 cluster NRRL3_01333.1 An13g03050 hypothetical protein 
 

NRRL3_01334 cluster NRRL3_01334 An13g03040 non-ribosomal peptide synthetase C-Rpt-A-T-C 

NRRL3_01334 cluster NRRL3_01335 An13g03030 fungal-specific transcription factor 
 

NRRL3_01339 cluster NRRL3_01336 An13g03000 cytochrome P450 
 

NRRL3_01339 cluster NRRL3_01337 An13g02990 hypothetical protein 
 

NRRL3_01339 cluster NRRL3_01338 An13g02980 calycin domain-containing protein 
 

NRRL3_01339 cluster NRRL3_01339 An13g02960 hybrid polyketide synthase/non-ribosomal peptide synthetase 
KS-AT-(DH-MT-KR-ACP--C-

Rpt-A-T-Te) 

NRRL3_01339 cluster NRRL3_01340 An13g02940 enoyl reductase  
 

NRRL3_01367/NRRL3_01369 cluster NRRL3_01366 An13g02480 flavin amine oxidase family protein 
 

NRRL3_01367/NRRL3_01369 cluster NRRL3_01367 An13g02460 non-ribosomal peptide synthetase-like protein A-T-Te 
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NRRL3_01367/NRRL3_01369 cluster NRRL3_01368 An13g02450 six-hairpin glycosidase-like protein 
 

NRRL3_01367/NRRL3_01369 cluster NRRL3_01369 An13g02430 polyketide synthase KS-AT-DH-ER-KR-ACP 

NRRL3_01367/NRRL3_01369 cluster NRRL3_01370 An13g02420 serine hydrolase FSH family protein 
 

NRRL3_01367/NRRL3_01369 cluster NRRL3_01371 An13g02410 magnesium transporter CorA/zinc transporter ZntB family protein 
 

NRRL3_01367/NRRL3_01369 cluster NRRL3_01372 An13g02400 fungal-specific transcription factor 
 

NRRL3_01367/NRRL3_01369 cluster NRRL3_01373 An13g02390 purine permease 
 

NRRL3_01367/NRRL3_01369 cluster NRRL3_01374 NFG polyamine transporter 
 

NRRL3_01418 cluster NRRL3_01414 An13g01890 
S-adenosyl-L-methionine dependent methyltransferase domain-

containing protein  

NRRL3_01418 cluster NRRL3_01415 
An13g01880 / 

An08g11860 
esterase EstA 

 

NRRL3_01418 cluster NRRL3_01416 An13g01870 hypothetical protein 
 

NRRL3_01418 cluster NRRL3_01417 An13g01860 amino acid/polyamine transporter I family protein 
 

NRRL3_01418 cluster NRRL3_01418 An13g01840 4-dimethylallyltryptophan synthase PT-DMATS_CynD 

NRRL3_01804 cluster NRRL3_01804 An01g02030  polyketide synthase (KS-AT-DH)-MT-ER-KR-ACP 

NRRL3_01804 cluster NRRL3_01805 NFG fatty acyl-CoA reductase-like protein 
 

NRRL3_01804 cluster NRRL3_01806 partially NFG hypothetical protein 
 

NRRL3_01804 cluster NRRL3_01807 An01g02040 chloramphenicol acetyltransferase-like protein 
 

NRRL3_01804 cluster NRRL3_01808 An01g02050 fungal-specific transcription factor 
 

NRRL3_01804 cluster NRRL3_01809 An01g02060 major facilitator superfamily protein 
 

NRRL3_02191 cluster NRRL3_02191 An01g06950 polyketide synthase KS-AT-DH-KR-ER-KR-ACP 

NRRL3_02191 cluster NRRL3_02192 An01g06960 HAD hydrolase subfamily IA protein 
 

NRRL3_02593/NRRL3_02596 cluster NRRL3_02592 An01g11760 major facilitator superfamily protein 
 

NRRL3_02593/NRRL3_02596 cluster NRRL3_02593 An01g11770 non-ribosomal peptide synthetase-like protein A-T 

NRRL3_02593/NRRL3_02596 cluster NRRL3_02594 NFG tyrosinase copper-binding domain-containing protein 
 

NRRL3_02593/NRRL3_02596 cluster NRRL3_02595 An01g11780 NUDIX hydrolase domain-containing protein 
 

NRRL3_02593/NRRL3_02596 cluster NRRL3_02596 An01g11790 non-ribosomal peptide synthetase-like protein A-T-Te 

NRRL3_02593/NRRL3_02596 cluster NRRL3_02597 An01g11800 FAD-binding domain-containing protein 
 

NRRL3_02620/NRRL3_02621 cluster NRRL3_02619 An01g12020 glycosyltransferase family 2 protein 
 

NRRL3_02620/NRRL3_02621 cluster NRRL3_02620 An01g12030 acyl carrier protein ACP 

NRRL3_02620/NRRL3_02621 cluster NRRL3_02621 An01g12040 polyketide synthase-like protein KR-ACP 

NRRL3_02852 cluster NRRL3_02844 An01g14760 FAD-binding domain-containing protein 
 

NRRL3_02852 cluster NRRL3_02845 An01g14770 fungal-specific transcription factor 
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NRRL3_02852 cluster NRRL3_02846 An01g14780 zinc-type alcohol dehydrogenase superfamily protein 
 

NRRL3_02852 cluster NRRL3_02847 An01g14790 maltose/galactoside acetyltransferase domain-containing protein 
 

NRRL3_02852 cluster NRRL3_02848 An01g14800 tannase/feruloyl esterase family protein 
 

NRRL3_02852 cluster NRRL3_02849 An01g14810 hypothetical protein 
 

NRRL3_02852 cluster NRRL3_02850 An01g14820 hypothetical protein 
 

NRRL3_02852 cluster NRRL3_02851 An01g14840 alpha/beta hydrolase fold-1 domain-containing protein 
 

NRRL3_02852 cluster NRRL3_02852 An01g14850 non-ribosomal peptide synthetase-like protein A-T-(NADB-AAA) 

NRRL3_02852 cluster NRRL3_02853 An01g14870 hypothetical protein 
 

NRRL3_02852 cluster NRRL3_02854 An01g14880 alcohol dehydrogenase [NADP(+)] 
 

NRRL3_02852 cluster NRRL3_02855 An01g14890 kynurenine formamidase-like protein 
 

NRRL3_02852 cluster NRRL3_02856 An01g14900 major facilitator superfamily protein 
 

NRRL3_02852 cluster NRRL3_02857 An01g14910 fungal-specific transcription factor 
 

NRRL3_02852 cluster NRRL3_02858 An01g14920 peptidase M24 domain-containing protein 
 

NRRL3_02852 cluster NRRL3_02859 An01g14930 major facilitator sugar transporter-like family protein 
 

NRRL3_02887 cluster NRRL3_02887 An12g10860 non-ribosomal peptide synthetase-like protein A-T-Te 

NRRL3_02887 cluster NRRL3_02888 An12g10850 HpcH/HpaI aldolase/citrate lyase domain-containing protein 
 

NRRL3_02887 cluster NRRL3_02889 An12g10840 hypothetical protein 
 

NRRL3_02887 cluster NRRL3_02890 An12g10830 RmlC-like cupin domain-containing protein 
 

NRRL3_02887 cluster NRRL3_02891 An12g10810 hypothetical protein 
 

NRRL3_02887 cluster NRRL3_02892 An12g10790 chloroperoxidase domain-containing protein 
 

NRRL3_02961.1 cluster NRRL3_02955 An12g10150 YjgF/YER057c/UK114 family protein 
 

NRRL3_02961.1 cluster NRRL3_02956 An12g10140 hydroxyacid oxidase 
 

NRRL3_02961.1 cluster NRRL3_02957 An12g10130 amino acid/polyamine transporter I family protein 
 

NRRL3_02961.1 cluster NRRL3_02958 An12g10120 class II aldolase/adducin family protein 
 

NRRL3_02961.1 cluster NRRL3_02959 An12g10110 fungal-specific transcription factor 
 

NRRL3_02961.1 cluster NRRL3_02960 An12g10100 ketopantoate reductase ApbA/PANE-like protein 
 

NRRL3_02961.1 cluster NRRL3_02961.1 An12g10090 non-ribosomal peptide synthetase-like protein A-T-Te 

NRRL3_02961.1 cluster NRRL3_02962 An12g10080 uncharacterized protein 
 

NRRL3_02961.1 cluster NRRL3_02963 An12g10060 short-chain dehydrogenase/reductase family protein 
 

NRRL3_02961.1 cluster NRRL3_02964 An12g10050 amidohydrolase-related domain-containing protein 
 

NRRL3_03167 cluster NRRL3_03164 An12g07260 alpha/beta hydrolase fold-1 domain-containing protein 
 

NRRL3_03167 cluster NRRL3_03165 An12g07250 amidohydrolase-related domain-containing protein 
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NRRL3_03167 cluster NRRL3_03166 An12g07240 
P-loop containing nucleoside triphosphate hydrolase domain-

containing protein  

NRRL3_03167 cluster NRRL3_03167 An12g07230 non-ribosomal peptide synthetase 
A-T-C-Rpt-A-MT-A-T-C-A-T-

Te 

NRRL3_03167 cluster NRRL3_03168 not called hypothetical protein 
 

NRRL3_03167 cluster NRRL3_03169 An12g07220 NAD(P)-binding domain-containing protein 
 

NRRL3_03167 cluster NRRL3_03170 An12g07200 hypothetical protein 
 

NRRL3_03167 cluster NRRL3_03171 An12g07290 fungal-specific transcription factor 
 

NRRL3_03167 cluster NRRL3_03172 An12g07280 alpha/beta hydrolase fold-1 domain-containing protein 
 

NRRL3_03184 cluster NRRL3_03180 An12g07110 salicylate synthase-like protein 
 

NRRL3_03184 cluster NRRL3_03181 not called alkyl-hydroperoxide reductase D-like protein 
 

NRRL3_03184 cluster NRRL3_03182 An12g07100 hypothetical protein 
 

NRRL3_03184 cluster NRRL3_03183 An12g07090 FAD-binding domain-containing protein 
 

NRRL3_03184 cluster NRRL3_03184 An12g07070 polyketide synthase KS-AT-DH-ER-KR-ACP 

NRRL3_03184 cluster NRRL3_03185 An12g07060 serine hydrolase FSH family protein 
 

NRRL3_03756 cluster NRRL3_03750 An15g02070 FAD-binding domain-containing protein 
 

NRRL3_03756 cluster NRRL3_03751 An15g02080 fungal-specific transcription factor 
 

NRRL3_03756 cluster NRRL3_03752 not called carbohydrate-binding module family 16 protein 
 

NRRL3_03756 cluster NRRL3_03753 An15g02090 hypothetical protein 
 

NRRL3_03756 cluster NRRL3_03754 An15g02110 tannase/feruloyl esterase family protein 
 

NRRL3_03756 cluster NRRL3_03755 An15g02120 two-component system protein 
 

NRRL3_03756 cluster NRRL3_03756 An15g02130 polyketide synthase KS-AT-DH-MT-ER-KR-ACP 

NRRL3_03756 cluster NRRL3_03757 An15g02140 serine hydrolase FSH family protein 
 

NRRL3_03756 cluster NRRL3_03758 An15g02150 hypothetical protein 
 

NRRL3_03756 cluster NRRL3_03759 An15g02160 carboxymuconolactone decarboxylase-like protein 
 

NRRL3_03756 cluster NRRL3_03760 An15g02180 FAD-binding domain-containing protein 
 

NRRL3_03756 cluster NRRL3_03761 An15g02190 major facilitator superfamily protein 
 

NRRL3_03756 cluster NRRL3_03762 An15g02200 GMC oxidoreductase 
 

NRRL3_03756 cluster NRRL3_03762 An15g02200 GMC oxidoreductase 
 

NRRL3_03891 cluster NRRL3_03891 An15g04140 polyketide synthase KS-AT-DH-MT-ER-KR-ACP 

NRRL3_03891 cluster NRRL3_03892 An15g04150 short-chain dehydrogenase/reductase family protein 
 

NRRL3_03891 cluster NRRL3_03893 
An15g04160 

An15g04170 
six-bladed beta-propeller, TolB-like protein 
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NRRL3_03891 cluster NRRL3_03894 An15g04180 cytochrome P450 family protein 
 

NRRL3_03891 cluster NRRL3_03895 An15g04190 hypothetical protein 
 

NRRL3_03891 cluster NRRL3_03896 An15g04200 hypothetical protein 
 

NRRL3_03891 cluster NRRL3_03897 An15g04210 aldo/keto reductase/potassium channel subunit beta family protein 
 

NRRL3_03891 cluster NRRL3_03898 An15g04220 fungal-specific transcription factor 
 

NRRL3_03977 cluster NRRL3_03972 An15g05040 beta-lactamase-related protein 
 

NRRL3_03977 cluster NRRL3_03973 An15g05050 nucleoside phosphorylase family protein 
 

NRRL3_03977 cluster NRRL3_03974 An15g05060 major facilitator superfamily protein 
 

NRRL3_03977 cluster NRRL3_03975 An15g05070 cytochrome P450 family protein 
 

NRRL3_03977 cluster NRRL3_03976 An15g05080 fungal-specific transcription factor 
 

NRRL3_03977 cluster NRRL3_03977 An15g05090 polyketide synthase KS-AT-DH-MT-ER-KR-ACP 

NRRL3_03977 cluster NRRL3_03978 An15g05100 fungal-specific transcription factor 
 

NRRL3_03977 cluster NRRL3_03979 An15g05110 cytochrome P450 
 

NRRL3_04180 cluster NRRL3_04173 An15g07460 oligopeptide transporter OPT superfamily protein 
 

NRRL3_04180 cluster NRRL3_04174 An15g07470 hypothetical protein 
 

NRRL3_04180 cluster NRRL3_04175 An15g07480 hypothetical protein 
 

NRRL3_04180 cluster NRRL3_04176 An15g07490 TauD/TfdA-like domain-containing protein 
 

NRRL3_04180 cluster NRRL3_04177 An15g07500 ribokinase/fructokinase family protein 
 

NRRL3_04180 cluster NRRL3_04178 An15g07510 proton-dependent oligopeptide transporter family protein 
 

NRRL3_04180 cluster NRRL3_04179 An15g07520 uncharacterized protein 
 

NRRL3_04180 cluster NRRL3_04180 An15g07530 non-ribosomal peptide synthetase 
A-T-C-A-T-C-A-T-C-A-T-C-

A-T-C 

NRRL3_04226 cluster NRRL3_04223 assembly issue 
alpha-hydroxy acid dehydrogenase family protein, FMN-

dependent  

NRRL3_04226 cluster NRRL3_04224 assembly issue hypothetical protein 
 

NRRL3_04226 cluster NRRL3_04225 assembly issue flavin monooxygenase-like protein 
 

NRRL3_04226 cluster NRRL3_04226 assembly issue hybrid polyketide synthase/non-ribosomal peptide synthetase 
KS-AT-DH-KR-ACP--C-A-T-

Te 

NRRL3_04226 cluster NRRL3_04227 An07g00010 EthD domain-containing protein 
 

NRRL3_04226 cluster NRRL3_04228 An07g00020 alpha/beta hydrolase fold-5 domain-containing protein 
 

NRRL3_04226 cluster NRRL3_04229 An07g00030 aldo/keto reductase/potassium channel subunit beta family protein 
 

NRRL3_04226 cluster NRRL3_04230 An07g00040 AMP-dependent synthetase/ligase domain-containing protein 
 

NRRL3_04226 cluster NRRL3_04231 An07g00050 fungal-specific transcription factor 
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NRRL3_04226 cluster NRRL3_04232 An07g00060 major facilitator superfamily protein 
 

NRRL3_04226 cluster NRRL3_04233 An07g00070 EthD domain-containing protein 
 

NRRL3_04226 cluster NRRL3_04234 An07g00080 cytochrome P450 
 

NRRL3_04226 cluster NRRL3_04235 An07g00090 amidohydrolase-related domain-containing protein 
 

NRRL3_04226 cluster NRRL3_04236 An07g00100 amidase family protein 
 

NRRL3_04226 cluster NRRL3_04237 An07g00110 beta-lactamase-related protein 
 

NRRL3_04226 cluster NRRL3_04238 An07g00130 GNAT domain-containing protein 
 

NRRL3_04226 cluster NRRL3_04239 An07g00150 major facilitator superfamily protein 
 

NRRL3_04226 cluster NRRL3_04240 An07g00170 hypothetical protein 
 

NRRL3_04226 cluster NRRL3_04241 An07g00190 
S-adenosyl-L-methionine dependent methyltransferase domain-

containing protein  

NRRL3_04226 cluster NRRL3_04242 An07g00200 alpha/beta hydrolase fold-1 domain-containing protein 
 

NRRL3_04305 cluster NRRL3_04305 An07g01030 polyketide synthase KS-AT-DH-(ACP) 

NRRL3_04420 cluster NRRL3_04419 An07g02550 cytochrome P450 family protein 
 

NRRL3_04420 cluster NRRL3_04420 An07g02560 4-dimethylallyltryptophan synthase PT-DMATS_CynD 

NRRL3_04420 cluster NRRL3_04421 An07g02540 MFS-type short-chain carboxylic acid transporter 
 

NRRL3_05440 cluster NRRL3_05437 An02g10170 major facilitator superfamily protein 
 

NRRL3_05440 cluster NRRL3_05438 An02g10160 aminotransferase class I and II family protein 
 

NRRL3_05440 cluster NRRL3_05439 An02g10150 CoA-transferase family III protein 
 

NRRL3_05440 cluster NRRL3_05440 An02g10140 non-ribosomal peptide synthetase-like protein A-T-Te 

NRRL3_05440 cluster NRRL3_05441 NFG fungal-specific transcription factor 
 

NRRL3_05484 cluster NRRL3_05484 An02g09430 polyketide synthase KS-AT-DH-MT-ER-KR-ACP 

NRRL3_05484 cluster NRRL3_05485 An02g09420 cytochrome P450 family protein 
 

NRRL3_05588 cluster NRRL3_05580 An02g08370 flavin amine oxidase family protein 
 

NRRL3_05588 cluster NRRL3_05581 An02g08360 RmlC-like cupin domain-containing protein 
 

NRRL3_05588 cluster NRRL3_05582 An02g08350 fungal-specific transcription factor 
 

NRRL3_05588 cluster NRRL3_05583 An02g08340 amino acid/polyamine transporter I family protein 
 

NRRL3_05588 cluster NRRL3_05584 An02g08330 major facilitator superfamily protein 
 

NRRL3_05588 cluster NRRL3_05585 An02g08320 hypothetical protein 
 

NRRL3_05588 cluster NRRL3_05586 An02g08310 enoyl reductase  
 

NRRL3_05588 cluster NRRL3_05587 An02g08300 EthD domain-containing protein 
 

NRRL3_05588 cluster NRRL3_05588 An02g08290 hybrid polyketide synthase/non-ribosomal peptide synthetase 
KS-AT-DH-MT-KR-ACP--C-

A-T-E 
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NRRL3_05848 cluster NRRL3_05846 An02g05090 cytochrome P450 family protein 
 

NRRL3_05848 cluster NRRL3_05847 An02g05080 FAD-binding domain-containing protein 
 

NRRL3_05848 cluster NRRL3_05848 An02g05070 non-ribosomal peptide synthetase A-T-C-T-C 

NRRL3_06189 cluster NRRL3_06189 An02g00840 non-ribosomal peptide synthetase-like protein A-T-Te 

NRRL3_06189 cluster NRRL3_06190 An02g00810 COMT-type O-methyltransferase family protein 
 

NRRL3_06189 cluster NRRL3_06191 An02g00800 hypothetical protein 
 

NRRL3_06189 cluster NRRL3_06192 An02g00790 hypothetical protein 
 

NRRL3_06189 cluster NRRL3_06193 An02g00780 alpha/beta hydrolase fold domain-containing protein 
 

NRRL3_06189 cluster NRRL3_06194 An02g00760 major facilitator superfamily protein 
 

NRRL3_06189 cluster NRRL3_06195 An02g00750 hypothetical protein 
 

NRRL3_06189 cluster NRRL3_06196 An02g00740 FAD-binding domain-containing protein 
 

NRRL3_06217 cluster NRRL3_06216 An02g00460 FAD-binding domain-containing protein 
 

NRRL3_06217 cluster NRRL3_06217 An02g00450 polyketide synthase KS-AT-DH-MT-ER-KR-ACP 

NRRL3_06217 cluster NRRL3_06218 An02g00440 serine hydrolase FSH family protein 
 

NRRL3_06217 cluster NRRL3_06219 An02g00420 major facilitator superfamily protein 
 

NRRL3_06237 cluster NRRL3_06224 An02g00340 amidase family protein 
 

NRRL3_06237 cluster NRRL3_06225 An02g00330 hypothetical protein 
 

NRRL3_06237 cluster NRRL3_06226 An02g00320 hypothetical protein 
 

NRRL3_06237 cluster NRRL3_06227 An02g00310 aldo-keto reductase family protein 
 

NRRL3_06237 cluster NRRL3_06228 An02g00300 dienelactone hydrolase domain-containing protein 
 

NRRL3_06237 cluster NRRL3_06229 An02g00290 fungal-specific transcription factor 
 

NRRL3_06237 cluster NRRL3_06230 An02g00280 major facilitator superfamily domain-containing protein 
 

NRRL3_06237 cluster NRRL3_06231 An02g00270 RmlC-like cupin domain-containing protein 
 

NRRL3_06237 cluster NRRL3_06232 An02g00260 fungal-specific transcription factor 
 

NRRL3_06237 cluster NRRL3_06233 An02g00250 deoxyribose-phosphate aldolase 
 

NRRL3_06237 cluster NRRL3_06234 An02g00240 amino acid/polyamine transporter I family protein 
 

NRRL3_06237 cluster NRRL3_06235 An02g00230 phytanoyl-CoA dioxygenase family protein 
 

NRRL3_06237 cluster NRRL3_06236 An02g00220 short-chain dehydrogenase/reductase family protein 
 

NRRL3_06237 cluster NRRL3_06237 An02g00210 non-ribosomal peptide synthetase-like protein A-T-Dhe 

NRRL3_06237 cluster NRRL3_06238 An02g00200 hypothetical protein 
 

NRRL3_06237 cluster NRRL3_06239 An02g00190 amidase family protein 
 

NRRL3_06340/NRRL3_06341 cluster NRRL3_06340 An10g00630 fatty acid synthase alpha subunit MPT-ACP-KR-KS 

NRRL3_06340/NRRL3_06341 cluster NRRL3_06341 An10g00650 fatty acid synthase beta subunit AT-ER-DH-MPT 
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NRRL3_06340/NRRL3_06341 cluster NRRL3_06342 An10g00660 cytochrome P450 family protein 
 

NRRL3_06340/NRRL3_06341 cluster NRRL3_06343 An10g00670 methyltransferase type 11 domain-containing protein 
 

NRRL3_06340/NRRL3_06341 cluster NRRL3_06344 An10g00680 ATPase, V0 complex, proteolipid subunit c 
 

NRRL3_06340/NRRL3_06341 cluster NRRL3_06345 An10g00690 major facilitator superfamily protein 
 

NRRL3_06340/NRRL3_06341 cluster NRRL3_06346 An10g00700 drug resistance protein 
 

NRRL3_06432 cluster NRRL3_06431 An17g00440 cytochrome P450 family protein 
 

NRRL3_06432 cluster NRRL3_06432 An17g00450 sesquiterpene cyclase Isoprenoid_Biosyn_C1 

NRRL3_06801 cluster NRRL3_06796 NFG aminoglycoside phosphotransferase domain-containing protein 
 

NRRL3_06801 cluster NRRL3_06797 NFG RTA-like protein 
 

NRRL3_06801 cluster NRRL3_06798 NFG RTA-like protein 
 

NRRL3_06801 cluster NRRL3_06799 An16g06750 beta-lactamase-related protein 
 

NRRL3_06801 cluster NRRL3_06800 An16g06740 
ABC transporter type 1, transmembrane domain-containing 

protein  

NRRL3_06801 cluster NRRL3_06801 An16g06720 non-ribosomal peptide synthetase 
A-C-T-MT-A-T-C-A-T-C-A-T-

C-A-T-C 

NRRL3_07380 cluster NRRL3_07368 An16g00750 fungal-specific transcription factor 
 

NRRL3_07380 cluster NRRL3_07369 An16g00740 NmrA-like family protein 
 

NRRL3_07380 cluster NRRL3_07370 An16g00730 major facilitator superfamily protein 
 

NRRL3_07380 cluster NRRL3_07371 An16g00720 major facilitator superfamily protein 
 

NRRL3_07380 cluster NRRL3_07372 An16g00710 caleosin-related protein 
 

NRRL3_07380 cluster NRRL3_07373 An16g00700 FAD-dependent oxidoreductase domain-containing protein 
 

NRRL3_07380 cluster NRRL3_07374 An16g00680 RTA-like protein 
 

NRRL3_07380 cluster NRRL3_07375 An16g00670 hypothetical protein 
 

NRRL3_07380 cluster NRRL3_07376 An16g00660 NAD(P)-binding domain-containing protein 
 

NRRL3_07380 cluster NRRL3_07377 An16g00650 major facilitator superfamily protein 
 

NRRL3_07380 cluster NRRL3_07378 An16g00630 chloroperoxidase domain-containing protein 
 

NRRL3_07380 cluster NRRL3_07379 An16g00620 hypothetical protein 
 

NRRL3_07380 cluster NRRL3_07380 An16g00600 non-ribosomal peptide synthetase-like protein A-T-E 

NRRL3_07380 cluster NRRL3_07381 An16g00550 arylacetonitrilase NitAn 
 

NRRL3_07443 cluster NRRL3_07443 An04g10030 polyketide synthase KS-AT-DH-MT-ER-KR-ACP 

NRRL3_07443 cluster NRRL3_07444 An04g10020 serine hydrolase FSH family protein 
 

NRRL3_07443 cluster NRRL3_07445 An04g10010 hypothetical protein 
 

NRRL3_07443 cluster NRRL3_07446 An04g10000 major facilitator superfamily protein 
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NRRL3_07443 cluster NRRL3_07447 An04g09990 short-chain dehydrogenase/reductase family protein 
 

NRRL3_07739 cluster NRRL3_07736 An04g06290 fungal-specific transcription factor 
 

NRRL3_07739 cluster NRRL3_07737 An04g06280 alkyl-hydroperoxide reductase D-like protein 
 

NRRL3_07739 cluster NRRL3_07738 An04g06270 methyltransferase domain-containing protein 
 

NRRL3_07739 cluster NRRL3_07739 An04g06260 non-ribosomal peptide synthetase A-T-C-A-T-C 

NRRL3_07739 cluster NRRL3_07740 An04g06250 major facilitator superfamily protein 
 

NRRL3_07739 cluster NRRL3_07741 An04g06240 fungal-specific transcription factor 
 

NRRL3_07812 cluster NRRL3_07810 An04g05440 xanthine dehydrogenase 
 

NRRL3_07812 cluster NRRL3_07811 An04g05430 hypothetical protein 
 

NRRL3_07812 cluster NRRL3_07812 An04g05420 non-ribosomal peptide synthetase-like protein A-T-NADB 

NRRL3_07812 cluster NRRL3_07813 An04g05410 hypothetical protein 
 

NRRL3_07812 cluster NRRL3_07814 An04g05380 versiconal hemiacetal acetate reductase 
 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07873 An04g04490 fungal-specific transcription factor 
 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07874 An04g04480 zinc-type alcohol dehydrogenase superfamily protein 
 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07875 An04g04470 GNAT domain-containing protein 
 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07876 An04g04460 hypothetical protein 
 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07877 An04g04440 FAD-binding domain-containing protein 
 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07878 An04g04430 tannase/feruloyl esterase family protein 
 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07879 An04g04400 ankyrin repeat domain-containing protein 
 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07880 An04g04390 isochorismatase family protein 
 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07881 An04g04380 non-ribosomal peptide synthetase-like protein A-T-Te 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07882 An04g04370 phenylalanine ammonia-lyase 
 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07883 An04g04360 thioesterase domain-containing protein 
 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07884 An04g04340 polyketide synthase KS-AT-DH-MT-KR-ACP 

NRRL3_07881/NRRL3_07884 cluster NRRL3_07885 An04g04330 AMP-dependent synthetase/ligase domain-containing protein 
 

NRRL3_08167 cluster NRRL3_08166 An04g01160 UbiB domain-containing protein 
 

NRRL3_08167 cluster NRRL3_08167 An04g01150 non-ribosomal peptide synthetase-like protein A-T-Te 

NRRL3_08167 cluster NRRL3_08168 An04g01140 aminotransferase, class I and II family protein 
 

NRRL3_08167 cluster NRRL3_08169 An04g01130 cytokinesis protein SepH 
 

NRRL3_08167 cluster NRRL3_08170 An04g01120 folylpolyglutamate synthetase-like protein 
 

NRRL3_08318 cluster NRRL3_08313 An03g06430 NADP-dependent alcohol dehydrogenase 
 

NRRL3_08318 cluster NRRL3_08314 An03g06420 GNAT domain-containing protein 
 

NRRL3_08318 cluster NRRL3_08315 An03g06410 methylsterol monooxygenase 
 



51 
 

NRRL3_08318 cluster NRRL3_08316 An03g06400 fungal-specific transcription factor 
 

NRRL3_08318 cluster NRRL3_08317 An03g06390 FAD-binding domain-containing protein 
 

NRRL3_08318 cluster NRRL3_08318 An03g06380 polyketide synthase KS-AT-DH-MT-ER-KR-ACP 

NRRL3_08318 cluster NRRL3_08319 An03g06370 fungal-specific transcription factor 
 

NRRL3_08341 cluster NRRL3_08340 An03g06020 carboxymuconolactone decarboxylase-like protein 
 

NRRL3_08341 cluster NRRL3_08341 An03g06010 non-ribosomal peptide synthetase A-T-C-A-T-NADB 

NRRL3_08341 cluster NRRL3_08342 An03g06000 FAD-binding domain-containing protein 
 

NRRL3_08341 cluster NRRL3_08343 An03g05990 COMT-type O-methyltransferase family protein 
 

NRRL3_08341 cluster NRRL3_08344 An03g05980 fungal-specific transcription factor 
 

NRRL3_08341 cluster NRRL3_08345 An03g05960 epoxide hydrolase-like protein 
 

NRRL3_08341 cluster NRRL3_08346 An03g05950 major facilitator superfamily protein 
 

NRRL3_08369 cluster NRRL3_08368 An03g05690 ankyrin repeat domain-containing protein 
 

NRRL3_08369 cluster NRRL3_08369 An03g05680 non-ribosomal peptide synthetase-like protein A-T-Te 

NRRL3_08369 cluster NRRL3_08370 An03g05670 GMC oxidoreductase 
 

NRRL3_08369 cluster NRRL3_08371 An03g05660 catalase 
 

NRRL3_08369 cluster NRRL3_08372 An03g05650 fungal-specific transcription factor 
 

NRRL3_08388 cluster NRRL3_08381 An03g05500 fungal-specific transcription factor 
 

NRRL3_08388 cluster NRRL3_08382 An03g05490 iron-type alcohol dehydrogenase domain-containing protein 
 

NRRL3_08388 cluster NRRL3_08383 An03g05480 COMT-type O-methyltransferase family protein 
 

NRRL3_08388 cluster NRRL3_08384 An03g05470 RmlC-like cupin domain-containing protein 
 

NRRL3_08388 cluster NRRL3_08385 An03g05460 cytochrome P450 family protein 
 

NRRL3_08388 cluster NRRL3_08386 An03g05450 FAD-binding domain-containing protein 
 

NRRL3_08388 cluster NRRL3_08387 An03g05450 EthD domain-containing protein 
 

NRRL3_08388 cluster NRRL3_08388 An03g05440 polyketide synthase SAT-KS-AT-PT-ACP-ACP-Te 

NRRL3_08388 cluster NRRL3_08389 An03g05430 COMT-type O-methyltransferase family protein 
 

NRRL3_08411 cluster NRRL3_08411 An03g05140 polyketide synthase KS-AT-DH-MT-ER-KR-ACP 

NRRL3_08411 cluster NRRL3_08412 An03g05130 serine hydrolase FSH family protein 
 

NRRL3_08411 cluster NRRL3_08413 An03g05120 major facilitator superfamily protein 
 

NRRL3_08411 cluster NRRL3_08414 An03g05110 serine hydrolase FSH family protein 
 

NRRL3_08647 cluster NRRL3_08643 An03g01860 fungal-specific transcription factor 
 

NRRL3_08647 cluster NRRL3_08644 An03g01850 isochorismatase family protein 
 

NRRL3_08647 cluster NRRL3_08645 An03g01840 non-haem dioxygenase N-terminal domain-containing protein 
 

NRRL3_08647 cluster NRRL3_08646 An03g01830 hypothetical protein 
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NRRL3_08647 cluster NRRL3_08647 An03g01820 polyketide synthase SAT-KS-AT-ACP-Te 

NRRL3_08647 cluster NRRL3_08648 An03g01810 serine hydrolase FSH family protein 
 

NRRL3_08647 cluster NRRL3_08649 An03g01800 acyl-CoA-binding protein 
 

NRRL3_08647 cluster NRRL3_08650 An03g01790 major facilitator superfamily protein 
 

NRRL3_08729 cluster NRRL3_08721 An03g00750 fungal-specific transcription factor 
 

NRRL3_08729 cluster NRRL3_08722 An03g00740 mannan endo-1,6-alpha-mannosidase 
 

NRRL3_08729 cluster NRRL3_08723 An03g00730 copper amine oxidase 
 

NRRL3_08729 cluster NRRL3_08724 An03g00720 hypothetical protein 
 

NRRL3_08729 cluster NRRL3_08725 An03g00690 hypothetical protein 
 

NRRL3_08729 cluster NRRL3_08726 An03g00680 major facilitator superfamily protein 
 

NRRL3_08729 cluster NRRL3_08727 An03g00670 opine dehydrogenase domain-containing protein 
 

NRRL3_08729 cluster NRRL3_08728 An03g00660 taurine dioxygenase 
 

NRRL3_08729 cluster NRRL3_08729 An03g00650 non-ribosomal peptide synthetase A-T-C-A-T-C 

NRRL3_08729 cluster NRRL3_08730 An03g00640 
amino acid transporter, transmembrane domain-containing 

protein BrsA-25  

NRRL3_08732 cluster NRRL3_08732 An03g00590 sesquiterpene cyclase Isoprenoid_Biosyn_C1 

NRRL3_08732 cluster NRRL3_08733 An03g00580 cytochrome P450 family protein 
 

NRRL3_08732 cluster NRRL3_08734 An03g00560 hypothetical protein 
 

NRRL3_08732 cluster NRRL3_08735 An03g00550 hypothetical protein 
 

NRRL3_08732 cluster NRRL3_08736 An03g00530 FAD-binding domain-containing protein 
 

NRRL3_08775 cluster NRRL3_08768 An03g00180 cytochrome P450 family protein 
 

NRRL3_08775 cluster NRRL3_08769 An03g00170 major facilitator superfamily protein 
 

NRRL3_08775 cluster NRRL3_08770 An03g00160 fungal-specific transcription factor 
 

NRRL3_08775 cluster NRRL3_08771 An03g00150 hypothetical protein 
 

NRRL3_08775 cluster NRRL3_08772 An03g00140 zinc-type alcohol dehydrogenase superfamily protein 
 

NRRL3_08775 cluster NRRL3_08773 An03g00130 GMC oxidoreductase 
 

NRRL3_08775 cluster NRRL3_08774 NFG hypothetical protein 
 

NRRL3_08775 cluster NRRL3_08775 NFG polyketide synthase 
SAT-KS-AT-PT-ACP-ACP-

MT-Te 

NRRL3_08790 cluster NRRL3_08788 NFG alpha/beta hydrolase fold-1 domain-containing protein 
 

NRRL3_08790 cluster NRRL3_08789 NFG major facilitator superfamily protein 
 

NRRL3_08790 cluster NRRL3_08790 NFG non-ribosomal peptide synthetase 
A-T-C-A-T-C-A-T-C-A-T-C-

A-T-C 
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NRRL3_08891 cluster NRRL3_08890 An05g01050 fungal-specific transcription factor 
 

NRRL3_08891 cluster NRRL3_08891 An05g01060 non-ribosomal peptide synthetase 
A-T-C-C-A-T-C-A-T-C-A-T-C-

C 

NRRL3_08891 cluster NRRL3_08892 An05g01070 RTA-like protein 
 

NRRL3_08891 cluster NRRL3_08893 An05g01080 ankyrin repeat domain-containing protein 
 

NRRL3_08891 cluster NRRL3_08894 not called HotDog domain-containing protein 
 

NRRL3_08891 cluster NRRL3_08895 An05g01100 branched-chain amino acid aminotransferase-like protein 
 

NRRL3_08891 cluster NRRL3_08896 An05g01110 
ABC transporter type 1, transmembrane domain-containing 

protein  

NRRL3_08891 cluster NRRL3_08897 An05g01120 cytochrome P450 family protein 
 

NRRL3_08969 cluster NRRL3_08964 An12g02890 aminotransferase class IV family protein 
 

NRRL3_08969 cluster NRRL3_08965.1 An12g02880 fungal-specific transcription factor 
 

NRRL3_08969 cluster NRRL3_08966 not called major facilitator superfamily protein 
 

NRRL3_08969 cluster NRRL3_08967 An12g02860 major facilitator superfamily protein 
 

NRRL3_08969 cluster NRRL3_08968 An12g02850 pyridine nucleotide-disulphide oxidoreductase family protein 
 

NRRL3_08969 cluster NRRL3_08969 An12g02840 non-ribosomal peptide synthetase A-T-C-A-T-C-A-T-C-C-A-T-C 

NRRL3_08969 cluster NRRL3_08970 An12g02830 methyltransferase domain-containing protein 
 

NRRL3_08969 cluster NRRL3_08971 An12g02820 major facilitator superfamily protein 
 

NRRL3_08969 cluster NRRL3_08972 An12g02810 COMT-type O-methyltransferase family protein 
 

NRRL3_08969 cluster NRRL3_08973 An12g02800 major facilitator superfamily protein 
 

NRRL3_08978/NRRL3_08980/NRRL3_08984.1 

cluster 
NRRL3_08978 An12g02750 non-ribosomal peptide synthetase A-T-C 

NRRL3_08978/NRRL3_08980/NRRL3_08984.1 

cluster 
NRRL3_08979 An12g02740 

S-adenosyl-L-methionine dependent methyltransferase domain-

containing protein  

NRRL3_08978/NRRL3_08980/NRRL3_08984.1 

cluster 
NRRL3_08980 An12g02730 polyketide synthase KS-AT-DH-ER-KR-ACP 

NRRL3_08978/NRRL3_08980/NRRL3_08984.1 

cluster 
NRRL3_08981 An12g02720 serine hydrolase FSH family protein 

 

NRRL3_08984.1 cluster NRRL3_08982 An12g02700 2-dehydro-3-deoxy-D-gluconate 5-dehydrogenase  
 

NRRL3_08984.1 cluster NRRL3_08983 An12g02680 hypothetical protein 
 

NRRL3_08984.1 cluster NRRL3_08984.1 An12g02670 polyketide synthase 
KS-AT-DH-MT-ER-KR-ACP-

Te 

NRRL3_08984.1 cluster NRRL3_08985 An12g02660 PAN domain-containing protein 
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NRRL3_08984.1 cluster NRRL3_08986 An12g02650 methyltransferase domain-containing protein 
 

NRRL3_08984.1 cluster NRRL3_08987 An12g02640 aldo-keto reductase  
 

NRRL3_08984.1 cluster NRRL3_08988 An12g02630 NmrA-like family protein 
 

NRRL3_08984.1 cluster NRRL3_08989 An12g02620 fungal-specific transcription factor 
 

NRRL3_09034/NRRL3_09038/NRRL3_09039 NRRL3_09030 An12g02090 fungal-specific transcription factor 
 

NRRL3_09034/NRRL3_09038/NRRL3_09039 NRRL3_09031 An12g02080 cytochrome P450 family protein 
 

NRRL3_09034/NRRL3_09038/NRRL3_09039 NRRL3_09032 An12g02070 ribonuclease/ribotoxin domain-containing protein 
 

NRRL3_09034/NRRL3_09038/NRRL3_09039 NRRL3_09033 An12g02060 uncharacterized protein 
 

NRRL3_09034/NRRL3_09038/NRRL3_09039 NRRL3_09034 An12g02050 polyketide synthase SAT-KS-AT-ACP-MT-Te 

NRRL3_09034/NRRL3_09038/NRRL3_09039 NRRL3_09035 An12g02040 fungal-specific transcription factor 
 

NRRL3_09034/NRRL3_09038/NRRL3_09039 NRRL3_09036 An12g02020 transferase family protein 
 

NRRL3_09034/NRRL3_09038/NRRL3_09039 NRRL3_09037 An12g02000 FAD-binding domain-containing protein 
 

NRRL3_09034/NRRL3_09038/NRRL3_09039 NRRL3_09038 An12g01990 fatty acid synthase beta subunit AT-ER-DH-MPT 

NRRL3_09034/NRRL3_09038/NRRL3_09039 NRRL3_09039 An12g01980 fatty acid synthase alpha subunit MPT-ACP-KR-KS-PPT 

NRRL3_09034/NRRL3_09038/NRRL3_09039 NRRL3_09040 An12g01970 sensitivity to red light reduced SRR1 domain-containing protein 
 

NRRL3_09034/NRRL3_09038/NRRL3_09039 NRRL3_09041.1 An12g01960 major facilitator superfamily protein 
 

NRRL3_09351 cluster NRRL3_09351 An11g09720 polyketide synthase KS-AT-DH-MT-KR-ACP 

NRRL3_09351 cluster NRRL3_09352 An11g09710 AMP-dependent synthetase/ligase domain-containing protein 
 

NRRL3_09351 cluster NRRL3_09353 An11g09700 uroporphyrin-III C-methyltransferase 
 

NRRL3_09351 cluster NRRL3_09354 An11g09690 26S proteasome regulatory complex subunit Rpn5 
 

NRRL3_09351 cluster NRRL3_09355 An11g09680 serine hydrolase FSH family protein 
 

NRRL3_09616 cluster NRRL3_09616 An11g06460 hybrid polyketide synthase/non-ribosomal peptide synthetase 
KS-AT-DH-KR-ACP--C-A-T-

Te 

NRRL3_09616 cluster NRRL3_09617 An11g06450 EthD domain-containing protein 
 

NRRL3_09616 cluster NRRL3_09618 An11g06440 zinc-type alcohol dehydrogenase superfamily protein 
 

NRRL3_09616 cluster NRRL3_09619 An11g06430 hypothetical protein 
 

NRRL3_09616 cluster NRRL3_09620 An11g06420 major facilitator superfamily protein 
 

NRRL3_09686/NRRL3_09693 cluster NRRL3_09686 An11g05570 polyketide synthase KS-AT-DH-MT-ER-KR-ACP 

NRRL3_09686/NRRL3_09693 cluster NRRL3_09687 An11g05560 aminotransferase, class I and II family protein 
 

NRRL3_09686/NRRL3_09693 cluster NRRL3_09688 An11g05550 major facilitator superfamily protein 
 

NRRL3_09686/NRRL3_09693 cluster NRRL3_09689 not called fungal-specific transcription factor 
 

NRRL3_09686/NRRL3_09693 cluster NRRL3_09693 An11g05500 non-ribosomal peptide synthetase-like protein A-T-Te 

NRRL3_09789/NRRL3_09792 cluster NRRL3_09788 An11g04290 short-chain dehydrogenase/reductase family protein 
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NRRL3_09789/NRRL3_09792 cluster NRRL3_09789 An11g04280 polyketide synthase KS-AT-DH-ER-KR-ACP 

NRRL3_09789/NRRL3_09792 cluster NRRL3_09790 An11g04270 zinc-type alcohol dehydrogenase superfamily protein 
 

NRRL3_09789/NRRL3_09792 cluster NRRL3_09791 An11g04260 serine hydrolase FSH family protein 
 

NRRL3_09789/NRRL3_09792 cluster NRRL3_09792 An11g04250 non-ribosomal peptide synthetase-like protein A-T-Te 

NRRL3_09789/NRRL3_09792 cluster NRRL3_09793 An11g04240 hypothetical protein 
 

NRRL3_09789/NRRL3_09792 cluster NRRL3_09794 An11g04220 cytochrome P450 
 

NRRL3_09827 cluster NRRL3_09824 An11g03950 alpha/beta hydrolase fold-1 domain-containing protein 
 

NRRL3_09827 cluster NRRL3_09825 An11g03940 cytochrome P450 family protein 
 

NRRL3_09827 cluster NRRL3_09826 An11g03930 serine hydrolase FSH family protein 
 

NRRL3_09827 cluster NRRL3_09827 An11g03920 polyketide synthase KS-AT-DH-MT-ER-KR-ACP 

NRRL3_09848 cluster NRRL3_09846 An11g03690 fungal-specific transcription factor 
 

NRRL3_09848 cluster NRRL3_09847 An11g03680 zinc-type alcohol dehydrogenase superfamily protein 
 

NRRL3_09848 cluster NRRL3_09848 An11g03670 polyketide synthase 
(KS-AT-DH-MT-ER-KR-

ACP)-Te 

NRRL3_10148 cluster NRRL3_10146 An11g00070 COMT-type O-methyltransferase family protein 
 

NRRL3_10148 cluster NRRL3_10147 An11g00060 hypothetical protein 
 

NRRL3_10148 cluster NRRL3_10148 An11g00050 non-ribosomal peptide synthetase 
A-T-T-C-Rpt-C-A-T-C-Rpt-

(A)[MT}-A-T-C 

NRRL3_10209 cluster NRRL3_10204 An18g00470 dienelactone hydrolase domain-containing protein 
 

NRRL3_10209 cluster NRRL3_10205 An18g00480 major facilitator superfamily protein 
 

NRRL3_10209 cluster NRRL3_10206 An18g00490 FAD-binding domain-containing protein 
 

NRRL3_10209 cluster NRRL3_10207 An18g00500 cytochrome P450 family protein 
 

NRRL3_10209 cluster NRRL3_10208 An18g00510 FAD-binding domain-containing protein 
 

NRRL3_10209 cluster NRRL3_10209 An18g00520 hybrid polyketide synthase/non-ribosomal peptide synthetase 
KS-AT-DH-KR-ER-KR-ACP--

C-Rpt-A-T-Te 

NRRL3_10375 cluster NRRL3_10368 An18g02650 major facilitator superfamily protein 
 

NRRL3_10375 cluster NRRL3_10369.1 NFG methyltransferase type 11 domain-containing protein 
 

NRRL3_10375 cluster NRRL3_10370 NFG fungal-specific transcription factor 
 

NRRL3_10375 cluster NRRL3_10371 NFG serine hydrolase FSH family protein 
 

NRRL3_10375 cluster NRRL3_10372 NFG aldose 1-/glucose-6-phosphate 1-epimerase family protein 
 

NRRL3_10375 cluster NRRL3_10373 NFG cytochrome P450 family protein 
 

NRRL3_10375 cluster NRRL3_10374 NFG enoyl reductase 
 

NRRL3_10375 cluster NRRL3_10375 NFG polyketide synthase KS-AT-DH-MT-KR-ACP 
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NRRL3_10375 cluster NRRL3_10376 An18g02680 cytochrome P450 family protein 
 

NRRL3_10375 cluster NRRL3_10377 An18g02690 multicopper oxidase Mco1I 
 

NRRL3_10375 cluster NRRL3_10378 An18g02700 cytochrome P450 family protein 
 

NRRL3_10375 cluster NRRL3_10379 An18g02710 
terpenoid cyclases/protein prenyltransferase alpha-alpha toroid 

domain-containing protein  

NRRL3_10375 cluster NRRL3_10380 An18g02720 glutathione S-transferase 
 

NRRL3_10375 cluster NRRL3_10381 An18g02730 hypothetical protein 
 

NRRL3_10375 cluster NRRL3_10382 An18g02740 cytochrome P450 family protein 
 

NRRL3_10375 cluster NRRL3_10383 An18g02750 
S-adenosyl-L-methionine dependent methyltransferase domain-

containing protein  

NRRL3_10375 cluster NRRL3_10384 An18g02752 alpha/beta hydrolase fold-5 domain-containing protein 
 

NRRL3_10912 cluster NRRL3_10911 An08g02290 polyamine transporter 
 

NRRL3_10912 cluster NRRL3_10912 An08g02310 non-ribosomal peptide synthetase 
A-T-C-C-A-C-A-T-C-A-T-C-

C-T-C-(T) 

NRRL3_11121 cluster NRRL3_11120 An08g04810 enolase superfamily protein 
 

NRRL3_11121 cluster NRRL3_11121 An08g04820 non-ribosomal peptide synthetase-like protein A-T-NADB 

NRRL3_11458 cluster NRRL3_11458 An08g09220 non-ribosomal peptide synthetase-like protein C-T 

NRRL3_11458 cluster NRRL3_11459 An08g09230 cytochrome P450 
 

NRRL3_11458 cluster NRRL3_11460 An08g09240 fungal-specific transcription factor 
 

NRRL3_11458 cluster NRRL3_11461 An08g09250 major facilitator superfamily protein 
 

NRRL3_11458 cluster NRRL3_11462 An08g09260 acetoacetyl-CoA synthetase 
 

NRRL3_11458 cluster NRRL3_11463 An08g09280 fumarylacetoacetate hydrolase family protein 
 

NRRL3_11726 cluster NRRL3_11725 An06g00460 carboxylesterase family protein 
 

NRRL3_11726 cluster NRRL3_11726 An06g00430 polyketide synthase, type III KS 

NRRL3_11726 cluster NRRL3_11727 NFG dihydrolipoamide succinyltransferase  
 

NRRL3_11726 cluster NRRL3_11728 An06g00390 2-oxoglutarate dehydrogenase, mitochondrial  
 

NRRL3_11763/NRRL3_11767 cluster NRRL3_11759 An08g10970 dienelactone hydrolase domain-containing protein 
 

NRRL3_11763/NRRL3_11767 cluster NRRL3_11760 An08g10860 fungal-specific transcription factor 
 

NRRL3_11763/NRRL3_11767 cluster NRRL3_11761 An08g10850 major facilitator superfamily protein 
 

NRRL3_11763/NRRL3_11767 cluster NRRL3_11762 An08g10840 zinc finger domain-containing protein, RING/FYVE/PHD-type 
 

NRRL3_11763/NRRL3_11767 cluster NRRL3_11763 An08g10930 fatty acid synthase alpha subunit MPT-ACP-KR-KS-PPT 

NRRL3_11763/NRRL3_11767 cluster NRRL3_11764 An08g10920 citrate synthase-like protein 
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NRRL3_11763/NRRL3_11767 cluster NRRL3_11765 An08g10880 fungal-specific transcription factor 
 

NRRL3_11763/NRRL3_11767 cluster NRRL3_11766 An08g10870 2-methylcitrate dehydratase 
 

NRRL3_11763/NRRL3_11767 cluster NRRL3_11767 An08g10860 fatty acid synthase beta subunit AT-ER-DH-MPT 

NRRL3_11763/NRRL3_11767 cluster NRRL3_11768 An08g10830 polyprenyl synthetase family protein 
 

NRRL3_11763/NRRL3_11767 cluster NRRL3_11769 An08g10820 aldehyde dehydrogenase 
 

Ochratoxin cluster NFG An15g07890 bAP-1 transcription factor 
 

Ochratoxin cluster NFG An15g07900 bcytochrome P450 
 

Ochratoxin cluster NFG An15g07910 bnon-ribosomal peptide synthetase 
 

Ochratoxin cluster NRRL3_07207 
An15g07920 

polyketide synthase-like protein 
[KS-AT-DH-MT-ER]-KR-

(ACP) 

Pyranonigrin E cluster NRRL3_10119 An11g00350 FAD-dependent oxidoreductase PynB 
 

Pyranonigrin E cluster NRRL3_10120 An11g00330 NAD(P)-binding protein PynE 
 

Pyranonigrin E cluster NRRL3_10121 An11g00320 thioesterase domain-containing protein 
 

Pyranonigrin E cluster NRRL3_10122 An11g00310 aspartic peptidase family protein 
 

Pyranonigrin E cluster NRRL3_10123 An11g00300 FAD-binding domain-containing protein 
 

Pyranonigrin E cluster NRRL3_10124
a
 An11g00290 fungal-specific transcription factor PynR 

 
Pyranonigrin E cluster NRRL3_10125 An11g00280 O-methyltransferase PynC 

 
Pyranonigrin E cluster NRRL3_10126 An11g00270 cytochrome P450 PynD 

 
Pyranonigrin E cluster NRRL3_10127 An11g00260 MFS-type transporter PynF 

 

Pyranonigrin E cluster NRRL3_10128 An11g00250 
hybrid polyketide synthase/non-ribosomal peptide synthetase 

PynA 

KS-AT-DH-KR-ER-KR-ACP--

C-Rpt-A-T-[Te] 

Siderophore cluster NRRL3_08528 An03g03620 MFS-type transporter SitT 
 

Siderophore cluster NRRL3_08529 An03g03600 helicase C-terminal domain-containing protein 
 

Siderophore cluster NRRL3_08530 An03g03590 GNAT domain-containing protein 
 

Siderophore cluster NRRL3_08531 An03g03580 hypothetical protein 
 

Siderophore cluster NRRL3_08532 An03g03570 phospholipid methyltransferase-like protein 
 

Siderophore cluster NRRL3_08533 An03g03570 hypothetical protein 
 

Siderophore cluster NRRL3_08534 An03g03560 siderophore iron transporter 
 

Siderophore cluster NRRL3_08535 An03g03550 crotonase superfamily protein 
 

Siderophore cluster NRRL3_08536 An03g03540 hydroxyornithine transacylase SidF 
 

Siderophore cluster NRRL3_08537 An03g03530 alpha/beta hydrolase fold domain-containing protein 
 

Siderophore cluster NRRL3_08538 An03g03520 non-ribosomal peptide synthetase SidD A-T-C-A-T-C 

Siderophore cluster NRRL3_08539 An03g03510 hypothetical protein 
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Siderophore cluster NRRL3_08540 An03g03500 tetratricopeptide-like helical domain-containing protein 
 

Siderophore cluster NRRL3_11644 An06g01320 mevalonyl-CoA ligase SidI 
 

Siderophore cluster NRRL3_11645 An06g01300 non-ribosomal peptide synthetase SidC A-T-C-A-T-C-A-T-C-T-C-T-C 

TAN-1612/BMS-192548 cluster NRRL3_09545
a
 An11g07350 fungal-specific transcription factor AdaR 

 
TAN-1612/BMS-192548 cluster NRRL3_09546

a
 An11g07340 O-methyltransferase AdaD 

 
TAN-1612/BMS-192548 cluster NRRL3_09547

a
 An11g07330 FAD-dependent monooxygenase AdaC 

 
TAN-1612/BMS-192548 cluster NRRL3_09548

a
 An11g07320 metallo-beta-lactamase-type thioesterase AdaB 

 
TAN-1612/BMS-192548 cluster NRRL3_09549

a
 An11g07310 polyketide synthase AdaA SAT-KS-AT-PT-ACP 

TAN-1612/BMS-192548 cluster NRRL3_09550 An11g07300 major facilitator superfamily protein 
 

Yanuthones cluster NRRL3_06287
a
 An10g00100 fungal-specific transcription factor YanR 

 
Yanuthones cluster NRRL3_06288 An10g00110 cytochrome P450 YanC 

 
Yanuthones cluster NRRL3_06289 An10g00120 decarboxylase YanB 

 
Yanuthones cluster NRRL3_06290 An10g00130 prenyltransferase YanG 

 
Yanuthones cluster NRRL3_06291

a
 An10g00140 6-methylsalicylic acid synthase YanA KS-AT-DH-KR-ACP 

Yanuthones cluster NRRL3_06292
a
 An10g00150 cytochrome P450 YanH 

 
Yanuthones cluster NRRL3_06293

a
 An10g00160 O-mevalon transferase YanI 

 
Yanuthones cluster NRRL3_06294 An10g00170 short-chain dehydrogenase/reductase YanD 

 
Yanuthones cluster NRRL3_06295 An10g00180 RmlC-like cupin domain-containing protein YanE 

 
Yanuthones cluster NRRL3_06296

a
 An10g00190 oxidase  YanF 

 

 
1
NRRL3_01579 and NRRL3_01580 share homology with FASs involved in primary metabolism and are not included in this table. 

2
Domains are written from the N-terminus to the C-terminus. Round brackets denote domains found in the NRRL 3 model but missing 

in the CBS 513.88  counterpart; domains unique to the CBS 513.88 model are in  square brackets .A.: adenylation domain, ACP: acyl-

carrier protein,  AT: acyl transferase, C: condensation domain, DH: dehydratase, Dhe: dehydrogenase, ER: enoyl reductase, KR: 

ketoreductase, KS: ketosynthase, MPT: malonyl/palmitoyl transferase, MT: methyltransferase, NADB: NAD+ binding protein, PT: 

product template, PPT: phosphopantetheine transferase, Rpt: HxxPF repeat, SAT: starter unit acyltransferase, T: thiolation domain, 

Te: thioesterase/thioreductase. 
3
Genes found in only one A. niger strain are lebelled NFG (Not Found in Genome). 

4
Gene IDs labelled “not called” represent differences in annotated gene models between strains not DNA sequence. 

a
Gene/gene product has been experimentally characterized. The extent of the cluster is based on other means. 

b
Functional annotation of CBS 513.88 model assigned by curators. 
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A comparison of enzyme complement between A. niger, A. fumigatus, A. oryzae, and A. 

nidulans is shown in Table 5.  A survey of backbone enzymes in these species reveals that the 

PKS/PKS-like and NRPS/NRPS-like genes make up the majority of all annotated backbone 

genes.  The complement of NRPS and NRPS-like genes are also approximately equal in each of 

the four Aspergilli.  Within the PKS category the majority of the genes encode the highly 

reducing class except in A. fumigatus and A. oryzae which have equivalent amounts of non-

reducing and highly-reducing PKS genes.  Partially reducing PKSs represent the smallest 

proportion of the PKS class in all species. The FAS complement is equal across the Aspergilli (5 

or 6 FAS alpha and beta genes) with the exception of A. fumigatus which only has a single FAS 

alpha/beta gene pair.  In the case of DMAT genes, the A. niger strains appear to have 

approximately half the number observed in A. fumigatus, A. oryzae, and A. nidulans.  A number 

of backbone genes which we identified manually appear to have been missed by the SMURF and 

antiSMASH algorithms in the previous study annotating gene clusters in A. niger CBS 513.88 

[27].  Looking at just the multi-domain backbone genes we were able to identify an additional 

PKS (An12g02050/ NRRL3_09034) and four additional NRPS-like genes (An01g06890/ 

NRRL3_02185, An01g11790/ NRRL3_02596, An01g14850/ NRRL3_02852 and An04g05420/ 

NRRL3_07812) in A. niger CBS513.88 along with their counter parts in the NRRL3 strain.   
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Table 5. Comparison of the total number of secondary metabolite backbone genes among four 

Aspergillus species and two strains of A. niger; NRRL3 and CBS513.88. 

Backbone enzyme 

A. niger 

strain 

NRRL3 

A. niger 

strain CBS 

513.88 A. fumigatus A. nidulans A. oryzae 

FAS alpha/beta 5 5 1 6 5 

HPN 8 7 1 1 2 

HNP 1 1 0 0 0 

NRPS 18 18 7 9 17 

NRPS-like 21 21 6 13 13 

Non reducing PKS 8 7 5 8 12 

Highly reducing PKS 22 25 3 13 9 

Partially reducing PKS 4 3 3 2 1 

6-MSAS 1 1 0 0 1 

PKS type III 1 1 1 2 5 

PKS-like 4 4 1 1 0 

Sesquiterpene cyclase 3 3 0 2 1 

DMAT 2 2 5 7 6 

Total 98 98 33 64 72 

      1
The A. nidulans FASs comprised of 5 alpha subunits and 6 beta subunits. 

2
The A. niger strains contain one FAS alpha/beta  

(NRRL3_01579/NRRL3_01580) homologous to the FASs of primary metabolism. 
3
HNP enzyme represents a hybrid enzyme which contains an NRPS and PKS module in 

reverse order to HPNs 

 

 

3.1.2 Experimentally characterized clusters with orthologues in A. niger NRRL3 

 

A literature search for experimentally characterized SM clusters was carried out to look 

for experimentally verified clusters in other species which have orthologues in A. niger NRRL3 

or in other A. niger strains which have counterparts in NRRL3.  Our BLASTP queries revealed a 

total of 11 clusters in A. niger NRRL3 which have been assigned function based on 

experimentally determined secondary metabolite production in other fungal species and A. niger 

strains.  The experimentally determined clusters were previously shown to produce: the 

azanigerones (A. niger) [100], TAN-1612 and its tautomer BMS-192548 (A. niger) [102], 1,8-
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dihydroxynaphthalene (DHN) melanin and its pigment derivatives (in A. niger and A. fumigatus) 

[100, 105, 137], fumonisin (in Gibberella moniliformis) [122], ochratoxin (A. niger) [123], 

pyranonigrin (A. niger) [47], carlosic acid and agglomerin (A. niger) [99], the yanuthones (A.  

niger) [124], the kotanins (A. niger) [97], and  two NRPS clusters with some genes shown to be 

involved in siderophore production (A.  fumigatus) (Table 4) [138].  These experimentally 

defined clusters from other other fungal species and A. niger strains were nearly identical to the 

counterpart clusters in A.niger NRRL3 with respect to gene complement and arrangement.  The 

exceptions were the fumonisin, DHN melanin and ochratoxin clusters.  These clusters in A. niger 

NRRL3 either have their genes dispersed in the genome (DHN melanin) or lacked multiple genes 

previously annotated in other fungal species or A. niger strains (fumonisin and ochratoxin) [122, 

123, 139] (Table 4).  We also observed that one of these clusters, the azanigerone cluster, 

appears to be located within the FAS NRRL3_00135/NRRL3_00138/NRRL3_00156 cluster.  

The FAS cluster appears without the intervening azanigerone cluster in A. acidus.  Conversely, 

the asperfuranone cluster which is nearly identical to the azanigerone cluster [100] appears 

without the FAS cluster in A. nidulans (Figure 14, Table 4). 
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Figure 14. A. niger ATCC 1015 (top) synteny in A. acidus (bottom) showing sequence 

similarity between their FAS A/B clusters but not with the azanigerone cluster (A).  A. niger 

ATCC 1015 (top) azanigerone cluster synteny with the similar asperfuranone cluster in A. 

nidulans (bottom) but not with the FAS A/B cluster of A. niger ATCC 1015 (B).  Screenshot 

taken and from Sybil online application from aspGD website (See Materials and Methods).  

 

3.1.3 Aspergillus niger NRRL3 and CBS 513.88: a genomic comparison of secondary 

metabolism between fungal strains 

 

To examine differences between strains of A. niger, the annotated secondary metabolite 

backbone enzymes from the NRRL3 strain were compared to that of CBS 513.88 strain.  The 
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comparison revealed differences with respect to enzyme absence/presence, enzyme truncation 

(remnants) and tailoring enzyme complement between clusters (Table 4, 6).  Analysis of 

backbone enzymes revealed NRRL3 is missing three highly reducing PKS and one NRPS which 

are present in CBS 513.88.  The reverse analysis shows one each of an NRPS, a partially 

reducing PKS and non-reducing PKS are present in NRRL3 but missing in CBS 513.88.   

 

Table 6. Secondary metabolite cluster differences between A. niger strains NRRL3 and CBS 

513.88. 

 1NRRL3  1CBS 513.88  

2Clusters specific to the NRRL3 lineage 
NRRL3_08775 
NRRL3_08790 
NRRL3_10375 

 

2Clusters specific to the CBS 513.88 lineage  

An01g01130 
An11g05940 
An11g05960 
An15g07910 

3Truncated clusters in NRRL3 
 

NRRL3_04207  
NRRL3_00166 

4An15g07920  
An09g02100 

3Truncated clusters in CBS 513.88 

NRRL3_03977 
NRRL3_05440 
NRRL3_00036 
NRRL3_01367/01364 
NRRL3_02593/02596 
NRRL3_05440 
NRRL3_06801 
NRRL3_11726 

An15g05090 
An02g10140 
An09g00520 
An13g02460/02430 
An01g11770/11790 
An02g10140 
An16g06720 
An06g00430 

CBS 513.88 clusters with truncated backbone 
enzymes 

NRRL3_01804 
NRRL3_09848 

An01g02030 
An11g03670 

 

1
Listed are genes encoding backbone enzymes. 

2
Cluster of genes encoding a full backbone enzyme plus one or more tailoring enzymes. 

3
Missing one or more genes encoding tailoring enzymes and may include a truncated backbone 

enzyme. 
4
Ochratoxin cluster. 

 

3.1.4 Backbone gene remnants in A. niger NRRL3 and CBS 513.88 

 

Among the all the backbone genes found in the NRRL3 and CBS 513.88 genomes, we 

also located five remnant backbone genes.  For simplicity only the remnant IDs are listed here; 
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the full PKS counterpart ID is omitted but can be found in Table 4 or Figure 15.  Two remnants 

were unique to NRRL3 (NRRL3_00166, NRRL3_04207), two were unique to CBS 513.88 

(An01g02030, An11g03670) and one remnant was common to both strains 

(NRRL3_02621/An01g12040).  The unique remnants from one A. niger strain matched to (by 

BLASTP) to a complete counterpart in the opposite strain (NRRL3 vs CBS 513.88) while the 

shared remnant between both strains matched (by BLASTp) to a complete counterpart in A. 

tubingensis (Figure 15). All backbone remnant genes are exclusively of the PKS-like category 

and correspond to the 3’ end of a complete PKS.   The NRPS-like enzymes do not appear to have 

larger, multi-domain counterparts in other fungal species apart from 

NRRL3_02593/An01g11790 which had a counterpart in A. brasiliensis (Aspbr1_0027433) 

containing one additional C-terminal C domain.   

The full PKS counterparts of the PKS-like enzymes are all highly reducing with the 

exception of NRRL3_00166 which corresponds to a PKS that contains an incongruous KR 

domain upstream of the KS domain (Table 4).  Furthermore, the majority (four out of five) 

remnants contained at least the ACP minimal domain (NRRL3_00166, NRRL3_04207, 

An01g02030 and NRRL3_02621/An01g12040).  Lastly, a cluster analysis of remnant enzymes 

revealed that in three out of five remnants only the backbone enzyme is missing while 

surrounding genes are retained (Figure 15 A, B, E).  In the other two remnant clusters, 

NRRL3_04207 and An01g02030, additional surrounding genes are missing that are present in 

the opposing A. niger strain containing the full highly reducing PKS (Figure 15 C and D). 

An additional search to find more remnant backbone genes in the NRRL3 strain was 

carried out using the peptide sequences of 114 genes containing single SM domains.  These 

genes were not identified by the initial backbone search however their single domains were 

annotated from InterProScan (manuscript in preparation) as belonging to one of the SM 

backbone multi-domain enzymes (PKS, NRPS or FAS).  Surmising that the single domain 

enzymes may themselves be remnants, I queried these enzymes by BLASTP against other fungal 

genomes from the AspGD website. The query consisted of sequences from the following 

domains:  1 PKS-KS, 1 PKS-AT, 20 PKS-KR, 36 PKS-ER, 2 PKS-ACP, 33 NRPS-A, 2 FAS-

PPT, and 17 FAS-ACP.   None of the single domain enzymes appeared to have a full PKS, 

NRPS or FAS counterpart in other fungal species. 
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Figure 15. Remnant PKS-like enzymes from A. niger NRRL3 and CBS 513.88 aligned with their 

full enzyme counterparts.   

 

3.2 Upregulation of defined clusters 

3.2.1 Expression of genes encoding clustered transcription factors 

 

Given that 43 of the 84 SM clusters appear to have at least one resident transcription 

factor, we sought to overexpress some of these transcription factors in A. niger in an effort to 

induce cluster expression.  We selected 35 transcription factors within or just outside 31 clusters 
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for overexpression.  These  included the transcription factors of three known SM clusters which 

we used as controls: fumonisin (NRRL3_02186) [122], BMS-192548/TAN-1612 

(NRRL3_09545) [102], and the azanigerones (NRRL3_00148) [100].  Both BMS-192548/TAN-

1612 and the azanigerones are also colored compounds which allowed for quick phenotypic 

assessment of SM production following growth of transformants on selective media [100, 102].    

Of all the overexpressed transcription factors, six (including the controls) stimulated the 

production of identifiable compounds (NRRL3_00148, NRRL3_00406, NRRL3_02186, 

NRRL3_07873, NRRL3_09545, and NRRL3_11765) and one (NRRL3_08781) appeared to 

stimulate the production of compounds which we could not identify (Figure 16).  The regulators 

of the malformins (NRRL3_07873), pyrophen (NRRL3_00406) and tensyuic acids/hexylitaconic 

acid (NRRL3_11765) (herein referred to cumulatively as alkyl citric acids) are to our knowledge 

currently unknown and potentially constitute a novel means of overexpression for these orphan 

compounds.   While the identity of the compounds generated from the overexpression of 

NRRL3_08781 is unknown, the transcription factor itself is situated between a PKS and an 

NRPS cluster.   This indicates that the compounds may be one of set of polyketides, short 

peptides or a hybrid if the PKS and NRPS are within the same cluster.   
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Figure 16.  Mass spectra of transcription factor overexpression strains overproducing identifiable compounds. The control strain 

is the vector transformant only (ANIp7) (A) NRRL3_00148 overexpression produces the azanigerones.  (B) NRRL3_09545 

overexpression produces BMS-192548/TAN-1612. (C) NRRL3_02186 overexpression increases production of fumonisins compared 

to controls. (D) NRRL3_00406 overexpression produces pyrophen. (E) NRRL3_11765 overexpression produces the tensyuic acids 

and other alkyl citric acids. (F) NRRL3_07873 overexpression produces malformin A. (G) NRRL3_08781 generates a set of unknown 

peaks.  The 214.0892 m/z observed in the positive spectra of the NRRL3_11765 overexpression and control strains correspond to the 

mass of n-butyl benzene sulfonamide; a common mass spectrometry contaminant [140]. 
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Among the transcription factors which generated identifiable (by mass spectrometry) 

compounds, our focus shifted to a single transcription factor (NRRL3_11765) where the mass 

spectrometry (MS) data revealed the presence the tensyuic acids (Figure 16E).  We selected 

these compounds for pathway reconstruction since, to our knowledge, they have no known 

genetic underpinnings and had been previously shown to possess useful biological properties 

[93, 94]. Three other alkyl citric acid masses corresponding to 2-carboxymethyl-3-hexylmaleic 

acid, its anhydride and hexylitaconic acid were also identified (Figure 16E).   

3.2.2 Overexpression of transcription factor NRRL3_11765: transcriptome analysis 

 

Examining the upregulated genes in the RNA-seq transcriptome of the NRRL3_11765 

overexpression strain (Table 7), we could determine which genes are likely involved in the 

biosynthesis of the alkyl citric acids.  Based on these expression we refined the previously 

annotated cluster which now included a gene of unknown function (NRRL3_11757) and 

excluded a transcription factor (NRRL3_11760), a zinc finger protein (NRRL3_11762) and a 

polyprenyl synthase (NRRL3_11768) (Figure 17).  The up-regulated genes in the cluster span 

from gene NRRL3_11757 to NRRL3_11769.  Based on the functional annotation of the up-

regulated genes within the cluster, we could only account for the production of the 2-

carboxymethyl-3-hexylmaleic acid compound.   We therefore assigned a cha (for 2-

carboxymethyl-3-hexylmaleic acid) identifier to the genes that are up-regulated in the 

NRRL3_11765 overexpression strain in this region. We therefore refer to the NRRL3_11765 

transcription factor as chaR, the overexpressing strain as chaR
OE

 and the parent strain as the 

control strain.  We also noted that another cluster containing genes (NRRL3_02448 – 

NRRL3_02450) with predicted functions to generate itaconic acid from citric acid [141] is 

down-regulated in chaR
OE

 (Table 8).   Itaconic acid was not detected in the extracellular growth 

medium or intracellular fractions of any of our strains (data not shown). 
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Figure 17. Clustered genes upregulated (grey and black arrows) by chaR and clustered genes 

whose expression is unaffected (white arrows) by overexpression of chaR.  Labelled cha 

genes represent backbone (black arrows) and accessory enzymes (grey arrows) determined to be 

involved in the production of hexylitaconic acid. 
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Table 7. Genes up regulated in the chaR
OE

 strain compared to controls.  Highlighted portion 

indicates cha cluster.  

Gene ID 
FPKM 

control 
strain 

FPKM 
chaR 

log2 
Fold 

Change 
p-value Predicted function 

NRRL3_11769 2.82 19.2 2.77 1.69E-05 Aldehyde dehydrogenase 

NRRL3_11767 0.06 36.1 9.23 8.94E-30 Fatty acid synthase subunit beta  

NRRL3_11766 0.06 82.98 10.43 1.72E-29 2-methylcitrate dehydratase 

NRRL3_11765 0.02 181.95 13.15 9.09E-41 Fungal specific transcription factor 

NRRL3_11764 0.01 1892.31 17.53 1.51E-55 Citrate synthase 

NRRL3_11763 0.09 1241.98 13.75 3.41E-53 Fatty-acid synthase 

NRRL3_11761 6.39 852.5 7.06 1.61E-24 MFS-type transporter 

NRRL3_11759 22.35 1547.48 6.11 6.85E-20 Dienelactone hydrolase family protein 

NRRL3_11758 2.19 23.51 3.42 1.71E-04 Fungal specific transcription factor 

NRRL3_11757 5.9 62.65 3.41 2.20E-07 Unknown function 

NRRL3_11501 2.15 17.03 2.99 2.14E-05 Amidohydrolase 2 family protein 

NRRL3_11500 88.84 1262.62 3.83 3.67E-11 Aldo/keto reductase family protein 

NRRL3_11100 3.53 23.39 2.73 3.00E-05 Short-chain dehydrogenase 

NRRL3_10103 16.72 687.64 5.36 4.98E-17 ATP-citrate synthase subunit 1 

NRRL3_10102 17.7 593.56 5.07 6.70E-16 ATP-citrate synthase subunit 

NRRL3_09843 2.19 51.75 4.56 1.05E-12 FAD-linked oxioreductase family protein 

NRRL3_09788 1.5 139.39 6.54 1.39E-18 Short-chain dehydrogenase 

NRRL3_09757 1.41 22.31 3.98 1.18E-08 Aldo/keto reductase family protein 

NRRL3_08741 2.51 15.45 2.62 3.65E-05 Unknown function 

NRRL3_08622 15.74 84.03 2.42 8.34E-06 Short-chain dehydrogenase 

NRRL3_08414 12.72 59.69 2.23 2.64E-05 Serine hydrolase FSH1 family protein 

NRRL3_08394 1.17 14.84 3.66 1.54E-06 Fungal specific transcription factor 

NRRL3_08390 4.09 24.57 2.59 8.50E-05 NmrA-like family protein 

NRRL3_08383 0 152.45 Inf 6.66E-37 O-methyltransferase family protein 

NRRL3_08061 19.2 93.78 2.29 2.07E-05 L-Serine ammonia-lyase 

NRRL3_07921 4.09 40.71 3.32 3.72E-06 Short-chain dehydrogenase 

NRRL3_07736 7.35 256.7 5.13 2.64E-15 Fungal specific transcription factor 

NRRL3_07496 2.33 34.4 3.88 7.29E-10 Transmembrane amino acid transporter protein 

NRRL3_07364 1.62 15.07 3.22 1.30E-06 MFS-type transporter 

NRRL3_07196 2.12 28.96 3.77 1.76E-09 Reverse transcriptase / Endonuclease 

NRRL3_07007 4.78 26.28 2.46 3.60E-05 C6-zinc finger domain-containing protein 

NRRL3_06970 8.42 90.73 3.43 3.51E-09 AMP-dependent synthetase 

NRRL3_06778 9.53 57.11 2.58 2.75E-05 3-oxoacyl-[acyl-carrier-protein] reductase 

NRRL3_06474 16.06 99.24 2.63 2.05E-06 Short-chain dehydrogenase 

NRRL3_06447 3 38.38 3.68 3.37E-09 Zinc-type alcohol dehydrogenase 

NRRL3_06436 1.02 63.29 5.96 4.87E-17 Beta-glucosidase 

NRRL3_06423 92.81 804.03 3.11 1.70E-08 Aldo/keto reductase family protein 
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NRRL3_06323 5.93 41.95 2.82 4.45E-06 Endonuclease III-like protein 

NRRL3_06281 0.97 17.51 4.17 1.48E-07 Zinc-type alcohol dehydrogenase 

NRRL3_06279 1.16 18.65 4.01 9.77E-09 MFS-type transporter 

NRRL3_06229 0.58 12.38 4.42 1.47E-09 Fungal specific transcription factor 

NRRL3_06131 21.24 131.9 2.63 2.80E-06 NADPH-adrenodoxin reductase, mitochondrial 

NRRL3_06061 0.44 23.53 5.74 5.59E-11 Unknown function 

NRRL3_05609 9.52 59.48 2.64 1.70E-05 NAD(P)-binding domain-containing protein 

NRRL3_05463 44.53 185.87 2.06 1.60E-04 GNS1/SUR4 membrane family protein 

NRRL3_05398 5.98 70.35 3.56 5.85E-08 Short-chain dehydrogenase 

NRRL3_04990 0.48 11.66 4.60 2.22E-08 Beta-glucosidase  

NRRL3_04324 4.94 54.14 3.45 3.94E-09 ABC-2 type transporter 

NRRL3_04323 5.55 99.76 4.17 4.82E-11 MFS-type transporter 

NRRL3_03973 1.85 69.79 5.24 3.01E-14 Disease resistance family protein 

NRRL3_03750 1.34 41.46 4.95 9.16E-12 FAD- domain protein/monooxygenase 

NRRL3_03531 43.04 179.24 2.06 8.20E-05 Cystathionine beta-synthase 

NRRL3_03431 61.4 452.81 2.88 2.84E-06 Acetyl-CoA carboxylase (ACC)  

NRRL3_03003 8.67 59.52 2.78 2.91E-06 Cytochrome P450 family protein 

NRRL3_02974 1.75 39.78 4.51 6.07E-10 Acyl-CoA desaturase 

NRRL3_02906 2.22 39.14 4.14 1.87E-09 NAD(P)-binding domain-containing protein 

NRRL3_02295 3 56.22 4.23 7.53E-10 Short-chain dehydrogenase 

NRRL3_02207 25.14 153.34 2.61 3.50E-06 Salicylate hydroxylase 

NRRL3_02206 5.49 35.93 2.71 3.99E-06 Hydantoinase B/oxoprolinase family protein 

NRRL3_02101 12.82 63.15 2.30 3.08E-05 Fungal specific transcription factor 

NRRL3_02100 4.76 115.48 4.60 1.05E-12 MFS-type transporter 

NRRL3_01768 59.17 497.8 3.07 3.32E-08 NAD dependent epimerase 

NRRL3_01429 1.77 15.98 3.17 8.17E-06 Short-chain dehydrogenase 

NRRL3_01224 12.1 52.92 2.13 8.14E-05 Carbohydrate-Binding Module Family 18  

NRRL3_01223 20.28 78.58 1.95 1.45E-04 Glycoside Hydrolase Family 55  

NRRL3_01212 8.35 60.4 2.85 6.10E-07 Carbohydrate-Binding Module Family 50 

NRRL3_01029 2.98 65.31 4.45 2.60E-10 Short-chain dehydrogenase 

NRRL3_00829 4.47 42.51 3.25 2.41E-07 Conserved unknown protein 

NRRL3_00745 2.66 242.79 6.51 3.77E-19 Unknown function 

NRRL3_00700 2.27 21.72 3.26 1.01E-05 Short-chain dehydrogenase 

NRRL3_00546 191.64 1145.5 2.58 3.62E-06 Mitochondrial citrate/oxoglutarate carrier protein 

NRRL3_00504 2.07 13.45 2.70 1.70E-04 Cis-aconitate decarboxylase 

NRRL3_00386 36.48 169 2.21 1.26E-05 MFS-type Sugar/inositol transporter 

NRRL3_00357 3.63 23.42 2.69 3.44E-05 Conserved unknown protein 

NRRL3_00308 4.19 81.05 4.27 1.86E-06 Unknown function 

*Inf = Infinite 
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Table 8. Genes down-regulated in the chaR
OE

 strain compared to controls.  Highlighted portion 

indicates putative itaconate gene cluster.  

Gene ID 
FPKM 

control 
strain 

FPKM 
chaR 

log2 
Fold 

Change 
p-value Predicted function 

NRRL3_11794 49.52 1.4 -3.25 2.24E-09 Conserved unknown protein 

NRRL3_11673 24.63 1.06 -2.86 3.56E-07 Basic-leucine zipper (bZIP) transcription factor 

NRRL3_11598 47.75 7.79 -1.65 1.60E-04 Amidase, hydantoinase 

NRRL3_11498 304.18 27.9 -2.17 1.02E-06 Cupin superfamily protein 

NRRL3_11493 31.46 2.87 -2.18 1.60E-05 Unknown function 

NRRL3_11028 182.51 26.6 -1.75 5.69E-05 SnoaL-like domain-containing protein 

NRRL3_10386 27.95 0.77 -3.27 6.03E-08 Unknown function 

NRRL3_10374 65.56 8.35 -1.88 9.33E-05 Zinc-type alcohol dehydrogenase 

NRRL3_10371 29.86 3.11 -2.06 1.78E-04 Serine hydrolase FSH1 family protein 

NRRL3_10369 66.51 7.31 -2.01 2.45E-05 Methyltransferase type 11 domain-containing protein 

NRRL3_10215 197.8 28.26 -1.77 1.39E-04 Heat shock protein 20 

NRRL3_10109 60.74 5.62 -2.17 1.38E-06 MFS-type transporter 

NRRL3_09550 131.31 1.05 -4.40 5.90E-21 MFS-type transporter 

NRRL3_09477 46.36 4.37 -2.15 1.52E-06 Cytochrome P450 family protein 

NRRL3_09010 101.68 14.55 -1.77 6.54E-05 Amidohydrolase family protein 

NRRL3_08986 33.71 2.58 -2.34 7.12E-06 Methyltransferase domain-containing protein 

NRRL3_08850 31.73 3.12 -2.11 1.70E-05 Amidase family protein 

NRRL3_08747 44.95 5.13 -1.98 7.41E-05 Heat shock protein 20 

NRRL3_08658 1556.54 239.27 -1.70 9.12E-05 Unknown function 

NRRL3_08340 135.51 1.2 -4.30 3.34E-13 Carboxymuconolactone decarboxylase family protein 

NRRL3_08288 97.09 5.48 -2.62 1.53E-09 AAA ATPase domain-containing protein 

NRRL3_07887 235.88 25.15 -2.04 2.58E-05 Unknown function 

NRRL3_07886 24.79 4.18 -1.62 1.42E-04 Tetratricopeptide-like helical domain-containing protein 

NRRL3_07772 40.23 5.22 -1.86 2.33E-05 Linoleate 8R-lipoxygenase 

NRRL3_07337 11.78 0.62 -2.68 2.50E-05 Unknown function 

NRRL3_06897 59.59 5.68 -2.14 6.65E-06 Cytochrome P450 family protein 

NRRL3_06872 25.22 5.05 -1.46 1.42E-04 Tetratricopeptide-like helical domain-containing protein 

NRRL3_06728 136.95 17.53 -1.87 3.69E-05 C2H2-like zinc finger domain-containing protein 

NRRL3_06394 223.43 18.58 -2.26 1.18E-06 EBP family protein 

NRRL3_06331 71.98 5.89 -2.28 1.17E-06 1-aminocyclopropane-1-carboxylate deaminase 

NRRL3_06275 41.31 2.04 -2.74 1.04E-10 Unknown function 

NRRL3_06189 46.8 6.75 -1.76 3.10E-05 Nonribosomal peptide synthetase-like enzyme 

NRRL3_05997 121.4 19.18 -1.68 8.57E-05 3-isopropylmalate dehydratase 

NRRL3_05625 14.37 0.96 -2.46 3.27E-07 Linoleate 10R-lipoxygenase 

NRRL3_05588 14.57 2.63 -1.56 4.74E-05 Hybrid PKS/NRPS 

NRRL3_05587 1052.45 106.59 -2.08 3.29E-06 EthD domain-containing protein 

NRRL3_05586 61.8 5.45 -2.21 6.36E-06 Zinc-type alcohol dehydrogenase 
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NRRL3_05464 19.84 0.08 -5.02 3.76E-06 Unknown function 

NRRL3_04967 45.12 3.9 -2.23 4.51E-05 Unknown function 

NRRL3_04660 308.04 14.58 -2.78 1.30E-10 Unknown function 

NRRL3_04562 16.84 2.21 -1.85 3.68E-05 HET domain-containing protein 

NRRL3_04536 14.83 0.84 -2.61 2.49E-06 Amidase 

NRRL3_04409 365.88 48.37 -1.84 2.55E-05 Glutathione S-transferase 

NRRL3_04122 287.64 24.5 -2.24 1.52E-07 NADH-cytochrome b5 reductase 

NRRL3_03871 168.99 2.25 -3.93 3.51E-13 Fungal hydrophobin family protein 

NRRL3_03740 22.64 1.45 -2.50 7.73E-06 Unknown function 

NRRL3_03591 168.78 12.09 -2.40 4.72E-07 Polysaccharide deacetylase 

NRRL3_03284 10.81 0.68 -2.52 1.23E-07 Transferase family protein 

NRRL3_03199 55.9 6.46 -1.96 2.24E-05 Metallo-dependent hydrolase  

NRRL3_03198 243.32 37.67 -1.70 1.38E-04 Guanyl-specific ribonuclease 

NRRL3_03130 200.84 23.89 -1.94 8.94E-06 Lactam utilization protein lamB 

NRRL3_02998 356.24 57.14 -1.67 1.33E-04 Nitrite transporter, high-affinity  

NRRL3_02996 95.28 7.43 -2.32 2.36E-07 GTP cyclohydrolase II family protein 

NRRL3_02994 40.22 3.64 -2.19 2.25E-05 Uracil phosphoribosyltransferase 

NRRL3_02986 178.86 22.14 -1.90 1.56E-05 Alpha/beta hydrolase fold domain-containing protein 

NRRL3_02951 11.17 0.74 -2.47 2.86E-06 MFS-type transporter 

NRRL3_02862 46.39 4.67 -2.09 2.28E-05 L-asparaginase 

NRRL3_02821 27.75 1.71 -2.54 5.32E-07 FAD-linked oxioreductase family protein 

NRRL3_02561 94.3 6.1 -2.49 1.27E-08 NADH:flavin oxidoreductase 

NRRL3_02560 399.35 22.49 -2.62 1.99E-09 NmrA-like family protein 

NRRL3_02557 218.09 18.01 -2.27 3.13E-07 Methionine aminopeptidase 1 

NRRL3_02534 40.8 2.21 -2.65 2.62E-08 NmrA-like family protein 

NRRL3_02450 33.78 1.25 -3.00 2.20E-09 Cis-aconitate decarboxylase 

NRRL3_02449 18.1 2.15 -1.94 1.31E-04 Citrate synthase 

NRRL3_02448 12.08 0.18 -3.83 2.11E-07 2-methylcitrate dehydratase 

NRRL3_01961 18.03 0.78 -2.86 1.38E-09 ABC transporter 

NRRL3_01724 153.1 4.51 -3.21 6.67E-12 Alpha/beta hydrolase fold domain-containing protein 

NRRL3_01672 46.37 3.67 -2.31 1.98E-06 FAD dependent oxidoreductase domain-containing protein 

NRRL3_01443 63.78 0.36 -4.71 7.30E-09 Unknown function 

NRRL3_01338 32.17 2.12 -2.48 3.63E-08 Calycin domain-containing protein 

NRRL3_01334 11.93 1.19 -2.10 2.34E-06 Non-Linear Nonribosomal peptide synthetase 

NRRL3_01127 64.17 5.72 -2.20 1.31E-06 Dihydroxyacetone kinase  

NRRL3_00992 16.3 0.1 -4.64 2.58E-10 Fatty acyl-CoA reductase 

NRRL3_00733 11.46 0.5 -2.85 1.99E-06 Fungal specific transcription factor 

NRRL3_00479 40 4.85 -1.92 1.94E-05 Sulfhydryl oxidase 

NRRL3_00287 468.88 14.52 -3.16 4.05E-11 Glutathione-dependent formaldehyde-activating family protein 

NRRL3_00247 16.63 0.53 -3.14 8.76E-07 Carbonic anhydrase 

NRRL3_00177 16.88 1.62 -2.13 1.08E-05 Carboxylesterase, type B family protein 

NRRL3_00095 13.82 1.43 -2.06 4.74E-05 Tetratricopeptide-like helical domain-containing protein 

NRRL3_00027 46.73 4.43 -2.14 1.63E-05 HAD-like hydrolase superfamily protein 
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3.2.3 Overexpression of transcription factor NRRL3_11765: Compound identification by nuclear 

magnetic resonance (NMR) 

 

We used NMR to elucidate the structures of compounds produced by the chaR
OE

 strain.  

The NMR analysis of isolated compounds from media extracts of the chaR
OE 

strain identified the 

structures of hexylitaconic acid, 2-carboxymethyl-3-hexylmaleic acid, hexylcitraconic acid, a 

hydroxylated form of hexylitaconic acid and a carbonylated form of hexylitaconic acid (Figure 

18, Table 9).   No structural solutions were obtained for the anhydride form of 2-carboxymethyl-

3-hexylmaleic acid, a compound that has previously been identified from A. niger [92], or any of 

the tensyuic acids and they remain unconfirmed and putatively identifiable only by MS.   
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Figure 18. Structures elucidated from chaR
OE 

media extracts.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 
 

Table 9. Chemical shifts and coupling constants for all elucidated structures isolated from 

chaR
OE 

media extracts.  Compound numbers correspond to structures in Figure 18. 

No. 

Chemical shifts (ppm) and coupling constants (Hz) 

2-carboxymethyl-3-

hexylmaleic acid 
Hexylitaconic acid 

Hexylcitraconic 

acid 

Hydroxylated 

hexylitaconic acid 

Carbonylated 

hexylitaconic acid 
13

C  
1
H  

13
C  

1
H  

13
C  

1
H  

13
C  

1
H  

13
C  

1
H  

1 165.093  
 179.571   166.253  

 175.709   178.495   

2 147.95   46.288 
3.485 (t)   

J2-5: 7.0 
144.755   46.561 

3.451 (t)            

J2-5: 7.0 
46.506   

3 135.596   136.909   140.415   139.428   137.075 
3.446 (t); 

J2-5: 7.5 

4 165.07   171.649   165.859   168.105   170.928   

5 24.782 

2.491 

(t); J5-6: 

8.0 

30.565 

5a: 

1.904 

(m);         

5b: 

1.706 

(m) 

24.426 

2.451 

(dt) J6-7: 

7.0; J6-8: 

0.5 

30.769 

5a: 

1.852 

(m); 5b: 

1.684 

(m) 

30.009 

5a: 1.932 
(dd); J5-

2: 7.5; 

J5-6: 

13.5            

5b: 1.716 

(dd); J5-

2: 7.5; 

J5-6: 

13.5 

6 27.309 
1.596 

(m) 
27.279 

1.368 ÷ 

1.245 

(m) 

27.537 
1.574 

(m) 
27.241 

1.323 ÷ 

1.369 

(m) 

26.799 
1.309 

(m) 

7 28.971 

1.283 ÷ 

1.303 

(m) 

28.888 

1.368 ÷ 

1.245 

(m) 

29.077 
1.304 

(m) 
28.857 

1.323 ÷ 

1.369 

(m) 

28.922 
1.342 

(m) 

8 31.149 

1.283 ÷ 

1.303 
(m) 

31.521 

1.368 ÷ 

1.245 
(m) 

31.331 
1.304 

(m) 
25.328 

1.323 ÷ 

1.369 
(m) 

23.263 
1.591 

(m) 

9 22.24 
1.283 ÷ 
1.303 

(m) 

22.529 
1.368 ÷ 
1.245 

(m) 

22.438 
1.304 
(m) 

32.113 
1.518 
(m) 

43.274 
2.442 (t); 
J9-8: 7.5 

10 13.718 

0.882 

(t); J10-9: 

7.0 

13.992 
0.874 (t) 

J10-9: 7.0 
13.969 

0.889 (t) 

J11-10: 

7.0 

61.556 

3.532 (t) 

J10-9: 

7.0 

209.493 

0.882 (t); 

J10-9: 

7.0 

11 29.1 3.566 (s) 130.231 

11a: 

6.550 

(s); 

9.477 
2.069 

(s) 
125.625 

11a: 

6.329 

(s); 11b: 

5.757 (s) 

129.851 

11a: 

6.527 

(d); J11a-

11b: 3.0    

11b: 

5.866 

(d); 

J11b-

11a: 3.0 

12 172.56     

11b: 

5.910 

(s) 
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3.2.4 Overexpression of transcription factor chaR: The tensyuic acids 

 

In both positive and negative MS modes, the chaR
OE

 strain exhibited peaks with masses 

corresponding to those of the four-hydrocarbon tail (C4) tensyuates A and F, the six-hydrocarbon 

tail (C6) tensyuates B-D, and the eight-hydrocarbon (C8) tensyuate E.  Moreover, the order of 

elution (F, A, B, C, D and E) of these acids, acknowledging the ambiguity of equal massed 

tensyuates A/F and C/D, appears consistent with that reported by Klitgaard, A., et al.  The 

Klitgaard,  A., et al study, like in our study, used a C18 column and a similar solvent gradient to  

ours [142].  To help visualize these peaks in isolation between chaR
OE

 and the control strain, we 

used extracted ion chromatograms (EIC) (Figure 19A-D).  One item of note was the absence of 

detectable C4 and C8 versions of hexylitaconic acid and 2-carboxymethyl-3-hexylmaleic acid 

above peak intensity threshold (5x10
4
) indicated either a potential preference for the production 

of the C6 tensyuate variates in A. niger NRRL3.  All EIC’s for putative compounds identified by 

mass spectrometry are shown in Figure 19.  The MS profile of the intracellular fraction showed a 

similar peak complement to that of the extracellular media.  Intracellular fractions did not have 

any unique identified peaks and were missing peaks with m/z ratios of 245.1017 (tensyuic acids 

A/F), 197.117 (hexylcitratconic acid) and 257.1017 (veridicatic acid) that were present in 

external fractions.  Peaks which were common to both fractions were ~2 orders of magnitude 

lower in the intracellular fractions compared to external fractions. 
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Figure 19.  Overlaid EICs of control (black) and chaR
OE

 (grey) strains.  All EICs are shown in 

positive mode excluding panel D in negative mode.  Numbers above peaks represent peaks 

above detection threshold; peaks below detection threshold are not numbered apart from panel C 

where peak 1 appeared above threshold in negative mode only.   
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3.3 Alkyl citric acid pathway reconstruction in A. niger 

 

Combining MS, NMR and transcriptomic data, we reconstructed a biosynthetic pathway 

that included the tensyuic acids.  To fill in the gaps in the biosynthetic sequence for the 

production of 2-carboxymethyl-3-hexylmaleic acid and the tensyuic acids, I tried to anticipate 

the existence of intervening compounds. Adding the chemical formulas of predicted compounds 

to our database, I attempted to identify previously unidentifiable peaks in our MS spectrum data 

to gain supporting evidence for the compounds presence in growth media.  Starting with 2-

carboxymethyl-3-hexylmaleic acid, we anticipated the existence of a 2-hexylcitric acid precursor 

based on the up-regulation of cha6, the gene predicted to encode 2-methylcitrate dehydratase 

(Table 7).  A lactone ring anhydride form of 2-hexylcitric acid was also anticipated since a ring 

forms of other alkyl citrates had also been previously identified [92].  The presence of a ring 

opening dienelactone hydrolase (the up-regulated cha2, Table 7) also supported this prediction.  

Surveying our MS data with the chemical formulas for these two compounds, peaks with m/z 

ratios corresponding to 2-hexylcitric acid and its anhydride were identified in chaR
OE 

spectra 

(Figure 19A, F).   

For an explanation of 2-hexylcitric acid/anhydride biosynthesis, we attempted to 

distinguish whether the FAS is linking a completed fatty acid to a citric acid in the last iteration 

or if the FAS uses a citric-acid derivative as a starter unit.  Examining scenarios where citric acid 

is attached at the end or the beginning of the FAS chain elongation process failed to infer 2-

hexylcitric acid production due to the necessary loss of a carboxylic acid group in the form of 

CO2 from the citric acid moiety of 2-hexylcitrate in the condensation reaction [83, 143].  The 

loss of a carboxylic acid group from the fatty acid would result in a molecule with odd numbered 

hydrocarbon tail which was not detected in our MS spectrum data.  Attention shifted to the 

citrate synthase (Cha5) enzyme as a possible medium to carry out a condensation reaction.  

Analogous to the mechanism in citrate, 2-methylcitrate and 2-decylcitrate synthase enzymes 

[144, 145], I proposed that the clustered citrate synthase acts as the linking enzyme for 

oxaloacetate and fatty acid-CoA.  Supporting this idea, our expression data indicate a significant 

up-regulation of two citrate lyase subunit genes (NRRL3_10102, NRRL3_10103) whose enzyme 

product breaks down cytosolic citric acid to oxaloacetate and acetyl-CoA (Table 5) [146].  

During the experimental work for this thesis, a similar mechanism using a citrate synthase and 2-



84 
 

methylcitrate dehydratase enzyme was also proposed for the similarly structured hept/nonadride 

alkyl citrates by two other groups in the fungi Talaromyces stipitatus and Byssochlamys fulva 

[147, 148].   

For the biosynthesis of hexylitaconic acid, I proposed a decarboxylation of 2-

carboxymethyl-3-hexylmaleic acid; analogous to the itaconic acid pathway [141].  Reviewing 

our transcriptomic data (Table 7), I identified a non-clustered and significantly up-regulated cis-

aconitate decarboxylase gene (NRRL3_00504) which may be carrying out the decarboxylation 

reaction however, the clustered gene of unknown function (NRRL3_11757) cannot be ruled out 

as a candidate for this reaction. Alternatively, the recent work with the similarly structured 

hept/nonadrides suggested that the decarboxylation reaction may be occurring non-enzymatically 

via a “facile decarboxylation” [149].   

Focusing on the ring and open forms of the alkyl citrates, I surmised that the cha5 citrate 

synthase produces the ring anhydride forms of the alkyl citrates instead of the open forms for two 

reasons.  Firstly, the Cha2 enzyme facilitates the conversion of anhydride to acid forms and there 

does not appear to be any upregulated genes in our expression data which could produce 

enzymes to facilitate the reverse reaction.  Secondly, spontaneous condensation reactions of 

carboxylic acid converting dicarboxylate molecules to closed anhydride forms do not occur to 

the best of our knowledge [150].   It is currently unclear if the subsequent reactions converting 2-

hexylcitric acid/anhydride to the tensyuates take place in the open, closed or both forms. Figure 

20A shows a reconstructed pathway for 2-carboxymethyl-3-hexylmaleic acid and hexylitaconic 

acid. 
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Figure 20. A proposed biosynthetic pathway for hexylitaconic acid (A) and its conversion 

into the tensyuic acids (B).  Shaded boxes represent compounds identified by both MS and 

NMR.  All non-shaded compounds, apart from compounds 2a, 2b and 3, (inferred by enzymatic 

actions of FAS and citrate lyase enzymes) were identified by MS only. 

 

The lack of enzymes in the cha cluster to carry out tensyuate biosynthesis suggested that 

non-clustered enzymes might be involved; like we observed with the up-regulated and non-

clustered citrate lyase genes.  The transcriptomic data revealed a single significantly up-regulated 

o-methyltransferase (NRRL3_08383, only expressed in chaR
OE

 strain) which may be carrying 

out the o-methylations/o-ethylations (o-(m)ethylations) generating the tensyuates.  As for the 

carboxylate tail, the hydroxylated and carbonylated forms of hexylitaconic acid found in our 

NMR and MS analysis as well as the clustered aldehyde dehydrogenase (cha8) provided 

potential clues.  I surmised that a ω-oxidation reaction might be taking place on the terminal end 

of the hexylitaconic acid hydrocarbon tail.  A key piece of evidence was clustered aldehyde 
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dehydrogenase which facilitates the terminal enzymatic step in the ω-oxidation reaction.  

Additionally, the ω-oxidation reaction includes a P450 monooxygenase generating a 

hydroxylated hydrocarbon tail [148] and an alcohol dehydrogenase generating a carbonylated 

hydrocarbon tail [151].  This pathway has also been previously characterized in filamentous 

fungi with other fatty acid compounds [152].  Transcriptomic data showed two monooxygenases 

(NRRL3_03003, NRRL3_03750) that were significantly upregulated in the chaR
OE

 strain (Table 

7).  For the dehydrogenation portion of the ω-oxidation reaction, twelve zinc-type alcohol and 

short chain dehydrogenase candidates are significantly upregulated one or more of which may be 

contributing to the ω-oxidation reaction (Table 7).   Figure 20B shows a proposed pathway 

converting hexylitaconic acid to the tensyuates.   Lastly, we detected a number of peaks with m/z 

ratios corresponding to viridicatic acid; a compound nearly identical to 2-carboxymethyl-3-

hexylmaleic anhydride possessing an additional keto group near the aconitate head.  The other 

peaks may indicate alternate locations of the keto group including at the terminal end of the 

hydrocarbon tail potentially as part of a ω-oxidation reaction of 2-carboxymethyl-3-hexylmaleic 

anhydride.    

3.4 Supporting the reconstructed pathway by gene deletion: Using the reconstructed alkyl citric 

acid pathway to predict the metabolic outcomes from gene deletions 

 

To test the predictive power of our reconstructed pathway we designed three deletion 

cassettes for three genes in our pathway.  We selected first the clustered cha6 gene for deletion to 

lend support for the existence of our predicted 2-hexylcitric acid/anhydride and potentially obtain 

a structural solution by NMR.  Attributing the inability to detect 2-hexylcitric acid/anhydride to a 

lack of sufficient material, we anticipated that a cha6 deletion strain (∆cha6:chaR
OE

) would 

achieve 2-hexylcitric acid/anhydride accumulation and allow for a structural determination of 

these compounds by NMR. I also anticipated the elimination of compounds downstream of 2-

hexylcitric acid/anhydride in the pathway.   

The ∆cha6::chaR
OE

 strain yielded an increased peak area corresponding to the mass of 2-

hexylcitric acid with a log2 fold change of 2.982 ± 0.15 (p-value < 0.01) and an increased peak 

area corresponding to the mass of 2-hexylcitric anhydride with a log2 fold change  of 3.792 ± 

0.26 (p-value < 0.01). All downstream compounds including the tensyuate m/z peaks were not 
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detected in MS data (Figure 21A-D).  Analyzing media extracts of our ∆cha6::chaR
OE

 by NMR 

we were able to verify the structures of 2-hexylcitric acid and 2-hexylcitric anhydride (Table 10, 

Figure 22).     

 

 

 

 

 

 



88 
 

Figure 21.  Mass spectra of chaR
OE

 strain (A).  Mass spectra of ∆cha6:chaR
OE 

(B).  Overlaid EICs from the chaR
OE

 (dark gray), 

∆cha6:chaR
OE 

(light gray) and control strains (black but too low for visibility) for 2-hexylcitric acid in positive mode (C), 2-

hexylcitric anhydride in positive mode (D). The 2-hexylcitric anhydride compound appears to correspond to peak 1 in panel D.
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Table 10. Chemical shifts and coupling constants for 2-hexylcitric acid and 2-hexylcitric 

anhydride structures isolated from ∆cha6::chaR
OE 

media extracts.   

 

No. 

Chemical shifts (ppm), coupling constants (Hz), and COSY correlation 

2-hexylcitric acid 2-hexylcitric anhydride 

13C  1H  COSY 13C  1H  COSY 

1 DMSO

* 

1a: 2.898 (d); 1b: 

2.504 (d); J1a-1b: 

16.0 

H1a-H1b    

2 79.510   173.932   

3 DMSO

* 

2.713 (dt) 
J3-4a: 14 ; J3-4b: 1.0 

H3-H4a-

H4b 

75.458   

4 31.460 4a: 2.377 (m); 
4b: 1.651 (m) 

H4a-H4b-

H5 

54.081 2.4025 (m) H4-H6a-H6b 

5 27.112 1.444 (m) H5-H4-H6 175.215   

6 29.032 1.226 (m) H6-H5-H7 26.923 6a: 1.651 (m),  

6b: 1.393 (m) 

H6a-H6b-

H7a-H7b 

7 31.582 1.226 (m) H7-H6-H8 27.750 7a: 1.226 (m),  

7b: 1.137 (m) 

H7a-H7b-

H6a-H6b-H8 

8 21.208 1.118 (m) H8-H9-H7 28.941 1.226 (m) H8-H7a-H7b-

H9 

9 14.531 0.842 (t) J9-8: 7.0 H9-H8 31.460 1.226 (m) H9-H8-H10 

10 174.18

3 

  22.423 1.226 (m) H10-H11-H9 

11 174.33

4 

  14.349 0.847 (dt) J11-10: 
7.0, 

J11-9: 1.5 

H11-H10-H9 

12 178.02

2 

  41.227 12a: 2.898 (d); 
12b: 2.504 (d); 

J12a-12b: 16.0 

H12a-H12b 

13    171.974   

*indicates signal overlap with DMSO. 
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Figure 22.  Structures elucidated from ∆cha6::chaR
OE  

media extracts.   

 

Two additional cassettes were constructed to test the ω-oxidation and o-(m)ethylation 

aspects of the reconstructed pathway.  I selected the NRRL3_03750 as a deletion target to test ω-

oxidation since the log2 fold change in expression for NRRL3_03750 was higher than for 

NRRL3_03003 (4.95 ± 0.15 vs 2.78 ± 0.02).  The o-methyltransferase NRRL3_08383 was 

selected to test o-(m)ethylation in the pathway as the only candidate for that reaction.  Based on 

our pathway reconstruction, we predicted that a ∆NRRL3_03750::chaR
OE

 strain should terminate 

production at step 6 (Figure 20B) while a ∆NRRL3_08383::chaR
OE

 strain would terminate 

production before the tensyuic acids at step 8 and potentially generate enough material for NMR 

structural resolution of the carboxylated hexylitaconic acid at that step.   

The MS profile of the ∆NRRL3_03750::chaR
OE

 strain showed no apparent difference in 

identified peaks when compared to the MS profile of chaR
OE

.  Based on these data 

NRRL3_03750 does not appear to be involved in alkyl citric acid production.  A deletion 

cassette was also constructed for the o-methyltransferase NRRL3_08383 however the 

∆NRRL3_08383::chaR
OE 

strain could not be found despite extensive mutant screening.  

3.5 Citric acid levels in control, chaR
OE

 and ∆cha6:chaR
OE

 

 To support our premise that citric acid is the primary molecule used for alkyl citric acid 

production, we measured the relative fold change of citric acid in control, chaR
OE

 and 

∆cha6::chaR
OE

 strains.  We predicted that both the chaR
OE

 and ∆cha6::chaR
OE

 strains would 



91 
 

require a greater pool of citric acid than the control strain in order to sustain both alkyl citric acid 

production and primary metabolism from the citric acid cycle.  We also noted that the chaR 

transcription factor contains a mitochondrial sequence tag indicating that it may also be involved 

in the regulation of the citric acid cycle.  The fold change in citric acid levels was determined by 

peak area from MS data.  We observed a significant increase of citric acid in the chaR
OE

 (log2 

fold change = 5.36 ± 0.81, p-value < 0.01) and ∆cha6::chaR
OE 

(log2 fold change = 3.96 ± 0.77, p-

value < 0.01) strains compared to the control strain.  Furthermore, the level of citric acid in the 

chaR
OE 

strain was significantly higher than in the ∆cha6:chaR
OE

 strain (log2 fold change = 1.41 ± 

0.39, p-value < 0.01). 
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Discussion 

4.1 Secondary metabolism genes and gene clusters in A. niger NRRL3 genome 

4.1.1 Backbone enzymes in the genomes of A. nidulans, A. oryzae, A. fumigatus and A. niger. 

 

Differences in the distribution of SM enzyme types found in A. nidulans, A. oryzae, A. 

fumigatus and A. niger indicate that in addition to evolutionary relatedness, determination of the 

complement of SM genes in Aspergillus species may be subject to both horizontal gene transfer 

and gene cluster loss. We observed in the case of the four Aspergillus species under study that 

the distribution of SM enzyme types in A. nidulans appears to be more similar to that of A. niger 

and A. oryzae than that of the more closely related A. fumigatus [152].  The A. fumigatus genome 

also appears to have comparatively very few SM backbone enzymes compared to the other 

Aspergilli suggesting substantial SM gene cluster loss during its evolution.  While a phylogenetic 

and sequence analysis of the backbone enzymes in the studied Aspergilli was not performed to 

see which SM enzymes are shared between them, the number and category distribution 

differences of these enzymes might be explained by both horizontal gene transfer and 

gene/cluster loss.  Horizontal gene transfer of SM clusters has been previously inferred in 

filamentous fungi in the phylogenetic distributions of the sterigmatocystin and fumonisin clusters 

[152, 153].   

An additional line of evidence for the dynamic nature of SM clusters comes from our A. 

niger species comparison.  The results of this analysis showed, as in previous studies, that strains 

of the same species can lose or gain not just backbone enzymes but entire SM clusters (Figure 

16) [75].   In some cases a remnant backbone “gene” potentially indicates where an SM cluster 

had left the genome.  

4.1.2 Remnant cluster analysis 

 

The BLASTP method using the query sequences of contiguous SM domains to search for 

backbone enzymes in A. niger NRRL3, helped locate remnant backbone genes (in addition to the 

ochratoxin PKS remnant) in both the A. niger NRRL3 and CBS 513.88 genomes.  One aspect of 

this search revealed that it is mainly the highly reducing PKS backbone class that tend to leave 

behind a gene remnant.  To our knowledge, the reason and mechanism behind this observation is 
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currently unknown but a potential clue may lie in the evolutionary relatedness of highly reducing 

PKS enzymes with fungal FAS backbone genes.  Both FAS and PKS enzymes are currently 

thought to have a common point of origin given the similarities in their domain structure and 

metabolic products [154].  The tendency of highly reducing PKS enzymes to leave behind a 

portion of their 3’ end sequence may be an indication of their evolutionary origins from a 

progenitor it shared in common with fungal FASs.  A typical fungal FAS exists as a heterodimer 

wherein the alpha subunit contains an ACP domain followed by KR and the beta subunit 

containing AT and ER domains [153].  The tendency for PKS-like remnants to retain the ACP, 

and in some cases the KR domain, but not AT and rarely ER (An01g02030) domains may point 

to an FAS-like enzyme subunit fusion event in the past that later evolved into the highly reducing 

PKSs.  Further analysis and testing of these remnants from within other genomes are required to 

obtain a more extensive list of PKS-like enzymes to support our limited findings.    

Using protein sequences with only single SM domains as a subsequent BLASTP remnant 

search, no additional remnant genes were found. The vast majority (89 of 114) of single domain 

proteins observed in the NRRL3 genome were the PKS ER and KR domains.  Moreover, only 

one instance of a PKS-KS and PKS-AT domain were observed and no instances of genes 

containing a single PKS-DH could be found.  The significance of this observation is currently 

unclear however I speculate that these single domains are modified over time from remnants 

since nearly all of the single domain proteins sequences I could find appear in the 3’ end of 

highly or partially reducing PKSs like the remnants. These proteins may have been adapted for 

other novel functions or potentially as tailoring enzymes in other SM clusters.  A more extensive 

search through other fungal genomes may provide support for this hypothesis. 

Lastly, the PKS-like remnants appeared in two contexts within the genome.  Either only 

the backbone enzyme was missing or surrounding clustered genes and the backbone gene were 

missing.  It is unclear why these two types of cluster loss occur. A detailed study search for 

common sequence markers from within intact clusters and surrounding a homologous remnant 

may provide insight as to a possible mechanism of SM cluster loss by revealing the proteins 

which bind to those sequences.  
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4.1.4 The azanigerone and unknown FAS split cluster 

 

The position of the azanigerone cluster within the genome is one of the puzzling aspects 

of our cluster analysis.  To our knowledge, there is no observed instance of SM clusters 

appearing within other separate SM clusters.  It is currently unclear if the azanigerone cluster 

inserted itself within the FAS cluster or if the FAS cluster has split and inserted at either end of 

the azanigerone cluster.  A phylogenetic analysis of both clusters in related species may help sort 

out which scenario is correct.  If most related species possess the azanigerone cluster alone it is 

more likely that the FAS cluster inserted around it.  Conversely if most related species have the 

FAS cluster alone it is likely that the aznigerone cluster inserted into the FAS cluster. This 

unique organization may also present an insight into the horizontal gene transfer of SM clusters.   

By analyzing the sequences of these split clusters, DNA sequence markers could be revealed 

which may serve to identify mechanisms for SM cluster insertions (as opposed to the deletions 

outlined in the preceding section) into fungal genomes.   

4.1.5 Backbone definition in A. niger NRRL3 genome 

 

A comparison of the clusters defined in A. niger NRRL3 to CBS 513.88 revealed both 

strains share a nearly identical set of SM clusters.  However, like in previous A. niger strain 

comparisons [75], we also observed some differences in the composition of some clusters.  

Cluster differences between A. niger NRRL3 and CBS 513.88, as well as between other 

Aspergilli, appeared to take four forms: 1) completely missing clusters, 2) rearranged or 

dispersed clusters, 3) clusters with absent tailoring enzymes, and 4) truncated/remnant backbone 

genes.  Differences corresponding to tailoring gene complement within clusters or cluster 

rearrangements appear to have only minor effects on SM production in some cases.    The 

fumonisin cluster of A. niger has only 11 of the 17 genes reported in Fusarium species but can 

still produce fumonisins B2 and B4 [153].  Additionally, the scattered pigmentation cluster  in A. 

niger still generates DHN melanin and its pigment derivatives despite its extensive 

rearrangement in the genome [103].    In cases where a backbone enzyme is missing, 

metabolomics changes can be much more profound.  For example, the inability to produce 

ochratoxin by strain NRRL3, as compared to strain CBS 513.88 [113] can be explained by 

partial loss of the ochratoxin PKS gene since the core molecule can no longer be made.   
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4.2 Overexpression of defined clusters 

4.2.1 Transcription factor overexpression induces the production of SMs from their parent 

clusters in only a few cases 

 

By overexpressing the regulators of defined clusters, we sought to determine their 

metabolic products.  In the majority of cases, MS data from strains overexpressing clustered 

transcription factors (28 of 35) were similar to the spectra from the non-expressing controls 

indicating a lack of expression from cryptic clusters.  The reason for the lack of cluster activation 

by clustered transcription factor overexpression is unclear. I submit however, four potential 

explanations that may serve as considerations in similar experiments in the future.  First, given 

the random integration of our overexpression vectors, the observed difficulties in cluster 

expression might be linked to vector insertion into transcriptionally silent or poorly expressing 

areas of the genome. Similarly, insertion in areas of high expression may cause a negative 

feedback and shut down production of the transcription factor.  A targeted insertion of 

transcription factor overexpression vectors into moderately transcriptionally active areas may 

solve this problem.  Second, some mechanism of repression may be involved in the regulation of 

SM clusters.  The relatively low expression level of chaR despite being under the control of a 

strong promoter could indicate that A. niger may have countermeasures in place to reduce SM 

transcription factor transcript/protein levels or to inhibit their function.   Deletion of these 

inhibitory mechanisms, once identified, may facilitate SM biosynthesis from target clusters.  

Third, clustered transcription factors may only regulate a small number of SM clusters and the 

majority may be regulated by transacting transcription factors from elsewhere in the genome or 

by global regulators like the LaeA which regulates 20-40% of SM genes in A. fumigatus [109].  

Global repressors of secondary metabolism may also be considered.  Lastly, epigenetic factors 

can also influence the expression of SM clusters [110].  Reducing epigenetic gene silencing 

mechanisms may then induce expression either on its own or by subsequent expression of 

clustered transcription factors.   
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4.2.2 Transcription factor induced SM production reveals the putative genetic underpinnings of 

orphan compounds 

 

From the transcription factors that appeared to induce SM production, we detected the 

overproduction of three identifiable orphan compounds.  These were pyrophen, the alkyl citric 

acids and the malformins. The gene clusters associated with pyrophen and the tensyuic acids 

appear to have enzymatic functions that coincide with the chemical structures for these 

compounds.  In the case of the putative pyrophen cluster NRRL3_00410 (transcription factor 

NRRL3_00406), a tyrosinase/chatechol oxidase and an NRPS-like gene provide ready 

explanations for the incorporation of a benzyl group linked to a nitrogen atom from an aromatic 

amino acid like tyrosine or phenylalanine (Figure 9, Table 4).  Looking at the alkyl citric acids, 

the FAS and citrate producing/modifying enzymes in the NRRL3_11765 cluster appeared to 

explain the fatty acid and citrate derived components of the tensyuic acid compounds [93].  In 

the case of the malformins however, the biosynthetic mechanism could not be worked out based 

on the cluster in the vicinity of the transcription factor. 

Overexpression of NRRL3_07881 transcription factor resulted in the over-production of 

malformins. However, the SM gene cluster encompassing the NRRL3_07881 transcription factor 

does not show any corresponding backbone or tailoring enzymes explaining its biosynthesis. The 

malformins are cyclic pentapeptides containing a disulfide bridge between two cysteine residues 

(Figure 9).  The main backbone enzyme in the NRRL3_07881 cluster is a partially reducing PKS 

(NRRL3_07884) which does not generate peptides according to current understanding [50, 67, 

71].  An NRPS-like enzyme (NRRL3_07881) is also present but it contains only a single A 

domain.  Since the current understanding of NRPS peptide assembly proposes that each A 

domain can recognize only one amino or hydroxyl acid and because malformins comprise four 

different amino acids (L-isoleucine, two D-cysteines, L-valine, and D-leucine), the minimum 

number of A domains for a malformin producing NPRS should be four [155].  Moreover, given 

that both D-amino acids are incorporated along with L-amino acids, ribosomal production of the 

malformins is also unlikely given that protein biosynthesis only incorporates L-amino acids and 

does not cause peptide cyclization.  Considering these constraints, NRRL3_07881 may be 

regulating malformin production from a distantly located cluster.  A review of the annotated 

clusters revealed that, an NRPS cluster containing the NRPS backbone NRRL3_08969 is a likely 
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candidate.  The NRPS backbone contains four A domains as predicted as well as a disulfide 

modifying enzyme (NRRL3_08968) which could account for the disulfide bridge between 

malformin’s two cysteine residues (Figure 9B) [156].  Proteomic analysis (data not shown) of 

our malformin producing strain was inconclusive as no backbone enzymes were found to be up 

regulated.  A transcriptomic profile may provide a more definitive answer. 

4.3 Alkyl citric acid pathway reconstruction in A. niger 

4.3.1 Low production of some metabolites may preclude their structural elucidation by NMR. 

 

The pathway reconstructed by NMR, MS and transcriptome data provided insights into 

the biosynthesis of the alkyl citric acids.  However, some of the proposed precursors and 

terminal products could not be identified by NMR.  We attributed our inability to obtain 

structural solutions for these compounds to a lack of sufficient material.  Looking at 2-

carboxymethyl-3-hexylmaleic anhydride, the lack of sufficient material may be due in part to the 

ring opening action of the cha2 gene (log2 fold change = 6.11 ± 0.90) skewing the state of this 

compound to an open acid form.  As for the tensyuic acids and the tail carboxylated 

hexylitaconic acid, the lack of sufficient material seemed less obvious.  The cha cluster lacked 

all enzymes, save cha8 (log2 fold change = 2.77 ± 0.36), to carboxylate the hexylitaconic acid 

tail by ω-oxidation.  However, the low expression levels of the gene cha8, the gene of unknown 

function (which may also be involved in ω-oxidation) (log2 fold change = 3.41 ± 0.23) and the 

non-clustered cis aconitate decarboxylase NRRL3_00504 (log2 fold change = 2.70 ± 0.02) may 

point to a low frequency of ω-oxidation and subsequent decarboxylation due low enzyme 

production.  Based on our pathway, this could then lead to a low concentration of tensyuic acids.  

It is also worth pointing out that some of the compounds which could not be identified by 

NMR had MS peak areas comparable to or higher than some of those which could be elucidated 

by NMR (Figure 19).  For instance, peak areas corresponding to tensyuic acids C and D (Figure 

19B) that could not be identified by NMR were ~10 fold higher than that of hexylitaconic acid 

(Figure 19E)  which could be identified by NMR.  This discrepancy may be due to ionization 

differences between these compounds; those which ionize better may produce higher peaks 

despite having low concentrations since more of its ions hit the MS detector.   
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4.3.2 Strategies for the detection of the tensyuic acids 

 

Currently the only support this study has been able to show for the production of the 

tensyuates by chaR overexpression is the detection of peaks with m/z ratios corresponding to the 

tensyuic acids in MS data and the order of their elution on a C18 column.  If a lack of sufficient 

material is responsible for our inability to detect the tensyuates by NMR, increasing tensyuate 

concentration may help.  To achieve this, we propose two ways of increasing tensyuate 

concentration.  The first method involves the overexpression of the decarboxylating enzyme(s) 

generating increased hexylitaconic acid or the enzymes putatively involved in ω-oxidation (like 

cha8).  A second method is to simply grow greater volumes of stationary culture to isolate 

enough material.   

4.3.3 Citric acid feeds the alkyl citric acid pathway 

Based on the upregulated citrate lyase subunits which break down citric acid [146] and 

the action of the Cha5 citrate synthase, citric acid appears to be the primary building block 

feeding the alkyl citric acid biosynthetic pathway.  Assays to quantify citric acid by MS analysis 

also showed that transcription factor induced expression of this pathway appears to have a 

corresponding increase in the concentration of extracellular citric acid.  In the case of the 

∆cha6:chaR
OE

, we observed that while the relative concentration of citric acid was significantly 

higher than the control strain, it was significantly lower than the chaR
OE

 strain.  The reason for 

this difference is unclear however, I speculate that the significant increase of 2-hexylcitric 

acid/anhydride may be causing a negative feedback loop through some as yet unknown 

mechanism which is either reducing citric acid production, reducing the transport of citric acid to 

the cytosol or shunting the breakdown products (oxaloacetic acid and acetyl-CoA) of citric acid 

into other pathways. 

A key feature in this early part of the alkyl citric acid pathway appears to be a highly 

upregulated mitochondrial citrate/oxoglutarate carrier protein (NRRL3_00546, log2 fold change 

= 2.58 ± 0.23) (Table 7). In Saccharomyces cerevisiae, the orthologous mitochondrial transporter 

functions as a citric acid shuttle (by oxoglutarate exchange) from the mitochondrion to the 

cytosol in order to increase the redox state of cytosolic NADPH (Figure 23) [157].  The specific 

role of this antiporter in the reconstructed alkyl citric acid pathway is unknown as the enzymes 
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converting citrate to isocitrate (Aco1p) and isocitate to oxoglutarate (Idp2p) do not appear to 

have a corresponding upregulation in the genome following chaR overexpression.  However, I 

anticipate that the NRRL3_00546 up-regulation may be a response to increase the shuttling of 

citric acid from the mitochondria to the cytosol in order to feed the alkyl citrate pathway, 

generate NADPH required for fatty acid biosynthesis [158] or both.  Lastly, the chaR 

transcription factor appears to contain a mitochondrial localization sequence indicating a 

potential role in gene regulation in the mitochondria.  Green fluorescence protein fusion with 

chaR may help confirm its localization following translation.   

 

Figure 23.  Schematic of mitochondrial citrate/oxoglutarate carrier protein (Yhm2p) function in 

S. cerevisiae.  Taken from Castegna, A., et al. [157] 

 

 The observed significant downregulation of what appears to be an itaconic acid pathway 

in the chaR strain is also noteworthy.  Since this pathway facilitates the conversion of citrate to 

aconitate to itaconate [141] it appears that A. niger may be downregulating this pathway to focus 

citrate flux to the alkylcitrate pathway.  If this assessment is correct, deletion of the cha cluster 

may generate cytosolic citric acid and other small molecules (acetyl-CoA and oxaloacetate) with 

lower diversion to other pathways.  A strain overproducing these small molecular building 

blocks could be used to make a variety of endogenous and non-native SMs; particularly fatty 

acid and polyketides which require acetyl-CoA and malonyl-CoA for biosynthesis.  Moreover, 
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the upregulated acetyl-CoA carboxylase gene NRRL3_03431 (Log2 fold change = 2.88 ± 0.57) 

(Table 7.) may be facilitating increased production of malonyl-CoA [159].   

4.4 Testing the reconstructed pathway by gene deletion 

4.4.1 The mechanism of 2-hexylcitric acid and 2-carboxymethyl-3-hexylmaleic acid biosynthesis 

is similar to that of the heptadride/nonadrides 

 

Our reconstructed pathway successfully predicted the metabolic outcome of a cha6 

deletion and allowed for the structural elucidation of 2-hexylcitric acid/anhydride by NMR.  

During the preparation of this thesis, the citrate synthase/2-methylcitrate dehydratase 

reconstructed mechanism for 2-hexylcitric acid and 2-carboxymethyl-3-hexylmaleic acid 

biosynthesis was proposed by two other groups for the production of the hept/nonadrides in T. 

stipitatus and B. fulva [147, 149].  A notable difference between our alkyl citric acid pathway 

and the hept/nonadride pathway is in the production of the hydrocarbon tails.  In the 

hept/nonadride pathway the tail is generated by a highly reducing PKS rather than a FAS [147]. 

While the full gene cluster of the hept/nonadrides does not appear to be experimentally defined 

in T. stipitatus or B. fulva, these clusters appear to lack dienelactone hydrolase [147, 148].  This 

may indicate a preference for the ringed anhydride forms (the authors only show the ringed 

forms) for these species while in A. niger, the similarly structured alkyl citric acids appear in 

both the acid and anhydride forms.  There is currently no indication that tail carboxylation takes 

place for the hept/nonadrides. 

4.4.2 Deletion of non-clustered genes predicted to be involved in ω-oxidation and o-

(m)ethylation had no effect on alkyl citric acid production 

 

We intended to demonstrate direct involvement of non-clustered genes in the 

biosynthesis of alkyl citric acid SMs by deletion of significantly upregulated monooxygenase 

and o-methyltransferase genes.  In the case of the NRRL3_08383 o-methyltransferase gene, a 

deletion strain could not be obtained despite extensive screening of transformants.  Additional 

attempts at obtaining a deletion mutant need to be carried out to support the o-(m)ethylation 

aspect of the reconstructed pathway.   
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Support for the ω-oxidation of hexylitaconic acid portion of the pathway is provided by 

the structural elucidations by NMR and m/z peaks in MS data of two of the three compounds in 

this reaction; the fatty alcohol and fatty aldehyde forms of hexylitaconic acid.  Support for the 

hexylitaconic acid with a carboxylated tail is shown in the mass spectrum of chaR
OE 

media 

extracts (Figure 19C).  The predicted accumulation of hexylitaconic acid through the deletion of 

the NRRL3_03750 monooxygenase failed to affect a change in biosynthesis however, the list of 

potential monooxygenases has not been exhausted.  The significantly upregulated P450 

monooxygenase NRRL3_03003 is another prospective candidate but the list of potential 

candidates may not be limited to only those genes which are upregulated by chaR upregulation.  

Aspergillus niger may be using ω-oxidation P450 monooxygenases and other enzymes which are 

not affected by chaR overexpression but which are already highly expressed.   

Conclusions and future directions 

 

Using the domain doublet BLAST search method, we have outlined a robust method in 

identifying backbone enzymes in fungal genomes.  While additional testing in other genomes is 

required, this method may lend itself to automation by coding its rules into search algorithms.  

As for the clusters in which the backbones reside, SMURF and antiSMASH predictions appear 

to overlap well with experimentally verified clusters.  One issue with these algorithms is that 

they generate clusters that are contiguous.  This condition does not hold in many cases as 

evidenced by the many experimentally verified non-contiguous clusters.  This results in cluster 

predictions which do not account for potential cluster discontinuity like that observed in the 

pyranonigrin E carlosic acid, and alkyl citric acid clusters [47, 99].   Additionally, the tendency 

of SMURF and antiSMASH to overestimate the size of clusters currently necessitates inclustion 

of manual curation in cluster definition and suggests a need for additional training sets.  Ideally, 

the incorporation of other data sources in these algorithms, such as genome wide expression data, 

may aid in cluster definition by identifying differences in expression between genes in and 

outside of clusters.  For example, an SM cluster annotated with three P450 monooxygenases may 

be refined to included just one if two of those genes are highly expressed while the one closest to 

the backbone is very poorly expressed like the rest of the cluster.    
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I have used the pathway I reconstructed from MS data for 2-carboxymethyl-3-

hexylmaleic acid, hexylitaconic acid and their downstream products I was able to predict the 

metabolic outcome of a 2-methylcitrate dehydratase deletion.  Based on my results, the process 

of pathway reconstruction I demonstrate in this study can potentially serve as a predictive aid to 

overproduce specific and potentially novel compounds for structural elucidation and bioactivity 

assays. An incipient pathway can also be useful in targeted deletions where the end goal is to 

increase the concentration of particular compounds.   

Not all proposed compounds based on the masses observed in our MS data could be 

identified in NMR and therefore still cast doubt on some portions of the reconstructed pathway; 

namely the full ω-oxidation reaction as well as the o-(m)ethyl transfer reactions producing the 

tensyuic acids.  Alternative approaches to increase their bulk in media extracts may aid in 

pathway validation.  Going forward, a project to validate our proposed pathway will be required.  

This would include a systematic disruption of all clustered and non-clustered genes putatively 

involved in biosynthesis.  The construction of strains overexpressing other genes in the alkyl 

citrate cluster could also be useful for NMR structural elucidation of compounds at low 

concentrations.  Genes putatively involved in ω-oxidation and o-(m)ethylation would be prime 

candidates to overproduce carboxylated hexylitaconic acid and the tensyuic acids. 

Also planned are strain constructions containing multiple gene deletions to generate citric 

acid through the disruption of the clustered cha5 citrate synthase gene as well as the non-

clustered citrate lyase subunit.  Strains overproducing oxaloacetic acid and acetyl-CoA could 

also be developed by targeted deletion of the clustered FAS and cha5 genes.  Further afield, the 

introduction of enzymes from other pathways or non-native enzymes is planned to generate 

metabolites not known to be produced in A. niger or perhaps any other fungal species. The 

potential to produce itaconic acid, an industrial monomer used for producing plastics [160], may 

also be possible.   Currently this monomer is produced industrially in A. terreus at concentrations 

of 80 g/L.  Given that some acid producing strains of A. niger are capable of producing 200 g/L 

of citrate, an itaconate precursor, the potential exists to produce a strain of A. niger with 

theoretical yields of itaconate reaching 135 g/L.  A key reason why this could be viable is due to 

the increased availability of citric acid in the cytosol for conversion to itaconate.  This is one of 

the obstacles that need to be overcome in order to produce high titres of itaconate in A. niger.  
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Itaconate could then potentially be produced through the introduction of a citrate dehydratase 

and cis aconitate decarboxylase  from A. terreus or by upregulation of what appears to be an A. 

niger native itaconate pathway (NRRL3_02448 – NRRL3_02450) to carry out the citrate to 

itaconate reactions  [161].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 
 

References 

 

1. Vining, L.C., Functions of Secondary Metabolites. Annual Review of Microbiology, 1990. 44(1): p. 
395-427. 

2. Fox, E.M. and B.J. Howlett, Secondary metabolism: regulation and role in fungal biology. Current 
Opinion in Microbiology, 2008. 11(6): p. 481-487. 

3. Mao, S., et al., A new polyacetylenic fatty acid and other secondary metabolites from the Chinese 
green alga Caulerpa racemosa (Caulerpaceae) and their chemotaxonomic significance. 
Biochemical Systematics and Ecology, 2011. 39(4-6): p. 253-257. 

4. Rodrigues, A.P.D., et al., A Novel Function for Kojic Acid, a Secondary Metabolite from Aspergillus 
Fungi, as Antileishmanial Agent. PLoS ONE, 2014. 9(3): p. e91259. 

5. Vining, L.C., Secondary metabolism, inventive evolution and biochemical diversity — a review. 
Gene, 1992. 115(1-2): p. 135-140. 

6. O'connor, S.E., Engineering of secondary metabolism. Annu Rev Genet, 2015. 49: p. 71-94. 
7. Ligozzi, M., G. Lo Cascio, and R. Fontana, vanA gene cluster in a vancomycin-resistant clinical 

isolate of Bacillus circulans. Antimicrob Agents Chemother, 1998. 42(8): p. 2055-2059. 
8. Brakhage, A.A., et al., Regulation of Penicillin Biosynthesis in Filamentous Fungi, in Molecular 

Biotechnolgy of Fungal beta-Lactam Antibiotics and Related Peptide Synthetases. 2004, Springer 
Nature. p. 45-90. 

9. Rathinasamy, K., et al., Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits 
the proliferation of MCF-7 cells synergistically with vinblastine. BMC Cancer, 2010. 10(1). 

10. Tobert, J.A., Case history: Lovastatin and beyond: the history of the HMG-CoA reductase 
inhibitors. Nature Reviews Drug Discovery, 2003. 2(7): p. 517-526. 

11. Ogita, S., et al., Metabolic engineering of caffeine production. Plant Biotechnology, 2005. 22(5): 
p. 461-468. 

12. Vandenberghe, L.P.S., et al., Microbial production of citric acid. Braz. arch. biol. Technol., 1999. 
42(3): p. 22-29. 

13. Shindia, A.A., et al., Production of Gluconic Acid by Some Local Fungi. Mycobiology, 2006. 34(1): 
p. 22. 

14. Stockmann-Juvala, H. and K. Savolainen, A review of the toxic effects and mechanisms of action 
of fumonisin B1. Human & Experimental Toxicology, 2008. 27(11): p. 799-809. 

15. Wang, J., et al., Study of Malformin C, a Fungal Source Cyclic Pentapeptide, as an Anti-Cancer 
Drug. PLOS ONE, 2015. 10(11): p. e0140069. 

16. Tsai, S.C., A Fine Balancing Act of Type III Polyketide Synthase. Chemistry & Biology, 2004. 11(9): 
p. 1177-1178. 

17. Korman, T.P., et al., Structure and function of an iterative polyketide synthase thioesterase 
domain catalyzing Claisen cyclization in aflatoxin biosynthesis. Proceedings of the National 
Academy of Sciences, 2010. 107(14): p. 6246-6251. 

18. Felnagle, E.A., et al., Nonribosomal Peptide Synthetases Involved in the Production of Medically 
Relevant Natural Products. Molecular Pharmaceutics, 2008. 5(2): p. 191-211. 

19. Cseri, J., et al., Analysis of the sensitizing effect of veratrum alkaloids to potassium on frog 
muscle. Acta Physiol Acad Sci Hung, 1980. 56(3): p. 289-301. 

20. Marmulla, R. and J. Harder, Microbial monoterpene transformationsâ€”a review. Frontiers in 
Microbiology, 2014. 5. 

21. Schulze, B., P. Dąbrowska, and W. Boland, Rapid Enzymatic Isomerization of 12-Oxophytodienoic 
Acid in the Gut of Lepidopteran Larvae. ChemBioChem, 2007. 8(2): p. 208-216. 



105 
 

22. Arnstein, H.R.V. and R. Bentley, The biosynthesis of kojic acid. 1. Production from [1- 14 C] and 
[3:4- 14 C 2 ]glucose and [2- 14 C]-1:3-dihydroxyacetone. Biochemical Journal, 1953. 54(3): p. 
493-508. 

23. Ruiz, B., et al., Production of microbial secondary metabolites: Regulation by the carbon source. 
Critical Reviews in Microbiology, 2010. 36(2): p. 146-167. 

24. Osbourn, A., Gene Clusters for Secondary Metabolic Pathways: An Emerging Theme in Plant 
Biology. PLANT PHYSIOLOGY, 2010. 154(2): p. 531-535. 

25. Ansari, M., et al., In silico analysis of methyltransferase domains involved in biosynthesis of 
secondary metabolites. BMC Bioinformatics, 2008. 9(1): p. 454. 

26. Ichikawa, N., et al., DoBISCUIT: a database of secondary metabolite biosynthetic gene clusters. 
Nucleic Acids Research, 2012. 41(D1): p. D408-D414. 

27. Inglis, D.O., et al., Comprehensive annotation of secondary metabolite biosynthetic genes and 
gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiology, 
2013. 13(1): p. 91. 

28. Brown, D.W., T.H. Adams, and N.P. Keller, Aspergillus has distinct fatty acid synthases for 
primary and secondary metabolism. Proceedings of the National Academy of Sciences, 1996. 
93(25): p. 14873-14877. 

29. Keller, N.P., G. Turner, and J.W. Bennett, Fungal secondary metabolism — from biochemistry to 
genomics. Nature Reviews Microbiology, 2005. 3(12): p. 937-947. 

30. Nierman, W.C., et al., Genomic sequence of the pathogenic and allergenic filamentous fungus 
Aspergillus fumigatus. Nature, 2005. 438(7071): p. 1151-1156. 

31. Lozano, M.J.F., Characterization of Two Polyketide Methyltransferases Involved in the 
Biosynthesis of the Antitumor Drug Mithramycin by Streptomyces argillaceus. Journal of 
Biological Chemistry, 2000. 275(5): p. 3065-3074. 

32. Gay, D.C., P.J. Spear, and A.T. Keatinge-Clay, A Double-Hotdog with a New Trick: Structure and 
Mechanism of thetrans-Acyltransferase Polyketide Synthase Enoyl-isomerase. ACS Chemical 
Biology, 2014. 9(10): p. 2374-2381. 

33. Pi, B., et al., A Genomics Based Discovery of Secondary Metabolite Biosynthetic Gene Clusters in 
Aspergillus ustus. PLOS ONE, 2015. 10(2): p. e0116089. 

34. Guo, C.J., et al., Biosynthetic pathway for the epipolythiodioxopiperazine acetylaranotin in 
Aspergillus terreus revealed by genome-based deletion analysis. J Am Chem Soc, 2013. 135(19): 
p. 7205-7213. 

35. Yu, J., et al., Clustered Pathway Genes in Aflatoxin Biosynthesis. Appl Environ Microbiol., 2004. 
70(3): p. 1253-1262. 

36. Jin, J., et al., Functional characterization and manipulation of the apicidin biosynthetic pathway 
in Fusarium semitectum. Mol Microbiol., 2010. 76(2): p. 456-466. 

37. Bergmann, S., et al., Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus 
nidulans. Nat Chem Biol, 2007. 3(4): p. 213-217. 

38. Abe, Y., et al., Molecular cloning and characterization of an ML-236B (compactin) biosynthetic 
gene cluster in Penicillium citrinum. Mol Genet Genomics., 2002. 257(5): p. 636-646. 

39. Chen, H., et al., Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora 
nicotianae. Mol Microbiol., 2007. 64(3): p. 755-770. 

40. Kato, N., et al., Genetic safeguard against mycotoxin cyclopiazonic acid production in Aspergillus 
oryzae. ChemBioChem, 2011. 12(9): p. 1376-1382. 

41. qiao, K., Y.H. Chooi, and Y. Tang, Identification and engineering of the cytochalasin gene cluster 
from Aspergillus clavatus NRRL 1. Metab Eng., 2011. 13(6): p. 723-732. 

42. Sims, J.W., et al., Equisetin biosynthesis in Fusarium heterosporum. Chemical Communications, 
2005(2): p. 186. 



106 
 

43. Cacho, R.A., et al., Identification and characterization of the echinocandin B biosynthetic gene 
cluster from Emericella rugulosa NRRL 11440. J Am Chem Soc, 2012. 134(40): p. 16781-16790. 

44. Yin, W.B., et al., A nonribosomal peptide synthetase-derived iron(III) complex from the 
pathogenic fungus Aspergillus fumigatus. J Am Chem Soc., 2013. 135(6): p. 2064-2067. 

45. Chen, L., et al., Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the 
fungus Glarea lozoyensis. BMC Genomics, 2013. 14(1): p. 339. 

46. Maiya, S., et al., Identification of a Hybrid PKS/NRPS Required for Pseurotin A Biosynthesis in the 
Human PathogenAspergillus fumigatus. ChemBioChem, 2007. 8(14): p. 1736-1743. 

47. Awakawa, T., et al., Pyranonigrin E: A PKS-NRPS Hybrid Metabolite from Aspergillus niger 
Identified by Genome Mining. ChemBioChem, 2013. 14(16): p. 2095-2099. 

48. Ma, S.M. and Y. Tang, Biochemical characterization of the minimal polyketide synthase domains 
in the lovastatin nonaketide synthase LovB. FEBS Journal, 2007. 274(11): p. 2854-2864. 

49. Amnuaykanjanasin, A., et al., Diversity of type I polyketide synthase genes in the wood-decay 
fungus Xylaria sp. BCC 1067. FEMS Microbiology Letters, 2005. 251(1): p. 125-136. 

50. Gallo, A., M. Ferrara, and G. Perrone, Phylogenetic Study of Polyketide Synthases and 
Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Mycotoxins. Toxins, 2013. 5(4): 
p. 717-742. 

51. Kehr, J., D. Gatte Picchi, and E. Dittmann, Natural product biosyntheses in cyanobacteria: A 
treasure trove of unique enzymes. Beilstein Journal of Organic Chemistry, 2011. 7: p. 1622-1635. 

52. Austin, M.B. and J.P. Noel, The chalcone synthase superfamily of type III polyketide synthases. 
Natural Product Reports, 2002. 20(1): p. 79-110. 

53. Yu, D., et al., Type III polyketide synthases in natural product biosynthesis. IUBMB Life, 2012. 
64(4): p. 285-295. 

54. Kroken, S., et al., Phylogenomic analysis of type I polyketide synthase genes in pathogenic and 
saprobic ascomycetes. Proceedings of the National Academy of Sciences, 2003. 100(26): p. 
15670-15675. 

55. Liu, L., et al., Bioinformatical Analysis of the Sequences, Structures and Functions of Fungal 
Polyketide Synthase Product Template Domains. Sci Rep, 2015. 5(10463). 

56. Beck, J., et al., The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. 
Its gene structure relative to that of other polyketide synthases. European Journal of 
Biochemistry, 1990. 192(2): p. 487-498. 

57. Schmitt, L., S. Kautz, and H.T. Lumbsch, 6-MSAS-like polyketide synthase genes occur in 
lichenized ascomycetes. Mycol Res, 2008. 112(2): p. 289-296. 

58. Zabala, A.O., et al., Fungal Polyketide Synthase Product Chain-Length Control by Partnering 
Thiohydrolase. ACS Chem Biol, 2014. 9(7): p. 1576-1586. 

59. Morrow, G.W., Bioorganic synthesis an introduction. 2016, Oxford University Press: New York, 
NY. p. 235-236. 

60. Hertweck, C., et al., Type II polyketide synthases: gaining a deeper insight into enzymatic 
teamwork Nat. Prod. Rep., 2007. 24: p. 162-190. 

61. Lou, L., et al., Biosynthesis of HSAF, a Tetramic Acid-Containing Macrolactam from Lysobacter 
enzymogenes. Journal of the American Chemical Society, 2011. 133(4): p. 643-645. 

62. Khosla, C., et al., Tolerance and specificity of polyketide synthases. Annu Rev Biochem, 1999. 68: 
p. 219-253. 

63. Chiang, Y., et al., Unraveling polyketide synthesis in members of the genus Aspergillus. Applied 
Microbiology and Biotechnology, 2010. 86(6): p. 1719-1736. 

64. Tang, Y., S.C. Tsai, and C. Khosla, Polyketide Chain Length Control by Chain Length Factor. Journal 
of the American Chemical Society, 2003. 125(42): p. 12708-12709. 



107 
 

65. Rasmus, J.N.F. Animation of a minimal PKS.  [cited 2013 November 11]; Available from: 
www.rasmusfrandsen.dk/Animation%20of%20minimal%20PKS.ppt. 

66. Ding, W., et al., Biosynthetic investigation of phomopsins reveals a widespread pathway for 
ribosomal natural products in Ascomycetes. Proc Natl Acad Sci U.S.A., 2016. 113(13): p. 3521-
3526. 

67. Röttig, M., et al., NRPSpredictor2--a web server for predicting NRPS adenylation domain 
specificity. Nucleic Acids Research, 2011. 39(suppl): p. W362-W367. 

68. Anke, T., D. Weber, and K. Esser, The Mycota: A comprehensive treatise on fungi as experimental 
systems for basic and applied research. XV ed. 2009, New York: Springer. 

69. Evans, B.S., S.J. Robinson, and N.L. Kelleher, Surveys of non-ribosomal peptide and polyketide 
assembly lines in fungi and prospects for their analysis in vitro and in vivo. Fungal Genetics and 
Biology, 2011. 48(1): p. 49-61. 

70. Lombó, F., et al., Deciphering the Biosynthesis Pathway of the Antitumor Thiocoraline from a 
Marine Actinomycete and Its Expression in Two Streptomyces Species. ChemBioChem, 2006. 
7(2): p. 366-376. 

71. Gross, H., et al., The Genomisotopic Approach: A Systematic Method to Isolate Products of 
Orphan Biosynthetic Gene Clusters. Chemistry & Biology, 2007. 14(1): p. 53-63. 

72. Marahiel, M.A., Working outside the protein-synthesis rules: insights into non-ribosomal peptide 
synthesis. Journal of Peptide Science, 2009. 15(12): p. 799-807. 

73. Non-Ribosomal Peptide Synthesis. 2013  [cited 2016 August 22]; iGem competition website for 
2013]. Available from: 
http://2013.igem.org/wiki/index.php?title=Team:Heidelberg/NRPS&oldid=353123. 

74. Boettger, D. and C. Hertweck, Molecular Diversity Sculpted by Fungal PKS-NRPS Hybrids. 
ChemBioChem, 2012. 14(1): p. 28-42. 

75. Andersen, M.R., et al., Comparative genomics of citric-acid-producing Aspergillus niger ATCC 
1015 versus enzyme-producing CBS 513.88. Genome Research, 2011. 21(6): p. 885-897. 

76. Wackler, B., et al., Characterization of the Suillus grevillei Quinone Synthetase GreA Supports a 
Nonribosomal Code for Aromatic α-Keto Acids. ChemBioChem, 2012. 13(12): p. 1798-1804. 

77. Schneider, P., S. Bouhired, and D. Hoffmeister, Characterization of the atromentin biosynthesis 
genes and enzymes in the homobasidiomycete Tapinella panuoides. Fungal Genetics and Biology, 
2008. 45(11): p. 1487-1496. 

78. Helfrich, E.J.N. and J. Piel, Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod 
Rep, 2016. 33(231). 

79. Chen, X., et al., Iterative type I polyketide synthases involved in enediyne natural product 
biosynthesis. IUBMB Life, 2014. 66(9): p. 587-595. 

80. Jenni, S., et al., Structure of Fungal Fatty Acid Synthase and Implications for Iterative Substrate 
Shuttling. Science, 2007. 316(5822): p. 254-261. 

81. Lynen, F., On the structure of fatty acid synthase. Eur J Biochem, 1980. 112(3): p. 431-442. 
82. Hopwood, D.A. and D.H. Sherman, Molecular genetics of polyketides and its comparison to fatty 

acid biosynthesis. Annu Rev Genet., 1990. 24: p. 37-66. 
83. Wallace, K.K., et al., In vivo analysis of straight-chain and branched-chain fatty acid biosynthesis 

in three actinomycetes. FEMS Microbiology Letters, 1995. 131(2): p. 227-234. 
84. Fujii, I., et al., Identification of Claisen cyclase domain in fungal polyketide synthase WA, a 

naphthopyrone synthase of Aspergillus nidulans. Chemistry & Biology, 2001. 8(2): p. 189-197. 
85. Metzger, U., et al., The structure of dimethylallyl tryptophan synthase reveals a common 

architecture of aromatic prenyltransferases in fungi and bacteria. Proceedings of the National 
Academy of Sciences, 2009. 106(34): p. 14309-14314. 

http://www.rasmusfrandsen.dk/Animation%20of%20minimal%20PKS.ppt
http://2013.igem.org/wiki/index.php?title=Team:Heidelberg/NRPS&oldid=353123


108 
 

86. Cardoza, R.E., et al., Identification of Loci and Functional Characterization of Trichothecene 
Biosynthesis Genes in Filamentous Fungi of the Genus Trichoderma. Applied and Environmental 
Microbiology, 2011. 77(14): p. 4867-4877. 

87. Medema, M.H., et al., antiSMASH: rapid identification, annotation and analysis of secondary 
metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids 
Research, 2011. 39(suppl): p. W339-W346. 

88. Khaldi, N., et al., SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal 
Genetics and Biology, 2010. 47(9): p. 736-741. 

89. Riley, D.R., et al., Using Sybil for interactive comparative genomics of microbes on the web. 
Bioinformatics, 2011. 28(2): p. 160-166. 

90. Brakhage, A.A., Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 2013. 
11(1): p. 21-32. 

91. Kotera, M., et al., MUCHA: multiple chemical alignment algorithm to identify building block 
substructures of orphan secondary metabolites. BMC Bioinformatics, 2011. 12(Suppl 14): p. S1. 

92. Isogai, A., et al., Isolation and identification of (+)-hexylitaconic acid as a plant growth regulator. 
Agricultural and Biological Chemistry, 1984. 48(10): p. 2607-2609. 

93. Hasegawa, Y., et al., Tensyuic Acids, New Antibiotics Produced by Aspergillus niger FKI-2342. 
CHEMICAL & PHARMACEUTICAL BULLETIN, 2007. 55(9): p. 1338-1341. 

94. Matsumaru, T., et al., Synthesis and biological properties of tensyuic acids B, C, and E, and 
investigation of the optical purity of natural tensyuic acid B. Tetrahedron, 2008. 64(30-31): p. 
7369-7377. 

95. Newman, A.G. and C.A. Townsend, Molecular Characterization of the Cercosporin Biosynthetic 
Pathway in the Fungal Plant Pathogen Cercospora nicotianae. J Am Chem Soc, 2016. 138(12): p. 
4219–4228. 

96. Lim, F.Y., et al., Toward Awakening Cryptic Secondary Metabolite Gene Clusters in Filamentous 
Fungi, in Methods in Enzymology. 2012, Elsevier BV. p. 303-324. 

97. Girol, C.G., et al., Regio- and Stereoselective Oxidative Phenol Coupling in Aspergillus niger. 
Angewandte Chemie, 2012. 124(39): p. 9926-9929. 

98. Nielsen, K.F., et al., Review of secondary metabolites and mycotoxins from the Aspergillus niger 
group. Analytical and Bioanalytical Chemistry, 2009. 395(5): p. 1225-1242. 

99. Yang, X., et al., Three Acyltetronic Acid Derivatives: Noncanonical Cryptic Polyketides from 
Aspergillus niger Identified by Genome Mining. ChemBioChem, 2014. 15(11): p. 1578-1583. 

100. Zabala, A.O., et al., Characterization of a Silent Azaphilone Gene Cluster from Aspergillus niger 
ATCC 1015 Reveals a Hydroxylation-Mediated Pyran-Ring Formation. Chemistry & Biology, 2012. 
19(8): p. 1049-1059. 

101. Liu, D., et al., Nigerapyrones A–H, α-Pyrone Derivatives from the Marine Mangrove-Derived 
Endophytic Fungus Aspergillus niger MA-132. J. Nat. Prod.,, 2011. 74(8): p. 1787-1791. 

102. Li, Y., et al., Comparative Characterization of Fungal Anthracenone and Naphthacenedione 
Biosynthetic Pathways Reveals an α-Hydroxylation-Dependent Claisen-like Cyclization Catalyzed 
by a Dimanganese Thioesterase. Journal of the American Chemical Society, 2011. 133(39): p. 
15773-15785. 

103. Chiang, Y., et al., Characterization of a polyketide synthase in Aspergillus niger whose product is 
a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone. Fungal 
Genetics and Biology, 2011. 48(4): p. 430-437. 

104. Tsai, H.F., et al., Pentaketide melanin biosynthesis in Aspergillus fumigatus requires chain-length 
shortening of a heptaketide precursor. J. Biol. Chem, 2001. 276: p. 29292–29298. 

105. Jørgensen, T.R., et al., The molecular and genetic basis of conidial pigmentation in Aspergillus 
niger. Fungal Genet Biol., 2011. 48(5): p. 544-553. 



109 
 

106. Ehrlich, K.C. and B. Mack, Comparison of Expression of Secondary Metabolite Biosynthesis 
Cluster Genes in Aspergillus flavus, A. parasiticus, and A. oryzae. Toxins, 2014. 6(6): p. 1916-
1928. 

107. Calvo, A.M., et al., Relationship between Secondary Metabolism and Fungal Development. 
Microbiology and Molecular Biology Reviews, 2002. 66(3): p. 447-459. 

108. Bergmann, S., et al., Activation of a Silent Fungal Polyketide Biosynthesis Pathway through 
Regulatory Cross Talk with a Cryptic Nonribosomal Peptide Synthetase Gene Cluster. Applied and 
Environmental Microbiology, 2010. 76(24): p. 8143-8149. 

109. Perrin, R.M., et al., Transcriptional Regulation of Chemical Diversity in Aspergillus fumigatus by 
LaeA. PLoS Pathogens, 2007. 3(4): p. e50. 

110. Lee, I., et al., HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination 
and secondary metabolite production. Fungal Genetics and Biology, 2009. 46(10): p. 782-790. 

111. Anyaogu, D.C. and U.H. Mortensen, Heterologous production of fungal secondary metabolites in 
Aspergilli. Front Microbiol., 2015. 6(77). 

112. Curtis, R.W., Curvatures and Malformations in Bean Plants Caused by Culture Filtrate of 
Aspergillus niger. PLANT PHYSIOLOGY, 1958. 33(1): p. 17-22. 

113. Frisvad, J.C., et al., Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains. 
PLoS ONE, 2011. 6(8): p. e23496. 

114. Bojja, R.S., et al., Determining the Biosynthetic Sequence in the Early Steps of the Fumonisin 
Pathway by Use of Three Gene-Disruption Mutants ofFusarium verticillioides. Journal of 
Agricultural and Food Chemistry, 2004. 52(10): p. 2855-2860. 

115. Clarke, T., Drug companies snub antibiotics as pipeline threatens to run dry. Nature, 2003. 
425(6955): p. 225-225. 

116. Sukkar, E., Why are there so few antibiotics in the research and development pipeline? The 
Pharmaceutical Journal, 2013. 

117. Mendelson, M. and M.P. Matsoso, The World Health Organization Global Action Plan for 
antimicrobial resistance. South African Medical Journal, 2015. 105(5): p. 325. 

118. Hota, B., et al., Predictors of Clinical Virulence in Community-Onset Methicillin-Resistant 
Staphylococcus aureus Infections: The Importance of USA300 and Pneumonia. Clinical Infectious 
Diseases, 2011. 53(8): p. 757-765. 

119. Ganter, B., et al. Complacency kills.  Antibiotic resistance still on the rise in Europe. 2011  [cited 
2016 October 21]; April 7:[Available from: http://www.euro.who.int/en/media-
centre/sections/press-releases/2011/04/complacency-kills.-antibiotic-resistance-still-on-the-
rise-in-europe. 

120. McLeod, S.M., T.J. Dougherty, and M.J. Pucci, Novel Antibacterial Targets/Identification of New 
Targets by Comparative Genomics, in Antibiotic Discovery and Development. 2011, Springer 
Nature. p. 881-900. 

121. Reen, F., et al., The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine 
Microorganisms. Marine Drugs, 2015. 13(8): p. 4754-4783. 

122. Proctor, R.H., et al., Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic 
gene cluster in Gibberella moniliformis. Fungal Genetics and Biology, 2003. 38(2): p. 237-249. 

123. Pel, H.J., et al., Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 
513.88. Nat Biotech, 2007. 25(2): p. 221-231. 

124. Holm, D.K., et al., Molecular and Chemical Characterization of the Biosynthesis of the 6-MSA-
Derived Meroterpenoid Yanuthone D in Aspergillus niger. Chemistry & Biology, 2014. 21(4): p. 
519-529. 

125. Erickson, B., J.E. Nelson, and P. Winters, Perspective on opportunities in industrial biotechnology 
in renewable chemicals. Biotechnology Journal, 2011. 7(2): p. 176-185. 

http://www.euro.who.int/en/media-centre/sections/press-releases/2011/04/complacency-kills.-antibiotic-resistance-still-on-the-rise-in-europe
http://www.euro.who.int/en/media-centre/sections/press-releases/2011/04/complacency-kills.-antibiotic-resistance-still-on-the-rise-in-europe
http://www.euro.who.int/en/media-centre/sections/press-releases/2011/04/complacency-kills.-antibiotic-resistance-still-on-the-rise-in-europe


110 
 

126. Lee, J.W., et al., Systems metabolic engineering of microorganisms for natural and non-natural 
chemicals. Nature Chemical Biology, 2012. 8(6): p. 536-546. 

127. Lim, J., et al., Solution structures of the acyl carrier protein domain from the highly reducing type 
I iterative polyketide synthase CalE8. PLOS ONE, 2011. 6. 

128. Crawford, J.M., et al., Starter unit specificity directs genome mining of polyketide synthase 
pathways in fungi. Bioorganic Chemistry, 2008. 36(1): p. 16-22. 

129. Li, Y., W. Xu, and Y. Tang, Classification, Prediction, and Verification of the Regioselectivity of 
Fungal Polyketide Synthase Product Template Domains. Journal of Biological Chemistry, 2010. 
285(30): p. 22764-22773. 

130. Master, E.R., et al., A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger : 
recombinant expression, purification and characterization. Biochemical Journal, 2008. 411(1): p. 
161-170. 

131. Käfer, E., Meiotic and Mitotic Recombination in Aspergillus and Its Chromosomal Aberrations, in 
Advances in Genetics Volume 19. 1977, Elsevier BV. p. 33-131. 

132. Storms, R., et al., Plasmid vectors for protein production, gene expression and molecular 
manipulations in Aspergillus niger. Plasmid, 2005. 53(3): p. 191-204. 

133. Aslanidis, C. and P.J. de Jong, Ligation-independent cloning of PCR products (LIC-PCR). Nucleic 
Acids Research, 1990. 18(20): p. 6069-6074. 

134. Semova, N., et al., Generation, annotation, and analysis of an extensive Aspergillus niger EST 
collection. BMC Microbiol, 2006. 6(7). 

135. Anders, S. and W. Huber, Differential expression analysis for sequence count data. Genome 
Biology, 2010. 11(10): p. R106. 

136. Melamud, E., L. Vastag, and J.D. Rabinowitz, Metabolomic Analysis and Visualization Engine for 
LC−MS Data. Analytical Chemistry, 2010. 82(23): p. 9818-9826. 

137. Tsai, H.F., et al., A developmentally regulated gene cluster involved in conidial pigment 
biosynthesis in Aspergillus fumigatus. J Bacteriol. , 1999. 181(20): p. 6469-6477. 

138. Schrettl, M., et al., Distinct roles for intra- and extracellular siderophores during Aspergillus 
fumigatus infection. PLoS Pathogens, 2007. 3(9): p. 1195-1207. 

139. Khaldi, N. and K.H. Wolfe, Evolutionary Origins of the Fumonisin Secondary Metabolite Gene 
Cluster inFusarium verticillioidesandAspergillus niger. International Journal of Evolutionary 
Biology, 2011. 2011: p. 1-7. 

140. Keller, B.O., et al., Interferences and contaminants encountered in modern mass spectrometry. 
Analytica Chimica Acta, 2008. 627(1): p. 71-81. 

141. Bonnarme, P., et al., Itaconate biosynthesis in Aspergillus terreus. Journal of Bacteriology, 1995. 
177(12): p. 3573-3578. 

142. Klitgaard, A., et al., Aggressive dereplication using UHPLC–DAD–QTOF: screening extracts for up 
to 3000 fungal secondary metabolites. Analytical and Bioanalytical Chemistry, 2014. 406(7): p. 
1933-1943. 

143. Berg, J.M., J.L. Tymoczko, and L. Stryer, Biochemistry. 5 ed. 2002, New York: W H Freeman. 
144. Gerike, U., et al., Citrate synthase and 2-methylcitrate synthase: structural, functional and 

evolutionary relationships. Microbiology, 1998. 144(4): p. 929-935. 
145. Mahlen, A., Properties of 2-Decylcitrate Synthase from Penicillium spiculisporum Lehman. 

European Journal of Biochemistry, 1971. 22(1): p. 104-114. 
146. Chen, H., et al., Physiological characterization of ATP-citrate lyase in Aspergillus niger. Journal of 

Industrial Microbiology & Biotechnology, 2014. 41(4): p. 721-731. 
147. Fujii, R., et al., Biosynthetic Study on Antihypercholesterolemic Agent Phomoidride: General 

Biogenesis of Fungal Dimeric Anhydrides. Organic Letters, 2015. 17(22): p. 5658-5661. 



111 
 

148. Williams, K., et al., Heterologous Production of Fungal Maleidrides Reveals the Cryptic Cyclization 
Involved in their Biosynthesis. Angewandte Chemie International Edition, 2016. 55(23): p. 6784-
6788. 

149. Szwalbe, A.J., et al., Novel nonadride, heptadride and maleic acid metabolites from the 
byssochlamic acid producer Byssochlamys fulva IMI 40021 – an insight into the biosynthesis of 
maleidrides. Chem. Commun., 2015. 51(96): p. 17088-17091. 

150. Hildebrandt, H., U. Höfker, and G. Fels. Carboxylic Acid Derivatives.  [cited 2017 Feb 1]; Available 
from: 
http://www.chemgapedia.de/vsengine/vlu/vsc/en/ch/12/oc/vlu_organik/c_acid/carbons_und_
derivate.vlu.html. 

151. Tuckwell, D., D.W. Denning, and P. Bowyer, A public resource for metabolic pathway mapping of 
Aspergillus fumigatus Af293. Medical Mycology, 2011. 49(S1): p. S114-S119. 

152. Gibbons, J.G. and A. Rokas, The function and evolution of the Aspergillus genome. Trends in 
Microbiology, 2013. 21(1): p. 14-22. 

153. Susca, A., et al., Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and 
nonproducing black aspergilli. Fungal Genetics and Biology, 2014. 73: p. 39-52. 

154. Kohli, G.S., et al., Evolutionary distinctiveness of fatty acid and polyketide synthesis in 
eukaryotes. The ISME Journal, 2016. 10(8): p. 1877-1890. 

155. Rausch, C., Specificity prediction of adenylation domains in nonribosomal peptide synthetases 
(NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Research, 2005. 
33(18): p. 5799-5808. 

156. Bodanszky, M. and G.L. Stahl, The Structure and Synthesis of Malformin A. Proceedings of the 
National Academy of Sciences, 1974. 71(7): p. 2791-2794. 

157. Castegna, A., et al., Identification and Functional Characterization of a Novel Mitochondrial 
Carrier for Citrate and Oxoglutarate in Saccharomyces cerevisiae. Journal of Biological 
Chemistry, 2010. 285(23): p. 17359-17370. 

158. Zhang, J., et al., Determination of the cytosolic NADPH/NADP ratio in Saccharomyces cerevisiae 
using shikimate dehydrogenase as sensor reaction. Sci Rep, 2015. 5: p. 12846. 

159. Tang, Y., S.C. Tsai, and C. Khosla, Polyketide Chain Length Control by Chain Length Factor. J Am 
Chem Soc, 2003. 125(42): p. 12708-12709. 

160. Huang, X., et al., Improving itaconic acid production through genetic engineering of an industrial 
Aspergillus terreus strain. Microbial Cell Factories, 2014. 13(1). 

161. van der Straat, L., et al., Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in 
Aspergillus niger. Microbial Cell Factories, 2014. 13(1): p. 11. 

 

 

http://www.chemgapedia.de/vsengine/vlu/vsc/en/ch/12/oc/vlu_organik/c_acid/carbons_und_derivate.vlu.html
http://www.chemgapedia.de/vsengine/vlu/vsc/en/ch/12/oc/vlu_organik/c_acid/carbons_und_derivate.vlu.html

