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Abstract

Importance sampling algorithms for rare event simulation

of jump-diffusions based on viscosity solutions of

Hamilton-Jacobi equations

by Alvaro Guillen Cuevas

Consider a marked point process or a jump-diffusion, from which we want to simulate a trajectory

of the process or a functional of it. In both cases the magnitude of noise contributors is controlled

by a small parameter ε. Raw Monte Carlo methods produce estimators with a large relative error,

which increases even more as N increases or ε decreases. Using viscosity sub-solutions of Hamilton-

Jacobi equations, we were able to produce importance sampling algorithms with optimal asymptotic

behaviour and low relative error across a variety of small values of noise contribution. Some basic

stochastic knowledge and means to produce the discretization of a trajectory of the jump-diffusion

are needed, both of which are provided in this text. Furthermore, we applied the algorithm we

developed to model the bistability in the concentration of certain molecular species.
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Introduction

Stochastic modelling has come a long way since Robert Brown noted through his microscope an

apparently random motion in pollen particles in 1827 (see (Brown, 1828)). Little did he know that

many years later his last name would be used to refer the random motion of a wide variety of

particles. Brownian Motion was just the beginning. Robert Merton proposed in 1969 an optimal

allocation of a budget among several assets, which would maximize the expected utility of the

investment portfolio (see (Merton, 1969)). Later, Merton supervised the work of Myron Scholes in

collaboration with Fischer Black to yield a pioneering formula to valuate stock options (see (Black

and Scholes, 1973)).

Needless to say, there is a broad set of topics which can be analyzed with a probabilistic ap-

proach, like systems biology (see (Wilkinson, 2011)) or climate modeling (see (Franzke et al., 2015)).

However, quantitative finance is one of the most popular topics which can be addressed by the ap-

plication of stochastic calculus. After all, it might be vastly profitable to know the value of an

unknown asset in a given time horizon. The way stock prices can be described by stochastic dif-

ferential equations has been studied broadly, usually under the assumption that the object being

modelled is a continuous function of time. Nevertheless, this assumption is not always reasonable.

According to (Tankov and Voltchkova, 2009) and additionally to empirical evidence of jumps

in observed stock prices (see section 1.2 in (Tankov, 2003)) there are several reasons to prefer

jump-diffusion models to their absolutely continuous counterpart, at least in the academic finance

context. Firstly, jump-diffusion models do not neglect the probability that the stock price changes

by a large amount over a short period of time, something that models with absolutely continuous

paths do. Even though the probability of such event is small, it is of great importance to risk

management. Secondly, from the point of view of hedging, continuous models of stock prices with

a couple of additional instruments yield a complete market, i.e., a position on an instrument in this
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market can be replicated using a linear combination of the remaining products. This makes the

existence of derivative products redundant. Having jumps in the stock price trajectory produces

non-completeness in the market users to replicate any position of assets with derivative products.

A closer study of stochastic differential equation allows us to simulate the trajectory in a fixed

time horizon. We might be interested in the value of the process at that time or a function of it.

Its drift and diffusion coefficients (and if it is the case of a jump-diffusion, its counting measure)

are enough to propose a discretization with good levels of accuracy. It only remains to rely on

traditional Monte Carlo methods which, by calculating the sample mean of a large amount of

simulations, yield an unbiased estimator of the quantity of interest with acceptable properties.

Among the quantities of interest it is of special relevance to calculate probabilities of events that

do not occur that frequently. The most obvious examples of this could be a colossal earthquake

or a catastrophic hurricane. We could take into consideration the probability of failure of certain

component of a system that is supposed to have an impeccable performance, in the medical or

engineering industries perhaps. Moreover, calculating the probability of a large financial crisis

might be of special applicability presently. And in a smaller case, we might be trying to price a

derivative product whose value depends that it falls out of the money; having an asset with a low

diffusion coefficient raises the computational difficulty of this problem since we are sampling from

a small part of the sample space. In all of these cases, raw Monte Carlo methods are not a suitable

choice since they yield estimators of high relative error, a non-desirable feature in these situations.

Biasing our simulations for this small part of the sample space to appear more frequently and then

properly re-weighting the summands is what importance sampling is about, which in this case would

provide an estimator with a low relative error.

The goal in rare event simulation is to produce importance sampling algorithms with low relative

error and optimal asymptotic behavior. For absolutely continuous diffusions we can consider the

work of (Vanden-Eijnden and Weare, 2012) and (Djehiche et al., 2014). Both propose that the

bias of the diffusion can be presented as the solution of a Hamilton-Jacobi equation. The former

suggests to find the solution of such equation as the solution of a specific variational problem; in

other words, the change of drift is done in such a way that the process tends towards the trajectory

it is most likely to follow. The latter introduces the concept of viscosity sub-solutions to Hamilton-

Jacobi equations. It is shown that if the change of drift is based in these, asymptotic optimality is
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achieved. Moreover, given a birth-and-death process, we can produce a more efficient estimator by

modifying its birth and death rates according to another viscosity sub-solution to a Hamilton-Jacobi

equation. The goal of this thesis is to give an intuitive primer of the probabilistic tools required in

rare event simulation and important sampling, then to review discretization schemes for stochastic

differential equations in order to actually carry out the simulations, and finally to extend the work

of (Djehiche et al., 2014) for jump-diffusions.

In Chapter 1 we give the probabilistic bases that will sustain the theoretical tools for the impor-

tance sampling algorithms. We will review simple Itô integrals with respect to a Brownian Motion

and we will extend that review to integrals with respect to a counting measure, which will lead us

to a review of marked point processes. These two parts are vital to understand jump-diffusions and

a modification to Itô’s formula for these kind of processes. Finally, we will present how Girsanov’s

theorem is used to propose a modification in the drift of the diffusions.

Chapter 2 represents the skeleton of our simultations. In here we will study the work of (Giesecke

et al., 2015) where a discretization scheme for jump-diffusions is proposed. Briefly, the mark inter-

arrival times are constructed using a transformation of Poisson inter-arrival times, and the absolutely

continuous part between jumps is approximated using Euler discretization.

For the main core of this work, Chapter 3 shows an explanation of the main theoretical ideas of

(Djehiche et al., 2014). First, we introduce the concept of Hamilton-Jacobi equations and their vis-

cosity subsolutions. Then, we introduce the concept of the Mane potential, which is a fundamental

part of the construction of said sub-solutions. All the concepts will be treated simultaneously for

diffusions and jump-diffusions to make their similitudes evident. The chapter will culminate with

the design of an importance sampling algorithm for a jump-diffusion which will be then tested using

the discretization scheme reviewed in Chapter 2.

Throughout the first chapters, the applications of our algorithms are evidently related to financial

modelling. However, in Chapter 4 we investigate how to simulate the concentration of a molecular

species, how it changes according to a marked point process (whose probability of transition between

two main stable equilibrium points will be simulated efficiently using the algorithm proposed in

Chapter 3), and a valuable jump diffusion approximation proposed by (Leite and Williams, 2017)

that not also implies a faster way to perform simulations, but it also addresses the domain problems

an absolutely continuous diffusion approximation may have when the process leaves [0, 1].
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Chapter 1

Preliminary concepts

The goal of our first chapter is to review the probabilistic tools that will set the basis of our

work. The majority of these references are found in (Shreve, 2004) and (Runggaldier, 2003). Unless

otherwise stated, we are working in a probability space consisting of a probability measure P defined

over a sample space Ω and with an associated filtration Ft. With this in mind we need to develop

models which have both a continuous and a discrete dynamic.

1.1 Itô integrals

When integrating with respect to a Brownian motion, naively we could think that we are dealing

with a Riemann-Stieltjes integral, i.e., an integral of an integrand with respect to the differential

of a function. However, we would be wrong since the differential of our function is almost nowhere

differentiable. Hence, in Riemann-Stieltjes terms this does not make sense. On top of that the

integrand might be non-deterministic, requiring to impose certain restrictions to it; for instance we

need for it to be Ft-adapted, meaning that the information available up to time t is sufficient to

evaluate it at that time. For these reasons stochastic calculus provides us with a wide set of theory

and techniques to help us model these kind of processes.

Definition 1.1.1. Itô process. Consider a Brownian Motion W (t), t ≥ 0, the deterministic value

X(0) and the adapted stochastic processes b(u,X(u)) and σ(u,X(u)). We can call an Itô process a
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stochastic process of the form

X(t) = X(0) +

∫ t

0

b (u,X(u)) du+

∫ t

0

σ (u,X(u)) dW (u). (1.1.0.1)

According to (Iacus, 2009) for (1.1.0.1) to have a unique, continuous, adapted strong solution

such that E
[∫ T

0
|X(s)|2ds

]
<∞ we need to have the following conditions:

• Global Lipschitz. For all x, y ∈ R and t ∈ [0, T ] there exists a finite constant K such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| < K|x− y|.

• Linear growth. For all x ∈ R and t ∈ [0, T ] there exists a finite constant C such that

|b(t, x)|+ |σ(t, x)| < C(1 + |x|).

There might be cases where local versions of these conditions are enough.

Often in the literature, an Itô process is written in its differential form, i.e.

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t). (1.1.0.2)

Alongside this text the dependence of t in both b(t,X(t)) and σ(t,X(t)) might be omitted for

notation simplicity.

The following concept is important since it makes a difference between the differentiability of a

real-valued function and an Itô process. To every function, in particular to a random variable, we

can define several kinds of variations. We are particularly interested in the variation of order two,

since it is usually non-zero in Itô processes, which makes it different from real-valued functions.

Define a partition of the interval [0, T ] as Π = {t0, t1, ..., tn}. The size of the partition is

||Π|| = maxj=0,...,n−1 (tj+1 − tj). We then proceed to the next set of definitions.

Definition 1.1.2. Quadratic variation. Let f(t) be a function defined for 0 ≤ t ≤ T and define a

partition of the interval [0, T ] as Π = {t0, t1, ..., tn}. The quadratic variation of f up to time T is

[f, f ](T ) = lim
||Π||→0

n−1∑
j=0

[f(tj+1)− f(tj)]
2 .
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Definition 1.1.3. Quadratic variation of an Itô process. We can define the quadratic variation of

an Itô Process as

[X,X](t) =

∫ t

0

σ2(X(u), u)du.

One could interpret this as having an infinitesimally small amount of time dt which accumulates

σ2(t,X(t)) units of change of the process X(t). Informally, the quadratic variation can be written

in a differential way as

dX(t)dX(t) = σ2(t,X(t))dt. (1.1.0.3)

1.2 Marked Point Processes

The next essential part in the foundation of our theory is describing counting events that occur ran-

domly over time. Intuitively, such processes can be found in day-to-day applications of probability

theory in the form of Poisson Processes.

To describe a Poisson Process, consider the sequence {Tn}n≥1 of independent exponential random

variables, each one of them being a waiting time for a specific event, which can be referred to as

a jump. In other words, the first jump happens at time T1, then the second one happens T2 time

units after the first one, etc. We can also account for the cumulative version of such inter-arrival

times. Defining Sn =
∑N

n=1 Tn we are describing the time the N -th jump happened. A Poisson

process N(t) counts the number of jumps that have happened up to time t. It is well known that

this quantity has a Poisson distribution with parameter λt. We refer to λ as the intensity of the

process. The following definition is a generalization of the dynamic described above.

Definition 1.2.1. Marked point process. Let {Tn}n≥1 be a sequence of non-negative random vari-

ables describing the inter arrival time of a random event. Also consider the sequence {Yn}n≥1 of

random variables taking values in the set M = {1, 2, ..., K}. We call the double sequence (Tn, Yn)

an M−marked point process.

We should also consider the following representation of a univariate marked process, for k ∈ M:

Nk(t) :=
∑
n≥1

1{Tn≤t}1{Yn=k}. (1.2.0.4)
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And if we consider the vector N(t) = (N1(t), N2(t), ..., Nk(t)), we have a multivariate point

process (k-variate). A slight generalization can be done when we want to deal with a subset A ⊆ M,

in which case we can re-write (1.2.0.4) as:

NA(t) :=
∑
n≥1

1{Tn≤t}1{Yn∈A}. (1.2.0.5)

To such marked point process we can define the following random counting measure:

p((0, t], A) := NA(t), t ≥ 0, A ∈ M. (1.2.0.6)

which can be thought of as the number of events of the class A that occurred between time 0

and t and in fact allows us to interpret integrals of given functions H(s, y) with respect to a random

counting measure as follows:

∫ t

0

∫
A

H(s, y)p(ds, dy) =
∑
n≥1

H(Tn, Yn)1{Tn≤t} =

N(t)∑
n=1

H(Tn, Yn). (1.2.0.7)

We will often see a generalization of (1.2.0.7) where the integrand of
∫ t
0

∫
MH(s, y)p(ds, dy) can

also depend on another stochastic process and not only on s, i.e.,∫ t

0

∫
M
H(X(s), y)p(ds, dy).

Each point process N(t) has an intensity λ. In the simplest case, the one of a Poisson process, it

describes the rate at which a number of random events occur in a finite amount of time, modelling

as well the arrival time between two events. In a more general framework, we can describe the

intensity of a point process as λt(dy) = λtν(dy) where λt refers to the intensity of the point process

N(t) and ν(dy) is a probability measure on M, i.e., it represents the different values the sequence

Yn can take. The pair (λt, ν(dy)) is called local characteristics of p(ds, dy). Certain processes admit

an intensity depending itself on the current state of the process (or the value of the process one

instant before). In such cases we say that we have a state-dependent intensity, which is usually

denoted as Λ(X(t)).

A common generalization of (1.2.0.6) is q(ds, dy) = p(ds, dy)−λsν(dy)ds. We call it a martingale

measure since integrals of the form ∫ t

0

∫
M
H(s, y)q(ds, dy)

7



are P−martingales. The part λsν(dy)ds is called the compensator of the counting measure.

If the marks {Yn} take one of finitely many possible zero values y1, y2, ..., yK , it is possible to

decompose the marked point process into K independent constant-marked point processes.

Theorem 1.2.1 (Decomposition of a marked point process). Let y1, ..., yK be a finite set of non-zero

numbers such that P[Yi = yk] := p(yk) > 0 for every k and
∑K

k=1 p(yk) = 1. Let λt be given and

let N1(t), N2(t), ..., NK(t) be independent Poisson processes, each Nk(t) having intensity λtp(yk).

Define

N(t) =
K∑
k=1

ykNk(t).

Then N(t) is a marked point process with intensity λt and a probability distribution p(yk) over the

set of marks y1, ..., yK.

For ease of notation we leave out any further dependence of another process in the intensity λt,

but there will be some cases where it is dependent with another process and time t.

1.3 Jump-Diffusions

We need to define now a way to add up both characteristics defined in the previous two sections:

the continuous part and the jumping process.

Definition 1.3.1. Jump- diffusion. Given a non-random starting point X(0), a jump-diffusion is

a stochastic process of the form

X(t) = X(0) +

∫ t

0

b(s,X(s))ds+

∫ t

0

σ(s,X(s))dW (s) +

∫ t

0

∫
M
γ(X(s−), y)p(ds, dy).

where b(s,X(s)) and σ(s,X(s)) are integrable, Ft−adapted processes and γ(X(s−), y) is a process

being Ft−predictable and larger than −1. The first two integrals are defined in (1.1.1). As for

p(ds, dy), it is a random counting measure whose integral is interpreted in (1.2.0.7), whose random

events occur according to a state-dependent point process with intensity Λ(X(t)) and whose marks

take values in the set M according to the probability distribution ν(dy). The notation t− refers to

the value of the process just before the jump event.

The differential form of the equation in (1.3.1) is:

8



dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t) +

∫
M
γ(X(t−), y)p(dt, dy). (1.3.0.1)

According to (1.2.0.6) and (1.2.0.7) we may re-write (1.3.0.1) as

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t) + γ(X(t−), Y (t))dN(t). (1.3.0.2)

Example 1.3.1. When it comes to a particular case of (1.3.0.2) one could think of dN(t) repre-

senting a point process able to visit finitely many states. Using theorem 1.2.1 it is easy to see that

a Point process with local characteristics (Λ(X(t)), ν(dy)) visiting K states in the state space can

be decomposed into K different Point processes, each one of them with intensity Λk(X(t)) := Λk

over the state k (for k = 1, ..., K). In such case (1.3.0.2) becomes

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t) +
K∑
k=1

γk(X(t−))dNk(t).

�

Example 1.3.2. In order to make (1.3.0.2) even more specific, consider a special case of example

1.3.1, when the jump part corresponds to a birth-and-death process. In such case K = 2; the jump

size is γ1(X(t−)) = 1, N1(t) is a point process that only jumps up by 1 according to the intensity

Λ1(X(t)). Analogously γ2(X(t−)) = −1, N2(t) is a point process that only jumps down by -1

according to the intensity Λ2(X(t)), giving the differential equation

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t) + dN1(t)− dN2(t).

�

A number of different combinations of the parameters in 1.3.0.1 yield to different models widely

reviewed in the literature.

Example 1.3.3. In (Merton, 1976) the premises of the Black-Scholes option pricing formula are

challenged by questioning the assumption of the underlying stock being described by a stochastic

process with a continuous path. The parameter set in this case is b(x) = bx, σ(x) = σx, Λ(x) = λ,

γ(x, y) = x(ey− 1) and the marks are drawn from a normal distribution with mean m and variance

s2, with b, σ, λ > 0. �
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Example 1.3.4. In a similar manner (Kou, 2002) proposes an alternative to the Black-Scholes

model, trying to circumvent the fact that the log returns of the price of an asset have heavier tails

than those of a normal distribution. This is done with the same combination of parameters as in ex-

ample 1.3.3 but changing the distribution of the marks to the double exponential distribution, which

is described as ν(dy) = (pη1e
η1y1y≥1 + qη2e

η2y1z<0)dy. This replacement has also the advantage of

giving closed analytical results due to the memoryless property of the exponential distribution. �

Example 1.3.5. In order to tackle the positive relationship between default and equity volatility,

as well as the negative relationship between volatility and stock price, (Carr and Linetsky, 2006)

proposed a model with b(x) = (r + Λ(x))x, σ(x) = axβ+1, Λ(x) = b + ca2x2β and γ(x, y) = −x,

with r, a > 0, b ≥ 0, c > 0.5 and β < 0. �

1.4 Itô’s formula

During the development of several formulae, we need to find the differential of a time-dependent

function of a stochastic process. This can be done using the following result:

Theorem 1.4.1 (Itô’s formula). Let X(t) be a solution to dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t)

be an Itô process and let f(t, x) be a function with ft(t, x) and fx(t, x) defined and continuous. Then

for T > 0

f(T,X(T )) = f(0, X(0))+

∫ T

0

ft(t,X(t))dt+

∫ T

0

fx(t,X(t))dX(t)+
1

2

∫ T

0

fxx (t,X (t)) d [X,X] (t).

(1.4.1.1)

Re-writing the quadratic variation part in (1.4.1.1) yields:

f(T,X(T )) = f(0, X(0)) +

∫ T

0

ft(t,X(t))dt+

∫ T

0

fx(t,X(t))b(t,X(t))dt

+

∫ T

0

fx(t,X(t))σ(t,X(t))dW (t) +
1

2

∫ T

0

fxx(t,X(t))σ2(t,X(t))dt, (1.4.1.2)

or it also can be expressed in the differential notation
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df(t,X(t)) = ft(t,X(t))dt+ fx(t,X(t))dX(t) +
1

2
fxx(t,X(t))dX(t)dX(t).

Since our main interest is to work with jump diffusions, we need to present the following gener-

alization to (1.4.1.1).

Theorem 1.4.2 (Itô’s formula for jump processes). Let X(t) be such that it satisfies (1.3.0.2).

Then for a twice-differentiable function f we have

df(t,X(t)) = ft(t,X(t))dt+ fx(t,X(t))b(t,X(t))dt+
1

2
fxx(t,X(t))σ2(t,X(t))dt

+ fx(t,X(t))σ(t,X(t))dW (t)

+ [f (t,X(t−) + γ(X(t−), Y (t))− f(t,X(t−))]dN(t). (1.4.2.1)

Also to find the differential of a product of stochastic processes we might need the following

corollary from (Shreve, 2004).

Corollary 1.4.2.1 (Itô’s Product Rule). Let X1(t) and X2(t) be jump processes.Then

X1(t)X2(t) = X1(0)X2(0) +

∫ t

0

X2(s−)dX1(s) +

∫ t

0

X1(s−)dX2(s) + [X1, X2](t).

If we consider that said jump processes have two parts: an Itô process (Xc
i (t)), say, and a marked

point process Ji(t), say, then we can rewrite (1.4.2.1) as:

X1(t)X2(t) = X1(0)X2(0) +

∫ t

0

X2(s)dX
c
1(s) +

∫ t

0

X1(s)dX
c
2(s) + [Xc

1, X
c
2](t)

+
∑
0<s≤t

[X1(s)X2(s)−X1(s−)X2(s−)]. (1.4.2.2)

The first application of Theorem 1.4.2 is finding a solution to equations of the form (1.3.0.2). In-

deed, if we consider f(t, x) = ln(x), and dX(t) = X(t−)[b(X(t))dt+σ(X(t))dW (t)+γ(X(t−), Y (t))dN(t)]:
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d(ln(X(t))) = 0 ∗ dt+ 1

X(t)
b (X(t), t)X(t)dt+

1

2

−1

X(t)2
σ2(X(t), t)X(t)2dt

+
1

X(t)
X(t)σ(X(t), t)dW (t)

+ [ln(X(t−)(1 + γ(X(t−), Y (t))))− ln(X(t−))]dN(t)

= b(X(t), t)dt− 1

2
σ2(X(t), t)dt+ σ(X(t), t)dW (t) + ln(1 + γ(X(t−), Y (t)))dN(t).

(1.4.2.3)

As before, this equation may be commonly written in integral form

ln(X(t))− ln(X(0)) =

∫ t

0

b(X(s), s)− 1

2
σ2(X(s), s)ds+

∫ t

0

σ(X(s), s)dW (s)

+

∫ t

0

ln(1 + γ(X(s−), Y (s)))dN(s).

Exponentiating both sides and solving for X(t) we get

X(t) = X(0)e
∫ t
0 b(X(s),s)− 1

2
σ2(X(s),s)ds+

∫ t
0 σ(X(s),s)dW (s)+

∫ t
0 ln(1+γ(X(s),Y (s−)))dN(s),

and using (1.2.0.7) we re-write the jump part, which gives us what we will call the exponential

formula:

X(t) = X(0)e
∫ t
0 b(X(s),s)− 1

2
σ2(X(s),s)ds+

∫ t
0 σ(X(s),s)dW (s)

N(t)∏
n=1

(1 + γ(Tn, Yn)) . (1.4.2.4)

1.5 Change Of measure

Let us provide an intuitive notion on how to describe the dynamics of a stochastic process under

an equivalent probability measure, which will be formalized later. Being P the original measure we

will need a non-negative random variable L such that E[L] = 1. Then the new probability measure

P̃ is defined for every A ∈ F as:

P̃(A) =

∫
A

LdP.
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The variable L is usually referred to as the Radon-Nykodym derivative of P̃ with respect to P,

which we can refer intuitively as

L =
dP̃

dP
. (1.5.0.5)

For illustrative purposes, consider a stochastic process satisfying (1.1.0.2), which we are in-

terested in expressing under a new probability measure, having drift term b̃(t,X(t)) instead of

b(t,X(t)). Then if we define the Radon-Nykodym derivative as (1.5.0.5) and we define a new

process Θ(t,X(t)) such that

Θ(t,X(t)) =
b̃(t,X(t))− b(t,X(t))

σ(t,X(t))
.

It turns out that dW̃ (t) = dW (t) − Θ(t,X(t))dt is a P̃−Brownian Motion. This implies that

under P̃ the process X(t) satisfies the stochastic differential equation:

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t)

= b(t,X(t))dt+ σ(t,X(t))(dW̃ (t) + Θ(t,X(t))dt)

= b(t,X(t))dt+ σ(t,X(t))dW̃ (t) + σ(t,X(t))Θ(t,X(t))dt

= b(t,X(t))dt+ σ(t,X(t))dW̃ (t) + (b̃(t,X(t))− b(t,X(t)))dt

= b̃(t,X(t))dt+ σ(t,X(t))dW̃ (t). (1.5.0.6)

In the same way, we need to define a derivative of change of measure for any kind of process,

not only for Itô processes. To such end, we have the following theorem:

Theorem 1.5.1 (Girsanov’s Theorem). For every t in the finite time interval [0, T ] let ψt be an

Ft−predictable process and ht(y) ≥ 0 an Ft−predictable M−indexed process such that
∫ t
0
ψsλsds <

∞ and
∫
M ht(y)ν(dy) = 1. Let L(t) = Lc(t) ∗ Lj(t) such that Lc(t) satisfies

dLc(t) = Lc(t)ΘtdWt, L(0) = 1,

and Lj(t) satisfies

dLj(t) =

∫
M

(ψtht(y)− 1)Lj(t−)q(dt, dy), (1.5.1.1)
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with q(dt, dy) = p(dt, dy)−λtν(dy)dt (i.e., the martingale measure associated with p(dt, dy)). If

E[Lj(t)] = 1 = E[Lc(t)] for all t then there exists a probability measure P̃ equivalent to P such that

dW (t) = Θ(t)dt+ dW̃ (t),

where W̃ (t) is a P̃−Brownian Motion. Also, under P̃, p(dt, dy) has local characteristics (ψtλt, ht(y)ν(dy)).

We want of course to have an explicit expression for L(t). A simple of (1.4.2.1) yields:

dL(t) = d[Lc(t) ∗ Lj(t)]

= Lc(t−)dLj(t) + Lj(t)dLc(t)

= L(t)Θ(t)dW (t) + L(t−)

∫
M
(ψtht(y)− 1)q(dt, dy), L(0) = 1, (1.5.1.2)

whose solution using (1.4.2.4) is:

L(t) = exp

{
−1

2

∫ t

0

Θ(s)2ds+

∫ t

0

Θ(s)dW (s)

}
∗ exp

{∫ t

0

∫
M
(1− ψshs(y))λsms(dy)ds

}N(t)∏
n=1

(ψTnhTn(Yn)) . (1.5.1.3)

Example 1.5.1. (Examples 1.3.1 and 1.3.2 continued) If we are dealing with a multivariate point

process, (1.5.1.1) may be re-written as

Lj(t) =
K∑
k=1

(ψt(k)− 1)Lj(t−)(dNk(t)− λk(t)dt), (1.5.1.4)

and in such case (1.5.1.3) is

L(t) = exp

{
−1

2

∫ t

0

Θ(s)2ds+

∫ t

0

Θ(s)dW (s)

}
∗

K∏
k=1

⎡⎣exp{∫ t

0

(1− ψk(s))λk(s)ds

}Nk(t)∏
n=1

ψTn(k)

⎤⎦ .
(1.5.1.5)

It is important to note a difference between (1.5.1.3) and (1.5.1.5): in the latter we lose the term

hTn(Yn) that appeared in the former. This is because the decomposed point process does not involve
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explicitly a probability distribution for the marks, since each value the Yi can take is reflected in a

factor of the product
∏Nk(t)

n=1 ψTn(k).

Note also that (1.5.1.5) may be used to give the derivative of change of measure of the jump-

diffusion proposed in example 1.3.2, with K = 2. �
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Chapter 2

Numerical methods for Markov chains

and jump-diffusions

Consider a process X(t) either behaving like a marked point process or solving a stochastic differ-

ential equation as (1.3.0.1). We might be interested in a whole trajectory up to time T or in the

expected value of some function of the process (e.g., moments, distributions). Both requirements

are equally pertinent since they arise in important applications such as option valuation. To name

a couple: pricing an American option involves knowing the expected value of the payoff at expi-

ration date, or perhaps finding the value of an Asian option which needs to have the underlying

stock option price tracked during the whole period of its validity. Overall, such quantities are not

usually available in an explicit analytical form, which is why we will first discuss the principles of

solving this problem via Monte Carlo simulation, and we will give intuitive ideas of why it works,

as described in (Iacus, 2009). More importantly, we will give an explanation on some discretization

schemes, which will allow us to draw a random sample of the distribution of X(t).

2.1 Monte Carlo methods

Say we are interested in estimating an integral of the form E[g(X)]. This expected value might not

have a closed form, due for instance, to its complexity or because the distribution of X might not

be analytically tractable. Despite this difficulty, if a random sample X1, X2, ..., Xn drawn from the

distribution of X can be made, a fairly reliable tool to use as an estimator of E[g(X)] is the sample
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mean of g(X1), g(X2), ..., g(Xn), i.e.,

Ê[g(X)] =
1

n

n∑
i=1

g(Xi). (2.1.0.1)

Let gn = Ê[g(X)]. It can be shown that gn is unbiased, i.e., E[gn] = E[g(X)]. A first idea on

how to evaluate the performance of an estimator would be using V ar(gn); however, this measure is

scale dependent and would not present a standardized notion of the estimator’s execution. For this

reason a common practice to asses whether or not an estimator accomplishes its purpose is through

its relative error. In a group of estimators, the one with the smallest relative error is usually a good

choice. Such quantity is defined as:

R =

√
V ar(gn)

E[gn]
.

Even though Monte Carlo methods seem unsophisticated, they are backed up by the next three

transparent concepts from frequentist statistics, which can be consulted in (Grimmett and Stirzaker,

2001).

Theorem 2.1.1 (Law of large numbers). Given a random sample X1, X2, ..., Xn, as n −→ ∞

1

n

n∑
i=1

g(Xi)
D−→ E[g(X)]

Theorem 2.1.2 (Ergodic theorem for stationary sequences). Under mild conditions on the joint

distribution of the random sample X1, X2, ..., Xn, almost surely as n −→ ∞

1

n

n∑
i=1

g(Xi) −→ E[g(X)].

Theorem 2.1.3 (Central limit theorem). Let X1, X2, ... be a sequence of independent identically

distributed random variables with mean µ and standard deviation σ. Also consider Y a standard

normal random variable. Then as n −→ ∞

1

n

∑n
i=1Xi − nµ√

nσ

D−→ Y.

These three theorems guarantee that as n −→ ∞

Ê[g(X)]
D−→ N

(
E[g(X)],

V ar[g(X)]

n

)
.
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Here the abuse of notation N(m, s2) refers to a normal random variable with mean m and

variance s2.

Given that the .95 quantile of a standard normal random variable is 1.96, we can construct a

95% confidence interval for the theoretical value of E[g(X)] as follows:(
Ê[g(X)]− 1.96

σ̂√
n
, Ê[g(X)] + 1.96

σ̂√
n

)
, (2.1.3.1)

where σ̂ = 1
n−1

∑n
i=1

(
g(Xi)− Ê[g(X)]

)
is the unbiased estimator of V ar[g(X)].

2.2 Birth-and-death process simulation

A simple particular case of the marked point processes, which were introduced in section 1.2, is

a birth-and-death process, whose jumps are only equal to 1 (i.e., birth) or −1 (i.e., death), i.e.,

M = {±1}. Said events arrive respectively according to the state-dependent rates λ(x) and µ(x).

In order to design an algorithm for simulating a birth-and-death process we can take some key

concepts on continuous time Markov chains from (Allen, 2010). It can be shown that in a birth-

and-death process the jump intensity of any jump event is λ(x) + µ(x), therefore the interarrival

times have an exponential distribution with parameter λ(x) + µ(x). Furthermore, being in a state

x a birth-and-death process jumps to x + 1 with probability λ(x)/(λ(x) + µ(x)) and it jumps to

x − 1 with probability µ(x)/(λ(x) + µ(x)). Hence, we propose Algorithm 1 for a time horizon T ,

an initial time t0 and an initial state x0.

2.3 Discretization methods for diffusions and jump-diffusions

The challenge about simulating a trajectory of X up to time T satisfying (1.3.0.1) may appear

as early as when the stochastic differential equation does not have a discrete part, i.e., cases like

(1.1.0.2). A considerable amount of cases may be solved using (1.4.2.4), but when this fails we need

to approximate the solution (e.g., using a discretization process like the Euler scheme).

The next level of complexity is when p(dt, dy) has a constant intensity λ. Clearly this is the

case of a Compound Poisson Process and we can generate independently a discretization of the

continuous part and the jump times.
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Algorithm 1 Birth-and-death process simulation

1: Set T , t0 and x0

2: Assign x = x0

3: Assign t = t0

4: while t < T do

5: Calculate the birth rate λ(x)

6: Calculate the death rate µ(x)

7: Set dt = random(exp(mean(λ(x) + µ(x)))

8: Set the probability of a birth p(birth) = λ(x)/(µ(x) + λ(x)))

9: Set the probability of a death p(death) = µ(x)/(µ(x) + λ(x)))

10: Sample a jump event jump = random(p(birth), p(death))

11: x = x+ jump

12: t = t+ dt

13: end while

When instead of having a Poisson process drive the jump times, we are dealing with a state-

dependent intensity Λ(Xt), the discretization of the continuous part is no longer independent of

the jump times, which is why more elaborate approximation methods are needed. We will review

a procedure proposed by (Giesecke et al., 2015).

2.3.1 Euler approximation

This scheme of approximation was originally intended to give solutions to deterministic differential

equations, which makes it quite intuitive to use.

Definition 2.3.1. Euler approximation of X. Suppose we have an Itô process of the form (1.1.0.2)

with initial value X(0) = x0. We can propose a partition to the interval [0, T ], 0 = t0 < t1 < ... < tN

and we will call it ΠN([0, T ]). The Euler approximation of X is a continuous stochastic process Z

satisfying for i = 0, 1, ..., N − 1,

Z(ti+1) = Z(ti) + b(Z(ti))(ti+1 − ti) + σ(Z(ti))(W (ti+1)−W (ti)).
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For a time t ∈ [ti, ti+1) the process is defined using linear interpolation

Z(t) = Z(ti) +
t− ti
ti+1 − ti

(Z(ti+1)− Z(ti)) .

Using this approximation is very straightforward since we know the distribution of W (ti+1) −

W (ti), which is normal with mean 0 and variance ti+1 − ti.

The following definition proposes a way to classify different discretization schemes.

Definition 2.3.2. Weak order of convergence. The discretization Z is said to converge weakly of

order β to X if for a fixed time T and a continuous function g being differentiable 2(β + 1) times

and having polynomial growth, the following statement holds for independent constants C and δ:

|E[g(X(T ))]− E[g(Z(T ))]| ≤ Cδβ.

The Euler scheme is weakly convergent of order β = 1 (see Section 2 in (Iacus, 2009)). The

following proposed scheme is arbitrarily convergent to 1, where ”arbitrarily” stands for ”as close to

1 as small is the time discretization step” (see Theorem 4.6 in (Giesecke et al., 2015)).

2.3.2 Giesecke/ Teng/ Wei approximation

Since the jump times of X cannot be generated independently of the process because the intensity

measure is state-dependent, we will construct another jump diffusion, Z, using time scaling, i.e., we

will approximate the jump times using a standard Poisson process.

Consider first {(ϵn, Yn)}n≥1 where the ϵi are exponential random variables with mean 1 and the

Yn are drawn from the distribution ν(dy). Define then the sequence of random variables 0 = τ0 <

τ1 < τ2 < ... such that

τn+1 = inf

{
t > τn :

∫ t

τn

Λ(Zs)ds ≥ ϵn+1

}
.

These are the jump times of Z. It is clear that for t ∈ [τn, τn+1) the process Z behaves as a

diffusion described by

Z(t) = Z(τn) +

∫ t

τn

b(Z(s))ds+

∫ t

τn

σ(Z(s))dW (s). (2.3.0.2)

And during a jump time
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Z(τn+1) = Z(τn+1−) + γ(Z(τn+1−), Yn+1).

(Giesecke et al., 2015) shows that the way Z is constructed, i.e. X and Z having the same

intensity measure and being a diffusion like (2.3.0.2) between jumps, X and Z have the same

distribution and therefore Z is a good candidate to approximate E[g(X)].

Define the compensator process as:

A(t) =

∫ t

0

Λ(Z(s))ds.

Having shown a process Z which has the same distribution as X, we need now to propose a

discretization for Z. Let Zh be that discretization. We will approximate the process A by its

discretization Ah.

Let us define first the size of each stem, h = T/Nsteps. In the interval [0, T ] there are several points

relevant to our discretization: the fixed grid points jh for j = 0, 1, ..., Nsteps and the approximate

jump times {τhn}n≥1. Combining both sets we have a sequence of discretization times which will be

refered as {ti}.

Accordingly to Definition 2.3.1, let the continuous approximations Zh and Ah at the discretiza-

tion times be:

Zh(ti+1−) = Zh(ti) + b(Zh(ti))(ti+1 − ti) + σ(Zh(ti))(W (ti+1)−W (ti))

Ah(ti+1) = Ah(ti) + Λ(Zh(ti))(ti+1 − ti).

While for any point between discretization times, i.e., for t ∈ [ti, ti+1)

Zh(t) = Zh(ti) + b(Zh(ti))(t− ti) + σ(Zh(ti))(W (t)−W (ti))

Ah(t) = Ah(ti) + Λ(Zh(ti))(t−ti).

If we define the n− th jump time as En =
∑

k≤n ϵk, we can approximate the τn by

τhn = inf{t : Ah(t) ≥ En}
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which, given the fact that the discretization Ah is increasing, can be inverted to get

τhn = ηhn +
En − Ah(ηhn)

Λ(Zh(ηhn))
,

where ηhn = inf{ti : Ah(ti)+Λ(Z(ti))[(⌊ tih ⌋+1)h− ti] > En} is the last discretization time before

the jump.

When an approximate jump happens at τhn , the process Zh must be updated as

Zh(τhn ) = Zh(τhn−) + γ(Zh(τhn−), Yn).

As we stated at the beginning of this explanation, we must construct a set of discretization

times as follows: t0 = 0, ti+1 = infjh,τhn>ti{jh, τ
h
n , T}. Also, we set Zh(ti) = Zh(ti−) if ti ∈ {jh : j =

1, ..., Nsteps}.

This procedure is summarized in Algorithm 2.

2.4 Numerical examples

2.4.1 Call option on a short-interest rate

We will estimate the price of a call option on a short-interest rate, i.e., we will estimate E[(X(T )−

K)+], where X is the short term interest rate satisfying

dX(t) = κ(θ −X(t))dt+ σdW (t) +

∫
M
yp(dt, dy)

with X(0) = x0 and κ, θ and σ are non-negative constants and p(dt, dy) is a counting measure

with intensity measure Λ(X(t))ν(dy). Specifically Λ(x) = Λ0 + Λ1x, for Λ0 ≥ 0 and Λ1 > 0 and

ν(dy) a discrete distribution m.

The constants we will use are x0 = 0.1, θ = 0.1, κ = 2, σ = 0.02, Λ0 = 5, Λ1 = 50 and K = 0.1.

The jump size distribution m takes values in the set {0.01, 0.015, 0.02, 0.025, 0.03}. This particular

example is studied in (Giesecke et al., 2015), where the true value of the option, 0.126435, was

found using analytical methods.

Each trajectory of Zh was discretized using Nsteps = 400, whereas the sample mean (2.1.0.1) is

computed using n = 160000 trials. The estimated value of the call option is 0.1262217 and we can
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Algorithm 2 Giesecke/Teng/Wei approximation to a jump diffusion

1: Set T , decide Nsteps

2: Set time step h = T/Nsteps

3: Initialize i = j = n = 0

4: Initialize s = 0

5: Set Zh(s) = x0

6: Set Ah(s) = 0

7: Set En = random(exp(mean1))

8: while s < T do

9: Compute Ahtemporary = Ah(s) + Λ(Zh(s))[(i+ 1)h− s]

10: if Ahtemporary ≥ En, i.e. there is a jump in the interval [s, (i+ 1)h] then

11: Compute τhn = s+ En−Ah(s)
Λ(Zh(s))

12: Compute Zh(τhn−) = Zh(s) + b(Zh(s))(τhn − s) + σ(Zh(s))
√
τhn − s ∗ random(N(0, 1))

13: Compute Zh(τhn ) = Zh(τhn−) + γ(Zh(τhn−), random(Yn))

14: Accumulate time s = τhn

15: Update Ah(s) = E

16: Update n = n+ 1

17: Update En = En + random(exp(mean1))

18: end if

19: if There is no jump in the interval [s, (i+ 1)h] then

20: Compute Zh((i + 1)h) = Zh(s) + b(Zh(s))((i + 1)h − s) + σ(Zh(s))
√
(i+ 1)h− s ∗

random(N(0, 1))

21: Update s = (i+ 1)h

22: Update Ah(s) = Ahtemporary

23: Update i = i+ 1

24: end if

25: end while
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Figure 2.1: Convergence of the sample mean for estimating the price of a call option on a

short-interest rate

see in figure (2.1) that it approximates asymptotically to the true value of the call option. The code

in R to replicate this example may be found in Appendix A.

2.4.2 Brownian motion with a birth-and-death process

We will try our algorithm to approximate the value of X(T ), where X solves the equation

dX(t) = θdt+ σdW (t) +

∫
M
yp(dt, dy)

with initial value X(0) = x0. Here θ and σ are non-negative constants and p(dt, dy) is a counting

measure with intensity measure λ(X(t))ν(dy) . Concretely, Λ(x) = Λ0+Λ1x, for Λ0 ≥ 0 and Λ1 > 0
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Figure 2.2: Convergence of the sample mean for estimating X(1) for a Brownian Motion with a

birth-and-death process

and ν(dy) takes the values −1 and 1 with equal probability.

The constants we will use are x0 = 0, θ = 0.1, σ = 1, Λ0 = 5 and Λ1 = 50.

Again, each trajectory of Zh was discretized using Nsteps = 400, whereas the sample mean

(2.1.0.1) is computed using n = 160000 trials. The estimated value of X(1) is 0.117543 and the

graph on figure (2.2) shows again nice convergence behaviour.
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Chapter 3

Rare event simulation

We will focus our attention in processes like (1.3.0.1), particularly jump-diffusions with small dif-

fusion coefficients and whose magnitude of jumps is controlled by a parameter ε, i.e.,

dX(t) = b(X(t))dt+
√
εσ(X(t))dW (t) +

∫
M
εγ(X(t−), Y (t))dN(t). (3.0.0.1)

Alternatively the jump part could be visiting exclusively finitely many states. In that case the

last equation becomes

dX(t) = b(X(t))dt+
√
εσ(X(t))dW (t) +

K∑
k=1

εγk(X(t−))dNk(t). (3.0.0.2)

Say we want to estimate the probability that the time τ ε a processX leaves the domain Ω = (a, b)

is less than or equal to fixed time T , i.e.,

pε := P[τ
ε ≤ T ] = P[X(T ) /∈ Ω]. (3.0.0.3)

Some procedures to simulate a process’ trajectory (and implicitly some related concepts, e.g.,

the exit time of a domain) were explored in chapter 2. We consider [τ ε ≤ T ] as a rare event since

having a small ε would mean the process takes longer to leave Ω. Raw Monte Carlo methods are

not appropriate since few simulations of the process will end up in the relevant interval, resulting

in a large relative error. A way to go around this is to lead the simulation towards the rare event,

and then to properly re-weight the sample mean. This is known as importance sampling.
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It is clear that (3.0.0.3) is a particular case of E[exp{−ng(Xn(T ))}1{Xn(T )/∈Ω}]. We will explain

the techniques developed mainly in (Djehiche et al., 2014), as well as some other references, where

importance sampling algorithms are designed to approximate these kind of integrals.

3.1 Viscosity subsolutions to Hamilton Jacobi equations

In order to apply importance sampling we need to define a new sampling measure P̃, from which we

will draw a random sample of size n of X(T ), which solves (3.0.0.1) [or its particular case (3.0.0.2)].

To reflect the transformation from one measure to another, we will take into consideration Theorem

1.5.1. The drift in equation (3.0.0.1) will be modified choosing Θ(t,X(t)) in (1.5.1.2) in a way the

process is forced out of Ω faster.

Let p̂ε be the estimator of pε. A first approach would be to consider

p̂ε =
1

n

n∑
i=1

1{τi≤T}.

Clearly, p̂ε is unbiased since

E[p̂ε] = E

[
1

n

n∑
i=1

1{τi≤T}

]

=
1

n

n∑
i=1

E
[
1{τi≤T}

]
=
npε
n

= pε. (3.1.0.4)

Analogously, the variance of p̂ε is:
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V ar[p̂ε] = V ar

[
1

n

n∑
i=1

1{τi≤T}

]

=
1

n2

n∑
i=1

V ar
[
1{τi≤T}

]
=
npε(1− pε)

n2

=
pε(1− pε)

n
. (3.1.0.5)

Hence the relative error of p̂ε is

R =

√
V ar(p̂ε)

E[p̂ε]

=

√
pε(1−pε)

n

pε

=

√
1

n

(
1

pε
− 1

)
. (3.1.0.6)

Given that pε is precisely the quantity we are interested in estimating, we will estimate it by its

unbiased estimator. Therefore, the relative error of p̂ε can be approximated as:

R ≈

√
1

n

(
1

p̂ε
− 1

)
.

Given the aforementioned disadvantages of using a plain sample mean to estimate pε, let us

propose another an alternative sampling measure. We will use dP/P̃ as in Girsanov’s Theorem. It

turns out that if we generate Xi and consequently τi according to P̃ and then define p̃ε as

p̃ε =
1

n

n∑
i=1

1{τi≤T}
dP

dP̃
(Xi). (3.1.0.7)

we get another unbiased estimator for pε, this time unbiased under P̃, i.e.,
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Ẽ[p̃] = Ẽ

[
1

n

n∑
i=1

1{τi≤T}
dP

dP̃
(Xi)

]

=
1

n

n∑
i=1

Ẽ

[
1{τi≤T}

dP

dP̃
(Xi)

]
=

1

n
npε

= pε. (3.1.0.8)

We can also compute the variance of p̃ε, again, with respect to

Ṽ ar(p̃ε) = Ṽ ar

(
1

n

n∑
i=1

1{τi≤T}
dP

dP̃
(Xi)

)

=
1

n2
Ṽ ar

(
n∑
i=1

1{τi≤T}
dP

dP̃
(Xi)

)

=
1

n2

n∑
i=1

Ṽ ar

(
1{τi≤T}

dP

dP̃
(Xi)

)

=
1

n2

n∑
i=1

(
Ẽ

[(
1{τi≤T}

dP

dP̃
(Xi)

)2
]
−
(
Ẽ

[
1{τi≤T}

dP

dP̃
(Xi)

])2
)

=
1

n2

n∑
i=1

(
Ẽ

[
1{τi≤T}

(
dP

dP̃
(Xi)

)2
]
− p2ε

)
. (3.1.0.9)

We have discussed how a good estimator is chosen via the relative error. Taking a closer look

at this quantity, it is minimized if the variance of the estimator is minimized. Reviewing the last

equation and using the fact that we are working with a random sample, we may draw conclusions

about the critical points of (3.1.0.9) by studying closely a single summand Ẽ[1{τi≤T}(
dP
dP̃
(Xi))

2].

Let us develop an important concept for importance sampling. Following the explanation of

(Dupuis and Wang, 2007)and (Dupuis et al., 2012) we will suppose that our probability of interest

pε satisfies the following large deviation principle

lim
ε→0

ε ln pε = −I,

where I is called the large deviation rate. Combining this with Jensen’s inequality
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Ẽ

[(
1{τi≤T}

dP

dP̃
(Xi)

)2
]
≥
(
Ẽ

[
1{τi≤T}

dP

dP̃
(Xi)

])2

= p2ε

we get

lim sup
ε→0

−ε ln Ẽ

[(
1{τi≤T}

dP

dP̃
(Xi)

)2
]
≤ 2 lim sup

ε→0
ε ln pε = 2I.

We denote an estimator as asymptotically optimal (or we say that its relative error is logarith-

mically efficient) if the following upper bound is achieved

lim sup
ε→0

−ε ln Ẽ

[(
1{τi≤T}

dP

dP̃
(Xi)

)2
]
≥ 2I.

In such case we call 2I the optimal decay rate. It can be shown (see (Dupuis et al., 2015)) that

I can be represented with the variational problem

I = inf
ψ∈AC[t,T ]

{∫ T

t

L(ψ(s), ψ̇(s)) + g(ψ(T )), ψ(t) = x, ψ(T ) ∈ ∂Ω

}
where L(x, v) = supp{pv −H(x, p)} is denoted as the local rate function. The function H(x, p)

stands for the Hamiltonian, which will be specified later. Given that I is the value function of a

variational problem, it is the only viscosity solution to the Hamilton-Jacobi equation

⎧⎪⎨⎪⎩Vt(t, x)−H(x,−DV (t, x)) = 0, (t, x) ∈ [0, T )× Ω

V (t, x) = g(x), (t, x) ∈ [0, T ]× ∂Ω

(3.1.0.10)

where H is the Hamiltonian, which is given by the Fenchel-Legendre transform of the local rate

function, i.e., H(x, p) = supv[⟨p, v⟩ − L(x, v)].

Consider now the Mane potential, which is given by

Sc(x, y) = inf
ψ,t

{∫ t

0

c+ L(ψ(s), ψ̇(s))ds, ψ(0) = x, ψ(t) = y

}
. (3.1.0.11)

From (Djehiche et al., 2014), y ↦→ Sc(x, y) is a viscosity solution to the homogeneous Hamilton

Jacobi equation H(y,DS(y)) = c for every y ∈ (a, b), y ̸= x. The Mane critical value is the infimum

real value for which said stationary Hamilton-Jacobi equation admits a global viscosity subsolution.

Each continuous viscosity solution to (3.1.0.10) admits a min-max representation given by:
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V (t, x) = inf
x∈∂Ω

sup
c>cH

{g(y) + Sc(x, y)− c(T − t)}. (3.1.0.12)

where Sc(x, y) is the Mane potential and cH is the Mane critical value, which can also be

computed as:

cH = sup
x

inf
p
H(x, p). (3.1.0.13)

Our priority now is to explore some expressions for the Hamiltonian. In (Djehiche et al., 2014)

we can find that the formula for the such functional corresponding to an Itô process with drift and

diffusion coefficients b(x) and
√
εσ(x) respectively is

H(x, p) = b(x)p+
σ2(x)p2

2
(3.1.0.14)

and it can be shown that the Hamiltonian of a Levy process with increments of size γ(X(t−), Y (t))

and intensity λsν(dy)ds is

H(x, p) =

∫
M
epγ(x,y) − 1− pγ(x, y)ν(dy). (3.1.0.15)

It is important to note that (3.0.0.1) has an Itô process part and a jump part corresponding

to a Levy process. Since the Hamiltonian is additive in terms of small noise contributions, the

Hamiltonian associated with the equation we are working with is given by

H(x, p) = b(x)p+
σ2(x)p2

2
+

∫
M
epγ(x,y) − 1− pγ(x, y)ν(dy). (3.1.0.16)

If our goal is to solve for p in H(x, p) = c then we need to specify more details about ν(dy). We

will describe how to do it for an expression like (3.1.0.16) for a process having finitely many jumps.

Let us show some examples in advance to illustrate this idea.

Example 3.1.1. Let us start with the simplest case, the one of an Itô process with drift and

diffusion coefficients b(x) and εσ(x) respectively, whose Hamiltonian is (3.1.0.14). Thus we need to

solve the equation
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b(x)p+
σ(x)2p2

2
= c

σ(x)2

2
p2 + b(x)p− c = 0, (3.1.0.17)

which is clearly a quadratic equation in p, having the following two roots:

p =
−b(x)±

√
b(x)2 − 4(σ(x)

2

2
)(−c)

2σ(x)
2

2

=
−b(x)±

√
b(x)2 + 2cσ(x)2

σ(x)2
. (3.1.0.18)

�

Example 3.1.2. The Hamiltonian for a birth-and-death process with birth rate λ(x) and death

rate µ(x), according to (Djehiche et al., 2014), is

H(x, p) = µ(e−p − 1) + λ(x)(ep − 1).

And in this case we need to solve for p in

µ(x)(e−p − 1) + λ(x)(ep − 1) = c,

which we can rewrite in terms of q = ep as follows

µ(x)

(
1

q
− 1

)
+ λ(x) (q − 1) = c.

If we multiply both sides of the equation by q we get

µ(x)(1− q) + λ(x)(q2 − q) = qc.

Regrouping terms we can get another quadratic equation in q:

µ(x)− µ(x)q + λ(x)q2 − λq − cq = 0

µ(x)q2 − (λ(x) + µ(x) + c)q + µ = 0 (3.1.0.19)
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which has the two solutions

q =
λ(x) + µ(x) + c±

√
(λ(x) + µ(x) + c)2 − 4λ(x)µ(x)

2λ(x)
,

and we can re-write it back in terms of p

p = ln

(
λ(x) + µ(x) + c±

√
(λ(x) + µ(x) + c)2 − 4λ(x)µ(x)

2λ(x)

)
.

�

Example 3.1.3. (Example 1.5.1 continued). If the jump part of our jump-diffusion is a Levy process

which can take finitely many jump values, say K, the jump size function becomes γ(x, y) := γk(x)

(for = 1, ..., K) and the Hamiltonian (3.1.0.15) becomes

H(x, p) =
K∑
k=1

(
epγk(x) − 1− pγk(x)

)
.

Then the Hamiltonian of (3.0.0.1) becomes:

H(x, p) = b(x)p+
σ2(x)p2

2
+

K∑
k=1

(
epγk(x) − 1− pγk(x)

)
. (3.1.0.20)

Likewise we had previously established how the jump size function for a birth-and-death process

is γ1(x) = 1 for the births and γ2(x) = −1 for the deaths. Let us refer in a similar way to their

intensities as Λ1(x) := µ(x) for the births and Λ2(x) := λ(x) for the deaths. Hence a Hamiltonian

for such process is given by

H(x, p) = µ(x)(e−p − 1) + λ(x)(ep − 1).

Then if the jump part of (3.0.0.1) is a birth-and-death process, its Hamiltonian is

H(x, p) = b(x)p+
σ2(x)p2

2
+ µ(x)(e−p − 1) + λ(x)(ep − 1). (3.1.0.21)

Clearly in order to solve for p in H(x, p) = c we cannot apply the same procedure as we did

when the presented problem was a quadratic equation or when we could get to one using some

transformation of the variables. Not to mention that the level of complexity escalates when the

degree of the polynomial is higher than or equal to 5, since there is not an algebraic general formula
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for the zeroes of such equations (for details see (Abel, 1826)). In consequence we need to use some

type of numerical method for finding the zeroes of a polynomial, e.g., the bisection method.

For the upcoming sequence of examples on this topic, a numerical solution for p in H(x, p) = c

will be needed. For reference we will call pnum(x) that numerical solution.

�

3.1.1 Use of the Mane potential to propose a change of measure

Once an expression for p is obtained, it is important to note, as stated in (Djehiche et al., 2014)

that the Mane potential Sc(x, ·) is a primitive function of p, meaning that we only need to integrate

the latter to get the former. Inside the integral with respect to a dummy variable z, the sign ±

in the root obtained from the quadratic equation must be selected as sign(z − x). This method of

finding the Mane potential comes in handy since solving (3.1.0.11) is complicated.

(Djehiche et al., 2014) explain the high level of complexity of solving (3.1.0.10), therefore they

suggest that we can base the appropriate drift alteration in

Θ(t, x) = −σ(x)DU(t, x) (3.1.0.22)

where U is a classical (or piecewise classical) subsolution to the Hamilton-Jacobi equation

⎧⎪⎨⎪⎩Ut(t, x)− H̄(x,−DU(t, x)) ≥ 0, (t, x) ∈ [0, T )× Ω

U(T, x) ≤ g(x), x ∈ ∂Ω

(3.1.0.23)

Another point worth noting is that if we consider the min-max representation (3.1.0.12) we

can propose a family of functions being subsolutions to (3.1.0.23). Once we have found a c that

maximizes (3.1.0.11), such family (see (Djehiche et al., 2014)) is described by

U c(t, x) = inf
y∈∂Ω

{Sc(x, y)− c(T − t)}

= min{Sc(x, a), Sc(x, b)} − c(T − t). (3.1.0.24)

The following theorem, taken directly from Proposition 5.1 in (Djehiche et al., 2014) will allow

us to guarantee that the simulation algorithms based on U are asymptotically optimal.
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Theorem 3.1.1. A simulation algorithm is asymptotically optimal if U(0, x0) = V (0, x0). A suf-

ficient condition for this to happen is that there exists a saddle point (c,y) for the min-max repre-

sentation at the initial point (0, x0), i.e. if:

inf
y∈∂Ω

sup
c>cH

{Sc(x0, y)− cT} = sup
c>cH

inf
y∈∂Ω

{Sc(x0, y)− cT} .

Example 3.1.4. (Examle 3.1.1 continued). Consider once more an Itô process with drift coefficient

b(x) and diffusion coefficient
√
εσ(x). Its Mane potential is:

Sc(x, y) =

∫ y

x

−b(z) + sign(z − x)
√
b(z)2 + 2cσ(z)2

σ(z)2
dz.

Recall that p is the solution to a quadratic equation and it takes into consideration both signs of

the square root. Proposition 2.1 in (Djehiche et al., 2014) helps us decide between both options

using sign(z − x), given the fact that the Mane potential is the maximal of all subolutions to the

homogeneous Hamilton Jacobi equation H(y,DS(y)) = c that vanish at x.

It follows from (3.1.0.24) and (3.1.0.22) that given an optimal choice of c and a starting point

x0, an ideal change of measure for this process is given by:

Θ(t, x) =
−b(x) + sign(x− x0)

√
b(x)2 + 2cσ(x)2

σ(x)
. (3.1.1.1)

�

Example 3.1.5. (Example 3.1.2 continued). On the other hand, if we are working with a birth-

and-death process with birth rate λ(x) and death rate µ(x), its Mane potential is

Sc(x, y) =

∫ y

x

ln

(
λ(z) + µ(z) + c+ sign(z − x)

√
(λ(z) + µ(z) + c)2 − 4λ(z)µ(z)

2λ(z)

)
dz.

We use the same argument as in Example (3.1.4) to incorporate sign(z − x) in the integrand.

It can be shown (see Section 5.3 from (Djehiche et al., 2014)) that given an optimal choice of c

a good sampling measure P would be one based on the following modified rates:

λ̃(x) = λ(x)φ(x)

µ̃(x) = µ(x)/φ(x) (3.1.1.2)
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where

φ(x) =
c+ λ(x) + µ(x)

2λ(x)
+ sign(Sc(x, a)− Sc(x, b))

√
(
c+ λ(x) + µ(x)

2λ(x)
)2 − µ(x)

λ(x)
. (3.1.1.3)

�

Example 3.1.6. (Example 3.1.3 continued). The Mane potential of a jump-diffusion whose jump

part is driven by a process with finitely many jumps and the one of a jump-diffusion whose jump

part is driven by a birth-and-death process are very similar in structure, that is represented by

Sc(x, y) =

∫ y

x

pnum(z)dz. (3.1.1.4)

Then we may use the fundamental theorem of calculus to obtain an expression for DU c(x, y) as

follows:

DU c(t, x) = −pnum(x). (3.1.1.5)

And using (3.1.0.22) we get

Θ(t, x) = σ(x)pnum(x). (3.1.1.6)

�

Let us elaborate on how one could represent a jump-diffusion like (3.0.0.2) under a new sampling

measure. Considering (1.5.1.5) let ψt = 1 and ht(y) = 1. Then the derivative of change of measure

is

L(t) = exp

{
1√
ε

∫ t

0

Θ(t,X(s))dW (s)− 1

2ε

∫ t

0

Θ(s,X(s))2ds

}
(3.1.1.7)

which can be presented in the following differential form using Itô’s formula:

dL(t) =
L(t)Θ(t,X(t))√

ε
dW (t). (3.1.1.8)

Given that under the new sampling measure
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W̃ (t) = W (t)− 1√
ε

∫ t

0

Θ(s,X(s))ds

is a P̃−Brownian Motion and considering that typically we write dW̃ (t) = dW (t)− 1√
ε
Θ(t,X(t))dt,

under the updated measure the jump diffusion is

dX(t) = b (X(t)) dt+
√
εσ(X(t))

(
dW̃ (t) +

1√
ε
Θ(t,X(t))dt

)
+

∫
M
εγ(X(t−), Y (t))dN(t)

=

(
b (X(t)) +

√
εσ(X(t))√

ε
Θ(t,X(t))

)
dt+

√
εσ(X(t))dW̃ (t) +

∫
M
εγ(X(t−), Y (t))dN(t)

= (b(X(t)) + σ(X(t))Θ(t,X(t))) dt+
√
εσ(X(t))dW̃ (t) +

∫
M
εγ(X(t−), Y (t))dN(t)

= b̃(X(t))dt+
√
εσ(X(t))dW̃ (t) +

∫
M
εγ(X(t−), Y (t))dN(t) (3.1.1.9)

where b̃ = b(X(t)) + σ(X(t))Θ(t,X(t)).

This procedure to generate a trajectory ofX(T ) is very similar to the one developed in Algorithm

2. We only need to choose the drift coefficient accordingly to the one proposed by the change of

measure. Moreover, the diffusion and jump size coefficients are modified as well since they are

controlled by the parameter ε. Finally, recalling that when the jump-diffusion is constant (between

jump times) it can be approximated by the Euler scheme, the derivative of change of measure L(t)

(which is a solution to (3.1.1.8)) will be updated in parallel using the same discretization scheme.

The detailed outline of how to generate a single trajectory of X(T ) is presented in Algorithm 3.
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Algorithm 3 Giesecke/Teng/Wei approximation to a jump diffusion applied to the technique

proposed by Djehiche, et.al.

1: Set T , decide Nsteps

2: Set time step h = T/Nsteps

3: Choose c that maximizes the min-max representation (3.1.0.24)

4: Initialize i = j = n = s = 0

5: Set Zh(s) = x0

6: Set Ah(s) = 0

7: Set En = random(exp(mean1))

8: while s < T do

9: Compute Ahtemporary = Ah(s) + Λ(Zh(s))[(i+ 1)h− s]

10: if Ahtemporary ≥ En, i.e. there is a jump in the interval [s, (i+ 1)h] then

11: Compute τhn = s+ En−Ah(s)
Λ(Zh(s))

12: Compute Zh(τhn−) = Zh(s)+ b̃(Zh(s))(τhn − s)+
√
εσ(Zh(s))

√
τhn − s ∗ random(N(0, 1))

13: Compute Lh(τhn−) = Lh(s) +
(
Lh(s)Θ(Zh(τhn−)

)
/
√
ε) ∗

√
τhn − s ∗ random(N(0, 1))

14: Compute Zh(τhn ) = Zh(τhn−) + εγ(Zh(τhn−), random(ν(dy)))

15: Accumulate time s = τhn

16: Update Ah(s) = E

17: Update n = n+ 1

18: Update En = En + random(exp(mean1))

19: end if

20: if There is no jump in the interval [s, (i+ 1)h] then

21: Compute Zh((i + 1)h) = Zh(s) + b(Zh(s))((i + 1)h − s) +
√
εσ(Zh(s))

√
(i+ 1)h− s ∗

random(N(0, 1))

22: Compute Lh((i+1)h) = Lh(s)+
(
Lh(s)Θ(Zh(s)

)
/
√
ε)∗
√

(i+ 1)h− s∗random(N(0, 1))

23: Update s = (i+ 1)h

24: Update Ah(s) = Ahtemporary

25: Update i = i+ 1

26: end if

27: end while
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3.2 Analogy with an Itô process

Along with the simulation of a rare event of a specific type of a jump-diffusion, a number of

numerical approximations need to be performed. In order to reinforce these ideas, they will be

replicated for an Itô process, where a lot of explicit formulas are available. For this section we must

consider that we are dealing with a diffusion without any jumps, i.e., an Itô process of the form

dX(t) = b(X(t))dt+
√
εσX(t)dW (t).

3.2.1 Numerical approximation to the Mane potential

As it has been described before, one of the main challenges is to overcome the fact that it results

complicated to obtain an analytical expression for p in H(x, p) = c in order to obtain the Mane

potential of a jump diffusion. However, such problem can be addressed by numerically finding the

zeroes of the equation f(p) = H(x, p)− c with satisfactory results.

In the case of an Itô process we have an explicit, analytical formula for p given by (3.1.0.18).

Having established routines for the drift and diffusion coefficients, the value of p can be coded in

R as

p.explicit<-function(z,c_){

(-b(z)+sign(z-x0)*sqrt(b(z)^2+2*c_*sigma_fn(z)^2))/(sigma_fn(z)^2)

}

Finding zeroes of a function is not an uncommon task. In this case we may use something as

simple as the bisection method. If we have prior knowledge of the whereabouts of a zero and we

can enclose it in an interval, this procedure repeatedly bisects said interval bounding the zero until

a desired level of accuracy is reached (for more details on the bisection method see (Brent, 2013)).

A classical function which performs said procedure in R is uniroot . The routine executes this

method with the restriction that the function of interest evaluated in both ends of the interval needs

to have opposite signs. This inconvenience can be circumvent by using the function uniroot.all

instead, since it divides the interval into a specified number of sub intervals and then performs the

bisection method on each one.

Paying closer attention to (3.1.0.24) we will need to compute the Mane potential in two different

cases: for values z ∈ [a, x0] and for values z ∈ [x0, b]. p.explicit already makes that distinction
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using sign(z-x0) . However, we need to make a special distinction for the numerical version of p.

For such case we can define a function which will numerically find the zeroes of f(p) = H(z, p)− c

for z ∈ [x0, b]

p.fn.max<-function(z,c_){

H.xpc<-function(p,xx){

b(xx)*p+(0.5*sigma_fn(xx)^2)*p^2-c_

}

pp<-sapply(X = z,

FUN=function(x) uniroot.all(f = H.xpc,interval = c(-10,10),xx=x))

if (is.null(dim(pp))){

return(pp)

}

else{

return(apply(X = pp,MARGIN = 2,FUN = max))

}

}

with its analogous function which will numerically find the zeroes of f(p) in z ∈ [a, x0].
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p.fn.minnn<-function(z,c_){

H.xpc<-function(p,xx){

b(xx)*p+(0.5*sigma_fn(xx)^2)*p^2-c_

}

pp<-sapply(X = z,

FUN=function(x) uniroot.all(f = H.xpc,interval = c(-10,10),xx=x))

if (is.null(dim(pp))){

return(pp)

}

else{

return(apply(X = pp,MARGIN = 2,FUN = min))

}

}

A reasonable way to show that both the algebraic function and its numerical copy produce the

same output would be by showing that the area between both curves is virtually zero. Let us then

define a function that calculates the difference between both quantities for z ∈ [x0, b], which we will

then integrate in said interval.

Numerical integration methods begin with producing a partition of the interval of interest and

then reducing the integral to a simplified sum. There is a number of methods that can be applied

to this situation, e.g., the rectangle rule, simpson rule, trapezoidal rule. In the majority of these

methods the elements of the partition are equidistant. However, there is a relatively simple function

in R which performs adaptative quadrature, which refines the step sizes where the function changes

rapidly (see (Piessens et al., 2012)).

area.max<-function(z,c_){

p.thesis(z,c_)-p.fn.max(z,c_)

}

integrate(f = area,lower = x0,upper = Omega_b,c_=2.84)

With a result of 7.24975e-05 with absolute error < 8e-19 which is close to zero, we can

conclude that both the analytical and the numerical version of p produce the same output for
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z ∈ [x0, b].

Analogously, let us define a function that calculates the difference between both functions for

z ∈ [a, x0], which we will then integrate in said interval:

area.min<-function(z,c_){

p.thesis(z,c_)-p.fn.min(z,c_)

}

integrate(f = area.min,lower = Omega_a,upper = x0,c_=2.84)

with a result of -3.46059e-05 with absolute error < 3.8e-19 which is close to zero, we

can conclude that both the analytical and the numerical version of p produce the same output for

z ∈ [a, x0].

3.2.2 Numerical approximation to a solution for p in H(x,p)=c

As stated previously, to any root-finding algorithm we must provide an initial value of the roots.

The accuracy of such educated guess is vital for the convergence of the algorithm. Up to this

moment in the functions described in Section 3.2.1 we have overlooked such initial guess.

In Figure 3.1 we can see some plots of f(p) = H(z, p) − c, made for z = 90, 95, 100, 105, 110

respectively (all of these values corresponding to elements within Ω), it is easy to see that the roots

may be found in close proximity to 0.

3.2.3 Computation of the Mane critical value

When verifying if an algorithm is asymptotically optimal we need to find a saddle point (c, y) in the

min-max representation at the initial point (0, x0) as described in Theorem 3.1.1. It is useful then

to know the value of cH , the Mane critical value, which can be computed using (3.1.0.13). We can

start with the fact that for an Itô process the Hamiltonian is given by 3.1.0.14. Obtaining the first

derivative of H with respect to p, making it equal to zero and solving for p to find critical points

results in:
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Figure 3.1: Plots of f(p) = H(z, p)− c for the case of an Itô process, made for

z = 90, 95, 100, 105, 110 respectively

∂H

∂p
= b(x) + σ(x)2p

σ(x)2p = −b(x)

p =
−b(x)
σ(x)2

. (3.2.0.10)

After that, we need to find the second derivative of H with respect to p to verify the nature of

the critical point p = −b(x)
σ(x)2

:

∂2H

∂p2
= σ(x)2.

Given the fact that σ2(x) > 0, we can conclude that located at p = −b(x)
σ(x)2

there is a local minimum

of H equal to
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H

(
x,

−b(x)
σ(x)2

)
= b(x)

(
−b(x)
σ(x)2

)
+
σ2

2

(
−b(x)
σ(x)2

)2

= − b(x)2

σ(x)2
+

b(x)2

2σ(x)2

= −b(x)
2

2
. (3.2.0.11)

Only one aspect of (3.1.0.13) is missing, the supremum part. Hence we can conclude that the

Mane critical value for an Itô process is

cH = sup
x

{
−b(x)

2

2

}
. (3.2.0.12)

It is clear that the Mane critical value can be obtained analytically when H is simple enough,

but for more complicated Hamiltonians the solution might not be that straightforward, which is

why we can easily program a function in R to find cH for us. To a clarifying end let us program

the following two simple functions: the first one to compute the value of the Hamiltonian, and the

second one to perform the minimization over all the values of p of H for a fixed x, and immediately

performing the maximization over all the values of x.

H.px<-function(p,x){

b(x)*p+(0.5*sigma_fn(x)^2)*p^2

}

c_H<-function(){

inside<-function(x){

optimize(f=H.px,interval = c(-10000,10000),maximum = FALSE,x=x)\$objective

}

optimize(f=inside,interval = c(-10000,10000),maximum = TRUE)\$objective

}

Example 3.2.1. Consider an Itô processX(t) being a solution of dX(t) = b(X(t))dt+εσX(t)dW (t),

where b(x) = σ(x) = 1. We can conclude that cH = −1/2 using (3.2.0.12). And in order to verify

that with the function we just proposed in R , we need to define functions for the drift and diffusion

coefficients as follows:
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b<-function(x){

1

}

sigma_fn<-function(x){

1

}

Which yields a Mane critical value consistent to the −1/2 previously obtained.

> c_H()

[1] -0.5

�

Example 3.2.2. Consider another Itô prcess X(t) being a solution of dX(t) = b(X(t))dt +

εσX(t)dW (t), with b(x) = −2x(x2 − 1) and σ(x) = 1. Using (3.2.0.12) we can find the Mane

critical value as follows:

cH = sup
x

{
−b(x)

2

2

}
= sup

x

{
−(−2x(x2 − 1))2

2

}
= sup

x

{
−4x2(x2 − 1)2

2

}
= sup

x

{
−2x2(x4 − 2x2 + 1)

}
= sup

x

{
−2x6 + 4x4 − 2x2

}
. (3.2.0.13)

Only the maximization of −2x6 + 4x4 − 2x2 remains outstanding:

d(−2x6 + 4x4 − 2x2)

dx
= −12x5 + 16x3 − 4x

−12x5 + 16x3 − 4x = 0

3x5 − 4x3 + x = 0

x(3x4 − 4x2 + 1) = 0 (3.2.0.14)

45



From the equation above, we can infer that x = 0 is a critical point thus we need to verify its

nature as follows:

d2(−2x6 + 4x4 − 2x2)

dx2
= −60x4 + 48x− 4.

Evaluating the second derivative in x = 0 gives a negative value. Hence the maximum is located

at x = 0 and consequently cH = 0. Such statement can be verified numerically with the function in

R stated previously. Indeed, if we define the drift and diffusion coefficients as follows:

b<-function(x){

-2*x*(x^2-1)

}

sigma_fn<-function(x){

1

}

the result is essentially zero, corresponding with the result obtained analytically.

> c_H()

[1] -4.135903e-25

�

3.3 Simulation of a birth-and-death process

Let us exemplify the ideas we have explained so far with a simple example of a birth-and-death

process. We used the settings in Section 5.3 of (Djehiche et al., 2014).

The process evolves as follows: it jumps up by 1/N with rate Nλ(x) and it jumps down by 1/N

with rate Nµ(x), where

λ(x) = 3x(1− x)

µ(x) = . (3.3.0.15)
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Figure 3.2: Sample paths of a birth-and-death process with different starting points

Figure 3.2 shows three different trajectories for the process, starting at X(0) = 4/5, 2/3 and

11/20. We are interested in analysing the probability that the process X(t) leaves the domain

Ω = (1/2, 5/6) before time T = 1, i.e., p := P[τ < 1]. Therefore it is of great utility to modify the

measure of the process to make it exit Ω faster since, as it can be seen in Figure 3.2, relying on the

current measure for calculating a Monte Carlo estimator for p of the form (2.1.0.1) would lead to

almost none of the particles hitting the relevant event {τ < 1}.

3.3.1 Numerical results

For each starting point X(0) two thousand simulations were performed, half of them under the

original rates (3.3.0.15) and half of them by modifying the rates as in Example 3.1.5. Table 3.1

shows the results of said simulations, from which the following conclusions can be drawn: very few

particles hit the relevant region before the change of measure, i.e., respectively 2, 0 and 4 simulations

meet the event {τ < T}. Said estimators also have a high variance. On the contrary it can be seen

that the change of measure decreases significantly the variance of the estimators.
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X(0) 4/5 2/3 11/20

p̂ 0.002 0 0.004

Var(p̂) 0.001997998 0 0.003987988

Relevant particles 2 0 4

p̃ 0.001710637 9.33E-06 0.00467098

Var(p̃) 1.76E-07 3.21E-10 1.95E-06

Relevant particles 998 227 990

Table 3.1: Descriptive statistics of the sampling distribution of τ1,2 for different N

3.4 Simulation of a combination of a geometric Brownian

motion and jumps

Let us verify the ideas we have developed with an example where we will estimate the probability

that the process X(t) leaves the domain Ω before time T , i.e., P[τε < T ] which we had previously

referred to as pε. Consider a process X(t) being the solution to the stochastic differential equation

dX(t) = µX(t)dt+
√
εσX(t)dW (t) + ε

∫
M
yp(dt, dy). (3.4.0.16)

Let us identify the components of this equation: the drift coefficient b(x) = µx, the diffusion

coefficient σ(x) = σx and the counting measure p(dt, dy) having intensity measure Λ(X(t))ν(dy)

where Λ(x) = Λ0+Λ1x and ν(dy) is a discrete probability distribution over the finite, countable set

M. More specifically, each element yk ∈ M has probability p(yk) of being chosen. As it has been

done before, relabelling the random counting measure as N(t), (3.4.0.16) may be rewritten as

dX(t) = µX(t)dt+
√
εσX(t)dW (t) + εY (t)dN(t). (3.4.0.17)

SinceM is finite countable (say it hasK elements) we can use theorem 1.2.1 to re-write (3.4.0.17)

as a particular case of (3.0.0.2).

dX(t) = µX(t)dt+
√
εσX(t)dW (t) + ε

K∑
k=1

ykdNk(t) (3.4.0.18)
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Figure 3.3: Plots of f(p) = H(z, p)− c for the case of a jump-diffusion, made for

z = 90, 95, 100, 105, 110

where each Nk(t) (k = 1, ..., K) is a Point Process with intensity Λ(X(t))p(yk). Having different

representations of a jump-diffusion is useful. We use (3.4.0.16) for identifying the elements of

Algorithm (2) and (3.4.0.18) is vital to perform calculations with respect to the Hamiltonian and

the Mane potential.

Consider the parameters Ω = (90, 110), X(0) = 100, µ = 0, σ = 1, Λ0 = 5, Λ1 = 50

and ν(dy) is a uniform distribution among the set M = {0.01, 0.015, 0.02, 0.025, 0.03}. Which

means that each Nk(t) (k = 1, ..., 5) is a Point process with intensity Λ(X(t))/5. Note also that

(γ1(x), γ2(x), γ3(x), γ4(x), γ5(x)) = (y1, y2, y3, y4, y5) = (0.01, 0.015, 0.02, 0.025, 0.03).

3.4.1 Numerical results

Note that in the case of of the geometric Brownian Motion with jumps, H(x, p) is given by (3.1.0.20).

Analogously to section (3.2.2) we need an initial guess for the numerical approximation to p in

f(p) = H(x, p)− c. As we can see in figure 3.3, its roots can also be found in the vicinity of 0.

As performed in section (3.2.1) we need to define the Mane potential as (3.1.1.4) which helps us
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to find a c maximizing (3.1.0.24). This is a crucial part of the algorithm since the right choice of

c will determine whether or not the algorithm is asymptotically optimal. For such end we will use

Theorem 3.1.1 and we will show that:

inf
y∈∂Ω

sup
c>cH

{Sc(x0, y)− cT} = sup
c>cH

inf
y∈∂Ω

{Sc(x0, y)− cT} . (3.4.0.19)

In order to find the Mane critical value cH , we will use (3.1.0.13) and proceed analogously as in

Section 3.2.3. Let us write a function in R that calculates the Hamiltonian (3.1.0.20) and another

one that performs the optimization.

H.px<-function(p,x){

exponent<-diag(x=p,

nrow=length(p),

ncol=length(p))%*%t(replicate(length(p),mark_set))

b(x)*p+(0.5*sigma_fn(x)^2)*p^2+rowSums(exp(exponent)-1-exponent)

}

c_H<-function(){

inside<-function(x){

optimize(f=H.px,interval = c(-10000,10000),maximum = FALSE,x=x)$objective

}

optimize(f=inside,interval = c(-10000,10000),maximum = TRUE)$objective

}

which yields a Mane critical value of

> c_H()

[1] 1.017209e-06

Starting with the left hand side of (3.4.0.19), we can program the following function for a fixed

y ∈ ∂Ω

y ↦−→ sup
c>cH

{Sc(x0, y)− cT}

which for code purposes is called max min :
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max_min<-function(y,cap_t,low_t){

max.part<-function(c_,cap_t,low_t,y){

mane(c_,x0,y)\$value-c_*(cap_t-low_t)

}

max.value<-optimize(max.part,interval = c(c_H(),100000),maximum=TRUE,

cap_t=cap_t,low_t=low_t,y=y)}

Then we can find the infimum of max min for y ∈ ∂Ω:

min.part<-min(max_min(y = Omega_a,cap_t = T_vec,low_t = low_t)\$objective,

max_min(y = Omega_b,cap_t = T_vec,low_t = low_t)\$objective)

which yields an infimum value of

> min.part

[1] 0.1134783

Simultaneously for the right hand side of (3.4.0.19) we define a function that for each c > 0

c ↦−→ inf
y∈∂Ω

{Sc(x0, y)− cT}

which for coding purposes is called min max

min_max<-function(c_,cap_t,low_t,a,b_){

min(mane(c_,x0,a)\$value,mane(c_,x0,b_)\$value)-c_*(cap_t-low_t)

}

Then we can find the supremum of min max for all c > cH .

max.part<-optimize(min_max,interval = c(c_H(),100000),maximum =TRUE ,

cap_t=cap_T, low_t=low_t,a=Omega_a,b=Omega_b)\$objective

which yields a supremum value of

> max.part

[1] 0.1134783
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Since the left hand side of 3.4.0.19 is equal to its right hand side, the point (c, y) = (2.85153, 110)

is a saddle point and the algorithm we will design using c will be asymptotically optimal.

Now we can define (3.1.1.6) and then draw a random sample of size n of X(T ) being a solution

of (3.1.1.9). Hence we can estimate pε with p̃ε defined in (3.1.0.7), i.e., we will re-weight the sample

mean using L(t) as in (3.1.1.7).

Four different values of ε were chosen. For each one of them 1000 simulations were performed

with 100 time discretization steps. The results are summarized in tables (3.2)-(3.5).

p̃0.05 ≈ 0.06803 R

Before change of measure 0.01823

After change of measure 0.00370

Table 3.2: Estimate of p0.05 and its relative error

p̃0.06 ≈ 0.06788 R

Before change of measure 0.01191

After change of measure 0.00370

Table 3.3: Estimate of p0.06 and its relative error

˜p0.07 ≈ 0.11398 R

Before change of measure 0.01113

After change of measure 0.00278

Table 3.4: Estimate of p0.07 and its relative error

p̃0.08 ≈ 0.19108 R

Before change of measure 0.00810

After change of measure 0.00205

Table 3.5: Estimate of p0.08 and its relative error
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These results have some properties worth noting. Consistently among every case the relative

error is lower when we apply the change of measure than when the simulations are performed

without using importance sampling. The detailed R code needed to replicate this example may be

found in Appendix B.
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Chapter 4

Applications to bistability of molecular

species

The importance sampling algorithm we have studied can be applied in a number of different fields.

One of them is the dynamics modelling of certain molecular species, e.g., a cell or a gene-expression

system. To this setting, cell-to-cell variability can be attributed to two different sources:

• Noise happening within each cell.

• Fluctuations in molecular composition due to cell division, splitting and resampling.

Both types of noise are interconnected vastly and have very direct applications in systems biol-

ogy. For instance, it is of great interest to determine the role of the noise in creating phenotypic

heterogeneity. Another concept of particular interest is bistability : the alternation between two dif-

ferent stable states for a molecular species. Let us present a stochastic model for reaction dynamics.

Without loss of generality, suppose that we have a system with two chemical species, A and B.

Inside the system, k different types of biochemical reactions can happen. A reaction Ri, (i = 1, ...k)

explaining ai units of A and bi units of B react and produce a′i units of A and b′i units of B can be

written as:

{aiA+ biB → a′iA+ b′iB} (4.0.0.1)

Each Ri happens according to a state dependent rate λi. When denoting the number of molecules

of A and B with the vector (XA(t), XB(t)), it can be seen that it evolves as a Markov jump process
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with jump sizes {(a′i− ai, b
′
i− bi), i = 1, ..., k} occurring at rates λi((XA(t), XB(t))). By designating

N as the capacity of the system, we imply that we might be dealing with limited space or resources,

hence we will consider a conservatory relationship between the two species, i.e., XB(t) = N −XA(t)

and the number of molecules of A and B is (XA(t), N −XA(t)). For convenience we can drop the

subscript, i.e., X(t) := XA(t). Also, we will work with a scaled process XN(t) := X(t)/N which

clearly lies in the interval [0, 1].

Throughout this section we propose two approaches. (McSweeney et al., 2014) suggests generat-

ing exactly the marked point process, as well as improving computational efficiency using a diffusion

approximation. However, said approximation implies some domain problems when the process is

close to the boundaries of [0, 1], which is why we propose a jump-diffusion approximation developed

in (Leite and Williams, 2017).

4.1 Marked point process

Let us suppose for a moment that the marked point process is indeed a birth-and-death process

evolving according to some state-dependent rates r−(x) and r+(x). Furthermore, let us assume that

the process has two stable equilibrium points, say x1 and x3, and one unstable equilibrium point,

say x2. Since we are interested in modelling bistable behaviours in a molecular species we could

refer without loss of generality to the average time the process takes to leave a neighbourhood of

x1, cross x2 and arriving to a neighbourhood of x3. We may call this τ1,2, the mean exit time of

(x1, x2). Analogously τ3,2 is the mean exit time of (x3, x2). By studying τ1,3 and τ3,2 we gain insight

into how much time the process spends in either of the stable equilibrium points. According to

(McSweeney et al., 2014) the deviations of XN away from said neighbourhoods are described by

the large deviation rate function given by the quasipotential, for xj, (j ∈ {1, 3}),

lj,2 =

∫ x2

xj

ln

(
r−(x)

r+(x)

)
dx. (4.1.0.2)

Moreover, for j ∈ {1, 3} the mean transition times βj,2 = E[τj,2] can be related to the quasipo-

tential lj,2 with the following relationship:

lim
N→∞

1

N
ln βj,2 = lj,2. (4.1.0.3)
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Consider the following reaction system presented in (McSweeney et al., 2014).

A
κ10−1−−→ B

B
κ011−−→ A

A+B
κ11−1−−→ 2B

2A+B
κ211−−→ 3A (4.1.0.4)

On top of the arrows we have the constants (κ10−1, κ
01
1 , κ

11
−1, κ

21
1 ). We are interested in reflecting

both types of variability in molecular concentration using a marked point process. In order to do

so, the process will have two types of jumps:

• Jumps up by 1/N and jumps down by 1/N modelled by the marked point processes M+(t)

and M−(t) with respective intensity rates Nr+(x) and Nr−(x) where:

r+(x) = κ011 (1− x) + κ211 x
2(1− x)

r−(x) = κ10−1x+ κ11−1x(1− x). (4.1.0.5)

• Jumps by ±1/N with equal probability modelled by the marked point process N(t) with

intensity rate Λ(x). In other words, the jumps Y (t) (say) take values in the mark set M =

{−1/N, 1/N} with equal probabilities, i.e., P[Y (t) = −1/N ] := p(1/N) = 0.5 and P[Y (t) =

1/N ] := p(−1/N) = 0.5. The intensity Λ(x) is described as follows

Λ(x) =
1

2
εN2x(1− x). (4.1.0.6)

Summarizing, the marked point process follows the following differential equation:

dXN(t) = Y (t)dN(t) +
1

N
dM+(t)− 1

N
dM−(t). (4.1.0.7)

In this setting, ε should be of order O(1/N), guaranteeing that both types of jumps are equally

weighted.
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Note that by using Theorem 1.2.1 we can decompose N(t) into two particular cases of the

sub-process, say N1(t) and N2(t):

• N1(t) is a marked point process with intensity Λ(x)p(1/N) = 0.5Λ(x) whose jumps are equal

to 1/N .

• N2(t) is a marked point process with intensity Λ(x)p(−1/N) = 0.5Λ(x) whose jumps are equal

to −1/N .

Hence we can combine the sub-processes as follows:

1

N
N1(t) +

1

N
M+(t) =

1

N

(
N1(t) +M+(t)

)
:=

1

N
N+

1 (t) (4.1.0.8)

where N+
1 (t) is a marked point process with intensity r̃+(x) whose jumps are equal to 1/N .

Analogously

1

N
N2(t) +

1

N
M−(t) =

1

N

(
N2(t) +M−(t)

)
:=

1

N
N−

2 (t). (4.1.0.9)

where N−
2 (t) is a marked point process with intensity r̃−(x) whose jumps are equal to −1/N .

Note that the intensities are equal to

r̃+(x) = Nr+(x) +
1

2
Λ(x)

r̃−(x) = Nr−(x) +
1

2
Λ(x). (4.1.0.10)

Wrapping everything up, we can express all the sub-processes in a single marked point process

by defining the marked point process N̄(t) as

N̄(t) =
1

N
N+

1 (t)−
1

N
N−

2 (t) (4.1.0.11)

whose intensity is equal to:
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0.5Λ(x) + r+(x) + 0.5Λ(x) + r−(x) = Λ(x) + r+(x) + r−(x) (4.1.0.12)

and whose jumps Y (t) take values in the mark set M = {−1/N, 1/N} with the following

probabilities

P[Y (t) = 1/N ] := p(1/N) =
0.5Λ(x) + r+(x)

Λ(x) + r+(x) + r−(x)
(4.1.0.13)

P[Y (t) = −1/N ] := p(−1/N) =
0.5Λ(x) + r−(x)

Λ(x) + r+(x) + r−(x)
. (4.1.0.14)

Hence (4.1.0.7) becomes

dX(t) = Y (t)dN̄(t). (4.1.0.15)

The choice of the constants (κ10−1, κ
01
1 , κ

11
−1, κ

21
1 ) plays a crucial role for the design of the process. If

we want XN(t) to model a system having stable equilibria points {α, 1−α} then (κ10−1, κ
01
1 , κ

11
−1, κ

21
1 )

may be obtained by solving the following equation:

− κ10−1x+ κ011 (1− x)− κ11−1x(1− x) + κ211 x
2(1− x) = C(x− α)(x− 0.5)(x− (1− α)) (4.1.0.16)

where C is a constant which needs to be chosen so that the (κ10−1, κ
01
1 , κ

11
−1, κ

21
1 ) are of the same

order of magnitude. Expanding the left hand side of (4.1.0.16) we get:

− κ211 x
3 + (κ11−1 + κ211 )x2 − (κ10−1 + κ011 + κ11−1)x+ κ011 . (4.1.0.17)

Expanding the right hand side of (4.1.0.16) we get:

cx3 − 3c

2
x2 + c

(
α− α2 +

1

2

)
x− c

α(1− α)

2
. (4.1.0.18)

Equating the coefficients of (4.1.0.17) and (4.1.0.18) gives the following system of linear equa-

tions, which can be easily solved for (κ10−1, κ
01
1 , κ

11
−1, κ

21
1 ):
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κ211 = −c

κ11−1 + κ211 = −3c

2

−(κ10−1 + κ011 + κ11−1) = c

(
α− α2 +

1

2

)
κ011 = −cα(1− α)

2
. (4.1.0.19)

We can apply the algorithms developed in Chapter 2 to generate useful sample information of

τj,2 and βj,2. On top of that by defining pj,2 = P[τj,2 < T ] we can apply the algorithms from

Chapter 3 to improve the accuracy and efficiency of estimates of pj,2. We only need to define a

starting point XN(0) and a domain Ω from which the process will exit faster using a change of

measure; if XN(0) = α then Ω = [0, 0.5) and if XN(0) = 1− α then Ω = (0.5, 1].

Example 4.1.1. We want to model a process having stable equilibria points {0.1, 0.9}, i.e., with

α = 0.1. The constants for the reactions may be obtained by letting c = −32/3. That way

(κ10−1, κ
01
1 , κ

11
−1, κ

21
1 ) = (36/19, 36/19, 400/19, 800/19). Additionally, consider ε = 0.01 and therefore

N = 1/100. A sample path for this process is presented in Figure 4.1.

The values of the quasipotential are not equal for 0.1 and 0.9. Indeed l1,2 = 0.06707331 and

l3,2 = 0.0463878. Therefore l1,2 > l3,2, which implies β1,2 > β3,2 and hence the process takes longer

to leave the equilibrium x1 = 0.1 than it does to leave x3 = 0.9.

In order to perform inference on τj,2, three thousand simulations of the marked point process

were run. Half of them starting at XN(0) = 0.1 and the other half starting at XN(0) = 0.9. The

procedure was done once with the jump rates described in (4.1.0.10), and once more modifying the

jump rates with the methodology proposed in Chapter 3.

It can be seen at first sight from the sample paths in Figure 4.2 that the process leaves the

domain faster after the change of measure. The original pure jump process is shown in red and the

one under a modified measure is shown in blue.

In order to monitor the computing time before and after the change of measure, Table 4.1 shows

some sampling distribution cutpoints of τj,2. Note that τ̂j,2 was calculated with the rates (4.1.0.10)

and τ̃j,2 was estimated using the change of measure from Chapter 3. It can be seen that on average

the process transitions to the opposite equilibrium point faster after doing the change of measure.

59



Figure 4.1: Sample path for a pure jump process having α = 0.1

Figure 4.2: Sample paths XN(t) for 0 < t < τ1,2 and XN(0) = 0.1
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Min 1st Quantile Median Mean 3rd Quantile Max

τ̂1,2 0.7928 135.2144 331.1082 440.273 655.547 1200

τ̃1,2 0.1946 0.6741 1.2900 1.8812 1.4942 22.8849

τ̂3,2 1.1566 16.2111 36.8339 52.1695 70.5986 343.9876

τ̃3,2 0.0623 0.899 0.6363 1.5515 2.4763 13.9837

Table 4.1: Descriptive statistics of the sampling distribution of τj,2 for N = 100

On the surface the sample mean exit times generated under the original measure, say β̂j,2, are far

from the true mean exit times βj,2. Indeed β̂1,2 = 440.273 and β̂3,2 = 52.1695 while β1,2 ≈ 819 and

β1,2 ≈ 103. In order to investigate this disparity, three more batches of three thousand simulations

each where done for a similar process, for different values of system capacity N = 110, 120, 130.

The results with the original measure are presented in Table 4.2. Additionally, in Table 4.3 there

is a comparison between β̂j,2 and βj,2 where it can be seen that the ratio β̂j,2/βj,2 decreases as N

increases, which is natural since the results 4.1.0.3 are asymptotic in N .

N j Min 1st Quantile Median Mean 3rd Quantile Max

100 1 0.7928 135.2145 331.1083 440.2735 655.5470 1200

110 1 3.7800 256.9934 606.8112 872.8237 1213.8153 1600

120 1 36.4000 504.9914 1213.8200 1746.2227 2428.2752 3130

130 1 32.1250 1050.5878 2512.8970 3617.4700 5023.5485 6121

100 3 1.1566 16.2112 36.8339 52.1696 70.5986 344

110 3 17.3495 34.9768 66.8039 90.8548 127.5979 164

120 3 4.4040 50.2001 108.3208 151.1807 209.9579 262

130 3 5.2756 77.7380 173.0655 247.1901 347.3977 416

Table 4.2: Descriptive statistics of the sampling distribution of τj,2 for different N

Table 4.4 shows estimates for pj,2 as well as its variance. Var(p̂j,2) makes reference to a process

generated under the original measure, while Var(p̃j,2) was calculated after the change of measure.

We can see two things: firstly, the process takes longer to leave the stable equilibria x1 = 0.1 since
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N j β̂j,2 βj,2 β̂j,2/βj,2

100 1 440.2735 819.0000 1.8602

110 1 872.8237 1600.4881 1.8337

120 1 1746.2227 3130.0273 1.7925

130 1 3617.4700 6121.3019 1.6922

100 3 52.1696 103.0000 1.9743

110 3 90.8548 164.4585 1.8101

120 3 151.1807 261.5267 1.7299

130 3 247.1901 415.8873 1.6825

Table 4.3: β̂j,2 versus βj,2 for the marked point process

overall p2,3 > p1,3, agreeing with the results from Table 4.2. Secondly, Var(p̃j,2) is consistently lower

than Var(p̂j,2).

T 0.7 0.8 0.9 1 1.1

p1,2 0.0014733 0.0016080 0.0016727 0.0024297 0.0017374

Var(p̂1,2) 0.0010000 0.0019980 0.0019980 0.0019980 0.0019980

Var(p̃1,2) 0.0000189 0.0000197 0.0000259 0.0000275 0.0000288

p3,2 0.0129333 0.0142693 0.0168116 0.0197094 0.0206596

Var(p3,2) 0.0128438 0.0138178 0.0147898 0.0157598 0.0167277

Var(p̃3,2) 0.0000842 0.0001975 0.0002005 0.0002227 0.0000227

Table 4.4: Estimates of pj,2 and their variance using the marked point process

It follows from Chapter 3 of (Bucklew, 2013) and (4.1.0.3) that the probabilities from Table 4.4

follow an exponential distribution. Indeed, pj,2 = P[τj,2 < T ] = 1 − e−βj,2T . This can be used as

a way to corroborate that we are obtaining equivalent estimators under both the original and the

modified sample measures, by fitting a simple homogeneous linear regression to a transformation of

the pairs (T, pj,2). In other words, if we have the relations p̂j,2 = 1− e−β̂j,2T and p̃j,2 = 1− e−β̃j,2T ,

then β̂j,2 ≈ β̃j,2. Certainly for the case N = 100, β̂1,2 ≈ 449 and β̃1,2 ≈ 452. Likewise β̂3,2 ≈ 55 and
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β̃3,2 ≈ 58. Details on this comparison are shown in Table 4.5.

N j β̂j,2 β̃j,2

100 1 449.1316 452.3304

110 1 873.3606 877.2438

120 1 1746.2227 1746.8112

130 1 3623.5889 3627.2657

100 3 55.4594 58.43321

110 3 93.3566 94.7848

120 3 155.5272 158.1174

130 3 253.2253 256.6878

Table 4.5: Comparison of β̂j,2 and β̃j,2 for the marked point process

�

4.2 Jump-diffusion approximation

A first approach to improve the computation efficiency of any simulation of the process XN(t) is

approximating it by using a diffusion process solving the following stochastic differential equation:

XN(t) = b(XN(t))dt

+
√
ε
√
XN(t)(1−XN(t))dW (t) +

1√
N

√
r+(XN(t)) + r−(XN(t))dW (t) (4.2.0.20)

where W (t) is a Brownian Motion. The drift coefficient is written in a way that it reflects both

sets of jumps from the marked point process, i.e., (4.1.0.5) and (4.1.0.6):

b(x) = −κ10−1x+ κ011 (1− x)− κ11−1x(1− x) + κ211 x
2(1− x). (4.2.0.21)

However, while the jump rates (4.1.0.10) take care of XN when it reaches the boundaries of

[0, 1] by pushing it back inside (the states are non absorbing), the diffusion approximation could
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leave said interval at any point causing some domain issues since, for instance, the domain of the

diffusion coefficient
√
XN(t)(1−XN(t)) is indeed [0, 1]. And even if the problem was not a domain

restriction, we are modelling a molecular concentration which has to lie between zero and one. Such

issues evidence the need to add an extra term to (4.2.0.20)

XN(t) = b(XN(t))dt

+
√
ε
√
XN(t)(1−XN(t))dW (t) +

1√
N

√
r+(XN(t)) + r−(XN(t))dW (t)

+
√
εγ(XN(t))dL(t). (4.2.0.22)

The process L(t) is, as described in (Leite and Williams, 2017), a one-dimensional, continuous,

increasing process and it is called the reflection term. It reflects XN(t) in the following way: when

XN(t) reaches zero it jumps up by
√
ε and when XN(t) reaches one it jumps down by −

√
ε. This

means that γ(XN(t)) only takes the values ±1 when XN(t) ∈ {0, 1}. Since (4.2.0.20) and (4.2.0.22)

have the same drift and diffusion coefficients, according to (Leite and Williams, 2017), both solutions

XN(t) will have the same distributional behaviour for positive values.

Analogously to (4.1.0.3) there is a large deviation result which characterizes the mean exit time

βj,2 for the diffusion approximation. Let us call Ij,2 that rate (see section 3 from (McSweeney et al.,

2014)). Theorem 3.1 of said reference states that:

lj,2 ≤ Ij,2 (4.2.0.23)

which entails an overestimation of the mean exit time βj,2 using this approximation, comparing

it to the marked point process.

Example 4.2.1. Let us begin by simulating a path starting at X(0) = 0.1 until the process

reaches T = 1200, using the parameters N = 100 and ε = 0.01. Once more (κ10−1, κ
01
1 , κ

11
−1, κ

21
1 ) =

(36/19, 36/19, 400/19, 800/19). With this configuration, we expect to simulate a jump-diffusion

process approximating the marked point process presented in Example 4.1.1. Certainly, as Figure

4.3 shows, the jump-diffusion behaves at first glance in a similar way to the pure jump process

described in Figure 4.1. We can say that the process stays longer around 0.1 than around 0.9.
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Figure 4.3: Sample path for the jump-diffusion approximation

We are once again interested in measuring τj,2. To that end, three thousand simulations were

performed, half of them with XN(0) = 0.1 and the other half with XN(0) = 0.9. The simulations

were done with drift shown in 4.2.0.21 and a second time with the change of drift studied in Chapter

3.

If we look at some of the sample paths shown in Figure 4.4, we can gain some insight on the fact

that the process does leave Ω faster after the change of measure. The original pure jump process is

shown in red and the one under a modified measure is shown in blue.

Table 4.6 shows some sampling distribution cutpoints of τj,2. Once more, τ̂j,2 was calculated

under the original measure and τ̃j,2 was estimated using the change of measure from Chapter 3. It

can be seen that on average the process leaves Ω faster after the change of measure. Additionally,

the exit time seems to be overall higher than the one reported on Table 4.1.

In a similar way to Table 4.3, Table 4.7 shows that the sample exit time β̂j,2 increases as N

increases, accordingly to the theoretical βj,2.

Table 4.8 shows estimates for pj,2. Again p̂j,2 was calculated under the original measure and p̃j,2

was done with the change of measure from Chapter 3. Concurring with the marked point process,

the jump-diffusion approximation takes longer to leave the stable equilibria x1 = 0.1 since generally

speaking p3,2 > p1,2. Furthermore, the change of measure cuts down the variance of the estimators.

Finally, in order to show that the algorithm produces the same estimators for the mean exit time
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Figure 4.4: Sample paths for a jump diffusion stopped when it reaches 0.5

Min 1st Quantile Median Mean 3rd Quantile Max

τ̂1,2 4.783333333 167.3 405.125 492.6666667 1415.75 3295

τ̃1,2 1.759916667 28.24966667 38.66333333 61.33166667 92.63333333 1065.75

τ̂3,2 3.1925 23.9888174 50.51192985 70.2121 99.31019511 993

τ̃3,2 0.803029055 0.801036371 1.260971999 1.607432468 7.011416595 18.24

Table 4.6: Descriptive statistics of the sampling distribution of τj,2 for N = 100

regardless of the change of measure, Table 4.9 shows a comparison of β̂j,2 and β̃j,2, in an identical

way as Table 4.5 was produced.

�
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N j β̂j,2 βj,2

100 1 492.6666 3531.3658

110 1 1218.4718 7993.5000

120 1 1952.8600 18093.8612

130 1 3791.5800 40956.7536

100 3 70.2121 1085.1896

110 3 98.2056 2183.0123

120 3 165.7333 4391.4379

130 3 272.6350 8833.9983

Table 4.7: Comparison of β̂j,2 and βj,2 for the jump-diffusion approximation

T 0.7 0.8 0.9 1 1.1

p1,2 0.0022030 0.0015626 0.0023434 0.0028945 0.0024226

Var(p̂1,2) 0.0063857 0.0029698 0.0031157 0.0069214 0.0031728

Var(p̃1,2) 0.0000066 0.0000014 0.0000050 0.0000111 0.0000107

p3,2 0.0107593 0.0112648 0.0134860 0.0144964 0.0164246

Var(p̂3,2) 0.0404377 0.0813542 0.0380306 0.0375789 0.0170263

Var(p̃3,2) 0.0000024 0.0000135 0.0003096 0.0006552 0.0007215

Table 4.8: Estimates of pj,2 and their variance
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N j β̂j,2 β̃j,2

100 1 500.2136452 502.2959038

110 1 1219.960567 1223.214005

120 1 1953.172545 1955.81412

130 1 3792.469907 3794.047212

100 3 71.60884605 76.22521347

110 3 99.09976415 100.5505656

120 3 173.1493891 175.6256606

130 3 277.6553545 281.6203918

Table 4.9: Comparison of β̂j,2 and β̃j,2 for the jump-diffusion approximation
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Chapter 5

Concluding remarks

Handling simulation of rare events is certainly a challenging task, yet the methodology proposed

by (Djehiche et al., 2014) eases the path greatly. Indeed, the contribution of this thesis is first and

foremost a thorough dissection of a variance-reducing algorithm of certain Monte Carlo estimators

in which we applied important concepts as importance sampling and large deviations. Though in

order to get to the core point, we needed to provide a detailed outline of the steps needed to simulate

a variety of stochastic processes, e.g., a marked point process, a diffusion process or a combination

of both.

The simulation of a diffusion process starts with methods as intuitive as the Euler discretization

(2.3.1). Also the method for simulating marked point processes presented in Algorithm 1 follows

directly from its underlying definitions. Given that simplicity was a concern at all times, the

Giesecke/ Teng/ Wei approximation for jump-diffusions is very valuable. It is indeed more efficient

and natural than, for instance, the exact sample simulation studied in (Giesecke and Smelov, 2013).

We successfully tested its usefulness by easily and accurately simulating the price of a call option

on a short-interest rate, as well as the value at the end of a given time horizon of a simple Brownian

motion with jumps.

Inside the core of the algorithm presented in Chapter 3, which was heavily based in solving non-

trivial equations, one runs into predicaments like root-finding or optimization, which fortunately

can be solved numerically. In addition, parallel computing does wonders for computation time given

the iterative nature of Monte Carlo simulations. Throughout the thesis, the programming language

of choice was R, given its wide popularity in the statistical world. However, it would be fascinating
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to test the performance of the algorithm under another prominent language for scientific computing,

such as Python.

In the context of systems biology, our algorithm proved as well to be useful in cutting down the

variance of exact processes and their proposed approximations alike. It was certainly fruitful to

compare both approaches: the marked point process and its jump-diffusion approximation, whose

accuracy consistently improves by raising the value of system’s capacity N . More importantly,

being the latter a good approximation of the former, we spare some computation resources since

simulating a diffusion process is always a much less resource-intensive task, compared to simulating

a marked point process.
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Appendix A

R code: estimation of the price of a call

option

##################################

# Parameters #

##############

set.seed(1234)

x_0<-0.1

kappa<-2

theta<-0.1

sigma<-0.02

lambda_0<-5

lambda_1<-50

K<-0.1

#################################

# Functions #

#############

b<-function(x){
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kappa*(theta-x)

}

sigma_fn<-function(x){

sigma

}

lambda<-function(x){

lambda_0+lambda_1*x

}

gamma_fn<-function(x,y){

y

}

random_mark<-function(){

sample(x = c(0.01,0.015,0.02,0.025,0.03),replace = FALSE,size = 1)

}

##############################

# Program #

###########

T_<-1

N_steps<-400

h<-T_/N_steps

cap_trials<-c()

cum_sum<-c()

for(j in 1:160000){
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i<-0

n<-0

s<-0

Z<-x_0

A<-0

E_n<-rexp(n = 1,rate = 1)

while(s<T_){

A_temp<-A+lambda(Z)*((i+1)*h-s)

N<-rnorm(n = 1,mean = 0,sd = 1)

if(A_temp >= E_n){

tau_n<-s+(E_n-A)/(lambda(Z)) #time the jump actually happened

Z_tau_minus<-Z+b(Z)*(tau_n-s)+sigma_fn(Z)*sqrt(tau_n-s)*N

Z<-Z_tau_minus+gamma_fn(Z_tau_minus,random_mark())

s<-tau_n

A<-E_n

n<-n+1

E_n<-E_n+rexp(n = 1,rate = 1)

}

else{

Z<-Z+b(Z)*((i+1)*h-s)+sigma_fn(Z)*sqrt((i+1)*h-s)*N

s<-(i+1)*h

A<-A_temp

i<-i+1

}

}

cap_trials<-c(cap_trials,max(Z-K,0))

cum_sum<-c(cum_sum,mean(cap_trials))

print(j)

}
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plot(cum_sum,type="l",xlab = "Number of simulations", ylab="Sample mean")

cum_sum[length(cum_sum)]
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Appendix B

R code: simulation of a Brownian motion

with a birth-and-death process

#############

# Functions #

#############

b<-function(x){

0

}

sigma_fn<-function(x){

x

}

lambda<-function(x){

lambda_0+lambda_1*x

}

gamma_fn<-function(y){

1*y
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}

random_mark<-function(){

sample(x =mark_set,replace = FALSE,size = 1)

}

H.px<-function(p,x){

exponent<-diag(x=p,nrow=length(p),ncol=length(p))%*%t(replicate(length(p),mark_set))

b(x)*p+(0.5*sigma_fn(x)^2)*p^2+rowSums(exp(exponent)-1-exponent)

}

c_H<-function(){

inside<-function(x){

optimize(f=H.px,interval = c(-10000,10000),maximum = FALSE,x=x)$objective

}

optimize(f=inside,interval = c(-10000,10000),maximum = TRUE)$objective

}

p.fn<-function(z,c_,max){

H.xpc<-function(p,xx,c_){

exponent<-diag(x=p,nrow=length(p),ncol=length(p))%*%t(replicate(length(p),mark_set))

b(xx)*p+(0.5*sigma_fn(xx)^2)*p^2+rowSums(exp(exponent)-1-exponent)-c_

}

pp<-sapply(X = z,FUN=function(x) uniroot.all(f = H.xpc,interval = c(-10,10),xx=x,c_=c_))

if (max==TRUE){fff<-"max"}

else {fff<-"min"}

if (is.null(dim(pp))){

return(pp)

}
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else{

return(apply(X = pp,MARGIN = 2,FUN = fff))

}

}

mane<-function(c_,x,y){

if(x<y){

integrate(p.fn,lower = x,upper=y,c_=c_,max=TRUE)

}

else{

integrate(p.fn,lower = x,upper=y,c_=c_,max=FALSE)

}

}

min_max<-function(c_,cap_t,low_t,a,b_){

min(mane(c_,x0,a)$value,mane(c_,x0,b_)$value)-c_*(cap_t-low_t)

}

Theta<-function(x,c_){

if(x>x0){

sigma_fn(x)*p.fn(x,c_,max=TRUE)

}

else{

sigma_fn(x)*p.fn(x,c_,max=FALSE)

}

}

b_tilde<-function(x,varepsilon,c_){

b(x)+sqrt(varepsilon)*sigma_fn(x)*Theta(x,c_)

}
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new_step_original<-function(Z,s,A,E_n,i,L,h,varepsilon,TT){

A_temp<-A+lambda(Z)*((i+1)*h-s)

N<-rnorm(n = 1,mean = 0,sd = 1)

if(A_temp >= E_n){

tau_n<-s+(E_n-A)/(lambda(Z)) #time the jump actually happened

Z_tau_minus<-Z+b(Z)*(tau_n-s)+varepsilon*sigma_fn(Z)*sqrt(tau_n-s)*N

Z<-Z_tau_minus+varepsilon*gamma_fn(y = random_mark())

s<-tau_n

A<-E_n

E_n<-E_n+rexp(n = 1,rate = 1)

}

else{

Z<-Z+b(Z)*((i+1)*h-s)+sqrt(varepsilon)*sigma_fn(Z)*sqrt((i+1)*h-s)*N

Z_tau_minus<-Z

s<-(i+1)*h

A<-A_temp

i<-i+1

}

data.frame(Z=Z,s=s,A=A,E_n=E_n,i=i,L=L)

}

new_step_after<-function(Z,s,A,E_n,i,L,h,varepsilon,TT,c_){

A_temp<-A+lambda(Z)*((i+1)*h-s)

N<-rnorm(n = 1,mean = 0,sd = 1)

if(A_temp >= E_n){

tau_n<-s+(E_n-A)/(lambda(Z)) #time the jump actually happened

Z_tau_minus<-Z+b_tilde(Z,varepsilon,c_)*(tau_n-s)+sqrt(varepsilon)*sigma_fn(Z)

*sqrt(tau_n-s)*N

L<-L+(Theta(Z,c_)*L*sqrt(tau_n-s)*N)/sqrt(varepsilon)
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Z<-Z_tau_minus+varepsilon*gamma_fn(y = random_mark())

s<-tau_n

A<-E_n

E_n<-E_n+rexp(n = 1,rate = 1)

}

else{

Z_tau_minus<-Z+b_tilde(Z,varepsilon,c_)*((i+1)*h-s)+sqrt(varepsilon)*sigma_fn(Z)

*sqrt((i+1)*h-s)*N

L<-L+(Theta(Z,c_)*L*sqrt((i+1)*h-s)*N)/sqrt(varepsilon)

Z<-Z_tau_minus

s<-(i+1)*h

A<-A_temp

i<-i+1

}

data.frame(Z=Z,s=s,A=A,E_n=E_n,i=i,L=L)

}

chain<-function(x0,t0,T_,epsilon,Nsteps,c_,new){

h<-(T_-t0)/Nsteps

Z<-x0

s<-t0

A<-0

E_n<-rexp(n = 1,rate = 1)

i<-0

L<-1

Z_t<-data.frame(Z=Z,s=s,A=A,E_n=E_n,i=i,L=L)

if(new==FALSE){

while((s<T_)&&(Omega_a<Z)&&(Z<Omega_b)){

#while(s<T_){
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current_step<-new_step_original(Z=Z,s=s,A=A,E_n=E_n,i=i,

L=L,h=h,varepsilon=epsilon,TT=T_)

Z<-current_step$Z

s<-current_step$s

A<-current_step$A

E_n<-current_step$E_n

i<-current_step$i

Z_t<-rbind(Z_t,current_step)

}

}

else{

while((s<T_)&&(Omega_a<Z)&&(Z<Omega_b)){

#while(s<T_){

current_step<-new_step_after(Z=Z,s=s,A=A,E_n=E_n,i=i,

L=L,h=h,varepsilon=epsilon,TT=T_,c_=c_)

Z<-current_step$Z

s<-current_step$s

A<-current_step$A

E_n<-current_step$E_n

i <-current_step$i

L<-current_step$L

Z_t<-rbind(Z_t,current_step)

}

}

return(Z_t)

}

##########

# Script #

##########
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library(rootSolve)

source(’C:/Users/User/Google Drive/Research/Git/Djehiche_Giesecke/functions.R’)

#library(pushoverr)

set.seed(1234)

x0<-100

lambda_0<-5

lambda_1<-50

varepsilon_vec<-c(0.05,0.06,0.07,0.08)

Omega_a<-90

Omega_b<-110

mark_set<-c(0.01, 0.015, 0.02, 0.025, 0.03)

T_vec<-0.04

parameters<-expand.grid(varepsilon_vec,T_vec)

low_t<-0

N_steps<-100

sample_size<-10^3

#####################################################

# Program #

###########

for(k in 1:length(parameters[,1])){

time_trials<-indicators<-prom<-c()

for(j in 1:sample_size){

ZandL<-chain(x0 = x0,t0 = low_t,T_ = parameters[k,2],epsilon = parameters[k,1],

Nsteps = N_steps,c_=0,new = FALSE)

indicators<-c(indicators,1*(ZandL$s[length(ZandL$s)]<parameters[k,2]))
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print(c(k,j))

}

estim<-c(mean(indicators),(1/sample_size)*sqrt((1/mean(indicators))-1))

write.table(x=c(date(),"## BEFORE ##",sample_size,N_steps,parameters[k,],estim),

file=paste("C:/Users/User/Google Drive/Research/Code/[Djehiche+Giesecke]

Epsilon Jump Diffusion v",vers,".txt"), append=TRUE,row.names = F, col.names = F,

quote=F, sep="//")

}

# time_used.old<-proc.time()-start_time.old

###############################################################################################################

# Intermediate #

################

c_vec<-rep(0,length(parameters[,2]))

for(k in 1:length(parameters[,2])){

c_vec[k]<-optimize(min_max,interval =c(c_H(),100000),maximum =TRUE ,

cap_t=parameters[k,2], low_t=low_t,a=Omega_a,b=Omega_b)$maximum

}

###########################

# After that #

##############

for(k in 1:length(parameters[,1])){

time_trials<-indicators<-prom<-c()

#c_<-c_vec[k]

for(j in 1:sample_size){

ZandL<-chain(x0 = x0,t0 = low_t,T_ = parameters[k,2],epsilon = parameters[k,1],
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Nsteps = N_steps,c_=c_vec[k],new = TRUE)

indicators<-c(indicators,

1*(ZandL$s[length(ZandL$s)]<parameters[k,2])*(ZandL$L[length(ZandL$L)])^-1)

print(c(k,j))

}

estim<-c(mean(indicators),(1/sample_size)*sqrt((1/mean(indicators))-1))

write.table(x=c(date(),"## AFTER ##",sample_size,N_steps,parameters[k,],estim),

file=paste("C:/Users/User/Google Drive/Research/Code/[Djehiche+Giesecke]

Epsilon Jump Diffusion v",vers,".txt"), append=TRUE,row.names = F, col.names = F,

quote=F, sep="//")

}
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