Login | Register

Binary Phase Diagrams and Thermodynamic Properties of Silicon and Essential Doping Elements (Al, As, B, Bi, Ga, In, N, P, Sb and Tl)


Binary Phase Diagrams and Thermodynamic Properties of Silicon and Essential Doping Elements (Al, As, B, Bi, Ga, In, N, P, Sb and Tl)

Mostafa, Ahmad ORCID: https://orcid.org/0000-0001-5625-1106 and Medraj, Mamoun (2017) Binary Phase Diagrams and Thermodynamic Properties of Silicon and Essential Doping Elements (Al, As, B, Bi, Ga, In, N, P, Sb and Tl). Materials, 10 (6). p. 676. ISSN 1996-1944

Text (Published version) (application/pdf)
materials-10-00676.pdf - Published Version
Available under License Spectrum Terms of Access.

Official URL: http://dx.doi.org/10.3390/ma10060676


Fabrication of solar and electronic silicon wafers involves direct contact between solid, liquid and gas phases at near equilibrium conditions. Understanding of the phase diagrams and thermochemical properties of the Si-dopant binary systems is essential for providing processing conditions and for understanding the phase formation and transformation. In this work, ten Si-based binary phase diagrams, including Si with group IIIA elements (Al, B, Ga, In and Tl) and with group VA elements (As, Bi, N, P and Sb), have been reviewed. Each of these systems has been critically discussed on both aspects of phase diagram and thermodynamic properties. The available experimental data and thermodynamic parameters in the literature have been summarized and assessed thoroughly to provide consistent understanding of each system. Some systems were re-calculated to obtain a combination of the best evaluated phase diagram and a set of optimized thermodynamic parameters. As doping levels of solar and electronic silicon are of high technological importance, diffusion data has been presented to serve as a useful reference on the properties, behavior and quantities of metal impurities in silicon. This paper is meant to bridge the theoretical understanding of phase diagrams with the research and development of solar-grade silicon production, relying on the available information in the literature and our own analysis.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical and Industrial Engineering
Item Type:Article
Authors:Mostafa, Ahmad and Medraj, Mamoun
Journal or Publication:Materials
Date:20 June 2017
Digital Object Identifier (DOI):10.3390/ma10060676
Keywords:binary phase diagrams; doping diffusion; solar-grade silicon; thermochemical data
ID Code:982642
Deposited On:27 Jun 2017 12:48
Last Modified:18 Jan 2018 17:55


1. Luque, A.; Hegedus, S. Handbook of Photovoltaic Science and Engineering, 2nd ed.; Luque, A., Hegedus, S., Eds.; John Wiley & Sons: Chichester, UK, 2010.
2. Anwar, S.; Efstathiadis, H.; Qazi, S. Handbook of Research on Solar Energy Systems and Technologies; Engineering Science Reference (IGI Global): Hershey, PA, USA, 2013.
3. Singh, V.K.; Giribabu, L. Photovoltaic—A Review of the Solar Cell Generation. J. Innov. Electron. Commun. 2013, 3, 44–53.
4. Sovacool, B.K. The Costs of Failure: A Preliminary Assessment of Major Energy Accidents, 1907–2007. Energy Policy 2008, 36, 1802–1820, doi:10.1016/j.enpol.2008.01.040.
5. Hollangel, E.; Fujita, Y. The Fukushima Disaster—Systemic Failures as the Lack of Resilience. Nucl. Eng. Technol. 2013, 45, 13–20, doi:10.5516/NET.03.2011.078.
6. Parida, B.; Iniyan, S.; Goic, R. A Review of Solar Photovoltaic Technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636, doi:10.1016/j.rser.2010.11.032.
7. Becquerel, A.E. Mémoire Sur Les Effets Électriques Produits Sous L’influence Des Rayons Solaires. Ann. Phys. Chem. 1841, 54, 35–42.
8. Becquerel, A.E. Recherches Sur Les Effets de La Radiation Chimique de La Lumiere Solaire Au Moyen Des Courants Electriques. CR Acad. Sci. 1839, 9, 145–149.
9. Badawy, W.A. A Review on Solar Cells from Si-Single Crystals to Porous Materials and Quantum Dots. J. Adv. Res. 2015, 6, 123–132, doi:10.1016/j.jare.2013.10.001.
10. Chopra, K.L.; Paulson, P.D.; Dutta, V. Thin-Film Solar Cells: An Overview. Prog. Photovolt. Res. Appl. 2004, 12, 69–92, doi:10.1002/pip.541.
11. Green, M.A. Thin-Film Solar Cells: Review of Materials, Technologies and Commercial Status. J. Mater. Sci. Mater. Electron. 2007, 18, 15–19, doi:10.1007/s10854-007-9177-9.
12. Kerr, M.J.; Cuevas, A.; Campbell, P. Limiting Efficiency of Crystalline Silicon Solar Cells due to Coulomb-Enhanced Auger Recombination. Prog. Photovolt. Res. Appl. 2003, 11, 97–104, doi:10.1002/pip.464.
13. Tsuo, Y.S.; Wang, T.H.; Ciszek, T.F. Crystalline-Silicon Solar Cells for the 21st Century. National Renewable Energy Laboratory: Seattle, WA, USA, 1999.
14. Green, M.A. Limiting Efficiency of Bulk and Thin-Film Silicon Solar Cells in the Presence of Surface Recombination. Prog. Photovolt. Res. Appl. 1999, 7, 327–330, doi:10.1002/(SICI)1099-159X(199907/08)7:4<327::AID-PIP250>3.0.CO;2-B.
15. Aberle, A.G. Surface Passivation of Crystalline Silicon Solar Cells: A Review. Prog. Photovolt. Res. Appl.
2000, 8, 473–487, doi:10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO;2-D.
16. Tiedje, T.; Yablonovitch, E.; Cody, G.D.; Brooks, B.G. Limiting Efficiency of Silicon Solar Cells. IEEE Trans. Electron. Devices 1984, 31, 711–716, doi:10.1109/T-ED.1984.21594.
17. Chroneos, A.; Sgourou, E.N.; Londos, C.A.; Schwingenschlögl, U. Oxygen Defect Processes in Silicon and Silicon Germanium. Appl. Phys. Rev. 2015, 2, 21306, doi:10.1063/1.4922251.
18. Sgourou, E.N.; Timerkaeva, D.; Londos, C.A.; Aliprantis, D.; Chroneos, A.; Caliste, D.; Pochet, P. Impact of Isovalent Doping on the Trapping of Vacancy and Interstitial Related Defects in Si. J. Appl. Phys. 2013, 113, 113506, doi:10.1063/1.4795510.
19. Wang, H.; Chroneos, A.; Londos, C.A.; Sgourou, E.N.; Schwingenschlögl, U. A-Centers in Silicon Studied with Hybrid Density Functional Theory. Appl. Phys. Lett. 2013, 103, 52101, doi:10.1063/1.4817012.
20. Van der Zwaan, B.; Rabl, A. Prospects for PV: A Learning Curve Analysis. Sol. Energy 2003, 74, 19–31, doi:10.1016/S0038-092X(03)00112-9.
21. Jia, G. Characterization of Electrical and Optical Properties of Silicon Based Materials; Fakultät für Mathematik; Naturwissenschaften und Informatik : cityCottbus, countryGermany, 2010.
22. Graff, K. Metal Impurities in Silicon-Device Fabrication; Springer: Berlin/Heidelberg, Germany, 1995.
23. Coletti, G. Impurities in Silicon and Their Impact on Solar Cell Performance; Utrecht University: Utrecht, The Netherlands, 2011.
24. Fahey, P.M.; Griffin, P.B.; Plummer, J.D. Point Defects and Dopant Diffusion in Silicon. Rev. Mod. Phys. 1989, 61, 289–384, doi:10.1103/RevModPhys.61.289.
25. Taylor, W.; Gosele, U.; Tan, T.Y. Present Understanding of Ponit Point Defect Parameters and Diffusion in Silicon: An Overview. In Proceedings of the Third International Symposium on Process Physics and Modeling in Semiconductor Technology, Pennington, NJ, USA,day 19-21 month May 1993 ; pp. 3–19.
26. Scotten, W.J. Diffusion in Silicon; IC Knowledge: cityGeorgetown, country USA, 2000.
27. Tang, K.; Øvrelid, E.J.; Tranell, G.; Tangstad, M. A Thermochemical Database for the Solar Cell Silicon Materials. Mater. Trans. 2009, 50, 1978–1984, doi:10.2320/matertrans.M2009110.
28. O’Mara, W.; Herring, R.B.; Hunt, L.P. Handbook of Semiconductor Silicon Technology; Noyes PublicationsPublisher: Park RidgePublisher Location, CountryUSA, 2007 .
29. Gudmundsen, R.A.; Maserjian, J. Semiconductor Properties of Recrystallized Silicon in Aluminum Alloy Junction Diodes. J. Appl. Phys. 1957, 28, 1308, doi:10.1063/1.1722640.
30. Mckelvey, A.L. Retrograde Solubility in Semiconductors. Metall. Mater. Trans. A 1996, 27, 2704–2707, doi:10.1007/BF02652364.
31. Khan, M.I.; Mostafa, A.O.; Aljarrah, M.; Essadiqi, E.; Medraj, M. Influence of Cooling Rate on Microsegregation Behavior of Magnesium Alloys. J. Mater. 2014, 2014, 657647, doi:10.1155/2014/657647.
32. Yatsurugi, Y.; Akiyama, N.; Endo, Y.; Nozaki, T. Concentration, Solubility, and Equilibrium Distribution Coefficient of Nitrogen and Oxygen in Semiconductor Silicon. J. Electrochem. Soc. 1973, 120, 975, doi:10.1149/1.2403610.
33. Hall, R.N.; Soltys, T.J. High Purity Germanium for Detector Fabrication. IEEE Trans. Nucl. Sci. 1971, 18, 160–165, doi:10.1109/TNS.1971.4325857.
34. Fischler, S. Correlation between Maximum Solid Solubility and Distribution Coefficient for Impurities in Ge and Si. J. Appl. Phys. 1962, 33, 1615, doi:10.1063/1.1728792.
35. Gumaste, J.L.; Mohanty, B.C.; Galgali, R.K.; Syamaprasad, U.; Nayak, B.B.; Singh, S.K.; Jena, P.K. Solvent Refining of Metallurgical Grade Silicon. Sol. Energy Mater. 1987, 16, 289–296, doi:10.1016/0165-1633(87)90077-3.
36. Tafaghodikhajavi, L. Thermodynamics of Impurity Removal in Solvent Refining of Silicon; University of Toronto: Toronto, ON, Canada, 2015.
37. Pizzini, S. Physical Chemistry of Semiconductor Materials and Processes; John Wiley & Sons: West Sussexcity, United KingdomCountry, 2015.
38. Predel, B. Al-Si. In Binary Systems. Part 1_Elements and Binary Systems from Ag-Al to Au-Tl; Landolt-Börnstein-Group IV Physical Chemistry; Springer: Berlin/Heidelberg, Germany, 2002; Volume 19B1, pp. 198–200.
39. Villars, P.; Cenzual, K. Pearson’s Crystal Data—Crystal Structure Database for Inorganic Compounds (on CD-ROM); Release 2009/2010; ASM International: Materials Park, OH, USA , year2009/10.
40. Beck, C.G. Crystallography of SiP and SiAs Single Crystals and of SiP Precipitates in Si. J. Appl. Phys. 1966, 37, 4683, doi:10.1063/1.1708117.
41. Han, Q.; Schmid-Fetzer, R. Phase Equilibria in Ternary Ga-As-M Systems (M = W, Re, Si). J. Mater. Sci. Mater. Electron. 1993, 4, doi:10.1007/BF00180465.
42. Wadsten, T.; Vikan, M.; Krohn, C.; Nilsson, Å.; Theorell, H.; Blinc, R.; Paušak, S.; Ehrenberg, L.; Dumanović, J. The Crystal Structures of SiP2, SiAs2, and GeP. Acta Chem. Scand. 1967, 21, 593–594, doi:10.3891/acta.chem.scand.21-0593.
43. Massalski, T.B.; Okamoto, H.; Subramanian, P.R.; Kacprzak, L. Binary Alloy Phase Diagrams; ASM International: Materials Park, OH, USA, 1990.
44. Wu, J.; Ma, W.; Tang, D.; Jia, B.; Yang, B.; Liu, D.; Dai, Y. Thermodynamic Description of Si-B Binary System. Procedia Eng. 2012, 31, 297–301, doi:10.1016/j.proeng.2012.01.1027.
45. Magnusson, B.; Brosset, C. The Crystal Structure of В 2.8* Si . Acta Chem. Scand. 1962, 16, 449–455.
46. Cline, C.F. An Investigation of the Compound Silicon Boride (SiB6 [sub 6 ]). J. Electrochem. Soc. 1959, 106, 322, doi:10.1149/1.2427339.
47. Giese, R.F.; Matkovich, V.I.; Economy, J. The Crystal Structure of YB 4. Z. Krist. 1965, 122, 423–432, doi:10.1524/zkri.1965.122.5-6.423.
48. Korniyenko, K. Boron—Carbon—Silicon. In Landolt-Börnstein-Group IV Physical Chemistry 11E1 (Refractory metal systems); Springer: Stuttgart, Germany, 2009; pp. 499–534.
49. Franke, P.; Neuschütz, D. Bi-Si. In Binary Systems. Part 2: Elements and Binary Systems from B—C to Cr—Zr; Springer: Berlin/Heidelberg, Germany , year2004; pp. 1–2. , doi:10.1007/10757405_31.
50. Olesinski, R.W.; Abbaschian, G.J. The Bi-Si (Bismuth-Silicon) System. Bull. Alloy Phase Diagr. 1985, 6, 359–361, doi:10.1007/BF02880522.
51. Olesinski, R.W.; Kanani, N.; Abbaschian, G.J. The Ga-Si (Gallium-Silicon) System. Bull. Alloy Phase Diagr. 1985, 6, 362–364, doi:10.1007/BF02880523.
52. Olesinski, R.W.; Kanani, N.; Abbaschian, G.J. The In-Si (Indium-Silicon) System. Bull. Alloy Phase Diagr. 1985, 6, 128–130, doi:10.1007/BF02869223.
53. Kato, K.; Inoue, Z.; Kijima, K.; Kawada, I.; Tanaka, H.; Yamane, T. Structural Approach to the Problem of Oxygen Content in Alpha Silicon Nitride. J. Am. Ceram. Soc. 1975, 58, 90–91, doi:10.1111/j.1151-2916.1975.tb19564.x.
54. Grün, R. The Crystal Structure of β-Si3N4: Structural and Stability Considerations between α- and β-Si3N4. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1979, 35, 800–804, doi:10.1107/S0567740879004933.
55. Franke, P.; Neuschütz, D. P-Si. In Binary Systems. Part 4: Binary Systems from Mn-Mo to Y-Zr; Springer : Berlin/Heidelberg, Germany, 2006; pp. 1–4, doi:10.1007/10757285_47.
56. Franke, P.; Neuschütz, D. Sb-Si. In Binary Systems. Part 4: Binary Systems from Mn-Mo to Y-Zr; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–3, doi: 10.1007/10757285_61.
57. Olesinski, R.W.; Abbaschian, G.J. The Si-Tl (Silicon-Thallium) System. Bull. Alloy Phase Diagr. 1985, 6, 543–544, doi:10.1007/BF02887155.
58. Murray, J.L.; McAlister, A.J. The Al-Si (Aluminum-Silicon) System. Bull. Alloy Phase Diagr. 1984, 5, 74–84, doi:10.1007/BF02868729.
59. Liang, Y.; Guo, C.; Li, C.; Du, Z. A Thermodynamic Description of the Al-Cr-Si System. J. Phase Equilib. Diffus. 2009, 30, 462–479, doi:10.1007/s11669-009-9572-4.
60. Dix, E.H.; Heath, A.C. Equilibrium Relations in Aluminum-Silicon and Aluminum-Iron-Silicon Alloys of High Purity. Trans. AIME 1928, 78, 164–194.
61. Losana, L.; Stratta, R. Solid Solubility of Silicon in Aluminum in the Solid State, in Italian. Metall. Ital. 1931, volume23, 193–197 .
62. Durer, A. Determination of Solvus Curves by Dilatometric Measurements. Z. MetallkdMet . 1940, 32, 280–281.
63. Glazov, V. Plotting of the solidus lines by measuring microhardnessTitle. Izv. Akad. Nauk SSSR Otd. Teckhn. Nauk. Met. Topl. 1961, 43, 39–42.
64. Drits, M.Y.; Kadaner, E.S.; Kuz’mina, V.I. Solubility of Silicon and Zirconium in Aluminium. Izv. Akad. Nauk SSR Met. 1968, 1, 170–175.
65. Mondolfo, L.F. Aluminum Alloys: Structure and Properties; Butterworth & Co. Ltd.: London, UK, 1976.
66. Safarian, J.; Kolbeinsen, L.; Tangstad, M. Liquidus of Silicon Binary Systems. Metall. Mater. Trans. B 2011, 42, 852–874, doi:10.1007/s11663-011-9507-4.
67. Safarian, J.; Kolbeinsen, L.; Tangstad, M. Thermodynamic Activities in Silicon Binary Melts. J. Mater. Sci. 2012, 47, 5561–5580, doi:10.1007/s10853-012-6449-4.
68. Navon, D.; Chernyshov, V. Retrograde Solubility of Aluminum in Silicon. J. Appl. Phys. 1957, 28, 823, doi:10.1063/1.1722869.
69. Miller, R.C.; Savage, A. Diffusion of Aluminum in Single Crystal Silicon. J. Appl. Phys. 1956, 27, 1430, doi:10.1063/1.1722283.
70. Yoshikawa, T.; Morita, K. Solid Solubilities and Thermodynamic Properties of Aluminum in Solid Silicon. J. Electrochem. Soc. 2003, 150, G465, doi:10.1149/1.1588300.
71. Nishi, Y.; Kang, Y.; Morita, K. Control of Si Crystal Growth during Solidification of Si-Al Melt. Mater. Trans. 2010, 51, 1227–1230, doi:10.2320/matertrans.M2010001.
72. Martin, J.W. Concise Encyclopedia of the Structure of Materials, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2007.
73. Soma, T.; Funayama, Y.; Kagaya, H.-M. Solid Solubility of Silicon and Germanium in Aluminium under Pressure. J. Mater. Sci. 1990, 25, 3917–3921, doi:10.1007/BF00582460.
74. Fujishiro, I.; Mii, H.; Senoo, M.; Akao, M. High-Pressure Phase Diagram of Al-Si System. J. Soc. Mater. Eng. Jpn. 1971, 215, 952–955.
75. Senoo, M.; Mii, H.; Fujishiro, I.; Fujikawa, T. Precise Measurements of Lattice Compression of Al, Si and Al-Si Alloys by High Pressure X-Ray Diffractometry. Jpn. J. Appl. Phys. 1976, 15, 871.
76. Fraenkel, W. Silicon–aluminum alloysTitle . Z. Anorg. Chem. 1908, 58, 154–158.
77. Roberts, C.E. CXXIX.—The Alloys of Aluminium and Silicon. J. Chem. Soc. Trans. 1914, 105, 1383, doi:10.1039/ct9140501383.
78. Gwyer, A.G.C.; Phillips., H.W.L. Alloys of Aluminium with Silicon and Iron. J. Inst. Met. 1927, 38, 311–335.
79. Broniewski, W.; Smialowski, M. On the Al-Si Alloys. Rev. Met. 1932, 29, 542–552.
80. Matsuyama, K. Ternary Diagram of the Al-Cu-Si System. Kinzoku No Kenkyu 1934, 11, 461–490.
81. Craighead, C.M.; Cawthorne, E.W.; Jaffee, R.I. Solution Rate of Solid Aluminum in Molten Al-Si Alloy. Trans. AIME 1955, 203, 81–87.
82. Berthon, O.; Petot-Ervas, G.; Petot, C.; Desres, P. Thermodynamics of Aluminium-Silicon Alloys Containing 3–5 at- per Cent% of Silicon. CR Acad. Sci. Paris 1969, 268C, C1939–C1942.
83. Kobayashi, K.; Shingu, P.H.; Kanbara, H.; Ozaki, R. The Role of the Primary Phase on Eutectic Solidification of Al-Si Alloys. Trans. Jpn. Inst. Met. 1976, 17, 545–550, doi:10.2320/matertrans1960.17.545.
84. Kobayashi, K.; Shingu, R.H.; Ozaki, R. The Role of the Primary Phase on Eutectic Solidification of Al-Si AlloysTitle. Scr. Met. 1976, 10, 525–527.
85. Girault, B.; Chevrier, F.; Joullie, A.; Bougnot, G. Liquid Phase Epitaxy of Silicon at Very Low Temperatures. J. Cryst. Growth 1977, 37, 169–177, doi:10.1016/0022-0248(77)90079-3.
86. Singer, A.R.E.; Jennings, P.H. Hot-Shortness of the Aluminium-Silicon Alloys of Commercial Purity. J. Inst. Met. 1947, 73, 33–55.
87. Mey, S.; Hack, K. A Thermodynamic Evaluation of the Si-Zn, Al-Si and Al-Si-Zn Systems. Z. Met. 1986, 77, 454–459.
88. Dörner, P.; Henig, E.-T.; Krieg, H.; Lukas, H.L.; Petzow, G. Optimization and Calculation of the Binary System Al-Si. Calphad 1980, 4, 241–254, doi:10.1016/0364-5916(80)90010-3.
89. Lozovskii, V.N.; Udyanskaya, A.I. Solubility of Aluminum in Silicon Single Crystals. Inorg. Mater. 1968, 4, 1030–1031.
90. Pichler, P. Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon; Computational Microelectronics; Springer: Vienna, Austria, 2004.
91. Krause, O.; Ryssel, H.; Pichler, P. Determination of Aluminum Diffusion Parameters in Silicon. J. Appl. Phys. 2002, 91, 5645, doi:10.1063/1.1465501.
92. Galvagno, G.; Scandurra, A.; Raineri, V.; Rimini, E.; La Ferla, A.; Sciascia, V.; Frisina, F.; Raspagliesi, M.; Ferla, G. Implants of Aluminum into Silicon. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1993, 74, 105–108, doi:10.1016/0168-583X(93)95023-X.
93. Fisher, D.J. Diffusivity in Silicon 1953 to 2009. Defect Diffus. Forum 2010, 302, 230, doi:10.4028/www.scientific.net/DDF.302.
94. Tang, K.; Øvrelid, E.J.; Tranell, G.; Tangstad, M. Critical Assessment of the Impurity Diffusivities in Solid and Liquid Silicon. JOM 2009, 61, 49–55, doi:10.1007/s11837-009-0167-7.
95. Chakraborti, N.; Lukas, H.L. Thermodynamic Optimization of the Mg-Al-Si Phase Diagram. Calphad 1992, 16, 79–86, doi:10.1016/0364-5916(92)90041-U.
96. Feufel, H.; Gödecke, T.; Lukas, H.L.; Sommer, F. Investigation of the Al-Mg-Si System by Experiments and Thermodynamic Calculations. J. Alloy. Compd. 1997, 247, 31–42, doi:10.1016/S0925-8388(96)02655-2.
97. Du, Y.; Schuster, J.C.; Liu, Z.-K.; Hu, R.; Nash, P.; Sun, W.; Zhang, W.; Wang, J.; Zhang, L.; Tang, C.; et al. A Thermodynamic Description of the Al-Fe-Si System over the Whole Composition and Temperature Ranges via a Hybrid Approach of CALPHAD and Key Experiments. Intermetallics 2008, 16, 554–570, doi:10.1016/j.intermet.2008.01.003.
98. Gröbner, J.; Lukas, H.L.; Aldinger, F. Thermodynamic Calculation of the Ternary System Al-Si-C. Calphad 1996, 20, 247–254, doi:10.1016/S0364-5916(96)00027-2.
99. Tang, Y.; Du, Y.; Zhang, L.; Yuan, X.; Kaptay, G. Thermodynamic Description of the Al-Mg-Si System Using a New Formulation for the Temperature Dependence of the Excess Gibbs Energy. Thermochim. Acta 2012, 527, 131–142, doi:10.1016/j.tca.2011.10.017.
100. Desai, P.D. Thermodynamic Properties of Selected Binary Aluminum Alloy Systems. J. Phys. Chem. Ref. Data 1987, 16, 109, doi:10.1063/1.555788.
101. Hansen, S.C.; Loper, C.R. Effect of Antimony on the Phase Equilibrium of Binary Al-Si Alloys. Calphad 2000, 24, 339–352, doi:10.1016/S0364-5916(01)00009-8.
102. Bros, J.P.; Eslami, H.; Gaune, P. Thermodynamics of Al-Si and Al-Ge-Si Liquid Alloys: Enthalpies of Formation by High Temperature Calorimetry. Ber. Bunsenges. Phys. Chem. 1981, 85, 333–336, doi:10.1002/bbpc.19810850416.
103. Gizenko, N.V.; Emlin, B.I.; Kilesso, S.N.; Zav’yalov, A.L. Heats of Formation of Molten Aluminum-silicon Alloys. Izv. Akad. Nauk SSR Met. 1983, 3, 3–35.
104. Rostovtsev, S.T.; Khitrik., S.I. Activity of Components in Silicon-aluminum, Silicon-manganese, and Silicon-chromium Alloys. Izv.Vyssh. Ucheb. Zaved. Met. 1971, 14, 61–63.
105. Tang, K.; Øvrelid, E.J.; Tranell, G.; Tangstad, M. Thermochemical and Kinetic Databases for the Solar Cell Silicon Materials. Adv. Mate. Res. 2009, 14, 219–251.
106. Batalin, G.I.; Beloborodova, E.A. An Investigation of the Thermodynamic Properties of Al-Si Melts. Izv. Akad. Nauk SSSR Met. 1971, 6, 9–74.
107. Chatillon, C.; Allibert, M.; Pattoret, A. Thermodynamic Study by Mass Spectrometry of Aluminum-Silicon Alloys From 1000 to 1700 K. High Temp. High Press. 1975, 5, 583–594.
108. Loseva, A.; Al’mukhamedov, A.; Tyumentsev, V.; Luzhnova, M. Thermodynamic Properties of Liquid Al-Si AlloysTitle. Russ. J. Phys. Chem. 1977, 51, 495.
109. Gokcen, N.A. The As (Arsenic) System. Bull. Alloy Phase Diagr. 1989, 10, 11–22, doi:10.1007/BF02882166.
110. Klement, W.; Jayaraman, A.; Kennedy, G.C. Phase Diagrams of Arsenic, Antimony, and Bismuth at Pressures up to 70 Kbars. Phys. Rev. 1963, 131, 632–637, doi:10.1103/PhysRev.131.632.
111. Jayaraman, A.; Klement, W.J.; Newton, R.C.; Kennedy, G.C. High-Pressure Investigations of Group III Elements. Part I. Fusion Curves and Polymorphic Transitions of Aluminum, Gallium, Indium, and Thallium at High Pressures. Part II. Phase Transformations in Uranium at High Pressures. Institute of Geophysics, University of CaliforniaPublisher: Livermore , CA, USA, 1962.
112. Olesinski, R.W.; Abbaschian, G.J. The As-Si (Arsenic-Silicon) System. Bull. Alloy Phase Diagrams 1985, 6, 254–258, doi:10.1007/BF02880410.
113. Klemm, W.; Pirscher, P. Uber Siliciumarsenide. Z. Anorg. Allg. Chem. 1941, 247, 211–220, doi:10.1002/zaac.19412470304.
114. Ugay, Y.A.; Miroshnichenko, S.N.; Goncharov, E.G. Investigation of the pTx Diagram of the Si-As System. Izv. Akad. Nauk SSSR Neorg. Mat. 1974, 10, 1774–1777.
115. Ugay, Y.A.; Goncharov, E.G.; Gladyshev, N.F.; Popov, A.E.; Inozemtseva, N.Y. Tensimetric Study of the Si-As System. Fiz. Khim. Prots. Polyprovod. Poverkh 1981, Vol. 138–144 .
116. Belousov, V.I. Calculation of the Activity Coefficient of Arsenic in Single Crystal Silicon. Russ. J. Phys. Chem. 1979, 53, 1266–1267.
117. Sandhu, J.S.; Reuter, J.L. Arsenic Source Vapor Pressure Kinetics and Capsule Diffusion. IBM J. Res. Dev. 1971, 15, 464–471, doi:10.1147/rd.156.0464.
118. Trumbore, F.A. Solid Solubilities of Impurity Elements in Germanium and Silicon. Bell Syst. Tech. J. 1960, 39, 205–233, doi:10.1002/j.1538-7305.1960.tb03928.x.
119. Donohue, P.C.; Siemons, W.J.; Gillson, J.L. Preparation and Properties of Pyrite-Type SiP2 and SiAs2. J. Phys. Chem. Solids 1968, 29, 807–813, doi:10.1016/0022-3697(68)90142-X.
120. Thurmond, C.D.; Kowalchik, M. Germanium and Silicon Liquidus Curves. Bell Syst. Tech. J. 1960, 39, 169–204, doi:10.1002/j.1538-7305.1960.tb03927.x.
121. Thurmond, C.D. Equilibrium Thermochemistry of Solid and Liquid Alloys of Germanium and of Silicon. I. The Solubility of Ge and Si in Elements of Groups III, IV and V. J. Phys. Chem. 1953, 57, 827–830, doi:10.1021/j150509a019.
122. Jordan, A.S.; Weiner, M.E. Calculation of the Liquidus Isotherms and Component Activities in the Ga-As-Si and Ga-P-Si Ternary Systems. J. Electrochem. Soc. 1974, 121, 1634, doi:10.1149/1.2401759.
123. Sudavtsova, V.S.; Batalin, G.I. Calculation of the Activities of the Components of Molten Metal-Si Alloys from the Phase Diagrams. Ukr. Khim. Zh. 1977, 43, 235–240.
124. FACTSAGE. Integrated Thermodynamic Databank System; University Montreal: Montreal, QC, Canada, 2001.
125. Fair, R.B.; Weber, G.R. Effect of Complex Formation on Diffusion of Arsenic in Silicon. J. Appl. Phys. 1973, 44, 273, doi:10.1063/1.1661873.
126. Ohkawa, S.; Nakajima, Y.; Fukukawa, Y. Arsenic Diffusion into Silicon from Elemental Source. Jpn. J. Appl. Phys. 1975, 14, 458.
127. Angelucci, R.; Armigliato, A.; Landi, E.; Nobili, D.; Solmi, S. Equilibrium Solubility of Arsenic and Antimony in Silicon. In Proceedings of the 17th European Solid State Device Research Conference (ESSDERC), Bologna, Italy, 14–17 September 1987; pp. 461–464.
128. Nobili, D.; Solmi, S.; Parisini, A.; Derdour, M.; Armigliato, A.; Moro, L. Precipitation, Aggregation, and Diffusion in Heavily Arsenic-Doped Silicon. Phys. Rev. B 1994, 49, 2477–2483, doi:10.1103/PhysRevB.49.2477.
129. Nobili, D.; de Cogan, D. Solubility of B, Al, Ga, In, Tl, P, As an Sb in c-Si. Prop. Cryst. Silicon INSPEC Inst. Electr. Eng. Lond. 1999 , Vol. 620–635.
130. Fair, R.B.; Tsai, J.C.C. The Diffusion of Ion-Implanted Arsenic in Silicon. J. Electrochem. Soc. 1975, 122, 1689, doi:10.1149/1.2134111.
131. Miyamoto, N.; Kuroda, E.; Yoshida, S. The Behavior of Arsenic in Silicon During Heat Treatment. J. Jpn. Soc. Appl. Phys. Suppl. 1974, 43, 408–414.
132. Pandey, K.C.; Erbil, A.; Cargill, G.S.; Boehme, R.F.; Vanderbilt, D. Annealing of Heavily Arsenic-Doped Silicon: Electrical Deactivation and a New Defect Complex. Phys. Rev. Lett. 1988, 61, 1282–1285, doi:10.1103/PhysRevLett.61.1282.
133. Ventzek, P.L.G.; Kweon, K.E.; Ueda, H.; Oka, M.; Sugimoto, Y.; Hwang, G.S. Formation, Nature, and Stability of the Arsenic-Silicon-Oxygen Alloy for Plasma Doping of Non-Planar Silicon Structures. Appl. Phys. Lett. 2014, 105, 262102, doi:10.1063/1.4905206.
134. Nobili, D.; Solmi, S. Features of Arsenic Clusters in Silicon. Phys. Status Solidi 2005, 2, 3681–3685, doi:10.1002/pssc.200461723.
135. Moynagh, P.B.; Rosser, P.J. Quantification of Diffusion Mechanisms of Boron, Phosphorus, Arsenic, and Antimony in Silicon. In ESSDERC 1989; Springer: Berlin/Heidelberg, Germany, 1989; pp. 291–296.
136. Kim, Y.; Massoud, H.Z.; Fair, R.B. The Effect of Ion-Implantation Damage on Dopant Diffusion in Silicon during Shallow-Junction Formation. J. Electron. Mater. 1989, 18, 143–150, doi:10.1007/BF02657400.
137. Fair, R. Concentration Profiles of Diffusion Dopants in Silicon. In Impurity Doping Processes in Silicon; Wang, F.F.Y., Ed.; Noth-Holland Publishing Company: New York, NY, USA, 1981; pp. 315–442.
138. Hull, R. Properties of Crystalline Silicon; Institution of Engineering and Technology (IET): cityLondon, country United Kingdom, 1999.
139. Pelton, A.D. On the Slopes of Phase Boundaries. Metall. Trans. A 1988, 19, 1819–1825, doi:10.1007/BF02645150.
140. Fitzner, K.; Kleppa, O.J. Direct Synthesis Calorimetry of Some Binary Alloys in the Systems Si-As, Ge-As and Sn-As. J. Alloy. Compd. 1996, 238, 187–192, doi:10.1016/0925-8388(95)02186-8.
141. Niessen, A.K.; de Boer, F.R.; Boom, R.; de Châtel, P.F.; Mattens, W.C.M.; Miedema, A.R. Model Predictions for the Enthalpy of Formation of Transition Metal Alloys II. Calphad 1983, 7, 51–70, doi:10.1016/0364-5916(83)90030-5.
142. Zaitsev, A.I.; Kodentsov, A.A. Thermodynamic Properties and Phase Equilibria in the Si-B System. J. Phase Equilib. 2001, 22, 126–135, doi:10.1361/105497101770338987.
143. Olesinski, R.W.; Abbaschian, G.J. The B-Si (Boron-Silicon) System. Bull. Alloy Phase Diagr. 1984, 5, 478–484, doi:10.1007/BF02872900.
144. Brosset, C.; Magnusson, B. The Silicon-Boron System. Nature 1960, 187, 54–55, doi:10.1038/187054a0.
145. Samsonov, G.V.; Sleptsov, V.M. Forefront Version of the Phase Diagram in the Boron-Silicon System. Acad. Sci. UK SSR 1962, 8, 1066–1068.
146. Hesse, J. Loeslichkeit Und Ausscheidungskinetik von Bor in Polykristallinem Silizium. Z. Met. 1968, 59, 499–503.
147. Male, G.; Salanoubat, D. The Existence of a Rich Boron Phase in the Boron-Silicon System. Rev. Int. Ht. Temp. Refract. 1981, 18, 109–120.
148. Armas, B.; Chatillon, C.; Allibert., M. Determination by Differential Mass Spectrometry of Activities in the Solid Silicon-Boron System. Rev. Int. Ht. Temp. Refract. 1981, 18, 153–165.
149. Barin, I.; Knacke, O.; Kubaschewski, O. Thermochemical Properties of Inorganic Substances; Springer: Berlin/Heidelberg, Germany, 1977.
150. Esin, Y.O.; Kolesnikov, S.P.; Baev, B.M.; Ermakov, A.F. Entalpij Obrazovanya Zhidkikh Splavov Kremnya S Borom (Ethalpies Formation of Liquid Alloys of Silicon with Boron), Tezisy Nauchn. Soobshch. Vses. Konf. Str. Svoistvam Met. Shlakovykh Rasplav. 1978, 2, page pp. 182-183.
151. Li, J.; Goto, T.; Hirai, T. Thermoelectric Properties of SiB14-SiB6 Composites Prepared by Arc Melting and Annealing. J. Jpn. Soc. Powder Powder Metall. 1998, 45, 581–585, doi:10.2497/jjspm.45.581.
152. Ettmayer, P.; Horn, H.C.; Schwetz, K.A. Untersuchungen Im System Silicium-Bor Mit Hilfe Der Elektronenstarhl-Mikroanalyse. Mikrochim. Acta 1970, 4, 87–95.
153. Dirkx, R.R.; Spear, K.E. Optimization of Thermodynamic Data for Silicon Borides. Calphad 1987, 11, 167–175, doi:10.1016/0364-5916(87)90011-3.
154. Okamoto, H. B-Si (Boron-Silicon). J. Phase Equilib. Diffus. 2005, 26, 396–396, doi:10.1361/154770305X56908.
155. Fries, S.; Lukas, H.L. System B-Si. In COST 507. Thermochemical Database for Light Metal Alloys; Ansara, I., Dinsdale, A.T., Rand, M.H., Eds.; Office for Official Publications of the European Communities: Brusselscity, Belgium , 1998; Volume 2, pp. 126–128.
156. Seifert, H.J.; Aldinger, F. Phase Equilibria in the Si-B-C-N System. In High Performance Non-Oxide Ceramics I; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–58.
157. Vick, G.L.; Whittle, K.M. Solid Solubility and Diffusion Coefficients of Boron in Silicon. J. Electrochem. Soc. 1969, 116, 1142, doi:10.1149/1.2412239.
158. Van Hung, V.; Hong, P.T.T.; Van Khue, B. Boron and Phosphorus Diffusion In Silicon: Interstitial, Vacancy and Combination Mechanisms. Proc. Natl. Conf. Theor. Phys. 2010; 35, 73–79.
159. Nichols, C.S.; Van de Walle, C.G.; Pantelides, S.T. Mechanisms of Dopant Impurity Diffusion in Silicon. Phys. Rev. B 1989, 40, 5484–5496, doi:10.1103/PhysRevB.40.5484.
160. Windl, W.; Bunea, M.M.; Stumpf, R.; Dunham, S.T.; Masquelier, M.P. First-Principles Study of Boron Diffusion in Silicon. Phys. Rev. Lett. 1999, 83, 4345–4348, doi:10.1103/PhysRevLett.83.4345.
161. Haddara, Y.M.; Folmer, B.T.; Law, M.E.; Buyuklimanli, T. Accurate Measurements of the Intrinsic Diffusivities of Boron and Phosphorus in Silicon. Appl. Phys. Lett. 2000, 77, 1976, doi:10.1063/1.1313248.
162. Lide, D.R. Handbook of Chemistry and Physics; PublisherCRC Press: Publisher LocationBoca Raton, CountryUSA, year2004; Volume85th edition, pp.
163. Sugino, O.; Oshiyama, A. Microscopic Mechanism of Atomic Diffusion in Si under Pressure. Phys. Rev. B 1992, 46, 12335–12341, doi:10.1103/PhysRevB.46.12335.
164. Khajavi, L.T.; Morita, K.; Yoshikawa, T.; Barati, M. Thermodynamics of Boron Distribution in Solvent Refining of Silicon Using Ferrosilicon Alloys. J. Alloy. Compd. 2015, 619, 634–638, doi:10.1016/j.jallcom.2014.09.062.
165. Beletskii, A.K.; Shcheretskii, A.K.; Vitusevich, V.T.; Shumikhin, V.S. Enthalpies of Formation of Melts in the Si-B System. Izv. AN SSSR Met. 1988, 3, 66–68.
166. Kudin, V.G.; Makara, V.A.; Sudavtsova, V.S. Interactions in Molten Aluminum (Silicon)-Boron Alloys. Powder Metall. Met. Ceram. 2001, 40, 61–64, doi:10.1023/A:1011312006734.
167. Franke, P.; Neuschütz, D. B-Si. In Binary systems. Part 2: Elements and Binary Systems from B-C to Cr-Zr; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–4, doi:10.1007/10757405_13.
168. Kudin, V.G.; Makara, V.A. Thermodynamic Properties of Metal-Boron Alloys. Inorg. Mater. 2002, 38, 216–219, doi:10.1023/A:1014758413829.
169. Kaufman, L.; Uhrenius, B.; Birnie, D.; Taylor, K. Coupled Pair Potential, Thermochemical and Phase Diagram Data for Transition Metal Binary Systems-VII. Calphad 1984, 8, 25–66, doi:10.1016/0364-5916(84)90026-9.
170. Zaitseva, N.; Tsaplin, A.; Kodentsov, A. Thermodynamic Properties and Phase Equilibria in the Si-B System. In High Temperature Corrosion and Materials Chemistry III; Opila, E.J., McNallan, M.D., Eds.; 199th Meeting-The Electrochemistry Society: Washington, DC, USA, 2001.
171. Gordienko, S.P. Enthalpies of Formation for Boron Silicides. Powder Metall. Met. Ceram. 1996, 34–34, 660–662, doi:10.1007/BF00559498.
172. George, R.E.; Witzel, W.; Riemann, H.; Abrosimov, N.V.; Nötzel, N.; Thewalt, M.L.W.; Morton, J.J.L. Electron Spin Coherence and Electron Nuclear Double Resonance of Bi Donors in Natural Si. Phys. Rev. Lett. 2010, 105, 67601, doi:10.1103/PhysRevLett.105.067601.
173. Sekiguchi, T.; Steger, M.; Saeedi, K.; Thewalt, M.L.W.; Riemann, H.; Abrosimov, N.V.; Nötzel, N. Hyperfine Structure and Nuclear Hyperpolarization Observed in the Bound Exciton Luminescence of Bi Donors in Natural Si. Phys. Rev. Lett. 2010, 104, 137402, doi:10.1103/PhysRevLett.104.137402.
174. Belli, M.; Fanciulli, M.; Abrosimov, N.V. Pulse Electron Spin Resonance Investigation of Bismuth-Doped Silicon: Relaxation and Electron Spin Echo Envelope Modulation. Phys. Rev. B 2011, 83, 235204, doi:10.1103/PhysRevB.83.235204.
175. Mohammady, M.H.; Morley, G.W.; Nazir, A.; Monteiro, T.S. Analysis of Quantum Coherence in Bismuth-Doped Silicon: A System of Strongly Coupled Spin Qubits. Phys. Rev. B 2012, 85, 94404, doi:10.1103/PhysRevB.85.094404.
176. Parry, C.M. Bismuth-Doped Silicon: An Extrinsic Detector For Long-Wavelength Infrared (LWIR) Applications. In Proceedings of SPIE 0244, Mosaic Focal Plane Methodologies, San Diegocity, country USA, 18 February 1981.
177. Williams, R.S. On the Alloys of Antimony with Manganese, Chromium, Silicon and Tin; of Bismuth with Chromium and Silicon; and of Manganese with Tin and Lead. Z. Anorg. Chem. 1907, 55, 1–33.
178. Girault, B. Liquidus Curves of Some Metal-Silicon Systems. CR Hebd Sci. L Acad. 1977, 1, 1–4.
179. Fuller, C.S.; Ditzenberger, J.A. Diffusion of Donor and Acceptor Elements in Silicon. J. Appl. Phys. 1956, 27, 544, doi:10.1063/1.1722419.
180. Ghoshtagore, R.N. Donor Diffusion Dynamics in Silicon. Phys. Rev. B 1971, 3, 397–403, doi:10.1103/PhysRevB.3.397.
181. Ishikawa, Y.; Yazaki, K.; Nakamichi, I. The Diffusion of Bismuth in Silicon. Jpn. J. Appl. Phys. 1989, 28, 1272–1273, doi:10.1143/JJAP.28.1272.
182. Smigelskas, A.D.; Kirkendall, E.O. Zinc Diffusion in Alpha Brass. Trans. Aime 1947, 171, 130–142.
183. Kaban, I.; Gröbner, J.; Hoyer, W.; Schmid-Fetzer, R. Liquid-liquid Phase Equilibria, Density Difference, and Interfacial Tension in the Al-Bi-Si Monotectic System. J. Mater. Sci. 2010, 45, 2030–2034, doi:10.1007/s10853-009-3713-3.
184. Scheel, H.J. Introduction to Liquid Phase Epitaxy. In Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials; John Wiley & Sons, Ltd.: Chichester, UK, 2007; pp. 1–19.
185. Franke, P.; Neuschütz, D. Ga-Si (Gallium-Silicon). In Binary Systems. Part 5: Binary Systems Supplement 1; Springer: Berlin/Heidelberg, Germany; pp. 1–3.
186. Klemm, W.; Klemm, L.; Hohmann, E.; Volk, H.; Orlamünder, E.; Klein, H.A. Das Verhalten Der Elemente Der III. Gruppe Zueinander Und Zu Den Elementen Der IV. Gruppe. Z. Anorg. Chem. 1948, 256, 239–252, doi:10.1002/zaac.19482560404.
187. Savitskiy, Y.M.; Baron, V.V.; Tylkina, M.A.; Tylkina., M.A. Phase Diagrams on Properties of Alloys of Gallium and Thallium. Russ. J. Inorg. Chem. 1958, 3, 310–327.
188. Keck, P.H.; Broder, J. The Solubility of Silicon and Germanium in Gallium and Indium. Phys. Rev. 1953, 90, 521–522, doi:10.1103/PhysRev.90.521.
189. Banerjee, A. Advances in Physical Metallurgy; CRC Press: Amsterdam, The Netherlands, 1996.
190. Haridoss, S.; Bénière, F.; Gauneau, M.; Rupert, A. Diffusion of Gallium in Silicon. J. Appl. Phys. 1980, 51, 5833, doi:10.1063/1.327541.
191. Kurtz, A.D.; Gravel, C.L. Diffusion of Gallium in Silicon. J. Appl. Phys. 1958, 29, 1456, doi:10.1063/1.1722968.
192. Boltaks, B.I.; Dzhafarov, T.D. Diffusion of Gallium in Inhomogeneous Silicon. Sov. Phys. Solid State 1964, 5, 2649–2651.
193. Kren, J.G.; Masters, B.J.; Wajda, E.S. Effect of Surface Imperfections on Gallium Diffusion in Silicon. Appl. Phys. Lett. 1964, 5, 49, doi:10.1063/1.1754046.
194. Makris, J.S. Gallium Diffusions into Silicon and Boron-Doped Silicon. J. Appl. Phys. 1971, 42, 3750, doi:10.1063/1.1659681.
195. Kanibolotsky, D.S.; Golovata, N.V.; Bieloborodova, O.A.; Lisnyak, V.V. Calorimetric Investigation of Liquid Gallium-Based Alloys. Z. Naturforsch. A 2003, 58, 473–474, doi:10.1515/zna-2003-7-814.
196. Sudavtsova, V.S.; Zinevich, T.N.; Kotova, N.V.; Beloborodova, E.A. Thermodynamic Properties of Ga-Si (Ge, Sn, Pb) Melts. Russ. J. Phys. Chem. 78, 829–831.
197. Tmar, M.; Pasturel, A.; Colinet, C. Thermodynamics of (Silicon + Indium) and (Silicon + Gallium) Calorimetric Determination of the Partial Molar Enthalpy at Infinite Dilution of Si in Indium and Gallium. J. Chem. Thermodyn. 1983, 15, 1037–1040, doi:10.1016/0021-9614(83)90029-0.
198. Backenstoss, G. Conductivity Mobilities of Electrons and Holes in Heavily Doped Silicon. Phys. Rev. 1957, 108, 1416–1419, doi:10.1103/PhysRev.108.1416.
199. Jones, C.E.; Schafer, D.E.; Scott, M.W.; Hager, R.J. Studies of Indium-Doped Silicon; PublisherHoneywell Inc.: Publisher LocationMinnesota, CountryUSA, 1980.
200. Cerofolini, G.F.; Ferla, G.; Pignatel, G.U.; Riva, F. Thermodynamic and Kinetic Properties of Indium-Implanted Silicon II: High Temperature Diffusion in an Inert Atmosphere. Thin Solid Films 1983, 101, 275–283, doi:10.1016/0040-6090(83)90254-7.
201. Millea, M.F. The Effect of Heavy Doping on the Diffusion of Impurities in Silicon. J. Phys. Chem. Solids 1966, 27, 315–325, doi:10.1016/0022-3697(66)90038-2.
202. Antoniadis, D.A.; Moskowitz, I. Diffusion of Indium in Silicon Inert and Oxidizing Ambients. J. Appl. Phys. 1982, 53, 9214, doi:10.1063/1.330394.
203. Noël, J.-P.; Hirashita, N.; Markert, L.C.; Kim, Y.-W.; Greene, J.E.; Knall, J.; Ni, W.-X.; Hasan, M.A.; Sundgren, J.-E. Electrical Properties of Si Films Doped with 200-eV In+ Ions during Growth by Molecular-Beam Epitaxy. J. Appl. Phys. 1989, 65, 1189, doi:10.1063/1.343062.
204. Scott, W.; Hager, R.J. Solution Growth of Indium-Doped Silicon. J. Electron. Mater. 1979, 8, 581–602, doi:10.1007/BF02657080.
205. Sato, A.; Suzuki, K.; Horie, H.; Sugii, T. Determination of Solid Solubility Limit of In and Sb in Si Using Bonded Silicon-on-Insulator (SOI) Substrate. In Proceedings of the IEEE International Conference on Microelectronic Test Structures (ICMTS), cityNara, countryJapan, 22–25 March 1995; pp. 259–263.
206. Solmi, S.; Parisini, A.; Bersani, M.; Giubertoni, D.; Soncini, V.; Carnevale, G.; Benvenuti, A.; Marmiroli, A. Investigation on Indium Diffusion in Silicon. J. Appl. Phys. 2002, 92, 1361, doi:10.1063/1.1492861.
207. Liu, J.; Jeong, U.; Mehta, S.; Sherbondy, J.; Lo, A.; Shim, K.H.; Lim, J.E. Investigation of Indium Activation by C-V Measurement, in: Ion Implantation Technology; Ryssel, H., Frey, L., Gyulai, J., Glawischnig, H., Eds.; IEEE: Piscataway, NJ, USA, 2000.
208. Yoshikawa, T.; Morita, K.; Kawanishi, S.; Tanaka, T. Thermodynamics of Impurity Elements in Solid Silicon. J. Alloy. Compd. 2010, 490, 31–41, doi:10.1016/j.jallcom.2009.09.190.
209. Cerofolini, G.F.; Ferla, G.; Pignatel, G.U.; Riva, F.; Ottaviani, G. Thermodynamic and Kinetic Properties of Indium-Implanted Silicon I: Moderate Temperature Recovery of the Implant Damage and Metastability Effects. Thin Solid Films 1983, 101, 263–273, doi:10.1016/0040-6090(83)90253-5.
210. Franke, P.; Neuschütz, D. In-Si. In Binary Systems. Part 3: Binary Systems from Cs-K to Mg-Zr; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–3.
211. Pavlov, P.V.; Zorin, E.I.; Tetelbaum, D.I.; Khokhlov, A.F. Nitrogen as Dopant in Silicon and Germanium. Phys. Status Solidi 1976, 35, 11–36, doi:10.1002/pssa.2210350102.
212. Kaiser, W.; Thurmond, C.D. Nitrogen in Silicon. J. Appl. Phys. 1959, 30, 427–431, doi:10.1063/1.1735180.
213. Wu, J.; Sun, J.; Zhong, X.; Zhou, Z.; Wu, C.; Li, F. Silicon Nitride Films Synthesized by Reactive Pulsed Laser Deposition in an Electron Cyclotron Resonance Nitrogen Plasma. Thin Solid Films 1999, 350, 101–105, doi:10.1016/S0040-6090(99)00324-7.
214. Ma, X.; Li, C.; Wang, F.; Zhang, W. Thermodynamic Assessment of the Si-N System. Calphad 2003, 27, 383–388, doi:10.1016/j.calphad.2003.12.005.
215. Blegen, K. Equilibria and Kinetics in Systems Si-N, Si-O-N and Si-C-O-N; Dring . Thesis, Department of Silicate and High Temperature Chemistry, University of Trondheim: Trondheim, Norway, 1976.
216. Pehlke, R.D.; Elliott, J.F. High-Temperature Thermodynamics of the Silicon, Nitrogen, Silicon-Nitride System. Trans. Am. Inst. Min. Metall. Eng. 1959, 215, 781–785.
217. Guzman, I.Y.; Demidenko, A.F.; Koshchenko, V.I.; Fraifel’d, M.S.; Egner, Y.V. Specific-Heats and Thermodynamic Functions of Si3N4 and Si2ON2. Izv. Akad. Nauk SSSR Neorg. Mater. 1976, 12, 1879–1881.
218. Koshchenko, V.I.; Grinburg, Y. Thermodynamic Functions of B6As (5–600 K), Beta-SiC (5–2500 K) and Si3N4 (5–4000 K). Izv. Akad. Nauk SSSR Neorg. Mater. 1985, 21, 244–248.
219. Hillert, M.; Jonsson, S.; Sundman, B. Thermodynamic Calculation of the Si-N-O System. Z. Met. 1992, 83, 648–654.
220. Kaufman, L. Calculation of Quasi Binary and Quasiternary Oxynitride Systems—III. Calphad 1979, 3, 275–291, doi:10.1016/0364-5916(79)90025-7.
221. Dorner, P.; Gauckler, L.J.; Krieg, H.; Lukas, H.L.; Petzow, G.; Weiss, J. Calculation of Heterogeneous Phase Equilibria in the SiAlON System. J. Mater. Sci. 1981, 16, 935–943, doi:10.1007/BF00542737.
222. Hincke, W.B.; Brantley, L.R. The High-Temperature Equilibrium Between Silicon Nitride, Silicon and Nitrogen. J. Am. Chem. Soc. 1930, 52, 48–52, doi:10.1021/ja01364a008.
223. Forgeng, W.D.; Decker, B.F. Nitrides of Silicon. Min. Metall. Eng. 1958, 212, 343–348.
224. Fujita, N.; Jones, R.; Goss, J.P.; Briddon, P.R.; Frauenheim, T.; Öberg, S. Diffusion of Nitrogen in Silicon. Appl. Phys. Lett. 2005, 87, 21902, doi:10.1063/1.1991996.
225. Alpass, C.R.; Murphy, J.D.; Falster, R.J.; Wilshaw, P.R. Nitrogen in Silicon: Diffusion at 500–750 °C and Interaction with Dislocations. Mater. Sci. Eng. B 2009, 159–160, 95–98, doi:10.1016/j.mseb.2008.09.004.
226. Jones, R.; Hahn, I.; Goss, J.P.; Briddon, P.R.; Öberg, S. Structure and Electronic Properties of Nitrogen Defects in Silicon. Solid State Phenom. 2004, 95–96, 93–98, doi:10.4028/www.scientific.net/SSP.95-96.93.
227. Leslie, W.C.; Carroll, K.; Fishe, R.M. Diffraction Patterns and Crystal Structures of Si3N4 and Ge3N4. Trans. Met. Soc. AIME 1952, 194, 204–206.
228. Carlson, O.N. The N-Si (Nitrogen-Silicon) System. Bull. Alloy Phase Diagr. 1990, 11, 569–573, doi:10.1007/BF02841719.
229. Arrowsmith, J.M. A New Silicon Nitride Phase in Commercial Silicon Killed Steels. J. Iron Steel Inst. 1963, 201, 699.
230. Mellor, J.W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry; Longmans, Green and Co. Ltd.: London, UK, 1928.
231. Hengge, E. Uber Die Darstellung Eines Neuen Siliciumsubnitrides (Si6N2)n. Z. Anorg. Allg. Chem. 1962, 315, 298–304, doi:10.1002/zaac.19623150509.
232. Wiberg, E.; Michaud, H. Zur Kenntnis Eines Siliciumtetrazids Si(N3)4. Z. Naturforsch. Sect. B J. Chem. Sci. 1954, 9, 500.
233. Peng, H. Spark Plasma Sintering of Si3N4-Based Ceramics-Sintering Mechanism-Tailoring Microstructure-Evaluating Properties; Stockholm University: Stockholm, Sweden, 2004.
234. Riedel, R.; Zerr, A.; Miehe, G.; Serghiou, G.; Schwarz, M.; Kroke, E.; Fueß, H.; Kroll, P.; Boehler, R. Synthesis of Cubic Silicon Nitride. Nature 1999, 400, 340–342, doi:10.1038/22493.
235. Wang, C.-M.; Pan, X.; Ruhle, M.; Riley, F.L.; Mitomo, M. Silicon Nitride Crystal Structure and Observations of Lattice Defects. J. Mater. Sci. 1996, 31, 5281–5298, doi:10.1007/BF01159294.
236. Author 1, A.B.; Author 2Scientific Group Thermodata Europe, C.D, SGTE Substance Database; Royal Institute of Technology: Stockholm, Sweden, 1994.
237. Dinsdale, A.T. SGTE Data for Pure Elements. Calphad 1991, 15, 317–425, doi:10.1016/0364-5916(91)90030-N.
238. Favre, S.; Nuta, I.; Chichignoud, G.; Zaïdat, K.; Chatillon, C. Removing Phosphorus from Molten Silicon: A Thermodynamic Evaluation of Distillation. ECS J. Solid State Sci. Technol. 2016, 5, P129–P137, doi:10.1149/2.0361602jss.
239. Miki, T.; Morita, K.; Sano, N. Thermodynamics of Phosphorus in Molten Silicon. Metall. Mater. Trans. B 1996, 27, 937–941, doi:10.1007/s11663-996-0007-x.
240. Christensen, J.S. Dopant Diffusion in Si and SiGe; Mikroelektronik och Informationsteknik: Stockholmcity, countrySweden, 2004.
241. Giessen, V.B.; Vogel, R. About the Silicon-Phosphorus System. Z. Met. 1959, 50, 274.
242. Olesinski, R.W.; Kanani, N.; Abbaschian, G.J. The P-Si (Phosphorus-Silicon) System. Bull. Alloy Phase Diagr. 1985, 6, 130–133, doi:10.1007/BF02869224.
243. Kooi, E. Formation and Composition of Surface Layers and Solubility Limits of Phosphorus During Diffusion in Silicon. J. Electrochem. Soc. 1964, 111, 1383, doi:10.1149/1.2426010.
244. Abrikosov, N.K.; Glazov, V.M.; Chen-Yuan, L. Individual and Joint Solubilities of Aluminum and Phosphorus in Germanium and Silicon. Russ. J. Lnorg. Chem. 1962, 7, 429–431.
245. Uda, K.; Kamoshida, M. Annealing Characteristics of Highly P+-Ion-Implanted Silicon Crystal—Two-Step Anneal. J. Appl. Phys. 1977, 48, 18, doi:10.1063/1.323307.
246. Solmi, S.; Parisini, A.; Angelucci, R.; Armigliato, A.; Nobili, D.; Moro, L. Dopant and Carrier Concentration in Si in Equilibrium with Monoclinic SiP Precipitates. Phys. Rev. B 1996, 53, 7836–7841, doi:10.1103/PhysRevB.53.7836.
247. Yoshida, M.; Arai, E.; Nakamura, H.; Terunuma, Y. Excess Vacancy Generation Mechanism at Phosphorous Diffusion into Silicon. J. Appl. Phys. 1974, 45, 1498–1501.
248. Tsai, J.C.C. Shallow Phosphorus Diffusion Profiles. IEEE 1969, 57, 1499–1506, doi:10.1109/proc.1969.7325.
249. Tamura, M. Dislocation Networks in Phosphorus-Implanted Silicon. Philos. Mag. 1977, 35, 663–691, doi:10.1080/14786437708235998.
250. Fogarassy, E.; Stuck, R.; Muller, J.C.; Grob, A.; Grob, J.J.; Siffert, P. Effects of Laser Irradiation on Phosphorus Diffused Layers in Silicon. J. Electron. Mater. 1980, 9, 197–209, doi:10.1007/BF02655224.
251. Mackintosh, I.M. The Diffusion of Phosphorus in Silicon. J. Electrochem. Soc. 1962, 109, 392, doi:10.1149/1.2425431.
252. Itoh, K.; Sasaki, Y.; Mitsuishi, T.; Miyao, M.; Tamura, M. Thermal Behavior of B, P and As Atoms in Supersaturated Si Produced by Ion Implantation and Pulsed-Laser Annealing. Jpn. J. Appl. Phys. 1982, 21, L245–L247, doi:10.1143/JJAP.21.L245.
253. Nobili, D.; Armigliato, A.; Finnetti, M.; Solmi, S. Precipitation as the Phenomenon Responsible for the Electrically Inactive Phosphorus in Silicon. J. Appl. Phys. 1982, 53, 1484, doi:10.1063/1.330646.
254. Boeisenko, V.E.; Yudin, S.G. Steady-State Solubility of Substitutional Impurities in Silicon. Phys. Status Solidi 1987, 101, 123–127, doi:10.1002/pssa.2211010113.
255. Safarian, J.; Tangstad, M. Phase Diagram Study of the Si-P System in Si-Rich Region. J. Mater. Res. 2011, 26, 1494–1503, doi:10.1557/jmr.2011.130.
256. Jung, I.-H.; Zhang, Y. Thermodynamic Calculations for the Dephosphorization of Silicon Using Molten Slag. JOM 2012, 64, 973–981, doi:10.1007/s11837-012-0387-0.
257. Liang, S.-M.; Schmid-Fetzer, R. Modeling of Thermodynamic Properties and Phase Equilibria of the Si-P System. J. Phase Equilib. Diffus. 2014, 35, 24–35, doi:10.1007/s11669-013-0269-3.
258. Fritz, G.; Berkenhoff, H.O. Uber Ein Siliciumphosphid Si2P. Z. Anorg. Allg. Chem. 1959, 300, 205–209, doi:10.1002/zaac.19593000310.
259. Wadsten, T. Preparative and Crystal-Structure Studies on Orthorhombic Silicon Monophosphide. Chem. Scr. 1975, 8, 63–69.
260. SpringThorpe, A.J. The Preparation of Single Crystal Orthorhombic SiP2. Mater. Res. Bull. 1969, 4, 125–128, doi:10.1016/0025-5408(69)90026-9.
261. Ntep, J.-M.; Said Hassani, S.; Lusson, A.; Tromson-Carli, A.; Ballutaud, D.; Didier, G.; Triboulet, R. ZnO Growth by Chemical Vapour Transport. J. Cryst. Growth 1999, 207, 30–34, doi:10.1016/S0022-0248(99)00363-2.
262. Carlsson, J.R.A. A New Silicon Phosphide, Si12P5: Formation Conditions, Structure, and Properties. J. Vac. Sci. Technol. A Vac. Surf. Films 1997, 15, 394, doi:10.1116/1.580497.
263. Zaitsev, A.I.; Shelkova, N.E.; Kodentsov, A.A. Thermodynamic Properties and Phase Equilibria in the Silicon-Phosphorous System. J. Phase Equilib. 2000, 21, 528–533, doi:10.1007/s11669-000-0021-7.
264. Gurvich, L.V. Ivtantermo-Automatic Data System on Thermodynamic Properties of Substances. Vestn. Akad. Nauk SSSR 1983, 3, 54–65.
265. The Japan Society for Promotion of Science. The 19th Committee in Steelmaking: Steelmaking Data Sourcebook; Gordon and Beach Science Publishers: New York, NY, USA, 1988.
266. Pelton, A.D.; Degterov, S.A.; Eriksson, G.; Robelin, C.; Dessureault, Y. The Modified Quasichemical Model I—Binary Solutions. Metall. Mater. Trans. B 2000, 31, 651–659, doi:10.1007/s11663-000-0103-2.
267. Hillert, M. The Compound Energy Formalism. J. Alloy. Compd. 2001, 320, 161–176, doi:10.1016/S0925-8388(00)01481-X.
268. Ugai, Y.A.; Sokolov, L.I.; Goncharov, E.G.; Makarov, V.S. PTx Composition Diagram and Thermodynamics of Phase Equilibrium in the Silicon-Phosphorus System. Russ. J. Inorg. Chem. 1987, 32, 727–729.
269. Knacke, O.; Kubaschewski, O.; Hesselmann, K. Thermochemical Properties of Inorganic Substances, 2nd ed.; Springer: Berlin, Germany, 1991.
270. Philipp, F.; Schmidt, P. The Cationic Clathrate Si46−2xP2xTex Crystal Growth by Chemical Vapour Transport. J. Cryst. Growth 2008, 310, 5402–5408, doi:10.1016/j.jcrysgro.2008.09.001.
271. Wilmsen, C.W. Physics and Chemistry of III-V Compound Semiconductor Interfaces; Wilmsen, C.W., Ed.; Springer: Boston, MA, USA, 1985.
272. Arutyunyan, N.A.; Zaitsev, A.I.; Shaposhnikov, N.G. Analysis of Thermodynamic Properties and Phase Equilibria in the Si-P System. Russ. J. Phys. Chem. A 2011, 85, 911–915, doi:10.1134/S0036024411060057.
273. Knudsen, M. Die Gesetze Der Molekularströmung Und Der Inneren Reibungsströmung Der Gase Durch Röhren. Ann. Phys. 1909, 333, 75–130, doi:10.1002/andp.19093330106.
274. Olesinski, R.W.; Abbaschian, G.J. The Sb-Si (Antimony-Silicon) System. Bull. Alloy Phase Diagr. 1985, 6, 445–448, doi:10.1007/BF02869508.
275. Malmeja, Y.; Desré, P.; Bonnier, E. Contribution to the Ternary Phase Diagram of Ge-Si-Sb. Mém. Sci. Rev. Métall. Fr. 1972, 69, 565–577.
276. Rohan, J.J.; Pickering, N.E.; Kennedy, J. Diffusion of Radioactive Antimony in Silicon. J. Electrochem. Soc. 1959, 106, 705, doi:10.1149/1.2427476.
277. Wang, J.; Liu, Y.J.; Liu, L.B.; Zhou, H.Y.; Jin, Z.P. Thermodynamic Modeling of the Au-Sb-Si Ternary System. J. Alloy. Compd. 2011, 509, 3057–3064, doi:10.1016/j.jallcom.2010.11.199.
278. Nobili, D. Equilibrium Carrier Density and Solubility of Antimony in Silicon. J. Electrochem. Soc. 1989, 136, 1142, doi:10.1149/1.2096808.
279. Zhao, B.; Zhou, J.; Chen, Y. Numerical Simulation of the Impurity Photovoltaic Effect in Silicon Solar Cells Doped with Thallium. Phys. B Condens. Matter 2010, 405, 3834–3837, doi:10.1016/j.physb.2010.06.012.
280. Tamaru, S. Metallographische Mitteilungen Aus Dem Institut Für Physikalische Chemie Der Universität Göttingen. LXIX. Über Die Legierungen Des Siliciums Mit Zinn, Blei Und Thallium. Z. Anorg. Chem. 1909, 61, 40–45, doi:10.1002/zaac.19090610104.
281. Predel, B. Si-Tl (Silicon-Thallium). In Pu-Re—Zn-Zr; Madelung, O., Ed.; Springer: Berlin/Heidelberg, Germany, 1985; p. 1.
282. Schmit, J.L.; Scott, M.W. Growth of Thallium-Doped Silicon from a Tin-Thallium Solution. U.S. Patent Application No. 4,270,973, 2 June 1981.
283. Ghoshtagore, R.N. Dopant Diffusion in Silicon. III. Acceptors. Phys. Rev. B 1971, 3, 2507–2514, doi:10.1103/PhysRevB.3.2507.
284. Burton, J.A.; Kolb, E.D.; Slichter, W.P.; Struthers, J.D. Distribution of Solute in Crystals Grown from the Melt. Part II. Experimental. J. Chem. Phys. 1953, 21, 1991, doi:10.1063/1.1698729.
285. Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent Radii Revisited. Dalton Trans. 2008, 21, 2832, doi:10.1039/b801115j.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top