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Abstract

Simulation of Morphing Blades
for Vertical Axis Wind Turbines

Jennifer Tan

The simulation of flow through vertical axis wind turbine (VAWT) is characterized by

unsteady flow where the blade experiences varying angles of attack and Reynolds number as

it completes a cycle. Therefore, the lift generated also varies as a function of its rotational

position relative to the incoming freestream velocity. In order to improve the performance of

these turbines the blade can take advantage of smart materials developed for control surface

actuation. The aim of this paper is to investigate the effect of morphing blades on the

aerodynamic performance of the turbine blades. The study uses commercial software Ansys

Fluent pressure-based solver to investigate the flow past the turbine blades by solving the 2D

Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. In order to simulate the

morphing blade for VAWT, a sliding mesh method is used to simulate the VAWT rotation

while a user-defined function (UDF) is written for the blade morphing flexure motion. This

entails the use of dynamic mesh smoothing to prevent the mesh from having negative cell

volumes. Although the dynamic mesh strategy has been successful in preserving the cell

quality, it has been shown that the proposed method of simulating the morphing blade on

VAWT is inadequate due to unphysical solutions. Finally, the effect of morphing the blade is

tested on a static airfoil case instead, where it is shown that stall is alleviated by morphing

the blade trailing edge.
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Chapter 1

Introduction

Wind energy has been shown to be a viable means of alternative energy [67]. To extract

energy from the wind, the kinetic energy from the wind velocity is converted by wind turbines

into mechanical energy available for generators to convert to electricity. There are two types

of wind turbines, the horizontal axis wind turbine (HAWT) and the vertical axis wind turbine

(VAWT). Standard designs of VAWT uses symmetric airfoils which have the advantage of

being independent on wind direction but could have issues with starting up. The power

coefficient of HAWT is typically 16% higher than the VAWT [23] but is not practical to

install in urban cities. While most wind energy production has been from HAWTs, there

has been growing research interest in VAWT [74, 75]. There are two general forms of VAWT,

the Darrieus or lift-based and the Savonius or drag-based. The Savonius turbine was invented

earlier in 1922 while Darrieus was invented in 1931. Savonius turbine is better suited for

tidal turbines but for wind turbines, the lift-based Darrieus typically produces better power

generation potential [23].

The flow around a vertical axis wind turbine is complex and inherently unsteady due

to the blade angle of attack α changing as a function of its azimuthal position θ. The

lift generated therefore also varies as a function of the azimuthal position. Because the

beneficial angle of attack is predominantly in the upwind half cycle of VAWTs, studies have

been done to control the pitch angle or by using ailerons and flaps to modify the effective

angle of attack of the blades in order to increase the power coefficient per cycle. However the

control mechanism involved usually entail penalties in weight and structural complexity of

the system. In order to counter these problems, smart materials were developed for control

surface actuation. Some of the common smart materials used for controls purposes include

shape memory alloys (SMA), piezoelectric stacks, and piezoelectric polymers. The problem

with SMA is that although it has high actuation strain, its response time is slow; on the other
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hand, piezoelectric materials have low actuation strain but high response time. Pankonien

et al. [52] developed a Synergistic Smart Morphing Aileron (SSMA) that combines a SMA-

driven hinge with a piezoelectric-driven flexure box that allows the morphing of blade profile

with good actuation strain and response time. By introducing morphing mechanism on the

blade, the idea is to modify the blade camber as a function of the blade position in a cycle

in order to increase the range of favorable power production within a cycle. The study aims

to investigate the effect of introducing variable camber to the VAWT by means of morphing

the blade and simulating this unsteady phenomenon with computational fluid dynamics.

1.1 Morphing Blade for Vertical Axis Wind Turbines

The Synergistic Smart Morphing Aileron (SSMA) by Pankonien et al.[52] provides the mor-

phing aileron mechanism considered for this study. The SSMA was originally developed for

unmanned aerial vehicles and is intended to provide better aerodynamic performance for

wide range of aircraft flight conditions. The SSMA reflex actuation is shown to be capable

of mitigating flow separation near stall [52]. This ability to alleviate flow separation is ben-

eficial for VAWT since this is one of the main limiting factors to the power generation of

VAWT as it experiences higher range of angles of attack at low tip speed ratios λ.

Figure 1.1: Synergistic Smart Morphing Aileron (SSMA) [52]

Figure 1.1 is a diagram of the SSMA mechanism which combines both shape memory alloy

(SMA) and piezoelectric actuators (PZT) into a single morphing entity. While shape memory

alloys have high actuation strain and blocked stress, it has a low frequency response. On

the other hand, PZT has low actuation strain but high frequency response. SSMA therefore

implements a SMA-driven hinge to provide the rotation that could resist the aerodynamic
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loading while using Macro Fiber Composites (MFC) on the flexure box to provide the smooth

conformal trailing edge profile at a faster response [52] .

Figure 1.2: The trailing edge of the three blade profiles considered for the study

Table 1.1: Summary of the three blade profile characteristics

blade profile chord length [m] chord angle angle of deflection δ

δ = +6.98◦ 0.301064 +2.82◦ +6.98◦

δ = +0.48◦ 0.304562 +0.20◦ +0.48◦

δ = −13.37◦ 0.304683 −5.52◦ −13.37◦

The blade profile uses a standard NACA0012 leading edge while the data points for the

morphed profiles are obtained from the prototype. The morphing control surface begins at

180 mm chord or x/c of 0.59. The two extremes with the highest deflection, δ = −13.37◦

and δ = +6.98◦, along with the profile that is closest to being a symmetric profile δ =

+0.48◦ as shown in Fig.1.2 are considered for the study. Table 1.1 presents the blade profile

characteristics. Although only three blade profiles are used for the study, there are 19

actuation profiles in between the two extreme actuation cases. These 19 frames of profiles

are used during the process of morphing to ensure smooth transition. Including those used

for the study, there are 21 blade profile frames in total.

1.1.1 δ = +0.48◦ Blade Profile (almost symmetric blade)

This blade profile is the one that most resembles the NACA0012 blade profile. It can be

seen on Fig.1.2 that it is neither a completely symmetric nor straight blade and there is a

slight deflection of δ = +0.48◦.
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1.1.2 δ = −13.37◦ Blade Profile (cambered blade)

The negative deflection at the trailing edge has the effect of introducing positive incidence +i

on the chord line. The cambered blade profile allows the chord line to have a positive pitch

angle relative to the zero incidence angle. Cambered airfoil is generally used to generate

more lift. However, for vertical axis wind turbines, on the upwind half of the cycle, the

positive pitch angle reduces the angle between the relative velocity and the chord line; on

the downwind half because the angle of attack becomes negative (i.e. the relative velocity

comes at a negative angle relative to the line tangent to the rotor rotation), the effective

angle of attack between the relative velocity and the chord line is increased.

1.1.3 δ = +6.98◦ Blade Profile (inverted-camber blade)

This blade profile with positive trailing edge deflection has an inverted camber. This changes

the chord line to have a negative incidence −i with respect to the zero incidence angle.

Inverted camber airfoil is generally used to decrease the CL generated; however, for the case

of vertical axis wind turbines, on the upwind half of a cycle the negative pitch angle from

the inverse camber causes the effective angle of attack to increase as the angle between the

relative velocity and the chord line is increased. On the other hand, on the downwind half,

the effective angle of attack is reduced because the local angle of attack becomes negative

on the downwind half cycle.

1.2 Problem Statment and Objective

The purpose of the study is to investigate the aerodynamic impact of introducing morphing

blade on VAWT power generation. With this in mind, the study aims to investigate the

methodologies of simulating a flow past VAWT with morphing blade within the context of

using a commercial solver and addresses the capabilities and limitations. This includes the

following objectives for the study:

1. application of the proper methodology for simulating morphing motion on VAWT,

2. investigation of the aerodynamic behavior of the three blade profiles at

static condition and their performance for VAWT power generation,

3. simulation of the morphing blade for static case and VAWT case.

4



1.3 Outline of the Study

The study begins with Chapter 2 where the aerodynamic theory relevant to VAWT is re-

viewed and different mesh deformation methods are compared. Chapter 3 explains in detail

the governing equations and simulation methodology used for the study. The first half of the

methodology chapter introduces the Unsteady Reynolds-Averaged equations, the turbulence

model used for the study, the discretization schemes used, and the grid generation as well

as the boundary and initial conditions. The second half of the the methodology chapter

describes how the morphing blade on VAWT is modelled; the sliding mesh method and the

dynamic mesh method used is presented, as well as the user-defined function needed to spec-

ify the boundary motion of the morphing blade. Chapter 4 addresses the verification and

validation of the methodologies; this chapter includes grid and temporal sensitivity analysis,

as well as comparison of different turbulence models commonly used in VAWT literature

with experimental data. Chapter 5 presents the results for both static airfoil and VAWT

cases. The morphing case is applied to both the static and VAWT cases; the challenges and

issues of implementing the morphing case on VAWT within the commercial solver is also

addressed. Finally, Chapter 6 concludes the study by highlighting the contributions of the

study and suggestion for future works.
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Chapter 2

Theory and Literature Review

The first half of the chapter reviews the aerodynamic theory relevant to the performance

of lift-based VAWT with special focus on dynamic stall and blade-vortex interaction. The

effect of blade camber and pitch angle on VAWT performance is also explored. The last half

of the chapter is dedicated to mesh deformation methods where each of their advantages and

disadvantages are evaluated and compared.

2.1 Airfoil Static Stall

For a given free stream Reynolds number and Mach number, the lift and drag is only a

function of the blade angle of attack [3].For symmetric airfoils, it produces no lift at zero

angles of attack. Lift increases proportionally to the angle of attack until the blade exceeds

the critical angle of attack. Higher than the critical angle of attack, the blade starts to stall

where the lift starts to decrease. When separation occurs due to the high angle of attack,

drag increases as well. At high angles of attack, it has been shown that RANS models are not

as good at predicting leading edge separation compared to DES, LES or LES-RANS hybrid

methods [18, 10]. High lift control surfaces like flaps and ailerons shift the CL curve of an

airfoil by introducing deflection angles on the blade chord. Fig.2.1 shows that by having

a positive deflection, the maximum CL is increased at the expense of having a lower stall

angle. The opposite is true for negative deflection.
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Figure 2.1: Deflection angle and shift in CL curve [3]

2.2 Dynamic Stall in VAWT

The blade motion on a vertical axis wind turbine is similar to the case of an oscillating

airfoil. This is because the blade experiences variations in angles of attack as the azimuthal

angle changes. The ranges of angle of attack α experienced by the blade for each revolution

is dependent on the value of the tip speed ratio λ and its azimuthal position θ.

For large tip speed ratios, the variation in α has a sinusoidal curve with a limited range

of α. As the tip speed ratio decreases to λ = 1, the range of possible α increases and the

peak value of α as experienced by the blade in one revolution also increases as can be seen

in Fig.2.2.

Not only does the α change as a function of θ, but the local Reynolds number also

varies for a given cycle due to variation in relative wind speeds. In the worst case where

λ = 1, the local Reynolds number is 0 at the azimuthal position of θ = 0◦ [64]. When

the blade angle of attack is higher than the static stall angle, the blade is likely to exhibit

a dynamic stall behavior [46]. There is still contention on the ability of current CFD,

especially RANS models, to simulate flow with high angle of attack [41]. Ferreira et al. [26]

compared the influence of different turbulence models on the prediction of dynamic stall
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with experimental data and found that DES is the closest to experiment and that URANS

models are insufficient.

Figure 2.2: Range of α in one cycle for various λ plotted against the azimuthal position

In an experimental study conducted by Lanveville and Vittecoq [76] for a vertical axis

wind turbine with two blades, it was shown that for Re = 3.8x104, dynamic stall behavior

occurs for λ < 4. The dynamic CL and CD curves for different range of λ are shown in

Fig.2.3. The positive α angles correspond to the upstream azimuthal positions while the

negative angles corresponds to the downstream positions. The solid curves are the measured

data while the dashed-curves represent the corrected coefficients that account for the wake-

induced angle.

For azimuthal position in the range of 0◦ ≤ θ ≤ 90◦, the blade motion is similar to an

airfoil with oscillating pitch; it is at this region where the blade angle of attack exceeds the

stall angle and therefore exhibits dynamic stall behaviors. For λ ≤ 3 it can be seen that

there is a sharp peak in CL followed by a sudden decrease in CL; this behavior represents

the occurrence of deep dynamic stall. Forλ = 4 and λ = 5, there is no apparent occurrence

of dynamic stall since the maximum blade angle of attack does not exceed the stall angle.
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Figure 2.3: Dynamic CL (left) and CD (right) plotted against α for 2 < λ < 5 [76]

For azimuthal position in the range of 90◦ ≤ θ ≤ 180◦, the relative velocity of the blade

decreases and the blade angle of attack starts to decrease from the maximum value. For this

range of azimuthal position, dynamic stall occurs for λ ≤ 4. Since the maximum blade angle

of attack increases as the λ is decreased, dynamic stall behavior are more prevalent at low λ.

However, Scheurich [64] indicated that dynamic stall may also occur at higher λ if the local

blade angle of attack is increased due to the interaction between the blades and the vortices

generated by the turbine.
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2.3 Wake and Blade-Vortex Interaction

Dynamic stall occurs in unsteady flow conditions when the airfoil goes beyond the static stall

angle [46]. During dynamic stall, flow separation bubble occurs in the leading edge which

temporarily increases lift until vortices from the separation bubble are convected downstream

to the trailing edge, causing a sharp decline in the lift. A clockwise vortex is formed from

the leading edge adjacent to the counterclockwise vortex on the suction surface. The roll-up

of the leading edge vorticity is shed in discontinuous manner along the wake, however the

vortices from the suction side rolls-up at the trailing edge and the vortex gets dragged along

the wake [11]. Dynamic stall causes two opposite-rotating vortices to be shed; the first vortex

is formed from the leading edge bubble that rolls-up and rotates in the same direction as the

rotor while another vortex rotates in the opposite direction and is shed at the trailing edge

due to the roll-up from the blade surface aft of the leading edge; it is the counter-clockwise

vorticity that is shed from the trailing edge roll-up that gets shed downstream and causes

blade-vortex interaction [11].

Figure 2.4: Computed vortex trajectory downstream [2]

Amet et al. [2] studied the 2D blade-vortex interaction for a straight two-bladed turbine

using k − ω turbulence model and showed on Fig.2.4 the computed trajectories of vortices

using Q criterion for the case of λ = 2. According to the computed trajectory, there are
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three regions of particular importance: θ = 0◦ to 45◦, θ = 90◦ to 270◦ and θ = 315◦, where

the blade interacts with its own vortices. The induced velocity on the blade was calculated

using Kelvin vortex model and the results showed that there is a 21% induced velocity from

vortices while the other vortices have weaker effects [2] . It is therefore important to take

into account the effects of blade-vortex interaction especially in the lower half region of the

azimuthal blade positions for low λ. Amet et al. [2] also performed the same study for λ = 7

and found that there is only weak shedding of vortices in the upstream half of the turbine

while on the downstream half, flow is attached.

2.4 Effect of Blade Camber and Pitch

Walters et al. [77] compared the power performance of VAWT to HAWT and suggested

that VAWT performance could still be improved by optimizing blade angle, blade profile,

and turbine solidity. By introducing flaps to VAWT, the CL/CD ratio and turbine blade

lift curve can be improved, however the drag increases much higher at flap deflections larger

than 20 degrees, and thus CL/CD ratio starts to decrease beyond this deflection angle [33].

This means that flap angles below this value can help in self-starting capabilities of the

VAWT while higher flap deflection could aid in VAWT breaking mechanism. Paillard et al.

[51] showed that for a Darreius tidal turbine, there is an increase in CP from 0.28 to 0.43 by

using optimal variable pitch. Paraschivoiu et al. [53] noticed a 30% increase in annual energy

by using polynomial optimal pitch control. Cambered airfoils on VAWT have been shown

to have the ability to self-start at the expense of having lower peak efficiency compared to

straight bladed airfoils [6]. Chen and Kuo [15] have also shown that the larger the camber

of the blade, the better it is at self-starting. Rezaeiha et al. [59] found that having pitch

angle of −2◦ at λ = 4 increases the CP by 6.6%. Wolff et al. [80] performed 2D RANS

on morphing turbine airfoil with a deformable grid and found that there is a phase shift

between the deflection and the lift. They also noticed that while defecting the trailing edge

at angles of attack near stall, there is an overshoot above the steady state lift coefficient.

2.5 Deforming Mesh Methods

Mesh deformation and automated remeshing have been utilized for shape optimization and

rapid prototype design modifications without having to manually create a new mesh. In the

case of unsteady simulation of flow past moving bodies, remeshing can be computationally

costly so it is preferred to have a robust mesh deformation method that preserves cell quality

as much as possible. There is currently no other work in the literature on morphing blade for
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the purpose of investigating its unsteady effect on VAWT; however, there has been successful

implementation of mesh deformations on grids with high aspect ratio in the region of moving

boundary [82, 42, 63] meant for viscous flow. There are inherent complications for simulating

morphing blades for viscous flow due to very large aspect ratio typically used on the boundary

layer; thus, the method of smoothing out the morphing motion becomes critical to ensure

the non-negative cell volumes when deforming the mesh. The following section reviews the

most common mesh deformation methods in the literature.

2.5.1 Linear Spring Analogy

The spring analogy for moving the mesh was first proposed by Batina [5] where Hooke’s

law is used to model the node displacement and static equilibrium is obtained when the

force at each node is zero. The parameter that affects the node displacement is the stiffness

coefficient used in the Hooke’s law equation and the Drichlet boundary conditions are the

known boundary displacements [30, 49]. The spring analogy is one of the simplest to im-

plement but is not robust [62]. Farhat [25] augmented the method by introducing torsional

springs between adjacent edges to prevent cells from intersecting during rotational motion.

Other modifications to the linear spring analogy include semi-torsional spring [7], ortho-

semi-torsional spring approach [43], and ball-vertex method [9]. Among these methods, it

was shown that the orth-semi-torsional approach is the most robust [43].

2.5.2 Linear Elasticity

For this method, the node displacements are calculated by solving for the linear elasticity

equations where the mesh modulus of elasticity E and mesh Poisson’s ratio ν are the pa-

rameters that are used to control the node displacements. The idea behind this method is

to find the optimized E and ν to allow node displacement without invalidating the cells.

These methods have been successfull in implementing a dynamic mesh that preserves the

boundary layer for visous flow calculations [82, 83]. Karman [35] set ν as constant and al-

lowed E to be equal to the cell aspect ratio in order to increase the stiffness in the boundary

layer where cells have high aspect ratio. Mavriplis [82] used a method where E is a function

of the distance to the boundary or inversely proportional to cell volume. Hsu [32] used a

two-step approach wherein the equations are solved with E = 1 in the first step, the mesh

strain energy density from this first step is then used to compute the E for the next step. In

another study, Yang and Mavriplis [83] calculated the optimal E distribution using adjoint-

based optimization and has shown that this method is able to avoid negative cell volumes

even for highly stretched mixed element grids which are predominanly used for viscous flow
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calculations.

2.5.3 Laplace Diffusion

The Laplace Diffusion method diffuses the node movements by solving for the Laplace equa-

tion. The diffusion coefficient γ is the parameter that controls the node displacement.

Crumpton and Giles [17] suggested a smoothing equation based on the Laplace equation with

the coefficient of thermal conductivity inversely proportional to cell volume while Löhner [40]

used the γ as a function of the distacne from the moving boundary. The disadvantage of

solving a linear Laplace equation is that the mesh deformation components are solved in-

dependently; therefore, if the boundary motion moves only in the x-coordinate, the interior

nodes will move only along the x-coordinate [32]. A variation of the method is proposed

where the diffusion coefficient is raised to an exponent. This modified Laplace Diffusion

coefficient has been shown to improve the capability of handling larger deformations [12].

2.5.4 Transfinite Interpolation

For structured grids, the most common method is based on transfinite interpolation (TFI)

with blending functions [72]. In the TFI method, the node displacement is equal to the

moving boundary multiplied by a scaling factor which depends on the distance of the nodes to

the boundary [13, 21, 81]. The main disadvantage of TFI is that it does not account for cells

intersecting and overlapping without augmenting it with additional smoothing operators,

and is predominantly limited to structured grids with small deformations.

2.5.5 Radial Basis Functions

Instead of solving for physical-based equations like Hooke’s Law or Laplace’s equation, the

radial basis function (RBF) method transfers the boundary displacement to the interior nodes

through an interpolation function. The RBF interpolation method is known to give high

quality grids that preserve the cell orthogonality close to the deforming boundary [20] which

makes it ideal for grids with high aspect ratio close to the wall. Bos [8] performed a mesh

motion that combines translation and rotation with a 2D block, where the rotation was done

for 57.3◦ and 180◦. The quality of mesh deformation is compared using Laplace, solid body

rotation (SBR) stress equation (a variant of linear elasticity equation), and RBF interpolation

method and the study showed that Laplace performed the worst with 0.09 average skewness

and 20.1 average non-orthogonality while RBF has average skewness of 0.051 (-41%) and

average non-orthogonality of 19.0(-6%); the SBR stress gave the same result as the Laplace
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within 6% of difference. The deformed mesh using RBF interpolation was able to rotate by

180◦ without invalidating the mesh. The disadvantage of RBF is the computational cost;

however, there has been numerous studies that have suggested augmentations to improve its

computational efficiency. Most notable is the inclusion of greedy algorithm by Rendall and

Allen [57, 56] and a gradient-based algorithm by Jakobsson and Amoignon [34].

2.5.6 Summary of Deforming Mesh Methods

The main concern when choosing a mesh deformation method is the computational cost and

robustness of preserving mesh quality. Selim and Koomullil [66] summarized in Table 2.1

some of the more common mesh deformation methods wherein ne is the number of edges,

nv is the number of vertices, nb is the number of boundary nodes, and ns is the number of

selected boundary nodes.

Table 2.1: Comparison of common mesh deformation methods

method advantages disadvantages complexity

Linear spring simple to implement intersecting and overlapping elements O(n3
e)

Torsional spring robust mesh quality preservation computationally expensive O(n3
e + n3

v)

Linear elasticity computationally feasible need to optimize E and ν to avoid cell invalidation O(nelogne)

Laplace computationally efficient works for single frequency deformations only O(nv)

TFI simple and efficient intersecting and overlapping elements O(nv)

RBF robust mesh quality preservation computationally expensive O(n3
b)

Both the linear elasticity and RBF interpolation methods have been shown to be most

robust [82, 8, 66]. Other less robust methods can be augmented to increase mesh quality

preservation at the cost of higher computational cost. Samareh [63] showed that the spring

analogy method can preserve the mesh quality in the viscous boundary layer for both unstruc-

tured and structured grids by adding quaternions. Maruyama [44] used Laplace smoothing

with quaternions that allows for the preservation of mesh orthogonality for 2D and 3D mesh

undergoing large deformations; however, the quaternion method with Laplacian equation is

at least one order of magnitude more CPU intensive than the RBF-based methods. For 3D

grids or mesh of large sizes, the linear spring, torsional spring, linear elasticity, and Laplace

methods become computationally expensive as their complexity scales with the number of

element vertices or edges. The RBF method, when combined with the greedy algorithm on

the other hand, the order of complexity is reduced greatly with O(n3
s) where ns < 5%nb.

The mesh deformations that rely on interpolation have the advantage of not requiring node

connectivity information and therefore have less memory requirements.
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Chapter 3

Models and Methodology

This chapter covers the governing equations and the methodologies used to solve these equa-

tions. The governing equations are the 2D incompressible Unsteady Reynolds Averaged

Navier-Stokes (URANS) and the turbulence model k − ω SST which are discretized and

solved using finite volume approach and are all done through the commercial solver ANSYS

Fluent. This section also addresses the numerical setup used for the study by considering

best practices from literature. The resolution of the grid and time step used for the study is

discussed as well. The chapter then looks into the methods of moving the mesh, smoothing

the mesh motion, as well as the algorithm written for the user-defined function to specify

the blade profile coordinates.

3.1 Governing Equations

The governing equation for incompressible unsteady viscous flow is the 2D Navier-Stokes

equation which is composed of the continuity equation and momentum equations.

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.1)

ρ

(
∂u

∂t
+ u

∂u
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∂z

)
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∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ ρgx (3.2)
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∂y2
+
∂2v

∂z2

)
+ ρgy (3.3)

Using the general variable of interest φ, the transport equation can be written as

ρ
∂φ

∂t
+ ρ∇ · (φ~u) = ∇ · (Γ∇φ) + Sφ (3.4)

15



where the first term is the rate of change, second term is the convective term; on the right

hand of the equation is the diffusion term and the source term respectively. Integrating the

transport equation above gives the integral form appropriate for the finite control volume

method. ∫
V

ρ
∂φ

∂t
dV +

∫
V

ρ∇ · (φ~u)dV =

∫
V

∇ · (Γ∇φ)dV +

∫
V

SφdV (3.5)

Using the Gauss Divergence Theorem, the convection and diffusion terms can be rewritten

in the form where the integrals are taken over the control surface instead of the whole volume

∂

∂t

∫
V

ρφdV +

∫
∂V

ρφ~ud ~A =

∫
∂V

(Γ∇φ)d ~A+

∫
V

SφdV (3.6)

Where (ρφ~u) is the convective flux and (Γ∇φ) is the diffusive flux. The equation above

shows that the fluid property within the control volume is conserved.

For turbulent flows, the velocity is characterized by chaotic fluctuations in time. The

Reynolds decomposition [58] decomposes the instantaneous Navier-Stokes equations into

time-averaged and fluctuating terms. Using the tensor notation where velocity components

are expressed in i = 1, 2, 3, the velocity and scalar quantities can be decomponed into mean

and fluctuating components.

ui = ui + u
′

i (3.7)

ui =
1

∆t

∫ t+∆t

t

uidt (3.8)

Substituting Eq.3.7 and the equivalent form for scalar terms into the instantaneous

Navier-Stokes equations and taking the time-average yields the following set of equations

called the Reynolds-averaged Navier-Stokes (RANS) equations.

∂ui
∂xi

= 0 (3.9)

ρ
∂ui
∂t

+ ρ
∂(uiuj)

∂xj
= −∂P

∂xi
+

∂

∂xj

(
2µSij − ρu

′
iu

′
j

)
(3.10)

where µ is the molecular viscosity and Sij is the strain rate which is defined as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.11)
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The extra term −ρu′
iu

′
j from the Reynolds decomposition is referred to as Reynolds stress,

and additional equations are required to close the system of equations. The manner in which

this closure is achieved depends on the turbulence model used. For this study, the k − ω

SST turbulence model is used for the closure.

3.2 Turbulence Model

The Reynolds stress τij is computed using the Boussinesq approximation [79] where the

upper case is used to denote time-averaged quantities.

τij = −ρu′
iu

′
j = 2µt

(
∂Ui
∂xj

+
∂Ui
∂xi

)
− 2

3
ρkδij (3.12)

where µt = eddy viscosity

k = turbulent kinetic energy = 1
2
(u′2 + v′2 + w′2)

δij = Kronecker delta (δij = 1 if i = j, and δij = 0 if i 6= j)

The eddy viscosity µt is a function of the velocity scale and the length scale, and the

turbulence models differ in the way that the velocity scale and length scale are computed.

This study uses the k − ω SST as the turbulence model, which was suggested by Menter

[47] due to the inability of k − ε to account for adverse pressure gradients in the boundary

layer [78]. The k − ω SST uses a hybrid model wherein k − ε turbulence model is used in

the freestream and transitions into the k − ω model at near wall [48]. The k − ε model [39]

uses the turbulent kinetic energy k, and the rate of dissipation of turbulent kinetic energy ε

for the eddy viscosity, while the k−ω model uses the turbulence frequency ω = ε/k instead.

The k-equation for the k − ω model [79] are

ρ
∂k

∂t
+ ρ∇ · (k~u) = ∇ ·

[(
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µt
σk

)
∇(k)

]
+ η

(
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2

3
ρk
∂Ui
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δij

)
− β∗ρkω (3.13)

Near the wall, the ε-equation is switched to a ω equation by substituting ε = kω

ρ
∂ω

∂t
+ ρ∇ · (ω~u) = ∇ ·
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µt
σω,1

)
∇(ω)

]
+ η

(
2ρSij · Sij −

2

3
ρω
∂Ui
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δij

)
− β2ρω

2 + 2
ρ

σω,2ω

∂k

∂xk

∂ω

∂xk
(3.14)
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The last term on the right hand side is the added source term that is due to the ε = kω

used on the diffusion term in the ε-equation; where σk, σω,1, σω,2, η, β∗, β2 are the model

constant coefficients. Finally, to account for the instabilities that might arise from using the

k− ε in the free stream and using k− ω near the wall, a blending function is used to have a

smooth transition between the two models.

3.3 Numerical Setup

The commercial solver ANSYS Fluent 14.5.7 is used to solve the governing equations. Fluent

uses finite volume method with a cell-centered co-located scheme where the velocity and

pressure values are both stored in the cell center. The following sections show how the

governing equations are discretized and solved.

3.3.1 Spatial Discretization

The diffusion terms are always discretized using central differencing scheme which are 2nd

order accurate. The convection term is discretized using 2nd order upwind. The 2nd order

upwind is chosen because although the 1st order upwind is most stable, it is known to give

rise to numerical diffusion or false diffusion [55], while higher order schemes like QUICK

and Third-Order MUSCL scheme are more unstable and could give oscillations in solutions.

Therefore a good balance between stability and accuracy is achieved by using 2nd order

upwind. The gradients are calculated using the Least Squares Gradient reconstruction.

3.3.2 Pressure at Cell Faces

The pressure values are needed at cell faces; however, since Fluent uses cell-centered co-

located scheme, pressure values are known only at the cell center. To address this, PRESTO

(Pressure Staggering Option) scheme considers a staggered control volume to compute the

staggered pressure. By shifting the faces to the adjacent cell centers, pressure at the faces

can be obtained.

3.3.3 Pressure-Velocity Coupling

By default, FLUENT’s pressure-based solver is a segregated solver where velocity and pres-

sure have to be solved separately and iterated until the continuity is satisfied. The most

common method of pressure-velocity coupling is the SIMPLE (Semi-Implicit Method for

Pressure-Linked Equations) which was developed by Pantakar [54], and its other variants
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like SIMPLER, SIMPLEC, and PISO. While the SIMPLE algorithm has the advantage of

requiring less memory, it has the disadvantage of having a slower rate of convergence as

velocity and pressure are solved sequentially. This is why the COUPLED method is used for

the study. Compared to SIMPLE and PISO, the COUPLED algorithm is shown to have a

convergence rate that is independent of grid size [4], whereas especially in the case of SIM-

PLE algorithm, the convergence rate is highly dependent on the grid size used. Moreover,

SIMPLE algorithm may sometimes require the use of an under-relaxation factor for the pres-

sure correction term to stabilize the solution. The disadvantage of the COUPLED algorithm

is that it requires 3 to 4 times more memory than SIMPLE [27]. Finally, the coupled AMG

(Algebraic Multi-Grid) with F-cycle is used to solve for the coupled system of equations for

the velocity and pressure values.

3.3.4 Temporal Discretization

Temporal discretization in Fluent’s pressure-based solver can be explicit or implicit, 1st

order or 2nd order. Based on linear stability analysis, explicit schemes are limited to the

CFL criteria [16] while implicit schemes are not. Both the implicit backward Euler 1st

order and 2nd order methods are considered in the validation and verification section of

the study. The reason both are considered was because the 2nd order implicit was initially

the preferred method as it allows for larger time step size compared to a 1st order time

integration. However, non-physical solutions where large pressure gradients exist in mesh

interfaces were observed when using this 2nd order scheme in conjunction with dynamic

mesh. The chapter on validation and verification shows the difference in the solutions when

using 1st order and 2nd order implicit backward Euler. All the values for the results chapter

uses 1st order implicit.

3.4 Calculation of Forces

Fluent can monitor the lift, drag, and moment coefficients during a transient simulation.

However, the drag and lift are monitored in Fluent with fixed force vectors. Lift coefficient

by default is monitored with force vector 〈0, 1〉 while drag coefficient has the force vector〈1, 0〉.
However, this formulation is appropriate only for translational motion were the force vectors

remain constant. Because the blade is rotating, the appropriate force vectors changes in

time according to the azimuthal location of the blade. By using the constant 〈0, 1〉 and〈1, 0〉
force vectors, Fluent is effectively monitoring the coefficient of forces in the x and y direction

instead of the lift and the drag coefficients. In order to calculated the lift and drag coefficients,

19



the following transformations are performed on the monitored Fx and Fy coefficients.

FN = Fy cos θ − Fx sin θ (3.15)

FT = Fy sin θ + Fy cos θ (3.16)

The angle of attack is positive in the upstream half of a cycle but becomes negative in

the downstream half where θ > 180◦, this effect on the lift and drag equation is taken into

account by the sine function. After calculating for the normal and axial components, these

forces are then transformed to components or the force normal (lift) and parallel (drag) to

the local relative velocity.

L = FN cos(α + i)− FT sin(α + i) (3.17)

D = FN sin(α + i) + FT cos(α + i) (3.18)

The angle of attack α is the angle between the relative velocity Vrel and the blade chord.

The local angle of attack is a function of both the azimuthal position and the λ. For

symmetric airfoils, the angle of attack is calculated as

α = arctan

(
sin θ

cos θ + λ

)
(3.19)

The incidence angle i takes into account the induced change in angle of attack due to the

blade camber. The lift coefficient and drag coefficient are the calculated as

CL =
L

0.5ρ∞V 2
relc

(3.20)

CD =
D

0.5ρ∞V 2
relc

(3.21)

Where ρ∞ is the freestream density and c is the blade chord length. There is a decrease in

the free stream velocity downwind after the blade upstream hits the incoming flow; however,

for simplicity, the calculation of the of relative velocity assumes that free stream velocity in

the downwind half cycle is the same as the free stream velocity in the upwind cycle. The

normal force is important for stress and aerodynamic calculations. For the purpose of the

study, only the tangential force is relevant. The tangential force is responsible for producing

the torque generated by the vertical axis wind turbine. The coefficient of torque or moment
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coefficient is calculated from the tangential force as

CM =
FT ∗ r

0.5ρV 2
∞Ar

=
T

0.5ρV 2
∞Ar

(3.22)

Since P = Tω, substituting torque T from the CM into power coefficient CP equation

gives the relationship between the CP and the tip speed ratio λ = rω/V as

CP =
P

0.5ρV 3
∞A

=
(CM ∗ 0.5ρV 2

∞Ar)(ω)

0.5ρV 3
∞A

= CM
rω

V∞
= CMλ (3.23)

The CP is used to measure the amount of power generated by the VAWT; it is the main

variable to consider when implementing the morphing blade, and CP is also used as the

objective variable for convergence.

3.5 Grid Generation, Initial and Boundary Conditions

The computational domain is shown in Fig.3.1 and is made up of three zones – the outer

domain, the rotating zone, and the C-mesh zone. The outer domain is a stationary zone

for the far field flow. The boundaries on the left, on the top, and bottom sides have a

distance of 20 times the diameter Di of the rotating zone, while the right boundary has

a distance of 40 times the rotating zone diameter to prevent the wake from affecting the

boundary conditions. Wake interference downstream is minimal at approximately 5 times

the diameter of the turbine [4]. While the rotating zone has a diameter of 6m, the rotor

diameter is 5.395m or rotor radius of 2.6975m. The initial blade profile used for the grid

generation is δ = +0.48◦, the mesh for the two other profiles are not generated manually

and was deformed using to generate their respective meshes. The x-coordinate distance

from the leading edge to the trailing edge for all blade profiles varies from 0.3007-0.30561m.

The quarter chord location is approximated by 0.25 of 0.303m. The leading edge of the

blade profile is at the origin (0, 0) while the axis of rotation is located at (0.07575,−2.6975).

With this, the quarter chord length of the blade is vertically aligned with the axis of rotation.

Spalart and Rumsey [69] suggests νt/ν ≈ 2x10−7Re for the inflow condition for most external

flows. Figure 3.2 shows the sliding mesh interface and the fully structured C-mesh zone. The

nodes that will be flagged for deformation are all localized in the C-mesh zone as this saves

computational cost; instead of having to smooth out the node positions of the whole domain,

only the nodes inside the C-mesh zone are deformed. The first cell height from the blade

surface is y = 1.99x10−5m or 6.56x10−5 the chord length. The cells on the boundary layer
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have large aspect ratio but in the region towards the tip of the trailing edge, the nodes are

distributed in such a way that aspect raio is kept close to 1. Having cells with high aspect

ratio at the tip is not recommended with the diffusion-based method as it causes negative cell

volumes on the tip of the blade when deforming the mesh. The computational domain has

a total of 384,770 cells, or 241,356 nodes, with 680 nodes on the blade. The local Reynolds

number experience by the blade varies as a function of azimuthal position as the relative

velocity changes throughout the cycle. For the inlet free stream velocity of 8 m/s, blade

speed of 90rpm and blade chord length of 0.303m, the range of Reynolds number for the

blade is between Re = 3.5x105 to Re = 6.8x105; thus having an average of Re = 5.2x105.

Figure 3.1: Domain geometry and boundary conditions

Figure 3.2: (a) Rotating zone, (b) sliding mesh, (c) mesh resolution on trailing edge

The turbulence is modeled using k−ω SST with an inlet turbulent intensity of 0.05% and

inlet turbulent viscosity ratio of 0.1 for the turbulence inlet conditions. The Spalart-Allmaras

model [68] and the SST transition model [37] are two other commonly used turbulence model

in the VAWT literature [4, 31], therefore these models are compared with the k − ω SST in

the chapter on validation of the methodology.
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Table 3.1: Geometry and inlet conditions

rotor diameter 5.395m

rotating zone diameter 6.000m

rotor angular velocity 90rpm

blade chord (baseline) 0.303m

inlet velocity 8 m/s

turbulent viscosity ratio 0.1

turbulent intensity % 0.05

The spatial discretization used is a second order upwind scheme; all the momentum terms

and the turbulence terms are discretized in the second order. Since implicit scheme is used

for the temporal discretization, it does not need to satisfy the CFL criterion [55]. However,

in order to make sure the highly unsteady flow phenomenon is properly accounted for, the

time-step size used for the simulation is 0.0001s or azimuthal step of ∆θ = 0.054◦.

To ensure the accuracy of the solution, the absolute convergence criteria is set to 1x10−5

for both the continuity and momentum residuals. It is expected that this level of accuracy

cannot always be obtained but to ensure the residual is as close to 1x10−5 as possible, an

inner loop of 50 iterations per time step is used. A conservative approach of no more than

0.1% difference in Cp between the subsequent cycles is suggested by Balduzzi et al.[4]. For

this study, the simulation is carried out for multiple cycles until the average CP per successive

cycle do not differ by more than 0.1%. The simulation for the deforming case is carried out

for one cycle using the converged baseline fixed blade result as initial condition.

Figure 3.3: Boundary conditions for the static airfoil cases
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For the static airfoil case, the same grid is used but with different boundary conditions

and initial conditions. The boundary condition is shown in Fig.3.3. The velocity inlets are

given the free stream condition. The static airfoil cases are performed for different angles of

attack and so the horizontal and vertical components of the velocities are specified at the

boundary conditions. The angles of attack for the static cases are meant to simulate the flow

past the airfoil in the upwind half of the cycle; therefore as the angles of attack are specified

at the inlet, the y-component of the inlet velocity will have a direction pointing downwards.

3.6 Simulation of Moving Grids

The moprhing blade for VAWT requires grid motion during simulation. The grid motion

involves (i) the turbine rotation, and (ii) morphing flexure motion. In order to model the

turbine rotation, the sliding mesh method is employed, while for the morphing flexure of

the blade, the dynamic mesh method is employed. The sliding mesh method is preferred

for the simulation of VAWT because this allows the unsteady effects of the VAWT to be

simulated while keeping the computational cost reasonable. The sliding mesh moves the

mesh together as a rigid body and all cells within the specified zone move with the same

velocity; thus, no relative motion within the nodes occur and dynamic mesh is not required.

On the other hand, the morphing of the blade requires the nodes on the blade to move to

new coordinates with different relative velocities. To avoid high cell skewness or negative

cell volumes, dynamic mesh motion is required for this method.

3.6.1 Governing Equations for Dynamic Mesh

The governing equations used for the simulation of moving grids require the Arbitrary

Lagrangian-Eulerian (ALE) formulation of the transport equation,

d

dt

∫
V

ρφdV +

∫
∂V

ρφ (~u− ~ug) · d ~A =

∫
∂V

Γ∇φ · d ~A+

∫
V

SφdV (3.24)

where V = arbitrary moving control volume

∂V = bounding surface of control volume

~u = velocity vector

~ug = mesh velocity

The first two terms in the equation are treated diffently from Eq.3.5. The time derivative

now has to account for the change in cell volume and the convective flux has to account

for the grid velocity. Using a first-order backward difference, the time derivative term is

24



computed as

d

dt

∫
V

ρφdV =
(ρφV )(n+1) − (ρφV )n

∆t
(3.25)

V (n+1) = V n +
dV

dt
∆t (3.26)

Eq.3.27 must be satisfied in order to satisfy the geometric conservation law (GCL) [71].

d

dt

∫
V

dV −
∫
∂V

~ug · ~A = 0 (3.27)

The change in control volume with respect to time is then computed from

dV

dt
=

∫
∂V

~ug · ~A =

nf∑
j

~ug,j · ~Aj =

nf∑
j

δVj
∆t

(3.28)

where j subscript refers to the j face area vector; nf is the number of faces on each

control volume, and δVj is the volume swept out by face j for ∆t.

The sliding mesh motion is a special case of dynamic mesh wherein the mesh moves as

a rigid body motion. It is governed also by Eq.3.24; however since mesh motion is rigid,

dV/dt = 0 and thus,

d

dt

∫
V

ρφdV =
V [(ρφ)(n+1) − (ρφ)n]

∆t
(3.29)

V (n+1) = V n (3.30)

nf∑
j

~ug,j · ~Aj = 0 (3.31)

The GCL condition can be interpreted as a stamement that any arbitrary mesh motion

should not introduce any disturbance to a uniform flow [45]. The manner in which temporal

integration is carried out in the Arbitrary Lagrangian-Eulerian formulation of moving mesh

must satisfy the geometric conservation law in order to preserve the order of accuracy of a

time-integration scheme meant for fixed grids [36, 24, 45].
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3.6.2 Sliding Mesh and Non-conformal Cells

The sliding mesh is used to simulate the unsteady flow past the rotating turbine. To setup

the sliding mesh, two separate zones are created with ICEM, each zone having its own face.

The interface between the two face zones are created in Fluent. Figure 3.4 shows how fluent

creates the interior face that connects the two face zones. The intersection of the two faces

generates the faces a-d, d-b, b-e, and e-c, Fluent groups them into interior zone that allows

flux to be passed on from zone 1 to zone 2. When the flux is computed across the interface

to cell IV for example, the interior face d-b and b-e are used to calculate the flux instead

of face D-E. At each time step, the mesh is updated and the non-conformal interface is also

updated. It should be noted that the mesh motion must “slide” along the interface face for

the flow to be able to go across the zones as any interface that is not in contact is treated

as wall [27]. The sliding mesh method does not automatically guarantee flux conservation

[28, 70] but is commonly used in unsteady rotating simulations and have been shown to be

in good agreement with experimental results [38, 4].

Figure 3.4: Sliding mesh and non-conformal interfaces [27]
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3.6.3 Dynamic Mesh Methods

Fluent has two available methods of dynamic mesh motion, (i) spring-based and (ii) diffusion-

based. The spring-based is the same as the linear spring analogy method in the literature

review chapter while the diffusion-based is the same as the Laplace method. Using Fluent’s

diffusion-based smoothing as opposed to Fluent’s spring-based smoothing assures a higher

quality of grid deformation [27, 66]. Fluent diffusion-based dynamic mesh motion solves for

the Laplace equation

∇ · (γ∇~u) = 0 (3.32)

in which ~u is the mesh displacement velocity, and γ is the diffusion coefficient. The

Dirichlet boundary conditions are the coordinates given to the blade surface. Fluent allows

the γ to be calculated either inversely proportional to boundary distance or inversely pro-

portional to cell volume. For the study, diffusion coefficient is calculated as a function of the

boundary distance as it allows for the boundary layer resolution to be preserved while most

of the displacement motion is absorbed in nodes further away from the blade. .

γ =
1

da
(3.33)

wher a is the diffusion parameter. As the first cell height is very small for the grid used

in the study, the validity of the cell, whether it will have negative cell volume or not, is

highly dependent on this parameter. The diffusion parameter used for the simulation is

a = 1.105; this value has been tested for morphing the mesh with added 20 interpolated

subframes between each 21 frame profiles. This value is dependent on the initial mesh

topology and it has also been found that adding more frames during morphing does not

guarantee this parameter will not invalidate the mesh. Fluent diffusion-based deformation

uses finite element method to solve for the Laplace equation where ~u obtained for each node.

The nodes are then moved with the displacement velocity ~u and node position is updated as

~xnew = ~xold + ~u∆t (3.34)

It should be noted that the mesh deformation does not check for the quality nor the

validity of the cells after deformation. If the mesh is invalidated in the process, the solver

will be unable to calculate the solution for the next time step and abort.
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3.6.4 User-Defined Function

In order to morph the blade, a user-defined-function (UDF) is needed to specify the boundary

motion of the profile deformation. As shown in Fig.3.5, the node coordinates on the blade

surface are grouped into upper, lower, and tip where the nodes are given new coordinates

based on Fourier series expansion representation of experimental data points; there are total

of 21 frames for the actuation range of SSMA which can be found in Appendix A. The

Fourier coefficients are different for upper and lower surface, while tip is calculated as a

straight line that joins the last nodes on upper and lower. Each surface is linked to their

own DEFINE GRID MOTION function.

Figure 3.5: Blade surface split into upper, lower, and tip for specifying coordinates

The leading edge geometry of the blade profile is kept the same and so the blade is mor-

phed only for nodes that have x-coordinates of x > 0.1609m or at approximately half the

chord length; anything before this value remains the same as the standard NACA0012.The

UDF algorithm is shown in Fig.3.6 and the code is presented in Appendix B. All coordinates

are calculated on the azimuthal position θ = 0◦ coordinate space and are transformed in

their corresponding azimuthal coordinate space at the point of deformation.The deforma-

tion is flagged off by default and is only flagged at certain azimuthal positions since the

blade is not morphing continuously throughout the whole cycle. The sequence of execution

for Fluent’s dynamic motion is as follows: DEFINE GRID MOTION gets called first and

Laplace equation is solved for the dynamic mesh, cell zone motion increments the whole

rotating zone by ∆θ◦ with the sliding mesh method, then DEFINE ADJUST is called at the

beginning of each iteration. The subroutine that calculates the new coordinate positions are

executed within DEFINE ADJUST so that at next time step the DEFINE GRID MOTION

can assign the new coordinates to the blade. Since DEFINE ADJUST function gets called

at the beginning of each iteration, a conditional statement must be included so that the
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necessary subroutine gets executed only once per time step.

Although there are 21 frames of coordinate data available, subframes can be added be-

tween each frames through linear interpolation. The addition of subframes serves as a prac-

tical approach to control the speed of deformation without changing the time step size. This

is because the node coordinates can be modified only at each time step before calculating

the solution. As an example, if only 21 frames are used for a time step size of 0.0001s, the

blade will be morphing for a mere 0.00021s for the whole actuation range. For the simulation

of the morphing blade, 20 subframes are added between each frames; this is the maximum

subframes that can be added without invalidating the mesh. Although the diffusion-based

method handles the interior mesh motion, it cannot prevent the deterioration of cell quality.

This deterioration is exacerbated as the number of incremental displacement increases. In

order to ensure the quality of the grids are not deteriorated every cycle, the initial grid coor-

dinates are stored for all nodes inside the C-mesh zone, and these coordinates are retrieved

instead of recalculated when the target profile cycles back to the initial profile. In fact, the

whole range of actuation cannot be obtained without invalidating the mesh unless the initial

mesh is retrieved as this frame is traversed during actuation.
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Figure 3.6: Algorithm diagram for specifying node movement for blade flexure motion
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Chapter 4

Verification and Validation

Verification and validation of the model and methods used in the study is a means to quantify

and be aware of the uncertainties involved. The verification step is meant to check if the

equations and model are being solved correctly, while validation is a means to check whether

the equations being solved are representative of the physical reality [50].

4.1 Grid and Time Step Sensitivity Analysis

The verification of the CFD method employed is done by performing grid sensitivity and time

step size sensitivity analysis in order to assess the discretization error of the CFD method

used for the study. The spatial and temporal sensitivity analysis are performed for the same

geometry and boundary conditions as the one used for the study but with varying mesh

resolution and time step size. The grid refinement factor is based on the minimum refinement

factor when performing Grid Convergence Index (GCI) according to Roache [61], which is

based on Richardson’s extrapolation (h-extrapolation) method [60]. For unstructured grids,

the grid refinement index r is calculated from the number of elements used in the finer grid

N1 and coarser grid N2 where D is the number of dimensions on the domain.

r =

(
N1

N2

)1/D

(4.1)

The grid is refined by 1.3 in each dimensions; since it is a 2D mesh, this means the total

cell count increases by approximately 1.32. It should be noted however, that the first cell

height from the airfoil wall and the number of boundary layers are kept the same for all

grids after the simulation results from G2 has shown that this first cell height and boundary

layer gives the desired y+ value and resolves the boundary thickness as it is shown in the

31



next section. The grid sizes are summarized in Table 4.1, where the G1 is the finest mesh;

therefore N1 > N2 > N3 . Two time step sizes are used, ∆t = 0.0003s or ∆θ = 0.162◦

and ∆t = = 0.0001s or ∆θ = 0.054◦. The CP is the objective variable used to check the

convergence where each simulation is run on multiple cycles until the average CP of two

successive cycles do not differ by more than 0.1% as recommended [4]. The results for the

grid and time step size convergence are shown in Fig.4.1 and Fig.4.2. The difference between

the grid and time step refinements are clearly seen in the azimuthal region of 90◦ to 180◦

where stall is expected to occur. It can be observed that the time step size of ∆θ = 0.054◦ is

necessary for the study; G2 is used instead of G1 to reduce computational cost. The trend

in mesh convergence study is similar to what Zadeh et al. [84] have seen wherein coarser

grids are shown to give lower values in CP for 2D VAWT simulations.

Table 4.1: Summary of grid and time step sensitivity analysis

grid name cell count N boundary layers nodes on blade ave y+ CP (∆θ = 0.162◦) CP (∆θ = 0.054◦)

G3 227,977 50 523 ≤ 1 0.245855 0.231899

G2 384,768 50 680 ≤ 1 0.251283 0.242973

G1 658,549 50 884 ≤ 1 0.278331 0.243167

Figure 4.1: Grid sensitivity with CP as objective variable
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Figure 4.2: Temporal sensitivity with CP as objective variable

4.2 Grid Resolution at Boundary Layer

The boundary layer is characterized by highly viscous flow where there are large velocity

gradients in the direction normal to the blade surface. The no-slip condition on the blade

surface means that velocity is zero relative to the blade surface; however, flow conditions

at the outer edge of the boundary layer thickness is the same as the flow conditions if it

the flow was inviscid [3]. The wall shear stress and boundary layer thickness are important

parameters for the modelling of turbulent flows. The accuracy of the turbulence model is

dependent on how well the boundary layer is resolved. An important parameter is the y+

which is a measure of the first cell height from the wall, and to be as accurate as possible

while using k−ω SST, a y+ of less than one is required [47]. When the grid was generated,

the first cell height had to be approximated with a desired y+ of 1 or less using the equation

for y+ [79],

y+ =
ρu∗y

µ
(4.2)

where y is the first wall height and u∗ is the friction velocity which can be calculated from

the wall shear stress τw.The wall shear stress requires the skin friction coefficient in which

for the calculation of the wall distance is approximated using the Schlichting skin friction

correlation [65].
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Figure 4.3: Turbulent viscosity ratio near the wall

Figure 4.3 shows the turbulent viscosity ratio near the surface of the blade. The boundary

layer is shown to be well resolved for k−ω SST turbulence model as the region near the wall

is laminar. As the normal distance moves further away from the wall from the buffer region

to the logarithmic region, the turbulent viscosity ratio gradually increases before going back

to being laminar [79]. The region of maximum turbulent viscosity is expected to be in the

middle of the boundary layer; thus the boundary layer edge can be approximated as twice

that height. The simulation result gives a y+ on the blade that ranges from 0.1 to 1.2

depending on the azimuthal position and the location on the blade surface, but the average

y+ throughout the cycle is less than 1.

4.3 Validation with Experiment

After verifying that the equations are being solved in the proper manner, it is now required

to check that the equations are representative of reality. In order to validate the method

and setup used for the simulation of vertical axis wind turbine, the benchmark test case of

Castelein et al. [14] is compared with the simulation results run on Fluent. The test case

geometry uses 2-bladed NACA0018 profiles with turbine blade chord of 0.06m, span length

of 1m, and rotor radius of 0.5m operating at λ = 2 with free stream velocity of 10.2 m/s.

The experimental measurements are acquired by Particle Image Velocimetry (2C-PIV) at

mid-span of the turbine, allowing it to be comparable to a 2D simulation. It should be noted

however that the tower in the middle of the turbine rotor is not included in the simulation,

which might explain discrepancies in the results.
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Figure 4.4: Validation of experimental case for λ = 2 with non-dimensional tangential force

Figure 4.5: Validation of experimental case for λ = 2 with non-dimensional normal force

The numerical curves of the non-dimensional tangential and normal force are compared

with the experimental results in Fig.4.4 and Fig.4.5, respectively. The region between 90◦

to 180◦ is the expected region of deep stall which might not be properly characterized with

the URANS models. The k − ω SST has the highest peak tangential force but agrees well

with the experiment throughout the rest of the cycle. Transition SST has a similar trend as
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the k − ω SST model except it has a lower peak value. The Spalart-Allmaras model fared

poorly especially as the stall is clearly not captured. For the normal force the k − ω SST

gives the closest result with the experiment. The experiment was chosen since it exhibits

dynamic stall and is at a Reynolds number comparable with the one being used in the study

and can be compared with a 2D case. It can be argued that Transition SST gives better

agreement with experimental result however, since this study deals with a slightly higher tip

speed ratio of 3.17, it has been decided that the two equation k− ω SST gives close enough

result, as the four equation transition SST is more costly to compute.

4.4 Choice of Temporal Discretization

The difference between the solution for 2nd order temporal discretization and 1st order

temporal discretization are summarized in Table 4.2. The CP curve difference for δ = +0.48◦

is shown in Fig.4.6; the main difference is in the region where stall occurs. As it can be

seen from Fig.4.7, the turbulent viscosity ratio in the first order is more diffusive; however,

looking at Fig.4.6, the difference in CP between the two methods is almost negligible but

this difference in solution is more apparent for δ = +6.98◦ which experiences higher effective

local angles of attack compared to the two other profiles. Although 2nd order implicit was

used initially for all simulations, there were unphysical flow behavior when deforming mesh

was used where large pressure gradients occur in the interface between the deforming region

and non-deforming region, which was not observed for 1st order implicit. Moreover, when

remeshing is required, Fluent automatically limits the choice of temporal discretization to

1st order. It is uncertain what causes the numerical error when using 2nd order implicit

together with dynamic mesh motion in Fluent; however the rest of the simulation results in

the Results and Discussion section are performed with 1st order implicit in time due to this

reason.

Table 4.2: Average CP per cycle for 1st order and 2nd order temporal discretization

profile 1st Order 2nd Order relative difference

δ = +6.98◦ 0.14388 0.15313 6.0454%

δ = +0.48◦ 0.24297 0.24833 2.1573%

δ = −13.37◦ 0.24368 0.24325 0.1773%
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Figure 4.6: CP comparison for δ = +0.48◦

Figure 4.7: Turbulent viscosity ratio (a) 2nd order (b) 1st order temporal for δ = +0.48◦
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4.5 Mesh Deformation Quality

The quality of the grid is important as it affects the solution convergence rate as well as the

accuracy of the solution. Figure 4.8 shows the mesh before and after it is deformed, and

it becomes apparent that there is a loss in orthogonality after grid deformation. To assess

the impact of dynamic mesh on the grid quality, two mesh quality metrics are used, the

orthogonality and skewness.

Figure 4.8: (a) Initial mesh, (b) δ = +6.98◦, and (c)δ = −13.37◦ after defromation

The mesh orthogonality for the grids before and after dynamic meshing is shown in

Fig.4.9. The initial orthogonality on the upper and lower surface of the blade have high

orthogonal grids, but the grid downstream of the blade has lower orthogonality, which could

have been avoided with a better meshing strategy. Nevertheless, the most critical region is the

boundary layer on the blade surface, which can be seen to possess 0.80-0.95 orthogonality.

However, for the grids that have been deformed, close to the trailing edge tip, the grid

orthogonality drops to almost 0.5. This effect is more severe for the case of δ = −13.37◦

which is expected since the blade tip deflection is more severe than the case of δ = +6.98◦.

The grid skewness is presented in Fig.4.10 where it can be seen that skewness is increased

on the grid surrounding the trailing edge close to the tip. Again we see that the effect is

more severe for the case of δ = −13.37◦.
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Figure 4.9: Orthogonality of the grids before (left) and after deformation (middle, right)

Figure 4.10: Skewness of the grids before (left) and after deformation (middle, right)
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Chapter 5

Results and Discussion

This section first covers the static airfoil analysis to assess the static stall angle of the airfoil

and to get an insight on how they should behave in VAWT cycle. The three profiles are

then simulated for the rotating VAWT case and their CP are compared in the upwind and

downwind half cycles. These results form a basis for the morphing case. The morphing blade

is applied on the static case and it is shown how the CL and CD curves can be modified by

morphing the blade. The morphing blade is then implemented on the VAWT case where

the challanges and limitations of the commerical software is discussed. The chapter closes

by suggesting future works for the simulation of morphing VAWT.

5.1 Airfoil Static Stall Angle Investigation

The static analysis of the three airfoil profiles will give an insight as to how each profile

behaves at different angles of attack. For the static case, the same grid is used as the one for

the VAWT simulation; however, in this case the boundary conditions and initial conditions

are different. There is no sliding mesh employed for the static case; the velocity used for

the inlet condition is the VAWT average local relative velocity on the blade which in this

case is 25 m/s and therefore Re = 5.18 x 105. The angle of attack is specified so that

the flow hits the blade from above as this is the case for the VAWT local angle of attack

in the upwind half cycle (positive lift points toward rotor center). Further details on the

boundary conditions and initial conditions for the static case are specified in the models and

methodology chapter.
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Figure 5.1: Static airfoil δ = +0.48◦ convergence history, α = 10◦ (left), α = 20◦ (right)

The convergence history of CL and CD for two angles of attack are shown in Fig.5.1. For

low angles of attack the lift and drag are easily obtained; however, at high angles of attack,

as is shown for α = 20◦, CL and CD both oscillates due to separation and vortex shedding.

In the case of high angles of attack, both lift and drag are calculated by taking the average

of the periodic solution.

Figure 5.2: CL and CD vs angle of attack for the static airfoils
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The static lift and drag coefficients for the three airfoil profiles are shown in Fig.5.2.

The profile with δ = +0.48◦ is close to NACA0012 and is shown to start stalling at an

angle of attack between 15◦ and 18◦. To give an idea of NACA0012 CL and stall angle

range, at Re = 106 for NACA0012, the stall angle is known to be approximately α = 16◦

with CL,max = 1.6 [1]. Wind tunnel results from ONERA for NACA0012 for Re = 5 x 105

suggests that onset of stall occurs at an angle of attack closer to α = 12◦ [73].

Within expectations, δ = +6.98◦ profile has a higher lift curve due to the camber while

δ = −13.37◦ profile has lower CL curve but higher stall angle due to the inverse camber.

The drag curves are shown in Fig.5.2, where it can be seen that drag coefficient is almost

constant at low angles of attack but rapidly increases at higher angles of attack. At high

angles of attack where separation occurs, drag coefficient is very unstable and difficult to

measure accurately especially with RANS [22, 29].

Figure 5.3 shows the static pressure contour of the three blade profiles at three different

angles of attack. The maximum local effective angle of attack experienced by the blade

for the VAWT case having λ = 3.17 is in the range of 10◦ ≤ α ≤ 22◦ for the three blade

profiles. It is worth noting that at α = 0◦, the suction side and pressure sides are inverted for

δ = −13.37◦, thus it has a negative lift at low angles of attack. At α = 20◦, the δ = −13.37◦

is the only profile that does not have vortex shedding. This indicates that among the three

blade profiles, the δ = −13.37◦ is the least likely to experience dynamic stall or blade-vortex

interactions when the blades are implemented for VAWT.
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Figure 5.3: Pressure contour [Pa] for the static airfoils
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5.2 VAWT Fixed Profile Results

In order to better understand the flow behavior of each blade profiles for the VAWT case,

the dynamic lift and drag coefficients are plotted against blade angles of attack as presented

in Fig.5.4. Both the lift and drag coefficients are non-dimensionalized using the relative

velocity instead of the free stream inlet velocity.

Figure 5.4: (a) CL, (b) CD for the three blade profiles for λ = 3.17

The cambered profile δ = +6.98◦ generates the most lift upwind but also incurs the

highest drag; on the other hand, the cambered profile δ = −13.37◦ shows much of the lift

it generates is on the downwind side. The sharp decrease in lift during dynamic stall is

preceded by an increase in lift due to the separation bubbles that occur when the critical

angle of attack is exceeded. Drag is noticeably highest for the cambered profile δ = +6.98◦.

Whilst the cambered profile δ = +6.98◦ produced the most lift, it also approaches stall the

soonest; This corresponds to the azimuthal position close to θ = 100◦; as also noted by

Laneville and Vittecoq [76], this is the region where a symmetric airfoil is likely to stall

for λ = 3; past this azimuthal angle, the cambered profile δ = +6.98◦ does not produce

substantial lift. The opposite is true for the cambered profile δ = −13.37◦, where it barely

generates any lift on the upwind, while except for the observed lift increase on the first

quarter of the downwind cycle.
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The static pressure contour plots for azimuthal locations θ = 120◦ and θ = 300◦ are

shown in Fig.5.5. At θ = 120◦, δ = +6.98◦ is already experiencing dynamic stall, while it

doesn’t occur yet for δ = +0.48◦; as for δ = −13.37◦ pressure gradient is very small between

suction and pressure side. On the contrary, for θ = 300◦, δ = −13.37◦ is the blade profile

that generates the most pressure gradient. These results are all consistent with the lift and

drag coefficients presented in the previous section. Figure 5.6 shows the vorticity contours

of the three profiles. Both δ = +6.98◦ and δ = +0.48◦ has vortex shedding that occurs in

the region 90◦ ≤ θ ≤ 180◦ but the δ = −13.37◦ does not shed any vortices throughout the

whole azimuthal range. It is worth noting that the vortex shed downstream does not hit the

same blade in the same cycle or in the next cycle. This is not the case if there is more than

one blade on the turbine.

The coefficient of power CP for all three blade profiles are plotted for comparison in

Fig.5.7, while Fig.5.8 shows how much more CP could be generated from the envelope of

the individual blade profiles. The individual CP curves show that the cambered profile

δ = +6.98◦ gives a much better CP on the upwind while the cambered profile δ = −13.37◦

performs better on the downwind half. This trend is similar to what Danao et al. [19] found

when they compared the effects of camber and reverse cambered LS0421 blade on the CP of

VAWTs. Table 5.1 shows the average CP for each blade profiles for the upwind, downwind,

and for the whole cycle. The CP values are averaged from the last simulation cycle, where

convergence criteria is reached only when CP average of subsequent cycles do not vary for

more than 0.1%.

Table 5.1: Average CP comparison among blade profiles

blade profile CP,ave upwind CP,ave downwind CP,ave per cycle % change in CP

δ = +6.98◦ 0.251871 0.035881 0.143876 -40.78%

δ = +0.48◦ 0.287725 0.198296 0.242973 -

δ = −13.37◦ 0.095039 0.392273 0.243679 +0.29%

envelope 0.413283 0.393675 0.403482 66.06%

In the upwind half, the baseline profile δ = +0.48◦ generates the most power, while on the

downwind half δ = −13.37◦ profile gave the highest power. Although the δ = +6.98◦ profile

has the highest peak CP , it has the highest loss of CP due to stall, therefore lowering its

average in the upwind half. The average CP per cycle is highest for the δ = −13.37◦ profile

but it is only 0.29% higher than the baseline profile. Nevertheless, δ = +6.98◦ produced

the highest peak CP per cycle; therefore, if the δ = +6.98◦ is utilized only for the upwind

half while adopting the δ = −13.37◦ before the δ = +6.98◦ profile stalls, the CP could be
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Figure 5.5: Pressure contours [Pa] for θ = 120◦ (left column) and θ = 300◦ (right column)
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Figure 5.6: Vorticity contours for θ = 120◦ (left column) and θ = 300◦ (right column)
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Figure 5.7: Coefficient of power CP at λ = 3.17 for each fixed blade profiles

Figure 5.8: Coefficient of power CP at λ = 3.17 of baseleine profile and envelope
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optimized. The envelope CP is the maximum that can be obtained when the maximum

values for CP are obtained from each blade profile; although it is not feasible to simply take

the envelope CP and expect the morphing result to be the same, it gives an upper bound to

the possible CP increase of 66.06%. The results from the aerodynamic performance of each

individual blade shall be a basis for the deforming blade simulation. In particular, the blade

will be morphed to give the profile that gives the closest possible result to the envelope CP .

5.3 Morphing Trailing Edge at Static Stall Angle

To investigate the capability of morphing the trailing edge to prevent stall, the case is

investigated for the benchmark profile with flow conditions based on the local angle of attack

and local relative velocity at the azimuthal position of θ = 100◦. The flow conditions are

chosen based on this location as it is the location at which local angle of attack approaches

α = 18◦, which is the static stall angle for the benchmark profile. The local velocity of

25.3m/s is the relative velocity at θ = 100◦. The same mesh used for the VAWT case is used

for the static morphing airfoil case but with different initial and boundary conditions. The

details of the static airfoil setup can be found in the models and methodology chapter. Figure

5.9 shows the time history of CL and as it is morphed from δ = +0.48◦ to δ = −13.37◦. The

figure on the right shows the close up history in the duration of morphing.

The blade is morphed at t = 0.600s and can be identified from the time history where

large jumps in solution occurs. The total duration of morphing is 0.014s but it takes a while

for the solution to converge to the same solution of the static δ = −13.37◦. The comparison

of the CL and CD between the morphed and static δ = −13.37◦ is presented in Fig.5.10

and summarized in Table 5.2 where it shows that the difference between the solution is very

small.

Figure 5.11 and Fig.5.12 show the static pressure contour as the baseline blade profile

δ = +0.48◦ is morphed to δ = −13.37◦. As the effective angle of attack is being decreased

by morphing the blade, the region of high pressure is also seen to be decreasing as the blade

trailing edge is morphed to δ = −13.37◦. From the static results of morphing the airfoil, it

was shown that the stall can be delayed; however, it takes a couple of time step to converge

to the new solution after morphing. The airfoil stopped morphing at t = 0.614s but has yet

to reach a converged solution until t = 0.9s; for a time step size of 0.0001s, this is equivalent

to 2860 time steps.
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Figure 5.9: δ = +0.48◦ morphed to δ = −13.37◦ for α = 18◦ (left), morphing phase (right)

Figure 5.10: Comparison of CL, CD values between δ = −13.37◦ morphed and δ = −13.37◦

Table 5.2: Comparison of CL and CDvalues for morphed and static case

variable morphed δ = −13.37◦ static δ = −13.37◦ relative difference

CL 0.63851 0.64045 0.3023%

CD 0.03625 0.03630 0.1427%
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Figure 5.11: Static pressure [Pa] while morphing the blade from δ = +0.48◦ to δ = −13.37◦

Figure 5.12: Streamlines on the profile before and after morphing
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5.4 Challenges of Morphing Case for VAWT

To simulate the morphing blade on the VAWT, both the sliding mesh and dynamic mesh

smoothing is utilized. This method is preferred since the dynamic mesh smoothing only has

to smooth out the node motion of the morphing flexure motion, the blade rotation is moved

as a bulk body motion by giving the angular velocity to the whole rotating zone which is

specified through Cell Zone Conditions in Fluent. This chapter shows the results obtained

from morphing the blade for VAWT. It is shown that the results obtained from using this

method is unphysical, and alternate methods have been considered and discussed in the

chapter but no adequate solution has been resolved for the morphing VAWT case. Finally,

the issues and challenges encountered are summarized and discussed for future works within

and outside of the context of using Fluent.

5.4.1 Implementing Morphing Blade for VAWT

The effect of implementing a morphing aileron on VAWT blades is considered by deform-

ing the blade profiles at specific azimuthal positions as obtained from the fixed profile CP

envelope results in the previous chapter. However, because δ = +0.48◦ is only utilized in

a small region and morphing the blade takes time to reach the desired profile, it is decided

that the blade should be deformed only twice for each cycle. The static morphing case has

shown that stall could be delayed by morphing the blade camber; therefore, the upwind half

will be utilizing the δ = +6.98◦ profile and before it reaches the static stall angle, the blade

will be morphed to δ = −13.37◦. Table 5.3 shows the specific azimuthal positions with the

corresponding blade profile. Figure 5.13 is the CL loop for the three fixed profile blades as

obtained from the results in the previous chapter, the marking shows how the CL is expected

to change as the effective angle of attack changes in Fig.5.13 when the blade shifts to the

curve of one profile to another.

Table 5.3: Blade profile morphed at specific azimuthal postions

azimuthal position profile morphing interval ∆θ◦ (∆t)

350◦ ≤ θ ≤ 90◦ δ = +6.98◦ 22.68◦(0.0420s)

90◦ ≤ θ ≤ 350◦ δ = −13.37◦ 22.68◦(0.0420s)

Compared to the CL loop of the baseline profile, the morphing blade is expected to have

a larger CL since morphing the blade allows the blade to shift to a larger range of CL path

as seen in Fig.5.13 when one follows the path of the markings on the curve. However it
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Figure 5.13: (a) CL vs effective aoaeff (b) aoaeff vs θ from fixed profile results

is unclear what is the effect of changing the blade aoaeff on the flow filed. The blade is

morphed twice per cycle, as the results from the fixed profile shows that substantial amount

of power is extracted from the δ = +6.98◦ profile in the upwind half and δ = −13.37◦ in

the downwind half. The fixed blade profile of δ = +6.98◦ had the highest peak CP but also

stalled at an earlier azimuthal location due to the camber increasing the effective angle of

attack. By morphing the trailing edge at the onset of stall close to 90◦, the aim is to try

to sustain the peak as much as possible before stall occurs. The results from morphing can

be seen on Fig.5.14. The point of deformation can be identified in the CP curve as these

are also the regions where small oscillations can be observed. It appears that by morphing

the trailing edge, the peak and the dip in CP both are accentuated. Even though the blade

has stopped morphing by the time the blade reaches the azimuth angle of θ = 13◦, the CP

generated is significantly larger in the region 45◦-90◦. The blade morphs again at θ = 90◦

but stops morphing by θ = 113◦, and again CP is substantially different in the region that

follows, this time with lower CP at the dip and then a higher peak in the downwind half.

However the increase in CP in the downwind half is cut short as the blade encounters the

region of large turbulence due to the vortex from upstream that was caused by morphing

the blade at θ = 90◦ as in Fig.5.15.
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Figure 5.14: CP comparison for baseline profile, envelope, and morphing profile

Figure 5.15: Turbulent viscosity ratio for the morphing case on VAWT

In order to check the validity of the solution for the morphing case, the solution from

the fixed profile case of δ = +0.48◦ was morphed once to the blade profile δ = +6.98◦ while

running the simulation and kept that profile to run at least four cycles. The time history

of coefficient of power for this case is shown in Fig.5.16 The small section with oscillation

in the beginning is the point where the morphing occurs and while the dynamic mesh is

still enabled in Fluent, the node points are not being changed after the blade has done
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morphing to the δ = +6.98◦ profile as the flag is turned off to prevent node motion from

being assigned. However, after four cycles, Fig.5.17 shows that the CP result is remains

substantially different from the fixed profile case.

Figure 5.16: Convergence history four cycles after morphing to δ = +6.98◦

Figure 5.17: CP comparison between morphed once and fixed profile of δ = +6.98◦

Looking at the vorticity contours as shown in Fig.5.18, one can see that there are some

problems in the way vorticity, and therefore, the velocity gradients, are calculated within the

C-mesh. The problem in the vorticity within the C-mesh is apparently addressed by declaring

in Fluent dynamic mesh properties that the fluid in the C-mesh zone is a deforming body.

However, in this case the source of error now comes from the interface between the sliding

mesh and the rotating zone as shown in Fig.5.19.
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Figure 5.18: Vorticity magnitude contours for (a) morphing case, (b) baseline fixed profile

This error in solution occurs whenever sliding mesh is used at the same time as dynamic

mesh. Different methods have been tested to alleviate this apparent bug in the commercial

software. For example, the C-mesh zone was merged with the rotating zone and the whole

rotating zone was allowed to deform; the problem became much worse, in this case the flow

within the rotating zone are not being convected downstream, flow properties simply rotate

along the rotating zone. To identify the problem that was causing this, the dynamic mesh

is enabled in Fluent while the coordinates are given the same values as what they had, and

this still cause the same problem in the vorticity similar to that in Fig.5.18 as long as this

was done while sliding mesh is also active. When the sliding mesh was inactive, the dynamic

mesh appear to work fine without the errors as is the case for the static morphing trailing

edge in the previous chapter.
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Figure 5.19: Declaring C-mesh fluid zone as ”deforming” in Fluent dynamic mesh zones

5.4.2 Alternative Strategies for Morphing Blade on VAWT

The observations from the previous section seem to point to the error mainly being caused

by the use of sliding mesh when morphing. The main idea for the alternate methods is to

find another way to simulate the VAWT rotation motion without using sliding mesh motion.

Two alternate methods within Fluent are considered and tested to see if the problem can be

fixed.

Alternate Method I

The idea of this alternate method is to give a rigid body rotation only to the C-mesh zone

and keep the other zones stationary. The region outside the C-mesh in Fig.5.20 will undergo

mesh deformation, at the same time the internal nodes within the C-mesh will have mesh

deformation due to the morphing flexure motion. There are two ways to define a rigid
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body motion in Fluent, (i) using the Cell Zone Condition Mesh Motion, (ii), using the

rigid body motion Dynamic Mesh Zone type and linking it to a UDF that contains the

Fluent function DEFINE CG MOTION. One may consider to give a rotational velocity to

the C-mesh through the Dynamic Mesh Zones specification instead of the Cell Zone Motion

specification to simulate the turbine rotation, then implement the flexure motion and allow

the nodes to be smoothed out. The difference between the Dynamic Mesh Zone and Cell

Zone Motion rigid body specification is that for the former, dynamic mesh smoothing is

performed on the cells adjacent to the rigid body motion, while for the latter specification

it is used along with sliding mesh and therefore does not smooth out the nodes adjacent to

the rigid body motion.

Figure 5.20: Diagram of the alternate method I for VAWT morphing case

For this method, in order to provide the VAWT motion, the DEFINE CG MOTION

has to be used to provide the VAWT angular velocity; however, this requires that the C-

mesh be declared as a Rigid Body within Fluent. This is in contradiction with the flexure

motion that requires the C-mesh to be a deforming zone. The ideal solution to this problem

is to have two phases of mesh motion within one time step: first specify that C-mesh be

rigid body during the VAWT rotation phase, and then to allow it to be deformed and

smoothed only during the flexure motion phase; however this option is not available in the

commercial software. Another issue that this method could face is a problem during mesh

deformation, In this case when the Dynamic Mesh Zone specification is used for the rotation

motion, the node smoothing would have to occur within the C-mesh and outside the C-mesh.

Fluent has to take care of two different zones, the zone outside of the C-mesh that needs

mesh smoothing due to VAWT rotation, and zone inside the C-mesh due to the flexure

motion. Although two different motions require different parameter for mesh smoothing,

unlike remeshing parameters, there is only one global parameter that affects both zones for

the diffusion-based smoothing.
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Alternate Method II

Another method is to specify both the VAWT rotation motion and the morphing flexure

on the airfoil surface and allow the rest of the mesh to be smoothed out by the dynamic

mesh motion as in Fig.5.21. For this method, each node on the blade surface is given

both the VAWT rotation motion and the flexure motion by linking a UDF through DE-

FINE GRID MOTION. Each node in the airfoil is rotated first by transforming the coordi-

nates by ∆θ, and is then given the flexure motion on this new azimuth position, but all of

these subroutines are contained and executed within the DEFINE GRID MOTION.

Figure 5.21: Diagram of the alternate method II for VAWT morphing case

The disadvantage in this method is that dynamic mesh smoothing is done after DE-

FINE GRID MOTION is called, therefore instead of having to only smooth out the node

motion from the flexure alone, it now also has to smooth out the node motion from ∆θ at

the same time as the flexure motion; there is no rigid body motion phase in this method.

Another major disadvantage in this method is that the cells adjacent to the airfoil wall have

the smallest cell size in the whole grid, the cells adjacent to the wall therefore have to be

able to accommodate the rotational increment at the same time as the flexure motion. For

this method to even work, the time step size has to be reduced by at least 10 times so that

∆θ can be reduced by at least 10 times. To test this method, the first step is to test the

dynamic mesh motion with just the VAWT rotation without the morphing flexure motion.

Because this method requires the whole domain to be remeshed, it is important to check if

the solution is compromised. The idea is to run the VAWT simulation with dynamic mesh

instead of using a sliding mesh and the results of this simulation should match the results

when sliding mesh was used. However, this is not even possible to simulate since negative

cell volumes are created right after the first time step. The local cell remeshing method on

Fluent only applies to triangular and tetrahedral cell types [27]. This method could work

if the cells adjacent to the airfoil walls are triangular cells, but this is not ideal and would

have significantly changed the solution.
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5.4.3 Recommendations Outside of Fluent

The implementation of morphing blade on VAWT shows the limitation of the commercial

solver. The limitation presented by the commercial solver is two-fold, (i) inability to simulate

sliding mesh simultaneously with deforming mesh, and (ii) the need for a better preservation

of grid orthogonality and skewness during mesh deformation. The former can be addressed by

using another solver that allows for the sliding mesh to be compatible with mesh deformation

or start with a new grid and allow the whold domain to rotate instead of using a sliding

mesh. For the latter issue, it can be said that the mesh deformation methods available in

Fluent 14.5.7 are very basic compared to the methods mentioned in the literature review

chapter.

It could be argued that the mesh deformation methods in Fluent are not meant to be

used for visous flow calculations where high aspect ratio cells are predominant in the region

near the wall. In order to prevent negative volumes, the node distribution towards the

end of the trailing edge have to be prescribed so that the cells in this region have aspect

ratio of close to 1 or negative cell volumes are generated. Moreover, the mesh quality

degrades quickly as more subframes are added between the 21 profiles. This is because

the deformation quality deteriorates as the number of incremental dispalcement increases.

In fact, the whole actuation range of going from δ = −13.37◦ to δ = +6.98◦ cannot be

achieved without having to retrieve the initial mesh of δ = +0.48◦ to restore the mesh

quality everytime this profile is traversed during the actuation range. Having only the

spring-based and diffusion-based deformation methods available, the parameters that control

the mesh quality are either the stiffness factor or the diffusion coefficient. The literature

review chapter presents augmentations to these methods that may improve cell quality during

deformation like modyifying the diffusion coefficient to be raised to an exponent or the

addition of quaternions to the spring-based method; however, none of these are available in

the commercial software. Although the morphing case was shown to give good agreement

with the static solution, the quality of the mesh near the wall, especially orthogonality and

skewness leaves much room for improvement.

Outside the context of using the commercial solver Fluent, the most robust mesh de-

formation method would be either the linear elasticity method or the RBF interpolation

method. The linear elasticity method could be used for 2D cases where computational

costs are manageable. For 3D cases with large node counts, the RBF with augmented al-

gorithms to reduce computational cost is ideal. One could argue to keep the spring-based

or diffusion-based method and remesh when cell is invalidated; however, this would make
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it computationally impractical especially for the case of VAWT where small time step and

multiple cycles are required.
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Chapter 6

Conclusion

The main purpose of the study is to simulate the flow past a morphing blade on VAWT. In

line with this objective, the study investigates the lift and drag generated by the three blade

profiles from the actuation range of the SSMA as well as their critical stall angle of attack.

These results give a good insight as to how the blade profiles will behave for the VAWT case.

Within the expected results, the δ = +6.98◦ produced the highest peak CP in the upwind

half and the δ = −13.37◦ generated the highest peak CP in the downwind half. Taking the

envelope of the three profiles gave an upper bound of 66% possible increase in average CP

per cycle. With this in mind, the SSMA morphing blade could be used to give the blade

varying camber as a function of the azimuthal position with the purpose of increasing the

CP .

The morphing blade is first simulated for an unsteady static case to investigate the

capability of simulating the effect of morphing on the CL and CD generated. It was shown

that by morphing the blade from the baseline δ = +0.48◦ to δ = −13.37◦, the CL and CD

were able to be decreased to the expected static values of δ = −13.37◦. This shows that

there is a potential for the dynamic stall to be avoided and therefore mitigate the effect of

vortex-blade interaction.

The implementation of the morphing blade on VAWT however, has shown to produce

unphysical solutions with the method used in the study due to the apparent incompatibil-

ity due to the concurrent usage of sliding mesh along with dynamic mesh motion; further

investigation is necessary to exactly locate the source of the error. With the literature re-

view on mesh deformation methods in mind, the deforming mesh methods in Fluent is not

robust especially within the context of solving the Navier-Stokes equations. Fluent only

has the linear spring analogy and Laplace method for mesh deformation while there has
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already been numerous studies on more robust and computationally efficient methods that

are able to better preserve the quality of the mesh especially where high aspect ratio cells

are concerned. This study concludes by highlighting the contribution of showing that blade

camber has an important imact on the CP curve of VAWT and while the implementation

of morphing blade on VAWT in Fluent did not give acceptable results, the morphing blade

was successfully implemented for static airfoil case and showed potential for future studies

on its application for VAWT.
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Appendix A

Fourier Approximation of Airfoil

A.1 Fourier approximation for the airfoil surfaces

y = a0 + a1 cos(x · ww) + b1 sin(x · ww) + a2 cos(2x · ww) + b2 sin(2x · ww)

+a3 cos(3x · ww) + b3 sin(3x · ww) + a4 cos(4x · ww) + b4 sin(4x · ww)

+a5 cos(5x · ww) + b5 sin(5x · ww) + a6 cos(6x · ww) + b6 sin(6x · ww)

Figure A.1: Upper Fourier coefficients for the 21 frames of actuation range
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Figure A.2: Lower Fourier coefficients for the 21 frames of actuation range

A.2 21 Frames of SSMA actuation range

The data points for 21 actuation frames for the whole SSMA actuation range are from

experimental data from Pankonien, et al.[52]. The surfaces are created using Fourier series

approximation based on these data points.

72



73



74



75



76



77



78



79



Appendix B

User-Defined Function

#include "udf.h"

#include "dynamesh_tools.h"

#include "math.h"

#include "para.h"

#include "prf.h"

#include "unsteady.h"

#include "string.h"

int rotating_case = 1; //set to 0 for non-rotating, 1 for rotating

int continuousDeformingCase = 1; //set to 0 for deformation according to azimuthal location

int h = 14; //h is the frame profile h range from 1 to 21

int g = 1; //g = 1 for deflecting upward, g = -1 for deflecting downward

int b = 0; //b = subframes, b range from 0 to the specified subf value

int subf=20; //maximum subframes between each frame profiles

int zone_ID_upper = 33; //zone ID of the thread, should be matched with Fluent bc

int zone_ID_lower = 34;

int zone_ID_tip = 35;

int zone_ID_cmeshborder = 36;

int zone_ID_int_cmesh_surface = 26;

int zone_ID_rotating_interface = 37;

int n_checkpt_nodes;

int n_nodes[3];

int a = 0; //indexing: a = 0 for upper, 1 for lower, 2 for tip

int last_ts = -1;

int initial_mesh = 0;

int ini_h = 0;

int ini_b = 0;

int targetframe = 1;

int keepframe = 1; //flag 0 to calculate new coordinates

int call_grid_motion = 0; //flag 1 to give the nodes new coordinates

int boundary_calculated = 0; //flag 1 to indicate that node coordinates already calculated
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double theta = 0;

double theta_point = 0;

double const rpm = 90;

double const centerOfRotationX = 0.07575;

double const centerOfRotationY = -2.6975;

Thread *airfoil[3];

Node *nodeID[3][9999];

Node *node_to_update[1000000];

Node *max_x_nodeID[2];

real nodePOS[3][2][999];

real tempxy[3][2][9999]; //to store all the nodes of upper,lower,tip in the 0 coordinate

real coord[1000000][2]; //to store all the initial node coordinates in the Cmesh only

real const xmin = 0.16094; //the minimum relevant x-coord value for upper and lower in 0 coord

real xmax[21][20+1]; //to store max x-coord, second array size: subf+1

/*******************************************************

Convert the theta value to PI values 0 <= theta <= 360

********************************************************/

double convert360(double theta)

{

double theta_degree = theta*360/(2*M_PI);

double value = 0;

if (theta_degree>360)

{

if(fmod(theta_degree, 360) != 0)

{

value = theta_degree - 360*(int)(theta_degree/360);

}

else

{

value = 360;

}

}

else

{

value = theta_degree;

}

return value;

}
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/*******************************************************

Convert the theta value to PI values 0 <= theta <= 2PI

********************************************************/

double convert2PI(double theta)

{

double value = 0;

if (theta>(2*M_PI))

{

if(fmod(theta, (2*M_PI)) != 0)

{

value = theta - (2*M_PI)*(int)(theta/(2*M_PI));

}

else

{

value = (2*M_PI);

}

}

else

{

value = theta;

}

return value;

}

/************************************************************************************

Transforms the coordinate space into clockwise of azimuthal angle

*************************************************************************************/

real transf_cw(real x, real y, double angle, int x_or_y, int print)

{

real new_coord = 0;

if (x_or_y == 0)

{

if (angle!=0){

new_coord = centerOfRotationX+(x-centerOfRotationX)*cos(angle)

+(y-centerOfRotationY)*sin(angle);

}

else{

new_coord = x;

}

}

else

{

if (angle!=0){
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new_coord = centerOfRotationY-(x-centerOfRotationX)*sin(angle)

+(y-centerOfRotationY)*cos(angle);

}

else{

new_coord = y;

}

}

return new_coord;

}

/********************************************************************************

Transforms the coordinate space into counter clockwise of azimuthal angle

********************************************************************************/

real transf_ccw(real x, real y, double angle, int x_or_y, int print)

{

real new_coord = 0;

if (x_or_y == 0)

{

if (angle!=0){

new_coord = centerOfRotationX+(x-centerOfRotationX)*cos(angle)

-(y-centerOfRotationY)*sin(angle);

}

else{

new_coord = x;

}

}

else

{

if (angle!=0){

new_coord = centerOfRotationY+(x-centerOfRotationX)*sin(angle)

+(y-centerOfRotationY)*cos(angle);

}

else{

new_coord = y;

}

}

return new_coord;

}
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/***************************************************************************

Takes care of the looping of airfoil profiles from Fr1->Fr21 and Fr21->Fr1

****************************************************************************/

void incrementframe()

{

int c = 0;

c = h % 21;

if (c==0)

{

g = -1;

b = subf;

h+=g;

}

else if (c==1)

{

if(b==0)

{

g = 1;

if (subf!=0){

b+=g;

}

else{

h+=g;

}

}

else

{

b+=g;

if (b>subf){

h+=g;

b = 0;

}

}

}

else

{

if (g > 0)

{

b+=g;

if (b>subf)

{

h+=g;

b = 0;

}

}

else
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{

if (b==0)

{

h+=g;

b = subf;

}

else{

b+=g;

}

}

}

}

/**********************************************************************************

Calculates the y-coordinates of the nodes according to the azimuthal position 0

**********************************************************************************/

real get_ycoord_fourier(int frame, int a, real xcoord)

//subroutine omitted for brevity, refer to Appendix A

/********************************************************************************

Store all the node coordinates of the initial Cmesh used in the simulation

*********************************************************************************/

void store_coord(int h, int b)

{

Domain *domain;

Thread *f_thread,*tf1,*tf2,*tf3,*tf4,*tf5;

Thread *zone[5];

Node *node;

face_t f;

int n, i, j;

int m=0;

int repeat = 1;

int pt = h-1;

int repeating_node = 0;

domain = Get_Domain(1);

tf1 = Lookup_Thread(domain,zone_ID_upper);

tf2 = Lookup_Thread(domain,zone_ID_lower);

tf3 = Lookup_Thread(domain,zone_ID_tip);

tf4 = Lookup_Thread(domain,zone_ID_cmeshborder);

tf5 = Lookup_Thread(domain,zone_ID_int_cmesh_surface);

zone[0]=tf1;

zone[1]=tf2;

zone[2]=tf3;

zone[3]=tf4;
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zone[4]=tf5;

for(i=0;i<5;i++)

{

begin_f_loop(f,zone[i])

{

f_node_loop(f,zone[i],n)

{

node = F_NODE(f,zone[i],n);

repeating_node = 0;

for (j=0;j<m;j++)

{

if (node == node_to_update[j])

{

repeating_node = 1;

break;

}

}

if (repeating_node != 1)

{

node_to_update[m] = node;

coord[m][0] = transf_cw(NODE_X(node),NODE_Y(node),theta,0,1);

coord[m][1] = transf_cw(NODE_X(node),NODE_Y(node),theta,1,1);

m++;

}

}

}

end_f_loop(f,zone[i]);

}

n_checkpt_nodes = m;

}

/*************************************************************************************************

Retrieve all the node coordinates of the initial Cmesh used in the simulation

*************************************************************************************************/

void retrieve_coord(int h, int b)

{

Node *node;

int m=0;

double discrep=0;

double theta_val=0;

int pt = h-1;

theta_val = convert2PI(theta);
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for (m=0; m<n_checkpt_nodes; m++)

{

node = node_to_update[m];

NODE_X(node) = transf_ccw(coord[m][0],coord[m][1],theta,0,0);

NODE_Y(node) = transf_ccw(coord[m][0],coord[m][1],theta,1,0);

}

}

/*******************************************************************************

Calculates the node position on the upper, lower, tip surfaces of the airfoil

********************************************************************************/

void calcul_boundary()

{

Domain *domain;

Node *node;

Node *temp1;

face_t f;

Thread *tf1, *tf2, *tf3;

int temp_int1, temp_int2;

int repeat = 1;

int i = 0, j = 0, k = 0, n = 0, m = 0, s = 0, d = 0, p = 0;

double dps = dps = rpm*360/60;

double rps = rpm*2*M_PI/60;

real temp_real;

real ratio[3][999];

real current_max_x[2];

real current_y_of_max_x[2];

real global_current_max_x[2];

real max = -9999;

real yval1 =0.0;

real yval2=0.0;

real global_yu = 0;

real global_yl = 0;

real y_u = -99999;

real y_l = 99999;

real x_tip = 0;

domain = Get_Domain(1);

if (rotating_case!=0){

theta = CURRENT_TIME*rps;

}

else{
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theta = 0;

}

tf1 = Lookup_Thread(domain,zone_ID_upper);

tf2 = Lookup_Thread(domain,zone_ID_lower);

tf3 = Lookup_Thread(domain,zone_ID_tip);

airfoil[0] = tf1;

airfoil[1] = tf2;

airfoil[2] = tf3;

xmax[0][0] = 0.3007;

xmax[1][0] = 0.3008553999999986;

xmax[2][0] = 0.3011335000000000;

xmax[3][0] = 0.3010631999999980;

xmax[4][0] = 0.3012042999999986;

xmax[5][0] = 0.3013326999999996;

xmax[6][0] = 0.3011037999999993;

xmax[7][0] = 0.3015872000000004;

xmax[8][0] = 0.3017690999999964;

xmax[9][0] = 0.3020107999999985;

xmax[10][0] = 0.3021791999999968;

xmax[11][0] = 0.3026812999999977;

xmax[12][0] = 0.3028716999999976;

xmax[13][0] = 0.3037125999999974;

xmax[14][0] = 0.3041798999999973;

xmax[15][0] = 0.3045871999999969;

xmax[16][0] = 0.3046234999999967;

xmax[17][0] = 0.3042084999999972;

xmax[18][0] = 0.3039504999999977;

xmax[19][0] = 0.3033040999999981;

xmax[20][0] = 0.3027535999999980;

#if !RP_HOST

d = h-1;

call_grid_motion = 0;

if (rotating_case!=0){

Message0("\n ======== theta is %f rad or %f deg ========", theta, convert360(theta));

}

if (initial_mesh == 0)

{

Message0("\n storing coordinates..");

store_coord(h,b);
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ini_h = h;

ini_b = b;

Message0("\n +++++++++++ ini_h is %d, ini_b is %d +++++++++++ \n", h,b);

initial_mesh = 1;

}

theta_point = convert360(theta);

if(continuousDeformingCase){

keepframe = 0;

}

/*Specifies when to start deforming, and to which profile to deform to*/

if (!continuousDeformingCase)

{

if ((theta_point<90) && ((90-theta_point) < (CURRENT_TIMESTEP*dps)))

{

targetframe = 21;

keepframe = 0;

Message0("theta = %f, theta_point = %f, start deforming \

from %d to target frame %d", theta, theta_point, h, targetframe);

}

else if ((theta_point<350) && ((350-theta_point) < (CURRENT_TIMESTEP*dps)))

{

targetframe = 1;

keepframe = 0;

Message0("theta = %f, theta_point = %f, start deforming \

from %d to target frame %d", theta, theta_point, h, targetframe);

}

}

/*Only calculates new coordinates when deforming*/

if(keepframe == 0)

{

n_nodes[0] = 0;

n_nodes[1] = 0;

n_nodes[2] = 0;

/*Storing all the node coordinates on the upper,lower,tip surface in the transformed

azimuthal angle = 0 space for calculation of new coordinates*/

for(i=0;i<3;i++)

{

m=0;

begin_f_loop(f,airfoil[i])

{

f_node_loop(f,airfoil[i],n)
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{

if PRINCIPAL_FACE_P(f,airfoil[i])

{

node = F_NODE(f,airfoil[i],n);

repeat = 1;

if(((transf_cw(NODE_X(node),NODE_Y(node),theta,0,0))>=0.16094) ||

(fabs(transf_cw(NODE_X(node),NODE_Y(node),theta,0,0)-0.16094)<FLT_EPSILON))

{

for(j=0;j<m;j++)

{

if (node == nodeID[i][j])

{

repeat = 0;

break;

}

}

if (repeat != 0)

{

nodeID[i][m] = node;

tempxy[i][0][m]=transf_cw(NODE_X(node),NODE_Y(node),theta,0,1);

tempxy[i][1][m]=transf_cw(NODE_X(node),NODE_Y(node),theta,1,1);

m++;

}

}

}

}

}

end_f_loop(f,airfoil[i]);

n_nodes[i] = m;

}

/*Rearranging according to ascending x-coord for both upper and lower surface*/

for (i=0; i<2; i++)

{

for (j=0; j<(n_nodes[i]-1); j++)

{

for (n=0; n<(n_nodes[i]-j-1);n++)

{

if (tempxy[i][0][n] > tempxy[i][0][n+1])

{

temp1 = nodeID[i][n];

nodeID[i][n] = nodeID[i][n+1];

nodeID[i][n+1] = temp1;

temp_real = tempxy[i][0][n];

tempxy[i][0][n] = tempxy[i][0][n+1];
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tempxy[i][0][n+1] = temp_real;

temp_real = tempxy[i][1][n];

tempxy[i][1][n] = tempxy[i][1][n+1];

tempxy[i][1][n+1] = temp_real;

}

}

}

}

/*Setting the maximum x-coord values for both upper and lower surface*/

for(i=0;i<2;i++)

{

if(n_nodes[i]!=0){

current_max_x[i] = tempxy[i][0][(n_nodes[i]-1)];

}

}

/*Identifying the highest x-coord of the upper and lower surfaces among all compute nodes*/

for (i=0; i<2; i++)

{

if (n_nodes[i]==0)

{

current_max_x[i] = -9999;

}

global_current_max_x[i] = PRF_GRHIGH1(current_max_x[i]);

}

/*Rearranging the nodes on the tip according to ascending y-coord*/

for (j=0; j<(n_nodes[2]-1); j++)

{

for (n=0; n<(n_nodes[i]-j-1);n++)

{

if (tempxy[i][1][n] > tempxy[i][1][n+1])

{

temp1 = nodeID[2][n];

nodeID[2][n] = nodeID[2][n+1];

nodeID[2][n+1] = temp1;

temp_real = tempxy[2][0][n];

tempxy[2][0][n] = tempxy[2][0][n+1];

tempxy[2][0][n+1] = temp_real;

temp_real = tempxy[2][1][n];

tempxy[2][1][n] = tempxy[2][1][n+1];

tempxy[2][1][n+1] = temp_real;

}

}

}
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/*Identifying the highest and lowest y-coord of the tip among all compute nodes*/

if(n_nodes[2]==0)

{

tempxy[2][1][n_nodes[2]-1] = -9999;

tempxy[2][1][0] = 9999;

}

current_y_of_max_x[0] = PRF_GRHIGH1(tempxy[2][1][n_nodes[2]-1]);

current_y_of_max_x[1] = PRF_GRLOW1(tempxy[2][1][0]);

/*Calculating the relative position of each node on the

surface based on the initial node distribution*/

for (a=0;a<3;a++)

{

if (n_nodes[a]>0){

for (i=0;i<n_nodes[a];i++)

{

node = nodeID[a][i];

if((a==0)||(a==1))

{

ratio[a][i] = (transf_cw(NODE_X(node),NODE_Y(node),theta,0,1)-0.16094)/

(global_current_max_x[a]-0.16094);

}

else

{

ratio[a][i] = (transf_cw(NODE_X(node),NODE_Y(node),theta,1,1)-

current_y_of_max_x[1])/(current_y_of_max_x[0]-current_y_of_max_x[1]);

}

}

}

}

incrementframe();

Message0("\n ******INCR/DECR @ THETA = %f, THETA_POINT = %f, TARGETFRAME is %d, h is %d, "

"b is %d, KEEPFRAME is %d******\n", theta, theta_point, targetframe, h, b, keepframe);

d = h-1; //to update d after incrementing frame

if ((h == ini_h) && (b == ini_b))

{

Message0("\n ******** RETREIVING COORD FOR FRAME %d b = %d *********", h, b);

retrieve_coord(h,b);

}

else

{

call_grid_motion = 1;
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if (b!=0)

{

if (g<0){

xmax[d][b] = xmax[d+1][0] + (xmax[d][0] - xmax[d+1][0])/

(subf + 1)*(subf + 1 - b);

}

else{

xmax[d][b] = xmax[d][0] + (xmax[d+1][0] - xmax[d][0])/(subf + 1)*b;

}

}

for (a=0;a<2;a++)

{

p = n_nodes[a];

for (i=0;i<p;i++)

{

node = nodeID[a][i];

nodePOS[a][0][i] = 0.16094 + ratio[a][i]*(xmax[d][b]-0.16094);

if((nodePOS[a][0][i]-xmax[d][b])>FLT_EPSILON){

Message(" WARNING! x exceeded the xmax for frame %d with \

nodePOS = %f \n", d+1, nodePOS[a][0][i]);

}

if (b!=0)

{

if (g<0)

{

yval1 = get_ycoord_fourier(h+1,a,nodePOS[a][0][i]);

yval2 = get_ycoord_fourier(h,a,nodePOS[a][0][i]);

nodePOS[a][1][i] = yval1 + (yval2 - yval1) /

(subf + 1)*(subf + 1 - b);

}

else

{

yval1 = get_ycoord_fourier(h,a,nodePOS[a][0][i]);

yval2 = get_ycoord_fourier(h+1,a,nodePOS[a][0][i]);

nodePOS[a][1][i] = yval1 + (yval2 - yval1) / (subf + 1)*b;

}

}

else

{

nodePOS[a][1][i] = get_ycoord_fourier(h,a,nodePOS[a][0][i]);

}
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if (fabs(nodePOS[a][0][i]-xmax[d][b]) < FLT_EPSILON)

{

x_tip = nodePOS[a][0][i];

if (a==0){

y_u = nodePOS[a][1][i];

}

else{

y_l = nodePOS[a][1][i];

}

}

}

}

global_yu = PRF_GRHIGH1(y_u);

global_yl = PRF_GRLOW1(y_l);

for (j=0;j<n_nodes[2];j++)

{

node = nodeID[2][j];

nodePOS[2][0][j] = x_tip;

nodePOS[2][1][j] = global_yl + ratio[2][j]*(global_yu-global_yl);

}

}

if (!continuousDeformingCase)

{

if ((h==targetframe) && (b==0))

{

keepframe = 1;

}

}

}

#endif

}

/*****************************************************************

Fluent function that gets called once right after loading the UDF

*****************************************************************/

DEFINE_EXECUTE_ON_LOADING(executeOnLoading,justForExecuteOnLoading)

{

calcul_boundary();

}
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/********************************************************************

Fluent function that gets called at the beginning of each iteration

********************************************************************/

DEFINE_ADJUST(calcu_coord, domain)

{

int curr_ts = N_TIME;

//only executes at the beginning of each timestep

if (last_ts != curr_ts)

{

calcul_boundary();

last_ts = curr_ts;

}

}

/********************************************************************************

Fluent function that allows point by point prescription of node coordinates

********************************************************************************/

DEFINE_GRID_MOTION(tip,domain,dt,time,dtime)

{

Node *node;

face_t f;

Thread *tf3;

int i=0 ,p = 0;

if (call_grid_motion ==1)

{

domain = Get_Domain(1);

tf3 = Lookup_Thread(domain,zone_ID_tip);

airfoil[2] = tf3;

a = 2;

p = n_nodes[a];

if (p>0)

{

SET_DEFORMING_THREAD_FLAG(THREAD_T0(airfoil[2]));

for (i=0;i<p;i++)

{

node = nodeID[a][i];

NODE_X(node) = transf_ccw(nodePOS[a][0][i],nodePOS[a][1][i],theta,0,0);

NODE_Y(node) = transf_ccw(nodePOS[a][0][i],nodePOS[a][1][i],theta,1,0);

}

}

}

}
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/********************************************************************************

Fluent function that allows point by point prescription of node coordinates

********************************************************************************/

DEFINE_GRID_MOTION(upper,domain,dt,time,dtime)

{

Node *node;

face_t f;

Thread *tf1;

int i=0 ,p = 0;

if (call_grid_motion == 1)

{

domain = Get_Domain(1);

tf1 = Lookup_Thread(domain,zone_ID_upper);

airfoil[0] = tf1;

a = 0;

p = n_nodes[a];

if (p>0)

{

SET_DEFORMING_THREAD_FLAG(THREAD_T0(airfoil[a]));

for (i=0;i<p;i++)

{

node = nodeID[a][i];

NODE_X(node) = transf_ccw(nodePOS[a][0][i],nodePOS[a][1][i],theta,0,0);

NODE_Y(node) = transf_ccw(nodePOS[a][0][i],nodePOS[a][1][i],theta,1,0);

}

}

}

}

/********************************************************************************

Fluent function that allows point by point prescription of node coordinates

********************************************************************************/

DEFINE_GRID_MOTION(lower,domain,dt,time,dtime)

{

Node *node;

face_t f;

Thread *tf2;

int i=0 ,p = 0;

if (call_grid_motion == 1)

{

domain = Get_Domain(1);

tf2 = Lookup_Thread(domain,zone_ID_lower);

airfoil[1] = tf2;
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a = 1;

p = n_nodes[a];

if(p>0)

{

SET_DEFORMING_THREAD_FLAG(THREAD_T0(airfoil[a]));

for (i=0;i<p;i++)

{

node = nodeID[a][i];

NODE_X(node) = transf_ccw(nodePOS[a][0][i],nodePOS[a][1][i],theta,0,0);

NODE_Y(node) = transf_ccw(nodePOS[a][0][i],nodePOS[a][1][i],theta,1,0);

}

}

}

}
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