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ABSTRACT

DNA Computation of Solutions to Edge-Matching Puzzles

Ali A Atiia

The resilient, ancient, and fine-tuned DNA (deoxyribonucleic acid) has inspired many
researchers to harness its power for material purposes. In this work, we use synthesized DNA
strands to compute the solution to an instance of edge-matching puzzles (EMP), where the
challenge is to pack a collection of edge-coloured square tiles on a square board such that all
adjacent edges match in colour. We encode tiles with DNA strands and make use of structural,
chemical and enzymatic properties of DNA to effectively carry out a brute-force search of the
solution to the puzzle. The solution ultimately results as a 2-dimensional DNA lattice encoding
the position and orientation of each tile on the solution board. Our approach has been to
represent a tile as the union of two half-tiles. This conceptual representation allows for the use
of a supremely powerful heuristic: polymerase chain reaction (PCR), which can be inserted at
any step of the protocol to selectively amplify certain strands to exponential quantities. Our
abstract formalization of half-tiles and the DNA protocol we use to manipulate them have
relevance in three ways. First, by solving an instance of the (NP-Complete) EMP problem we
make precise characterizations of the processing power of DNA Computing. Second, the 2-
dimensional self-assembly of half-tiles is Turing-complete. Thirdly, the 2-dimensional self-
assembly of half-tiles can serve as a PCR-powered model for massive nano-scale fabrication of 2-

dimensional DNA nano-shapes.
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Chapter 1 Introduction

The scientific understanding of the structural, functional, chemical and enzymatic
properties of the deoxyribonucleic acid (DNA) has grown rapidly over the past sixty years. Since
discovered in 1953 [57], the DNA double-helix has become one of the most recognizable icons
and indeed one of the hallmarks of scientific progress in human history. It is, after all, the robust
and efficient information-carrier encoding the blueprint of living organisms —including ourselves.

And it has been so for billions of years.

" Sugar
Phosphate
Backbone
Base pair
Adenine (A N :
enine (A) | Thymine (T)
H
H )
Adenine Thymine
Guanine

Cytosine

NH2 /

H
Cytosine (C) N

Guanine (G)

Figure 1.1: The DNA double-helix. A strand of DNA is made up of series of four compounds (Adenine,
Thymine, Cytosine, Guanine, or A, T, C, G for short) connected together with a sugar-phosphate
backbone' (a sequence of DNA is therefore a string over an alphabet £ = {A, T, C, G}). Two strands
hybridize: always A, T, C, G in one strands mating with T, A, G, C in the other, respectively, to form the
notorious double-helix.”

If computation is a process by which new information/states result from previous ones

in accordance with some “rules”, then the central dogma of molecular biology (DNA-to-mRNA-

! Recent discoveries [64] found a strain of bacterium which substitutes arsenic for phosphorus in their

nucleic acids.
% Graphics courtesy of Darryl Leja, graciously provided to the public domain by the National Human
Genome Research Institute, Bethesda, MD.



to-protein [18], or simply “life as we know it”) is no less than a computational classic. Therefore,
as we synthesize DNA sequences and harness them for computation, we should not forget that
DNA has been computing long before we even existed. In fact, there is no structural, chemical or
enzymatic operation used in DNA Computing which does not already occur in nature. Perhaps it
is no surprise that such a marvellous molecule has enticed researchers to use it for various
material purposes. It should also not come as a surprise that DNA has proven to be a heavy-
weight contender for emerging molecular paradigms of computing and nanotechnological
material fabrication. In DNA Computing, DNA strands’ base-composition and the chemical and
enzymatic reactions that govern their interactions are given new semantic meanings that

represent real-world pieces of information —whatever we may desire that to be.

Three obvious questions arise: what exactly is DNA Computing? How would we use it to
solve an edge-matching puzzle (EMP)? And why would we want to do that anyway? In what
remains of this chapter, we present pioneering works in the field (1.2), while expanding further
on those relating directly to our discussion. Next we present a brief overview (the how) of our
DNA-based approach to solving EMPs: from representation (1.3.1) to various manipulations that
we harness to find the solution (1.3.2-5). We conclude this chapter in 1.4 with an attempt an

answer the why question by elaborating on the motivation.

1.1 What is DNA Computing?

DNA Computing is a new perspective, not a technological invention. The field was born
as a result of an insightful [4] new way of attributing to DNA strands physical or abstract real-
world objects/relations. DNA strands have come to represent, say, nodes/edges in a graph,
variables/truth values in a SAT formula, or tiles/tiling in a recreational edge-matching puzzle

(Chapter 4). The three elementary operations in DNA Computing are: 1) the hybridization of two



strands through Watson-Crick complementarity (T-A, C-G base pairing) to form a double-helix, 2)
the concatenation of two strands by a ligase enzyme, effectively rendering the two into one
continuous strand, and 3) the selective and exponential replication of strands by a polymerase
enzyme. All of these operations occur in nature and so DNA Computing has nothing to show for
in this respect. However, our interpretation of the outcome of such operations on a pool of DNA
strands —each of which now stands for “something” of interest to us— can indeed lead to useful

and meaningful information/states.

When two strands X and Y are ligated into one continuous strand Z, we can interpret
the existence of Z as “there exists a relation between X and Y”. The relation (or rule) is itself a
strand that is Watson-Crick complementary to X in part and to Y in another. Figure 1.2a depicts
a schematic illustration of an example in which two real-world concepts, “Toronto” and
“Montreal”, were represented with random 16-base-pair (bp) single-stranded DNA (ssDNA)
oligonucleotides (or strands). A third 16-bp sequence, which is Watson-Crick complementary to
two 8-bp subsequences of “Toronto” and “Montreal” at their 5’- and 3’-ends, respectively?, is

(from our high-level viewpoint) the relation “connected-by-highway”.

*The 5 (pronounced “5 prime”) denotes the strand’s end having the fifth carbon of the ribose at its
terminus. The 3’ denotes the end terminating with the third carbon atom connected to the hydroxyl
compound. DNA strands hybridize while in opposite 5’/3’ conformations.
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3-TAACTCTTTTCTCAAT-5
5’- CCAAGTTGATTGAGAA AAGAGTTATATGGGCT-3’

Hybridization

3-TAACTCTTTTCTCAAT -5’

Toronto = 5'-AAGAGTTATATGGGCT-3’ 5’- CCAAGTTGATTGAGAAAAGAGTTATATGGGCT-3/

Montreal = 5’-CCAAGTTGATTGAGAA-3’ L

connected-by-highway = 3’- TAACTCTTTTCTCAAT-5’ Ligation
Encoding

3’-GGTTCAACTAACTCTTTTCTCAATATACCCGA-5
5’-CCAAGTTGATTGAGAAAAGAGTTATATGGGCT-3’

(a) Replication (PCR)
(b)

Figure 1.2: Elementary operations in DNA Computing. a) Encoding of two objects (cities) and a relation
(“connected-by-highway”) with 16-bp sequence each, the latter being partially WC-complementary to
the former two. b) The three fundamental operations of DNA Computing. The WC-complementarity
brings two strands together, with a “nick” at their meeting point (indicated by an arrow) which is sealed
by ligation. Notice the reverse 5'/3’ directionality of hybridizing strands. The ligation product can be
exponentially amplified by PCR. The replication results in fully double-stranded DNA (dsDNA), see 1.3.3
for PCR details.

Figure 1.2b illustrates the three fundamental operations of DNA Computing. The two
strands, “Montreal” (blue) and “Toronto” (green) are brought together by the “connected-by-
highway” (red) strand by virtue of hybridization according to Watson-Crick complementarity.
The post-hybridization gap (arrow in Figure 1.1b) at the meeting point of the two strands is
called a DNA “nick” which is subsequently sealed by the ligation process (by adding a missing

phosphodiester bond), effectively concatenating the two into one continuous strand.

This assembly can be exponentially replicated by polymerase chain reaction (PCR),

which is one of the most powerful heuristic tools in DNA Computing. Notice in Figure 1.2b that



replication produces perfect double-stranded DNA (notice the black regions in the
complementary strand, see 1.3.3 for details). There are other lab techniques that are involved in
DNA Computing (1.3.4 for example), but our criteria of an “operation” is restricted to those

involving alterations of DNA sequences.

1.2 Related Work

In a seminal paper in 1994, Adleman [4] demonstrated a DNA-based solution to an
instance of the Hamiltonian path problem: given a set of cities and routes between them, find a
path —if it exists— that starts in city A and ends in city B while in the process visiting all other
cities exactly once [24]. Using mainly DNA encoding and operations depicted in Figure 1.2

above®, the solution to the problem resulted at the end as a long DNA sequence.

This generated considerable interest and inspired a wide range of new research
proposing [31][9][13][40][6][8] and implementing [45][46][14] DNA-based solutions to other
problems. Moreover, new avenues for DNA in the material world subsequently sprung up,
ranging from Turing-universal DNA models [63][56][35], to DNA finite state machines for control
of gene expressions (or what can be referred to as in vivo molecular automata) [11][55][38], to

DNA nanotechnological constructions [34][47][48][65][61].

Three aspects of the emerging field of DNA Computing are relevant to our work on
EMPs: DNA-based solution to NP-Complete problems, Turing-universal computations through 2-
dimensional DNA self-assembly, and DNA models for nanotechnological fabrication. In what

follows we expand further on research progress in these three aspects of DNA Computing.

* Other techniques that Adleman used included gel electrophoresis whereby strands are separated by
sequence length (see 1.3.4), and successive filtrations using magnetic beads; see [4] for details.
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1.2.1 DNA Computing for Combinatorial Optimization

No known algorithm can solve all instances of NP-Complete problems efficiently [24],
and whether there will ever be such an algorithm remains one of the foremost quest of
computer science and mathematics today [21]. Problems in this class are polynomial-time
reducible to each other [17][24], and so to solve one efficiently is to so solve them all. However,
no matter how hard computer scientists attempt to find fast algorithms for such problems,
those algorithms would Bat least in worst case instances always require exponential amount of
computational resources as the problem size grows larger. For better or worse, the fact that
Adleman demonstrated a DNA solution to an instance of an NP-Complete problem -the
Hamiltonian path problem- accounted for the initial excitement [9] and the surging research
into the field. DNA-Based solutions to small instances of the notorious SAT problem were

demonstrated in [45][46][14].

The excitement brought new and interesting ideas around molecular computation in
general [9][11][63], but it also gave a misleading impression that a magic remedy for the
frustratingly elusive NP-Complete problems might be on the horizon. Some have suggested that
we may even be able to break the DES code![13]. In 1.4 we present a brief critique of such

misleading (or misled) impression, which still continues to manifest (see [10] for example).

1.2.2 Turing-universal Computation Using 2-Dimensional DNA Self-Assembly:

One of the earliest questions that arose in DNA Computing was whether DNA-based
Turing-universal computational models are feasible. Winfree [63] articulated Turing-universal
computation using DNA Wang tiles (assembled by virtue of flexible DNA structures known as

double-crossover assemblies, see 4.1.3), which he and collaborators later demonstrated [41].



Wang tiles are exactly the same tiles in edge-matching puzzles (EMP): edge-attributed square
plates. In 1963, Wang proved that a set of tiles can in fact simulate the execution of universal
Turing machines [59] and his work was the theoretical foundation for Winfree’s. The
fundamental challenge for such a model is that the task of finding tile sets is itself
computationally hard [62].

Another interesting and more recent demonstration was done by Su et. al. [56] who
proposed a DNA implementation of the NOR logical operation which can be the universal
primitive for a molecular computer (all other Boolean logic gates can be built from it [36]). The
model, termed DNA “surface computer”, involves the immobilization of DNA strands on a

surface and proof-of-concept logical operations were demonstrated.

1.2.3 Nanotechnological Constructions Using 2-Dimensional DNA Self-Assembly:

Investigations into the potential of DNA structures that could be used for
nanotechnological purposes have been pioneered by N. Seeman, who showed as early as 1982
the flexibility of DNA structures that could serve as basic units in the fabrication of
nanostructures [49]. The DNA double-crossover (DX) assemblies, which manifest in various
conformations [47] and were initially inspired by naturally occurring Holliday junctions [26][32],
have been the basis for many demonstrated 2-dimensional DNA nanotechnological
constructions [61][34][42][37] (see Figure 1.3).

Wang tiles and the well-established mathematical theory of tiling (see Chapter 2) were
also used as a theoretical model for creating sets of DNA DX units (which, through their four
“sticky ends” translate the four edges of a tile), and the growth of these molecular tiles would of
course follow the rules of edge-matching of Wang tiles and thus a specified shape would result

[61]. Clearly there is an overlap between these works and those mentioned in the previous



subsection. In fact, many pioneering researchers are involved in the two (see Seeman’s elegant
discussion in [52]). Detailed overview of DNA nanotechnology in general can also be found in

[48]; see also [53] on DNA nanodevices.

Figure 1.3 Examples of pioneering work in DNA 2-dimensional nanotechnological
constructions by (a) Winfree et al. [61] (1998) (b) Reishus et al. [37] (2005) and (c) Rothmund
[42] (2006). The three snapshots are atomic force microscopy (AFM) images at 300, 600 and 165
nanometre resolution, respectively.

1.3 How DNA Can Solve a Bounded Edge-Matching Puzzle

An edge-matching puzzle is a recreational tiling challenge in which a collection of edge-
coloured square tiles must be aligned on a square grid such that abutting edges have matching
colours. Figure 1.4a shows an example puzzle set of 9 tiles. In this particular EMP variant, there
is no constraint on the colour of boundary edges. Although solving an EMP of this size is trivial
(Figure 1.4b), EMPs are in fact computationally hard problems (NP-Complete) [24] as the
resources needed to solve them grow exponentially large as the number of tiles grows larger®

(see 2.1.3.2 on the computational complexity of EMPs).

> Of course the exact resources for a specific instance of the puzzle would also depend on the colour
frequency distribution; and so a puzzle where there are only 2 copies of each colour can clearly be
solved in O(1). See also [7] for an empirical study of hardness vs. colour distribution.
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3l I
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A

Figure 1.4 An instance of a 3x3 edge-matching puzzle. a) A 9-tile puzzle set. The challenge is to arrange
them on the 3x3 grid such that all abutting edges match in colour —no constraints on the boundary
edges. b) The solution to the set. In the process of solving the puzzle, tiles may be rotated but not
reflected (flipped).

(b)

Furthermore, these tiles (and tiling in general) are also of important and intriguing
mathematical relevance (see 2.1.3.1), and as such, their DNA representation has been at the
centre of investigations into the 2-dimensional DNA self-assembly for both molecular Turing-
complete models and directed nanotechnological constructions (see 1.2.2 and 1.2.3 above). In
what follows we discuss —in general terms— our approach to a DNA-based solution to such
puzzles: how a tile is encoded with DNA strands; how various operations
(hybridization/ligation/PCR) and laboratory techniques on these strands amount to

computations and heuristics that eventually lead to an answer to the puzzle.

1.3.1 DNA Strands as Half-Tiles

Our approach will be to conceptually re-think of a tile as a union of two half-tiles. That
conceptual view of tiles is then translated into DNA strand representation. That is our semantic
mapping between the puzzles’ objects and DNA strands (see 3.2.1). If a tile is represented as the
union of two half-tiles along the diagonal, and given that there are two diagonals in a square
tile, then clearly there are two possible pairs of half-tiles (Figure 1.5a). As will be laid out

formally and in details in Chapter 3, and after defining a tiling grid in Cartesian space in Chapter

9



2, these pairs can reproduce the tile on the two dimensional tiling grid in one of the four
orientations (3.2.1). In addition to the two strands representing the pair of half-tiles, two DNA
“bridging” strands are used to bring the half-tiles together and so the full tile translates into as a
DNA double-crossover (DX) molecule (Figure 1.5b). It is called a double-crossover because the
bridging strands hybridize to one half-tile’s strand then cross over and hybridize with the other

half-tile in the opposite directionality (see red strands in Figure 1.5b).

3 5
5y 3'
5
OR

crossover point

5 FGGAGATEAACATCACAGGAAGCTTG-3'
3-ACCTCTAGTTGTA/GTGTCCTTCGAAC-5’
5 TACTTATTTCGAT CGCCGACAAGAAG-3
3’-ATGAATAAAGCTAGCGGCTGTIGIIE-5'

(a) (b)

Figure 1.5 DNA representations of tiles. a) An example tile and the corresponding pairs of half-tiles that
result from dissecting the tile along the diagonals. b) Strands involved in encoding one pair (up in (a)) of
half-tiles. Each half-tile is encoded as a strand, and the two half-tiles are brought together by a pair of DNA
“bridging” strands (red) to reproduce the mother tile; schematic depiction (up) and example strands
(down). The bridging strands are unique per pair per tile (see 3.2.1 on colour-sign compound attributes). A
bridging strand hybridizes to one half-tile then crosses over and hybridizes to the other half-tile in opposite
directionality (note the 5’/3’ directionality of all strands; hybridizing strands are always in opposite
directionality); hence the name “double-crossover” (DX) molecule. The schematic representation must be
viewed with a caveat: in reality there is no “space” between the last base up and the first base down at the
crossover point.

1.3.2 DNA Hybridizations/Ligations as Unit Computations

In 1.1 we showed how a single hybridization/ligation step can result in a meaningful
piece of information —we called it a unit DNA computation. And the meaning of this unit
computation in the context of EMP is straight forward: it’s the act of aligning two tiles together

as if by a child attempting to solve the puzzle (Figure 1.6a). For the time being, let us ignore the
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DNA bridging strands mentioned above (red in Figure 1.5b; revisited in 1.3.5) and assume having

only the DNA strands representing half-tiles. The act of aligning two tiles is the same as aligning

two half-tiles along that common edge (Figure 1.6b).

Of course, enforcing the no-flipping constraint and other requirements (simply: a well-

defined solution) will be laid out formally and in details in Chapter 2 and 3 (see 3.2.2 in

particular). But the important aspect to emphasize at this point is the notion of a pool of half-

tiles that are “let loose” (absent the bridging strands) and allowed to align (or “staple”) with

other half-tiles to create “lanes” of half-tiles, while of course observing edge-matching

constraints (Figure 1.6c; see also Figure 4.5 for an expanded view).

7 N

(a)

Figure 1.6 A unit DNA computation
in the context of EMPs. (a) The
alignment of two tiles as a unit
action in the process of solving an
EMP. b) The same action
conceptually perceived as the
alignment of the two relevant half-
tiles. c) The alignment (“stapling”) of
two half-tiles by a stapler strand (or
the edge-matching “rule”) through
strand complementarity. Ligation
follows, sealing the 5’/3’ meeting
point of the two strands.

(b)

Stapler strand (“rule”)

3-TAACTCTTTTCTCAAT-5
ERITATCGATG LS.V RICATTGAGAAJAAGAGTTALLAYCIE{clapI€iCCTAATCGE

Ligation

(c)

This has profound implications on the DNA solution to the puzzle (and to the application

of Wang tiles in DNA models for Turing-universal computation or nanotechnological
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constructions). It means that, before we bridge pairs of half-tiles —that have now together
formed lanes— to their pair complements to re-produce mother tiles, we can employ two

powerful computational heuristics on these lanes: PCR and Gel Electrophoresis.

1.3.3 Polymerase Chain Reaction as a DNA Computational Heuristic and Processing Power
Bounded edge-matching puzzles (BEMP), which will be the focus of this thesis, have a
boundary constraint: edges of colour grey must appear on the boundary (see figures in 2.1.2). As
we mix all half-tile and stapler strands and generate exhaustive stapling, we can make use of the
fact that a valid lane must begin and end with a sequence encoding the “grey” colour. We use
“grey primers” to exponentially amplify the molarity of these lanes. Figure 1.7 is a schematic

depiction of how the PCR carries on.

The idea of molarity as the computational resource in DNA Computing was briefly
touched upon in 1.2.1 and will be investigated in details in 4.2 and 4.3. PCR increases the
molarity of certain strands (ruled by what primers we add to the reaction), and can therefore be
viewed as a DNA computational heuristic (it favours certain strands against others in the mix)
and also as a processing power (larger search space can exhaustively be searched the larger the
molarity). It is worth noting that PCR is relatively cheap and available (it is a daily procedure in

almost every molecular biology laboratory).
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Polymerase Chain Reaction
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Figure 1.7 Polymerase Chain Reaction: A dsDNA strand can selectively be amplified to exponentially
many copies. Forward and reverse primers (short sequences of ssDNA WC-complementary to the
beginning and end of a strand and its complement, respectively) hybridize to denatured strands; the
polymerase enzyme then makes the copying (making A, T, C, G base for every T, A, G, Cin the sequence)e.

1.3.4 Gel Electrophoresis as a DNA Computational Heuristic:

In our DNA-based protocol to solve BEMPs, we will take advantage of the fact that all
valid lanes are of odd lengths 1, 3, 5 ... n — 1 half-tiles, where n is the size of the puzzle (see
Figure 3.3 for a hint on what lanes would look like on the tiling grid). We know the length of
each half-tile strand and so we know the length of a lane comprised of x half-tiles. Gel
electrophoresis is a simple technique by which we can separate diverse products of double-

stranded DNA in one sample according to base-pair (bp) length. A DNA sample is loaded into an

® Graphics courtesy of Darryl Leja (with some modifications) graciously provided to the public domain by
the National Human Genome Research Institute, Bethesda, MD.
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agarose or polyacrylamide gel and electrical field is applied, making DNA (which is negatively
charged) migrate towards the positive anode. Because the speed at which a DNA strand can
“zigzag” its way through the gel material is inversely proportional to the logarithm of its length
[58], DNA strands with different bp lengths migrate at different speeds and are thus separated
on the gel (see Figure 1.8). The gel is stained with DNA-binding fluorescent material (e.g.
ethidium bromide) which shines up under ultraviolet light, enabling us to see the various bands
and deduct their lengths by comparison to a DNA ladder with known band resolution
(commercially available, left in Figure 1.8). Bands of interests can be excised (literally) from the
gel and purified. Notice that we have not mentioned gel electrophoresis as a fundamental
operation in DNA Computing because it’s really more of a laboratory technique (and there exist

many [44]) and doesn’t involve any alterations of DNA per se.

Figure 1.8 Gel electrophoresis: The lengths

of DNA products loaded in well 2 can be »_
identified by cross comparison with bands in %
well 1, which contains products from 100
commercially available DNA “ladder”. In this L %0
example (taken from a trial experiment in | = -
our lab) the upper band in W2 (at ~210 bp —_ -
length) was the desired product. It can be 300
excised and purified (see Chapter 4 for 200
further details), while the lower band is - 100
discarded. Notice that the products of these ?
two bands were originally in one sample tﬂﬁm
(say, a PCR product). Bom length gel,
1X TBE, 12V/em

Since the original mixing of half-tile and stapler strands results in random and
exhaustive stapling (exhaustive that is if we have the required molarity of each strand in the
mix), we are bound to eventually end up with erroneous lanes (say, lanes of even length). Those
can be discarded through electrophoresis, while the desired ones can be retained (and further

amplified for example) and carried on to the next step in the protocol: bridging.
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1.3.5 Bridging of dsDNA

It is worth emphasizing again the notion that pairs of half-tiles (i.e. those belonging to
the same dissection of a tile, see 3.2.1) have by this stage gone through hybridization/ligation,
gel electrophoresis and PCR independently from complement half-tiles in the same pair,
resulting in “lanes” of half-tiles in the form of dsDNA. Now, in the bridging phase, the union
operation is applied to bring half-tiles in one lane to their pair complements in another —
effectively reproducing mother tiles. But what does all this really mean in terms of solving a

BEMP?

Consider the schematic representation in Figure 1.9 which depicts the (ultimately
sought) 2-dimensional DNA assembly encoding the solution to a 4x4 BEMP. The lanes’ are mixed
with bridging strands (red) and they “stack up”. The details of this process will be discussed
extensively, both in abstract and practical terms (Chapter 3 and 4). But the essential point is this:
if all pairs of half-tiles in a BEMP are encoded such that every tile can ultimately assume every
position and every orientation on the DNA grid, then we have effectively carried out a brute

force search for the solution of the puzzle.

Figure 1.9 Schematic view of 2D DNA assembly encoding a
solution to a 4x4 BEMP: The DNA assembly (foreground) as it
relates to the 4x4 tiling grid (background). A half-tile on one lane is
bridged to its pair half-tile in another lane, effectively re-producing
the mother tile in a certain orientation. The schematic
representation should be viewed with caveats: in reality there are
no “gaps” between lanes, and the totality of DNA exists in dsDNA
form. Bridged lanes are the result of hyb./lig., PCR and G.E.
described above. The combination of stapling (producing lanes) and
bridging (stacking up lanes) is effectively an exhaustive search over
all positions and orientations. Eclipse and arrows in lanes indicate
5’/3’ terminus.

" More precisely, one of the two strands of the dsDNAs representing lanes. The other strand is irrelevant.
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1.4 Why Solve EMPs with DNA: Motivation

A DNA strand is made up of dozens of atoms, atoms are “small” and so the implicit
assumption is that we might be able to solve larger instances of NP-Complete problems with the
help of the massive parallelism of hybridizing DNA strands —we may even be able to break the
DES code [13]. Unfortunately, an atom is still too heavy when we are dealing with computational
resources that increase exponentially as problem sizes increase linearly. In a small note that
didn’t get the attention it deserved at the time, Hartmanis [25] elegantly showed in 1995 how
an HPP of a 200-city tour solved using Adleman’s method would require an amount of DNA that
is more the weight of the Earth. Our analysis of upper-bound requirements in Chapter 4 also
demonstrates the exponential molarity requirements as the (NP-Complete) edge-matching

puzzle grows larger.

Thus, just as the required CPU and/or memory requirements in silicon-based computing
grow exponentially as sizes of NP-Complete instances grow linearly, so too does the molarity of
DNA strands in DNA Computing. Similar observations were also brought up in [30][33][15]. Said
differently, there are no technological tricks around the inherent intractability of NP-Complete
problems; it is efficient algorithms we are missing, and whether those will ever be found is
indeed the most important question in computer science today (crystallized in the notorious P

vs. NP question [21]).2

Nonetheless, solving an NP-Complete instance using DNA may actually have forced us

to revisit fundamental notions of computability [5] and may have also helped us better realize

& Similar misconceptions seem to revolve around quantum computing too. Although one polynomial-time
quantum algorithm exists for integer factorization[54], there is yet to be a proof that quantum
computing can indeed solve NP-Complete in polynomial time [1][2][3].
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the inherent intractability of NP-Complete problems in a new computational medium.
Furthermore, the computational potential of DNA need not be judged by whether it can surpass
silicon-based computing, but rather by how it can supplement it: a DNA molecular computer is
indeed a more fitting (and a much needed in fact) choice for intelligent in vivo drug
administration [11] than a silicon-based one, for example. And it is exactly for this reason that
precise characterization of the power of DNA Computing is needed, and that is one of the goals
of this thesis. Solving combinatorial optimization problems using DNA can actually be a means to
making precise assessments about the computation power of hybridization/ligation and PCR,

and to say a statement with clarity about “how much” can practically be computed.

The half-tile model in our discussion can also be viewed as PCR-enabled Turing-
complete computational model through self-assembly. With minor modification to the
procedure of encoding half-tiles of EMPs (namely, disabling rotations of tiles on the assembly®,
see Chapter 5), we can show the equivalence of half-Tile and the Tile Assembly Model [63]. The
advantage of the former is that PCR can be inserted at any step of the protocol. PCR insertion is

discussed in 4.3.1.

Moreover, just as Wang tiles were used as definitional units of 2-dimensional DNA
nanotechnology, an assembly model based on the concept of half-tile is possible. In fact, the
PCR-insertion admissibility of the half-tile assembly model makes it a supremely powerful model
for nanotechnological constructions: not only can we make certain nano “stuff”, we can make it
in abundance. Lanes of half-tiles can be amplified to the desired molarity before stacking them
into 2-dimensional lattices (see 4.3 on PCR cycles vs. molarity). In fact, PCR can even be inserted

half-way through the bridging process (if bridging is carried out step-wise as our protocol

% Rotation is not allowed for Wang tiles, see [59].
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outlines in Chapter 4). The task of a nanotechnologist is to simply ask a computer program the
following question: given a final desired nano-scale shape, what is the set of half-tiles the
growth of which results in that shape. A harder question can be asked of a computer: what is
the smallest set of half-tiles the growth of which produces that nano-shape and only that shape.
What remains after is the DNA encoding of half-tiles and the execution of series of laboratory

protocols, all of which are demonstrated in the presented DNA protocol for solving BEMPs.
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Chapter 2 Problem Definition
2.1 Introduction to Edge-Matching Puzzles
2.1.1 What is an Edge-Matching Puzzle?

An edge-matching puzzle (EMP) is a recreational tiling puzzle which, in its most common
form®, requires packing a collection of identically-sized square tiles on a square grid such that
contiguous edges of neighbouring tiles have matching attributes. The attributes assigned to

edges can be colours and, in some cases, a combination of colour and sign. We focus our

Figure 2.1: An example edge-matching puzzle. a) A
set of 16 tiles for a 4x4 edge-matching puzzle. A Tile’s
IDs serves as a reference only. b) A 4x4 grid on which
the 16 tiles are to be packed observe ring the colour-
matching constraint of the puzzle. ¢) The 16 tiles of
(a) are successfully arranged on the grid with all
abutting edges matching in colour. Notice that every
edge matches colour with its opposite, unless the
edge is on the boundary of the puzzle, in which case
no further constraint is imposed.

! See [27] for examples of other variants.



attention here on one variant of EMPs in which the pieces are n square tiles where there is
exactly one copy of each tile and all must appear in the solution. Figure 2.1a shows an example
of an EMP set of 16 tiles with colour-attributed edges. The tiles are assigned IDs as serial

numbers from 1 to n and serve as a reference only.

The puzzle board is a finite square grid whose unit area is one square tile (Figure 2.1b),
and as such has an area of Vn X vn units, where n is the total number of tiles in the puzzle
andvn € N. The tiles can be rotated in the course of attempting to solve the puzzle but can not
be reflected (i.e. a tile can appear in whatever orientation, see Figure 2.1c). Unlike jigsaw
puzzles, the final arrangement of tiles in a solved EMPs of this type do not necessarily reveal a
grand image on the grid, and so in the course of solving the puzzle, there is no hint as to

whether a successfully placed tile in a partially-tiled grid is in the correct position ultimately.

EMPs can be traced as far back as 1890s [20] but have recently generated popular
interest after the release of Eternity Il puzzle [23], a commercial 16Xx16 (256 tiles in total) EMP

with a hefty prize of $2 million for the first person to have successfully solved it.

2.1.2 Variations of Boundary and Edge-Matching Constraints

Two criteria can be used to distinguish different types of EMPs: 1) whether there exists a
unique colour such that edges attributed with that colour must appear on the boundary of the
solution grid [23], and 2) whether edges have, in addition to colour, a sign such that abutting
edges must match in both colour and sign. In unsigned-unbounded EMPS, there is no designated
colour for boundary edges, and the edge-matching constraint is simply colour-matching of

abutting edges (Figure 2.2a). In signed-unbounded EMPs, abutting edges must match in colour
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and sign®, but just as in the previous type, there is no restriction on the colour for boundary

edges (Figure 2.2b).

(@) (b)
Fig. 2.2: Unbounded edge-matching puzzles: no constraint on boundary edges. a) An example of a
solved unsigned-unbounded EMP in which colour is the only edge-matching constraint. b) An example of
a solved signed-unbounded EMP in which two constraints must be satisfied: colour and sign of abutting
edges must match.

In bounded EMPs, which will be the focus of the rest of this thesis, boundary tiles are
identified from a puzzle set as those having one edge (two edges) that must appear on the
boundary (corner) of the solution to the puzzle. Since there are exactly 4v/n boundary edges,
the colour assigned for boundary edges (e.g. grey) in an n X n-BEMP set occurs exactly 4v/n
times in the puzzle set. Bounded EMPs can also be unsigned (Figure 2.3a) or signed, (Figure

2.3b).

% The sign constraint can also be that abutting edges have opposite rather than matching signs (see [20]
and [28] for examples).
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(b)

Fig. 2.3: Bounded edge-matching puzzles: boundary edges are constrained to a unique colour (grey). a)
An example of a solved unsigned-bounded EMP in which colour only is the edge-matching constraint. b)
An example of a solved signed-bounded EMP in which colour and sign are the edge-matching constraints.
Note that boundary edges are not signed since they must appear on the boundary and as such cannot
abut with other edges.

It is worth noting that signed EMPs can simply be treated as having one edge-matching
constraint that is the sign-colour compound attribute. Thus, in a signed EMP, two edges of the
same colour but with different signs can be treated as two distinct edges each identified by a
unique attribute that is the colour-sign combination. For example, in Figure 2.3b, green edges
with (-) sign can be treated as one set of edges whose attribute is (-green) while green edges
with (+) sign are treated as one set of edges whose attribute is (+green). Thus if E; E, are
signed and unsigned EMPs, respectively, with edge colours of both drawn from a set of colours
S, then the attribute set is S and S X {+,—} for E; and Ej, respectively. Therefore, from a
solution approach perspective, unsigned and signed EMPs can be treated the same, as the latter

differs by just having a larger attribute set.

In the case of bounded vs. unbounded EMPs, however, the boundary constraint
presents a significant contrast between the two types and the solution approach to both would
differ in fundamental strategies. For example, any solution approach to a bounded EMP would

readily discard any partial solutions in which a grey-coloured edge is placed anywhere on the
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board other than the boundary. Such a heuristic cannot be used, however, with unbounded
EMPs since there is no hint as to what edges should ultimately appear on the boundary.
Nonetheless, and from a computational complexity perspective, the two types (in fact, all

variants of EMPs) belong to the same complexity class, as will be detailed later (see 2.1.3.2).

2.1.3 Computational Complexity of Edge-Matching Puzzles
2.1.3.1 Edge-Matching Puzzles and the Domino Problems

Unit square tiles with attributed edges such as those used in EMPs have in fact been the
subject of a different kind of mathematical inquiry, under a class of problems known as the
Domino Problems, first discussed by logician Hao Wang in 1961 [60]. A finite set T =
{t1,ty,..,t;} where t, _{cp, cu,Cs,ce}, 1 < k <1, is an oriented square tile whose northern,
western, southern and eastern edges are attributed, respectively, with colours ¢, ¢,,, ¢s, ¢, € C,
where C is a finite set of colours. Assuming there are available infinite copies of each tile (or
domino) t;, € T, and copies of tiles in T can be used to cover the infinite Z X Z grid plane

observing the following conditions:

a) Tiles may not be reflected (i.e. tiles must be facing upward the plane).
b) Tiles may not be rotated (i.e. each tile has an assigned orientation and must always be
placed in that orientation; hence tiles are moved on the plane by translation only).

c) All abutting edges must match in colour.

then T is said to be solvable. The Domino Problem is therefore stated as follows: given

a finite set of tiles T', is T solvable?

Wang [60] conjectured that if T can tile the infinite plane in the manner described
above (i.e. T is solvable) then it must do so periodically. In other words, if T is solvable then

there must exist a rectangle R, whose unit area is one tile and whose dimensions are a and b
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where a X b < |T|, such that copies of R can fill the infinite plane. Informally stated, edges on
the top (right) boundary of R match opposite edges on the bottom (left) boundary, and as such
copies of R can be stacked verticall and horizentally to cover the entire plane while meeting the

tiling constraints —namely, edge-matching, no-rotation, and no-reflection constraints.

If Wang’s conjecture were true, then there would exist an algorithm for solving any
given tile set T: simply find a rectangular arrangement R of all or some tiles in T where top
(right) edges of R match bottom (left) ones. Copies of R can then tile the infinite plane and, and
hence T is solvable [60]. As a consequence, the Domino Problem would be decidable: i.e. there
would exist an algorithm which can determine whether a given set of dominoes is solvable. Also,
if the conjecture is true then another consequence would be that aperiodic tiling of the infinite

plane is impossible.
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(a)

Figure 2.4: Wang’s original
periodic tile set. a) The three
tiles used by Wang [60] when
he conjectured that a set of
tiles can tile the plane only
periodically. Tiles have
orientation (north being the
top of the page) and cannot be
rotated or reflected. b) A (3,
3)-periodic rectangle
comprised of copies from the
set in (a). Note that abutting
edges in the rectangle all
match, and that edges on the
top (right) match those on the
bottom (left). c) Tiling of the
infinite plane by copies of the
(3, 3)-periodic rectangle from
(b). Note that the tiling is
carried out by translation only,
no rotation of reflection is
allowed, whether of tiles in
constructing  the  periodic
rectangle or of the rectangle
itself.

Berger [12] proved that Wang’s conjecture is in fact false. He proved the existence of a
set of tiles that can cover the infinite plane only aperiodically. Berger’s set of over 20,000 tiles
(which he reduced to 104 tiles shortly after) can provably tile the infinite plane but only

aperiodically. It was therefore concluded that the Domino Problem is undecidable: i.e. there
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does not exist an algorithm which can decide whether a given set of tiles is solvable or not [12].
Interestingly, even smaller sets of aperiodic Wang tiles have since been discovered. Kari [29]

and Culik [19] (Figure 2.5) demonstrated aperiodic sets of 13 and 14 Wang tiles, respectively.

1 1 1 o
Figure 2.5: Culik’s aperiodic tile set. Since 2 X -1 |-2 ol |1 of |-+ X -2
Berger’s proof of the undecidability of the 2 1 2 1
domino problem and his demonstration of a set - - - -
of over 20,000 tiles that can cover the infinite
[0} -2 o 1 o' [0} (0] (0]
plane only aperiodically, smaller aperiodic sets , B o s
of Wang tiles have since then been discovered,
of which the 13 tiles shown in this figure, 1 1 o 2 1
demonstrated by Culik [19]. o q o g [ q I+ q 1+ o
0 [0]) [0} 1 1

In 1962 Wang [59] also proved that there exists a set of tiles the growth of which can
simulate the execution history of any Turing machine. Further, he showed that the halting
problem is reducible to the origin-constrained domino problem. It is based on Wang’'s
investigation that the idea of Turing-complete computations using self-assemblies of DNA
molecular tiles was used by Winfree to demonstrate a Turing-complete model of DNA
Computing [63]. The fundamental challenge for such model is that the task of finding tile sets is
itself computationally hard [62], and so the model remains far from practical realization.
However, the mere computational approach to DNA 2-dimensional self-assembly has provided
rigorous framework for other avenues such as DNA 2-dimensional construction of nano-scale

lattices and shapes [61].

How do bounded edge-matching puzzles (BEMP) in particular relate to the domino
problem? A creator of a vn X vn-BEMP can in fact state the puzzle as follows: Given n colour-

attributed Wang tiles, with a special boundary colour ¢ that is attributed to exactly 4v/n edges,
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find a (v/n, vn)-periodic square with ¢ occuring only on the boundary of the square. Copies of a
solved vn X v/n —BEMP can obviously tile the infinite plane, since its top, bottom, left and right
boundaries have the same colour ¢ and so any two copies can be adjoined top to bottom or left
to right. However, a BEMP problem is technically not a domino problem. Firstly, while reflection
of tiles is prohibited in both BEMP and the domino problem, rotation is however allowed in
BEMPs. Secondly, BEMPs have a finite multi-set of Wang tiles that can contain duplicates. In
contrast, a domino problem has a finite set of unique Wang tiles but with presumably infinite
copies of each tile available. While the domino problem is provably undecidable, the BEMP
problem is obviously decidable since the target tiling is not the infinite plane but rather a finite
area, and as such a BEMP problem is decidable; one can simply attempt all possible

permutations of tiles within that finite area.

2.1.3.2 Edge-Matching Puzzles are NP-Complete

The computational complexity theory concerns itself with the following question: how
hard is it for an algorithm to find a solution to any given instance of a particular problem? The
“hardness” of a problem is characterized by how much resources are needed by the algorithm
solving it —if such an algorithm exists. The most important measures of resource consumption
are time (how many steps the algorithm must take to achieve its task) and/or space (how much
information the algorithm must memorize as it proceeds). In the context of modern digital
computers, one can think of an algorithm as a computer program, time as the number of CPU
steps taken by the algorithm, and of space as the computer memory needed by the algorithm.
Resource consumption is typically characterized as a function of the problem’s input size (e.g. if

the problem is to sort n numbers, then the input size is n).
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There are three aspects of computational complexity theory which are relevant to our
discussion: non-determinism, polynomial-time, and completeness. Informally stated, an
algorithm is said to be non-deterministic if, at one or more of its steps, there are more than one
possible “next-step”. Given a decision problem (i.e. a problem whose solution is “yes” or “no”)
with input size n, a non-deterministic algorithm is said to operate in polynomial time if its “yes”
output can be verified using another algorithm that takes at most p(n) to complete its task, and

p(n) is some polynomial on input size n (e.g. p(n) =n? + 2n + 1).

The two concepts of non-determinism and polynomial-time verifiability together define
the complexity class NP (non-deterministic polynomial-time), one of the most fundamental
classes in complexity theory. Note that polynomial-time verifiability does not necessarily imply
polynomial-time solvability [24]. Hence, it may take a non-deterministic algorithm an
exponential amount of time to reach a “yes” answer to a decision problem, but as long as its

answer can be verified in polynomial time, then it belongs to NP.

A decision problem is called NP-Complete if 1) It is in NP, and 2) any other problem in NP
can be reduced to it in polynomial time. The polynomial-time reduction of any problem in class
NP to any NP-Complete problem implies that NP-Complete problems are as hard as the hardest
problem in NP (because the hardest problem is polynomial-time reducible to them). There exists
no known algorithm that can efficiently solve NP-Complete problems; the resources needed to
reach an answer grow exponentially as the input size grows linearly [24]. It has even been
argued that physical reality may impose a limit on how fast NP-Complete problems can ever be
solved [1]. The edge-matching puzzle problem has in fact been proven to be NP-Complete (see
[24] p. 257). Hence, any approach to solving an instance of an NP-Complete problem, such as

EMPs, must take serious consideration to their inherent intractability.
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2.2 Formal Definition of Bounded Edge-Matching Puzzles

Bounded Edge-Matching Puzzles will henceforth be the focus of our discussion. We
begin in this section by providing formal definitions and precise characterizations of BEMPs.
BEMPs and their solutions are formally defined with square tiles as their objects. These

theoretical formalizations will be the foundation for the solution approach in the next chapter.

2.2.1 Definition of a BEMP:

A BEMP can in its essence be described as a problem of arranging a set of 2-Dimensional
objects in a 2-Dimensional spatial domain in such a way that their relative positions meet certain
constraints. A formal method of dealing with BEMPs is needed in order to facilitate qualitative
and rigorous reasoning, not only about the objects themselves, but also about their inter-
relation in the spatial domain (i.e. their relative positions and orientations). In other words,
formal methods are developed in order to meaningfully describe 1) the inter-relation of edges
within a tile (i.e. meaningful description of a tile’s orientation), and 2) the inter-relation between

tiles within a tiling grid (i.e. meaningful description of tiles’ relative positions on a tiling grid).

In abstract set-theoretic terms, one can formalize a BEMP problem in terms of sets and
some relations between elements in those sets. These two concepts of set theory are used to
define yet another fundamental concept: order, which will provide the foundation of our formal
definition of tiles®. We start by providing definitions of order in terms of binary relations on sets,

as a prologue to subsequent definitions in terms of ternary relations:

Definition 2.2.1.1:
A (strictly) partially ordered set (S,R) is a set S and a binary relation < on S which is:

»  Jjrreflexive: vx €S, (x,x) R, and
= transitive: Vx,y,z €S5,(x,y) ER AN(y,z) ER=> (x,z) ER
We say that R is a partial order onS.

® For readers not familiar with set theory, see [30] for example.
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Definition 2.2.1.2:

A totally ordered set (S, R) is a set S and a binary relation R that is irreflexive, transitive, and:
* gsymmetric: Vx,y€S,(x,y) = (y,x) € R

We say that R is a total order on S.

And so binary relations of certain properties are used to define orders on sets of
interest. For example, the less-than relation is a total order on the set of natural numbers and
thus we say that (N, <) is a totally ordered set. While such binary relations might be useful for
describing objects “on a line”, they cannot provide meaningful information for “circular” sets
[39]. Consider the set of four points on a circle, as depicted in Figure 2.6a. Even if a clockwise
order is imposed, it is impossible for a binary relation to capture, for instance, the asymmetric
property of a totally ordered set: both (4,C) € R and (C,A) € R can hold for R = “reached-

before” if the starting points were A and C, respectively.

Edges of a BEMP tile can be represented as points on a circle. Consider a Wang tile with
edge colours ¢y, ¢, €3, ¢4 depicted in Figure 2.6b. Each edge can be represented as a point on a
circle, and the same argument applies: the relation of one edge relative to another edge of the

same tile cannot be precisely defined without engaging a third edge as a reference.

Figure 2.6: Circular sets and binary

relations. a) A set of four points

representing cities in a tour. Even if

clockwise direction is imposed, the binary —
relation R = “comes-before” holds for A

both (ARC) and (CRA) if the starting

points were A and C, respectively. Hence, c
asymmetry cannot be meaningfully

defined on R. b) Edges of an EMP tile

represented as points on a circle. The ¢ Cs
same conclusion of (a) can thus be
inferred: binary relations are not sufficient
to describe meaningful asymmetry on a
set containing tile edges as elements.

(a) (b)
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What if circular sets are “linearized” by fixing an element as a reference? Consider for
instance, a set (S,R) where S = {spring, summer, fall, winter} and R is the binary relation
comes-before, then one can say that (spring, fall) € R if the current season is winter, but
( fall, spring) € R also holds if the current season is summer; hence, again, asymmetry is
impossible to define meaningfully with a binary relation. However, if, say, winter is fixed as the
starting point, then one can say that ( fall, spring) € R but ( fall, spring) € R. But R now
has three operands: the reference element, and the two elements on which R is to be applied;
hence R is now called a ternary relation.

Ternary relations will be the basis for our approach to formalizing tiles in a BEMP
problem. Before defining tiles, we begin with some preliminary definitions:

Definition 2.2.1.3:
A ternary relation R on a set S is a triplet (a,b,c) € S3. R is said to be:

*  Jjrreflexive iff(a,b,c) ER > b +#c

=  asymmetric  iff(a,b,c) €ER = (a,c,b) ¢ R

* transitive iff (a,b,c) €R,(a,c,d) ER = (a,b,d) ER

= cyclic iff (a,b,c) € R = (b,c,a) ER

= complete iffa,b,c€S, a #b+c+a = (a,b,c) R V(c,b,a) ER

Definition 2.2.1.4:

A cyclic order C on a set S is a ternary relation on S that is irreflexive, asymmetric, transitive and
cyclic. We say that (S, C) is a cyclically ordered set.

Definition 2.2.1.5:
A total cyclic order C on S is a ternary relation on S that is irreflexive, asymmetric, transitive,
cyclic, and complete. We say that (S, C) is a totally cyclically ordered set.

Definition 2.2.1.6:

Let C; = (x4, X5 ..., Xp), Co = (V1, V2 ..., Vp) be two total cyclic orders on S = {hy, h, ....hy}. We
say that C, and C, are cyclically equivalent if 3k,1 <k <b:j=(i+k)mod (b+1) =

xj = x; [35D]

Lemma 2.2.1.7:

Let (S,C) = {eq, e, 3,4} be a totally cyclically ordered set. There exist exactly four quadruples
of cyclically-equivalent total orders 04,0,,03,0,0nS, namely o0, = (ey,€5,€3,€,4),0, =
(e2,€3,€4,€1),03 = (€3,€4,€1,€3),04 = (€4,€1,€5,€3).

Proof: Obvious. m
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Definition 2.2.1.8:

Let (S,C) be a totally cyclically ordered set, |S| = 4, and Og = {04, 0,, 03,04} be the set of all
quadruples of cyclically-equivelant orders on S. Oy is called the set of orientations of S. o0; € O
is refered to as orientation i of S, or simply S;, where 1 < i < 4.

Definition 2.2.1.9:
A tile t is a 4-tuple (X, S, C, 0) where:
e Y s a finite alphabet of attributes
e S={a,b,cd}isamulti-setand a,b,c,d € I*
e (s atotal cyclic order on S, and
e (O is the set of orientations of S

Definition 2.2.1.10:
A puzzle set P is collection of n tiles ty,t,, ...t, where~yn € N.

Having formally described the objects (i.e. tiles) of BEMPs, we now proceed to establishing
formal definitions of their spatial domain (i.e. tiling grid).

Definition 2.2.1.11:

Given a puzzle set P = {t;,t,,...t,}, a tiling grid G(P) is a finite \'nx\/n grid graph whose
corners are coincedental to (0,0), (0, \/ﬁ), (\/1_1, 0), (\/ﬁ, \/ﬁ) coordinate points of the the first
quadrant of the Cartesian plane.

(4,0) : (4,4)

Figure 2.7: A tiling grid for a puzzle
set of |[N| = 16 tiles. The tiling
grid of G(P) is a fininte grid graph
whose corners coincide  with
(0,0),(0,4),(4,0) and (4,4) points of
the infinite grid in the first quadrant
of the Cartesian plane.

(0,0) 0.4 x
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Definition 2.2.1.13:

Given a tiling grid G(P), a tile placeholder is a unit square h, = Ov,v,v;v, where v, =

xy), v, =(,y+1),v3=(x+1,y+1),v,=(+1,y)for0 <x,y<Vn—1.

We denote H = { hy, hy,.., h,,_1} the set of placeholders of P. For any given placehoder h,, we

use W(h,.), N(h,),E(h,),and S(h,) to refer to edges of h, bounded

by (v1,v,),(V,, V3), (V3,V,) and (V4,v1) respectively.
It follows from Definition 2.2.1.13 that 0 < r < \/ﬁ(\/ﬁ - 1) +Vvn—-1=2>0<r<n-

1. Figure 2.8 shows a tiling grid for a puzzle set P where |P| = n = 16 tiles, with placeholders h,

to hys. The inset illustrates an example of a placeholder: referencing individual edges of a

placeholder facilitates establishing a relation between tiles and placeholders, as will be laid out

in subsequent definitions.

v North(hy9
West(hig| hio |East(hg
South(hig
(4,0) 4.4)."
hiz his hia his
hs he hio | his
ha hs he hz
ho h1 h2 hs
(0,0) (0,4) X

Figure 2.8: Placeholders in a tiling grid for a puzzle set of |P| = 16 tiles.

Placeholders are the squares making up the tiling grid graph. The systematic numbering of placeholder squares
facilitates referencing each edge of each square. The inset shows an example placeholder, whose southern

edge for example is bounded by (2,2) and (3,2) vertices of the grid.

Now that the objects and the spatial domain are defined, we can proceed to defining an

instance of a BEMP as a function from the set of placeholders (i.e. the domain of the function) to
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the set of all orientations of tiles (i.e. the codomain of the function). We will sometimes use the

notation t;; to refer to orientation j or tile t;.

Definition 2.2.1.14:
Given a puzzle set P = { t, t,, ... t,} and placeholder set H = { hy, hy, .., hy,_1} defined on tiling
grid G(P), forany t; € P and o; € O, let:

* t;); denote orientation o; of tile t; forany i,j,1 <i<mnand1 <j <4, and
* 0=0,U0.,U,..,U 0, be the superset of all orientations of all tiles.

A placement of a tile t; in placeholder h, is a function p: H — 0. p(hy) = t;;; = N(hy) = ey,
E(hy) = ee, S(hy) = e, W(hy) = ey, where (e, €., €5,€y) = 0j € O, We say that t; is
placed in hy, in orientation o.

In other words, when a tile t; is placed in a placeholder hy, in one of its four orientations
0j € O, (see Definition 2.2.1.8 and 2.2.1.9), then northern, western, southern and eastern
edges of h; are (by definition) coincidental to the first, second, third and fourth element (i.e.
edge) of o; respectively. Notice that Definition 2.2.1.14 defines the domain and range of the
placement function p, but does not provide the third ingredient of a valid function: the rule that
maps a unique t;;; € © to each h;, € H. This is because defining p is precisely the solution to a

BEMP, as we see the following definitions.

Definition 2.2.1.15:
A bounded edge-matching puzzle is a 7-tuple (P, X, b, t, 0, G, H) where:
» P ={ty,t,..t,}is as set of tiles all defined over an alphabet X and \'n € N
= b € X isaboundary attribute
* 1 ={ay,a, a3 a,} is the seed tile where 3a;, a1 1(moas) € T @i = Ajy1(moas) = b
* 0=0,U0.,U,..,U 0, is the orientation superset over P
» H={hy hq,..,h,_1}is the set of placeholders defined on tiling grid G (P)
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2.2.2 Definition of a BEMP Solution:

Definition 2.2.1.16:
A solution to a BEMP is an injective function p: H — @ such that, for any p(hy) = t;;:
1. pthy) =1,1<i<4

2. N(hy) =S(hy,ym)  for 0<k<n-—-vn-1

3. E(hy) =W(hyy)  for [0<k<n-—1]A[(k +1)modvn # 0]

4. N(hy)=h for [n—Vn<k<n-1]

5 EChy)=0»b for [Vi—1<k<n—1]A[(k+ 1) modVn = 0]
6. S(hy)=b for [0 <k <n]

7. W(hy) =b for [0 <k <n—+Vn]A[kmodvn = 0]

The first constraint restricts placeholder kg to one of the four corner tiles (i.e. tiles with
two boundary edges), referred to as the seed tile 7. Any defined solutionp: H — @ can
equivelantly be expressed in three more different manners (corresponding to a 90, 180 and 270
degrees rotation of the whole solution, see Figure 2.9). However, if hy is resticted to an
arbitrarly-chosen corner tile, then p: H — 0 is unique. The second and third constraints in
Definition 2.2.1.16 enforce that abutting edges match, while constraints 4-7 enforce the

boundary constraint of a BEMP.
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y 90°

Figure 2.9: Equivalence of BEMP solutions by rotation.

Any solution to a BEMP, such as (a), is equivalent to three
other solutions that result from a 90, 180 and 270 degree
rotation as shown in (b), (c) and (d) respectively. If the origin
h, is restricted to one corner tile, say t, in this example, then
such equivalent solutions are ruled out.
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2.3 Definition of a 4x4-BEMP Instance: Hypatia

Figure 2.10 shows a 16-tile puzzle set for a 4x4 bounded matching puzzle which will be
the subject of our DNA-Computing protocol for solving BEMPs as will be laid out in the next two
chapters. Following Definition 2.2.1.15, the definition of this particular instance, which we refer

to as Hypatia, is as follows:

o P={ty,ty ...t1}

o Y ={red green, yellow, blue, orange, purple, brown, grey}where b = grey
e T=1

. @=0t1U0tZU,..,U0t164

e H=1{hy hq,.., hy5}is the set of placeholders defined on tiling grid G(16)

Define function p: H — 0, assuming 1) p is unique, and 2) AT < O: T tiles the 4x4 grid.

Figure 2.10: Hypatia Puzzle Set. .
A puzzle set of a 4x4 instance of
a bounded edge-matching A

puzzle. The 16 tiles are edge-

attributed from an alphabet of 8 v

colours: red, green, vyellow,
blue, orange, purple, brown and

grey (as the boundary colour).

tile identifiers (1...16) are used

as a reference and have no

Note that the choice of T = t;, as the seed tile is arbitrary.

Tiles with two grey edges are
evidently corner tiles. Note that v v
a
impact on the solution (typically A
real recreational EMPs have tile
IDs printed on the back of the
tileS).

* For example: O, = {04,0,,03,0,} = {(yellow, blue, purple,red), (blue, purple, red, yellow),
(purple, red, yellow, blue), (red, yellow, blue, purple)}
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Chapter 3 Solution Approach

A backtracking algorithm for solving BEMPs is presented in this chapter in abstract
terms. We begin in 3.1 with an outline of the algorithm, followed by a formal treatise in 3.2 and
3.3 which builds upon the definitions of Chapter 2. Clearly, the presented algorithm is designed
with the DNA-based implementation in mind, so we conclude this chapter with a discussion in
3.4 on the motivation behind our choice of a diagonal-wise stacking algorithm. Hypatia (the 4x4-

BEMP instance defined in 3.3) will be used in particular for demonstrations throughout.

3.1 Diagonal-wise Tile Stacking:
Given the empty tiling grid G(Hypatia), © the multi-set of orientations of Hypatia,

15<w,x,y,z<1land4 <i,j,k, f,I,m <1, consider the following solution strategy:

Step 1: Find E; = {7}, ®; = {tx/;} € O that can legally be placed in hy, hys, respectively.

Step 2: Find E; = {(ty/i, ty;;)} P2 = {(tw/k, tz/1)} € @ X O that can legally be placed
in {(hq, ha)}, {(h11, h1a)} respectively.

Step 3: Find E3 = {(ty/i, ty/j tz/i)} P3 = {(tw s tp/1, tq/m)} € O3 X 63 that can legally be
placed in (h,, hs, hg), (hy, hio, h13) respectively.

Step 4 Find Ey =@, = {(ty/ity )tz twys)} € O*that can legally be placed
in (hs, hg, hg, hq,) respectively.

Step 5: Print G.

At each step, multi-sets of tiles are placed on parallel and symmetrical “diagonal”
placeholders in the tiling board. The algorithm proceeds diagonal-wise until the last diagonal
multi-set is successfully placed. Figure 3.1 illustrates a successful progression of the algorithm,
showing a snapshot of the tiling grid after each successful step. Notice that Step s + 1 is not

begun until Step s is successfully completed.
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Figure 3.1: Diagonal-wise tile stacking.

Step-by-step progression of the diagonal-wise tile stacking algorithm. The arrows indicate edges that are relevant
to edge-matching/boundary constraints at any given step. For example, placing hy = (bl, gn, gr, gr) € 04, in Step
1, the southern/western edges (gr,gr) are relevant while the northern/eastern edges (bl,gn) have no
implications (it is only in Step 2 that they are relevant, namely when validated against western, southern edges
of (rd,rd, gr, gn) € 05 and (pr, yl, bl, gr) € 0,4, respectively). Notice that t,, is Hypatia's seed tile and must
therefore be placed in hy. E;/®; denotes the diagonal set of tiles at each step, notice that E, = ®,.

It is instructive to recall the convention established in Definition 3.2.1.14 where
p(h;) = t;;j implies that the northern, eastern, southern and western edges of placeholder h,.

are assigned the first, second, third and fourth elements (i.e. colours) of orientation o; of tile ¢;.
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In Step 1 for example, recall from 3.3 that T = t;, = {bl, gn, gr, gr}* was designated as the
seed tile of Hypatia. Given that0,, = {0, = (bl, gn, gr,gr),o0, = (gn,gr,gr,bl), o3 =
(gr,gr,bl,gn), o, = (gr,bl,gn,gr)} is the set of orientations of t;,, then clearly p(hy) =
t12/1- Tile edges that are relevant to edge-matching and boundary constraints in each step are
marked with arrows in Figure 3.1. Notice that, in Step 1-3, only two edges of a tile are validated
against edge-matching/boundary constraints, while the other two are validated against in the
next step. For example, when t, is placed during Step 2, only nothern (brown) and eastern
(gray) edges are validated by the algorithm to ensure constraint-satisfaction; while the southern
(green) and western (yellow) edges are validated-against in Step 3, namely against the northern
and eastern edges of t5 and t,, respectively. Examining at the algorithm outlined above, some

observations are in order:

1. Construction of diagonal multi-sets in this algorithm is a selection with replacement
from Hypatia’s puzzle set. As such, the algorithm does not rule out the possibility of a
tile appearing in more than one diagonal multi-set (duplication).

2. The algorithm is of course non-deterministic: at step p, 1 < p < 3, there can exist more
than one valid diagonal multi-set of tiles E;/®; that can legally be placed. As such, there

is no guarantee that the choice at Step s is in fact the correct one ultimately.

These observations imply that the algorithm could make the wrong choice by placing a
tile —though legally during that step— in a position that is not the correct one ultimately. Given
that AT € @: T can tile the 4x4 grid (see 2.3 and 2.1.3.2 on non-determinism) and that
Hypatia’s solution is unique, a partial solution containing duplications and/or globally-incorrect

placements of a tile can never lead to a full tiling of the board. In such case, the stacking

! We use the shorthand notation
{rd, gn,yl, bl,ng, pr, br, gr} respectivly corresponding to {red, green, yellow, blue, orange, purple, brown, grey}
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algorithm is guaranteed to deadend at some subsequent step (i.e. it cannot construct a
diagonal multi-set that can satisfy the edge-matching/boundary constraints in some
subsequent step). Figure 3.2 illustrates a snapshot, in which the algorithm has made the wrong
choice of tiles in Step 2, namely placing tg and tzin hy; and hy, respectively. Although such
placement is legal, and may even allow for one more legal step (notice the successful Step 3),
the algorithm eventually deadends in Step 4: there exists no (txi, ty/j, tz k. tw/f) € 6* which
can legally be placed in (hs, hg, ho, h1,) respectively. A visual inspection of Hypatia puzzle set
can reveal such impossibility: for example, when attempting to make a placement in hg, one
concludes that there exists no tile with an orientation (bl,ng,rd, ng), which is the orientation

required to satisfy edge-matching constraints in hgy —given the current partial solution.

Figure 3.2: Example execution snapshots of the
diagonal-wise tile stacking algorithm in deadend
state. The algorithm selects the wrong diagonal sets in
Step 2 (tg, t1a4), (t7,t3). Although the placement is
legal in this step, and even though Step 3 was also
successful, the algorithm ultimately deadends during
Step 4: there exists no 4-multiset of tiles that can be
placed in (hs, hg, ho, hy;) while satisfying all edge-
matching/boundary constraints. Visual inspection of
Hypatia would reveal, for example, that there is no
(bl,ng,rd,ng) € O, which is the required orientation
for a successful placement in hg, considering the
particular partial solution up to Step 3.

The algorithm must therefore backtrack when reaching a deadend state and try a
different selection of diagonal multi-sets. Finding the solution using such an algorithm can thus
be characterized as a “series of correct selection decisions of diagonal multi-sets from Step 1 to
Step 4”. In what follows, we outline a more robust version of the algorithm, incorporating the

backtracking mechanism:
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Algorithm 3.1.1:
Let0<s<15; 1<q,r,w,x,y,z<16; 1 <f,i,j,k,Lu<4
G(Hypatia) = ¢ = Vh, € G: hy = ¢; G(Hypatia) = SOLVED = Vhg € G: hy # ¢;

Solve(G,1);
Print (G);

Solve(G, step){
switch(step){

case step = 1:
Let Il = Q,V(tq/f, tr/i) € HZ

hy) = teyyf €0 A (Seed)
IF o S (S W =[5 B] A &)
15 r/i [N(his) E(his)] =[b b] (©1)

THEN Solve(G,2);
IF G == SOLVED v Il ==
THEN return;

=1 - {(tq/5. tr/i)};

case step = 2:
Let 1 =02, V(tq/r tri)s (twsjs tyic) € 2

[Sh)  W(h)] = [b E(hy)] A -
(o) = (6t A [Sh) W)= [Ny b] 3

IF
(hy1,his) = (Gwyjrtasi)

=

[N(hi1)  E(hq1)]
[N(his)  E(h)]

[S(hs) b] A
b Wh)] } (#:)
THEN  Solve(G,3);

1F G == SOLVED v Il ==
THEN return;

=1~ {(tq/r tr/i) w/jr txsi)}s

case step = 3:
Let 1= 03, Y(tq/s trsistwsi) (bxior by tapur) € T

[SCh2) W (hy)]
[SChs) ~ W(hs)]
[SChe) ~ W(he)]

[b E(h)] A
[N(hy) E(h)]A (es5)
[N(hy) D]

[S(hi1) b] A
[SChi) W(h)]A (®s)
(b W(hy)]

(ha, hs, hg) = (qsp tryin trpi) A

1F
(h7, hyg, hy3) = (tx/k' ty tz/u)

[N(h7)  E(hy)]
[N(hio) E(h10)]
[N(hiz)  E(hy3)]

THEN  Solve(G,4);
1F G == SOLVED v Il ==
THEN return;

=1 —{(tq/5 tryistwsj)r Cxsio tyju tzpw )}
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case step = 4:
Let 1 = 0%,V (g, tryis twyj txpre) €11

[S(hs) W (h3)]
[S(he) W (he)]
[S(ho) W (ho)]
[SChiz)  W(hi2)]

[b E(h)] A
[N(hy)  E(hs)]A
[N(hs) E(hg)]A
[N (hg) b]

(hs, he, hg, hyy) =
IF (qspr trjir tryin tagi) =
N(hs) E(hs)] =[S(hy) b] A
N(he) E(he)] =[S(hio) W(hy)]A
N(hg) E(hg)] =[S(hiz) W(hio)]A
N(hiz) E(hiz)] =[b W (hi3)]

—r—,r——

THEN G = SOLVED; return;
IF [1==¢;
THEN return;

=1 -{(tq/r tryirtwsjr txsi)}

Notice that each tile is involved in constraint validation in two separate instances: at
each instance, half of the tile (half = a corner of two neighbouring edges within a tile) is
validated for constraint-satisfaction. Consider, for example, the placement of h; = tq/r in Step
2. Only the southern and western edges are validated at this step, the constraints being that the
southern edges is gray and the western edge matches colour with the eastern edge of the tile
that has already been placed in h, during the previous step; hence we say [S(h,) W(hy)] =
[b E(ho)]. The other half of t, ¢ (i.e. the northern and eastern edges) are validated-

against during Step 3.

In the next section, we capture this notion of half-tile and redefine the solution as a
successful stacking of lanes of half-tiles. In the algorithm above, these lanes are marked ¢; /¢4, ..,
&/, and will be referenced in the subsequent discussion. Notice the special constraint

(referred to as “seed”) which restricts h, to the seed tile.
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3.2 Diagonal-wise half-Tile Stacking:

We begin by revisiting the snapshots of a successful progression of the algorithm, but
now showing only the edges that are relevant to edge-matching/boundary constraints in a given
step —and only in that step. Figure 3.3 shows the four successful steps that lead to the solution
of Hypatia. Each step can be described as a successful placement of one or more half-tiles (a
corner of two neighbouring edges within a tile). The multi-sets of half-tiles that are relevant and

connected at each step are referred to as “lanes”.

(1) Step 1 (p2) Step 2
N N
N
h his h h h 8 13|
h h h h: hs h. h 7
h. h hs h hs h
h. h, hs h. h
AN
AN
(seed) (£1)
(p3) Step 3 Step 4

h 16| 8 13 10 16 8 13|
4 h 2 7 4 9 2 7
14] 1 he 5 14 1 11 5
12| 3 6 hs 12 3 6 15|

N N

N N
(£3) (£4)

Figure 3.3: Diagonal-wise half-tile stacking algorithm. At each step, only edges that are checked for satisfaction
edge-matching/boundary constraint are shown. Each step can be characterized as a successful placement of a
multi-set of half-tiles. A connected multi-set of one or more half-tiles is referred to as a “lane”, and as such there
are 8 lanes |&;|=|@11=1, |&5|=1@31=3, |es|=]1@s|=5, |&;|=|¢@,|=7 half-tiles. Notice the extra constraint on the
tile placed in hy which must be the seed tile (t;,).
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At each step, two equal-size multi-sets (lanes) of half-tiles are selected, and if all edge-
matching/boundary constraints are met, the algorithm moves to the next step. There are 8
lanes: &, /¢4,.., €;/9;. At each step, constraint validation is checked for a pair of edges (see
Algorithm 3.1.1). An extra constrain is imposed on & such that the half-tile placed at hy must

belong to the seed tile (see Step 1 in Algorithm 3.1.1, and the definition of Hypatia in 3.3).

3.2.1 Representation:

A tile can therefore be represented conceptually as the union of two half-tiles along a
diagonal. Consider, for example, t, € Hypatia, and assume that t, is to be placed in h; (Figure
3.4a). Clearly t, can be placed in one of its four orientations: 0, = {0, = ( bl, yl,pr,ng), o0, =

(yl,pr,ng, bl), 03 = (pr,ng, bl,yl) and 0o, = (ng, bl, yl,pr)}, as shown in Figure 3.4b.

If a tile is represented as the union of two half-tiles along the diagonal, and given that
there are two diagonals in a square tile, then clearly there are two possible pairs of half-tiles the
union of each produces the original tile in one of four orientations. We refer to such pairs as a-
pair and B-pair, as shown in Figure 3.4c. Notice that, in a given pair of half-tiles, each edge is
destined for either (northern, southern) or (eastern, western) positions when the union
operation is applied. For example, edge bl in the a-pair in Figure 3.4c assumes either the
northern or southern edges when the the union operation is applied to obtain 0, = a;U a, =
(bl,yl,pr,ng) oro; = a,U a; = (pr,ng, bl, yl), respectively. Similarily, in S-pair, bl assumes
western or eastern positions when the union operations is applied to obtain

0, = B1U B, = (yl,pr,ng, bl) or o, = $,U B, = (ng, bl, yl,pr), respectively.

45



- K

0, = (bl yl,pr,ng) 0, = ;U a; = (—bl,+yl) U (—pr, +ng)

\ £
5]
L N\
|

L x o3 = (pr,ng, bl, yl) 03 = a;U a; = (—pr, +ng)U(=bl, +yl)

-

Figure 3.4: Tiles as union of two half-
tiles. (a) An example tile t, and some
placeholder h; € G. (b) Placement of
t, in h; in the four possible

orientations: p(h;) = 0,]0,]03]04. (c) 0, = (yl,pr,ng, bl) 0, = U B, = (=yl,+pr) U (—ng, +bl)

Equivalent placements using half-tiles.
A tile is dissected along the two
diagonals into two pairs of half-tiles,
the union of which produces the
original tile in one of the four
orientations. Notice how changing the
order of pairs in the union operation
amounts to a 180-degree rotation.
Notice also that in a given pair, an
edge can assume either north/south
or east/west positions. In a given pair,
an edge is given a (-) or (+) sign if it
can assume  (north/south) or
(east/west) respectively.

- P

(b) (c)

Definition 3.2.1.1

Givent; = {a, b, c,d} € Hypatia, define 6; = {a{' = (—a,+b), aé = (—c,+d), Bli =
(=b, +c), B} = (—d, +a)} as the set of half-tiles of t;.

Given 6; = 61 = {ai = (=bl, +gn),a; = (—gr, +gr), pi = (—gr,+bl), p7 = (—gn,+gr)},
define A = {8, 8,,.., 016} — { BT, B2} as the superset of all half-tiles over Hypatia.

Definition 3.2.1.2

Givent; = {a,b,c,d} € Hypatia and its set of orientations O; = {04,0,,03,0,}, define
0; = {0, = (—a,+b,—c,+d),0, = (—b, +c,—d, +a), 03 = (—c,+d, —a, +b),0, =

(=d, +a,—b,+c)} as the signed set of orientations of t;. Define & = 0., U 0;,U,..,U O, as
the superset of all signed orientations over Hypatia.

46

04 = (ng, bl,yl,pr) o4 = ;U By = (—ng, +bl) U (—=yl, +pr)



Definition 3.2.1.3
(6;,U)is a set of half-tiles §; and an irreflexive, intransitive, symmetric binary relation
U: 6i X 61: d 51' Where V((xIY); (W, Z)) S 6i21 (xl }’)U(W; Z) = (xIYJ WIZ) Iff (x::)’; w, Z) € éi'

In any given half-tile, an edge is given a (-) sign if it can assume northern/southern
positions (in the corresponding orientation that results from applying union operation) and (+) if
it can assume eastern/western positions (Figure 3.4c). The colour-sign compound attribute
ensures that, were half-tiles to join independently to form a lane, then the union operation on
each half-tile in that lane with its complement in another lane necessarily produces a valid

signed orientation as defined by Definition 3.2.1.2.

The following example shows the implication of colour-sign compound attributes in half-
tiles. Consider tiles Q and R, in Figure 3.5a, which have one colour pr in common and can
therefore abut against it, in obviously four possible ways on the tiling grid: east/west, west/east,
north/south and south/north edge of Q/R respectively (Figure 3.5b). If tiling was done using
half-tiles, and half-tiles of Q and R (Figure 3.5c) are allowed to join based on the colour-sign
compound attribute, then their joining (Figure 3.5d) translates into valid signed orientations that
correspond to tile orientations in Figure 3.5b —and only those orientations. If colour only were
used as an attribute for half-tiles, then “twisted” lanes would form, and the union operation on

the “misbehaved” half-tile to its complement does not constitute a valid signed orientation.

In Figure 3.5e, the sign constraint is ignored allowing half-tile f,, to join with f;.
Clearly, if the union operation of ,, and its complement is applied, B,; then the resulting
orientation is either By, U By = (—1y, +13, =14, +71) O Bpq U By = (=1, +1y, — 1, +13),
niether of which is in fact the actual (and erroneous) orientation on the

grid (+7y, -1y, +73,—1,) & Og. The colour-sign attribute therefore guarantees that the
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orientation resulting from the union of a half-tile on one lane to its complement half-tile in

another lane always results in a valid orientation, ruling out the possibility of “twisted” lanes.

a-pair B-pair

(b)

Figure 3.5 Colour-sign compound attributes in half-
tiles. (a) Two tile Q, R that can be joined at their
respective pr-coloured edge. (b) The four possible
alignments of Q and R on the tiling grid. (c) The
corresponding a-pair, -pair, of both Q and R. (d)
The four possible alignments of half-tiles of Q and R.
Notice that no other alignment is possible if the
matching of both colour and sign is observed. (e) An
example of disallowed joining of half-tiles. Notice
the mismatch of signs. The colour-sign compound
attribute ensures that, were a half-tile to join
independently of its complements, then applying
the union operation results in a valid orientation. In
this example,
BraUBry = (=15, +13)U(=14, +11) =

(=13, +13, =13, +17) which is not the same as the
actual (and erroneous)
orientation (+1, =13, +713, —13) € O,.. Enforcement
of colour-sign attribute rules out such
"misbehaved” joining of half-tiles.
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3.2.2 Stapling:

We formalize the relation between half-tiles as they join according to colour-sign
compound attributes, capturing the notion of what has so far been referred to as

“lanes”. We refer to the joining of two half-tiles as “stapling”.

Definition 3.2.2.1

(A, 1) is Hyapatia’s half-tile superset A and an irreflexive, intransitive and symmetric binary
relation L:A X A - A where v((x, y), (w, z)) €N, (x,y) L (W, z)=(2) iff x=w # gr.
We say that (x,y) and (w, z) are vertically stapled.

Definition 3.2.2.2
(A, ) is Hyapatia’s half-tile superset A and an irreflexive, intransitive and symmetric binary
relation F:A X A - A where v((x,y), (w, z)) €N, (x,y)+F (W, z)=(wx) iff y=2z+ gr.
We say that (y, x) and (w, z) are horizontally stapled.
Definition 3.2.2.3
A multi-set t = {y,¥2,..¥j} © AN,y = {a|B}, is called a valid lane over A iff:

1) j=||€{1,357} A

2) (-((r1 Fv2) Lyz)..vy) = (=gr, +gr).
Define £; as the set of all valid lanes of length j over Hypatia and £ = U]7-=1£’]- as the superset
of all valid lanes over A.

As the first two definitions capture the notion of (strictly) north-to-south/east-to-west
joining of two half-tiles, the third definition identifies which assemblies of half-tiles constitute
valid lanes. A valid lane therefore, according to Definition 3.2.2.3, is one that 1) has the right
length and 2) begins with a " — gr", ends with a " + gr", alternating between valid horizontal
and vertical stapling. Notice the convention implied in Definition 3.2.2.3 that lanes are read from
the (-) to the (+) end. In the second condition, that valid lanes must algebraically collapse
into (—gr, +gr), which obviously necessitates that the extremities y, and y; be (—gr,*) and

(x,+gr). Clearly neither vertical nor horizontal stapling is defined on the boundary colour

“grey”= gr.
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For illustration of lane validity, consider the signed grid and the two sample lanes on
Hypatia’s set of half-tiles, &3 = {(—gr,+gn), (=bl, +gn), (=bl,+gr)} and
o = {(—gr,+gn), (—=bl, +gn), (—=bl, +yD), (—gn, +yl), (—gn, +gr)} shown in Figure 3.6.
Clearly the first condition is met since |&| = 3,|@3| = 5. To check the second condition,

according to Definition 3.2.2.3 we have:

((=gr,+gn) + (=bl,+gn)) L (—=bl,+gr) =
(=bl,—gr) L (=bl,+gr) =
(=gr, +gr)

Similarly for Lg:
<(((—gr, +gn) + (=bl,+gn)) L (—bl, +yl)) F (—gn, +yl)) L (—gn,+gr) =
(((—bl, —gr) L (—bl, +yl)) F(—gn, +yl)) L (—gn,+gr) =
((=gr,+yD F (=gn,+yD) L (—gn,+gr) =

(—=gn,—gr) L (—gn,+gr) =
(—gr,+gr7)

Figure 3.6 Examples of valid lanes. Two examples of valid lanes over the set of half-tiles of Hypatia,
ley] =3, |(p5| = 5 half-tiles. Both lanes conform to the length (both of odd length 3,5 € {1,3,5,7}
and extremety conditions (beginning and ending with with a negative and positive boundary colour,
respectively).
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3.2.3 Bridging:

Having defined the notion of a half-tile and the relation between half-tiles (stapling), we
proceed to establishing the relation between lanes of half-tiles, which we refer to as “bridging”.
This is the last piece needed to formally describe the solution to Hypatia using the diagonal-wise

half-tile stacking algorithm which was outlined informally at the beginning of 3.2.

Definition 3.2.3.1:
(L,+) is Hypatia’s superset of all valid lanes and an irreflexive, intransitive and symmetric binary

relation +: £; X £; —» 0", r = ((i < j)?: |i/2],]j/2]), where Vi; € £;,4; € €, (i; + ;) iff:
= (J-id=2)vi=j=7) A
" (<)N>VEA<k<i)A(kmod2=1)= (Vi 1Uri) € 0 & 4+ 4= {(F2UV1), ) Frs1UYi)}
" (>)N=>VkA<k<HA(kmod2=1)= 41UT) €0 © 4+ ;= {(¥1U¥2), ., Wir1 UV}

where yy, is the k" half-tile of 1;, and ¥, 7 = {a|B}. We say that (; bridges to L

Definition 3.2.3.1 captures the “stacking” notion of the half-tile stacking algorithm that
was informally described at the beginning of this section. The stacking of two lanes is therefore
the equivalent of placing a diagonal set of tiles (see 3.1). The solution to Hypatia, which has
previously been described as a mapping of placeholders to tiles/orientations (Definition
3.2.1.16), can equivalently be described now as a mapping between placeholders and lane-to-

lane bridging.
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3.3 Solution of Hypatia Using Diagonal-wise Half-tile Stacking

Definition 3.2.3.2:
Given B = [el,gol, €3, 93, &5, Ps, 57,<p7} &, @; € Atand |&;| = |@;| = i, where:
[(e1 + &3) = (@fUaD] A (@1 + @3) A (g3 + &5) A (@3 + @s) A (&5 + &7) A (@5 + @7) A (&7 + @7)

Define the injective function p: H - 0:
hy — (&1 + &)
his — (@1 + @3)
hy, hy — (&3 + &5)
hy1, his — (@3 + @s)
hy, hs, hg — (&5 + €7)
h7, hiohiz — (@5 + @7)
hshe, hy, hip — (&7 + @7)
Theorem 3.1:
If p(H) exists, then so does p(H).

Proof:

If p(H) exists, then there is a a set of diagonal tiles:

Ei = {tx,/jr s trycb Eivr = {Eyy a0 oo yl+1/v} 1<|E|l=i<3;1 <Jj kv < 4ty ty, € Hypatia.
Letp(h,) = ty i € Ei. Lett,, ,; = (af, a3, a3, az) ... ty,; = =(a}, d}, a}, al). Let ty,; = (bi,

bl, bl, bl) J’L+1/J (bl+1 b1+1 bl+1 bz+1)

By Definition 3.2.1.16:

b = gr, b} = a}, al = b3,.....bi* =al, bitl=gr
By Definition 3.2.1.1:

3(—ad, +a}) € &, I(—a}, +d}) € &y,

And
3(— b3 = gr,+b}) € 6,,,3(—at, +a}) € 8,,, I(— b3, +b7) €5,,...3(—al, +a}) € &,,3(— bi**, + it =
+g7‘) € é‘yi+1

Letig = {(—gr,+b}), (—ai, +a}), (= b3, +b3) ... (—ai, +a}), (— bi**, +gr)}
Clearly, g =i+ (i + 1) € {3,5,7}and (—gr, +b}),  (—a}, +ad) L (— b3, +b?) ..(—a}, +a}) L
( b‘+1,+gr) = (—gr,+g7)

~ lg is avalid lane by Definition 3.2.2.3

Fori=1= |i|=3 =1, = (—a3z, +az) € 6, by Definition 3.2.1.16.

Since p(H) exists, then by Definition 3.2.1.16, a3 = a} = gr, and |s| =1 € {1,3,5,7} = i is a
valid lane by Definition 3.2.2.3, and (1) € += 5 + 15 = {(—ai, +a))U(—a3, +a))} =
{(—a3,+a3,—a3, +a3)} € Oy,

~plhy) = ty,/j € 0x1 & Phy) = lg~1ls= fxl/j € éxl
By trivial extension, the same argument follows for i = 3,5, 7. By virtue of symmetry, the same
procedure can be repeated for the diagonal set of tiles ®;, 1< i < 3.

-~ for every diagonal set X € Range(p), there exists two valid lanes the bridging of which results
in the corresponding signed diagonal set X € Range(p). m
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Theorem 3.2:
If p(H) is unique, then so is p(H).

Proof:

Let p(h,) = ty,x = (a, b, ¢, d).

By Theorem 3.1, 30;" = (—a, +b, —c, +d): p(h,) = 0}

Assume 3p,:H — 0,50 30, # 0]: po(h,) = 5y (1)
By Definition 3.2.1.16, 5, = (+a, b, +c, +d).

Since {(+a, +b, ¢, £d), (+a, —b, ¢, £d), (+a, +b, +c, £d), (+a, +b, +c,—d)} & 6
5,3; = (—a,+b,—c,+d) = 51-" = Contradiction with (1). m

3.4 Motivation:

The diagonal-wise half-tile stacking algorithm is designed with DNA implementation in
mind. The mapping of the three major stages of the algorithm (representation, stapling and
bridging) onto a DNA-Computing protocol (see Chapter 4) allows for the use of a supremely

powerful heuristics in DNA-Computing: polymerase chain reaction (PCR).

Given a mixture containing thousands of billions of DNA strands, PCR can selectively
amplify (literally, produce exponentially many copies of) a certain strand that we consider
correct or at least very likely to be correct. A strand can be subjected to exponential
amplification of PCR if a partial sequence of bases at the two ends of the strand are known
(usually 10 or more bases should suffice). In the developed half-tile stacking algorithm, and
given the DNA sequence encoding a lane, we have straight-forward criteria for PCR-ing lanes:

amplify those beginning and ending with a sequence that encodes a boundary edge (grey).

As will be laid out in details in the next chapter, each half-tile will be encoded by a
single-stranded DNA sequence, and half-tiles will be stapled together by other single-stranded
complementary sequences that bring half-tiles together by the rule of colour-sign compound

attribute. As the process is of course fundamentally non-deterministic, all sorts of erroneous
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lanes could result (e.g. a lane of an even length of half-tiles or a lane not beginning or ending
with a grey edge). Selection goes against those lanes, by amplifying only the sequences that are
of the right length (which we can harvest using gel electrophoresis) and the right extremities

(grey).

Since the ultimate goal is to find the set of lanes that will make a perfect bridging, i.e.
the solution to the full puzzle, we now have a better chance of getting that solution since each
correct lane was favoured and now exists in abundance. Furthermore, the half-tile stacking
algorithm allows for PCR to be inserted at any step. For example, amplified lanes of length 3 that
succeed in bridging to lanes of length 5 can be subjected to PCR once again, so as to increase
their numbers against those who failed to bridge. Successive PCR insertion throughout the DNA-
based implementation of the algorithm is indeed the molecular equivalent of a very powerful

heuristics in optimization algorithms.
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Chapter 4 DNA Implementation and Results

In light of the discussion of the previous chapter, the DNA-based implementation of the
diagonal-wise half-tile stacking algorithm can generally be described as a successive execution of
three processes: (1) Encoding A, (2) Enumerating £, and (3) Finding B. Each half-tile is encoded
as a ssDNA sequence (representation); such sequences are joined together —observing the
constraint of colour-sign matching— by complementary single-stranded DNA sequences
(stapling); and finally the resulting lanes are stacked in a step-wise fashion (bridging) using,
again, other complementary sequences of ssDNA. There is of course a considerable amount of
wet lab details that goes into each of these three main processes, as will be presented in this
chapter’s demonstrations. The stapling and bridging protocols are demonstrated using a sample

set of DNA oligonucleotides and the results are shown.

4.1 Representation:

We present here the DNA encoding of the Hypatia puzzle with 1) strands for half-tiles, 2)
stapling strands that join half-tiles based on matching of colour-sign attribute (effectively
implementing the horizontal () and vertical (1) relations), and 3) bridging strands that stack-
up lanes such that a half-tile residing on one lane is bridged to its a or § pair complement on
another lane (effectively implementing the bridging (=) relation). By the end of this subsection,
we provide a high-level summary relating the DNA encoding to the problem definition in
Chapter 2 and the solution approach of Chapter 3, and conclude with a summary of the total
number of DNA strands involved throughout the DNA-based computation of the solution to

Hypatia.
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4.1.1 Encoding of DNA half-tiles:

We begin by showing the DNA encoding of the seed tile. Recall from 2.3 that t = t;, is
the designated seed tile, and as such must appear in the
orientation afU a} = (—bl, +gn)U(—gr,+gr) = (—bl,+gn,—gr,+gr). The PB-pair s
therefore not encoded (Figure 4.1a, see also Definition 3.2.1.1). The two half-tiles in the a-pair
are each encoded with a random 26-bp (bp) ssDNA sequence (Figure 4.1b; see 4.1.3 for the
rationale of choosing 26-bp specifically). The encoding of the seed tile readily determines the
directionality (5’-3’ or 3’-5’) of lanes on the DNA grid as shown in Figure 4.1c (bridges are not
shown on the grid, see 4.1.3). Notice that lanes alternate between 5’-3’ and 3’-5’ orientations —

a fundamental requirement of any hybridizing DNA strands.

For the rest of tiles in Hypatia, each half-tile of each a/f pair is encoded in such a way
that every tile can assume every possible position and every possible orientation on the DNA
grid. Given a 5-3' DNA sequence s =5N;,N,..Np3, where N, € {4,C,G,T}, we refer to
R(s) = 5Ny, ... N,, N;>3' as the reverse sequence of s. A half-tile (—cy, +c¢,) is encoded with a 26-
bp 5"[-c;][CORE][+c;]>3" sequence: 8-bp sub-sequence encodingc;, 8-bp sub-sequence
encoding +c,, and 10-bp “core” sub-sequence that is unique to each half-tile. The reverse of
such sequence, R(5">[-¢;][CORE][+c;]>3’) = 5>R [+c;] RICORE]R[-c;]>3” is also encoded, resulting in
two ssDNA per half-tile, and so each colour-sign attribute of a half-tile appears at the 5’ end in

one sequence, and at the 3’ in the other.
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a-pair [B-pair

az

5’-ATGGGTGAGAATCTGAGAAGAAGATG-3’

(a) (b)

Figure 4.1 Encoding of half- tiles. a) The seed
tile and the corresponding pairs of half-tiles.
As the position and orientation of the seed
tile is pre-determined, the f-pair is not
encoded. b) The encoding of the seed tile:
each half-tile of the a-pair is encoded with a
random 26-bp ssDNA. c) The layout of the
DNA grid: the encoding of the seed tile
predetermines the directionality (5’-3’ or 3'-
5’) of each lane in the final solution.
Successive lanes of DNA must have reverse
directionality as bridging takes place (see
4.1.3). A5’ end is denoted with a filled circle
while an arrow denotes a 3’ end. d) An
example tile t, from Hypatia puzzle set and
the corresponding encoding of its ¢ and f8
pairs. 26-bp ssDNA sequences, each encoding
a half-tile once in 5-3’ and another in 3’-5’
directionality (the two being the reverse of
each other). Each colour-sign compound
attribute is associated with an 8-bp sub-
sequence (see 4.1.2 on stapling), appearing at
5’ end in one sequence, and at 3’ end in the
other (the reverse). Notice that the 10-bp
core area is unique across half-tiles and that a
(+)-colour sequence is distinct from (-)-
colour’s. Being encoded with forward and
backward sequences, a half-tile can in effect
assume a position on both 5-3’ and 3’-5’
lanes.

af
5'-GEATGAACCGACACAAAACTAGAGGT 3
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t, € Hypatia

a2 5" FTGGAGATCAACATCACAGGAAGCTTG-3' <—Forward
1 <

5'-GTTCGAAGGACACTACAAGTAGAGGT-3' < Backward

al? 5'-ETTCITGT CGGCGATCGAAATAAGTA-3’
2 <

5'-ATGAATAAAGCTAGCGGCTGTTCITC-3’

t, : 5'-TGTATATGTGTGGGAACAGGTTTAAT-3’

1 5" FRATTTGEACAAGGGTGTGTATATGT-3'

t; : 5 AGGTAAAGTCCTCAGTATATTGAGAA-3’

2 5" JARGAGTTATATGACTCCTGAAATGGA-3’

(d)



For each half-tile, we will refer to 5">[-c;][CORE][+c;]>3’ as the forward sequence and to R
(5”>[-c;][CORE][+c;]>3") = = 5> R [+¢;] R[ CORE]R[ -¢c;]>3’ as the backward sequence*. As such, every
half-tile can assume a position in both 5’-3" and 3’-5’ lanes on the grid. There is therefore a total
of 8 26-bp ssDNA per each tile in Hypatia (except the seed tile where there are only 2 strands).
Note that 8-bp subsequence encoding a colour-sign attribute is the same across all half-tiles,
except for ¥ grey which is made distinct in corner tiles from boundary tiles (those with one grey
edge). This distinction provides a further useful heuristic for DNA stapling protocol (see Step 2 in
4.2), as valid lanes of length 1 and 7 half-tiles are distinguishable from those of length 3 and 5

half-tiles by their beginning and ending sequences.

4.1.2 Encoding of DNA staples:

It is very important to point out that, given any 26-bp half-tile sequence, the 8-bp sub-
sequence encoding a colour-sign attribute is the same across all half-tiles in A (except *grey
which are encoded differently in corner and boundary tiles). As a result, a stapler ssDNA is a 16-
bp sequence whose 8-bp subsequence at the 5" end is complementary to the 8-bp subsequence
encoding a colour-sign attribute at the 3’ end of a half-tile’s 26-bp sequence, while its 8-bp
subsequence at the 3’ end is complementary to the 8-bp subsequence encoding the same

colour-sign attribute at the 5’ end of the 26-bp sequence encoding another half-tile.

Consider t, and tg from Hypatia’s puzzle set. Figure 4.2a shows the encoding of their
respective pairs of half-tiles, following the presentation of 4.1.1. The two tiles have blue (bl)
and orange (ng) edges in common. There are two signs +/- and two directionalities
(forward/backward), hence the two tiles can be stapled in four different manners for each

common colour (Figure 4.2b for bl stapler and Figure 4.2c for ng stapler). Notice, however, that

" Corner tiles (other than the seed tile) can in fact be encoded using 6 sequences in total, since the
directionality of the pair (-gr, +gr)U(*,*), which is the tile in placeholder hys, is already predetermined
and so the forward sequences of this pair need not be encoded (see the DNA grid above).
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there is one stapler strand per colour-sign attribute. For example, the vertical stapling of half-tile
(xiz to half-tile 0(;9 on colour-sign attribute (—bl) is carried out by the same strand regardless of
which strand carries (—bl) at the 5’- and which at the 3’-end. This is clearly a direct result of our
choice of making the 8-bp subsequence at a 3’-end the reverse of that at the 5’-end. Notice that

stapling takes place always between a forward and a backward sequence.

Since there is a total of 7 colours X 2 signs (+/-) in Hypatia’s superset of half-tiles A (the
eighth colour being grey, but it is not involved in stapling of course), there are therefore 14
stapler strands in total. Identical 8-bp subsequence of each colour-sign attribute across all half-
tiles in A has a very clear implication: a half-tile could be stapled to itself. Why, then, not make
each colour-sign attribute unique from one half-tile to another, so as to avoid such erroneous
stapling (and in fact comply with the irreflexivity property of the vertical/horizontal stapling as
per Definition 3.2.2.1 and Definition 3.2.2.2)? Recall from 3.1 that duplication cannot result in

full tiling of the full 4x4 tiling grid, and as such the devised diagonal-wise stacking algorithm

t, € Hypatia tg € Hypatia

o2 <5’_AACATCACAGGAAGCTI’G-3’
A 5'-GTTCGAAGGACACTACAACTAGAGGT-3’

P~

ts :5'-TGTATATGTGTGGGAACA_-3’
1

5 FEBGEA CAAGGGTGTGTATATGT-3’

Vz <5’-AGGTAAAGTCCTCAGTAT_-3’
2 5" ARGAGTTATATGACTCCTGAAATGGA-3'

5 [BHGIGH CGGCGATCGAAATAAGTA-3/
5'-ATGAATAAAGCTAGCGGCIIGTTGING-3’
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5'-IGGAGATEAGGCGAAGTTGEATGARAE-3'
5 GARGTACETTGAAGCGGACTAGAGGT-3'

5 GGHAGRA CGTTCCTCTGAATAAGTA-3'
5" ATGAATAAGTCTCCTTGCHEGRTGEE-3’

5'-AGGTAAAGGTTTTTGTTGATTGAGAA-3’
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- (- bl) staple

3’-GATCTCCAACCTCTAG-5’ 3-GATCTCCAACCTCTAG-5’

5'- GTTCGAAGGACACTACAACTAGAGETTGEAGATEAGGCGAAGTTECATGRAG -3 5 EARGTACG TTGAAGCGGAETAGAGGTTGGAGATCAACATCACAGGAAGCTTG-3'

tz ty Ly ty
a 1 a 1 24 1 14 1
AAAAAAAAAAA (+bl) staple DS
3.TAACTCTTTTCTCAATS ~~ 3-TAACTCTTTTCTCAAT-5’
5'- AGGTAAAGTCCTCAGTATATTGAGAAAAGAGTTAGTTGTTTTTGGAAATGGA -3’ 5'- AGGTAAAGGTTTTTGTTGATTGAGAAARGAGTTATATGACTCCTGAAATGGA -3’
t, to to t,
2 1 1 2
(b)
........................ » (+ng) staple ...
5'- GG C G GCGATCGARATAAGTAATGAATAAGTCTCCTTGCNNGIRIGEN -3’ 5 GGIAGAR CGTTCCTCTGAATAAGTAATGAATAAAGCTAGCGGCTGTIGHNG -3’
t, ty ty t2
a; a, a, a;

5" ARGAGTTATATGACTCCTGAAATGGAAGGTAAAGGTTTTTGTTGATTGAGAA -3’ 5 JARGAGTTAGTTGTTTTTGGAAATGGAAGGTAAAGTCCTCAGTATATIGAGAA -3’
t, ty to Lty
2 1 1 2
(c)

Figure 4.2: Encoding of Staples. a) t, and t, € Hypatia, their corressponding pairs of half-tiles and ssDNA encoding
of each half-tile with a 26-bp sequence as in 4.1.1. Notice that an 8-bp subsequence encoding a colour-sign
attribute is the same across all half-tiles (in this case, £bl and +ng have the same 8-bp subsequence in the
encoding of t, and ty’s half-tiles). b) Stapling of aiz - ai“ on (-bl) and ,852 - ,B’lt" on the (+bl) colour-signed
attribute: 2 signs X 2 directionalities = 4 ways of stapling. Notice, however, that the same stapler strand is used
regardless of which half-tile holds the 8-bp subsequence at the 5 and which at the 3’ (a direct result of our

choosing of the same 8-bp encoding of a colour-sign attribute across all half-tiles; sequences are always read from

5’ to 3’ by convention). c) Stapling of aéz - ag" on (+ng) and ,thz - ﬁlt" on the (—ng) colour-signed attribute. As in

(b), there is one 16-bp stapler strand per colour-sign attribute.

needs not rule out duplication. Secondly, enforcing uniqueness results in a much larger set of

stapler strands, namely 368 stapler strands in total, which can be obtained from:

PRICEE

where x € {rd, gn, yl, bl,ng, pr, br} and c, is the total number of x-coloured edges in Hypatia.
We have therefore (ab)used a property of the puzzle set to minimize the number of stapler

strands (the synthesis of which costs ~$0.08-0.15 per nucleotide at the time of this writing).
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4.1.3 Encoding of DNA bridges:

For the time being, let us assume that 26-bp half-tile strands have been joined together
by stapler strands to form lanes of ssDNA, and that they (stapler strands) have disappeared
thereafter (in 4.2, we will see the details of stapling and how stapler strands are removed after
accomplishing their purpose). The bridging of ssDNA lanes is accomplished using, once again,
ssDNA strands that uniquely bring pairs of half-tiles together via hybridization. Figure 4.3 shows
the DNA grid decorated with a schematic representation of DNA bridges (in red), where
consecutive 26-bp subsequences of each lane alternate between being bridged up and bridged

down.

At each bridging area between two ssDNA lane sequences, a pair of ssDNA bridges, each
of length 26-bp, each hybridizes to 13-bp sequence on one lane and to another 13-bp sequence
in the other lane (starting at a 5’ (3’) on one lane and ending at 3’ (5’) of the other lane). A 13-bp
subsequence of a 26-bp ssDNA bridge complements, in one lane, the 8-bp encoding a colour-
sign attribute plus 5-bp off of the CORE subsequence; and does the same on the second lane
with the remaining 13-bp subsequence. The meeting point of the two ssDNA bridges is called
the crossover point, as each bridge hybridizes to one lane then crosses over to the other lane at
that point. This can be seen in Figure 4.3 with the caveat that, in reality, there are no gaps
between lanes and/or pairs of bridges at the crossover point (gaps are included in the figure to
in order to portray the correspondence between the DNA grid and tiling grid). Therefore, the full

DNA grid exists in double-stranded DNA (dsDNA) form.
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Crossover point

52-bp =10 half-turns — |

57-XXXXXXXXXXXXX XXXXXXXXXXXXX -3”

1
5'-XXXXXXXXXXXX>4I XXXXXXXXXXXXX -3 57-XXXXXXXXXXXXX IXXXXXXXXXXXXX -3"
[

37 XXXXXXXXXXXXX XXXXXXXXXXXXX -5” 37 XXXXXXXXXXXXX XXXXXXXXXXXXX -5" 3- XXXXXXXXXXXXXD(XXXXXXXXXXXX -5
57-XXXXXXXXXXXXX XXXXXXXXXXXX XXX XXXXXXREXX XXXXXXXXXXXXX XXXXXXKXXXXXK XXKXXXXKXXHXXK XXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXX)‘ XXXXXXXXXXXXx 3"
57-XXXXXXXXXXXRY XXXXXXXXXXXXX -3 5'- XX)()(I)iXXXX -3’ |

3/- XXXXXXXXXXXXX XXXXX -5’ 3/-ACCTCTAGXXXXX XXXXXXXXXXXXX -5’
3~ XXXXXXXXXXXXX XXXXXGCATGAACICARGTACGAAAAC ACAGCETAGA BGTITGGAGATEXXXXXXKXXXXXXXXXXX-5’
5 TTTTG TGTCGGATCTCCA-3' I

3’-TACCCACTCTTAG ACTCTTCTTCTAC-5"

1

I

I
5'-ATGGGTGAGAATC TGAGAAGAAGATG-3'

— 26-bp =5 half-turns—

Figure 4.3 Anatomy of DNA bridging. A pair of 26-bp ssDNA strands is used to bridge half-tiles from one lane to
another. Each ssDNA bridge hybridizes over 13-bp sequence on one lane (8-bp sequence encoding a colour-sign
attribute + 5-bp sequence off of the core sequence) then crosses over and hybridizes, on the opposite direction, to 13-
bp sequence on the other lane. The meeting point of a pair of bridges is called crossover point, as both bridges cross
over from one lane to another at that point. Both the DNA grid and the inset should be viewed with a caveat that, in
reality, there are no gaps between lanes: the 13" base on one ssDNA bridge hybridizes on one lane and the
immediate 14" base hybridizes to the next lane. This U-turn behaviour of a ssDNA bridge is indicated in the inset with
a line from the 5’ to the 3’ end of each bridge. The distance between two consecutive crossover points amounts to an
odd number of half-turns (a strand on the double helix makes full turn in 3D every 10.67 bases), such that the
up/down crossovers of bridges result in minimal twist strain on the double-helix formation. Hence the rationale
behind designating 26-bp for encoding half-tiles in 4.1.1.

Using double-crossover (DX) DNA strands to bring together two ssDNA strands was first
demonstrated by Seeman [49] and has been the underlying principal in structural DNA
nanotechnology (see [43][63][42] for examples and variants of DX arrangements). A strand in
the DNA double-helix makes a full turn in 3-Dimensional space every 10.67 bases [42], and so

the distance in base pairs between two consecutive crossover points must be an odd number of
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half turns, in order to suit the up/down alternation of bridging while creating minimal twist
strain on the double-helix. In our design, the distance between two crossover points is 5 half-

turns:

bp

(5 half — turns) x (53 m

) ~ 26 bp

It is clear therefore why, in 4.1.1, we have chosen to encode half-tiles using specifically
26-bp sequences. Notice that the distance between every other crossover points is an even
number of half-turns, which in our design is ~10 half-turns, given by:

bp

(10 half — turns) X (53 m

)z53bp

There is 1 bp difference between the ideal distance (~52 bp) and the distance we have
in our design, which clearly results from having a non-integer length of a full turn in the DNA
double helix. The design can of course be optimized further by, for example, adding extra bases
to sequences encoding boundary half-tiles (grey), which would reduce the strain on the DNA
grid (resulting from “twisting” of the double-helix in order to make up for the missing base [42]).
However, since the longest series of DX points in our problem is 7, which occurs at the main
diagonal of the DNA grid at lanes ¢, and ¢, (see 3.2), we can assume that the resulting twist

strain has negligible effect.
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t, € Hypatia

5 FGGAGATEAACAT CACAGGAAGCTTG-3’

3'-ACCTCTAGTTGTA GTGTCCTTCGAAC-5'
GCCGACAAGAAG-3' Reverse sequences

: 5'-TGGAGATEAACATCACAGGAAGCTTG-3" — [P & TACTTATTTCGA

5"-GTTCGAAGGACACTACAAGTAGAGGT-3’

5 [EGINGH C G G CGATCGARATAAGTA-3’
5" ATGAATAAAGCTAGCGGCIGTIGHNGE-3’

_%"-GAAGAACAGccej jAGCTTI’ATTCAT3 e
3 [BGINGH C G G CGATCGAAATAAGTA-5'

5 -TGTATATGTGTGGGAACAEETIA-3
tz <5’-TGTATATGTGTGGGAACA_-3’ > 3’—ACATATACACACi iTTGTCCAAATTA—S’
5 JIBGE A CAAGGGTGTGTATATGT-3' 5'-TTCTCAATATACT GAGGACTTTACCT-3’

' t

3" AAGAGTTATATGA CTCCTGAAATGGA-5'

2% 5" AGGTAAAGTCCTCAGTATATTGAGAA-3’ |
5" RAGAGTTATATGACTCCTGAAATGGA-3' ] o[BGS A CAAGGGTGTGTATATGT-3'
—L 3 -ATTAAACCTGTTG j:ACACATATACA 5

5'-AAGAGTTATATGA CTCCTGAAATGGA-3’
3'-AGGTAAAGTCCTCAGTATATTGAGAA-5’

(a) (b)

Figure 4.4: Encoding of Bridges. a) An example tile t, € Hypatia, its pairs of half-tiles and their corresponding
encoding following 4.1.1. b) For each a/f pair of half-tiles, the forward (backward) sequence of a half-tile is
bridged to the forward (backward) sequence of the other tile in the same a/f pair. Notice that the pair of 26-
bp ssDNA bridges in the forward-to-forward bridging are the reverse of those in the backward-to-backward
bridging (naturally, since forward and backward sequences of a half-tile are the reverse of each other). There
are therefore a total of 8 26-bp ssDNA bridging sequences per tile in Hypatia (except for the seed tile where
there is only 2 26-ssDNA bridging sequences).

Over the sequences encoding each a/f pair of half-tiles as per 4.1.1, the bridging takes
place from a forward (backward) sequence in one half-tile to the forward (backward) sequence
in the other half-tile (within the same a/f pair), using two 26-bp ssDNA bridges in each
instance. Figure 4.4 illustrates the set of ssDNA bridges for an example tile t, € Hypatia. Since
forward and backward sequences encoding a half-tile are the reverse of each other, the pair of
ssDNA bridges of the forward sequences and those of the backward sequences are also such.
There are therefore 8 26-bp ssDNA bridges per tile (except, the seed tile, where there is only

one pair of ssDNA bridges).
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4.1.4 Summary

ssDNA sequences presented in the previous three subsections (half-tiles, staples, and
bridges) are manipulated —using standard molecular-biology protocols— to carry out a DNA-
based computation of the solution to Hypatia. The DNA-based computation (explained in 4.2
and 4.3) follows the half-tile stacking algorithm presented in Chapter 3, itself formulated based
on the foundational formalizations of Chapter 2. Therefore, in the interest of high-level clarity of
our approach from problem definition to abstract solution outline to DNA implementation, we
highlight here the big picture of the whole approach. Figure 4.5a shows an example tile t, €
Hypatia with some placeholder on the tiling grid. t, can be assigned to a placeholder on the
tiling grid in one of its four orientations, as shown in Figure 4.5b. Our solution approach has
been to represent a tile as a union of two half-tiles resulting from the dissection along the two
diagonals (see 3.2). The two resulting pairs of half-tiles can re-produce the mother tile in one of
its four orientations (Figure 4.5c). Finally, the DNA encoding of half-tiles allows t, to assume all
positions and orientations on the DNA grid. Notice that, as a consequence of DNA having
directionality’, a half-tile can assume both a 5’-3’ or a 3’-5’ position on the DNA grid, hence the

forward and backward encoding of half-tiles (see the outline of the DNA grid in 4.1.1).

! We use “directionality” instead of the widely-used “orientation” in referring to a DNA sequence’s 5’-3’
and 3’-5’ conformations to avoid ambiguity with “orientations” in the context of tiling.
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0, = (bl, yl, pr, ng) 01 = (—bl, +yl) U (—pr, +ng) Forward(a;) backward(a;)

X -E -2 2

05 = (pr,ng, bl, yl) 03 = (—pr,+ng)U(=bl, +yl)
- h
0, = (yL,pr,ng, bl) 0, = (—=yl,+pr) U (—ng, +bl)
X

M - -

04 = (ng,bl, yl,pr) 04 = (—ng, +bl) U (=yl, +pr)

(@) (b) (c) (d)

Figure 4.5: The big picture. a) An example tile t, € Hypatia, with some placeholder on the tiling grid. b) The
corresponding four orientations in t, which can be placed on the tiling grid (see 2.2). ¢) The @ and f pairs of half-
tiles of t,, the union of which can re-produce one of four orientations (see 3.2). d) For each a/f pair of half-tiles,
the forward (backward) sequence of a half-tile is bridged to the forward (backward) sequence to reproduce the
mohter tile in an orientation. Because DNA has two directionalities, 5’-3’ and 3’-5’, each half-tile must be able to
assume both directionalities (see the DNA grid in 4.1.1), hence the encoding of both forward and backward
sequences for each half-tile (2 directionalities x 4 orientations = 8 possible placements of a tile on the DNA grid).
Notice that a 5’ and 3’ ends of a sequence are denoted by a solid circle and an arrow, respectively.

~ AR

The table below is a summary of the DNA encoding of Hypatia:

Length of sequence Number of sequences
Half-tiles 26-bp 122 [=2 for seed + (15x8=120) for others]
Staples 16-bp 14
Bridges 26-bp 122

Total =258 sequences

Table 4.1: A summary of DNA sequences required for a DNA-based solution of Hypatia.
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4.2 Stapling Protocol
In the stapling phase, sequences encoding half-tiles, which we henceforth refer to as
DNA(A), are mixed with the set of all stapler strands, which we henceforth refer to as DNA(S).

The protocol follows three basic steps:

Step 1: Generate random stapling by mixing DNA(A) and DNA(S).
Step 2: Keep only lanes that begin and end with “grey”.
Step 3: Keep only lanes of length 1, 3, 5, and 7 half-tiles.

The first step is in effect an exhaustive search to generate every possible lane. Clearly, the
generation is bounded by the concentration of sequences of DNA (S) and DNA (A). The question
then arises: what concentration of each distinct species must necessarily be present for a full
exhaustive search of a lane of lengthi? LetS = {sy,...,s,} be the set of all distinct species,
and K; C S bet the set of species that staple to s; on one end. Consider K;;: VK, |K,,| = |K;|,

then an upper-bound on the number of possible lanes of length i is given by:

i—1
NAWLAA
1/°\1
An upper-bound for an exhaustive search of all lanes of length 1, 3, 5,.. i is therefore given by:

<|i|>.[1 + (|1<1u|>2 + ("ju'y ot ('Kl')] = 00K,

For Hypatia, |S| = 122, |K,| = 12 and i = 7, and therefore the concentration of each distinct
species should be at least 0(12°%) = 3 x 10° copies of each distinct species in total, which is
equivalent to 2 X 10~° picomoles. Vendors provide standard DNA synthesis at nanomole scales,

and so such upper-bound is considered low.
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As the previous discussion relates to the question of how much computation is needed,
another relevant question is how long the computation takes. The progress of the random

stapling can be modelled by the differential equation:

aqQ
]

dt ¢

where Q is the quantity of free (non-stapled) ssDNA and A > 0 is the reaction forward

constant®. Solving the equation we have:

% =-Adt = QM =-A+C = Q(t)=ee™ (byintegration)

Since Q(0) = e, we have:

Q(t) = Qpe™™
The computation proceeds towards a halt state as Q(t) approaches zero. In practice, we have
experimentally determined that the course of several hours is considered sufficient (though
different buffers and reaction conditions may present different outcomes, see the experimental

results below).

In Step 2 and 3, lanes of the right begin/end sequences (i.e. +grey) and of the right
length (i.e. lanes of length 3x(26)=78, 5x(26)=130 and 7(26)=182 base-pairs) are selected. Lanes
of length 1 (which encode half-tiles of corner tiles that have +grey at both 5’ and 3’ ends) need
not be involved in stapling. Notice that any lane of odd length with +grey extremeties

necessarily has a —grey in one end and a +grey on the other (see 3.2.2).

?In a sense, A is not really a constant since it encompasses many factors (temperature, pressure, acidity
etc.) which are the focus of chemical kinetics —the details of which are beyond the scope of this thesis.
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4.2.1 Implementation:

Denote the salt-adjusted melting temperature of ssDNA staples DNA(S) as Tn(S)>.

Step 1:

Phosphorylation of DNA (A): As a prerequisite to ligation, oligonucleotides
(BioCorp, Montreal) are phosphorylated using T4 Polynucleotide Kinase®
enzyme (PNK), which catalyzes the transfer of y-phosphate from ATP to the free
hydroxyl of the 5’-terminus. PNK can be used with a T4 Ligase reaction buffer
instead of the supplied buffer since ligation follows immediately. The T4 Ligase
buffer already contains ATP (which is missing from the PNK reaction buffer). 10
units of PNK is used to phosphorylated 200 pmol of ssDNA, with 5 ul of 10x T4
Ligase buffer (500 mM Tris-HCl, 100 mM MgCIl2, 10 mM ATP, 100 mM
Dithiothreitol, pH 7.5), bringing the total volume to 50 pl by adding ddH,0. The
mix is incubated at T,(S)-5 for 30 minutes. The final molarity of the
oligonucleotides must be re-calculated and if it is severely lower that what is
desired for the hybridization/ligation step, it can be increased by various
methods (which vary in efficiency and % product loss [44][16]). Alternatively,
oligonucleotides can be ordered already phosphorylated, but that adds

considerably to the cost of synthesis.

Hybridization/Ligation: Stoichiometric amounts of DNA (S) and phosphorylated
DNA (A) are mixed. The DNA (S) should be diluted to a very high molarity so that
its contribution to the total volume of the hybridization/ligation reaction is
minimal. This eliminates the need to adjust the buffering capacity of the mix as

DNA (A) is already in the right buffer. In addition, 10 units of T4 DNA Ligase

3 Salt-adjusted T,,

of stapler strands should ideally be the same or within a very small range (in which case

their average is taken).
* Unless stated otherwise, all materials are supplied by New England BioLabs, MA.
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enzyme per 200 pmol of DNA (A) is added (the enzyme closes DNA “nicks” at
the 5’ to 3’ join points of oligonucleotides) and the total volume is brought to
<100pl by adding ddH,0. It is important that the pH level is measured and
adjusted to 7.5-8.0 by the addition of a base (e.g. NaOH) or an acid (e.g. HCI) to
increase or decrease the pH, respectively. The mix is incubated at room
temperature for 0.5-3 hours. Note that the original sequence design must be
optimized to minimize hairpins, self- hybridization and un-intended partial
hybridization °.

Step 2:
Polymerase Chain Reaction (PCR): A single PCR reaction mix consists of: up to

200 pmol of the ligation product, 200 pmol of primers (forward and reverse
primers for both 5’-(+grey)-3’ and 3’-(+grey)-5’ 8-bp subsequences®), 5 units
of Tag DNA polymerase, 5 ul of 10x dNTP, 5 pl of 10X ThermoPol Reaction
Buffer, bringing the total volume to 50 ul by adding ddH,0. The mix is brought
to 95 °C for 2 minutes, followed by 32 cycles of: 94 °C (1 min), average’ salt-
adjusted primer’s Tm—5 °C (1 min), 72 °C (30 sec). A final elongation step is
added by bringing the mix to 72 °C (5 mins), then the mix is stored at <4 °C.

Step 3:
Gel Electrophoresis: The PCR product is loaded into an ethidium-bromide (EtBr)-

stained 0.5%-1% agarose gel, along with appropriate amount of loading dye. The

gel is subjected to 80-95V electrical field in an electrophoresis apparatus, for 45-

> The so-called “negative design problem for DNA” can be stated as finding ”sequences that maximize the
free energy difference between the desired conformation and all other possible conformations”[61]. See
also [49][51]. Also see 5.1 on how buffering conditions can reduce the the constraints of this
optimization problem.
6 +grey primers are different in lane 1, 7 from those in lane 3 and 5 (see 5.1.1).
7 Ideally, primers should have the same salt-adjusted T, (melting temperature).
8 72° is the widely-accepted temperature at which the Taq polymerase enzyme starts replicating a DNA
strand.

70



60 minutes. Better band separation can be achieved with lower voltage, but
longer running time is then required. In general, the electrophoresis should be
terminated when the dye has visibly migrated 2/3 of the gel’s length. In addition
to the PCR products, a DNA ladder (Fermentas, ON) of known band lengths
(with band resolution close to that of the expected bands from the PCR product)

is loaded in one or more wells of the gel.

Excision and Purification: The agarose gel is exposed to ultraviolet light and
bands of various lengths in each well containing the PCR product can be seen
and compared across to bands from the DNA ladder’s well (EtBr, which binds to
dsDNA as it migrates through agarose gel, fluoresces under ultraviolet light).
Bands with the right length are marked and excised using a sterile razor.
Subsequently, the dsDNA product in each excised band is extracted using an

agarose gel purification kit’ (Bio Basic Inc., ON).

We apply the presented protocol above on a sample set of ssDNA, schematically

depicted in Figure 4.6a, where three and five ssDNA oligonucleotides (coloured blue and red,

respectively) are joined with two and four complementary stapler strands, respectively, to

produce two lanes of length 91 and 151-bp™. In this schematic representation, bullets and

arrows indicate 5’ and 3’ ends, respectively. Figure 4.6b shows a schematic representation of

two lanes after the hybridization and ligation step. Notice that the oligonucleotides are ligated

at the meeting points (called DNA nicks) after having been complemented by stapler strands,

effectively transforming them into one continuous strand of DNA. The exponential replication of

° The efficiency of the purification method/kit must be examined carefully to avoid loss of dsDNA.

1 The exact DNA sequences of these strands can be found in Appendix A. Notice that the length of these
oligos does not conform to the 26-bp length specified in our design. However, since bp length is irrelevant
in stapling, we chose to use these oligos (which are available at our labs) and avoid further ordering.
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(c)

91-bp dsDNA 151-bp dsDNA

(Step 3)

(d)

1.7% agarose

0.5pg/lane,
8cm length gel, 0.5-hour hybridization/ligation 3-hour hybridization/ligation
1X TBE, 12V/cm

Figure 4.6: Results of stapling protocol. a) Two sets of ssDNA along with stapler strands, bullets and arrows
indicate 5’ and 3’ ends respectively. b) Schematic representation of post-hybridization/ligation step. Stapler
strands join ssDNA oligonucleotides through Watson-Crick complementarity, while the ligase enzyme closes
the “nicks” at the join points, effectively transforming the 3 and 5 individual strands of each lane into one
continuous ssDNA of length 91 and 151 respectively (individual stapled strands are of length 30-31 bp each,
see Appendix A.1 for the exact sequences). ¢) Schematic representation of post-PCR product. The
exponential replication of each lane produces perfectly dsDNA. d) Gel electrophoresis results of the PCR
product. Well 1 contains a standard DNA ladder (left image) against which the length of resulting bands of
PCR product are compared. PCR using templates from two different hybridization/ligation reactions (a 0.5
and 3-hour hybridization/ligation incubation time, respectively). Each lane is amplified separately two times
per reaction. Well 2-3, 4-5 show the result of amplifying the 91 and 151-bp lanes, respectively, from a 0.5-
min hybridization/ligation. Well 6 is intentionally empty. W7-W8, W9-W10 show the result of amplifying the
91 and 151-bp lanes, respectively, from the 3-hr hybridization/ligation.
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lanes (using a set of forward and backward primers for each lane) results in perfectly double-
stranded DNA (dsDNA) strands, depicted schematically in Figure 4.6¢c. The inset shows a

magnified view of a dsDNA lane.

In Figure 4.6d, we show the results of the PCR products whose templates come from two
separate hybridizations/ligations reactions that were carried for 0.5 and 3 hour incubation
times, respectively. From each reaction, each lane is PCR-amplified twice (hence two wells per
lane per incubation method). Notice that the 3-hour ligation clearly shows better efficiency,
measured by the % Q, that has in fact been involved in stapling (given the original molarity of
oligonucleotides in a reaction, and the measured molarity of the PCR product which can
spectrophotometerically-quantified). Longer hybridization/ligation incubation times did not
show greater efficiency (data not shown). The final molarity should meet upper-bound

requirements for bridging (see next section).

4.2.2 Verification:

The results presented above were confirmed by sequencing. Two agarose gel bands,
corresponding to the two PCR products of the trial experiment above (Wells 7 and 9 for the 91
and 151-bp products respectively), were excised and purified (see step 3 above). The two
products were transformed and cloned (Sticky-End Cloning Protocol, CloneJET™ PCR Cloning Kit,
Fermentas, ON) into a plasmid (GeneJET™ Plasmid Miniprep Kit, Fermentas, ON) and sent for
sequencing. The two products were sequenced (McGill University-Genome Quebec, Montreal).
The sequencing results, which provide positive confirmation of the success of the stapling

protocol, are presented in Appendix A.1.
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4.3 Bridging Protocol
Let [; the the multi-set of lanes of length i resulting from the stapling phase. All lanes
begin and end with a grey sequence by now and i € {1,3,5,7}. The bridging protocol proceeds as

follows:

Step 1: Generate random bridging between [; and [3, assign the result to multi-set [; 3
Step 2: Generate random bridging between [; 3 and [5, assign the result to multi-set [; 5 5
Step 3: Generate random bridging between [, 5 5 and [, assign the result to multi-set [; 55 ;

Step 4: Generate random bridging over [, 5 5 7, assign the result to multi-set l¢; 4

The bridging protocol above is in effect a successive exhaustive search over lanes. There are 7
distinct I, species'® in total in Hypatia (1 from seed, 2 per each other corner tile). Furthermore,
there are 44 distinct sequences that a lane can begin/end with*>. Given that a lane of length,
j €{3,57}, is at this stage made up of two beginning/ending sequences encoding a grey

IM

attribute and j — 2 “internal” (containing no £ grey subsequences) sequences, an upper bound

of the post-stapling concentration of lane [; is therefore given by:

(44)( 71 )
2)\j-2
where 71 is the sum of 1(1) + 3(2) + 4(8) + 8(4) distinct internal sequences: 1 seed, 3

corner, 4 inner and 8 boundary tiles contribute 1, 2, 8 and 4 sequences, respectively®. An

upper-bound of the concentration of each lane for an exhaustive bridging is therefore given by:

"' Recall that a valid l,is simply a 26-bp sequence encoding “Fgrey” at both extremeties. These sequences
are not in fact involved in stapling, and are used in bridging directly from synthesis (see the stapling
protocol above).

2 |n general, as per 5.1.1 encoding, there are 4(n — 5) of such sequences for a puzzle of n tiles. Recall
that the seed tile does not contribute to the sum of these sequences (because its 5-pair is not encoded).
The other n — 5 tiles (possessing one or two grey edges) each contributes 4 sequences.

 Notice that 71+44+7 = 122 the total number of half-tile sequences in Hypatia.
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443 71\ (71\ (71 )3 12
7.(2) .(1)-(3>-(5>=3.1x10 ~ 2 x 10'2 pmol

If the concentration of a post-stapling lane is at a lower molarity p-picomole, its concentration
must be brought to the above upper-bound by:
(29)p = 2 x 102 pmol

where ¢ denotes the number of PCR cycles, so:

12
¢ =log, (ZX;O ) ~ 41 —log,(p)

Hence, if the stapling products exist in say, 10* pmol concentration, then PCR must be carried
out for ¢ = 41 — log,(10%) = 28 cycles before starting the bridging protocol (each cycle takes
2.5-3 minutes). Notice that aiming for upper-bound concentrations makes safe the assumptions
of an error-free and fully efficient PCR (which, in practice, is not the case). Moreover, upper-
bounds do serve as a reminder of the exponential growth of required computational resources
when dealing with inherently intractable problems. Upper-bounds can however hugely
overstate what is actually needed, and in practice lower or average bounds should also be

considered.

4.3.1 Implementation:

See 4.2.1 for the phosphorylation of ssDNA bridges DNA (B).
The following lab operations will be referred to throughout the protocol:

Hybridize (X,Y,..Z,T,,): Add stoichiometric amounts of products X,Y,..Z in a 10x T4
Ligase buffer (500 mM Tris-HCI, 100 mM MgCl,, 10 mM ATP, 10
mM Dithiothreitol, pH 7.5), bringing the total volume to 50-100yl

by adding ddH,0. Bring the mix to 95 °C for 5-10 minutes™ then

! This is when the dsDNA lanes are denatured into two ssDNA (only one of which is the subject of
bridging). Rapid decrease in temperature to T,,,—5 °C prevents renaturation of complementary strand
from interfering with bridging.
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immediately to T,,—5 °C for 8 hours, then store at < -4 °C until

later use.

Ligate (X): Add 10 wunits of T4 Ligase enzyme per 200 pmol of
oligonucleotides in X and incubate at room temperature for 1
hour.

Load (X,Y,..Z,=): Load products X,Y,..Z, along with =50 ng of 50/100-bp DNA
ladder (Fermentas, ON) denoted here by "=", into a 5%
polyacrylamide gel. Glycerol (Sigma-Aldrich, MO) and loading dye
(max 1-2 pl) should be added to each load™. Run the gel for 2.5
hour at 40V using a 1x TBE running buffer (10.8g Tris base, 5.5g
Boric acid, 0.93g EDTA, pH 8.0), keeping the electrophoresis
apparatus (BIO.RAD PROTEANZ®II xi CELL) at < 4 °C throughout the
run®®. The running buffer may (optionally) be changed every hour.
The gel is ideally pre-prepared, stored at 4 °C overnight and pre-

electrophoresed (to remove possible charged contaminants that

may interfere with DNA migration).

Excise (D, bp) : Immerse the gel in 100mL ddH,0 and stain the polyacrylamide gel
with 10-20 pl of Ethidium bromide (EtBr)*, in as low-light room
conditions as possible, for 20-30 minutes. Destain the gel in

ddH,0 for 20-30 minutes. Cut the polyacrylamide band D which

> The dye helps visual tracking of product migration, and viscous glycerol holds products down the wells.
%50 as to avoid heat generated by electrophoresis from affecting the resistance of the gel unevenly
bands travel slightly faster the closer they are from the center).

Y EtBr is a known mutagen and must be handled with extreme caution.
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contains bp dsDNA under ultraviolet exposure, using a sterile

razor blade.

Purify (D) : Purify the excised band D (QIAquick® Gel Extraction Kit (50)). PCR-
amplify if deemed necessary (e.g. using spectrophotometric

quantification) using +grey primers.

Denote the salt-adjusted melting temperature of ssDNA bridges (or DNA(B)) as Tm(B)™, the

bridging protocol proceeds as follows:

Step 1:
I; = Purify (Excise(Load(Ligate(Hybridize(l;, DNA(B), T;,(B))), =), 26)) 1*

L, 3 = Purify (Excise (Load (Ligate (Hybridize(l_l, I3, T, (B))) = ) 52))

Step 2:
I3 = Purify (Excise (Load (Ligate (Hybridize(l, 5, DNA(B), T,u(B)) ), =), 104))

I35 = Purify (Excise (Load (Ligate (Hybridize(I 3, Is, Tn(B)) ) .= ), 156))

Step 3:
T, 3 = Purify (Excise (Load (Ligate (Hybridize(l, 35, DNA(B), Ty (B)) ), = ),234))

Ly 357 = Purify (Excise (Load (Ligate (Hybridize(m, I, Tm(B))) ) E) ) 312))

Step 4:
ltinas = Purify (Excise (Load (Ligate (Hybridize(l 35,7, DNA(B), Tu(B)) ) =, ¢1557) 832))

'® salt-adjusted T,, of ssDNA bridges should ideally be the same or within a very small range (in which case
their average is taken).

¥ 1,/ Lis to be interpreted in this context as “tube L,./I,” (an actual physical lab tube!). 26 is the base-pair
length of the expected right band at this step.
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Figure 4.7 shows a step-wise schematic representation of the bridging protocol. Notice
that the next lane to be bridged is mixed only with lanes that have succeeded to bridge in the
previous step (because those that failed have been excluded by virtue of Excise()/Purify()
operation that follow each Hybridization()). For example, if an [; species failed to bridge with
any l; during the second operation of Step 1, that I3 will have been excluded before the first
operations of Step 2 is begun. Furthermore, species which have in fact succeeded to bridge at

any given step can be further PCR-amplified.

The protocol in fact allows for the insertion of PCR-amplification at any stage, although
that increases the number of excision and purification operations. Another challenge in the
amplification of constituent lanes of a partial assembly is that, due to ligation, bridges that have
a 5’ 3’ meeting are now one continuous strand (in Figure 4.7, for example, the trail of bridges
starting at the 5’ end of [; to and ending at one of the middle bridges of I is —after denaturation
of the assembly— a ssDNA of length 78 bp. Since such sequences can only have one grey end at
the most, they cannot produce exponential replication (linear amplification may however take
place). Moreover, if a partial assembly, say l; 3 5, is amplified, then the constituent lanes will all
be within the same PCR reaction. Hence, and in order to enforce the step-wise bridging, those
PCR-ed lanes must be separated once more (by Load(), Excise(), and Purify() operations,

consecutively) and step-wise bridging is restarted.
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Figure 4.7: Progression of the bridging protocol: schematic representation of the resulting DNA
scaffolding assemblies at each step. The transition from one set to another within a single step entails an
excision and a purification of the correct assembly (correct as judged by the level at which a band appears
on the ultraviolet-exposed polyacrylamide gel, measured against a DNA ladder while taking into account
mobility issues of DNA junctions in general, see discussion). Furthermore, a PCR-amplification operation
can be inserted at any stage of the protocol. Notice that in Step 4, the set of bridges DNA(B) is added to
l; 357 which may result in two half-assemblies (corresponding to half of the DNA grid), which should have
been bridged to form one assembly, instead each hybridizes independently to bridges, in effect
preventing the crystallization of a full grid assembly. Hence, lfinq may be preceded with intensive
amplification followed by the addition of DNA(B) in smaller stoichiometric quantities. The detection of
lfinaqi however is unambiguous since its base-pair size is double that of any other assembly at this stage.

What does an insertion of a PCR-amplification operation really mean? Recall from
Chapter 3 that the solution to Hypatia can be stated as “finding a set of lanes that can
successfully stack up and cover the entire tiling grid”. Hence, the amplification is in a sense an
exclusion heuristic: if a lane failed to bridge at Step s, it is definitely not part of the ultimate
solution set of lanes. If a lane succeeded to contribute to a partial assembly, then it’s more likely
to be part of the solution set (but its likelihood of being such will be tested once more in the

next bridging step).
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The excision/purification operations deserve special attention as the risk of losing
products during these operations poses a real challenge. Furthermore, to determine exactly
which band to excise is complicated by the fact that the gel mobility of DNA assemblies is far
from being fully understood. Many factors, including running voltage, salt concentration and
polyacrylamide percentage do affect mobility [50][22]. Hence, in addition to careful optimization
of such factors, other controls can also be loaded to help identify the right bands with more

precision.

Step 4 in the protocol above is particularly challenging. When partial assemblies in
l; 35,7 are hybridized with bridges, two assemblies which should ideally be bridged to form the
full DNA grid, may instead each hybridize to bridges independently, rather than being brought
together with the same set of bridges. One way to reduce such outcome is to PCR-amplify [ 35 7
to a very high molarity (after all, [; 3 5 ; contains lanes which by now have a very high probability
of being the correct solution set). Next, the amplified lanes are bridged step-wise again, only this
time the ssDNA bridges in Step 4 are added at smaller stoichiometric amounts vis-a-vis l; 3 5 7.
Another technique would be to use a magnetic bead system [4] separate assemblies in [; 35 ;
which contain the seed tile from other assemblies. ssDNA bridges are then added solely to this
set and —once hybridized, ligated and purified (to remove floating ssDNA bridges)— is then mixed

with other remnant assemblies.

What about erroneous bridging? Consider the snapshot of a partial assembly in Figure
4.8. At some step, a lane (coloured green) stacked erroneously with a shift of one position to the
right. Recall from 4.1.3 that an underlying principal of stable DNA assembly states that there
must be an odd number of half-turns between crossover points, which necessarily means that
the conformations of the double-helix in these two points are at a 180 °C difference in the 3-

dimensional space. Hence, the two crossover points p; and p, in Figure 4.8 must necessarily
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attach up and down, respectively. Now, assuming that this assembly survived the excision
operation, four scenarios can take place: 1) Both bridge to the same lane, 2) Both bridge but to
different lanes, 3) Both remain free, and 4) one bridges to a lane and the other doesn’t. The first
and second cases can immediately be ruled out as both unstable assemblies (see also Winfree's
discussion on an assembly’s “temperature”[63]). Such assemblies would also be at a great
contrast in terms of migration mobility vis-a-vis the right assemblies at this step [50][22]. Hence,
the instability and/or exclusion by excision provide for a safe assumption that such erroneous
assemblies are eliminated. In the third and fourth scenarios, consider the worst case in which
such assemblies survived till last step (again, an unlikely outcome considering migration
mobility). In such case, and as a final exclusion heuristic, l¢inq can be stained with ssDNA-
binding dye (OliGreen® ssDNA Quantitation Assay and Kit, Invitrogen, ON) and any fluorescent
bands are excluded (the desired assemblies in lf;,,; contain absolutely no ssDNA segments; the

final DNA grid is fully dsDNA).

|

Figure 4.8: Erroneous bridging results when a lane stacks with one or more shifts left or right. Here, the
green lane stacks with one shift to the right. Considering the requirements of the DNA assemblies,
bridging at the two crossover points must be at a 180° difference in the 3-dimensional space.
Furthermore, any subsequent scenarios involving such erroneous assembly leads to a either 1) a
migration mobility contrast to the correct assemblies, and hence such assemblies get ruled out after the
excision operation, or 2) the existence of ssDNA in the assembly which can then be detected and excluded
using a ssDNA-binding dye (see discussion).

In what follows we present the results of applying the above protocol on a subset of
ssDNA oligonucleotides (Integrated DNA Technologies, Inc., lllinois) emulating a two- and three-
lane assembly. Figure 4.9a shows a schematic representation of the two assemblies (see
Appendix A.2 for exact DNA sequences). The three lanes are coloured blue, green and red; the

pair of bridges in black; and the dashed-lines denote ssDNA “fillings” which complete the
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double-helix between two bridging areas (bridges and fillings are all 16-bp sequences). The
three lanes involved are of length 30, 60 and 60 bp and the DX points are at a distance of 3 half-
turns (recall the requirement of odd number of half-turns between crossover points, see 4.1.3).
Since the bridging protocol assumes post-stapling products in dsDNA form, the lanes used in this

demonstration are also dsNDA.

This is crucial, since the assumption that when dsDNA is denatured and the reaction
conditions are set for bridging to take place (see Hybridize() operation above), the
complementary strands of the denatured dsDNA will not be interfering with bridges —by
hybridizing (fully or partially) to their complementary strands (which are our lane of interest).
We hypothesized, and the presented results confirm, that after denaturation, if 1) the reactions
conditions (mainly temperature) are rapidly set for bridging, and 2) the molarity of bridges is
vastly higher than that of lanes (we used 50x or 100x bridge to lane ratio) then the

complementary strand would pose no interference.

Figure 4.9b shows a picture of the ultraviolet-exposed EtBr-stained polyacrylamide gel.
From left to right, wells 1, 3, 7, and 9 contain a 100-bp DNA ladder, while well 5 contains a 50-bp
DNA ladder. The scale of each ladder is shown. Notice that, despite the fact the electrophoresis
was done at 4 °C, the “smiley face” effect can still be seen: a band travels slightly faster the
closer it is to the centre of the gel due to generated heat. Further investigation into the
possibility of optimizing the electrophoresis, by altering the salt concentration and/or the %
polyacrylamide for example, is clearly needed. Wells 2 and 4 contain the 3- and 2-lane
assemblies, respectively. The trail in these wells reflects the left-over ssDNA bridges, which were
added in the hybridization operation to a 100x ratio to lanes. Fully formed 2- and 3-lane
assemblies contain 96 and 112 double-stranded base-pairs in total (see Appendix A.2 for
detailed sequences). As compared across with DNA ladder, and taking the heat-induced
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distortion of migration into account, the two visible bands (marked with red in Figure 4.9b) —
assumed to be the intended assemblies— were excised. As mentioned earlier, the migration of
DNA assembly cannot be determined solely by bp count. Hence, in an extended experiment, we
recommend loading further controls using pre-prepared assemblies with known sizes. Well 8 is a
control which contains 60-bp dsDNA lanes (the same lanes that are used in the assemblies).

Clearly they appear at the expected location when compared across with DNA ladders.

0.5 pgtane, 8 cm kength gel, 0.5pg/ane,
1XTBE, 5\fcm, 1 h 8cm length gel,
4 1X TBE, 12V/cm

9 4
v e
® A
v e

(a)

(b)

1.7% agarose

Figure 4.9: Results of bridging protocol. a) Schematic representation of the set of ssDNA oligonucleotides
used in this demonstration. The blue, green and red denote 30, 60 and 60—bp lanes; solid black curved
lines denote bridges and dashed lines denote filler ssDNA that complement inter-bridging areas. The two
assemblies are close in size so as to determine the resolution of assemblies with small differences in bp.
b) Image of the ultraviolet-exposed polyacrylamide gel. From left to right, wells 1, 3, 7, and 9 contain a
100-bp DNA ladder, while well 5 contains a 50-bp DNA ladder. The scale of each ladder is shown. Notice
that, despite conducting electrophoresis at 4 °C, the “smiley face” effect can still be seen: a band travels
slightly faster the closer it is to the centre of the gel. Well 2 and 4 contain the 3- and 2-lane assemblies,
respectively. The trail in these wells reflects left-over ssDNA bridges, which were added in the
hybridization operation at a 100x ratio relative to lanes’ concentration. The two visible bands (marked
with red rectangles) assumed to be the intended assemblies were excised and purified. Well 8 is a control
which contains 60-bp dsDNA lanes (the same lanes that are used in the assemblies, loaded from stock).
The 2- and 3- lane assemblies contain 96 and 112 dsDNA in total, respectively.
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4.3.2 Verification:

PCR reactions were carried out, using templates from the excised and purified bands
shown in Figure 4.9b. The rationale behind using PCR for verification is that, if a band is assumed
to contain Iy, 1y, and [, lanes, then using that band as a template in three separate PCR
reactions: the first containing primers of [,, the second primers of [, etc. then the three
reactions should produce exponential amounts of I, l,,, and [, respectively. The mutual success
of all these PCR reactions (as their outcome is loaded into agarose gel and electrophoresed) is a

clear indication that all lanes making up the assumed assembly were in fact present in the

excised band and so the assembly must have formed.

Figure 4.10 shows the results of PCR verification. For each excised band (red rectangle
in Figure 4.9), two PCR reactions were performed, one to amplify the green lane, and one to
amplify the red lane. As the result below show, PCR conclusively proves that the two lanes were
present®. No amplification of the blue lane was performed since the 3-lane assembly (Well 2 of
Figure 4.9) appears slightly higher than that of the 2-lane assembly which can only be

interpreted as due to added dsDNA from the blue line.

2% \We note here that the same verification experiment was repeated with primer-dimer controls (i.e.
carrying a PCR reaction that contains the primers but not the template, and if nothing gets amplified, one
concludes that there is no unintended amplification in those reactions which do in fact contain
templates). The results were once again positive.
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Figure 4.9: PCR-verification of 2- and 3-lane assemblies.

W1:
W2:
W3:
W4:
WS5:
Weé:
W7:

50-bp DNA ladder

Green lane amplified from the first excised band (60-bp)
Red lane amplified from the first excised band (60-bp)
Green lane amplified from the second excised band (60-bp)
Red lane amplified from the second excised band (60-bp)
<intentionally empty>

control; red and green lanes loaded from stock (60-bp)
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Chapter 5 Reflection and Future Work

Our knowledge of the marvelous DNA molecule has come a long way. And we expect to
continue to be marveled by new success stories of DNA outside the cell. We say that with
confidence that stems from the impressive track record of DNA in the past, well, thousands of
millions of years, in which it has been the ever efficient and resilient carrier of massive blueprint
information encoding machine instructions of living organisms. We owe this new perspective of
DNA, i.e. the computational perspective, to Adleman’s insightful HPP demonstration [4]. One
can only look at the many new avenues of using DNA for solving problems, fabricating nano-
scale structures, experiment with new and interesting models of universal computations and
even the strive for “tiny” DNA computers that can intelligently improve the way medical care is

provided.

At the heart of all of these various promising prospects lies a central seat for the
computationally-minded. Some of the most fundamental questions that arise in the pursuit of
all these frontiers are basically computational questions. If a DNA computer is to control gene
expressions, and we have a complete map of the genetic regulatory network, then a question as
“what combinations of on/off states of genes result in the release of chemical X?” is quickly
spotted by a computer scientist as the SAT problem itself. Nano-technologists rushing to design
a computer program to generate a set of half-tiles that would grow into nano-scale structures of
their interest would be in a much better position with the knowledge that finding such set is a
computationally hard problem, and that a lot of time and money would be saved if they
accepted a set of half-tiles that approximately but not exactly produces that shape. DNA can

compute, and computer science and the well-established complexity theory tell us what is
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computable in the first place, and if so how much computation can realistically be done. And so

the marriage of the two is the more appropriate.

We have formally defined the half-tile model which we used to devise a DNA-based
solution to the NP-Complete bounded edge-matching puzzles. The PCR-enabled half-tile model
is also relevant in two other aspects: as a Turing-complete computational model, and as a

framework for nano-scale fabrications. We discuss these three aspects further in what follows.

5.1 How Powerful is DNA Computing?

DNA oligonucleotides can be synthesized by commercial vendors relatively cheaply
(~50.08-0.20/nucleotide at the time of writing) and in concentrations of up to micro-mole
amounts (~107 copies, maybe slightly more). This is the primary limit on how much
computation can be done. Beyond the first pool generation step (which, again, is limited by the
molarity of synthesis), PCR comes into play as a supremely powerful, efficient and cheap
heuristical and processing-power tool. We must, however, let go of the illusion® that the massive
parallelism of DNA strand hybridizations can “crack” intractable problems and surpass silicon-
based computing. Instead, we ought to precisely characterize what PCR can do and employ that

power in areas where DNA Computing is actually needed.

Implicit in our discussion of Chapter 4 is the fact that PCR can make up for low synthesis
molarity’. In other words, were it not for PCR, we would have to synthesize at much higher
molarity so as to be able to yield the correct computation in sufficiently large/detectable

amounts at the pool generation step. With PCR at hand, however, we can do with as few as

1 . .
See 1.4 for more on this point.
> Compare upper-bounds of the stapling and bridging phases in Chapter 4.
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dozens® of correct outcomes from the pool generation step —we can fish them out with the help
of PCR. The importance of BEMP’s NP-Completeness in this context is as the benchmark by

which one can make statements about DNA computational power.

Another interesting result, which we have not mentioned in Chapter 4, is that the
problem of designing DNA strands to minimize unintended hybridizations and hairpin/secondary
structure formations need not be hard. Asking a computer program to design oligonucleotide
sequences that are at a maximum Hamming distance can be quite difficult as the pool of strands
grows larger. Researchers have explored this problem extensively (see [56b] for example). But
we have found that the problem may not be hard in reality. Using Tetramethylammonium
chloride (TEACI) or tetramethylammonium chloride (TMACI) salts in reaction buffers can hugely

increase the hybridization sensitivity to sequence length [28b].

Using an example from our context, if stapler strands are of length 16-bp, then the
design problem need only ensure that no two strands have, say, >12 strands common
subsequences, and any commonalities of less (or more in fact) need not be ruled out. TMA" and
TEA" (as opposed to Na® in most buffers) seem to cause a remarkable increase in the
dependence of melting temperature on sequence length [28b]. Furthermore, as few as 2-bp
difference can result in big difference in T,,. This prevents a strand of length x from hybridizing
at the melting temperature of strands of length x + 2. A demonstration of the utility of TEACI
and TMACI in DNA Computing is a planned future work. We should also mention that the

protocol devised in this work will be carried out on the full set of strands encoding a 4x4 BEMP.

* We make this assertion based on successful PCR reactions that we have carried out, in which a small
segment from among large and diverse genomic DNA (Arabidopsis) was successfully amplified and with
impressive efficiency.
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5.2 Half-tile Assembly Model is Turing-complete

Wang tiles have a fixed orientation, and so rotation of tiles is not allowed. In
EMPs, rotation is of course needed and so our half-tile model allows for it. But rotation
can be disabled in the presented half-tile model by two simple steps: 1) only one pair is
encoded (all tiles would be dissected at one and the same diagonal), and 2) Bridging up
and down operations are made distinct by simply having different sequence lengths for

the part of the ssDNA bridge that is destined to bridge up from that which bridges down.

Half-tile assembly model (hTAM) is then Turing-complete because, trivially, the
union operation can be applied to get the original mother tiles —and tiles have already
been proven to be capable of simulating a Turing machine. That is a weak version of
proving the Turing-completeness of the half-tile assembly model. Weak in the sense
that what we have shown is the equivalence between tiling with half-tiles and tiling with
their mother tiles, and concluded that since Tile Assembly Model is Turing-complete

then so must be tiling with the corresponding set of half-tiles.

But a stronger proof is possible. We can prove that the execution of a Turing
machine can be simulated by the growth of some set of half-tiles. Even more is possible,
in that diagonals need not be unique to two half-tiles (just like edges can staple to more

than one half-tiles all possessing that edge colour). The proof and a demonstration of
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the Turing-completeness of the half-Tile Assembly Model (hnTAM) using 2-dimensional

DNA self-assembly is a planned future work *.

5.3 Half-tile Assembly Model is a PCR-powered DNA Nano-Construction Model

The PCR-powered half-Tile Assembly Model (hTAM) has potential in nano-scale
constructions. Not only do we have a model for defining molecular motifs that —by design— self-
assemble into the desired nano-structure, but it is one that allows also for the insertion of PCR
every step of the way. A partially fabricated nano-structure can be denatured at will and the
constituent lanes of DNA can be amplified once more. With hTAM, DNA nano-technology can be
carried out at massive scales. We plan to pursue this avenue further, but with an extra ambition.
We seek to investigate the problem of finding a “programmable” (or “re-usable”) set of half-tiles
HT = {hty, hty, ..., ht,,} whereby mixing of different subsets of HT can produce different (yet

desirable/useful) assemblies.

* This work is being done in collaboration with Ibrahim Al Abdulmohsin (Elec. Eng. Dept., Stanford
University) to whom the formal proof is due.
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Appendix A

A.1 Stapling Trial Experiment:

Lane 01: 91-bp
TCACTCCACTTAACTATAACCACAAACTCATTACACCAATTCTCTTCTCCTACAATTCCTAATGTCCAACATACTCTCATCCTCTAACATA
Lane 02: 151-bp

CTATCCAATAACCTCTTCATACACTTACACTATTCTCACCCATAAACACCTAACTAGACTACACTATCAGCATCACTACCCTATTCTACTAACTTC
ACCCCTATATTTCTTCCATCACATAACTCATACATACTCACTATTTATATCCACC

Hapo1 TCACTCCACTTAACTATAACCACAAACTCA 30bp
Hap02 TTACACCAATTCTCTTCTCCTACAATTCCTA 31
Hap03 ATGTCCAACATACTCTCATCCTCTAACATA 30
Hap04 CTATCCAATAACCTCTTCATACACTTACAC 30
Hap05 TATTCTCACCCATAAACACCTAACTAGACT 30
Hap06 ACACTATCAGCATCACTACCCTATTCTACT 30
Hap07 AACTTCACCCCTATATTTCTTCCATCACAT 30
Hap08 AACTCATACATACTCACTATTTATATCCACC 31
Staple01 ATTGGTGTAATGAGTTTGTG 20
Staple02 TGTTGGACATTAGGAATTGT 20
Staple03 GGTGAGAATAGTGTAAGTGT 20
Staple04 CTGATAGTGTAGTCTAGTTA 20
Staple05 GGGTGAAGTTAGTAGAATAG 20
Staple06 TGTATGAGTTATGTGATGGA 20
BluePrimer01 TCACTCCACTTAACTATAAC 20
BluePrimer02 TATGTTAGAGGATGAGAGTA 20
RedPrimer01 CTATCCAATAACCTCTTCAT 20
RedPrimer02 GGTGGATATAAATAGTGAGTA 21

The codenames are given as IDs to species to help run the experiment. “Haps” are strands being stapled.
The PCR primers above are used in PCR reactions.
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Sequencing results:

The two lanes (lane 01 and lane 02) are cloned into a plasmid and sent for sequencing. The
sequencing results below (McGill University-Genome Quebec, Montreal) show the formation of the two
lanes. The sequence of lane 01 and 02 are highlighted in blue and red, respectively; while their
respective reverse complement are highlighted with dimmed red and blue.

Lane01
Lane02

>ID|7823763 L22_P1002642_033.ab1

TGCATGGAACGCCGCAGACTTCGGATGCTCGAGTTTTTCGCAGATGGTGGATATAAATAGTGAGTATGTATGAGTTATGTGATGGAAGAAAT
ATAGGGGTGAAGTTAGTAGAATAGGGTAGTGATGCTGATAGTGTAGTCTAGTTAGGTGAGAATAGTGTAAGTGTATGAAGAGGTTATTGGA
TAGGGTGGTGGATATAAATAGTGAGTATGTATGAGTTATGTGATGGAAGAAATATAGGGGTGAAGTTAGTATAATAGGGTAGCGATGCTGA
TCCTGTAATCCTACTACGCGTCTCTGGGTGACAATCGCTGTCGCGTCCGACGAGCTCTCGGATACCCCTTTCTCACATATCCCCTACCATACTCT
CTGTCGGCCCCGCCACTCCCCCCTCTCCCTCCCCACTCTCCCACGCACCCCAGCCCCCCCTATACTAGCCTATCCTCAAATCCTTCCGCLCTCCCCC
ACCCCCCACACCACCCCCTCCCTCGCTGCTCGCCCTCTCTCCTGCCCTTCCCCCTCTCCTCGCCTCCCCTCCCCLCCTCCCcAT CCcccecT e
ACCCCTACCACCTCTTTCCCCTCCCGTCCCCCCCTCACCCCCTCCTCCCCCCCCTGACCTCCCCCTCCCCTCCCCCTCCCCCTCCCACcTCCTCCCcC
CCGACACTCCTCCTCCTACCCCCCGCCCTCCCTCCCCACTCCCCACCCCCCCTCCCCGCCTCTCCTCCCCCCCCCCACTCTCCTCACCACTACATCC
CCCCCCCTCCCCTTCCTCCCTCCACTCCTCATCCCCCTCCCCCCCACCCCCCTCCCCATCCCCCCTCTCCCTCCTCTCCCCCTTCCCCTACCTCCCGE
CCCCCCCTCCCCCCCCCTCCCCCCCCCTCCCCCLTCCCCCCCCCTCCCCCCCCTCCCTCCCTCTCCCCGTCCCTCTTCCCCCCcG T CCcccTaeceT
CCTCCTCTCCCCTCCCTCACCCCCTCCCCGCCCCCAACTCTTTCCCCTCGCATCTCTTCCCCCCCCTCCCCLTCTCCCCACTCCCCCceccecccececc
CTCTCCCCCCTTCTGCGCTCCCCCGCGCCCACCCCCTCCCCTCCCCAGCCLCCCCCCCCCCLCTCTCCT LT LT CCCCccTCCccTCCCTCCTTTC
CCCCCCCCTCCTCTCCCCCCCCACCCCTCTGCCCTCCCCCTCCCCCCTCTCCCCCTTCCCCTCCCTTCATCCCCTCCTCCCCCCTTCCCCTCCTCCCTC
CCCCTTCTC

>|D| 7823757 L21_P1002642_018.ab1

TTTCTAGTTATTCGCCTGAATCTTGAGAGAATAAAGAAGACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGAAAGAT

ATCTTGCTGAAAAACTCGAGCCATCCGGAAGAT
CTGGCGGCCGCTCTCCCTATAGTGAGTCGTATTACGCCGGATGGATATGGTGTTCAGGCACAAGTGTTAAAGCAGTTGATTTTATTCACTATG
ATGAAAAAAACAATGAATGGAACCTGCTCCAAGTTAAAAATAGAGATAATACCGAAAACTCATCGAGTAGTAAGATTAGAGATAATACAACA
ATAAAAAAATGGTTTAGAACTTACTCACAGCGTGATGCTACTAATTGGGACAATTTTCCAGATGAAGTATCATCTAAGAATTTAAATGAAGAA
GACTTCAGAGCTTTTGTTAAAAATTATTTGGCAAAAATAATATAATTCGGCTGCAGGGGCGGCCTCGTGATACGCCTATTTTTATAGGTTAATG
TCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAA
TATGTATCCCCCTCATGAGACAATAACCCTGATAAATGCTTCCATAATATTGAAAAAAGAACAGTATGATTATTCAACATTTCCGTGTCCCCCTT
TATCCCTTTTTTTGCCGCATTTTGCCTTTCCTGTTTTTGCTTCCCCCAGAAACCCCGGTTTAAAGTAAAAAGATGCCTGAAGATTCAGTTTGGGT
GCCCCAAGTGGGTTTACATCCAAACTGGGTTCTTCACCAACGGGGAAAGATTCCTTGAAGAGTTTTTCCCCCCCCGAAAAAACGTTTTTCTCAA
TGATTGAACCCCTGTTTTAAAGGTCCTTCCCTTTTTGGCGCCCCCGGAAATTATTCCTCGCTTATTGCACCCCCGGGTCCAAAAAACCCATTTCG
GGTTCCCCCCCGATTACACCTAATTTCTTCTAAAAAATACACCTGGCCTGTAAACCACCCTCACCC
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>|D|7818507 L12_P1002632_091.ab1

GCATGGCGAGGGCGCAGATCTTCCGGATGGCTCGAGTTTTTCGCAAGATTCACTCCACTTAACTATAACCACAAACTCATTACACCAATTCTCT
TCTCCTACAATTCCTAATGTCCAACATACTCTCATCCTCTAACATAATCTTTCTAGAAGATCTCCTACAATATTCTCAGCTGCCATGGAAAATCGA
TGTTCTTCTTTTATTCTCTCAAGATTTTCAGGCTGTATATTAAAACTTATATTAAGAACTATGCTAACCACCTCATCAGGAACCGTTGTAGGTGG
CGTGGGTTTTCTTGGCAATCGACTCTCATGAAAACTACGAGCTAAATATTCAATATGTTCCTCTTGACCAACTTTATTCTGCATTTTTTTTGAAC
GAGGTTTAGAGCAAGCTTCAGGAAACTGAGACAGGAATTTTATTAAAAATTTAAATTTTGAAGAAAGTTCAGGGTTAATAGCATCCATTTTTT
GCTTTGCAAGTTCCTCAGCATTCTTAACAAAAGACGTCTCTTTTGACATGTTTAAAGTTTAAACCTCCTGTGTGAAATTATTATCCGCTCATAAT
TCCACACATTATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCC
AATTGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTT
CCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAG
AATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAAGCCAGGAACCGTAAAAAAGCCGCGTTGCTGGCGTTTTTCCA
TAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACGGGACTATAAAGA

>|D| 7818467 L21_P1002632_010.ab1

TTCTACTTATTCGCCTGAAACTTGAGAGATAAAGAAGACATCGATTTTCCTGGCAGCTGAGAATATTGTAGGAGATCTTCTAGAAAGATGGTG
GATATAAATAGTGAGTATGTATGAGTTATGTGATGGAAGAAATATAGGGGTGAAGTTAGTAGAATAGGGTAGTGATGCTGATAGTGTAGTC
TAGTTAGGTGTTTATGGGTGAGAATAGCGTTAGTGTATGTAAAGGTTACTCGAATACATCTTGCTCATCCTTAGATCCCACCTCCAGGATCTGG
CTGACGCTCTCCCCATGTCTAATCGGCCCACCCCCTACGGATATGGTGTCCAGGCGCCATTGTCAAATCAAATCCTTTTACTCCCTATGCTAACT
AAAACCGTGACTGGAACCTGTCTCCCCTCACATCTCCAGATAATCCTTAACAGACATCCAGCAGCAAGAGTTACCGACGATCCACTCACTACCA
CCTCGGCTTCCAACTTTTCTCCCCCTCGTGAACCTACTCCTGAGACCACAAACTCCTCTACCCAATCATCCTCTCAGGACCTACCTCTCACTACAC
TCTCCGCACCTCCCGTACCCAGCTTATTTCGCGCCCAGCCTCCTACTAACTCGACTCTTCTTCCTAGCGCTCTCCCGCTACCCCCCCAATCATTAT
CCACTCTTCCCTTCCTGCACACTCACTACTGTTTCCACCTACGCTCCGGCCCCATACCCTTTTCGCGTACACCTCTGCACCCGCACCCCTTCAACC
TCTCTTCTATCTTCTCCCCCTTTACCCTTTCCTACTCGTCCCTCTCCCTGCCTTCCCACCCGCAATCCCCCCTCCATCAAACTCGCTCCCACTCTTAC
CTCCCCCCATCCCCTCTCACTCTCCCAATAGCCTCACCCCCTTTTCCTGCACCCCCCCCATAATTCCTTATAACCATGCCATACCCCTCACCCCCTT
CCCCCGTCTCCTACACTCCTCCTCTTCTCCCCGCTCCCATGCTTATCCTCAACAACCACTCCCCTTCTCCTCCTCCCCTCCACTCTCACTCCATACTC
CTACACTATCTCCCACCTTCCCGCCTCATTTCACTCACTTCCAGTTCCATCAACCCCGGCCCTCACTTCTCTACCACCCCACTATAACTAAGCTCA
CTCACCCACATCTACTTCCACCTGTATCTGCCCGCTTCCCACTCCATCTCTCGCACAAGCTCCTCACCACGTTTACTCCCCCTCTCAGC

>|D|7818506 L11_P1002632_076.ab1

AACTAGTTATTCGCCTGAATCTTGAGAGATAAAGAAGACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGAAAGATICA
CTCCACTTAACTATAACCACAAACTCATTACACCAATTCTCTTCTCCTACAATTCCTAATGTCCAACATACTCTCATCCTCTAACATAATCTTGCTG
AAAAACTCGAGCCATCCGGAAGATCTGGCGGCCGCTCTCCCTATAGTGAGTCGTATTACGCCGGATGGATATGGTGTTCAGGCACAAGTGTT
AAAGCAGTTGATTTTATTCACTATGATGAAAAAAACAATGAATGGAACCTGCTCCAAGTTAAAAATAGAGATAATACCGAAAACTCATCGAGT
AGTAAGATTAGAGATAATACAACAATAAAAAAATGGTTTAGAACTTACTCACAGCGTGATGCTACTAATTGGGACAATTTTCCAGATGAAGTA
TCATCTAAGAATTTAAATGAAGAAGACTTCAGAGCTTTTGTTAAAAATTATTTGGCAAAAATAATATAATTCGGCTGCAGGGGCGGCCTCGTG
ATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTT
GTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAG
TATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATG
CTGAAAATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAAAAGTTTCGCCCCGAAAAAAGTTTT
CCAATGAAGAACACTTTTAAAGTTTTGCTATGTGGCGCGGTTATTATCCCCGTAATGGACCCCGGGCAAAAACCAAACTCGGTCCGCCGCAAA
AACCTATTTT

>|D|7818513 L21_P1002632_009.ab1
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TTATTGGGGGCGGCCGCCGATCTTCCGGATGGCTCGAGTTTTTCGCAAGATCTATCCAATAACCTCTTCATACACTTACACTATTCTCACCCATA
AACACCTAACTAGACTACACTATCAGCATCACTACCCTATTCTACTAACTTCACCCCTATATTTCTTCCATCACATAACTCATACATACTCACTATT
TATATCCACCATCTTTCTAGAAGATCTCCTACAATATTCTCAGCTGCCATGGAAAATCGATGTTCTTCTTTTATTCTCTCAAGATTTTCAGGCTGT
ATATTAAAACTTATATTAAGAACTATGCTAACCACCTCATCAGGAACCGTTGTAGGTGGCGTGGGTTTTCTTGGCAATCGACTCTCATGAAAAC
TACGAGCTAAATATTCAATATGTTCCTCTTGACCAACTTTATTCTGCATTTTTTTTGAACGAGGTTTAGAGCAAGCTTCAGGAAACTGAGACAG
GAATTTTATTAAAAATTTAAATTTTGAAGAAAGTTCAGGGTTAATAGCATCCATTTTTTGCTTTGCAAGTTCCTCAGCATTCTTAACAAAAGACG
TCTCTTTTGACATGTTTAAAGTTTAAACCTCCTGTGTGAAATTATTATCCGCTCATAATTCCACACATTATACGAGCCGGAAGCATAAAGTGTAA
AGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCAATTGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCT
GCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGGGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCG
TTCCGGTGGGGGCGAGCGGTATCAGCTCACTCCAAAGGCGGGAAATACGGGTTATCCCACAGAATCAGGGGGAAAAACGCAGGAAAGAAA
CATGTGAAGCCAAAAGGGCCAGCAAAAAGGGCCAGGAAAACCCGTAAAAAAGGCCCGCCGTTTGCCTTGGCGGTTTTTTTCCCAAAGGGGC
TCCGGGCCCCCCCCTGGAACGAAGCCATTCCACCAAAAAAATCTCGACGCG

>ID| 7818468 L22_P1002632_025.ab1

TTCCCATGGAAAACGGCCGCCCGAATCTCTCCGGATGGCCTCAGTTTTTCCAGCCAAGATGGTGGATATAAATAGTGCAGTATGCTATTGAGT
TATGCTCGATGCGAAGCAAATATCAGGCGGCTCGAAGCTTAGCTACGCAATACCGGCTAGCTCGATCGCCTGCACTAGTGCTACCTCCCAGCT
CTCGGCTGCACAACTACCTGCTCACCTGCTCCTGCAACACGGCCTATCTCCCCACCCGLCCCLLGLGLcACcLeLcaLeeeecccAcccTecTcee
CCCCCCTCCCCCCTCCATCACCTCCCCCLLLccceceeccTeCcceeecTeCccALCccecTecceaLccceccTecccceccccecceAccceccececrre
CCTCCCCTCCCTCTTCCCCCCCCLCCecccecccceeTeTecceeccecTeecccTercceeccecceeAcccereccceecccecccececcceccreccrcer
CCCCCCCCTCTCCCCCCCCTCCCCCLCCCCTCCCCCCCCCCCCCTCTCLCCCTCCTCCTCTCCCCCceccccceeca A cececccecececceccrre
ACACTCACCCTCCCCCCCCCTCCCCCACCCCCACCCLLcecccTeCccLGLreccecccecCAcALcceeeceecAcceccecTrTecccecccececccecc
CCCCCTCCTCCCCCTCCCCCCCCecTCTCCCccceceecceeceecceccrceeccecreeccrecccceecceccecrerececreceaercerrecr
CCCTCCCCCTCCCCTCCTCCCCCCCTCTCCTCTCCTCTCCCCCTCCCCCCCCCTCCCCCGLCTECTTCCCCCcccecT T TCCccecccccccrcc
CCCCTCCCCTCCCCCCCCTCTCCCCCCCTCCACCCCTCTCCCCCACCCCCCTCLCTCCLCCTCCCTTCCCCCCceccTCCTCCTCCCCcccccceccTcce
CTCCCCTCCCTCCCACCCCTCTCCCCCTCGCCCCCCCCCCCCACCTTCCTCCCCCLCcACC eeccecT e ccecceccTeaecccccecTeTeccAc
CCCCCCTCTCCCCTCCCCCCCTCCCACCCCCCTCCTCTCCTCCCTCCCCCCTCCCCACCACCCACCCTCCCeCTCCCTCTCCCCGLCCceccTCTTCCC
CTCCCCCCTACCCCTCCCCCCCCTCCTCCTCTCACCCCCCTCCCCCCCTCTCTCCCTCCCCCTCTGTCTACCTCCTCCCTCACCTCCCTCCCCCTCCT
CTTCCTCCTCCTCCCCTACTCTCCCTCACTCCCTCCCCCGTCCCCCCCTCCCTCCCCCTCACCTCTCCCCTCCCGLCccTCCccTCCTCCCTCTCCCC
CCACCTCCACCCTCCTCTCCGCCCCTCCCTTCTCCTCCTCCCCCCCCACTCCCCCCACCLLCCCeCTTCCCCTCCTCCCCCAC T CTCCCcccccccec
TCCCTCCCTCCCCCCTCTCCCTGCCCCCCGCCCACCTTCACCTTCTCCCGCCACCCCCTCCTCCTCCCACCCTCCCTCGCLTCTCCCCCTCCCCACTC
CCCCTCACACCACTCCCCCCTCCCCACCTCCTCCGCCCTC

>|D|7818511 L11_P1002632_075.ab1

GGCTAGGGACGGCGCAGATCTTCGGATGGCTCGAGTTTTTCAGCAAGAT
ATCTTTCTAGAAGATCTCCTACAATATTCTCAGCTGCCATGGAA
AATCGATGTTCTTCTTTTATTCTCTCAAGATTTTCAGGCTGTATATTAAAACTTATATTAAGAACTATGCTAACCACCTCATCAGGAACCGTTGT
AGGTGGCGTGGGTTTTCTTGGCAATCGACTCTCATGAAAACTACGAGCTAAATATTCAATATGTTCCTCTTGACCAACTTTATTCTGCATTTTTT
TTGAACGAGGTTTAGAGCAAGCTTCAGGAAACTGAGACAGGAATTTTATTAAAAATTTAAATTTTGAAGAAAGTTCAGGGTTAATAGCATCCA
TTTTTTGCTTTGCAAGTTCCTCAGCATTCTTAACAAAAGACGTCTCTTTTGACATGTTTAAAGTTTAAACCTCCTGTGTGAAATTATTATCCGCTC
ATAATTCCACACATTATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCA
CTGCCAATTGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCG
CTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTTGCGGCGAACGGTAACAGCTCACTTCAAAGGCGGAAATAACGGTT
ATCTCACACAATCAGGGGAATAACGCCAGGAAAAAAACCTTGTGAACCAAAGGGCCTTGCAATAAGGGCCAGGAAACCCGACAAAAAGGGC
CCCCCTTTGCTTGACTGCTTTTTTCCCATTAGGCCTCCCGCCCCCCCCCTGAATCCAGCCCACCCCCAAAACAAATCCTGGCCCCTTCTAACATTC
AAAAAGGTTGGGGCGAATAACCCCCCGATCCGGGGAACCTAATTAAACAGAATTCCCTCCTGGGCCCGTTTTATCCTCCCCCCTGTGAA
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>|D|7818512 L12_P1002632_092.ab1l

AACTGTTATTCGCCTGAATCTTGAAGATAAAGAAGACATCGATTTTCCTGGCAGCTGAGAATATTGTAGGAGATCTTCTAGAAAGAT

ATCTTG
CTGAAAAACTCGAGCCATCCGGAAGATCTGGCGGCCGCTCTCCCTATAGTGAGTCGTATTACGCCGGATGGATATGGTGTTCAGGCACAAGT
GTTAAAGCAGTTGATTTTATTCACTATGATGAAAAAAACAATGAATGGAACCTGCTCCAAGTTAAAAATAGAGATAATACCGAAAACTCATCG
AGTAGTAAGATTAGAGATAATACAACAATAAAAAAATGGTTTAGAACTTACTCACAGCGTGATGCTACTAATTGGGACAATTTTCCAGATGAA
GTATCATCTAAGAATTTAAATGAAGAAGACTTCAGAGCTTTTGTTAAAAATTATTTGGCAAAAATAATATAATTCGGCTGCAGGGGCGGCCTC
GTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCT
ATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTAT
GAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAG
ATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGGTAAGATCCTTGAGAGTTTTCCCCCCCAAAGAAC
GTTTTTCCAATGATGACCACTTTTAAAAGTTCTTGCTATGTGGGCCCGGGATTTATCCCCCTAATTGACCCCC

>ID| 7818476 L22_P1002632_026.ab1

CCTATGTTATTCGCCTGAATCTTGAGAGAATAAAAGAAGACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGAAAGATC
TATCCAATAACCTCTTCATACACTTACACTATTCTCACCCATAAACACCTAACTAGACTACACTATCAGCATCACTACCCTATTCTACTAACTTCA
CCCCTATATTTCTTCCATCACATAACTCATACATACTCACTATTTATATCCACCACCCTATCCAATAACCTCTTCATACACTTACACTATTCTCACC
TAACTAGACTACACTATCAGCATCACTACCCTATTCTACTAACTTCACCCCTATATTTCTTCCATCACATAACTCATACATACTCACTATTTATATC
CACCATCTTGCTGAAAAACTCGAGCCATCCGGAAGATCTGGCGGCCGCTCTCCCTATAGTGAGTCGTATTACGCCGGATGGATATGGTGTTCA
GGCACAAGTGTTAAAGCAGTTGATTTTATTCACTATGATGAAAAAAACAATGAATGGAACCTGCTCCAAGTTAAAAATAGAGATAATACCGA
AAACTCATCGAGTAGTAAGATTAGAGATAATACAACAATAAAAAAATGGTTTAGAACTTACTCACAGCGTGATGCTACTAATTGGGACAATTT
TCCAGATGAAGTATCATCTAAGAATTTAAATGAAGAAGACTTCAGAGCTTTTGTTAAAAATTATTTGGCAAAAATAATATAATTCGGCTGCAG
GGGCGGCCTCGTGATACGCCTATTTTATAGGTTAATGTCATGATAATAAGGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGC
GGAACCCCTATTTGTTTATTTTTCTAAAATCATTCAAATATGGTTTCCGCTCATGAGAACATAACCCTGAATAAAGGGTTCCAATAATTTTGGAA
AAAGGGAAGAAGTAGGAGTATTTCCACATTTCCCGGGTCGCCCTTTATTCCCCTTTTTTTGGCGGGAATTTTGGCCCTTCCGGGTTTTTGGCTC
CACCCCAAAAACGCTTGGGGTAAAAAGTAAAAGAAAGGCTTAAAAAATCAAGTTGGGGGGGGACT
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A.2 Bridging Trial Experiment:

oligo role in assembly
3-TCATCTTATCCCATCACTACGACTATCACA-5 Lane 1
5-TCACTCCACTTAACTATAACCACAAACTCA-3 5- ATGTCCAACATACTCT Lane 2
3- CCACCTATATTTATCACTCATACATACTCAA-5 3- CACATTCACATACTTC Lane 3

5-TTGGACATTGAGTTTG-3

a filler oligo on Lane2

5- TATGAGTTGTGTAAGT -3

a filler oligo on Lane3

5- ATAAATAGGTTAAGTG-3

5-TGGTTATAGAGTATGT-3

together bridge Lane2 and Lane3

5- GTATGAAGAGAGTATG-3

together bridge Lane2 and Lane3

5-TAGGGTAGTGAGTTTG-3

5- TTGGACATTGATGCTG -3

together bridge Lanel and Lane2

Assembly of two lanes:

Lane2 (shown green in Chapter 5)

Lane3 (shown red in Chapter 5)

Assembly of three lanes:

Lanel (shown blue in Chapter 5)

Lane2

Lane3

5-TCACTCCACTTAACTATAACCACAAACTCA|ATGTCCAACATACTCT
3-GTGAATTGATATTGGT-5 3-GTTTGAGTTACAGGTT-5 3-GTATGAGA
5- ATAAATAGGAGTATGT -3 5-TATGAGTTGTGTAAGT-35-GTATGAAG
3- CCACCTATATTTATCACTCATACATACTCAA|CACATTCACATACTTC

3-TCATCTTATCCCATCACTACGACTATCACA-5
5-TAGGGTAGTGATGCTG-3
3-GTTTGAGT TACAGGTT-5
5-TCACTCCACTTAACTATAACCACAAACTCAATGTCCAACATACTCT
3-GTGAATTGATATTGGT-5 3-GTATGAGA
5- ATAAATAGGAGTATGT -3 5-TATGAGTTGTGTAAGT-35-GTATGAAG
3- CCACCTATATTTATCACTCATACATACTCAACACATTCACATACTTC

100

AACATA -3

CCTATC-5

AACATA -3

CCTATC-5



