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Abstract

Efficient resource allocation is challenging when privacy of users is important. Dis-

tributed solution approaches have recently been used extensively to find a solution for

such problems. In this work, we study the efficiency of distributed AIMD algorithm

for allocation of subsidized goods. To this end, we assign each user a suitable utility

function describing the amount of satisfaction that it has from allocated resource. We

define the resource allocation as a total utilitarianism problem that is an optimization

problem of sum of users utility functions subjected to capacity constraint. Recently, a

stochastic state-dependent variant of AIMD algorithm is used for allocation of common

goods among users with strictly increasing and concave utility functions. We improve

this algorithm to allocate subsidized goods to users with concave and nonmonotonous

utility functions as well as users with quasi-concave utility functions. We also deran-

domize the AIMD algorithm and compare its efficiency with the stochastic version.

We then model resource allocation problem as a competition game to evaluate the ef-

ficiency properties of unique equilibrium when resource allocation parameters change.

To illustrate the effectiveness of the proposed solutions, we present simulation results

for a public renewable-energy powered charging station in which the electric vehicles

(EV) compete to be recharged.

Keywords– Distributed Resource Allocation, Total Utilitarianism, AIMD Algorithm, Game

Theory, Electric Vehicle (EV) Charging
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Notation

In this section, we summarize the notations that we use throughout the work. The notations

are either standard or defined on related sections. Generally, we denote scalars and abstract

objects with lowercase or uppercase letters (e.g., n or Γ), vectors by boldface letters (e.g., x)

and sets by uppercase letters (e.g., N ). Each user i’s value is denoted by subscript letters

(e.g., xi) and each iteration t is located inside parenthesis (e.g., xi(t)).

Symbol meaning

R the set of real numbers

R+ the set of non-negative real numbers

N the set of users

i each user’s indicator

n number of users

C capacity constraint

xi user i’s possible value of allocated resource

x∗i user i’s optimal allocated resource

ui strictly increasing, concave, continuously differentiable utility function

vi concave, continuously differentiable utility function

wi strictly increasing, quasi-concave, continuously differentiable utility function

t time steps (iterations)

T last time steps (iterations)

s(t) capacity constraint signal

xi(t) user i’s possible value of allocated resource in iteration (t)

α growth factor

β drop factor

λi the probability for each user i that depends on the long-term average allocated

resource

Γ the parameter that is chosen to ensure that 0 < λi(x̄i) < 1

ηi the slope of logarithmic as well as Sigmoidal utility functions
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χi in kWh is the amount of allocated resource (EV charging) that gives 100 unit

utility to the user i

ψi in kWh is the inflection point of Sigmoidal utility functions

Ψ Ψ =
∑n

i=1 ψi

N a set of players (users)

Xi non-empty set of available actions for player (user) i

x a profile of actions

xnei user i’s Nash equilibrium allocated resource

log the natural logarithm
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Introduction

In many real-world applications, the goal is allocating limited resources among users in

order to achieve maximum total utilization or total utilitarianism. It normally leads to solve

an optimization problem that the objective function is the sum of users utility functions

subjected to capacity and other constraints; that is mathematically defined by

maximize
x1,...,xn

n∑
i=1

ui(xi)

subject to
n∑
i=1

xi ≤ C ,

xi ≥ 0 , i = 1, . . . , n .

(1)

The notion of utility function indicates how much each user benefits from the amount of

resource that he or she is allocated. To solve this optimization problem, there are two main

solution approaches of centralized and distributed. Centralized solutions are more efficient

since users first admit their individual utility functions to a decision maker, which then solves

the optimization problem of finding the optimal allocated resources. However, users utility

functions are private information and the drawback is that users’ privacy protections will be

challenged.

Distributed allocation is a key concept to resolve this conundrum, i.e., to allocate resources

efficiently while preserving privacy. In distributed resource allocation, a set of users must

autonomously assign their resources with respect to certain criteria and the main goal is

to reach the global optimum. So, the solution to the resource allocation problem does not

require any communication of the private utility functions.

Example 1. Imagine a charging station of Electric Vehicles (EVs) whose power supplies

from renewable energy (e.g., solar, wind). Recent studies reveal that a fuel-driven vehicle can

produce less greenhouse gas emissions than an EV if the recharging energy is entirely pro-

duced by coal-fired power plants. Therefore, local stations for charging EVs from renewable

energy significantly contributes to achieve real environmental benefits [32]. Intuitively these

stations have limited available resources and demand for these finite amounts is increasing.

The users are EV owners who connect their vehicles to the charging station. A private utility
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function determines the level of satisfaction for each EV owner whose EV is connected to

the station to be charged. As the demand for the resource overwhelms the capacity, every

individual who consumes an additional unit directly harms others who can no longer enjoy

the benefits. Since the return of EVs to charging station is non-deterministic, it seems rea-

sonable to assume that EV owners are greedy and prefer to charge their own EVs regardless

of others due to avoid range anxiety. We use logarithmic and Sigmoidal utility functions

to represent the users’ greediness. The logarithmic utility function is chosen because it is

increasing and concave and therefore the total utility, that is sum of concave functions,

mathematically has a global optimal solution. When the goal is considering the amount of

resource that an EV needs for reaching to a predetermined destination, Step function is the

ideal utility function. We, therefore, use the continuous Sigmoidal utility function in order

to approximate this discontinuous Step function. Sigmoidal utility function is a increasing

function with an inflection point that is convex for allocated resource below the inflection

point and is concave for allocated resource above the inflection point.

In this work, we propose an extremely computationally efficient and private solution of the

resource allocation problems. The solution is applicable for common goods such as clean air

and access to public road and land where users do not pay a fee per use, and for subsidized

goods where the fee per use is shared with the entire population. Note that subsidized goods

generalize common goods, which as fully subsidized. The solution approach is distributed and

iterative: each user requests an amount of resource that evolves over time steps according

to its private utility function and whether the total demand exceed the available capacity.

For the case of common goods, in [31] a stochastic and state-dependent variant of AIMD

algorithm is used and it is shown that each user’s requested resource converges quickly to the

optimal allocation. Here, we also show that the derandomized version of such algorithm is

efficient . As a concrete example of resource allocation problem that we will follow throughout

of this work, we present simulation results for a public renewable-energy powered charging

station network in which the electric vehicles (EV) compete to be recharged.

Distributed solution approach for solving the resource allocation problem has some other

advantages in comparison to the centralized approach. First, there is no communication

among users and therefore it significantly reduces the communication overhead. Second, the

distributed approach by decentralizing decisions, is more robust than centralized approach

since there is no single point of failure or hack. Third, the efficiency of the network is not

dependent to number of users.

When users with private utility functions, greedily try to maximize their own utilities, game

8



theory is appropriate to study interactions among them and their selfish behavior. The joint

utilisation of a commonly owned resource, when the scarce resource of interest is easily avail-

able to all users, often causes the resource to be overused [10]. This concept, which in game

theoretic approach named the tragedy of the commons, was popularized by Hardin (1968) in

his seminal article [12]. In fact, individuals acting independently and rationally according to

each user’s self-interest behave contrary to the best interests of the whole group by depleting

some common resource. Additionally, an exciting open problem is to improve the proposed

approach to make it incentive compatible, thereby ensuring that each user will represent its

utility function truthfully. Indeed, by misrepresenting their utility functions strategically,

participants can receive a higher allocation, but hurt the utilitarian efficiency of the system

as a whole.

Our Contributions

To address this problem, we study the class of distributed resource allocation and we make

these following specific contributions:

• We propose AIMD algorithm to allocate subsidized goods to users with concave and

nonmonotonous utility functions.

• We propose a derandomized version of AIMD algorithm to allocate common goods to

users with strictly increasing, concave utility functions.

• We extend the results to propose a variant of AIMD algorithm to allocate common

goods to users with quasi-concave utility functions.

• We then prove that our result of AIMD resource allocation of common goods where

users utility functions are strictly increasing, concave is close to the stable result of

Nash equilibrium in game theoretic approach.

The rest of this work is organized as follows. In Section , the problem is modeled as a utility-

based resource allocation problem for both centralized and distributed solution approaches.

We then represent different variants of AIMD resource allocation Algorithm among users

with concave and nonmonotonous as well as Quasi-concave utility functions. This section

ends by presenting the simulation results for the algorithms that are applied in . In Section

, competition on scarce common resource is analyzed by solving resource allocation problem
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in game theoretic approach, and the numerical results is also presented. Finally, conclusions

are summarized in section .

Distributed Resource Allocation

In this section, we formally define resource allocation problem using utility function concept

for both centralized and distributed solution approaches. We then propose variants of AIMD

distributed algorithm for allocation of subsidized (and common) goods between users based

on their specific utility functions. The objective is to determine each user’s optimal allocated

resource at which maximum total utility is achieved. We also include numerical simulations

of total utilitarianism for EV owners who connected their vehicles to a solar-powered charging

station to be charged in order to validate the convergence of our solutions.

Remark 1. In real life applications, the resource could be time-slot like energy in kWh or

time-varying like power in kW. Although, we defined the optimization problem to be solved

in each time-slot, we can use the proposed solution for any time-varying situations without

changing the results.

Baseline, Problem Formulation and Objective

Consider n users utilize a limited shared resource C > 0, and suppose xi ≥ 0 represents

the possible amount of resource consumed by each user i = 1, . . . , n. We attribute a utility,

i.e., a measure of satisfaction, to each user i who takes advantage of the common resource

and describe it by means of a utility function. The utility function ui : R+ → R+, assigns

a non-negative real number to each possible value of allocated resource xi, to represent the

level of satisfaction for each user i or quality of service (QoS).

Figure 1a represents a class of centralized resource allocation problems in which a central de-

cision maker calculates the optimal solution x∗1, ..., x
∗
n, by collecting all information regarding

each user’s utility function ui, capacity constraint C, and number of users n. Therefore, cen-

tralized resource allocation problem can be expressed as nonlinear continuous optimization

problem (1). Although centralized solution approaches focus to determine efficient resource

allocation, in many realistic applications, it is neither applicable nor desirable [22] since it

violates users’ privacy. Figure 1(b) depicts a class of distributed (and iterative) approach to

10



u1

...

ui

...

un

n C

x∗1, . . . , x
∗
n

(a)

u1 x1(t), . . .
t→∞−−−→ x∗1

...

ui xi(t), . . .
t→∞−−−→ x∗i

...

un xn(t), . . .
t→∞−−−→ x∗n

⊕∑n
i=1 xi(t) > CMs(t− 1)

(b)

Figure 1: Resource allocation solution approaches, (a) centralized , (b) distributed iterative.

resource allocation problems in which allocations emerge as the result of an iterative of local

procedures. In other words, a set of users locally make decisions regarding their resources

autonomously. To this end, an algorithm is used to assign each user i an allocated resource

xi(t) in time steps (iterations) 1, . . . , t. In each iteration, each user’s algorithm update

user’s allocated resource xi(t) locally by choosing one of these options: increase, decrease or

no-change compared with previous iteration xi(t− 1). The increase option continues until

receiving one bit signal s(t− 1), that notify capacity constraint
∑n

i=1 xi(t) > C is violated

and algorithm, based on a certain probability, choose one of the following options : decrease

or no-change. When the capacity is available again
∑n

i=1 xi(t) ≤ C , the increase option of

the algorithm restarts immediately. The procedure repeats until the number of iterations is

large enough t, and users’ allocated resource converge to the optimal allocation x∗1, ..., x
∗
n.

In order to quantify efficiency of distributed resource allocation, inspired from the notion of

Price of Anarchy in game theory, we express the efficiency as the ratio between the output

of distributed algorithm and the solution of Equation (1) as follows:

efficiency =
limt→∞

∑n
i=1 ui(xi(t))∑n

i=1 ui(x
∗
i )

. (2)
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Common Goods

For the sake of retaining simplicity, we first focus on modeling resource allocation of common

goods, where users do not pay for their allocated resources. We also consider some further and

substantial assumptions, briefly called concavity assumption, for users utility functions which

provide mathematical tractability of optimization problem (1) however limit its applicability.

Assumption 1. (Concavity Assumption) The utility functions ui : R+ → R+, (i) are strictly

increasing functions of xi with ui(0) = 0, (ii) are concave and continuously diffrentiable with

domain xi ≥ 0. Where xi is the amount of resources allocated to user i.

The optimization problem (1) under concavity Assumption 1 for users utility functions, is a

convex optimization problem. The objective function, which is the sum of concave functions,

is therefore concave and each constraint defines a convex set. Consequently, for a convex

optimization problem, there exists a unique tractable global optimal solution [4].

Example 2. In the case of charging EVs, we use normalized logarithmic function as strictly

increasing concave utility function that satisfies concavity Assumption 1 in order to model

the level of satisfaction of EV owners whose car is connected to the charging station to be

charged. Logarithmic utility function ui means that each EV owner’s satisfaction continu-

ously increases when the amount of charging or receiving the resources xi increase. Therefore,

normalized logarithmic utiliy function is expressed as:

ui(xi) = 100
log(1 + ηixi)

log(1 + ηiχi)
, (3)

where χi in kWh is the amount of allocated resource (EV charging) that gives 100 unit

utility to the user i. Moreover, in the lack of resource the utility function value is zero. So,

normalized logarithmic utility function satisfies ui(0) = 0 and ui(χi) = 100. The parameter

ηi indicates how the charge needed urgently by effecting on the rate of utility percentage that

is a function of allocated resource xi. Intuitively higher values of ηi yield higher utility to user

i. Figure 2 represents two normalized logarithmic utility functions ui with ηi = 0.11 , χi = 60

and ηi = 24.9 , χi = 100.
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Figure 2: Utility functions: normalized logarithmic (strictly-increasing concave) utility func-

tions ui, compared with corresponding nonmonotonous payoff functions vi when L = 0.3

as well as discontinuous Step utility function fi and an approximate continuous Sigmoidal

(quasi-concave) utility function wi .
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Figure 3: Two normalized logarithmic (strictly-increasing concave) utility functions ui , with

different values of ηi and χi .

Remark 2. AIMD (Additive Increase Multiplicative Decrease) is a distributed and iterative

algorithm that is used widely to control congestion in computer networks. The objective of

AIMD is to determine the share of the resource for each user while total demands remains less
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than the available capacity, and where the limited communication in the network is desired

as well as privacy protection is considered. The AIMD algorithm, in its basic version, is

composed of two procedures. In the additive increase (AI) phase, users continuously request

for more available resource of the network until receiving a notification that the aggregate

amount of available resource has been exceeded. Then the multiplicative decrease (MD)

phase occurs and users respond to the notification by reducing their share proportionally.

The AI phase of the algorithm restarts again immediately and this pattern is repeated by

each active user in the network [7].

Herein, we use a stochastic allocated-dependent version of AIMD Algorithm to solve opti-

mization problem (1). We shall not describe the theorems and proofs of the algorithm here,

rather we refer the interested readers to [31] for details. In AI phase, each active user i

continue to update its allocated resource xi(t) upward by adding an amount of growth fac-

tor α ∈ (0, C) to its previous allocated resource xi(t− 1) while
∑n

i=1 xi ≤ C. When the

capacity limit has been violated, i.e.,
∑n

i=1 xi > C, users are notified to execute MD phase.

Each user will respond to the capacity signal independently with a certain probability λi ,

by multiplying the previous allocated resource xi(t− 1) to a drop factor β ∈ (0, 1) to form

current allocated resource xi(t).

The probability λi at t-th iteration, for each user i, depends on the long-term average al-

located resource x̄i(t) through the relation λi(x̄i(t)) = Γ
u′i(x̄i(t))

x̄i(t)
, where the parameter Γ is

chosen to ensure that 0 < λi(x̄i) < 1. Therefore, the AIMD stochastic allocated-dependent

algorithm used to solve the resource allocation problem (1) is showed as follows.

Algorithm 1 AIMD [31] for user i

1: Initialize xi(0) arbitrary

2: Broadcast the parameter Γ

3: for time steps t = 1, 2, 3, . . . do

4: if
∑n

j=1 xj(t) < C then

5: xi(t+ 1) = xi(t) + α;

6: else

7: xi(t+ 1) = βxi(t) with probability λi(x̄i(t)) = Γ
v′i(x̄i(t))

x̄i(t)

8: xi(t+ 1) = xi(t) otherwise;

9: end if

10: end for

Note that the parameter Γ depends on the worst utility function that is independent of
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number of users. It must be communicated to all users prior to the algorithms use by a

central authority [7].

Derandomized Distributed Resource Allocation

In section , we introduced a stochastic version of AIMD algorithm for an efficient allocation

of common goods between users. The probabilistic method can also yield insight into how to

construct deterministic algorithms [23]. We now propose a variant of deterministic AIMD

for the same purpose. We show that the strong convergence of derivative of utility function

of long-term average allocated resource u′i(x̄i(t)), can be used to allocate resource optimally.

So, we define λi(x̄i(t)) = Γ
u′i(x̄i(t))

x̄i(t)
and we use it in MD phase of the algorithm by xi(t+ 1) =

β(1− λi)xi(t) + λixi(t) to build DAIMD Algorithm 2.

Algorithm 2 DAIMD for user i

1: Initialize xi(0) arbitrary

2: Broadcast the parameter Γ

3: for time steps t = 1, 2, 3, . . . do

4: if
∑n

j=1 xj(t) < C then

5: xi(t+ 1) = xi(t) + α;

6: else

7: xi(t+ 1) = β(1− λi)xi(t) + λixi(t), where λi(x̄i(t)) = Γ
u′i(x̄i(t))

x̄i(t)

8: end if

9: end for

Subsidized Goods

We extend resource allocation problem to subsidized goods where the fee per use is shared

with the entire population. Suppose if each user i is charged a constant price L per unit

of the received resources xi. Each user payoff function, vi : R+ → R+ is defined as utility

function minus the cost of received resource as follows:

vi(xi) = ui(xi)− Lxi . (4)

Recall each user utility function ui(xi) is considered under concavity Assumption 1, therefore,

each user payoff function (4) is a concave function but it is not necessarily increasing. The
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initialize xi(0) arbitrary

broadcast the parameter Γ

t = 1; for time steps t = 1, 2, . . . , T ; t = t+ 1

∑n
j=1 xj(t) < C ?

xi(t+ 1) = xi(t) + α

xi(t+ 1) = β(1− λi)xi(t) + λixi(t)

x∗i

do

yes

no

t > T

Figure 4: Distributed and derandomized algorithm to efficient and private allocation of

subsidized goods to each user i, with concave and nonmonotonous utility function. The

parameter λi at t-th iteration, for each user i, depends on the long-term average allocated

resource x̄i(t) through the relation λi(x̄i(t)) = Γ
u′i(x̄i(t))

x̄i(t)
, and the parameter Γ is chosen to

ensure that 0 < λi(x̄i) < 1. The parameters 0 < α < C and 0 < β < 1 are growth factor

and drop factors repectively [31].

centralized resource allocation problem can then be formulated as follows:

maximize
x1,...,xn

n∑
i=1

vi(xi)

subject to
n∑
i=1

xi ≤ C ,

xi ≥ 0 , i = 1, . . . , n .

(5)

The optimization problem 5 in which the objective function is non-negative sum of concave

functions, is concave and there exist a global optimal solution [4].

Example 3. In the case of charging EVs, we use normalized logarithmic function Equa-
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tion (3) to build following payoff function:

vi(xi) = 100
log(1 + ηixi)

log(1 + ηiχi)
− Lxi . (6)

Figure 2 represents normalized logarithmic utility functions ui with ηi = 24.9 , χi = 99

compared with corresponding payoff functions vi when L = 0.3.
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Figure 5: Two normalized logarithmic (strictly-increasing concave) utility functions ui (solid

lines), compared with corresponding non-increasing payoff functions vi(xi) = ui(xi) − Lxi

(dashed lines) when L = 0.3, with different values of ηi and χi .

The AIMD algorithm is invented for rate control and in our model it tries to continue allocat-

ing whole resource to users without considering maximum users’ utility. We, Therefore, con-

clude that the AIMD Algorithm 1 has no efficient solution among users with non-increasing

utility functions. In other words, from a specific point the allocation of resources not only

do not increase the utility but also decrease it.

We improve AIMD Algorithm 1 by controlling the allocation do not exceed from maximum

payoff of each user and design the PAIMD Algorithm 3. The control is applied locally since

each user i calculates the optimal point x∗i = arg max
xi∈R+

vi(xi), ∀i = 1, . . . , n and then in each

iteration, in the (AI) phase of the algorithm compare it toallocated resource xi(t) + α to

choose the minimum allocation.
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Algorithm 3 PAIMD for user i

1: Initialize xi(0) arbitrary

2: Each user i calculates x∗i = arg max
xi∈R+

vi(xi), ∀i = 1, . . . , n

3: Broadcast the parameter Γ

4: for time steps t = 1, 2, 3, . . . do

5: if
∑n

j=1 xj(t) < C then

6: xi(t+ 1) = min(x∗i , xi(t) + α)

7: else

8: xi(t+ 1) = βxi(t) with probability λi(x̄i(t)) = Γ
v′i(x̄i(t))

x̄i(t)

9: xi(t+ 1) = xi(t) otherwise;

10: end if

11: end for

Quasi-Concave Utility Functions

In this section, we try to go beyond convex optimization problems, by eliminating concavity

from Assumption 1. Therefore, we model resource allocation problem of users with quasi-

concave utility functions by choosing versatile Sigmoidal functions. The intuition behind

this utility shape is that low values of allocated resource offer very low increase in degree

of satisfaction to the user. As the allocated resource continues, user satisfaction increases

rapidly until a point where saturation appears and remains sharp after it. User satisfaction

again increase slowly when allocated resource continues toward far away saturation point.

So, the Sigmoidal function is defined as following:

Definition 1. The utility function of wi : R+ → R+ is defined to be Sigmoidal if: (i) The

wi(0) = 0 and ui is strictly increasing function of xi. (ii) wi(xi) is continuously differentiable,

with domain xi ≥ 0. (iii) wi(xi) is convex for xi ≤ ψi and is concave for xi ≥ ψi, which

ψi ∈ R+ is the inflection point.

Example 4. (Why do we need Sigmoidal utility functions?). In some situations, such as

charging an electric vehicle with the goal of reaching a predetermined destination (e.g.,

airport, home, etc.), the user receive negligible (or non) utility until a threshold of resource

is reached (e.g., enough electric charge to arrive at the destination). Ideally, in this situations

the best description of the utility function is through a discontinuous Step function as follows:

fi(xi) =

0 if xi < θi ;

100 if xi ≥ θi ,
(7)
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Figure 6: (a) A discontinuous Step utility function fi and an approximate continuous Sig-

moidal utility function wi , (b) Three Sigmoidal (Quasi-concave) utility fictions wi(xi) with

different values of ηi and ψi .

where θi shows the sufficient allocated resource that gives 100 unit utility to user i.

Continious Sigmoidal utility functions may be used to approximate a step utility function to

any arbitrary accuracy [30]. Likewise, the user receives negligible additional utility, once a

threshold of resource is reached. We now model EV owner satisfaction with Sigmoidal utility

function that are expressed by:

wi(xi) =
100

1 + e−ηi(xi−ψi)
− 100

1 + eηiψi
, (8)

where ηi is the steepness of the curve that indicates how the charge is needed urgently for

each user i. The parameter ψi in kWh is the inflection point of the function that achieving

it satisfies the urgent need of user i to resource. The function satisfies wi(0) = 0 and

limxi→∞wi(xi) = 100.

Figure 2 represents a Step utility function fi with θi = 48 and an approximate corresponding

Sigmoidal utility function wi with ηi = 0.15 and ψi = 45.

The QAIMD Algorithm 4 represents the procedure of efficient allocation among users with

sigmoidal utility functions. The key point is that in each iteration (t), the long-term of

allocated resource x̄i(t) is compared with each user i inflection point ψi. If x̄i(t) < ψi, the

increase phase is built by multiplying the previous state xi(t) in a growth factor 1
β
> 1 to

construct current state xi(t+1) with a probability λi(x̄i(t)) = Γ1
w′

i(x̄i(t))

x̄i(t)
. The decrease phase
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also is made by subtracting α from the previous state. When x̄i(t) ≥ ψi, the algorithm is

work with AIMD Algorithm 1 procedure. Note that there are two parameters Γ1, Γ2 to

ensure 0 < λi(x̄i) < 1 in each case.

Algorithm 4 QAIMD for user i

1: Initialize xi(0) arbitrary

2: Broadcast the parameters Γ1, Γ2

3: for time steps t = 1, 2, 3, . . . do

4: if x̄i(t) < ψi then

5: if
∑n

j=1 xj(t) < C then

6: xi(t+ 1) = 1
β
xi(t) with probability λi(x̄i(t)) = Γ1

w′
i(x̄i(t))

x̄i(t)

7: xi(t+ 1) = xi(t) otherwise;

8: else

9: xi(t+ 1) = max(0 , xi(t)− α)

10: end if

11: else

12: do AIMD with α, β and probability λi(x̄i(t)) = Γ2
w′

i(x̄i(t))

x̄i(t)

13: end if

14: end for
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initialize xi(0) arbitrary

broadcast the parameter Γ1, Γ2

t = 1; for time steps t = 1, 2, . . . , T ; t = t+ 1

x̄i(t) < ψi?

∑n
j=1 xj(t) < C ?

∑n
j=1 xj(t) < C ?

xi(t+ 1) = xi(t) + α

xi(t+ 1) = β(1− λi)xi(t) + λixi(t)

xi(t+ 1) = 1
β
(1− λi)xi(t) + λixi(t)

xi(t+ 1) = max(0 , xi(t)− α)

x∗i

do

yes

no

yes

t > T

yes

no
no

Figure 7: Distributed and derandomized algorithm to efficient and private allocation of

common goods to each user i, with quasi-concave utility function. The parameter λi at

t-th iteration, for each user i, depends on the long-term average allocated resource x̄i(t)

through the relation λi(x̄i(t)) = Γ
u′i(x̄i(t))

x̄i(t)
, and the parameter Γ is chosen to ensure that

0 < λi(x̄i) < 1. The parameters 0 < α < C and 0 < β < 1 are growth factor and drop

factors repectively [31].
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Simulation

In order to figure out the effectiveness of variants of AIMD Algorithm, we simulate them in

different cases of charging electric vehicles (EVs). We then calculate the efficiency of each

algorithm by comparing the results with an optimal centralized solution, in MATLAB.

Unless otherwise specified, the general setting of simulation is as follows. The resource

allocation domain is considered as a charging station whose power supplies from renewable

energy (e.g. solar or wind), with constant capacity of C in kWh. We adjust the capacity to

be %65 of the sum of users utility functions when each user receives 100 unit satisfaction.

The users n = 50 are the EV owners who connected their vehicles to the station for charging

at the same time. Each EV owner i comprise its own utility function of ui that corresponds

the amount of charge xi which its vehicle receives. We define the utility ui, of a greedy EV

owner i, to be increasing to the charging status xi in kWh at which his EV is charged. In

other words the EV owner’s satisfaction is increasing to the extent that their EV is charged.

Therefore, we use both logarithmic and Sigmoidal utility functions.

We also set the parameters α = 1 and β = 0.85 while executing AIMD algorithm. In

addition, the parameter Γ is chosen to assure us the condition λi(x̄i) ∈ (0, 1) is satisfied.

Concave Utility Functions

To model the problem, we adopt normalized logarithmic utility function Equation (3) as a

strictly increasing concave function which satisfies Concavity Assumption 1. We choose χi

independent uniformly distributed random number with support (40, 60) and ηi independent

uniformly distributed random number with support (0, 1).

We apply deterministic DAIMD Algorithm 2 for allocation of power as a common good

(no charging fee) to EVs who connected to station to be charged. Figure 8a shows a rapid

convergence for derivative of payoff functions u′i(x̄i(t)) when iteration t increases. Figure 8b

depicts the value of long-term average state x̄i(t) for six randomly selected users and shows

each of them converge to a stable value that is x∗i . Figure 8c reveals the coincidence of

deterministic and stochastic versions of derivative of payoff functions u′i(x̄i(t)). Figure 8d

also represents that deterministic and stochastic version of average state x̄i(t) fluctuate

differently but the long-term averages for each user converge to optimal allocation. The

efficiency of deterministic DAIMD Algorithm 2, calculated by Equation (2), in different runs
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are a real number in the range of (0.97, 0.99).

We apply stochastic PAIMD Algorithm 3 for allocation of power as a subsidized good (with

charging fee) to EVs who connected to station to be charged. Therefore, we consider the

price per unit L ∈ {0.1, 0.2, . . . , 1} per unit of the power xi in the payoff function (6). The

simulation results in Figure 9a reveals a rapid convergence for derivative of payoff functions

v′i(x̄i(t)) when iteration t increases. Figure 9b represents the value of long-term average state

x̄i(t) for six randomly selected users and shows each of them converge to a stable value that

is x∗i . Figure 9c, depicts the efficiency of AIMD Algorithm 1, PAIMD Algorithm 3 that is

calculated by Equation (2). It shows that PAIMD Algorithm 3 has better performance when

L increases compared with AIMD Algorithm 1.

Quasi-Concave Utility Functions

We now model EV owner satisfaction with Sigmoidal utility function that are expressed by

Equation (8). We choose ψi independent uniformly distributed random number with support

(25, 100) and ηi independent uniformly distributed random number with support (0, 25).

Figure 10a depicts the derivative of utility functions w′i(x̄i(t)) for six randomly selected users.

It illustrates that the derivatives approach to zero as t increase but the convergence is slower

than the derivatives of logarithmic utility function v′i(x̄i(t) in Figure 9a . In Figure 10b the

average of allocated resource x̄i(t) for six randomly selected users is displayed. It shows x̄i(t)

approach to a constant number that is optimal allocated resource x∗i .

Figure 10c represents the efficiency of QAIMD 4, calculated by Equation (2), for different

capacity C/Ψ = {0.5, 0.75, . . . , 3}, where Ψ =
∑n

i=1 ψi. For each user i the algorithm

decides between increasing allocated resource or decreasing it toward zero. The efficiency of

the algorithm is better for small values of capacity constraint, but it decrease when capacity

is around Ψ. The efficiency improve again when it is large enough.
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Figure 8: DAIMD Algorithm 2, (a) The deterministic derivative of payoff function u′i(x̄i(t))

for six randomly selected users, (b) The deterministic average of allocated resource x̄i(t) to

the optimal point for six randomly selected users, (c) the deterministic derivative of payoff

function u′i(x̄i(t)) for two randomly selected users (solid lines) compared with corresponding

stochastic ones (dashed lines) , (d) The deterministic average of allocated resource x̄i(t) to

the optimal point for two randomly selected users (solid lines) compared with corresponding

stochastic ones (dashed lines).
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Figure 9: (a) The derivative of payoff function v′i(x̄i(t)) for six randomly selected users when

L = 0.3, (b) the average of allocated resource x̄i(t) to the optimal point for six randomly

selected users when L = 0.3, (c) the efficiency of AIMD Algorithm 1 and PAIMD Algorithm 3

for L ∈ {0, 0.1, . . . , 1} calculated by Equation (2).
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Figure 10: (a) The derivative of utility functions w′i(x̄i(t)) for six randomly selected users

when C/Ψ = 1.5, (b) the average of allocated resource x̄i(t) to the optimal point for six

randomly selected users when C/Ψ = 1.5, (c) the efficiency of QAIMD Algorithm 4 calculated

by Equation (2).
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Loss of Efficiency Due to Competition

In this section, we allow the individual users to act strategically as in a game. We consider a

game in strategic form, where all users’ utility functions are common knowledge. The result-

ing competition over a scarce resource is reminiscent of the tragedy of the commons []. An

user may deviate from the AIMD algorithm and strategically request more resource in order

to improve its payoff. Alternatively, an user may follow the AIMD algorithm but mispresent

its utility function. However, we show that, in some situations, the AIMD outcome and the

game’s Nash equilibrium are close to each other.

Resource Allocation as a Strategic Game

Imagine a resource allocation problem in which there are n users, competing to utilize a scarce

fixed common resource of C > 0. Each user i chooses his own consumption of resources xi

from a set of action space Xi = {xi ∈ R | 0 ≤ xi ≤ C}. A profile of actions x = (xi, x−i)

describe a particular combination of actions chosen by all users, where x−i ∈ X−i is a

particular possible of actions for all players who are not i.

Consuming an amount xi ≥ 0 gives user i a benefit equal to ui(xi) when
∑n

j=1 xj ≤ C and

intuitively no other users benefits from i’s choice. When xi increases or other users consume

more resources so that
∑n

j=1 xj > C, the user get nothing ui(xi) = 0 because additional

requested resources are not provided. Then we define the payoff function ũi(xi, x−i) of a user

i from a profile of actions x as

ũi(xi, x−i) =

ui(xi) if
∑n

j=1 xj ≤ C ;

0 if
∑n

j=1 xj > C .
(9)

Where the utility function ui(xi) is considered to be concave, strictly increasing, and con-

tinuously differentiable ,i.e., follows assumption 1.

The strategic game (N , Xi, ũi)i∈N , that have infinitely many pure strategies but utility func-

tions are not continuous, is discontinuous infinite strategic games. This problem should be

consider precisely because it may lead to problem of nonexistence of unique Nash equilibrium.
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Nash Equilibrium

To cut to the chase, the key notion to solve the strategic game (N , Xi, ũi)i∈N , is the Nash

equilibrium, that is an outcome (a decision made by each player) such that no player can

improve his individual payoff through an unilateral move. As stable situations, Nash equi-

librium are often considered to be the expected outcomes from interactions. To solve for a

Nash equilibrium we compute the best-response function correspondence for each player and

then find an action profile for which all best-response functions are satisfied together.

To find a solution for Equation (9), we first write out each player i’s best-response correspon-

dence and we consider that given x−i, player i will want to choose an element in BRi(x−i).

Given x−i ∈ X−i each player i’s best response is the difference between C and
∑n

j 6=i xj . If

user i asks for more, then all users get nothing while if asks for less then he is leaving some

resources unclaimed and therefore

BRi(x−i) = C −
n∑
j 6=i

xj . (10)

It is easy to see from the best response correspondence that any profile of demands xi ∈ [0, C]

that add up to C will be a Nash equilibrium. Hence, each player i is indifferent between all

of his requests xi ∈ [0, C] and the game is just not blessed with a unique equilibrium and

has an infinite number of equilibria. The obvious problem with multiple equilibria is that

the players may not know which equilibrium will prevail. Hence, it is entirely possible that

a non-equilibrium outcome results because one player plays one equilibrium strategy while

a second player chooses a strategy associated with another equilibrium [5].

It turns out that resource allocation encounters conflict over scare resources that results from

the tension between individual selfish interests and common good. As Hardin stated in his

article [12], “freedom in a commons brings ruin to all,” that here means, social utility of an

uncontrolled use of the common resources that each user have the freedom to make choices, is

worse than if those choices were regulated. This results in the occurrence of the phenomenon

called tragedy of the commons. In fact, individual users acting independently according to

their own self-interest behave contrary to the common good of all users by depleting that

resource through their collective actions.

To solve this problem, we first need to bring back the continuity to the payoff function

Equation (9). Thus, we apply the resource allocation back-off condition
∑n

j=1 xj > C directly

to the payoff function for each user i. We define a concave penalty function τ : R+ → R+
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so that τ(0) = 1 and τ(C) = 0 and multiply it to the payoff function (9). To generalize, we

also consider each unit of resource costs L and we have

ṽi(xi, x−i) = ui(xi) τ
( n∑
j=1

xj

)
− Lxi for all xi, xj ∈ [0,∞) . (11)

Example 5. Consider, for example, the concave penalty function τ(z) as follows:

τ
(
z
)

=

√
1− zp

Cp
, (12)

where z =
∑n

j=1 xj and p ∈ N. Intuitively, τ(0) = 1 and τ(C) = 0.

Figure 11 represents some examples of concave penalty functions Equation (12) for p ∈
{1, 2, 4, 8}. Although the larger values of p reduce inefficiency of Nash equilibrium, however

make calculations more complex. In realistic situation of EV charging, this function can be

programmed to the charger and it works when the demand exceeds from capacity C.
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Figure 11: Penalty Function

Since the payoff functions are continuous there is a strong result on existence of the pure

Nash equilibrium that is stated by Theorem 1 [8].

Theorem 1. (Debreu, Glicksberg, Fan) An infinite strategic form game G = (N , Xi, fi)i∈N

such that for each i ∈ G

i) Xi is compact and convex;

ii) fi(xi, x−i) is continuous in x−i;

iii) fi(xi, x−i) is continuous and concave 1 in xi .

1in fact quasi-concavity suffices.
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Then a pure strategy Nash equilibrium exists.

Another important question that arises in the analysis of strategic form games is whether

the Nash equilibrium is unique. Theorem 2, provides sufficient conditions for uniqueness of

an equilibrium in games with infinite strategy sets.

Theorem 2 (Theorem 1, [25]). Consider a strategic form game G = (N , Xi, fi)i∈N . For

all i ∈ G, assume that the action sets Xi = {xi ∈ Rmi |hi(xi) ≥ 0}, where hi is a concave

function, and there exists some x̃ ∈ Rmi such that hi(x̃i) > 0 . Assume also that the payoff

functions (fi)i∈N are diagonally strictly concave for x ∈ X . Then the game has a unique pure

strategy Nash equilibrium. Where payoff functions (fi)i∈N are diagonally strictly concave for

x ∈ X, if for every xne, x̄ ∈ X, we have (x̄− xne)>∇f(xne) + (xne − (x̄)>∇f(x̄) > 0 .

The game (N , Xi, ṽi)i∈N has unique Nash equilibrium that is calculated by maximizing user

i’s payoff function ṽi(xi, x−i) and finding the solution to the first order conditions. So, we

write down the first-order condition of user i’s payoff function as follows

xnei =
∂ṽi(xi, x−i)

∂xi
= 0 . (13)

We therefore have n such equations, one for each player, and the unique Nash equilibrium

is the strategy profile xne for which all users in the network, the Equation 13 are satisfied

together, so that

xne = (xnei , x
ne
−i), x

ne
i = arg max

xi∈[0,C]

ṽi(xi, x−i), ∀i ∈ N . (14)

When resource allocation problem form as a result of selfish competition among users, the

resulting stable solution may not, in fact, be system optimal [20]. In this circumstance,

we would like to measure inefficincy constituted due to decentralized control. This is very

important to decide whether a decentralized mechanism can be applied, regarding the loss

of efficiency in comparison with the performance that would be obtained with a central

authority. Price of anarchy (PoA) [17], is a concept that quantifies this inefficiency and is

measured as the ratio between the worst equilibrium and the centralized solution. In the

problem considered here, this notion will be slightly different and defined as the efficiency

of the unique Nash equilibrium of the game G = (N , Xi, fi)i∈N and the optimal centralized

solution of (6) as follows:

PoA =

∑n
i=1 ṽi(x

ne
i )∑n

i=1 vi(x
∗
i )
, (15)

where xne is the unique Nash equilibrium given by (14) and x∗ is the solution of (6) .
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Simulation

In this section, we proceed to simulate resource allocation in competition game to inves-

tigate in more details the inefficiency of Nash equilibrium. For this purpose, suppose the

EV charging station settings of the section . Each user’s utility function is considered as

the normalized logarithmic function (3) with uniformly distributed random parameters of

ηi ∈ (0, 25) and χi ∈ (25, 100). We also consider the concave penalty function Equation 12

with p = 1 for executing the simulation. We start to simulate the problem for two play-

ers. Consider the charging station with the limited resource of C = 25 kWh and two EV

owners i ∈ {1, 2} which their EVs are connected to the station for charging. Both players

have normalized logarithmic utility function Equation (3) with parameters η1 = 15, χ1 = 30

and η2 = 38, χ2 = 70 respectively. Figure 12a depicts inefficiency of distributed competi-

tive resource allocation in two-player game ,i.e., best response functions lines intersection,

compared with optimal solution U(x∗1, x
∗
2).

Now consider the same setting for a charging station with n = 50 users. Figure 12b plots

social optimum of Nash equilibrium
∑n

i=1 ṽi(x
ne
i ), compared with optimal centralized solution∑

i∈N vi(x
∗
i ) for diffrent L = {0, 0.1, . . . , 1}. Figure 13 represents the price of anarchy in

competition against two parameters of price and number of users. The PoA is so sensitive

to number of users in the competition such that increasing number of users negatively affect

on PoA. Moreover, if the selfish behavior of users in competition do not control by pricing,

inefficiency increase and consequently the PoA decrease. Note that the price of anarchy is

independent of the competition topology [26].
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Figure 12: Inefficiency of distributed competitive resource allocation, (a) In two-player game.

Nash equilibrium, i.e., best response functions lines intersection, compared with optimal

solution
∑n

i=1 ṽi(x
ne
i ), (b) In n-player (n = 50) game compared with optimal solution.

Figure 13: Price of Anarchy (PoA)
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Related Work

Both centralized and distributed solution approaches for the generic problem of resource

allocation were studied widely in various fields of expertise and a full review is impossible

here. Figure 15 represents the conceptual resource allocation framework that is used in this

work.

Resource Allocation

Solution Approaches

Centralized

Computational

Interior Point Algorithm

Distributed

Competition

Iterative

AIMD Algorithm

Deterministic

Stochastic

EV Charging Solutions

Single Good

Subsidized Goods

Common Goods

Constraints

Capacity Constraint

Non-Negative

Number of Users

Objective Function

MaxSum

Users’ Utility Functions

Continious, Diffrentiable

Increasing

Concave

Quasi-Concave

Optimal Allocation

Large Iterations

Nash Equilibruim

Price of Anarchy

Figure 14: Conceptual diagram of resource allocation area that is studied in this work.

In many recent applications, in data (or communication) networks the area of resource al-

location optimization has received a surge attention. In such networks, each user adopt an
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admissible utility function to quantify its benefit from achieving resource and the problem,

that is called Network Utility Maximization (NUM), defines as a constrained maximization

of some utility functions [24], [13]. Users utility functions are commonly considered to be

concave, continuous and strictly increasing functions modeling elastic networks [16], [27],

which are more mathematically tractable [4], but limits applicability. On the other hand,

many applications require inelastic network models where non-concave utility functions or

discontinious utility functions need to be maximized [9]. Kelly (1997), in his seminal pa-

per [16], proposed an algorithm to achieve proportional fairness of rate allocation in elastic

networks. Inelastic networks that are more challenging, studied in [19], [9], [11] and speci-

ficely Sigmoidal programming algorithm is proposed in [30]. In [1], using utility proportional

fairness policy, both elastic and inelastic utility functions compared. In large-scale net-

works, distributed solutions are particularly attractive where a centralized solution is not

feasible [24].

There is also substantial literature on AIMD, the algorithm proposed by Chiu and Jain

in [6] and applied experimentally by Jacobson in [14], as the most efficient-fair rate control

in Internet applications. The efficiency and fairness of the AIMD algorithm also investigated

in [18] and a comprehensive review of the AIMD algorithm and its applications is collected

in [7]. This work uses the result of [31] that used AIMD algorithm in stochastic framework

for common goods resource allocation.

EV charging has been the most widely studied as an application of distributed resource

allocation. In [2], Ardakanian et al. (2013) proposed a distributed control algorithm that

adapts the charging rate of EVs to the available capacity of the network ensuring that network

resources are used efficiently and each EV charger receives a fair share of these resources.

Inspired by the design of the Internet, which offers best effort services to elastic applications

that back off in case of congestion [19], our approach is to quickly adapt EV charging

rates to the condition of the network [4]. Specifically, we propose a distributed control

algorithm so that every charger can independently set its charging rate based on congestion

signals it receives from measurement nodes installed on its path to the sub-transmission

substation. This algorithm ensures that EV chargers receive a proportionally fair [11] share

of the available capacity of the distribution network, and lines and transformers are not

overloaded. In [3], a static non-cooperative game formulation of the problem of distributed

charging in electrical vehicle (EV) networks is proposed.

In [29], Stuedli et al. (2012) proposed a distributed AIMD based algorithm to allocate avail-

able power among connected EVs in order to maximize the utilization of EV owners in a
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range of situations. In [28], they (2012) also used the same formalization framework to ex-

pand the modifications of the basic AIMD algorithm to charge EVs. In both articles they

considered a fairness policy as a constraint. The effectiveness of AIMD at mitigating the

impact of domestic charging of EVs on low-voltage distribution networks is investigated [21]

by Liu and McLoone (2015).

In [22], Marden and Wierman (2013) introduced a class of games termed distributed wel-

fare games, which represents a game theoretic model for resource allocation problems with

separable objective/welfare functions. It is the closest line of work to ours in game theo-

retic approach, however it is considered a finite strategic-form game where each player has

a finite action set and a discrete utility function. Hardin (1968), in his seminal article [12],

popularized the concept of the tragedy of the commons as an economic theory of a situa-

tion within a shared-resource system where individual users acting independently according

to their own self-interest behave contrary to the common good of all users by depleting or

spoiling that resource through their collective action. In [17], Koutsoupias and Papadim-

itriou (1999) introduced the concept of price of anarchy that is the idea of quantifying the

inefficiency of selfish solutions using the framework of approximation. In network resource

allocation, the notion of price of anarchy is introduced to quantify efficiency loss by Johari

and Tsitsiklis (2004) in [15].

Conclusions & Future Work

In this work, we introduced the problem of resource allocation for subsidized goods among

large number of users. We proposed variants of AIMD distributed algorithm for an efficient

and private allocation. To this end, we first defined resource allocation problems as a class

of NUM problems. We improved AIMD algorithm,both stochastic and deterministic, to

allocate subsidized goods where users have concave and nonmonotonous utility functions.

We extended the results to propose a variant of AIMD algorithm to allocate common resource

where users have quasi-concave utility functions.

We also modeled the same problem as a strategic game in order to figure out the unique

Nash equilibrium. We represented inefficiency of the solution by calculating price of anarchy

that is the result of the tragedy of the commons in a network in which users compete for

scarce resources. We then proved that our result of AIMD resource allocation of common

goods where users utility functions are concave increasing, is better than stable result of
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AIMD Algorithm

Scenario 1
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Stochastic AIMD Algorithm 1

Deterministic DAIMD Algorithm 2

Scenario 2
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Users Utility Functions : Stictly Inceasing, Concave

Stochastic QAIMD Algorithm 4

Figure 15: Conceptual diagram of Resource Allocation Solution Approaches: AIMD and

Competition.
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Nash equilibrium in game theoretic approach.

We simulated the results in a different networks of renewable-energy powered charging sta-

tion in which EVs connected to be charged and we showed through simulations that our

algorithms converge to the optimal solution.

Given that distributed resource allocation for inelastic networks using NUM is NP-hard, it

is not surprising that many issues remain open on this challenging topic. However, AIMD

Algorithm efficiency remains unknown when any condition of Assumption 1 is violated, more

precisely either a generic non-concave or a discontinuous utility function is considered.

Another exciting open problem is to improve the proposed approach to make it incentive

compatible, thereby ensuring that each user, e.g., electric vehicle will represent its utility

function truthfully.

Acknowledgment

This work was supported by grant T27346 from CN Center for Studies in Sustainable Supply

Chain Management. The author wish to thank Dr. Ahmet Satir for useful helps relating to

the material in this work.

37



Appendices

AIMD Preliminaries2

The additive-increase/multiplicative-decrease (AIMD) algorithm is a feedback control algo-

rithm best known for its use in TCP congestion control. AIMD combines linear growth of

the congestion window with an exponential reduction when a congestion takes place. Mul-

tiple flows using AIMD congestion control will eventually converge to use equal amounts of

a contended link [6]. The related schemes of multiplicative-increase/multiplicative-decrease

(MIMD) and additive-increase/additive-decrease (AIAD) do not converge. The approach

taken is to increase the transmission rate (window size), probing for usable bandwidth, until

loss occurs. The policy of additive increase may, for instance, increase the congestion win-

dow by a fixed amount every round trip time. When congestion is detected, the transmitter

decreases the transmission rate by a multiplicative factor; for example, cut the congestion

window in half after loss. The result is a saw-tooth behavior that represents the probe for

bandwidth.

To make AIMD algorithm more tangible, we can compare it with Economic Order Quantity

(EOQ) in inventory management. The EOQ is used as part of a continuous review inventory

system in which the level of inventory is monitored at all times and a fixed quantity is ordered

each time the inventory level reaches a specific reorder point.

AIMD requires a binary signal of congestion. Most frequently, packet loss serves as the

signal; the multiplicative decrease is triggered when a timeout or acknowledgement message

indicates a packet was lost. It is also possible for in-network mechanisms to mark congestion

(without discarding packets) as in Explicit Congestion Notification (ECN).

Let ω(t) be the sending rate (e.g. the congestion window) during time slot t, (a > 0) be the

additive increase parameter, and (0 < b < 1) be the multiplicative decrease factor.

ω(t+1) =

ω(t) + a, if congestion is not detected

ω(t) + b, if congestion is detected

2https://en.wikipedia.org/wiki/Additive increase/multiplicative decrease

38



Figure 16: Saw-tooth AIMD, TCP congestion control

In TCP, after slow start, the additive increase parameter a is typically one MSS (maximum

segment size) per round-trip time, and the multiplicative decrease factor b is typically 1/2.

MATLAB Code

In the following the simulation procedure written in MATLAB code is represented. We

first define concave and quasi-concave utility functions and their derivatives in section . in

section , AIMD for concave and nonmonotonous utility functions and in , AIMD for quasi-

concave utility functions is represented.

Utility Functions

f unc t i on [ u ] = UtilFunc ( x , eta , x max )

zeta =100;

u = 1 ∗ l og ( 1 + eta ∗ x ) / log ( 1 + eta ∗ x max ) ;

end

func t i on [ dU ] = dUtilFunc ( x , eta , x max )

zeta =100;

dU =(zeta ∗ eta ) / ( ( 1 + eta ∗ x ) ∗ l og ( 1 + eta ∗ x max ) ) ;

end

func t i on [ w ] = w( x , etaa , x i n f )

ze ta =100;

w = zeta /(1+exp(−etaa ∗(x−x i n f ) ) ) − ze ta /(1+exp ( etaa ∗ x i n f ) ) ;

end

func t i on [ d w ] = dw( x , etaa , x i n f )

ze ta =100;

d w = zeta ∗ etaa ∗ exp(−etaa ∗(x−x i n f ) ) / (1+exp(−etaa ∗(x−x i n f ) ) ) ˆ2 ;

end
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AIMD for Concave and Nonmonotonous Utility Functions

% S t o c h a s t i c and Det rmin i s t i c AIMD f o r Subs id i zed ( and common) Goods .

% Concave and nonmonotonous u t i l i t y f u n c t i o n s

c l c ; c l e a r a l l ;

f o r m=1:1000

% Def ine parameters

alpha =1; beta =0.65; n=50;

f o r i =1:n

x 0 ( i )=rand ; eta ( i )= rand ∗ 25 ; x max ( i )= randi ( [ 2 5 , 1 0 0 ] ) ; x u ( i ) = 0 ;

end

C=0.65∗sum( x max ) ; gamma=50; L Vec = 0 : 0 . 1 : 1 ;

% AIMD Algorithm

f o r l =1:11

L=L Vec ( l ) ; x=x 0 ; sum x= ze ro s (1 , 50 ) ; t =1;

whi l e t<1000

f o r i =1:50

sum x ( i ) = sum x ( i ) + x ( i ) ;

xbar ( i ) =sum x ( i ) /( t +1) ;

du xbar ( i ) =dUtilFunc ( xbar ( i ) , e ta ( i ) , x max ( i ) )−L ;

i f sum( x )<C & x ( i )<x max ( i )

u i b e f o r e ( i )=UtilFunc ( x ( i ) , e ta ( i ) , x max ( i ) )−(L∗x ( i ) ) ;

x ( i )=x ( i )+alpha ;

u i a f t e r ( i )=UtilFunc ( x ( i ) , e ta ( i ) , x max ( i ) )−(L∗x ( i ) ) ;

i f u i b e f o r e ( i ) < u i a f t e r ( i )

x ( i )=x ( i ) ;

e l s e

x ( i )=x ( i )−alpha ;

end

e l s e i f sum( x )<C & x ( i )>=x max ( i )

x ( i )=x ( i ) ;

e l s e

R=rand ;

lambda = gamma∗du xbar ( i ) / xbar ( i ) ;

i f R > lambda

x ( i )=beta ∗x ( i ) ;

e l s e

x ( i )=x ( i ) ;

end

end

mat du xbar ( ( l −1)∗n+i , t )= du xbar ( i ) ;
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mat xbar ( t , ( l −1)∗n+i )= xbar ( i ) ;

end

t=t +1;

end

f o r i =1:50

u i m o d i f i e d ( i )=UtilFunc ( x ( i ) , eta ( i ) , x max ( i ) )−(L∗x ( i ) ) ;

end

U modif ied ( l )= sum( u i m o d i f i e d ) ;

To ta l A l l o ca t ed x mod i f i ed ( : , l )= sum( x ) ;

end

U mat (m, : )=U;

x s toch=x ;

% Dete rm in i s t i c AIMD Algorithm

f o r l =1:1

L=L Vec ( l ) ; x=x 0 ; sum x= ze ro s (1 , 50 ) ; t=1

whi le t<10000

f o r i =1:50

sum x ( i ) = sum x ( i ) + x ( i ) ;

xbar ( i ) =sum x ( i ) /( t +1) ;

du xbar ( i ) =dUtilFunc ( xbar ( i ) , e ta ( i ) , x max ( i ) )−L ;

i f sum( x )<C & x ( i )<x max ( i )

x ( i )=x ( i )+alpha ;

e l s e i f sum( x )<C & x ( i )>x max ( i )

x ( i )=x ( i ) ;

e l s e

lambda = gamma∗du xbar ( i ) / xbar ( i ) ;

x ( i )=beta∗(1− lambda ) ∗x ( i ) + ( lambda ) ∗x ( i ) ;

i f x ( i )<x 0 ( i )

x ( i )=x 0 ( i ) ;

e l s e

x ( i )=x ( i ) ;

end

end

mat du xbar ( ( l −1)∗n+i , t )= du xbar ( i ) ;

mat xbar ( t , ( l −1)∗n+i )= xbar ( i ) ;

end

t=t +1;

end

f o r i =1:50

u i d e t e r ( i )=UtilFunc ( x ( i ) , e ta ( i ) , x max ( i ) )−(L∗x ( i ) ) ;

end

U deter ( l )= sum( u i d e t e r ) ;
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T o t a l A l l o c a t e d x d e t e r ( : , l )= sum( x ) ;

end

U mat deter (m, : ) = U deter ;

x de t e r=x ;

% Nonl inear programming s o l v e r ( fmincon )

f o r l =1:11

L=L Vec ( l ) ;

fun = @( x ) −( ( 100∗ l og ( 1 + eta (1 ) ∗ x (1 ) ) / l og ( 1 + eta (1 ) ∗ x max (1) ) )−L

∗x (1 ) + . . .

( 100∗ l og ( 1 + eta (2 ) ∗ x (2 ) ) / l og ( 1 + eta (2 ) ∗ x max (2) ) )−L

∗x (2 ) + . . .

% . . . A l l u t i l i t y f u n c t i o n s 3 to 48 .

( 100∗ l og ( 1 + eta (49) ∗ x (49) ) / l og ( 1 + eta (49) ∗ x max (49)

) )− L∗ x (49) + . . .

( 100∗ l og ( 1 + eta (50) ∗ x (50) ) / l og ( 1 + eta (50) ∗ x max (50) )

)− L∗ x (50) ) ;

x0 ( 1 : 5 0 ) = 10 ;

A = ones (1 , 50 ) ;

b = C;

Aeq = [ ] ;

beq = [ ] ;

lb=ze ro s (1 , 50 ) ;

ub ( 1 : 5 0 ) = x max ;

[ x , f v a l ] = fmincon ( fun , x0 ,A, b , Aeq , beq , lb , ub ) ;

u fmincon ( l )= − f v a l ;

i f l==1

y fmincon=x ;

end

Tota l A l l o ca ted x fmincon ( : , l )= sum( x ) ;

end

u fmincon mat (m, : )=u fmincon ;

end

% Plot U t i l i t y Functions ( Concave and nonmonotonous )

h = f i g u r e ;

h1=p lo t ( mat xxx u ( : , 1 ) , mat u ( : , 1 ) ) ; hold on ;

h3=p lo t ( mat xxx u ( : , 2 ) , mat u ( : , 2 ) ) ; hold on ;

h2=p lo t ( mat xxx u l ( : , 1 ) , mat u l ( : , 1 ) , ’−− ’ ) ; hold on ;

h4=p lo t ( mat xxx u l ( : , 2 ) , mat u l ( : , 2 ) , ’−− ’ ) ;

g r i d on ;

x l a b e l ( ’ A l located Resource , $ x i $ ’ , ’ FontSize ’ ,10 , ’ I n t e r p r e t e r ’ , ’ Latex ’ )
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y l a b e l ({ ’ $$\ textnormal {\ hspace {0 .1mm} U t i l i t y Function , $u i $ }$$ ’ , ’ $$\
textnormal {Payof f Function , $ v i $ }$$ ’ } , ’ FontSize ’ ,10 , ’ I n t e r p r e t e r ’ , ’

Latex ’ )

h l egend = legend ( ’ Locat ion ’ , ’ bes t ’ , s t r c a t ( ’ \ e t a i= ’ , num2str ( e ta graph 1 ) ,

’ , \ c h i i= ’ , num2str ( x max graph 1 ) ) , s t r c a t ( ’ \ e t a i= ’ , num2str ( round (

eta graph n , 1) ) , ’ , \ c h i i= ’ , num2str ( x max graph n ) ) , s t r c a t ( ’ \ e t a i=

’ , num2str ( e ta graph 1 ) , ’ , \ c h i i= ’ , num2str ( x max graph 1 ) , ’ , L=0.3 ’

) , s t r c a t ( ’ \ e t a i= ’ , num2str ( round ( eta graph n , 1) ) , ’ , \ c h i i= ’ ,

num2str ( x max graph n ) , ’ , L=0.3 ’ ) )

s e t ( h legend , ’ FontSize ’ , 5 ) ;

s e t (h , ’ Units ’ , ’ Inches ’ ) ;

a x i s ( [ 0 , 100 , 0 , 1 0 5 ] )

s e t (h , ’ PaperPos i t ion ’ , [ 0 0 3 .20 2 . 4 ] ) ; s e t (h , ’ PaperSize ’ , [ 3 . 2 0 2 . 4 ] ) ;

p r i n t (h , ’ uv ’ , ’−dpdf ’ , ’−r0 ’ )

% Plot : the d e r i v a t i v e o f payo f f f unc t i on $v ’ i (\ bar{x} i {( t ) }) $ f o r s i x

% randomly s e l e c t e d us e r s when $L=0.3$ .

h = f i g u r e ; l =4;

f o r i =1:9:50

p l o t ( mat du xbar ( ( l −1)∗n+i , 1 : 5 0 ) )

hold on

end

x l a b e l ( ’ $t$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

y l a b e l ( ’ $vˆ{\prime} i (\ bar{x} i ( t ) ) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

g r id on

s e t (h , ’ Units ’ , ’ Inches ’ ) ; a x i s ( [ 0 , 50 , 0 , 5 0 ] ) ;

s e t (h , ’ PaperPos i t ion ’ , [ 0 0 3 .20 2 . 4 ] ) ; s e t (h , ’ PaperSize ’ , [ 3 . 2 0 2 . 4 ] ) ;

p r i n t (h , ’ upr ime xbar t ’ , ’−dpdf ’ , ’−r0 ’ )

% Plot : the average o f a l l o c a t e d r e sou r c e $\bar{x} i {( t ) }$ to the optimal

% point f o r s i x randomly s e l e c t e d us e r s when $L=0.3$ .

h = f i g u r e ; l =4;

p l o t ( mat xbar ( : , ( l −1)∗n+1) ) ; hold on ;

p l o t ( mat xbar ( : , ( l −1)∗n+10) ) ; hold on ;

p l o t ( mat xbar ( : , ( l −1)∗n+19) ) ; hold on ;

p l o t ( mat xbar ( : , ( l −1)∗n+28) ) ; hold on ;

p l o t ( mat xbar ( : , ( l −1)∗n+37) ) ; hold on ;

p l o t ( mat xbar ( : , ( l −1)∗n+46) ) ; hold o f f

x l a b e l ( ’ I t e r a t i o n s $ ( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

y l a b e l ( ’ $\bar{x} i ( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

g r id on

s e t (h , ’ Units ’ , ’ Inches ’ ) ; a x i s ( [ 0 , 1000 , 0 , 6 0 ] ) ;

s e t (h , ’ PaperPos i t ion ’ , [ 0 0 3 .20 2 . 4 ] ) ; s e t (h , ’ PaperSize ’ , [ 3 . 2 0 2 . 4 ] ) ;
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pr in t (h , ’ xbar t ’ , ’−dpdf ’ , ’−r0 ’ )

% Plot : the d e t e r m i n i s t i c d e r i v a t i v e o f payo f f f unc t i on

% $u ’ i (\ bar{x} i {( t ) }) $ f o r two randomly s e l e c t e d us e r s ( s o l i d

% l i n e s ) , compared with corre spond ing s t o c h a s t i c ones ( dashed l i n e s .

h = f i g u r e ; l =1;

p l o t ( mat du xbar deter ( ( l −1)∗n+1 ,1:50) ) ; hold on

p lo t ( mat du xbar ( ( l −1)∗n+1 ,1:50) , ’−− ’ , ’ LineWidth ’ , 2) ; hold on

p lo t ( mat du xbar deter ( ( l −1)∗n+20 ,1:50) ) ; hold on

p lo t ( mat du xbar ( ( l −1)∗n+20 ,1:50) , ’−− ’ , ’ LineWidth ’ , 2) ; hold on

x l a b e l ( ’ $t$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

y l a b e l ( ’ $uˆ{\prime} i (\ bar{x} i ( t ) ) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

l egend ( ’DAIMD’ , ’AIMD’ )

g r id on

s e t (h , ’ Units ’ , ’ Inches ’ ) ;

a x i s ( [ 0 , 50 , 0 , 5 0 ] )

s e t (h , ’ PaperPos i t ion ’ , [ 0 0 3 .20 2 . 4 ] ) ; s e t (h , ’ PaperSize ’ , [ 3 . 2 0 2 . 4 ] ) ;

p r i n t (h , ’ Duprime xbar t compare ’ , ’−dpdf ’ , ’−r0 ’ )

% Plot : The d e t e r m i n i s t i c average o f a l l o c a t e d r e sou r c e $\bar{x} i {( t ) }$ to

% the optimal po int f o r two randomly s e l e c t e d us e r s ( s o l i d l i n e s ) compared

% with corre spond ing s t o c h a s t i c ones ( dashed l i n e s ) .

h = f i g u r e ; l =1;

p l o t ( mat xbar deter ( : , ( l −1)∗n+1) ) ; hold on ;

p l o t ( mat xbar ( : , ( l −1)∗n+1) , ’−− ’ , ’ LineWidth ’ , 1) ; hold on

p lo t ( mat xbar deter ( : , ( l −1)∗n+35) ) ; hold on

p lo t ( mat xbar ( : , ( l −1)∗n+35) , ’−− ’ , ’ LineWidth ’ , 1) ; hold o f f

x l a b e l ( ’ I t e r a t i o n s $ ( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

y l a b e l ( ’ $\bar{x} i ( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

l egend ( ’DAIMD’ , ’AIMD’ )

g r id on

s e t (h , ’ Units ’ , ’ Inches ’ ) ; a x i s ( [ 0 , 5000 , 0 , 8 0 ] )

s e t (h , ’ PaperPos i t ion ’ , [ 0 0 3 .20 2 . 4 ] ) ; s e t (h , ’ PaperSize ’ , [ 3 . 2 0 2 . 4 ] ) ;

p r i n t (h , ’ Dxbar t compare ’ , ’−dpdf ’ , ’−r0 ’ )

% Plot : the e f f i c i e n c y o f s t o c h a s t i c AIMD Algorithm and PAIMD Algorithm f o r

% $L\ in \{0 , 0 . 1 , \dots , 1\}$ .

h = f i g u r e ;

PoA = U mat . / u fmincon mat ;

y3 = mean(PoA) ; e3 = std (PoA) ;

PoA modified = U mat modif ied . / u fmincon mat ;

y4 = mean( PoA modified ) ; e4 = std ( PoA modified ) ;

e r r o rba r ( L Vec , y3 , e3 ) ; hold on
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e r r o rba r ( L Vec , y4 , e4 , ’−− ’ ) ;

g r i d on

x l a b e l ( ’ $L$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

y l a b e l ( ’ E f f i c i e n c y ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

l egend ({ ’ E l a s t i c AIMD’ , ’ E l a s t i c PAIMD’ } , ’ I n t e r p r e t e r ’ , ’ Latex ’ , ’ Locat ion ’ , ’

s outheas t ’ )

s e t (h , ’ Units ’ , ’ Inches ’ ) ;

a x i s ( [ 0 , 1 , 0 . 7 , 1 . 1 ] )

s e t (h , ’ PaperPos i t ion ’ , [ 0 0 3 .20 2 . 4 ] ) ;

s e t (h , ’ PaperSize ’ , [ 3 . 2 0 2 . 4 ] ) ;

p r i n t (h , ’ e f f i c i e n c y ’ , ’−dpdf ’ , ’−r0 ’ )

% Plot : the e f f i c i e n c y o f d e t e r m i n i s t i c AIMD Algorithm and DAIMD Algorithm

% f o r $L\ in \{0 , 0 . 1 , \dots , 1\}$ .

h = f i g u r e ;

PoA deter = U mat deter . / u fmincon mat ;

y4 = mean( PoA deter ) ;

e4 = std ( PoA deter ) ;

e r r o rba r ( L Vec , y4 , e4 ) ;

g r i d on

x l a b e l ( ’ $L$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

y l a b e l ( ’ E f f i c i e n c y ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

s e t (h , ’ Units ’ , ’ Inches ’ ) ;

a x i s ( [ 0 , 1 , 0 , 1 . 1 ] )

s e t (h , ’ PaperPos i t ion ’ , [ 0 0 3 .20 2 . 4 ] ) ; s e t (h , ’ PaperSize ’ , [ 3 . 2 0 2 . 4 ] ) ;

p r i n t (h , ’ D e f f i c i e n c y ’ , ’−dpdf ’ , ’−r0 ’ )

AIMD for Quasi-Concave Utility Functions

% S t o c h a s t i c AIMD f o r common Goods .

% Quasi−concave u t i l i t y f u n c t i o n s

c l c ; c l e a r a l l ;

f o r m=1:1000

% Def ine parameters

i i v e c = 0 . 5 : 0 . 2 5 : 3 ; n=50;

f o r i i =1:11

cc=i i v e c ( i i ) ;

f o r i =1:n

x 0 ( i )=rand ;

etaa ( i )=randi ( [ 1 1 , 5 0 ] ) ∗0 . 0 1 ;

x i n f ( i )=randi ( [ 4 0 , 6 0 ] ) ;

end
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alpha =1; beta =0.85; gamma1=5; gamma2= 10 ; C=sum( x i n f ) ∗ cc ;

sum x= ze ro s (1 , n) ; x=x 0 ; L=0; t =1; t1 =0; t2 =0;

% AIMD Algorithm

whi le t<100000

f o r i =1:n

sum x ( i ) = sum x ( i ) + x ( i ) ;

x bar ( i ) = sum x ( i ) / t ;

du xbar Sigmoid ( i )= dw( x bar ( i ) , etaa ( i ) , x i n f ( i ) ) ;

R = rand ;

i f sum( x )<C

i f x bar ( i )<x i n f ( i )

lambda1 = gamma1∗du xbar Sigmoid ( i ) / x bar ( i ) ;

i f lambda1<R

x ( i )=x ( i ) ∗ 1/ beta ;

e l s e

x ( i )=x ( i ) ;

end

e l s e

x ( i )= x ( i )+ alpha ;

i f x ( i ) >1.5∗ x i n f ( i )

x ( i )= x ( i )−alpha ;

e l s e

x ( i )=x ( i ) ;

end

end

e l s e

i f x bar ( i )<x i n f ( i )

x ( i ) = x ( i )−alpha ;

i f x ( i )<0

x ( i )= 0 ;

e l s e

x ( i )= x ( i ) ;

end

e l s e

lambda2 = gamma2∗du xbar Sigmoid ( i ) / x bar ( i ) ;

i f lambda2<R;

x ( i ) = x ( i ) ∗beta ;

e l s e

x ( i )=x ( i ) ;

end

end

end
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end

t=t +1;

end

y=x ;

f o r i =1:n

u i ( i )=w( y ( i ) , etaa ( i ) , x i n f ( i ) ) ;

end

sum u=sum( u i ) ;

sum y=sum( y ) ;

cum u cc ( i i )=sum u ;

end

cum u cc mat (m, : ) = cum u cc ;

x=x 0 ;

f o r i i =1:11

cc=i i v e c ( i i ) ;

C=sum( x i n f ) ∗ cc ;

end

% Nonl inear programming s o l v e r ( fmincon ) ; As in Previous

end

% Plot : the d e r i v a t i v e o f u t i l i t y f u n c t i o n s $w ’ i (\ bar{x} i {( t ) }) $ f o r s i x

% randomly s e l e c t e d us e r s when $C / \Psi =1.5$ .

h = f i g u r e ; i i =5;

f o r i =1:9:50

p l o t ( mat du xbar ( ( i i −1)∗n+i , 1 : 6 0 0 ) )

hold on

end

x l a b e l ( ’ $t$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

y l a b e l ( ’$wˆ{\prime} i (\ bar{x} i ( t ) ) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

g r id on

s e t (h , ’ Units ’ , ’ Inches ’ ) ; a x i s ( [ 0 , 600 , 0 , 1 5 ] )

s e t (h , ’ PaperPos i t ion ’ , [ 0 0 3 .20 2 . 4 ] ) ; s e t (h , ’ PaperSize ’ , [ 3 . 2 0 2 . 4 ] ) ;

p r i n t (h , ’ wprime xbar t ’ , ’−dpdf ’ , ’−r0 ’ )

% Plot : the average o f a l l o c a t e d r e sou r c e $\bar{x} i {( t ) }$ to the optimal

% point f o r s i x randomly s e l e c t e d us e r s when $C / \Psi =1.5$ .

h = f i g u r e ; l =4;

p l o t ( mat xbar ( : , ( i i −1)∗n+1) ) ; hold on ;

p l o t ( mat xbar ( : , ( i i −1)∗n+10) ) ; hold on

p lo t ( mat xbar ( : , ( i i −1)∗n+19) ) ; hold on ;

p l o t ( mat xbar ( : , ( i i −1)∗n+28) ) ; hold on ;

p l o t ( mat xbar ( : , ( i i −1)∗n+37) ) ; hold on ;
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p lo t ( mat xbar ( : , ( i i −1)∗n+46) ) ; hold o f f ;

x l a b e l ( ’ I t e r a t i o n s $ ( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

y l a b e l ( ’ $\bar{x} i ( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

g r id on

s e t (h , ’ Units ’ , ’ Inches ’ ) ; a x i s ( [ 0 , 1000 , 0 , 1 0 0 ] )

s e t (h , ’ PaperPos i t ion ’ , [ 0 0 3 .20 2 . 4 ] ) ; s e t (h , ’ PaperSize ’ , [ 3 . 2 0 2 . 4 ] ) ;

p r i n t (h , ’ wxbar t ’ , ’−dpdf ’ , ’−r0 ’ )

% Plot : the e f f i c i e n c y o f QAIMD Algorithm .

poa= cum u cc mat . / u fmincon mat ;

h = f i g u r e ;

y1 = mean( poa ) ; e1 = std ( poa ) ;

xx=i i v e c ; e r r o rba r ( xx , y1 , e1 ) ;

g r i d on

x l a b e l ( ’$C/\Psi$ ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

y l a b e l ( ’ E f f i c i e n c y ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ )

s e t (h , ’ Units ’ , ’ Inches ’ ) ; a x i s ( [ 0 . 5 , 3 , 0 . 6 , 1 . 2 ] ) ;

s e t (h , ’ PaperPos i t ion ’ , [ 0 0 3 .20 2 . 4 ] ) ; s e t (h , ’ PaperSize ’ , [ 3 . 2 0 2 . 4 ] ) ;

p r i n t (h , ’ e f f i c i e n c y S ’ , ’−dpdf ’ , ’−r0 ’ ) ;
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