Login | Register

Giant electron-hole transport asymmetry in ultra-short quantum transistors

Title:

Giant electron-hole transport asymmetry in ultra-short quantum transistors

McRae, A. C., Tayari, V., Porter, J. M. and Champagne, A. R. (2017) Giant electron-hole transport asymmetry in ultra-short quantum transistors. Nature Communications, 8 . p. 15491. ISSN 2041-1723

[img]
Preview
Text (application/pdf)
ncomms15491.pdf - Published Version
Available under License Spectrum Terms of Access.
1MB

Official URL: http://dx.doi.org/10.1038/ncomms15491

Abstract

Making use of bipolar transport in single-wall carbon nanotube quantum transistors would permit a single device to operate as both a quantum dot and a ballistic conductor or as two quantum dots with different charging energies. Here we report ultra-clean 10 to 100 nm scale suspended nanotube transistors with a large electron-hole transport asymmetry. The devices consist of naked nanotube channels contacted with sections of tube under annealed gold. The annealed gold acts as an n-doping top gate, allowing coherent quantum transport, and can create nanometre-sharp barriers. These tunnel barriers define a single quantum dot whose charging energies to add an electron or a hole are vastly different (e−h charging energy asymmetry). We parameterize the e−h transport asymmetry by the ratio of the hole and electron charging energies ηe−h. This asymmetry is maximized for short channels and small band gap tubes. In a small band gap device, we demonstrate the fabrication of a dual functionality quantum device acting as a quantum dot for holes and a much longer quantum bus for electrons. In a 14 nm-long channel, ηe−h reaches up to 2.6 for a device with a band gap of 270 meV. The charging energies in this device exceed 100 meV.

Divisions:Concordia University > Faculty of Arts and Science > Physics
Item Type:Article
Refereed:Yes
Authors:McRae, A. C. and Tayari, V. and Porter, J. M. and Champagne, A. R.
Journal or Publication:Nature Communications
Date:2017
Funders:
  • NSERC
  • CFI
  • Concordia University
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1038/ncomms15491
ID Code:982638
Deposited By: DANIELLE DENNIE
Deposited On:20 Jun 2017 19:07
Last Modified:18 Jan 2018 17:55

References:

1.Jarillo-Herrero, P., Sapmaz, S., Dekker, C., Kouwenhoven, L. P. & van der Zant, H. S. J. Electron-hole symmetry in a semiconducting carbon nanotube quantum dot. Nature 429, 389–392 (2004).

2.Laird, E. A. et al. Quantum transport in carbon nanotubes. Rev. Mod. Phys. 87, 703–764 (2015).

3.Steele, G. A., Gotz, G. & Kouwenhoven, L. P. Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes. Nat. Nanotechnol. 4, 363–367 (2009).

4.Jung, M. et al. Ultraclean single, double, and triple carbon nanotube quantum dots with recessed re bottom gates. Nano Lett. 13, 4522–4526 (2013).

5.Island, J. O., Tayari, V., McRae, A. C. & Champagne, A. R. Few-hundred GHz carbon nanotube nanoelectromechanical systems (NEMS). Nano Lett. 12, 4564–4569 (2012).

6.Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012).

7.Benyamini, A., Hamo, A., Kusminskiy, S. V., von Oppen, F. & Ilani, S. Real-space tailoring of the electron-phonon coupling in ultraclean nanotube mechanical resonators. Nat. Phys. 10, 151–156 (2014).

8.Moser, J., Eichler, A., Guttinger, J., Dykman, M. I. & Bachtold, A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotechnol. 9, 1007–1011 (2014).

9.Weber, P. et al. Switchable coupling of vibrations to two-electron carbon-nanotube quantum dot states. Nano Lett. 15, 4417–4422 (2015).

10.Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

11.Pei, F., Laird, E. A., Steele, G. A. & Kouwenhoven, L. P. Valley-spin blockade and spin resonance in carbon nanotubes. Nat. Nanotechnol. 7, 630–634 (2012).

12.Laird, E. A., Pei, F. & Kouwenhoven, L. P. A valley-spin qubit in a carbon nanotube. Nat. Nanotechnol. 8, 565–568 (2013).

13.Bergfield, J. P. & Ratner, M. A. Forty years of molecular electronics: non-equilibrium heat and charge transport at the nanoscale. Phys. Stat. Solid. B 250, 2249–2266 (2013).

14.Zonda, M., Pokorny, V., Janis, V. & Novotny, T. Perturbation theory for an Anderson quantum dot asymmetrically attached to two superconducting leads. Phys. Rev. B 93, 024523-1–024523-18 (2016).

15.Rinzan, M., Jenkins, G., Drew, H. D., Shafranjuk, S. & Barbara, P. Carbon nanotube quantum dots as highly sensitive terahertz-cooled spectrometers. Nano Lett. 12, 3097–3100 (2012).

16.Yoo, H. et al. Reconfigurable complementary logic circuits with ambipolar organic transistors. Sci. Rep. 6, 35585-1–35585-11 (2016).

17.Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

18.Wu, C. C., Liu, C. H. & Zhong, Z. H. One-step direct transfer of pristine single-walled carbon nanotubes for functional nanoelectronics. Nano Lett. 10, 1032–1036 (2010).

19.Cao, J., Wang, Q., Rolandi, M. & Dai, H. J. Aharonov-bohm interference and beating in single-walled carbon-nanotube interferometers. Phys. Rev. Lett. 93, 216803–216804 (2004).

20.LeRoy, B. J., Lemay, S. G., Kong, J. & Dekker, C. Electrical generation and absorption of phonons in carbon nanotubes. Nature 432, 371–374 (2004).

21.Island, J. O., Tayari, V., Yigen, S., McRae, A. C. & Champagne, A. R. Ultra-short suspended single-wall carbon nanotube transistors. Appl. Phys. Lett. 99, 243106-1–243106-4 (2011).

22.Tayari, V. et al. Tailoring 10 nm scale suspended graphene junctions and quantum dots. Nano Lett. 15, 114–119 (2015).

23.Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803–026804 (2008).

24.Cui, X. D., Freitag, M., Martel, R., Brus, L. & Avouris, P. Controlling energy-level alignments at carbon nanotube/Au contacts. Nano Lett. 3, 783–787 (2003).

25.Hasegawa, M. & Nishidate, K. Transfer doping of a metallic carbon nanotube and grapheme on metal surfaces. Phys. Rev. B 84, 155435-1–155435-11 (2011).

26.Heinze, S. et al. Carbon Nanotubes as Schottky Barrier Transistors. Phys. Rev. Lett. 89, 106801–106804 (2002).

27.Jorio, A. et al. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001).

28.Liu, K. H. et al. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. Nat. Nanotechnol. 8, 917–922 (2013).

29.Knoch, J. & Appenzeller, J. Tunneling phenomena in carbon nanotube field-effect transistors. Phys. Stat. Solid. A 205, 679–694 (2008).

30.Tersoff, J. Contact resistance of carbon nanotubes. Appl. Phys. Lett. 74, 2122–2124 (1999).

31.Sundaram, R. S. et al. The graphene-gold interface and its implications for nanoelectronics. Nano Lett. 11, 3833–3837 (2011).

32.Liang, W. et al. Fabry—Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

33.Makarovski, A., Liu, J. & Finkelstein, G. Evolution of transport regimes in carbon nanotube quantum dots. Phys. Rev. Lett. 99, 066801–066804 (2007).

34.Jorgensen, H., Grove-Rasmussen, K., Flensberg, K. & Lindelof, P. E. Critical and excess current through an open quantum dot: temperature and magnetic-field dependence. Phys. Rev. B 79, 155441–155446 (2009).

35.Khomyakov, P. A. et al. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 79, 195425-1–195425-12 (2009).

36.Chaves, F. A., Jimenez, D., Cummings, A. W. & Roche, S. Physical model of the contact resistivity of metal-graphene junctions. J. Appl. Phys. 115, 164513–164518 (2014).

37.Appenzeller, J., Lin, Y. M., Knoch, J. & Avouris, P. Band-to-band tunneling in carbonnanotube field-effect transistors. Phys. Rev. Lett. 93, 196805-1–196805-4 (2004).

38.Schmidt, M. Fabrication, Characterization and Simulation of Band-to-Band Tunneling Field-Eect Transistors Based on Silicon-Germanium (Ph.D. thesis RWTH Aachen University (2013).

39.Lu, W., Wang, D. & Chen, L. W. Near-static dielectric polarization of individual carbon nanotubes. Nano Lett. 7, 2729–2733 (2007).

40.Nemec, N., Tomanek, D. & Cuniberti, G. Contact dependence of carrier injection in carbon nanotubes: an ab initio study. Phys. Rev. Lett. 96, 076802–076804 (2006).

41.Franklin, A. D. et al. Sub-10 nm carbon nanotube transistor. Nano Lett. 12, 758–762 (2012).

42.Kuemmeth, F., Churchill, H. O. H., Herring, P. K. & Marcus, C. M. Carbon nanotubes for coherent spintronics. Mater. Today 13, 18–26 (2010).

43.Pecker, S. et al. Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube. Nat. Phys. 9, 576–581 (2013).

44.Yang, Y. et al. Coherent nonlocal transport in quantum wires with strongly coupled electrodes. Phys. Rev. B 87, 045403–045405 (2013).

45.Grove-Rasmussen, K., Jorgensen, H. I. & Lindelof, P. E. Fabry-Perot interference, Kondo effect and Coulomb blockade in carbon nanotubes. Phys. E 40, 92–98 (2007).

46.Cornaglia, P. S., Ness, H. & Grempel, D. R. Many-body effects on the transport properties of single-molecule devices. Phys. Rev. Lett. 93, 147201–147204 (2004).

47.Wunsch, B. Few-electron physics in a nanotube quantum dot with spin-orbit coupling. Phys. Rev. B 79, 235408-1–235408-6 (2009).
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top