
MINI REVIEW
published: 30 May 2017

doi: 10.3389/fnagi.2017.00170

Neurodegeneration and the Circadian
Clock
Suzanne Hood 1 and Shimon Amir2*

1Department of Psychology, Bishop’s University, Sherbrooke, QC, Canada, 2Department of Psychology, Concordia
University, Montreal, QC, Canada

Edited by:
Catarina Oliveira,

University of Coimbra, Portugal

Reviewed by:
Lakshmi Rajagopal,

Northwestern University,
United States

Umesh Gangishetti,
Emory University, United States

Takayoshi Ubuka,
Monash University Malaysia, Malaysia

*Correspondence:
Shimon Amir

shimon.amir@concordia.ca

Received: 10 January 2017
Accepted: 15 May 2017
Published: 30 May 2017

Citation:
Hood S and Amir S

(2017) Neurodegeneration and the
Circadian Clock.

Front. Aging Neurosci. 9:170.
doi: 10.3389/fnagi.2017.00170

Despite varied etiologies and symptoms, several neurodegenerative
diseases—specifically, Alzheimer’s (AD), Parkinson’s (PD), and Huntington’s diseases
(HDs)—share the common feature of abnormal circadian rhythms, such as those in
behavior (e.g., disrupted sleep/wake cycles), physiological processes (e.g., diminished
hormone release) and biochemical activities (e.g., antioxidant production). Circadian
disturbances are among the earliest symptoms of these diseases, and the molecular
mechanisms of the circadian system are suspected to play a pivotal, and possibly
causal, role in their natural histories. Here, we review the common circadian
abnormalities observed in ADs, PDs and HDs, and summarize the evidence that the
molecular circadian clockwork directly influences the course of these disease states. On
the basis of this research, we explore several circadian-oriented interventions proposed
as treatments for these neurological disorders.
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CIRCADIAN RHYTHMS AND NEURODEGENERATIVE DISEASES

As life expectancy increases globally, the prevalence of neurodegenerative diseases mounts steadily.
Worldwide, Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD)
are among the most prevalent neurodegenerative diseases, and are associated with a significant
burden for health care systems (Neurological Health Charities Canada, 2014, September). Despite
the varied pathogenesis and diversity of symptoms among them, common to AD, PD and HD are
disruptions of circadian rhythms, or the near 24-h cyclic fluctuations in a host of physiological
and behavioral processes. A rapidly growing body of research suggests that disturbances in the
circadian system precede the emergence of the characteristic cognitive and motor symptoms of
these diseases by years (Kondratova and Kondratov, 2012; Hastings and Goedert, 2013; Videnovic
et al., 2014a; Abbott and Videnovic, 2016; Mattis and Sehgal, 2016), and may contribute to their
onset (Kondratova and Kondratov, 2012; Videnovic and Zee, 2015). Here, we provide a concise
overview of the evidence linking the circadian system to these diseases, and examine circadian-
oriented approaches to the treatment of AD, PD and HD.

Circadian Rhythms and Cellular Clocks
The circadian system provides an adaptive mechanism for organisms to coordinate cellular
processes, physiological functions and behaviors with the predictable 24-h cycle of light
and dark on Earth (Bell-Pedersen et al., 2005). In humans, familiar examples of rhythms
include daily patterns of sleeping and waking; the rise and fall of core body temperature;
heart rate; blood pressure; and release of a wide variety of hormones, such as the nightly surge
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in melatonin from the pineal gland. The presence of an
endogenous timing system in the body is clearly seen in
conditions when predictable time-of-day cues are removed, yet
near-24 h rhythms in these processes persist nonetheless (Arendt,
2012).

In mammals, the suprachiasmatic nucleus (SCN) houses the
master circadian clock, and is found just dorsal to the optic
chiasm. Inputs to the SCN from the retinohypothalamic tract
provide information about daily light exposure to synchronize
the endogenous clockwork to the external environment (Welsh
et al., 2010). In turn, the SCN communicates time-of-day
information by both synaptic and diffusible signals to a host of
peripheral oscillators in a variety of brain regions and organs,
such as heart, lungs, liver and adrenal glands. Thus, the SCN
serves to coordinate the timing of a distributed network of clocks
throughout the body (Mohawk et al., 2012). This coordination is
vital for health and well-being: circadian desynchrony is already
implicated in a number of disease states, including some cancers,
metabolic diseases, and mood disorders such as bipolar disease
and major depression (Roybal et al., 2007; McFadden et al.,
2014; Stevens et al., 2014; Lucassen et al., 2016; Morris et al.,
2016).

As outlined in Figure 1, the circadian timekeeping
mechanism is controlled at a cellular level by a group of
genes that regulate their own transcription and translation over
approximately 24 h via a series of interacting negative feedback
loops (for a review see Mohawk et al., 2012). In addition to
regulating their own levels of expression, ‘‘clock’’ genes serve
as transcription factors for other genes which regulate a variety
of functions, including cell division, metabolism, immune
responses and oxidative processes (Duffield, 2003; Wilking
et al., 2013). Importantly, mutations of the bmal1 and period
genes yield an accelerated aging phenotype in Drosophila
and mice, with faster rates of tissue decline, impairments in
cognitive function and shorter lifespan relative to age-matched
wild type controls (Kondratov et al., 2006; Krishnan et al.,
2009).

CIRCADIAN SYMPTOMS OF
ALZHEIMER’S, PARKINSON’S AND
HUNTINGTON’S DISEASES

Like other physiological processes, activity of the circadian
system changes significantly across the lifespan (for recent
reviews see Duffy et al., 2015; Hood and Amir, 2017), with a
number of disruptions to rhythms such as the sleep/wake cycle
and hormone release emerging in older adulthood. Importantly,
some of these age-related disturbances in a number of rhythms
resemble the circadian disturbances observed in AD, PD and
HD, which are reviewed in the following sections. In noting
these similarities, it is vital to recognize that differences exist in
the severity and timing of the onset of circadian disturbances
in sufferers of AD, PD and HD, compared to their occurrence
during otherwise healthy aging. By distinguishing more clearly
between changes in rhythms that reflect neurodegenerative
processes and those that may not necessarily be pathological,

FIGURE 1 | At a molecular level, the mammalian circadian clock is composed
of a group of clock genes that regulate their own transcription and translation
in a series of interlocking negative feedback loops. Heterodimers of the
transcription factors BMAL1 and CLOCK drive the expression of the Period
(Per1/Per2) and Cryptochrome (Cry1/Cry2) genes, the nuclear receptors
retinoid-related orphan receptor (RORα) and REV-ERBα, and a number of
downstream genes referred to as clock-controlled genes (CCGs). The protein
products of the Per and Cry genes dimerize and inhibit the transcriptional
activity of CLOCK-BMAL1. A number of kinases, such as casein kinase 1ε/δ
(CK1 ε/δ), regulate the activity of PER-CRY dimers at a post-transcriptional
level. RORα and REV-ERBα also regulate the transcription of BMAL1, whereby
RORα promotes its expression, whereas REV-ERBα inhibits it. This cycle of
clock gene expression completes in approximately 24 h (Huang et al., 2011;
Mohawk et al., 2012).

we may be able to identify the development of disease more
readily and, potentially, improve prospects for intervention and
care.

Sleep/Wake Rhythms
Disturbances in the sleep/wake rhythm are perhaps the most
prominent circadian-related symptom in individuals affected
by AD, PD, or HD. Nighttime sleep becomes increasingly
fragmented as these diseases progress, while nocturnal activity
levels and daytime sleepiness increase (Hatfield et al., 2004;
Morton et al., 2005; Barone et al., 2009; Merlino et al., 2010;
Weissová et al., 2016). In severe cases, minimal differences
exist between day and night in bouts of activity and sleep
(McCurry et al., 1999). These observations of poorly consolidated
rest/activity patterns in humans are paralleled by animal models
of each disease state (Morton et al., 2005; Vezoli et al., 2011; Loh
et al., 2013; Fifel and Cooper, 2014; Long et al., 2014; Graybeal
et al., 2015). In addition, behavioral sleep disorders, such as
restless leg syndrome and rapid eye movement behavior disorder
(RBD) are highly comorbid with PD (Comella, 2007; Barone
et al., 2009). Together, these declines in the normal sleep/wake
rhythm and in the quality of sleep are identified as among
the most disruptive symptoms of these diseases, and have a
profoundly negative impact on quality of life (Barone et al., 2009).
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Furthermore, they are cited as primary reasons for entering
individuals with a neurodegenerative illness into residential care
facilities (Pollak and Perlick, 1991; Bianchetti et al., 1995).

Melatonin and Cortisol Rhythms
Disturbances have been documented in the circadian rhythms
of melatonin and cortisol release in AD, PD and HD. Common
to each is a flattening of the melatonin rhythm, such that
the normal nighttime peak is suppressed relative to healthy,
age-matched controls (Mishima et al., 1999; Wu et al., 2003;
Breen et al., 2014; Kalliolia et al., 2014; Videnovic et al., 2014b;
although see Aziz et al., 2009). A decline in the peak of
nighttime melatonin release has also been observed in individuals
exhibiting pre-clinical cognitive symptoms of dementia (Wu
et al., 2003; Waller et al., 2016), and this decline appears to
correlate positively with level of daytime sleepiness (Videnovic
et al., 2014b).

Changes in the rhythm of cortisol release have also been
observed, although these changes are somewhat more varied
compared with those in melatonin. The normal cortisol rhythm
rises in the early morning, with the peak occurring near waking
and the nadir in the late evening (Touitou and Haus, 2000).
Minimal change in this rhythm has been observed in individuals
with suspected AD or dementia (Hatfield et al., 2004; Waller
et al., 2016; although see Giubilei et al., 2001; and Hartmann
et al., 1997). In both PD and HD, the diurnal pattern of
cortisol release remains rhythmic, yet the total daily amount of
cortisol released is elevated (Hartmann et al., 1997; Aziz et al.,
2009).

Core Body Temperature Rhythm
The human core body temperature rhythm rises throughout the
day to peak in the early evening, then falls throughout the night
to reach its nadir in the early morning (Van Someren, 2000).
Studies of individuals with AD indicate a delay in the peak of
this rhythm and a decrease in its amplitude (Satlin et al., 1995;
Harper et al., 2005). In PD, only the amplitude of the rhythm
appears to be decreased. This change is attributed to a lowering of
peak body temperature relative to healthy age-matched controls
(Pierangeli et al., 2001; Zhong et al., 2013). A profound reduction
in the amplitude of the temperature rhythm has also been
documented in rodent models of HD (Kudo et al., 2011; Fisher
et al., 2013).

Mood and Behavior Rhythm
A rhythm in mood and emotional volatility reportedly emerges
as neurodegenerative conditions progress. This ‘‘sundown
syndrome’’ comprises a daily pattern of increased agitation,
emotional volatility, and aggression that peaks in the late
afternoon or evening (for review see Bachman and Rabins,
2006). This syndrome is not formally recognized as a clinical
condition—indeed, dispute exists as to what behavioral features
it includes, and whether increased behavioral disturbances
during this time of day truly reflect a clinical phenomenon
or a confounding influence, such as reporting bias from
caregivers (e.g., Bliwise et al., 1993; Yesavage et al., 2003).
However, a number of reports suggest that a small but notable

proportion of elderly individuals with dementia do exhibit
a predictable diurnal pattern of behavioral and emotional
disturbance, particularly among those with severe symptoms
(Gallagher-Thompson et al., 1992; Martin et al., 2000). The
factors contributing to the expression of agitated behaviors
are unknown, but some evidence suggests that this pattern
is not a direct consequence of sleep loss (Volicer et al.,
2001).

NEURODEGENERATIVE DISEASES AND
CLOCK GENE EXPRESSION

Evidence from individuals with AD, PD, or HD and animal
models of each disease state indicate abnormalities in the
rhythms of bmal1 and per2 expression. In AD, the pattern
of change observed in bmal1 mRNA expression is complex.
In several brain regions and peripheral tissues, bmal1 mRNA
expression remains rhythmic; however, the temporal phase
relationships among these tissues differ compared with healthy
controls (Cermakian et al., 2011; Weissová et al., 2016). In
the pineal gland, the rhythms of bmal1, per1 and cry1 mRNA
are lost (Wu et al., 2006). In PD, the bmal1 transcription
rhythm in blood cells is blunted in amplitude (Cai et al.,
2010; Breen et al., 2014). Furthermore, rodent models of PD
exhibit a blunting of rhythmic per2 mRNA and PER2 protein
expression in several brain regions downstream of SCN control
and in peripheral tissues. For example, loss of dopaminergic
innervation to the striatum abolishes the rhythmic expression
of PER2 protein in this region (Hood et al., 2010; Gravotta
et al., 2011). Similarly, the normal rhythms of per2 mRNA
expression in both central and peripheral tissues are disrupted
in rodent models of HD (Morton et al., 2005; Maywood et al.,
2010).

DOES A FAULTY CIRCADIAN CLOCK
CAUSE NEURODEGENERATIVE DISEASE?

Given the prevalence of rhythm abnormalities in
neurodegenerative diseases, circadian disturbances are
increasingly regarded as harbingers of neurodegeneration
(e.g., Videnovic and Zee, 2015; Mattis and Sehgal, 2016).
Consistent with this idea, several prospective studies have
identified excessive daytime sleepiness (Abbott et al., 2005;
Bonanni et al., 2005), daytime activity fragmentation (Tranah
et al., 2011), and sleep behavior disorders (Iranzo et al., 2013;
Schenck et al., 2013; Postuma et al., 2015) as independent
predictors of AD, PD and cognitive impairments associated
with dementia. In the case of RBD, the vast majority of affected
individuals appear to be at risk of developing PD or a related
synucleinopathy, particularly if additional non-motor risk
factors are also exhibited (Iranzo et al., 2013; Schenck et al., 2013;
Postuma et al., 2015).

Are these circadian disruptions a consequence of
neurodegeneration affecting clockwork mechanisms in the
brain and periphery, or do malfunctioning endogenous
clocks directly contribute to disease progression? It is clear
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that prolonged disruption of normal circadian rhythms
yields a variety of negative effects on health via mechanisms
including widespread impact on gene transcription and
pro-inflammatory processes (Archer and Oster, 2015; Lucassen
et al., 2016), which may exacerbate the progress of these
pathologies. However, a number of findings indicate that the
circadian system may in fact play a more direct role in the
etiology of neurodegenerative diseases. For example, single
nucleotide polymorphisms of bmal1 and per1 are associated
with increased risk of PD (Gu et al., 2015). Furthermore,
clock genes regulate the expression of other genes directly
implicated in neurocognitive disorders such as AD (Panda
et al., 2002; Duffield, 2003; Li et al., 2013). For example,
the presenilin-2 gene, which regulates levels of beta amyloid
peptide and is linked to familial early onset AD (Levy-Lahad
et al., 1995; Giri et al., 2016), is rhythmically expressed in
SCN (Esler and Wolfe, 2001; Panda et al., 2002). In peripheral
tissues, CLOCK:BMAL dimers regulate the expression of
presenilin-2 via transcriptional and post-transcriptional
mechanisms (Bélanger et al., 2006). These findings suggest
a causal link between clock genes and molecular factors
that confer risk of neurodegeneration. To our knowledge,
however, no experimental studies have yet demonstrated that
manipulation of clock genes affects the expression of presenilin-2
in brain.

Degenerative changes within the SCN itself may play a
contributory role in these disease states, although evidence
supporting this possibility is not entirely consistent. Some
post-mortem studies of brain tissue from sufferers of AD
indicate loss of hypothalamic tissue that includes cells in
the SCN, a reduction in the expression of the neuropeptides
AVP and VIP (Swaab et al., 1985; Stopa et al., 1999), and
a decrease in the expression of the melatonin receptor MT1
(Wu et al., 2007; however, see Wang et al., 2015). Rodent
models of HD exhibit reduced spontaneous cell firing in the
SCN compared with controls (Kudo et al., 2011; although
see Pallier et al., 2007), yet no change in SCN cell number
(Fahrenkrug et al., 2007). Although coordinated SCN cell
firing appears to diminish as a normal part of aging (Farajnia
et al., 2012), this reduction occurs at a prematurely young
age (3 months) in HD rodent models (Kudo et al., 2011).
Given that other hypothalamic structures degenerate in AD,
PD and HD (Shan et al., 2015), it is possible that structural
changes to the master clock may be a consequence of
the progressive course of tissue destruction in each disease
state, rather than precede disease onset. Nevertheless, any
dysfunction of the master clock is likely to worsen the
symptoms of these diseases through downstream effects on
peripheral oscillators. Consistent with this idea, levels of beta
amyloid peptide in human cerebrospinal fluid have been found
to correlate positively with sleep fragmentation (Ju et al.,
2013).

Compelling evidence suggests that the circadian system
may contribute to neurodegenerative disease states through
its involvement in regulating cellular responses to oxidative
stress (Kondratova and Kondratov, 2012). Oxidative stress is
suspected as a causal factor of neuronal damage, cell death,

and mitochondrial dysfunction observed in AD, PD and HD
(for a review see Grimm et al., 2011). Clock genes such as
bmal1 have been directly implicated in cellular antioxidant
responses through downstream regulation of antioxidant
response element transcription factors (Lee et al., 2013).
Rodents with selective knockouts of bmal1 or the period
genes (per1 and per2) exhibit significantly higher rates of
oxidative damage in tissues compared with age-matched wild
type controls (Kondratov et al., 2006; Jang et al., 2011; Lee
et al., 2013). The circadian clock may also regulate oxidative
stress via rhythmic release of melatonin, which is an effective
free radical scavenger (Reiter et al., 2002). These findings
imply that abnormal operation of the molecular clock may
create cellular conditions whereby harmful by-products
of metabolism and DNA replication accumulate, and
mitochondrial damage may develop. In turn, these conditions
may promote the pathogenesis of neurodegenerative disease
states.

CIRCADIAN-ORIENTED INTERVENTIONS
IN NEURODEGENERATIVE DISEASE

If the circadian system is indeed a contributor to
neurodegenerative disease, it follows that therapeutic
interventions targeting the circadian clock could mitigate
symptoms, or perhaps even retard the course of the disease itself.
To this end, a number of circadian-oriented therapies have been
investigated for AD, PD and HD.

One of the most frequently explored examples of this kind
of intervention is the use of bright light therapy. Previous
evidence has shown that institutionalized older adults may
have very little daily exposure to bright light, particularly those
with severe symptoms of dementia (Ancoli-Israel et al., 1997;
Shochat et al., 2000). Given the profound effect of light exposure
in regulating the timing of the master clock, a number of
studies have evaluated whether timed bright light exposure
has any beneficial effect on the course of neurodegeneration
or its symptoms. To date, results have been mixed (Forbes
et al., 2014). Overall, timed light exposure appears to modestly
improve the regulation of the circadian system in individuals
with neurodegenerative disease. In the case of AD, some
positive but short-lived benefits have been reported for timed
daily exposure to bright light on the consolidation of activity
rhythms in elderly adults with AD (Ancoli-Israel et al., 2003;
McCurry et al., 2011) and severe dementia (Ancoli-Israel et al.,
2002). In PD, daily light exposure improves sleep/wake rhythms
through reducing daytime sleepiness and increasing daytime
activity (Videnovic et al., 2017). However, it remains unclear
whether timed light exposure lessens cognitive or motor skill
decline over time. Although light exposure regimens have
yielded some short-term improvements in activities of daily
living in individuals with AD or PD, there is not yet sufficient
evidence to conclude any long-lasting cognitive or motor
benefits of this intervention (Paus et al., 2007; Forbes et al.,
2014).

Timed administration of melatonin has been investigated
for its therapeutic potential in AD, PD and HD. As shown
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in vitro and in animal models, melatonin has antioxidant
and apoptotic properties (Reiter et al., 2002; Wang et al.,
2011), and appears to prevent the formation of alpha-
synuclein protein aggregations (the primary protein component
of Lewy bodies; Ono et al., 2012). However, in randomized
controlled clinical trials in humans, the effects of melatonin
supplements on sleep quality and activity rhythms have
been inconsistent. In individuals with PD, daily doses of
melatonin did not improve sleep quality, but were associated
with improved self-report measures of sleeping (Medeiros
et al., 2007). In trials involving individuals with suspected
AD, modest improvements in sleep quality (reduced sleep
latency, improved sleep efficiency) and increased total sleep
time were observed in some cases (Asayama et al., 2003;
Riemersma-van der Lek et al., 2008), particularly when melatonin
treatments were combined with daily bright light therapy
(Riemersma-van der Lek et al., 2008). However, other trials
failed to identify any effects on circadian rhythms of activity,
sleep, or cognitive symptoms (Singer et al., 2003; Gehrman
et al., 2009; reviewed in Urrestarazu and Iriarte, 2016). A
beneficial effect of melatonin supplements has been reported
for behaviors associated with sundown syndrome, but this
effect has not been found consistently in randomized controlled
trials (Riemersma-van der Lek et al., 2008; de Jonghe et al.,
2010).

The lack of evidence that timed light exposure and
melatonin administration improve the non-circadian symptoms
of AD, PD and HD would seem to undermine the idea
that the circadian system contributes to the etiology of these
neurodegenerative diseases. It is likely, however, that some
methodological inconsistencies across trials have contributed
to these inconclusive findings. For example, studies evaluating
light exposure have varied markedly in the intensity of light
used; the timing of light exposure; and clinical characteristics
of the participants (Forbes et al., 2014). Similarly, variability
in the dosage, timing of administration, and characteristics
of the sample under study may have contributed to the
inconsistency of findings regarding the impact of melatonin
(Urrestarazu and Iriarte, 2016). Furthermore, to our knowledge,
no longitudinal studies have yet evaluated whether circadian-
oriented interventions moderate the long-term progression
of neurodegenerative disease symptoms. Careful consideration
of these methodological details and the incorporation of
long-term follow-up intervals would be of benefit in the
design of future research. As the circadian features of
neurodegenerative diseases may reflect a desynchronization
of tissue oscillators downstream of SCN control from the
master clock, an additional avenue of therapeutic intervention
concerns the powerful influence of timed food delivery in
the entrainment of circadian rhythms (Maywood et al., 2010;
Cermakian et al., 2011). The circadian system retains sensitivity
to food as a time cue, or zeitgeber, over the course of
healthy aging (Walcott and Tate, 1996). Given that timed
food delivery is a highly potent zeitgeber and does not exert
its entrainment effects via the SCN (Boulos et al., 1980),
it is possible that timed feeding or metabolic cues could
serve to re-synchronize disrupted circadian timing (for a

review see Kent, 2014). Indeed, some evidence suggests that
food intake patterns in individuals with suspected AD or
associated dementias vary with the progression of illness.
For example, institutionalized elderly with symptoms of AD
tend to consume less food in the afternoon and evening
compared with those without symptoms of AD, and breakfast
becomes the primary meal providing the greatest amount
of energy intake for the day (Young and Greenwood,
2001).

Recent studies suggest that imposing restricted meal
times could mitigate some of the circadian symptoms of
neurodegeneration. In the R6/2 rodent model of HD, the
restriction of food access to a 6-h window in the light phase
restored a rhythm of locomotor activity and altered clock gene
expression patterns in liver, compared with wild type controls
(Maywood et al., 2010). The use of a dark-phase restricted
feeding schedule also appears to delay the developmental onset
of the HD phenotype in R6/2 mice, and increases core body
temperature compared with wild type controls (Skillings et al.,
2014). Further research into the effects of timed food restriction
using animal models of AD and PD would be valuable to
pursue.

CONCLUSIONS

Taken together, a growing body of evidence strongly implicates
the circadian system in the onset and expression of AD,
PD and HD. Disruptions to normal rhythmic processes are
increasingly recognized as characteristic features of these
disease states, and these disruptions may serve as early
indicators of developing pathology. At the molecular level,
clock genes regulate a number of genes and biochemical
processes that contribute directly to neurodegeneration.
Although it is currently unclear whether the circadian system
plays a causal role in pathogenesis, further research may
clarify this relationship. The advancement of knowledge on
this subject may foster the development of screening tools
to identify individuals at early stages of neurodegeneration,
and may perhaps open a new realm of therapeutic
interventions. Given the projected increase in the prevalence
of neurodegenerative diseases in the coming years (Sosa-Ortiz
et al., 2012), these advancements would be both timely and
welcome.
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