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Abstract

Feature Encoding of Spectral Descriptors for 3D Shape Recognition

Majid Masoumi, Ph.D.

Concordia University, 2017

Feature descriptors have become a ubiquitous tool in shape analysis. Features can be extracted

and subsequently used to design discriminative signatures for solving a variety of 3D shape analysis

problems. In particular, shape classification and retrieval are intriguing and challenging problems

that lie at the crossroads of computer vision, geometry processing, machine learning and medical

imaging.

In this thesis, we propose spectral graph wavelet approaches for the classification and retrieval of

deformable 3D shapes. First, we review the recent shape descriptors based on the spectral decom-

position of the Laplace-Beltrami operator, which provides a rich set of eigenbases that are invariant

to intrinsic isometries. We then provide a detailed overview of spectral graph wavelets. In an effort

to capture both local and global characteristics of a 3D shape, we propose a three-step feature de-

scription framework. Local descriptors are first extracted via the spectral graph wavelet transform

having the Mexican hat wavelet as a generating kernel. Then, mid-level features are obtained by

embedding local descriptors into the visual vocabulary space using the soft-assignment coding step

of the bag-of-features model. A global descriptor is subsequently constructed by aggregating mid-

level features weighted by a geodesic exponential kernel, resulting in a matrix representation that

describes the frequency of appearance of nearby codewords in the vocabulary. In order to analyze

the performance of the proposed algorithms on 3D shape classification, support vector machines

and deep belief networks are applied to mid-level features. To assess the performance of the pro-

posed approach for nonrigid 3D shape retrieval, we compare the global descriptor of a query to

the global descriptors of the rest of shapes in the dataset using a dissimilarity measure and find the

closest shape. Experimental results on three standard 3D shape benchmarks demonstrate the effec-

tiveness of the proposed classification and retrieval approaches in comparison with state-of-the-art

methods.

iii



Acknowledgements

I am forever thankful and indebted to my supervisor Prof. A. Ben Hamza for his guidance, endless

support, and encouragement during my Ph.D. He has routinely gone beyond his duties to fire fight

my worries, concerns, and anxieties. I am more grateful to him than he will ever know.

My deepest gratitude is to my wife Mahsa who has been tirelessly supporting me and making

even the most tough times truly wonderful. She spent sleepless nights and was always my support

in the moments when there was no one to answer my queries. I would like to dedicate my thesis to

Mahsa who has inspired me and given me the confidence to work as well as the happiness to live.

I would like to express my special thanks to my parents for their unremitting encouragement,

and unconditional love. Words cannot express how grateful I am to my mother and father.

iv



Table of Contents

List of Tables viii

List of Figures ix

List of Acronyms xi

1 Introduction 1

1.1 Framework and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Spectral Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Triangle Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Laplace-Beltrami Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Spectral Shape Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.4 Spectral Graph Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Shape Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Spectral Graph Wavelets for Shape Classification 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Local Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Mid-Level Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Global Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Multiclass Support Vector Machines . . . . . . . . . . . . . . . . . . . . . 27

2.2.5 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 SHREC-2010 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 SHREC-2011 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



2.3.3 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Spectral Shape Classification using Deep Learning 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Restricted Boltzmann Machines (RBMs) . . . . . . . . . . . . . . . . . . . 39

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Deep Belief Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 SHREC-2010 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2 SHREC-2011 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Nonrigid Shape Retrieval using Spectral Graph Wavelets 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 SHREC-2011 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 SHREC-2015 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Sensitivity to Choice of Parameters . . . . . . . . . . . . . . . . . . . . . . 65

4.3.4 Robustness to Topological Noise . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusions and Future Work 70

5.1 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Shape Classification using Spectral Graph Wavelets . . . . . . . . . . . . . 70

5.1.2 Spectral Shape Classification via Deep Learning . . . . . . . . . . . . . . . 70

5.1.3 Nonrigid 3D Shape Retrieval using Spectral Graph Wavelets . . . . . . . . 71

5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Improvement of 3D Shape Retrieval using Deep Learning . . . . . . . . . . 71

5.2.2 Medical Shape Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 3D Shape Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.4 Design of Wavelet Generating Kernels . . . . . . . . . . . . . . . . . . . . 73

5.2.5 From Image Processing to Geometry Processing . . . . . . . . . . . . . . . 73

vi



References 74

vii



List of Tables

2.1 Classification accuracy results on the SHREC-2010 dataset. Boldface number indi-

cates the best classification performance. . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Classification accuracy results on the SHREC-2011 dataset. Boldface number indi-

cates the best classification performance. . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Classification accuracy results on the SHREC-2010 dataset. Boldface number indi-

cates the best classification performance. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Classification accuracy results on the SHREC-2011 dataset. Boldface number indi-

cates the best classification performance. . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Retrieval results on the SHREC-2011 dataset. Boldface numbers indicate the best

retrieval performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Retrieval results on the SHREC-2015 dataset. Boldface numbers indicate the best

retrieval performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



List of Figures

1.1 Triangular mesh representation (left); Cotangent scheme angles (right). . . . . . . . . 7

1.2 Visualization of the first four (non-trivial) eigenfunctions of the LBO. From left to

right: a 3D frog model Gouraud shaded and color-coded by the values of the first,

second, third and fourth eigenfunctions. Best viewed in color. . . . . . . . . . . . . . 8

1.3 (a) Propagation of heat (kt(x, y)) from a specified point on the elbow of human shape

to the rest of the shape in a given time t. (b) Representation of heat kernel signature

acquired by the diagonal of the heat kernel matrix. As shown, heat is raised when color

changes from black to red. Also, positive and negative values of Gaussian curvatures

relate to high and low amount of kt(x, x), respectively. . . . . . . . . . . . . . . . . . 10

2.1 Flowchart of the proposed approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Spectrum modulation using different kernel functions; (a) heat kernel, (b) wave kernel,

(c)-(h) Mexican hat kernel at various resolutions. The dark line is the squared sum

function G, while the dash-dotted and the dotted lines are upper and lower bounds (B

and A) of G, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Flow of the BoF model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Sample shapes from SHREC-2010 (top) and SHREC-2011 (bottom). . . . . . . . . . 29

2.5 Confusion matrix for SHREC-2010 using linear multiclass SVM. . . . . . . . . . . . . 31

2.6 Confusion matrix for SHREC-2011 using linear multiclass SVM. . . . . . . . . . . . . 33

2.7 SGWC of two shapes (gorilla and flamingo) from two different classes of the SHREC-

2011 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Effects of the parameters on the classification accuracy for SHREC 2011. . . . . . . . 36

3.1 An RBM with visible units v = (vi) and hidden units h = (hj). . . . . . . . . . . . . . 39

3.2 Flowchart of the proposed deep learning approach. . . . . . . . . . . . . . . . . . . . 42

3.3 DBN architecture with three RBMs stacked on top of each other. . . . . . . . . . . . . 43

3.4 Sample shapes from SHREC-2010 (top) and SHREC-2011 (bottom). . . . . . . . . . 46

3.5 Confusion matrix for SHREC 2010 using the proposed DeepSGW approach. . . . . . . 49

3.6 Confusion matrix for SHREC-2011 using the proposed DeepSGW approach. . . . . . 50

ix



3.7 SGWC of two shapes (cat and centaur) from two different classes of the SHREC-2011

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Training on the SHREC-2011 dataset. Learned weights on DBN first layer (left).

Learned weights on DBN second layer (right). . . . . . . . . . . . . . . . . . . . . . 52

3.9 First 64 training examples computed by DBN on the SHREC-2011 dataset. . . . . . . 53

3.10 Effects of the parameters on the classification accuracy for SHREC 2011. . . . . . . . 54

4.1 Flowchart of the proposed SGWC-BoF approach. . . . . . . . . . . . . . . . . . . . . 57

4.2 Sample shapes from SHREC 2011 (top) and SHREC 2015 (bottom). . . . . . . . . . 59

4.3 P-R plots comparing the performance of the proposed method and other state-of-the-

art approaches on SHREC 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 SGWC of two shapes (buffalo and kangaroo) from two different classes of the SHREC-

2015 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 P-R plots comparing the performance of the proposed method and other state-of-the-

art approaches on SHREC 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Effects of geodesic kernel width and size of vocabulary on the retrieval performance

of SGWC-BoF for SHREC 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Effects of mesh resolution and signature resolution parameter on the retrieval perfor-

mance of SGWC-BoF for SHREC 2011. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Normalized χ2-distance between a reference point (yellow colored on the man’s right

foot) and other surface points using SGWS for different values of the resolution pa-

rameter R = 1, 2, 3 and 5 (left to right). . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Sample noisy 3D shapes, where the enlarged views show the simulated topological noise. 69

5.1 3D representation of left carpal bone for a healthy male. . . . . . . . . . . . . . . . . . 73

x



List of Acronyms

LBO Laplace-Beltrami Operator

HKS Heat Kernel Signature

CBIR Content-Based Image Retrieval

BoF Bag-of-Features

SGWC Spectral Graph Wavelet Codes

SGWC-BoF Spectral Graph Wavelet Codes Bag-of-Features

DBN Deep Belief Networks

DeepSGW Deep Spectral Graph Wavelets

SVMs Support Vector Machines

RBM Restricted Boltzmann Machines

CNN Convolutional Neural Networks

DCG Discounted Cumulative Gain

NN Nearest Neighbor

FT First-Tier

ST Second-Tier

SHREC Shape Retrieval Contest

xi



C
H

A
P

T
E

R

�

Introduction

1.1 Framework and Motivation

Recent advances in 3D imaging and processing, graphics hardware and networks have led to a

whopping increase in geometry models available freely or commercially on the Web. As a result,

the task of efficiently measuring the 3D object similarity to find and retrieve relevant objects for

a given query and categorize an object into one of a set of classes has become of paramount im-

portance in a wide range of applications, including computer-aided design, video gaming, special

effects and film production, medicine, and archaeology. The main challenge in 3D shape retrieval

and classification algorithms is to compute an invariant shape descriptor that captures well the

geometric and topological properties of a shape [1–5].

In computer graphics and geometry processing, a 3D shape is usually represented as a trian-

gle mesh. Other effective representations methods are based on medial [6] or multiple views [7].

Content-based shape retrieval based on the comparison of shape properties is complicated by the

fact that many 3D objects manifest rich variability, and invariance to different classes of transfor-

mations and shape variations is often required. One of the most challenging settings addressed

is the case of nonrigid or deformable shapes, in which shapes undergo changes that can be well-

approximated by intrinsic isometries, i.e. deformations that preserve geodesic distances between

all pairs of points. This class of deformations is much richer than rigid motions and can be approx-

imated. Recently, various methods have been proposed to tackle nonrigid 3D shape recognition

problem, particularly with the isometric invariant representation. These methods can be mainly

categorized into two main classes: skeleton-based [6,8] and surface-based [9–12]. The former ap-

proaches usually capture the global topological structure of the shape, and a dissimilarity is often
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determined as the cost function to match two or more shapes. The latter methods, on the other

hand, often represent a shape as a frequency histogram of deformation invariant local distances or

vertex signatures.

Over the past decade, there has been a flurry of research activity on surface based shape recog-

nition due largely to two key reasons: First, surface-based 3D models are more popular because of

their highly-effective representation ability and less memory storage. Second, humans are taught

to differentiate between shapes mainly by surface features, and in many shape applications only

the surface is of interest. Therefore, in this thesis, we focus on surface-based shape recognition

with local vertex descriptors.

Research efforts on spectral shape analysis have recently resulted in numerous spectral descrip-

tors [9–14], which are predominately based on the LBO [15,16]. However, to date, no comprehen-

sive comparison has been conducted in the literature, which often results in intractable situation

when choosing appropriate descriptors for certain applications.

1.2 Literature Review

In recent years, considerable research efforts on shape analysis have been conducted in a bid to

design an appropriate shape descriptor aimed at finding the most relevant shapes. In the literature,

there are several survey works [1–5] that have keen interest in systematic shape classification and

retrieval. Early research works on 3D shape description have been centered primarily on invariance

under global Euclidean transformations (i.e. rigid transformations). These works include the shape

context [17], shape distributions [18] and spherical harmonics [19]. Recently, significant efforts

have been invested in exploring the invariance properties of shapes to nonrigid deformations. An

intuitive approach is to replace the Euclidean distance with the geodesic one. The primary motiva-

tion is that unlike the Euclidean distance, which is basically a straight line between two points in

3D space, the geodesic distance captures the global nonlinear structure and the intrinsic geometry

of the data. The main drawback of the geodesic distance is that it suffers from strong sensitivity to

topological noise, which might heavily damage the shape invariants.

Other similar spectral distances include the commute time distance and the biharmonic dis-

tance [20]. Since the eigensystem of the LBO is isometric invariant, it is well-suited for the

analysis and retrieval of nonrigid shapes, and it is more robust than the geodesic distance. By

integrating the local distribution of features, the intrinsic shape context was proposed in [21] as a

natural extension of the 2D Shape Context to 3D nonrigid surfaces, and it was shown to outperform

individual vertex descriptors in 3D shape matching.

The overwhelming majority of 3D object rendering techniques proposed in the literature of com-

puter graphics and computer vision are initially based on geometric and topological representations
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which represent the features of an object [22, 23]. For example, Siddiqi et al. [24] introduced a

shock detection approach based on singularity theory to generate a skeletal shape model. Also,

Siddiqi et al. [25] proposed a directed acyclic graph representation for 3D retrieval using medial

surfaces. This approach utilizes the geometric information associated with each graph node along

with an eigenvalue labeling of the adjacency matrix of the subgraph rooted at that node. Cornea

et al. [26] designed a 3D matching framework for 3D volumetric objects using a many-to-many

matching algorithm. This algorithm is based on establishing correspondences among two skeletal

representations via distribution-based matching in metric spaces. Hassouna et al. [27] proposed a

level set based framework for robust centerline extraction of 2D shapes and 3D volumetric objects.

This approach is based on the gradient vector flow and uses a wave propagation technique, which

identifies the curve skeletons as the wave points of maximum positive curvatures. Tagliasacchi et

al. [28] introduced a curve skeleton extraction algorithm from imperfect point clouds. A major

drawback of curve skeletons is that they cannot capture general shape features such as surface

ridges, and are essentially restricted to objects which resemble connected tubular forms.

Global approaches have been proposed as alternatives to feature-based representations, which

represent a 3D object by a global measure or shape distribution defined on the surface of the

object [18, 19, 29]. Ankerst et al. [29] used shape histograms to analyze the similarity of 3D

molecular surfaces. These histograms are built from uniformly distributed surface points taken

from the molecular surfaces, and are defined on concentric shells and sectors around the centroid

of the surface. Osada et al. [18] proposed a global approach for computing shape signatures of

arbitrary 3D models. The key idea is to represent an object by a global histogram based on the

Euclidean distance defined on the surface of an object. More recently, Ion et al. [30] presented an

articulation-insensitive shape matching approach by constructing histograms from the eccentricity

transform using geodesic distances. Kazhdan et al. [19] proposed a rotation invariant spherical

harmonic representation that transforms rotation dependent shape descriptors into rotation inde-

pendent ones. Chen et al. [31] presented a lightfield descriptor for 3D object retrieval by com-

paring ten silhouettes of the 3D shape obtained from ten viewing angles distributed uniformly on

the viewing enclosing sphere. The dissimilarity between two shapes is computed as the minimal

distance obtained by rotating the viewing sphere of one lightfield descriptor relative to the other

lightfield descriptor. The computation of this descriptor is, however, significantly time consuming

compared to spherical harmonics [32].

The intriguing field of diffusion geometry provides a generic framework for many methods in

the analysis of geometric shapes [33]. This framework formulates the heat diffusion processes on

manifolds. Spectral shape analysis is a methodology that relies on the eigensystem (eigenvalues

and/or eigenfunctions) of the Laplace-Beltrami operator to compare and analyze geometric shapes.

Levy [34] showed that eigenfunctions can be well-adapted to the geometry and the topology of a

3



3D model. Coifman and Lafon [33] constructed diffusion distances as the L2-norm difference of

energy distribution between two points initialized with unit impulse functions after a given time.

Finally, shape google algorithm [35] was proposed as a classic method for deformable shape re-

trieval. It uses the multi-scale diffusion heat kernels as “geometric words”, and constructs compact

and informative shape representation using vocabulary method.

The past decade has witnessed the surge in popularity of the vocabulary model in image process-

ing domain. Vocabulary model was first introduced in text retrieval, and later was applied to image

categorization in the seminal paper [36]. Subsequent research has focused on overcoming its two

intrinsic limitations to improve discrimination, namely the information loss of the assignment of

local features to visual words, and then the lack of information on the spatial layout of the local

features.

Increase in size of vocabulary is often addressed as a way to enhance the performance of dic-

tionary model. However, it leads to a higher computational complexity for making dictionary and

feature assignment. On the other hand, when the vocabularies are more compact, the information

lost in the quantization steps becomes more significant, specifically when hard assignment [37]

is applied. Boiman et al. [38] showed that by directly using of image-to-class distances with-

out descriptor quantization, the discrimination ability is considerably decreased due to the rough

quantization of the feature space. But with the soft-assignment coding of signatures to multiple

visual words, the loss can be compensated as reported in [39, 40]. Inspired by compressive sens-

ing methodology, other approaches for assignment were guided by sparsity constraints [41] and

locality constraints [42].

Bag-of-Features (BoF) usually encodes the zero-order statistics of the distribution of signatures.

The Fisher vector extends the BoF by encoding high-order statistics (first and, optionally, second

order). This description vector is the gradient of the sample’s likelihood with respect to the param-

eters of this distribution, scaled by the inverse square root of the Fisher information matrix [43]. A

simplified version of Fisher kernels, namely vector of locally aggregated descriptors (VLAD) was

introduced in [44]. The three aforementioned various ways of aggregating local image descriptors

into a vector were evaluated by Jegou et al. in [45]. Furthermore, Picard et al. [46] expanded the

VLAD approach by adding an aggregation of the tensor product of descriptors.

Similar to the image domain, the vocabulary model representation for 3D surfaces is a frequency

histogram of quantized local geometric appearance, where the spatial layout of the geometric ap-

pearance is completely ignored [35]. Clearly, the spatial information may convey useful cues to

improve the discrimination between 3D shapes. Before modeling the spatial layout on surfaces,

it is necessary to review the technique for images. In the literature, two different ways to encode

spatial information have been explored, which are based on local relative positions of pairwise

features, and on global absolute positions.
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Modeling pairwise spatial features into the vocabulary model is an intuitive way to amalga-

mate spatial information. A spatially-sensitive affine-invariant image descriptor was constructed

by Bronstein et al. [47] using canonical relation, in which both the features and their relation are

affine-invariant. They also generalized the pairwise spatially-sensitive descriptors called “Expres-

sion” for 3D surface using the heat kernel as the relation [35]. In order to give the signature more

descriptive ability, they also considered the relationship between the visual words. Saverese et

al. [48] used correlograms of visual words to model the spatial correlations between quantized

local descriptors. Ling and Soatto [49] characterized the relative locations of visual words. Their

proximity distribution representation is a 3D structure which records the number of times a visual

word appears within a particular number of nearest neighbors of another word. Finally, besides

pairwise relation, more complex relation such as the graph manner layout of groups of quantized

local invariant descriptors was proposed by Behmo et al. [50], which can preserve translational

relations between features. Liu et al. [51] calculated spatial histograms where the co-occurrences

of local features are computed in circular regions of varying distances.

One of the initial works to address the lack of spatial information in the BoF representation is

spatial pyramid matching (SPM) which introduced by Lazebnik et al. [52]. Their spatial pyra-

mid representation was motivated by an earlier work, termed pyramid matching by Grauman and

Darrell [53], on finding approximate correspondences between sets of points in high-dimensional

feature spaces. The key idea behind pyramid matching is to partition the feature space into a se-

quence of increasingly coarser grids and then compute a weighted sum over the number of matches

that occur at each level of resolution. However, SPM and relative spatial relation modeling are still

too weak. Recently, stronger spatially encoding methods include encoding geometric information

of objects within the images. Local features of an image are projected onto different directions

or points to generate a series of ordered BoF, based on which families of spatial partitions can

guarantee the invariance of object to affine transformation [54]. Additionally, there are some ap-

proaches characterizing both the absolute and relative spatial layout of an image. Spatial pyramid

co-occurrence [55] computes local co-occurrence with respect to spatial layout over a hierarchi-

cal spatial partitioning of an image. In addition to co-occurrences, geometry-preserving visual

phrases [56] can encode more spatial information through capturing the local and long-range spa-

tial layouts of the words. Unlike manually defined spatial regions for pooling, Jia et al. [57] pro-

posed to learn more adaptive receptive fields to increase the performance even with a significantly

smaller vocabulary size at the coding layer. In [58], the Gaussian mixture model was encoded with

spatial layout to improve the performance of Fisher kernel for image classification.
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1.3 Spectral Geometry

Spectral geometry is concerned with the eigenvalue spectrum of the Laplace-Beltrami operator

(LBO) on a compact Riemannian manifold, and aims at describing the relationships between such

a spectrum and the geometric structure of the manifold.

1.3.1 Triangle Mesh

A 3D shape is usually modeled as a triangle mesh M whose vertices are sampled from a Rieman-

nian manifold. A triangle mesh M may be defined as a graph G = (V , E) or G = (V , T ), where

V = {v1, . . . , vm} is the set of vertices, E = {eij} is the set of edges, and T = {t1, . . . , tm} is the

set of triangles, as depicted in the enlarged view of Figure 1.1 (left). Each edge eij = [vi, vj] con-

nects a pair of vertices {vi, vj}. Two distinct vertices vi, vj ∈ V are adjacent (denoted by vi ∼ vj

or simply i ∼ j) if they are connected by an edge, i.e. eij ∈ E .

1.3.2 Laplace-Beltrami Operator

Given a compact Riemannian manifold M, the space L2(M) of all smooth, square-integrable func-

tions on M is a Hilbert space endowed with inner product 〈f1, f2〉 =
∫
M
f1(x)f2(x) da(x), for all

f1, f2 ∈ L2(M), where da(x) (or simply dx) denotes the measure from the area element of a Rie-

mannian metric on M. Given a twice-differentiable, real-valued function f : M → R, the LBO

is defined as ΔMf = −div(∇Mf), where ∇Mf is the intrinsic gradient vector field and div is the

divergence operator [15, 59]. The LBO is a linear, positive semi-definite operator acting on the

space of real-valued functions defined on M, and it is a generalization of the Laplace operator to

non-Euclidean spaces.

Discretization A real-valued function f : V → R defined on the mesh vertex set may be repre-

sented as an m-dimensional vector f = (f(i)) ∈ R
m, where the ith component f(i) denotes the

function value at the ith vertex in V . Using a mixed finite element/finite volume method on triangle

meshes [60], the value of ΔMf at a vertex vi (or simply i) can be approximated using the cotangent

weight scheme as follows:

ΔMf(i) ≈
1

ai

∑
j∼i

cotαij + cot βij

2

(
f(i)− f(j)

)
, (1.1)

where αij and βij are the angles ∠(vivk1vj) and ∠(vivk2vj) of two faces tα = {vi, vj, vk1} and

tβ = {vi, vj, vk2} that are adjacent to the edge [i, j], and ai is the area of the Voronoi cell (shaded

polygon) at vertex i, as shown in Figure 1.1 (right). It should be noted that the cotangent weight

scheme is numerically consistent and preserves several important properties of the continuous

LBO, including symmetry and positive semi-definiteness [61].
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Figure 1.1: Triangular mesh representation (left); Cotangent scheme angles
(right).

Spectral Analysis The m × m matrix associated to the discrete approximation of the LBO is

given by L = A−1W, where A = diag(ai) is a positive definite diagonal matrix (mass matrix),

and W = diag(
∑

k �=i cik) − (cij) is a sparse symmetric matrix (stiffness matrix). Each diagonal

element ai is the area of the Voronoi cell at vertex i, and the weights cij are given by

cij =

⎧⎨⎩
cotαij + cot βij

2
if i ∼ j

0 o.w.
(1.2)

where αij and βij are the opposite angles of two triangles that are adjacent to the edge [i, j].

The eigenvalues and eigenvectors of L can be found by solving the generalized eigenvalue

problem Wϕ� = λ�Aϕ� using for instance the Arnoldi method of ARPACK, where λ� are the

eigenvalues and ϕ� are the unknown associated eigenfunctions (i.e., eigenvectors which can be

thought of as functions on the mesh vertices). We may sort the eigenvalues in ascending order as

0 = λ1 < λ2 ≤ · · · ≤ λm with associated orthonormal eigenfunctions ϕ1,ϕ2, . . . ,ϕm, where the

orthogonality of the eigenfunctions is defined in terms of the A-inner product, i.e.

〈ϕk,ϕ�〉A =
m∑
i=1

aiϕk(i)ϕ�(i) = δk�, for all k, � = 1, . . . ,m. (1.3)

We may rewrite the generalized eigenvalue problem in matrix form as WΦ = AΦΛ, where Λ =

diag(λi) is an m×m diagonal matrix with the λ� on the diagonal, and Φ is an m×m orthogonal

matrix whose �th column is the unit-norm eigenvector ϕ�. It should be noted that since the first

eigenvalue λ1 is zero, its associated eigenvector ϕ1 is an m-dimensional constant vector given by

ϕ1 =

(
1√
a
,
1√
a
, . . . ,

1√
a

)ᵀ

, (1.4)

where a = area(M) is the total area of the mesh.
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The successful use of the LBO eigenvalues and eigenfunctions in shape analysis is largely at-

tributed to their isometry invariance and robustness to noise. Moreover, the eigenfunctions asso-

ciated to the smallest eigenvalues capture well the large-scale properties of a shape. As shown in

Figure 1.2, the (non-trivial) eigenfunctions of the LBO encode important information about the

intrinsic global geometry of a shape. Notice that the eigenfunctions associated with larger eigen-

values oscillate more rapidly. Blue regions indicate negative values of the eigenfunctions and red

colors regions indicate positive values, while green and yellow regions in between.

Figure 1.2: Visualization of the first four (non-trivial) eigenfunctions of the LBO.
From left to right: a 3D frog model Gouraud shaded and color-coded by the values
of the first, second, third and fourth eigenfunctions. Best viewed in color.

1.3.3 Spectral Shape Signatures

In recent years, several local descriptors based on the eigenvalues and eigenfunctions of the LBO

have been proposed in the 3D shape analysis literature such as ShapeDNA [13], global point sig-

nature (GPS) [9], heat mean signature (HMS), heat kernel signature (HKS) [10] and wave kernel

signature (WKS) [12].

ShapeDNA One of the first spectral shape descriptors is ShapeDNA [13] which is a normalized

sequence of the first eigenvalues of the LBO. Its main advantages are the simple representation

(a vector of numbers) and scale invariance. Despite its simplicity, the shapeDNA yields a better

performance in the retrieval of nonrigid shapes. However, the eigenvalues are a global descriptor,

therefore the shapeDNA cannot be used for local or partial shape analysis. The Eigenvalue De-

scriptor (EVD) [5], on the other hand, is a sequence of the eigenvalues of the geodesic distance

matrix. Both ShapeDNA and EVD can be normalized by the second eigenvalue.

Global Point Signature The global point signature (GPS) [9] at a surface point is a vector of

scaled eigenfunctions of the LBO. The GPS is a global feature in the sense that it cannot be used

for partial shape matching. It is defined in terms of the eigenvalues and eigenfunctions of ΔM as

follows:

GPS(x) =
(
ϕ2(x)√

λ2

,
ϕ3(x)√

λ3

, . . . ,
ϕi(x)√

λi

, . . .

)
(1.5)
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GPS is invariant under isometric deformations of the shape, but it suffers for the problem of eigen-

functions switching whenever the associated eigenvalues are close to each other.

Heat Mean Signature The Heat Mean Signature (HMS) [62] quantitatively evaluate the temper-

ature distribution resulting from the heat flow process

HMSt(x) =
1

m

∑
y �=x

kt(x, y), (1.6)

where kt is heat kernel and HMSt(x) can be physically interpreted as the average temperature on

the surface obtained by applying a unit amount of heat on the vertex x and after a certain amount

of time of heat dissipation. A relatively smaller parameter t is often empirically chosen to preserve

a higher resolution version of the original surface [63]. Fang et al. also proposed the temperature

distribution descriptor [64], which is based on the distribution of the values of average temperature

for all of the vertices on the mesh. We construct a multi-scale HMS to compare temperature

distribution with multiple diffusion times as follows:

HMS(x) = (HMSt1 ,HMSt2 , . . . ,HMStn) . (1.7)

Heat Kernel Signature and Wave Kernel Signature Both HKS and WKS have an elegant

physical interpretation: the HKS describes the amount of heat remaining at a mesh vertex j ∈ V
after a certain time, whereas the WKS is the probability of measuring a quantum particle with the

initial energy distribution at j. The HKS at a vertex j is defined as:

stk(j) =
m∑
�=1

e−λ�tkϕ2
�(j), (1.8)

where λ� and ϕ� are the eigenvalues and eigenfunctions of the LBO. In other words, HKS (kt(x, x))

is the diagonal of the heat kernel matrix (kt(x, y)) at multiple scales. Figure 1.3 depicts a clear

representation of heat kernel versus heat kernel signature on human shape.

The HKS contains information mainly from low frequencies, which correspond to macroscopic

features of the shape; and thus exhibits a major discrimination ability in shape retrieval and classi-

fication tasks. With multiple scaling factors tk, a collection of low-pass filters are established. The

larger is tk, the more high frequencies are suppressed. However, different frequencies are always

mixed in the HKS, and high-precision localization task may fail due in part to the suppression of

the high frequency information, which corresponds to microscopic features. To circumvent these

disadvantages, Aubry et al. [12] introduced the WKS, which is defined at a vertex j as follows:

stk(j) =
m∑
�=1

Ctk exp

(
−(log tk − log λ�)

2

σ2

)
ϕ2
�(j), (1.9)
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(a) kt(x, y) (b) kt(x, x)

Figure 1.3: (a) Propagation of heat (kt(x, y)) from a specified point on the elbow
of human shape to the rest of the shape in a given time t. (b) Representation of heat
kernel signature acquired by the diagonal of the heat kernel matrix. As shown, heat
is raised when color changes from black to red. Also, positive and negative values
of Gaussian curvatures relate to high and low amount of kt(x, x), respectively.

where Ctk is a normalization constant. The WKS explicitly separates the influences of different

frequencies, treating all frequencies equally. Thus, different spatial scales are naturally separated,

making the high-precision feature localization possible.

Given a range of discrete scales tk, a bank of filters is constructed for each signature, and thus a

vertex j on the mesh surface can be described by a p-dimensional point signature vector given by

sj = {stk(j) | k = 1, . . . , p}, for j = 1, . . . ,m. (1.10)

For the sake of notational simplicity, we use s(x) to represent the types of the above spectral

signatures evaluated at a surface point x, i.e. HKS and WKS.

1.3.4 Spectral Graph Wavelets

Similar to the Fourier transform which decomposes a signal into its constituent frequencies, the

wavelet transform is a powerful multiresolution analysis tool that enable decomposition of a signal
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into a wavelet basis which allows simultaneous localization in space and frequency. Wavelet anal-

ysis provides a time-scale representation and extends frequency analysis to scale, while Fourier

analysis only gives the frequency information [65]. The idea of wavelets is based on the use of two

main operations on the signal, namely shifting and scaling. Using these two operations, a signal f

can be represented as the sum of shifted and scaled versions of the so-called mother wavelet func-

tion, ψ, and shifted versions of the so-called scaling function, φ. The mother wavelet and scaling

functions act as band-pass and low-pass functions, respectively.

Classical Continuous Wavelet Transform The continuous wavelet transform maps the original

signal, which is a function of just one variable (time) into a function of two variables (time and

frequency), providing highly redundant information. More specifically, for a given mother wavelet

ψ, a family ψt,a of daughter wavelets can be obtained by simply scaling and translating ψ as

follows:

ψt,a(x) =
1

t
ψ

(
x− a

t

)
, (1.11)

where t is a positive scaling parameter that controls the width of the wavelet, and a is a translation

parameter that controls the location of the wavelet. Scaling a wavelet simply means stretching it (if

t > 1) or compressing it (if t < 1), while translating a wavelet simply means shifting its position in

time. Note that the translation parameter does not have a counterpart in the Fourier basis functions,

where the position information is totally missing. It should also be noted that the scaling parameter

in the wavelet analysis is similar to the scale used in maps. As in the case of maps, high scales

correspond to a non-detailed global view of the signal, while low scales correspond to a detailed

view.

Given a square-integrable signal f , the continuous wavelet transform (CWT) with respect to the

mother wavelet ψ is expressed by the following integral

Wf (t, a) = 〈ψt,a, f〉 =
1

t

∫ ∞

−∞
f(x)ψ∗

(
x− a

t

)
dx, (1.12)

which is also referred to as the wavelet coefficient at scale t and location a. Also, ψ∗ denotes

the complex conjugate of ψ. The position of the wavelet in the time domain is given by the

translational value a, while its position in the frequency domain is given by the scale t. Thus, the

CWT gives us information simultaneously on time and frequency. Unlike Fourier transform, the

CWT possesses the ability to construct a time-frequency representation of a signal that offers very

good time and frequency localization. The CWT may be invertible when the mother wavelet ψ

satisfies the admissibility condition, Cψ =
∫∞
0

|ψ̂(ω)|2
ω

dω < ∞, where ψ̂ is the Fourier transform

of ψ. The inverse CWT is given by

f(x) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
Wf (t, a)ψt,a(x)

da dt

t
· (1.13)
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For a fixed scale t, the CWT may be interpreted as an operator taking a function f and returning

the function (T tf)(a) = Wf (t, a). In other words, the translation parameter can be considered

as the independent variable of the function returned by the operator T t. The CWT may also be

expressed in the Fourier domain as [66]:

(T tf)(x) =
1

2π

∫ ∞

−∞
ψ̂∗(tω)f̂(ω)eıωxdω, (1.14)

where ψ̂∗(tω) is the complex conjugate of the Fourier transform of the wavelet ψ at scale t, and

f̂(ω) is the Fourier transform of the signal f . The scaling parameter t appears only in the argument

of ψ̂∗(tω), showing that the scaling operation can be completely transferred to the Fourier domain.

It is clear that the wavelet transform at each scale can be viewed as a Fourier multiplier operator,

determined by filters that are derived from scaling a single filter ψ̂∗(ω). This idea was adopted

by Hammond et al. [66] to provide the analogue of the wavelet transform on weighted graphs via

spectral graph theory.

For any graph signal f : V → M, the forward and inverse graph Fourier transforms (also called

manifold harmonic and inverse manifold harmonic transforms) are defined as

f̂(�) = 〈f,ϕ�〉 =
m∑
i=1

aif(i)ϕ�(i), � = 1, . . . ,m (1.15)

and

f(i) =
m∑
�=1

f̂(�)ϕ�(i) =
m∑
�=1

〈f,ϕ�〉ϕ�(i), i ∈ V , (1.16)

respectively, where f̂(�) is the value of f at eigenvalue λ� (i.e. f̂(�) = f̂(λ�)). In particular, the

graph Fourier transform of a delta function δj centered at vertex j is given by

δ̂j(�) =
m∑
i=1

aiδj(i)ϕ�(i) =
m∑
i=1

aiδijϕ�(i) = ajϕ�(j). (1.17)

The forward and inverse graph Fourier transforms may be expressed in matrix-vector multiplica-

tion as follows:

f̂ = Φ
ᵀ
Af and f = Φf̂, (1.18)

where f = (f(i)) and f̂ = (f̂(�)) are m-dimensional vectors whose elements are given by (1.15)

and (1.16), respectively.

Wavelet Function The spectral graph wavelet transform is determined by the choice of a spectral

graph wavelet generating kernel g : R+ → R
+, which is analogous to the Fourier domain wavelet.

To act as a band-pass filter, the kernel g should satisfy g(0) = 0 and limx→∞ g(x) = 0.
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Let g be a given kernel function and denote by T t
g the wavelet operator at scale t. Similar to the

Fourier domain, the graph Fourier transform of T t
g is given by

T̂ t
gf(�) = g(tλ�)f̂(�), (1.19)

where g acts as a scaled band-pass filter. Thus, the inverse graph Fourier transform is given by

(T t
gf)(i) =

m∑
�=1

T̂ t
gf(�)ϕ�(i) =

m∑
�=1

g(tλ�)f̂(�)ϕ�(i). (1.20)

Applying the wavelet operator T t
g to a delta function centered at vertex j (i.e. f(i) = δj(i) = δij),

the spectral graph wavelet ψt,j localized at vertex j and scale t is then given by

ψt,j(i) = (T t
gδj)(i) =

m∑
�=1

g(tλ�)δ̂j(�)ϕ�(i) =
m∑
�=1

ajg(tλ�)ϕ�(j)ϕ�(i). (1.21)

This indicates that shifting the wavelet to vertex j corresponds to a multiplication by ϕ�(j). It

should be noted that g(tλ�) is able to modulate the spectral wavelets ψt,j only for λ� within the

domain of the spectrum of the LBO. Thus, an upper bound on the largest eigenvalue λmax is

required to provide knowledge on the spectrum in practical applications.

Hence, the spectral graph wavelet coefficients of a given function f can be generated from its

inner product with the spectral graph wavelets:

Wf (t, j) = 〈f,ψt,j〉 =
m∑
�=1

ajg(tλ�)f̂(�)ϕ�(j). (1.22)

Scaling Function Similar to the low-pass scaling functions in the classical wavelet analysis, a

second class of waveforms h : R+ → R are used as low-pass filters to better encode the low-

frequency content of a function f defined on the mesh vertices. To act as a low-pass filter, the

function h should satisfy h(0) > 0 and h(x) → 0 as x → ∞. Similar to the wavelet kernels, the

scaling functions are given by

φj(i) = (Thδj)(i) =
m∑
�=1

h(λ�)δ̂j(�)ϕ�(i) =
m∑
�=1

ajh(λ�)ϕ�(j)ϕ�(i). (1.23)

and their spectral coefficients are

Sf (j) = 〈f,φj〉 =
m∑
�=1

ajh(λ�)f̂(�)ϕ�(j). (1.24)

A major advantage of using the scaling function is to ensure that the original signal f can be stably

recovered when sampling scale parameter t with a discrete number of values tk. As demonstrated
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in [66], given a set of scales {tk}Kk=1, the set F = {φj}mj=1 ∪ {ψtk,j}K m
k=1 j=1 forms a spectral graph

wavelet frame with bounds

A = min
λ∈[0,λmax]

G(λ) and B = max
λ∈[0,λmax]

G(λ), (1.25)

where

G(λ) = h(λ)2 +
∑
k

g(tkλ)
2. (1.26)

The stable recovery of f is ensured when A and B are away from zero. Additionally, the crux of

the scaling function is to smoothly represent the low-frequency content of the signal on the mesh.

Thus, the design of the scaling function h is uncoupled from the choice of wavelet generating

kernel g.

1.4 Shape Classification

The task in the shape classification problem is to assign a shape to a class chosen from a predefined

set of classes. Broadly speaking, shape classification is the process of organizing a dataset of

shapes into a known number of classes, and the task is to assign new shapes to one of these classes.

It is common practice in classification to randomly split the available data into training and test

sets. Classification aims to learn a classifier (also called predictor or classification model) from

labeled training data. The training data consist of a set of training examples or instances that are

labeled with predefined classes. The resulting, trained model is subsequently applied to the test

data to classify future (unseen) data instances into these classes. The test data, which consists of

data instances with unknown class labels, is used to evaluate the performance of the classification

model and determine its accuracy in terms of the number of test instances correctly or incorrectly

predicted by the model. A good classifier should result in high accuracy, or equivalently, in few

misclassifications. In our work, we propose two approaches to perform 3D shape classification on

spectral graph wavelet codes that are obtained from spectral graph wavelet signatures (i.e. local

descriptors) via the soft-assignment coding step of the BoF model in conjunction with a geodesic

exponential kernel for capturing the spatial relations between features.

1.5 Deep Learning

Deep learning is a machine learning paradigm that mimics the way the human brain works to

varying degrees. The popularity of deep learning is largely attributed not only to its huge success

in a wide range of tasks such as handwritten character recognition, image and video recognition,

text analysis and speech recognition, but also to tech industry giants such as Google, Apple, IBM,
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Microsoft, Facebook, Twitter, PayPal and Baidu that have acquired most of the dominant players

in this field to improve their product offerings and services. Inspired by the actual structure of the

brain, deep learning refers to a powerful class of machine learning techniques that learn multi-level

representations of data in deep hierarchical architectures composed of multiple layers, where each

higher layer corresponds to a more abstract (i.e. higher level) representation of information [67].

The process of deep learning is hierarchical in the sense that it takes low-level features at the bottom

layer and then constructs higher and higher level features through the composition of layers.

Deep learning is a rapidly growing discipline that models high-level features in data as complex

multilayered networks, where each layer can learn features at a different level of abstraction. As a

branch of the broader discipline of machine learning, deep learning emulates a biological system by

creating a simulated software network of mathematical neurons, and the resulting neural network

builds a model that is capable of adapting itself to new data.

As a type of artificial intelligence, deep learning has been successfully applied in areas ranging

from voice, image and text recognition to game playing, cybersecurity and emotion identification.

Success in all of these fields is rooted in the ability of deep learning networks to extract useful

information from unstructured real-world data such as collections of pictures or webcam videos

of human faces. Deep learning is proving to be a powerful tool for extracting useful information

from unstructured data in order to provide solutions across a broad range of field. For instance, a

network may learn to identify brand logos in pictures posted on social media, health-threatening

abnormalities in x-rays and MRIs, or human emotions from facial expressions captured by web-

cams. The learning process involves an extended period of training in which the network is given

examples to learn, extracts information from the examples, tests itself to determine whether the

information it extracted improves its ability to recognize the examples, and then adjusts itself so

that the next time it tries it does a better job. This learning process repeats until the network has

achieved a predetermined level of accuracy.

In contrast to the shallow architectures which only contain a fixed feature layer (or base function)

and a weight-combination layer (usually linear), deep architectures refers to the multilayer network

where each two adjacent layers are linked to each other in some way. Deep architectures assist deep

learning to model more complex data for better performance and even for less computation time in

some cases [68].

15



1.6 Overview and Contributions

The organization of this thesis is as follows

• Chapter 1 contains a brief review of essential concepts and definitions which we refer to

throughout the thesis, provides a literature review, and presents a short summary of material

relevant to 3D shape retrieval and classification in the spectral geometric framework.

• In Chapter 2, we introduce a spectral graph wavelet framework for 3D shape classification

that employs the BoF paradigm in an effort to design a global shape descriptor defined in

terms of mid-level features and a geodesic exponential kernel [69]. The proposed approach

not only takes into consideration the spatial relations between features, but also substan-

tially excels state-of-the-art methods both in classification accuracy and in scalability. The

effectiveness of the method was demonstrated on two standard 3D shape benchmarks.

• In Chapter 3, we propose a deep learning-based approach for classification of 3D ob-

jects [70]. Our proposed DeepSGW framework incorporates the vertex area into the defi-

nition of spectral graph wavelet in a bid to capture more geometric information and, hence,

further improve its discriminative ability. Moreover, we use spectral graph wavelet codes in

conjunction with a geodesic exponential kernel for capturing the spatial relations between

features. Then, in order to perform 3D object classification, deep belief networks (DBN) is

employed as a classifier to be learned from the training data. Finally, the learned model is

evaluated using a set of test data to predict the class labels for the DBN classifier and hence

assess the classification accuracy. Experimental results on two datasets depict the superiority

of the proposed DeepSGW framework in comparison with the other state-of-the-art methods.

• In Chapter 4, we present a spectral graph wavelet framework for the analysis and design of

efficient shape signatures for nonrigid 3D shape retrieval [71]. Although this work focuses

primarily on shape retrieval, our approach is, however, fairly general and can be used to ad-

dress other 3D shape analysis problems. In a bid to capture the global and local geometry

of 3D shapes, we employ a multi-resolution signature via a Mexican hat wavelet generat-

ing kernel. Then, mid-level features are obtained by embedding local descriptors into the

visual vocabulary space using the soft-assignment coding step of the BoF model. Finally,

by aggregating mid-level features weighted by a geodesic exponential kernel, a global de-

scriptor is constructed. The parameters of the proposed signature can be easily determined

as a tradeoff between effectiveness and compactness. Experimental results on two standard

3D shape benchmarks demonstrate that the proposed shape retrieval approach outperforms

other state-of-the-art methods.
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• In Chapter 5, we summarize the contributions of this thesis, and propose several future re-

search directions that are directly or indirectly related to the ideas developed therein.
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Spectral Graph Wavelets for Shape Classification

Spectral shape descriptors have been used extensively in a broad spectrum of geometry processing

applications ranging from shape retrieval and segmentation to classification. In this chapter, we

propose a spectral graph wavelet approach for 3D shape classification using the BoF paradigm.

In an effort to capture both the local and global geometry of a 3D shape, we present a three-step

feature description framework. First, local descriptors are extracted via the spectral graph wavelet

transform having the Mexican hat wavelet as a generating kernel. Second, mid-level features are

obtained by embedding local descriptors into the visual vocabulary space using the soft-assignment

coding step of the BoF model. Third, a global descriptor is constructed by aggregating mid-

level features weighted by a geodesic exponential kernel, resulting in a matrix representation that

describes the frequency of appearance of nearby codewords in the vocabulary. Experimental results

on two standard 3D shape benchmarks demonstrate the effectiveness of the proposed classification

approach in comparison with state-of-the-art methods.

2.1 Introduction

The recent surge of interest in the spectral analysis of the LBO has resulted in a glut of spectral

shape signatures that have been successfully applied to a broad range of areas, including manifold

learning [72], object recognition and deformable shape analysis [9, 13, 34, 35, 70, 73], medical

imaging [74], multimedia protection [75], and shape classification [76]. The diversified nature

of these applications is a powerful testimony of the practical usage of spectral shapes signatures,

which are usually defined as feature vectors representing local and/or global characteristics of a

shape and may be broadly classified into two main categories: local and global descriptors. Local
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descriptors (also called point signatures) are defined on each point of the shape and often represent

the local structure of the shape around that point, while global descriptors are usually defined on

the entire shape.

Most point signatures may easily be aggregated to form global descriptors by integrating over

the entire shape. Rustamov [9] proposed a local feature descriptor referred to as the global point

signature (GPS), which is a vector whose components are scaled eigenfunctions of the LBO eval-

uated at each surface point. The GPS signature is invariant under isometric deformations of the

shape, but it suffers from the problem of eigenfunctions’ switching whenever the associated eigen-

values are close to each other. This problem was lately well handled by the heat kernel signature

(HKS) [10], which is a temporal descriptor defined as an exponentially-weighted combination of

the LBO eigenfunctions. HKS is a local shape descriptor that has a number of desirable properties,

including robustness to small perturbations of the shape, efficiency and invariance to isometric

transformations. The idea of HKS was also independently proposed by Gȩbal et al. [77] for 3D

shape skeletonization and segmentation under the name of auto diffusion function. From the graph

Fourier perspective, it can be seen that HKS is highly dominated by information from low frequen-

cies, which correspond to macroscopic properties of a shape. To give rise to substantially more

accurate matching than HKS, the wave kernel signature (WKS) [12] was proposed as an alternative

in an effort to allow access to high-frequency information. Using the Fourier transform’s magni-

tude, Kokkinos et al. [11] introduced the scale invariant heat kernel signature (SIHKS), which is

constructed based on a logarithmically sampled scale-space.

One of the simplest spectral shape signatures is Shape-DNA [13], which is an isometry-invariant

global descriptor defined as a truncated sequence of the LBO eigenvalues arranged in increasing

order of magnitude. Gao et al. [76] developed a variant of Shape-DNA, referred to as compact

Shape-DNA (cShape-DNA), which is an isometry-invariant signature resulting from applying the

discrete Fourier transform to the area-normalized eigenvalues of the LBO. Chaudhari et al. [74]

presented a slightly modified version of the GPS signature by setting the LBO eigenfunctions to

unity. This signature, called GPS embedding, is defined as a truncated sequence of inverse square

roots of the area-normalized eigenvalues of the LBO. A comprehensive list of spectral descriptors

can be found in [78, 79].

From the graph Fourier perspective, it can be seen that HKS is highly dominated by information

from low frequencies, which correspond to macroscopic properties of a shape. Wavelet analysis

has some major advantages over Fourier transform, which makes it an interesting alternative for

many applications. In particular, unlike the Fourier transform, wavelet analysis is able to per-

form local analysis and also makes it possible to perform a multiresolution analysis. Classical

wavelets are constructed by translating and scaling a mother wavelet, which is used to generate a

set of functions through the scaling and translation operations. The wavelet transform coefficients

19



are then obtained by taking the inner product of the input function with the translated and scaled

waveforms. The application of wavelets to graphs (or triangle meshes) is, however, problematic

and not straightforward due in part to the fact that it is unclear how to apply the scaling opera-

tion on a signal (or function) defined on the mesh vertices. To tackle this problem, Coifman et

al. [33] introduced the diffusion wavelets, which generalize the classical wavelets by allowing for

multiscale analysis on graphs. The construction of diffusion wavelets interacts with the underlying

graph through repeated applications of a diffusion operator, which induces a scaling process. Ham-

mond et al. [66] showed that the wavelet transform can be performed in the graph Fourier domain,

and proposed a spectral graph wavelet transform that is defined in terms of the eigensystem of the

graph Laplacian matrix. More recently, a spectral graph wavelet signature (SGWS) was introduced

in [14,80]. SGWS is a multiresolution local descriptor that is not only isometric invariant, but also

compact, easy to compute and combines the advantages of both band-pass and low-pass filters.

A popular approach for transforming local descriptors into global representations that can be

used for 3D shape recognition and classification is the bag-of-features (BoF) model [35]. The task

in the shape classification problem is to assign a shape to a class chosen from a predefined set of

classes. The BoF model represents each shape in the training dataset as a collection of unordered

feature descriptors extracted from local areas of the shape, just as words are local features of a

document. A baseline BoF approach quantizes each local descriptor to its nearest cluster center

using K-means clustering and then encodes each shape as a histogram over cluster centers by

counting the number of assignments per cluster. These cluster centers form a visual vocabulary or

codebook whose elements are often referred to as visual words or codewords.

Although the BoF paradigm has been shown to provide significant levels of performance, it does

not, however, take into consideration the spatial relations between features, which may have an

adverse effect not only on its descriptive ability but also on its discriminative power. To account for

the spatial relations between features, Bronstein et al. introduced a generalization of a BoF, called

spatially sensitive bags-of-features (SS-BoF) [35]. The SS-BoF is a global descriptor defined in

terms of mid-level features and the heat kernel, and can be represented by a square matrix whose

elements represent the frequency of appearance of nearby codewords in the vocabulary. In the

same spirit, Bu et al. [81] recently proposed the geodesic-aware bags-of-features (GA-BoF) for

3D shape classification by replacing the heat kernel in SS-BoF with a geodesic exponential kernel.

In this thesis, we propose a 3D shape classification approach, called SGWC-BoF, which employs

spectral graph wavelet codes (SGWC) obtained from spectral graph wavelet signatures (i.e. local

descriptors) via the soft-assignment coding step of the BoF model in conjunction with a geodesic

exponential kernel for capturing the spatial relations between features. Broadly speaking, shape

classification is the process of organizing a dataset of shapes into a known number of classes, and

the task is to assign new shapes to one of these classes. It is common practice in classification to
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randomly split the available data into training and test sets. Classification aims to learn a classifier

(also called predictor or classification model) from labeled training data. The training data consist

of a set of training examples or instances that are labeled with predefined classes. The resulting,

trained model is subsequently applied to the test data to classify future (unseen) data instances into

these classes. The test data, which consists of data instances with unknown class labels, is used

to evaluate the performance of the classification model and determine its accuracy in terms of the

number of test instances correctly or incorrectly predicted by the model. A good classifier should

result in high accuracy, or equivalently, in few misclassifications.

In addition to taking into consideration the spatial relations between features via a geodesic

exponential kernel, the proposed approach performs classification on SGWC, thereby seamlessly

capturing the similarity between these mid-level features. We not only show that our formulation

allows us to take into account the spatial layout of features, but we also demonstrate that the pro-

posed framework yields better classification accuracy results compared to state-of-the-art methods,

while remaining computationally attractive.

The rest of this chapter is organized as follows. In Section 2.2, we present our proposed frame-

work for 3D shape classification and its main algorithmic steps. Also, the notion of support vector

machine (SVMs) and the bag-of-features (BoF) paradigm are explained in this section. Experi-

mental results are discussed in Section 2.3.

2.2 Method

In this section, we provide a detailed description of our 3D shape classification method that utilizes

spectral graph wavelets in conjunction with the BoF paradigm. Each 3D shape in the dataset is

first represented by local descriptors, which are arranged into a spectral graph wavelet signature

matrix. Then, we perform soft-assignment coding by embedding local descriptors into the visual

vocabulary space, resulting in mid-level features which we refer to as spectral graph wavelet codes

(SGWC). It is important to point out that the vocabulary is computed offline by concatenating all

the spectral graph wavelet signature matrices into a data matrix, followed by applying the K-means

algorithm to find the data cluster centers.

In a bid to capture the spatial relations between features, we compute a global descriptor of each

shape in terms of a geodesic exponential kernel and mid-level features, resulting in a SGWC-BoF

matrix which is then transformed into a SGWC-BoF vector by stacking its columns one underneath

the other. The last stage of the proposed approach is to perform classification on the SGWC-BoF

vectors using a classification algorithm. The flowchart of the proposed framework is depicted in

Figure 2.1.

Multiclass support vector machines (SVMs) are arguably the most popular and effective super-
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Figure 2.1: Flowchart of the proposed approach.

vised learning methods used for classification. Broadly speaking, supervised learning algorithms

consist of two main steps: training step and test step. In the training step, a classification model

(classifier) is learned from the training data by a learning algorithm (e.g., SVMs). In the test step,

the learned model is evaluated using a set of test data to predict the class labels for the classifier

and hence assess the classification accuracy.

2.2.1 Local Descriptors

Wavelets are useful in describing functions at different levels of resolution. To characterize the

localized context around a mesh vertex j ∈ V , we assume that the signal on the mesh is a unit

impulse function, that is f(i) = δj(i) at each mesh vertex i ∈ V . Thus, it follows from (1.20) that

the spectral graph wavelet coefficients are

Wδj(t, j) = 〈δj,ψt,j〉 =
m∑
�=1

a2jg(tλ�)ϕ
2
�(j), (2.1)

and that the coefficients of the scaling function are

Sδj(j) =
m∑
�=1

a2jh(λ�)ϕ
2
�(j). (2.2)

Following the multiresolution analysis, the spectral graph wavelet and scaling function coefficients

are collected to form the the spectral graph wavelet signature at vertex j as follows:

sj = {sL(j) | L = 1, . . . , R}, (2.3)

where R is the resolution parameter, and sL(j) is the shape signature at resolution level L given by

sL(j) = {Wδj(tk, j) | k = 1, . . . , L} ∪ {Sδj(j)}. (2.4)
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The wavelet scales tk (tk > tk+1) are selected to be logarithmically equispaced between maximum

and minimum scales t1 and tL, respectively. Thus, the resolution level L determines the resolution

of scales to modulate the spectrum. At resolution R = 1, the spectral graph wavelet signature sj

is a 2-dimensional vector consisting of two elements: one element, Wδj(t1, j), of spectral graph

wavelet function coefficients and another element, Sδj(j), of scaling function coefficients. And

at resolution R = 2, the spectral graph wavelet signature sj is a 5-dimensional vector consisting

of five elements (four elements of spectral graph wavelet function coefficients and one element of

scaling function coefficients). In general, the dimension of a spectral graph wavelet signature sj at

vertex j can be expressed in terms of the resolution R as follows:

p =
(R + 1)(R + 2)

2
− 1. (2.5)

Hence, for a p-dimensional signature sj , we define a p×m spectral graph wavelet signature matrix

as S = (s1, . . . , sm), where sj is the signature at vertex j and m is the number of mesh vertices.

In our implementation, we used the Mexican hat wavelet as a kernel generating function g. In

addition, we used the scaling function h given by

h(x) = γ exp

(
−
(

x

0.6λmin

)4
)
, (2.6)

where λmin = λmax/20 and γ is set such that h(0) has the same value as the maximum value of g.

The maximum and minimum scales are set to t1 = 2/λmin and tL = 2/λmax.

The geometry captured at each resolution R of the spectral graph wavelet signature can be

viewed as the area under the curve G shown in Figure 2.2. For a given resolution R, we can

understand the information from a specific range of the spectrum as its associated areas under G.

As the resolution R increases, the partition of spectrum becomes tighter, and thus a larger portion

of the spectrum is highly weighted.

2.2.2 Mid-Level Features

Broadly speaking, the BoF model aggregates local descriptors of a shape in an effort to provide a

simple representation that may be used to facilitate comparison between shapes. We model each

3D shape as a triangle mesh M with m vertices. The BoF model consists of four main steps:

feature extraction and description, codebook design, feature coding and feature pooling. The idea

of the BoF paradigm on 3D shapes is illustrated in Figure 2.3.

Feature Extraction and Description In the BoF paradigm, a 3D shape M is represented as a

collection of m local descriptors of the same dimension p, where the order of different feature

vectors is of no importance. Local descriptors may be classified into two main categories: dense
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Figure 2.2: Spectrum modulation using different kernel functions; (a) heat kernel,
(b) wave kernel, (c)-(h) Mexican hat kernel at various resolutions. The dark line is
the squared sum function G, while the dash-dotted and the dotted lines are upper
and lower bounds (B and A) of G, respectively.

and sparse. Dense descriptors are computed at each point (vertex) of the shape, while sparse

descriptors are computed by identifying a set of salient points using a feature detection algorithm.

In our proposed framework, we represent M by a p×m matrix S = (s1, . . . , sm) of spectral graph

wavelet signatures, where each p-dimensional feature vector si is a dense, local descriptor that

encodes the local structure around the ith vertex of M.
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Figure 2.3: Flow of the BoF model.

Codebook Design A codebook (or visual vocabulary) is constructed via clustering by quantizing

the m local descriptors (i.e. spectral graph wavelet signatures) into a certain number of codewords.

These codewords are usually defined as the centers v1, . . . , vk of k clusters obtained by perform-

ing an unsupervised learning algorithm (e.g., vector quantization via K-means clustering) on the

signature matrix S. The codebook is the set V = {v1, . . . , vk} of size k, which may be represented

by a p× k vocabulary matrix V = (v1, . . . , vk).

Feature Coding The goal of feature coding is to embed local descriptors in the vocabulary space.

Each spectral graph wavelet signature si is mapped to a codeword vr in the codebook via the k×m

cluster soft-assignment matrix U = (uri) = (u1, . . . , um) whose elements are given by

uri =
exp(−α‖si − vr‖22)∑k
�=1 exp(−α‖si − v�‖22)

, (2.7)

where ‖·‖2 denotes the L2-norm, and α is a smoothing parameter that controls the softness of

the assignment. Unlike hard-assignment coding in which a local descriptor is assigned to the

nearest cluster, soft-assignment coding assigns descriptors to every cluster center with different

probabilities in an effort to improve quantization properties of the coding step. We refer to the

coefficient vector ui as the spectral graph wavelet code (SGWC) of the descriptor si, with uri

being the coefficient with respect to the codeword vr.

Histogram Representation (Feature Pooling) Each spectral graph wavelet signature is mapped

to a certain codeword through the clustering process and the shape is then represented by the
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histogram h of the codewords, which is a k-dimensional vector given by

h = U1m = (hr)r=1,...,k, (2.8)

where hr =
∑m

i=1 uri. That is, the histogram consists of the column-sums of the cluster assignment

matrix U. Other feature pooling methods include average- and max-pooling. In general, any

predefined pooling function that aggregates the information of different codewords into a single

feature vector can be used.

2.2.3 Global Descriptors

A major drawback of the BoF model is that it only considers the distribution of the codewords and

disregards all information about the spatial relations between features, and hence the descriptive

ability and discriminative power of the BoF paradigm may be negatively impacted. To circum-

vent this limitation, various solutions have been recently proposed including the spatially sensitive

bags-of-features (SS-BoF) [35] and geodesic-aware bags-of-features (GA-BoF) [81]. The SS-BoF,

which is defined in terms of mid-level features and the heat kernel, can be represented by a square

matrix whose elements represent the frequency of appearance of nearby codewords in the vocab-

ulary. Similarly, the GA-BoF matrix is obtained by replacing the heat kernel in the SS-BoF with

a geodesic exponential kernel. Unlike the heat kernel which is time-dependent, the geodesic ex-

ponential kernel avoids the possible effect of time scale and shape size [81]. In the same vein, we

define a global descriptor of a shape as a k × k SGWC-BoF matrix F defined in terms of SGWC

and a geodesic exponential kernel as follows:

F = UKU
ᵀ
, (2.9)

where U is a k×m matrix of SGWC (i.e. mid-level featues), and K = (κij) is an m×m geodesic

exponential kernel matrix whose elements are given by

κij = exp

(
−dij

ε

)
, (2.10)

with dij denoting the geodesic distance between any pair of mesh vertices vi and vj , and ε is a

positive, carefully chosen parameter that determines the width of the kernel. It should be noted that

the geodesic distance is computed using Fast Marching algorithm [82]. Intuitively, the parameter ε

controls the linearity of the kernel function, i.e. the larger the width, the more linear the function. It

is worth pointing out that the proposed SGWC-BoF is similar in spirit to SS-BoF and GA-BoF. The

main distinction of our work is that we use multiresolution local descriptors that may be regarded

as generalized signatures for those in [35, 81]. In addition, our spectral graph wavelet signature

combines the advantages of both band-pass and low-pass filters.
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2.2.4 Multiclass Support Vector Machines

SVMs are supervised learning models that have proven effective in solving classification prob-

lems. SVMs are based upon the idea of maximizing the margin, i.e. maximizing the minimum

distance from the separating hyperplane to the nearest example. Although SVMs were originally

designed for binary classification, several extensions have been proposed in the literature to handle

the multiclass classification. The idea of multiclass SVM is to decompose the multiclass problem

into multiple binary classification tasks that can be solved efficiently using binary SVM classifiers.

One of the simplest and most widely used coding designs for multiclass classification is the one-

vs-all approach, which constructs K binary SVM classifiers such that for each binary classifier,

one class is positive and the rest are negative. In other words, the one-vs-all approach requires

K binary SVM classifiers, where the ith classifier is trained with positive examples belonging to

class i and negative examples belonging to the remaining K−1 classes. When testing an unknown

example, the classifier producing the maximum output (i.e. largest value of the decision function)

is considered the winner, and this class label is assigned to that example.

2.2.5 Proposed Algorithm

Shape classification is a supervised learning method that assigns shapes in a dataset to target

classes. The objective of 3D shape classification is to accurately predict the target class for each

3D shape in the dataset. Our proposed 3D shape classification algorithm consists of four main

steps. The first step is to represent each 3D shape in the dataset by a spectral graph wavelet signa-

ture matrix, which is a feature matrix consisting of local descriptors. More specifically, let D be a

dataset of n shapes modeled by triangle meshes M1, . . . ,Mn. We represent each 3D shape in the

dataset D by a p×m spectral graph wavelet signature matrix S = (s1, . . . , sm) ∈ R
p×m, where si

is the p-dimensional local descriptor at vertex i and m is the number of mesh vertices.

In the second step, the spectral graph wavelet signatures si are mapped to high-dimensional

mid-level feature vectors using the soft-assignment coding step of the BoF model, resulting in a

k×m matrix U = (u1, . . . , um) whose columns are the k-dimensional mid-level feature codes (i.e.

SGWC). In the third step, the k× k SGWC-BoF matrix F is computed using the mid-level feature

codes matrix and a geodesic exponential kernel, followed by reshaping F into a k2-dimensional

global descriptor xi. In the fourth step, the SGWC-BoF vectors xi of all n shapes in the dataset are

arranged into a k2×n data matrix X = (x1, . . . , xn). Finally, a one-vs-all multiclass SVM classifier

is performed on the data matrix X to find the best hyperplane that separates all data points of one

class from those of the other classes.

The task in multiclass classification is to assign a class label to each input example. More

precisely, given a training data of the form Xtrain = {(xi, yi)}, where xi ∈ R
k2 is the ith example
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(i.e. SGWC-BoF vector) and yi ∈ {1, . . . , K} is its ith class label, we aim at finding a learning

model that contains the optimized parameters from the SVM algorithm. Then, the trained SVM

model is applied to a test data Xtest, resulting in predicted labels ŷi of new data. These predicted

labels are subsequently compared to the labels of the test data to evaluate the classification accuracy

of the model.

To assess the performance of the proposed framework, we employed two commonly-used eval-

uation criteria, the confusion matrix and accuracy, which will be discussed in more detail in the

next section. The main algorithmic steps of our approach are summarized in Algorithm 1.

Algorithm 1 Proposed Algorithmic Steps
Input: Dataset D = {M1, . . . ,Mn} of n 3D shapes
Output: n-dimensional vector ŷ containing predicted class labels for each 3D shape

1: for i = 1 to n do

2: {Step 1} Compute the p×m spectral graph wavelet signature matrix Si of each shape Mi

3: {Step 2} Apply soft-assignment coding to find the k×m mid-level feature matrix Ui, where
k > p

4: {Step 3} Compute the k × k SGWC-BoF matrix Fi, and reshape it into a k2-dimensional
vector xi

5: end for

6: {Step 4} Arrange all the n SGWC-BoF vectors into a k2 × n data matrix X = (x1, . . . , xn)
7: {Step 5} Perform multiclass SVM on X to find the n-dimensional vector ŷ of predicted class

labels.

Remark: It is important to point out that in our implementation the vocabulary is computed

offline by applying the K-means algorithm to the p × mn matrix obtained by concatenating all

SGWS matrices of all n meshes in the dataset. As a result, the vocabulary is a matrix V of size

p× k, where k > p.

2.3 Experimental Results

In this section, we conduct extensive experiments to evaluate the performance of the proposed

SGWC-BoF framework for 3D shape classification. The effectiveness of our approach is validated

by performing a comprehensive comparison with several state-of-the-art methods.

Datasets The performance of the proposed framework is evaluated on two standard and publicly

available 3D shape benchmarks: SHREC 2010 and SHREC 2011. Sample shapes from these two

benchmarks are shown in Figure 2.4.

Performance Evaluation Measures In practice, the available data (which has classes) X for

classification is usually split into two disjoint subsets: the training set Xtrain for learning, and the
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Figure 2.4: Sample shapes from SHREC-2010 (top) and SHREC-2011 (bottom).

test set Xtest for testing. The training and test sets are usually selected by randomly sampling

a set of training instances from X for learning and using the rest of instances for testing. The

performance of a classifier is then assessed by applying it to test data with known target values

and comparing the predicted values with the known values. One important way of evaluating

the performance of a classifier is to compute its confusion matrix (also called contingency table),
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which is a K×K matrix that displays the number of correct and incorrect predictions made by the

classifier compared with the actual classifications in the test set, where K is the number of classes.

Another intuitively appealing measure is the classification accuracy, which is a summary statistic

that can be easily computed from the confusion matrix as the total number of correctly classified

instances (i.e. diagonal elements of confusion matrix) divided by the total number of test instances.

Alternatively, the accuracy of a classification model on a test set may be defined as follows

Accuracy =
Number of correct classifications

Total number of test cases
=

|x : x ∈ Xtest ∧ ŷ(x) = y(x)|
|x : x ∈ Xtest|

, (2.11)

where y(x) is the actual (true) label of x, and ŷ(x) is the label predicted by the classification

algorithm. A correct classification means that the learned model predicts the same class as the

original class of the test case. The error rate is equal to one minus accuracy.

Baseline Methods For each of the 3D shape benchmarks used for experimentation, we will

report the comparison results of our method against various state-of-the-art methods, including

Shape-DNA [13], compact Shape-DNA [76], GPS embedding [74], GA-BoF [81], and F1-, F2-

, and F3-features [83]. The latter features, which are defined in terms of the Laplacian matrix

eigenvalues, were shown to have good inter-class discrimination capabilities in 2D shape recogni-

tion [76], but they can easily be extended to 3D shape analysis using the eigenvalues of the LBO.

Implementation Details The experiments were conducted on a desktop computer with an Intel

Core i5 processor running at 3.10 GHz and 8 GB RAM; and all the algorithms were implemented

in MATLAB. The appropriate dimension (i.e. length or number of features) of a shape signature is

problem-dependent and usually determined experimentally. For fair comparison, we used the same

parameters that have been employed in the baseline methods, and in particular the dimensions of

shape signatures. In our setup, a total of 201 eigenvalues and associated eigenfunctions of the LBO

were computed. For the proposed approach, we set the resolution parameter to R = 2 (i.e. the

spectral graph wavelet signature matrix is of size 5×m, where m is the number of mesh vertices)

and the kernel width of the geodesic exponential kernel to ε = 0.1. Moreover, the parameter of the

soft-assignment coding is computed as α = 1/(8μ2), where μ is the median size of the clusters in

the vocabulary [35]. We also considered a linear kernel as SVM kernel function. For shape-DNA,

GPS embedding, and F1-, F2-, and F3-features, the selected number of retained eigenvalues equals

10. As suggested in [76], the dimension of the compact Shape-DNA signature was set to 33.

2.3.1 SHREC-2010 Dataset

SHREC 2010 is a dataset of 3D shapes consisting of 200 watertight mesh models from 10

classes [84]. These models are selected from the McGill Articulated Shape Benchmark dataset.
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Each class contains 20 objects with distinct postures. Moreover, each shape in the dataset has

approximately m = 1002 vertices.

Performance Evaluation We randomly selected 50% shapes in the SHREC-2010 dataset to hold

out for the test set, and the remaining shapes for training. That is, the test data consists of 100

shapes. A one-vs-all multiclass SVM is first trained on the training data to learn the model (i.e.

classifier), which is subsequently used on the test data with known target values in order to predict

the class labels. Figure 2.5 displays the confusion matrix for SHREC 2010 on the test data. This

10 × 10 confusion matrix shows how the predictions are made by the model. Its rows correspond

to the actual (true) class of the data (i.e. the labels in the data), while its columns correspond to the

predicted class (i.e. predictions made by the model). The value of each element in the confusion

matrix is the number of predictions made with the class corresponding to the column for instances

with the correct value as represented by the row. Thus, the diagonal elements show the number of

correct classifications made for each class, and the off-diagonal elements show the errors made. As

can be seen in Figure 2.5, the proposed approach was able to accurately classify all shapes in the

test data, except the hand, octopus and spider models which were misclassified only once as teddy,

crab and ant, respectively. Also, the human shape was misclassified three times as a spider. Such

a good performance strongly suggests that our method captures well the discriminative features of

the shapes.
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Figure 2.5: Confusion matrix for SHREC-2010 using linear multiclass SVM.
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Results In our approach, each 3D shape in the SHREC-2010 dataset is represented by a 5×1002

matrix of spectral graph wavelet signatures. Setting the number of codewords to k = 128, we

computed offline a 5× 128 vocabulary matrix V via K-means clustering. The pre-computation of

the vocabulary of size 128 took approximately 15 minutes. The soft-assignment coding of the BoF

model yields a 128 × 1002 matrix U of spectral graph wavelet codes, resulting in a SGWC-BoF

data matrix X of size 1282 × 200.

We compared the proposed method to Shape-DNA, compact shape-DNA, GPS embedding, and

F1-, F2-, and F3-features. In order to compute the accuracy, we repeated the experimental process

10 times with different randomly selected training and test data in an effort to obtain reliable results,

and the accuracy for each run was recorded, then we selected the best result of each method. The

classification accuracy results are summarized in Table 2.1, which shows the results of the baseline

methods and the proposed framework. As can be seen, our SGWC-BoF method achieves better

performance than Shape-DNA, compact Shape-DNA, GPS embedding, GA-BoF, and F1-, F2-,

and F3-features. The proposed approach yields the highest classification accuracy of 95.66%, with

performance improvements of 2.76% and 4.70% over the best baseline methods cShape-DNA and

Shape-DNA, respectively. To speed-up experiments, all shape signatures were computed offline,

albeit their computation is quite inexpensive due in large part to the fact that only a relatively small

number of eigenvalues of the LBO need to be calculated.

Table 2.1: Classification accuracy results on the SHREC-2010 dataset. Boldface
number indicates the best classification performance.

Method Average accuracy %

Shape-DNA 90.96
cShape-DNA 92.90
GPS-embedding 88.87
F1-features 86.49
F2-features 84.11
F3-features 87.72
GA-BoF 86.02
SGWC-BoF 95.66

2.3.2 SHREC-2011 Dataset

SHREC 2011 is a dataset of 3D shapes consisting of 600 watertight mesh models, which are

obtained from transforming 30 original models [85]. Each shape in the dataset has approximately

m = 1502 vertices.
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Performance Evaluation We randomly selected 50% shapes in the SHREC-2011 dataset to hold

out for the test set, and the remaining shapes for training. That is, the test data consists of 300

shapes. First, we trained a one-vs-all multiclass SVM on the training data to learn the classification

model. Then, we used the resulting, trained model on the test data to predict the class labels. With

the exception of the horse, man and paper models, which were misclassified once as dog1, hand and

bird1, respectively. Moreover, the ant shape was misclassified nine times as a spider. Therefore,

the proposed approach was able to accurately classify all shapes in the test data, as shown in

Figure 2.6.
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Figure 2.6: Confusion matrix for SHREC-2011 using linear multiclass SVM.
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Results Following the setting of the previous experiment, each 3D shape in the SHREC-2011

dataset is represented by a 5 × 1502 spectral graph wavelet signature matrix. We pre-computed

offline a vocabulary of size k = 128, and it took about 70 minutes. The soft-assignment coding

yields a 128 × 1502 matrix U of mid-level features. Hence, the SGWC-BoF data matrix X for

SHREC 2011 is of size 1282 × 600. Figure 2.7 shows the spectral graph wavelet code matrices

of two shapes from two different classes of SHREC 2011. As can be seen, the global descrip-

tors are quite different and hence they may be used efficiently to discriminate between shapes in

classification tasks.

Figure 2.7: SGWC of two shapes (gorilla and flamingo) from two different classes
of the SHREC-2011 dataset.

We repeated the experimental process 10 times with different randomly selected training and test

data in an effort to obtain reliable results, and the accuracy for each run was recorded. The average

accuracy results are reported in Table 2.2. As can be seen, the proposed method performs the

best compared to all the seven baseline methods. The highest classification accuracy of 97.66%

corresponds to our method, with performance improvements of 4.77% and 3.25% over the best

performing baseline methods Shape-DNA and cShape-DNA, respectively.

2.3.3 Parameter Sensitivity

The proposed approach depends on two key parameters that affect its overall performance. The

first parameter is the kernel width ε of the geodesic exponential kernel. The second parameter

k is the size of the vocabulary, which plays an important role in the SGWC-BoF matrix F. As

shown in Figure 2.8, the best classification accuracy on SHREC 2011 is achieved using ε = 0.1

and k = 128. In addition, the classification performance of proposed method is satisfactory for a
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Table 2.2: Classification accuracy results on the SHREC-2011 dataset. Boldface
number indicates the best classification performance.

Method Average accuracy %

Shape-DNA 92.89
cShape-DNA 94.41
GPS-embedding 88.40
F1-features 91.90
F2-features 89.47
F3-features 92.48
GA-BoF 93.20
SGWC-BoF 97.66

wide range of parameter values, indicating the robustness of the proposed framework to the choice

of these parameters.

2.4 Conclusions

In this chapter, we introduced a spectral graph wavelet framework for 3D shape classification that

employs the BoF paradigm in an effort to design a global shape descriptor defined in terms of mid-

level features and a geodesic exponential kernel. An important facet of our approach is the ability

to combine the advantages of wave and heat kernel signatures into a compact yet discriminative

descriptor, while allowing a multiresolution representation of shapes. The proposed spectral shape

descriptor also combines the advantages of both band-pass and low-pass filters. In addition to tak-

ing into consideration the spatial relations between features via a geodesic exponential kernel, the

proposed approach performs classification on SGWC, thereby seamlessly capturing the similarity

between these midlevel features. We not only showed that our formulation allows us to take into

account the spatial layout of features, but we also demonstrated that the proposed framework yields

better classification accuracy results compared to state-of-the-art methods, while remaining com-

putationally attractive. This better performance is largely attributed to the discriminative global

descriptor constructed by aggregating mid-level features weighted by a geodesic exponential ker-

nel. Extensive experiments were carried out on two standard 3D shape benchmarks to demonstrate

the effectiveness of the proposed method and its robustness to the choice of parameters. We eval-

uated the results using several metrics, including the confusion matrix and average accuracy. For

future work, we plan to apply the proposed approach to other 3D shape analysis problems.
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Figure 2.8: Effects of the parameters on the classification accuracy for SHREC
2011.
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Spectral Shape Classification using Deep Learning

The soaring popularity of deep learning in a wide variety of fields ranging from computer vi-

sion and speech recognition to self-driving vehicles has sparked a flurry of research interest from

both academia and industry. In this chapter, we present a deep learning approach to 3D shape

classification using spectral graph wavelets that are obtained from spectral graph wavelet signa-

tures (i.e. local descriptors) via the soft-assignment coding step of the BoF model in conjunction

with a geodesic exponential kernel which helps to capture the spatial relations between features.

Experimental results on two different datasets will show our approach substantially outperforms

state-of-the-art methods both in classification accuracy and in scalability.

3.1 Introduction

3D model classification is an intriguing and challenging problem that lies at the crossroads of

computer vision, geometry processing and machine learning. While the overwhelming majority

of prior work on 3D shape analysis has concentrated primarily on rigid shape classification, many

real objects such as articulated motions of humans are nonrigid and hence can exhibit a variety of

poses and deformations.

Over the past decade, deep neural networks have been successfully applied not only in clas-

sification tasks [86, 87], but also in regression [88], dimensionality reduction [89], modeling

textures [90], modeling motion [91], object segmentation [92], information retrieval [93], 3D

shape recognition [94, 95], robotics [96], natural language processing [97], and collaborative fil-

tering [98]. Unlike conventional machine learning approaches which usually utilize shallow archi-

tectures, deep learning emulates the way human brain works and processes information through
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multiple stages of transformation and representation. By applying deep architectures to learn fea-

tures at multiple level of abstracts from data automatically, deep learning approaches allow a sys-

tem to learn complex functions that directly map raw input data to the output, without relying on

human-crafted features [99].

With improved computational power and an overwhelming availability of 3D shape data, the

burgeoning area of deep learning has dramatically transformed how shape classification methods

are studied due in large part to the recent theoretical developments in deep learning representations

that are essential not only to improving the classification accuracy, but also to producing state-of-

the-art results.

In this chapter, we introduce a deep learning framework, namely DeepSGW for 3D shape clas-

sification. As a machine learning paradigm, deep learning mimics the way the human brain works

to varying degrees. The process of deep learning is hierarchical in the sense that it takes low-

level features at the bottom layer and then constructs higher and higher level features through the

composition of layers.

The proposed DeepSGW approach performs 3D shape classification on SGWC that are obtained

from spectral graph wavelet signatures (i.e. local descriptors) via the soft-assignment coding step

of the BoF model in conjunction with a geodesic exponential kernel for capturing the spatial rela-

tions between features. In addition to taking into consideration the spatial relations between fea-

tures via a geodesic exponential kernel, the proposed approach performs classification on SGWC,

thereby seamlessly capturing the similarity between these mid-level features. We not only show

that our formulation allows us to take into account the spatial layout of features, but we also

demonstrate that the proposed framework yields better classification accuracy results compared to

state-of-the-art methods, while remaining computationally attractive.

The remainder of this chapter is organized as follows. In Section 3.2, we briefly overview deep

learning concept. In Section 3.3, we introduce a deep learning approach for 3D shape classification,

and we discuss its main algorithmic steps in detail. Experimental results are extensively performed

in Section 3.4.

3.2 Deep Learning

Deep learning has its roots on neural networks, and focuses on learning deep feature hierarchies

with each layer learning new features from the output of its preceding layer [67, 100–103]. One

of the most widely used deep architectures is the so-called deep belief network (DBN), which is a

generative graphical model composed of a layer of visible units and multiple layers of hidden units,

with unsupervised Restricted Boltzmann Machines (RBMs) as their building blocks [101]. Each

layer of a DBN encodes correlations in the units in the previous layer, and the network parameters
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obtained from the unsupervised learning phase are subsequently fine-tuned using backpropagation

or other discriminative algorithms. The visible units correspond to the attributes of the input data

vector (training example), and the hidden layers act as feature detectors.

3.2.1 Restricted Boltzmann Machines (RBMs)

An RBM is a two-layer, undirected graphical model that consists of a visible (input) layer of

stochastic binary visible units v = (vi) of dimension I and a hidden layer of stochastic binary

hidden units h = (hj) of dimension J , where vi is the state of visible unit i and hj is the state

of hidden unit j. Each visible unit is connected to each hidden unit, but there are no intra-visible

or intra-hidden connections, as shown in Figure 3.1. The symmetric connections between the two

layers of an RBM are represented by an I×J weight matrix W = (wij), where wij is a real-valued

weight characterizing the relative strength of the undirected edge between visible unit i and hidden

unit j.

In a standard RBM, the visible and hidden units are assumed to be binary, meaning that they can

only be in one of two states {0, 1}, where 1 indicates the unit is “on” and 0 indicates the unit is

“off” (i.e. activated or deactivated, respectively).

Hidden units

Visible units

Figure 3.1: An RBM with visible units v = (vi) and hidden units h = (hj).

The energy of the joint configuration of the visible and hidden units (v, h) is given by

E(v, h) = −
I∑

i=1

J∑
j=1

viwijhj −
J∑

j=1

bjhj −
I∑

i=1

civi = −v
ᵀ
Wh − b

ᵀ
h − c

ᵀ
v, (3.1)

where and bj is the real-valued bias of hidden unit j and ci is the real-valued bias of visible unit i.

This energy defines a joint probability distribution for configuration (v, h) as follows

p(v, h) =
1

Z
exp(−E(v, h)), (3.2)
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where Z =
∑

v,h exp(−E(v, h)) is a normalization constant, obtained by summing up the energies

of all possible (v, h) configurations [101, 103]. Therefore, configurations with high energy are

assigned low probability, while configurations with low energy are assigned high probability.

Because there are no intra-visible or intra-hidden connections in an RBM, the visible units are

conditionally independent of one another given the hidden layer, and vice versa. For a simple RBM

with Bernoulli distribution for both the visible and hidden layers (i.e. Bernoulli-Bernoulli RBM),

the probability that hj is activated, given visible unit vector v is

p(hj = 1|v) = σ

(
bj +

I∑
i=1

wijvi

)
, (3.3)

and the probability that vi is activated, given hidden unit vector h is

p(vi = 1|h) = σ

(
ci +

J∑
j=1

wijhj

)
, (3.4)

where σ(x) = 1/(1 + e−x) is the logistic sigmoidal activation function, whose output values lie in

the interval (0, 1). In other words, the probability that a hidden unit is activated is independent of

the states of the other hidden units, given the states of the visible units. Similarly, the probability

that a visible unit is activated is independent of the states of the other visible units, given the states

of the hidden units. This nice property of RBMs makes Gibbs sampling from (3.3) and (3.4)

highly efficient, as one can sample all the hidden units simultaneously and then all the visible units

simultaneously.

Training RBMs Given a training dataset V of visible vectors, RBMs are trained to maximize

the average log probability (or equivalently minimize the energy) of V over the RBM’s parameters

θ = {W, b, c}, i.e.

argmax
θ

∑
v∈V

log p(v), (3.5)

where p(v) is the marginal probability (over the visible vector v) given by

p(v) =
∑

h

p(v, h)

=
1

Z

∑
h

exp(−E(v, h))

=
1

Z
exp(c

ᵀ
v)

J∏
j=1

(
1 + exp

(
bj +

I∑
i=1

wijvi

))
.

(3.6)

Taking the derivative of the log probability with respect to wij yields the following learning rule

that performs stochastic gradient ascent in the log probability of the training data

Δwij = ε(〈vihj〉data − 〈vihj〉model), (3.7)
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where ε is a learning rate, and 〈·〉data and 〈·〉model are the expectations under the distributions de-

fined by the data and the model, respectively. Since 〈·〉model is prohibitively expensive to compute,

the single-step version (CD1) of the contrastive divergence (CD) algorithm [101] is often used to

optimize the model parameters (i.e. weights and biases) and it works well in practice. The new

update rule becomes

Δwij = ε(〈vihj〉data − 〈vihj〉recon), (3.8)

where 〈·〉recon is the expectation with respect to the distribution of samples from running the Gibbs

sampler initialized at the data for one full step. The intuition behind the weight update rule is that

the reconstructed data should be as close as possible to the input data. Similar updates rules are

applied to the biases (i.e. bias vectors b and c).

The CD algorithm starts by setting the states of the visible units to a training vector. Given a

randomly selected training example v, a binary vector of hidden units is obtained from sampling

the conditional probability distribution (3.3) and then backpropagated using (3.4), resulting in a

reconstruction of the original input data. After RBM training, hidden units can be considered to

act as feature detectors, as they form a high-level representation of the input data.

Gaussian-Bernoulli RBMs If the visible units are real-valued, then exponential family distribu-

tions such as the Gaussian distribution are more suitable for modeling real-valued and count data

(e.g., grayscale images and speech signals). Hence, for a Gaussian-Bernoulli RBM with Gaussian

distribution for the visible layer and Bernoulli distribution for the hidden layer (i.e. v ∈ R
I and

h ∈ {0, 1}J ), the energy of the joint configuration (v, h) is defined as

E(v, h) =
I∑

i=1

(vi − ci)
2

2σ2
i

−
I∑

i=1

J∑
j=1

wijhj
vi
σi

−
J∑

j=1

bjhj, (3.9)

where σi is the standard deviation associated with the Gaussian visible unit vi, and the conditional

probabilities are given by

p(hj = 1|v) = σ

(
bj +

I∑
i=1

wij
vi
σi

)
, (3.10)

and

p(vi = x|h) = N
(
ci + σi

J∑
j=1

wijhj, σ
2
i

)
, (3.11)

where N (μ, σ2) denotes a Gaussian distribution with mean μ and variance σ2. In other words,

each visible unit is modeled with a Gaussian distribution given the hidden layer. In practice, it is

a good idea, prior to fitting a DBN to input data, to standardize each input variable to have zero

mean and unit standard deviation. Therefore, the energy of the joint configuration (v, h) becomes

E(v, h) =
1

2
‖v − c‖22 − v

ᵀ
Wh − b

ᵀ
h. (3.12)
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3.3 Method

In this section, we provide a detailed description of our DeepSGW classification method that uti-

lizes spectral graph wavelets in conjunction with the BoF paradigm. Each 3D shape in the dataset

is first represented by local descriptors, which are arranged into a spectral graph wavelet signature

matrix. Then, we perform soft-assignment coding by embedding local descriptors into the visual

vocabulary space, resulting in mid-level features which we refer to as SGWC. It is important to

point out that the vocabulary is computed offline by concatenating all the spectral graph wavelet

signature matrices into a data matrix, followed by applying the K-means algorithm to find the data

cluster centers.

In an effort to capture the spatial relations between features, we compute a global descriptor

of each shape in terms of a geodesic exponential kernel and mid-level features, resulting in a

SGWC-BoF matrix which is then transformed into a SGWC-BoF vector by stacking its columns

one underneath the other. The last stage of the proposed approach is to perform classification

on the SGWC-BoF vectors using a deep belief networks (DBNs). The flowchart of the proposed

framework is depicted in Figure 3.2.
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Figure 3.2: Flowchart of the proposed deep learning approach.

DBNs are highly effective supervised learning methods for classification. Broadly speaking, su-

pervised learning algorithms consist of two main steps: training step and test step. In the training

step, a classification model (classifier) is learned from the training data by a DBN learning algo-

rithm. In the test step, the learned model is evaluated using a set of test data to predict the class

labels for the DBN classifier and hence assess the classification accuracy.
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3.3.1 Deep Belief Networks

A DBN is a probabilistic, generative model consisting of multiple layers of RBMs stacked on top

of each other, starting with the visible (input) layer and first hidden layer that form the first RBM.

It is made up of a visible layer v and S hidden layers hs, s = 1, . . . , S, with the number of RBMs

also equals S, which can be determined empirically to obtain the best model performance. Each

RBM is trained in a greedy layer-wise manner, with the hidden layer of the sth RBM acting as a

visible layer for the (s+ 1)th RBM, as shown in Figure 3.3.

A DBN consists of two main learning phases: pre-training and fine-tuning. Pre-training is an

unsupervised phase that learns the weights (and biases) between layers from the bottom-up, i.e.

from one layer at a time using an RBM on each layer. Pre-training treats the current layer as the

hidden units of an RBM and the previous layer as the visible units of the same RBM. The pre-

training starts by training the first RBM to obtain features in the first hidden layer from the training

(input) data. In subsequent layers, the hidden activations of the previous layer are used as input

data, i.e. the learned feature activations of one RBM are used as the input data for training the next

RBM in the stack. Features at different layers contain different information about data with higher-

level features constructed from lower-level features. This greedy, layer-wise training is iteratively

performed until reaching the top hidden layer. To speed up the pretraining, it is common practice

to subdivide the input data into mini-batches and the weights are updated after each mini-batch.

The fine-tuning, on the other hand, is a supervised, discriminative phase that fine-tunes the model

parameters (weights and biases) at the top layer by backpropagation error derivatives.

RBM

RBM

RBM

Figure 3.3: DBN architecture with three RBMs stacked on top of each other.
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For classification tasks, an output layer y = (yk) of K classes (units) is added on top of the

stacked RBMs learned in the first phase to construct a discriminative model, where each output

node of the softmax layer corresponds to a single unique class. The output (softmax) layer acts

as a classifier, and is trained using labeled data. Each output node is represented by the output

probability of each class label, and the probabilities will all sum up to 1. The node with the largest

probability is usually used to predict the class of an instance (example) in the test set, and hence to

compute the classification error/accuracy. More precisely, each output node yk is represented by a

probability pk given by the softmax activation function

pk =
eak

K∑
k=1

eak

, with ak =
∑
j

wjkhj, (3.13)

where h = (hj) is the top hidden layer and W = (wjk) is a weight matrix of symmetric connections

between the top hidden layer and the softmax layer. The predicted class k̂ is then given by

k̂ = argmax
k

pk = argmax
k

ak. (3.14)

It should be noted that the softmax activation function is a generalization of the logistic function

(it reduces to the logistic function when there are only two classes). The purpose of the softmax

function is to provide an estimate of the posterior probability of each class, i.e. the probability that

an instance belongs in a particular class, given the data.

3.3.2 Proposed Algorithm

Shape classification is a supervised learning method that assigns shapes in a dataset to target

classes. The objective of 3D shape classification is to accurately predict the target class for each

3D shape in the dataset. Our proposed 3D shape classification algorithm consists of four main

steps. The first step is to represent each 3D shape in the dataset by a spectral graph wavelet signa-

ture matrix, which is a feature matrix consisting of local descriptors. More specifically, let D be a

dataset of n shapes modeled by triangle meshes M1, . . . ,Mn. We represent each 3D shape in the

dataset D by a p×m spectral graph wavelet signature matrix S = (s1, . . . , sm) ∈ R
p×m, where si

is the p-dimensional local descriptor at vertex i and m is the number of mesh vertices.

In the second step, the spectral graph wavelet signatures si are mapped to high-dimensional

mid-level feature vectors using the soft-assignment coding step of the BoF model, resulting in a

k×m matrix U = (u1, . . . , um) whose columns are the k-dimensional mid-level feature codes (i.e.

SGWC). In the third step, the k× k SGWC-BoF matrix F is computed using the mid-level feature

codes matrix and a geodesic exponential kernel, followed by reshaping F into a k2-dimensional

global descriptor xi. In the fourth step, the SGWC-BoF vectors xi of all n shapes in the dataset are
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arranged into a k2 × n data matrix X = (x1, . . . , xn). Finally, a DBN classifier is performed on the

data matrix X to find the best hyperplane that separates all data points of one class from those of

the other classes.

The task in multiclass classification is to assign a class label to each input example. More

precisely, given a training data of the form Xtrain = {(xi, yi)}, where xi ∈ R
k2 is the ith example

(i.e. SGWC-BoF vector) and yi ∈ {1, . . . , K} is its ith class label, we aim at finding a learning

model that contains the optimized parameters from the DBN classification algorithm. Then, the

trained DBN model is applied to a test data Xtest, resulting in predicted labels ŷi of new data.

These predicted labels are subsequently compared to the labels of the test data to evaluate the

classification accuracy of the model.

To assess the performance of the proposed DeepSGW framework, we employed two commonly-

used evaluation criteria, the confusion matrix and accuracy, which will be discussed in more detail

in the next section. The main algorithmic steps of our approach are summarized in Algorithm 2.

Algorithm 2 Proposed Algorithmic Steps
Input: Dataset D = {M1, . . . ,Mn} of n 3D shapes
Output: n-dimensional vector ŷ containing predicted class labels for each 3D shape

1: for i = 1 to n do

2: {Step 1} Compute the p×m spectral graph wavelet signature matrix Si of each shape Mi

3: {Step 2} Apply soft-assignment coding to find the k×m mid-level feature matrix Ui, where
k > p

4: {Step 3} Compute the k × k SGWC-BoF matrix Fi, and reshape it into a k2-dimensional
vector xi

5: end for

6: {Step 4} Arrange all the n SGWC-BoF vectors into a k2 × n data matrix X = (x1, . . . , xn)
7: {Step 5} Perform DBN classification on X to find the n-dimensional vector ŷ of predicted

class labels.

Remark: It is important to point out that in our implementation the vocabulary is computed

offline by applying the K-means algorithm to the p × mn matrix obtained by concatenating all

SGWS matrices of all n meshes in the dataset. As a result, the vocabulary is a matrix V of size

p× k, where k > p.

3.4 Experimental Results

In this section, we organize extensive experiments for 3D shape classification problem to evaluate

the proposed DeepSGW approach. The effectiveness of our method is validated by performing a

comprehensive comparison with several state-of-the-art methods.
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Datasets The performance of the proposed DeepSGW framework is evaluated on two standard

and publicly available 3D shape benchmarks: SHREC 2010 and SHREC 2011. Sample shapes

from these two benchmarks are shown in Figure 3.4.

Figure 3.4: Sample shapes from SHREC-2010 (top) and SHREC-2011 (bottom).

Performance Evaluation Measures In practice, the available data (which has classes) X for

classification is usually split into two disjoint subsets: the training set Xtrain for learning, and the

test set Xtest for testing. The training and test sets are usually selected by randomly sampling
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a set of training instances from X for learning and using the rest of instances for testing. The

performance of a classifier is then assessed by applying it to test data with known target values

and comparing the predicted values with the known values. One important way of evaluating

the performance of a classifier is to compute its confusion matrix (also called contingency table),

which is a K×K matrix that displays the number of correct and incorrect predictions made by the

classifier compared with the actual classifications in the test set, where K is the number of classes.

Another intuitively appealing measure is the classification accuracy, which is a summary statistic

that can be easily computed from the confusion matrix as the total number of correctly classified

instances (i.e. diagonal elements of confusion matrix) divided by the total number of test instances.

Alternatively, the accuracy of a classification model on a test set may be defined as follows

Accuracy =
Number of correct classifications

Total number of test cases
=

|x : x ∈ Xtest ∧ ŷ(x) = y(x)|
|x : x ∈ Xtest|

, (3.15)

where y(x) is the actual (true) label of x, and ŷ(x) is the label predicted by the classification

algorithm. A correct classification means that the learned model predicts the same class as the

original class of the test case. The error rate is equal to one minus accuracy.

Baseline Methods For each of the 3D shape benchmarks used for experimentation, we will

report the comparison results of our method against various state-of-the-art methods, including

Shape-DNA [13], compact Shape-DNA [76], GPS embedding [74], GA-BoF [81], and F1-, F2-

, and F3-features [83]. The latter features, which are defined in terms of the Laplacian matrix

eigenvalues, were shown to have good inter-class discrimination capabilities in 2D shape recogni-

tion [76], but they can easily be extended to 3D shape analysis using the eigenvalues of the LBO.

Implementation Details The experiments were conducted on a desktop computer with an Intel

Core i5 processor running at 3.10 GHz and 8 GB RAM; and all the algorithms were implemented

in MATLAB. The appropriate dimension (i.e. length or number of features) of a shape signature is

problem-dependent and usually determined experimentally. For fair comparison, we used the same

parameters that have been employed in the baseline methods, and in particular the dimensions of

shape signatures. In our setup, a total of 201 eigenvalues and associated eigenfunctions of the LBO

were computed. For the proposed approach, we set the resolution parameter to R = 2 (i.e. the

spectral graph wavelet signature matrix is of size 5×m, where m is the number of mesh vertices)

and the kernel width of the geodesic exponential kernel to ε = 0.1. We used a DBN architecture

consisting of two hidden layers. The first hidden layer has 400 units, while the second hidden

layer contains 800 units. Each layer of hidden units learns to represent features that capture higher

order correlations in the original input data. Moreover, the parameter of the soft-assignment coding

is computed as α = 1/(8μ2), where μ is the median size of the clusters in the vocabulary [35].

For shape-DNA, GPS embedding, and F1-, F2-, and F3-features, the selected number of retained
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eigenvalues equals 10. As suggested in [76], the dimension of the compact Shape-DNA signature

was set to 33.

3.4.1 SHREC-2010 Dataset

SHREC 2010 is a dataset of 3D shapes consisting of 200 watertight mesh models from 10

classes [84]. These models are selected from the McGill Articulated Shape Benchmark dataset.

Each class contains 20 objects with distinct postures. Moreover, each shape in the dataset has

approximately m = 1002 vertices.

Performance Evaluation We randomly selected 50% shapes in the SHREC-2010 dataset to hold

out for the test set, and the remaining shapes for training. That is, the test data consists of 100

shapes. A DBN with two hidden layers is first trained on the training data to learn the model (i.e.

classifier), which is subsequently used on the test data with known target values in order to predict

the class labels. Figure 3.5 displays the confusion matrix for SHREC 2010 on the test data. This

10 × 10 confusion matrix shows how the predictions are made by the model. Its rows correspond

to the actual (true) class of the data (i.e. the labels in the data), while its columns correspond to the

predicted class (i.e. predictions made by the model). The value of each element in the confusion

matrix is the number of predictions made with the class corresponding to the column for instances

with the correct value as represented by the row. Thus, the diagonal elements show the number of

correct classifications made for each class, and the off-diagonal elements show the errors made. As

shown in Figure 3.5, the proposed DeepSGW framework was able to classify all shapes of the test

data with high accuracy, except the hand and human models which were misclassified only once

as crab and hand, respectively. In addition, the octopus model was misclassified once as a human

and also once as a crab. Such a good performance strongly suggests that our method captures well

the discriminative features of the shapes.

Results In our DeepSGW approach, each 3D shape in the SHREC-2010 dataset is represented by

a 5×1002 matrix of spectral graph wavelet signatures. Setting the number of codewords to k = 48,

we computed offline a 5 × 48 vocabulary matrix V via K-means clustering. The soft-assignment

coding of the BoF model yields a 48 × 1002 matrix U of SGWC, resulting in a SGWC-BoF data

matrix X of size 482 × 200.

We compared the DeepSGW method to Shape-DNA, compact Shape-DNA, GPS embedding,

GA-BoF, and F1-, F2-, and F3-features. In order to compute the accuracy, we repeated the ex-

perimental process 10 times with different randomly selected training and test data in an effort to

obtain reliable results, and the accuracy for each run was recorded, then we selected the best result

of each method. The classification accuracy results are summarized in Table 3.1, which shows

the results of the baseline methods and the proposed framework. As can be seen, our method
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Figure 3.5: Confusion matrix for SHREC 2010 using the proposed DeepSGW
approach.

achieves better performance than Shape-DNA, compact Shape-DNA, GPS embedding, GA-BoF,

and F1-, F2-, and F3-features. The DeepSGW approach yields the highest classification accuracy

of 96.00%, with performance improvements of 3.10% and 5.04% over the best baseline methods

cShape-DNA and Shape-DNA, respectively. To speed-up experiments, all shape signatures were

computed offline, albeit their computation is quite inexpensive due in large part to the fact that

only a relatively small number of eigenvalues of the LBO need to be calculated.

Table 3.1: Classification accuracy results on the SHREC-2010 dataset. Boldface
number indicates the best classification performance.

Method Average accuracy %

Shape-DNA 90.96
cShape-DNA 92.90
GPS-embedding 88.87
F1-features 86.49
F2-features 84.11
F3-features 87.72
GA-BoF 86.02
DeepSGW 96.00
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3.4.2 SHREC-2011 Dataset

SHREC 2011 is a dataset of 3D shapes consisting of 600 watertight mesh models, which are

obtained from transforming 30 original models [85]. Each shape in the dataset has approximately

m = 1502 vertices.

Performance Evaluation We randomly selected 50% shapes in the SHREC-2011 dataset to hold

out for the test set, and the remaining shapes for training. That is, the test data consists of 300

shapes. First, we train a DBN with two hidden layers on the training data to learn the classification

model. Then, we use the resulting, trained model on the test data to predict the class labels. With

the exception of the cat model, which was misclassified once as a hand and also the bird2 model

which was misclassified twice as bird1, the proposed DeepSGW approach was able to accurately

classify all shapes in the test data, as shown in Figure 3.6.
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Figure 3.6: Confusion matrix for SHREC-2011 using the proposed DeepSGW
approach.
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Results Similar to the previous experiment, each 3D shape in the SHREC-2011 dataset is repre-

sented by a 5×1502 spectral graph wavelet signature matrix. We pre-computed offline a vocabulary

of size k = 48. The soft-assignment coding yields a 48 × 1502 matrix U of mid-level features.

Hence, the SGWC-BoF data matrix X for SHREC 2011 is of size 482 × 600. Figure 3.7 shows

the SGWC matrices of two shapes (cat and centaur) from two different classes of SHREC 2011.

As can be seen, the global descriptors are quite different and hence they may be used efficiently to

discriminate between shapes in classification tasks.

Figure 3.7: SGWC of two shapes (cat and centaur) from two different classes of
the SHREC-2011 dataset.

We repeated the experimental process 10 times with different randomly selected training and test

data in a bid to obtain reliable results, and the accuracy for each run was recorded. The average

accuracy results are reported in Table 3.2. As can be seen, the DeepSGW approach outperforms

all the seven baseline methods used for comparison. The highest classification accuracy of 99.79%

corresponds to our method, with performance improvements of 6.50% and 5.29% compared to the

best performing baseline methods GA-BoF and cShape-DNA, respectively.

Figure 3.8 shows the learned weights on DBN first and second layers for the the SHREC-2011

dataset. The DBN first layer consists of 400 units, while the second layer contains 800 units.

Each square displays the incoming weights from all the visible units into one hidden unit. White

encodes a positive weight and black encodes a negative weight. Figure 3.9 shows the first 64

training examples computed by DBN on the SHREC-2011 dataset.

Parameter Sensitivity The proposed approach depends on two key parameters that affect its

overall performance. The first parameter is the kernel width ε of the geodesic exponential ker-

nel. The second parameter k is the size of the vocabulary, which plays an important role in the

SGWC-BoF matrix F. As shown in Figure 3.10, the best classification accuracy on SHREC 2011

is achieved using ε = 0.1 and k = 48. In addition, the classification performance of proposed
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Table 3.2: Classification accuracy results on the SHREC-2011 dataset. Boldface
number indicates the best classification performance.

Method Average accuracy %

Shape-DNA 92.89
cShape-DNA 94.41
GPS-embedding 88.40
F1-features 91.90
F2-features 89.47
F3-features 92.48
GA-BoF 93.20
DeepSGW 99.70

Figure 3.8: Training on the SHREC-2011 dataset. Learned weights on DBN first
layer (left). Learned weights on DBN second layer (right).

method is satisfactory for a wide range of parameter values, indicating the robustness of the pro-

posed framework to the choice of these parameters.We also tested the effect of the resolution

parameter on the classification accuracy of the proposed approach. As can seen in Figure 3.10, the

best classification accuracy on SHREC 2011 is achieved when R = 2.

3.5 Conclusions

In this chapter, we presented a deep learning approach to 3D shape classification using spectral

graph wavelets and the BoF paradigm. This approach not only captures the similarity between

feature descriptors via a geodesic exponential kernel, but also substantially outperforms state-of-

the-art methods both in classification accuracy and in scalability. For future work, we plan to

apply the proposed DeepSGW approach to other 3D shape analysis problems, and in particular

segmentation and clustering.
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Figure 3.9: First 64 training examples computed by DBN on the SHREC-2011
dataset.
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Figure 3.10: Effects of the parameters on the classification accuracy for SHREC
2011.
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Nonrigid Shape Retrieval using Spectral Graph

Wavelets

In this chapter, we propose a nonrigid 3D shape retrieval framework, called SGWC-BoF, which

employs spectral graph wavelet codes (SGWC) obtained from spectral graph wavelet signatures

(i.e. local descriptors) via the soft-assignment coding step of the BoF model in conjunction with a

geodesic exponential kernel for capturing the spatial relations between features. Broadly speaking,

shape retrieval refers to the process of retrieving the most similar shapes to the queries from a

dataset of 3D shapes. A good retrieval algorithm should result in high accuracy, or equivalently, in

few dissimilar shapes. In addition to taking into consideration the spatial relations between features

via a geodesic exponential kernel, the proposed approach performs retrieval on SGWC, thereby

seamlessly capturing the similarity between these mid-level features. We not only show that our

formulation allows us to take into account the spatial layout of features, but we also demonstrate

that the proposed framework yields better retrieval accuracy results compared to state-of-the-art

methods, while remaining computationally attractive.

4.1 Introduction

Three dimensional shape analysis has a wide range of applications such as mechanical design for

CAD models, archaeology, cultural heritage, games, medical research studies and computer graph-

ics. Recently, among the broad usage of 3D models in computer graphics like registration, match-

ing, recognition, segmentation and classification, 3D shape retrieval has achieved more attentions

because of its nice applications in search engines e.g., Google, Altavista, Bing and etc. Another
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witness of growing trends to 3D model retrieval is the annual release of SHREC dataset [73],

formed with the aim of evaluating the strength of different 3D object retrieval approaches.

A variety of models can be created as a result of deformations of a nonrigid 3D shape. Modeling

of the produced shapes as well as analyzing their properties are the key issues in this domain

[104]. On the other hand, a 3D object can be geometrically rendered in different forms like point

clouds, triangular meshes, and parametric surfaces. In a bid to measure the dissimilarity among

the nonrigid shapes, we require to find the properties that discriminate between the shapes.

While spectral signatures have received much attention in nonrigid 3D shape analysis [9,13,71,

105], view-based methods, on the other hand, have also been successfully applied to 3D shape

retrieval [7, 106, 107]. Gao et al. presented a view-based 3D shape recognition and retrieval

approach by exploring higher-order relationships among shapes via hypergraphs [106], where a

vertex represents a shape and an edge delineates a cluster of views. More recently, Bai et al.

proposed an interesting view-based method for 3D shape matching and retrieval using a two layer

coding (TLC) framework that encodes view pairs rather than single views. Unlike many view-

based methods, the TLC framework can be easily applied to encode features of 3D shapes in the

same spirit as spectral signatures.

In this chapter, we built upon our previous work [14] to design an improved spectral graph

wavelet signature by incorporating the vertex area into the definition of this signature in a bid to

capture more geometric information and, hence, further improve its discriminative ability. We

also used the Mexican hat wavelet as a generating kernel, which considers all frequencies equally-

important overall as opposed to the cubic spline kernel [14]. More specifically, we propose a

nonrigid 3D shape retrieval framework, called SGWC-BoF, which employs SGWC obtained from

improved spectral graph wavelet signatures (i.e. local descriptors) via the soft-assignment coding

step of the BoF model in conjunction with a geodesic exponential kernel for capturing the spatial

relations between features. Broadly speaking, shape retrieval refers to the process of retrieving the

most similar shapes to the queries from a dataset of 3D shapes. A good retrieval algorithm should

result in high accuracy, or equivalently, in few dissimilar shapes.

An important facet of our approach [71] is the ability to combine the advantages of WKS and

HKS into a single signature, while allowing a multiresolution representation of shapes. In addition

to taking into consideration the spatial relations between features via a geodesic exponential kernel,

the proposed approach performs retrieval on SGWC, thereby seamlessly capturing the similarity

between these mid-level features. We not only show that our formulation allows us to take into

account the spatial layout of features, but we also demonstrate that the proposed framework yields

better retrieval accuracy results compared to state-of-the-art methods, while remaining computa-

tionally attractive.

The rest of this chapter is organized as follows. In Section 4.2, we explain the main steps of our
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proposed framework for nonrigid 3D shape retrieval, and we discuss in detail its main algorithmic

steps. Also, Section 4.3 focuses on experimental results. Ultimately, we briefly conclude in Section

4.4.

4.2 Method

In this section, we provide a detailed description of our nonrigid 3D shape retrieval method that uti-

lizes spectral graph wavelets in conjunction with the BoF paradigm. Each 3D shape in the dataset

is first represented by local descriptors, which are arranged into a spectral graph wavelet signature

(SGWS) matrix. Then, we perform soft-assignment coding by embedding local descriptors into

the visual vocabulary space, resulting in mid-level features which we refer to as SGWC. It is im-

portant to point out that the vocabulary is computed offline by concatenating all the spectral graph

wavelet signature matrices into a data matrix, followed by applying the K-means algorithm to find

the data cluster centers.

In a bid to capture the spatial relations between features, we compute a global descriptor of each

shape in terms of a geodesic exponential kernel and mid-level features, resulting in a SGWC-BoF

matrix which is then transformed into a SGWC-BoF vector by stacking its columns one underneath

the other. The last stage of the proposed approach is to perform retrieval on the SGWC-BoF

vectors by computing a dissimilarity metric between the SGWC-BoF vector of a given query and

all SGWC-BoF vectors in the dataset in an effort to find the closest shape to the query. The

flowchart of the proposed framework is depicted in Figure 4.1.
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Figure 4.1: Flowchart of the proposed SGWC-BoF approach.
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4.2.1 Proposed Algorithm

The goal of 3D shape retrieval is to search and extract the most relevant shapes to the queries from a

dataset of 3D shapes. By relevant, we mean the objects that belong to the same class. The retrieval

accuracy is usually evaluated by computing a dissimilarity measure between pairs of 3D shapes in

the dataset. A commonly used dissimilarity measure for content-based retrieval is the �1-distance,

also known as Manhattan or city-block metric, which quantifies the difference between each pair

of 3D shapes.

Our proposed nonrigid 3D shape retrieval algorithm consists of four main steps. The first step is

to represent each 3D shape in the dataset by a spectral graph wavelet signature matrix, which is

a feature matrix consisting of local descriptors. More specifically, let D be a dataset of n shapes

modeled by triangle meshes M1, . . . ,Mn. We represent each 3D shape in the dataset D by a p×m

spectral graph wavelet signature matrix S = (s1, . . . , sm) ∈ R
p×m, where si is the p-dimensional

local descriptor at vertex i and m is the number of mesh vertices.

In the second step, the spectral graph wavelet signatures si are mapped to high-dimensional

mid-level feature vectors using the soft-assignment coding step of the BoF model, resulting in a

k×m matrix U = (u1, . . . , um) whose columns are the k-dimensional mid-level feature codes (i.e.

SGWC). In the third step, the k× k SGWC-BoF matrix F is computed using the mid-level feature

codes matrix and a geodesic exponential kernel, followed by reshaping F into a k2-dimensional

global descriptor xi. In the fourth step, the SGWC-BoF vectors xi of all n shapes in the dataset are

arranged into a k2 × n data matrix X = (x1, . . . , xn). Finally, we compare a query x to all data

points in X using �1-distance to find the most relevant shapes to the query. The lower the value of

this distance is, the more similar the shapes are. The main algorithmic steps of our approach are

summarized in Algorithm 3.

Algorithm 3 SGWC-BoF
Input: Dataset D = {M1, . . . ,Mn} of 3D shapes and a query.

1: for i = 1 to n do

2: {Step 1} Compute the p×m spectral graph wavelet signature matrix Si of each shape Mi

3: {Step 2} Apply soft-assignment coding to find the k×m mid-level feature matrix Ui, where
k > p

4: {Step 3} Compute the k × k SGWC-BoF matrix Fi, and reshape it into a k2-dimensional
vector xi

5: end for

6: {Step 4} Arrange all the n SGWC-BoF vectors into a k2 × n data matrix X = (x1, . . . , xn).
7: {Step 5} Compute the �1-distance between the SGWC-BoF vector x of the query and all

SGWC-BoF vectors in the dataset, and find the closest shape(s).
Output: Retrieved set of most relevant shapes to the query.
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Remark: It is important to point out that in our implementation the vocabulary is computed

offline by applying the K-means algorithm to the p × mn matrix obtained by concatenating all

SGWS matrices of all n meshes in the dataset. As a result, the vocabulary is a matrix V of size

p× k, where k > p.

4.3 Experimental Results

In this section, we conduct extensive experiments to evaluate the performance of the proposed

SGWC-BoF framework for nonrigid 3D shape retrieval. The effectiveness of our approach is

validated by carrying out a comprehensive comparison with several state-of-the-art methods.

Datasets The performance of the proposed framework is evaluated on two standard and publicly

available 3D shape benchmarks: SHREC 2011 and SHREC 2015. Sample shapes from these two

benchmarks are shown in Figure 4.2.

Figure 4.2: Sample shapes from SHREC 2011 (top) and SHREC 2015 (bottom).
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Performance Evaluation Measures The retrieval performance of the proposed SGWC-BoF

approach is comprehensively evaluated using six commonly-used evaluation metrics: Precision-

Recall (P-R) curve, Nearest Neighbor (NN), First-Tier (FT), Second-Tier (ST), E-Measure (E) and

Discounted Cumulative Gain (DCG) [32].

The P-R curve is an informative graph that illustrates the tradeoff between precision as a function

of recall, and it shows the retrieval performance at each point in the ranking. If, for instance, the

(r + 1)th shape retrieved is relevant, then both precision and recall increase. However, if it is

irrelevant then recall is the same as for the top r shapes, but precision decreases. Hence, a P-R

curve that is shifted upwards and to the right indicates superior performance.

The NN metric is the percentage of the closest matches that belong to the query’s class, i.e.

for each shape in the dataset, the second result (assuming that the first result is the shape itself)

is checked whether it is a member of the same class the shape belongs to. The FT metric is the

percentage of the C − 1 matches retrieved that belong to the query’s class, while the ST metric

is the percentage of the 2(C − 1) matches retrieved that belong to the query’s class, where C is

the size of the query’s class. On the other hand, the DCG is a statistic that weights correct results

near the front of the list more than correct results later in the ranked list, under the assumption

that a user is less likely to consider elements near the end of the list. All these metric have scores

ranging from 0 to 1 (or equivalently from 0% to 100% in terms of percentages), with a higher score

indicating a better performance.

Baseline Methods For each of the 3D shape benchmarks used for experimentation, we will

report the retrieval results of the proposed SGWC-BoF method against various baseline meth-

ods in the literature. For the SHREC-2011 dataset, we compared our approach to GA-BoF [81]

and a variety of baseline methods (see [85, 108] and references therein), including features on

geodesics (FOG), bag of words with local spectral descriptors (BOW-LSD), visual similarity based

non-rigid 3D shape retrieval using multidimensional scaling (MDS-CM-BOF), bag of geodesic

histograms (BOGH), localized statistical features (LSF), ShapeDNA, Harris 3D geodesic map

(Hariss3DGeoMap), heat kernel signature (HKS) and scale invariant feature transform for meshes

(MeshSIFT). We also compared our method to Shape Google [35], SGWS [14], and the two layer

coding (TLC) framework [7].

For the SHREC-2015 dataset, we compared SGWC-BoF to several baseline approaches

(see [109] and references therein), including geodesic distance distribution (SNU), heat kernel

signature (HKS), surface area (SA), wave kernel signature (WKS), multi-feature, spectral ge-

ometry (SG), Fisher vector encoding framework-heat kernel signature (FVF-HKS), Fisher vector

encoding framework-scaled invariant heat kernel signature (FVF-SIHKS), Fisher vector encod-

ing framework-heat kernel signature-wave kernel signature (FVF-WKS), time series analysis for
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shape retrieval (TSAR), sphere intersection descriptor (SID) and Euclidean distance based canon-

ical forms (EDBCF-AV).

Implementation Details The experiments were conducted on a desktop computer with an Intel

Core i5 processor running at 3.10 GHz and 8 GB RAM; and all the algorithms were implemented

in MATLAB. The appropriate dimension (i.e. length or number of features) of a shape signature is

problem-dependent and usually determined experimentally. For fair comparison, we used the same

parameters that have been employed in the baseline methods, and in particular the dimensions of

shape signatures. In our setup, a total of 201 eigenvalues and associated eigenfunctions of the LBO

were computed. For the proposed approach, we set the resolution parameter to R = 2 (i.e. the

spectral graph wavelet signature matrix is of size 5×m, where m is the number of mesh vertices)

and the kernel width of the geodesic exponential kernel to ε = 0.1. Moreover, the parameter of the

soft-assignment coding is computed as α = 1/(8μ2), where μ is the median size of the clusters in

the vocabulary [35].

4.3.1 SHREC-2011 Dataset

SHREC 2011 is a dataset of 3D shapes consisting of 600 watertight mesh models, which are

obtained from transforming 30 original models [85]. Each shape in the dataset has approximately

m = 1502 vertices.

Performance Evaluation The retrieval performance of the proposed approach is evaluated by

performing a pairwise comparison between the SGWC-BoF vector of a given query and all the

SGWC-BoF vectors of the shapes in the SHREC-2011 dataset using the �1-distance, and then

finding the closest shape to the query. A smaller value of the �1-distance indicates that two shapes

are similar.

Figure 4.3 displays the P-R plots of the proposed approach and other state-of-the-art methods.

As can be seen, SGWC-BoF achieves better performance compared to the baseline methods, in-

dicating that our approach is able to retrieve correct shapes with a high degree of accuracy. Such

a good performance strongly suggests that the proposed SGWT-BoF framework captures well the

discriminative features of the shapes.

Results In our approach, each 3D shape in the SHREC-2011 dataset is represented by a 5×1502

matrix of spectral graph wavelet signatures. Setting the number of codewords to k = 128, we

computed offline a 5× 128 vocabulary matrix V via K-means clustering. The pre-computation of

the vocabulary of size 128 took approximately 70 minutes. The soft-assignment coding of the BoF

model yields a 128 × 1502 matrix U of SGWC, resulting in a SGWC-BoF data matrix X of size

1282 × 600.
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Figure 4.3: P-R plots comparing the performance of the proposed method and
other state-of-the-art approaches on SHREC 2011.

We compared the proposed method to FOG, BOW-LSD, MDS-CM-BOF, BOGH, LSF,

ShapeDNA, Hariss3DGeoMap, HKS, MeshSIFT, SD-GDM-meshSIFT, Shape Google [35],

SGWS [14], TLC+J-PairTLC+I-Pair [7], TLC+I-Pair [7] and GA-BoF [81]. In order to evalu-

ate the retrieval performance, we first computed the dissimilarity matrix between all SGWC-BoFs

of the shapes in the SHREC-2011 dataset using �1-distance. The retrieval results are summa-

rized in Table 4.1, which shows the scores of the evaluation metrics for the baseline methods and

the proposed framework. With the exception of SD-GDM-meshSIFT, our SGWC-BoF approach

outperforms all the baselines. This better performance is in fact consistent with all the retrieval

evaluation metrics. For example, the NN value for SGWC-BoF is a perfect 100%, similar to SD-

GDM-meshSIFT. From the table, we can also see that SGWC-BoF yields improvements of 0.5%

in NN, 4.9% in FT, 1.3% in ST, 1.2% in E and 1.1% in DCG compared to MDS-CM-BOF, which

is the best baseline performer.
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Table 4.1: Retrieval results on the SHREC-2011 dataset. Boldface numbers indi-
cate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG

FOG 96.8 81.7 90.3 66.0 94.4
BOW-LSD 95.5 67.2 80.3 57.9 89.7
MDS-CM-BOF 99.5 91.3 96.9 71.7 98.2
BOGH 99.3 81.1 88.4 64.7 94.9
LSF 99.5 79.9 86.3 63.3 94.3
ShapeDNA 99.2 91.5 95.7 70.5 97.8
Hariss3DGeoMap 56.2 32.5 46.6 32.2 65.4
HKS 83.7 40.6 49.7 35.3 73.0
MeshSIFT 99.5 88.4 96.2 70.8 98.0
SD-GDM-MeshSIFT 100 97.2 99 73.6 99.4

Shape Google 98.2 63.7 73.2 – 88.1
SGWS 91.1 80.8 86.5 61.7 89.48
TLC+J-Pair (SIFT) 98.2 86.4 94.1 – 96.4
TLC+I-Pair (SIFT) 99 86.5 93.3 – 96.3
GA-BoF 98.6 91.0 97.4 68.3 97.2
SGWC-BoF 100 96.2 98.2 72.9 99.3

4.3.2 SHREC-2015 Dataset

SHREC 2015 is a dataset of 3D shapes consisting of 1200 watertight mesh models from 50

classes [109], where each class contains 24 objects with distinct postures. Each shape in the

dataset has approximately m = 1502 vertices.

Performance Evaluation The SGWC-BoF matrices of two shapes from two different classes of

SHREC 2011 are shown in Figure 4.4. As can be seen, these global descriptors are quite different

and hence they may be used efficiently to discriminate between shapes in retrieval tasks. To assess

the retrieval performance of the proposed approach on the SHREC-2015 dataset, we plotted the P-

R curves of SGWC-BoF and the baseline methods in Figure 4.5. As can be seen, the SGWC-BoF

approach significantly outperforms the baselines, albeit 16.7% of shapes in each class of SHREC

2015 contain different topological structures compared to the SHREC-2011 dataset. This indicates

that pose-resistant features of nonrigid 3D shapes are well-represented by our approach.

Results Following the setting of the previous experiment, each 3D shape in the SHREC-2015

dataset is represented by a 5 × 1502 spectral graph wavelet signature matrix. We pre-computed

offline a vocabulary of size k = 256, and it took about 100 minutes. The soft-assignment coding

yields a 256 × 1502 matrix U of mid-level features. Hence, the SGWC-BoF data matrix X for
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Figure 4.4: SGWC of two shapes (buffalo and kangaroo) from two different
classes of the SHREC-2015 dataset.
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Figure 4.5: P-R plots comparing the performance of the proposed method and
other state-of-the-art approaches on SHREC 2015

SHREC 2015 is of size 2562 × 1200. The retrieval results are summarized in Table 4.2. As can

be seen, the proposed approach outperforms the baseline methods. For instance, in terms of the
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NN metric, the SGWC-BoF approach achieves a 98.3% score, with performance improvements of

0.3% and 0.7% over the best performing baselines FVF-SIHKS and FVF-WKS, respectively. In

addition, SGWC-BoF outperforms the SG approach [14] by 4.7% in NN, 18.9% in FT, 18.3% in

ST, 16% in E and 8.4% in DCG. This better performance is again consistent with all the retrieval

evaluation metrics.

Table 4.2: Retrieval results on the SHREC-2015 dataset. Boldface numbers indi-
cate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG

SNU 89.8 56.3 66.9 51.6 83.2
HKS 6.5 6.3 12.4 7.4 39.1
SA 6.5 6.7 12.8 7.8 39.3
WKS 13.4 7.4 13.7 8.3 40.8
Multi-feature 45.0 18.6 26.2 18.4 52.5
SG 93.6 66.8 73.6 58.7 87.5
FVF-HKS 96.0 72.5 80.9 64.4 91.3
FVF-SIHKS 98.0 82.4 88.2 71.7 95.0
FVF-WKS 97.6 82.2 89.4 72.4 95.1
TSAR 81.3 46.3 54.4 42.0 74.9
SID 79.5 48.4 61.4 45.9 77.8
EDBCF-AV 97.5 76.9 86.8 68.9 93.5
SGWC-BoF 98.3 85.7 91.9 74.7 95.9

For fair comparison, we compared our approach to baseline methods of the same category (i.e.

BoF-based methods). In addition, approaches based on sparse coding suffer from the long run-

ning time of optimizing the sparse modeling problem to find the dictionary matrix. Although

HAPT, SPH-SparseCoding and SV-LSF [109] perform slightly better than SGWC-BoF, the pro-

posed framework consistently outperforms the baseline methods in most cases, as evidenced by

our experimental results.

4.3.3 Sensitivity to Choice of Parameters

The proposed approach depends on two key parameters that affect its overall performance. The

first parameter is the kernel width ε of the geodesic exponential kernel. The second parameter k is

the size of the vocabulary, which plays an important role in the SGWC-BoF matrix F. As shown

in Figure 4.6, the highest DCG value on SHREC 2011 is achieved using ε = 0.1 and k = 128.

Other two parameters that affect the SGWC-BoF approach to a lesser extent are the resolution

parameter R and the mesh resolution. Figure 4.7 (left) indicates that increasing the number of
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Figure 4.6: Effects of geodesic kernel width and size of vocabulary on the retrieval
performance of SGWC-BoF for SHREC 2011.

mesh vertices slightly changes the DCG values, whereas Figure 4.7 (right) shows that best DCG

value is obtained when R = 2. The effect of the signature resolution parameter R is further is

illustrated in Figure 4.8, which depicts the normalized χ2-distance between a reference point and

other mesh vertices using SGWS for different values of R. As can be seen, changing the values R

has practically an unnoticeable effect on the χ2-distance.
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Figure 4.7: Effects of mesh resolution and signature resolution parameter on the
retrieval performance of SGWC-BoF for SHREC 2011.

Overall, the retrieval performance of proposed method is satisfactory for a wide range of param-

eter values, indicating a slight sensitivity of our approach to the choice of parameters.
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Figure 4.8: Normalized χ2-distance between a reference point (yellow colored on
the man’s right foot) and other surface points using SGWS for different values of
the resolution parameter R = 1, 2, 3 and 5 (left to right).

4.3.4 Robustness to Topological Noise

To assess the performance of the proposed approach in the presence of topological noise, we ran-

domly selected a few shapes from SHREC 2011 and welded some selected vertices of each shape.

Topological noise may arise not only from the triangulation process of point clouds, but also from

various nonrigid deformations of shapes. Figure 4.9 shows sample shapes contaminated with topo-

logical noise.

We performed retrieval on the noisy SHREC-2011 dataset by computing the evaluation met-

rics for SGWC-BoF, and the results are NN = 99.6, FT = 95.4, ST = 97.4,E = 72.3 and

DCG = 98.9. These values indicate that the performance of SGWC-BoF deteriorates slightly

in the presence of topological noise, albeit the geodesic distance is notably sensitive to topological

transformations.

We also compared our approach with the Shape Google method on the noisy SHREC-2011

dataset. The resulting values for Shape Google are NN = 96.7, FT = 59, ST = 67.5,E = 51.2 and

DCG = 73.6, indicating a lower performance than our proposed approach.
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4.4 Conclusions

In this chapter, we introduced a spectral graph wavelet framework for 3D shape retrieval that

employs the BoF paradigm in an effort to design a global shape descriptor defined in terms of

mid-level features and a geodesic exponential kernel. The proposed approach not only takes into

consideration the spatial relations between features, but also achieves better performance compared

with state-of-the-art retrieval methods. The effectiveness of our method was demonstrated on two

standard 3D shape benchmarks. For future work, we plan to apply the proposed approach to other

3D shape analysis problems.
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Figure 4.9: Sample noisy 3D shapes, where the enlarged views show the simulated
topological noise.
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Conclusions and Future Work

This thesis has presented two techniques for classification of 3D objects, namely SGWC-BoF and

DeepSGW. Furthermore, a spectral geometric approach for retrieval of nonrigid 3D shape using

the LBO and the graph wavelet transform has been proposed. We have demonstrated through

extensive experiments the much better performance of the proposed methods in comparison with

other state-of-the-arts methods in the literature.

In Section 5.1, the contributions made in each of the previous chapters and the concluding results

drawn from the associated research work are presented. Suggestions for future research directions

related to this thesis are also provided in Section 5.2.

5.1 Contributions of the Thesis

5.1.1 Shape Classification using Spectral Graph Wavelets

In Chapter 2, we first reviewed and compared recent spectral descriptors for shape analysis. Then,

we introduced a spectral graph wavelet framework which utilizes BoF paradigm in conjunction

with geodesic exponential kernel for classification of 3D models. The main advantage of our pro-

posed approach is that ours accounts the spatial relations between the features. The experimental

results showed that our proposed technique is more accurate and outperforms existing approaches.

5.1.2 Spectral Shape Classification via Deep Learning

In Chapter 3, we presented a DeepSGW approach which provides a general and flexible frame-

work for 3D object classification [70]. The proposed approach not only takes into consideration
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the spatial relations between features, but also significantly improves the discriminative ability of

signature. Experimental results on two datasets demonstrate that our proposed approach outper-

forms state-of-the-art methods both in classification accuracy and in scalability.

5.1.3 Nonrigid 3D Shape Retrieval using Spectral Graph Wavelets

In Chapter 4, we proposed a spectral graph wavelet framework for analysis and design of efficient

shape descriptor for nonrigid 3D shape retrieval [71]. Although this work focuses primarily on

shape retrieval, our approach is, however, fairly general and can be used to address other 3D

shape analysis problems. By concentrating on finding informative spectrum for 3D shape retrieval,

we devised a surface representation that is multiresolution, compact, highly discriminative, and

parameter-insensitive. We also demonstrated through extensive experiments the effectiveness of

the SGWC-BoF by achieving state-of-the-art results on two standard repositories of 3D shapes.

5.2 Future Research Directions

Several interesting research directions, motivated by this thesis, are discussed below:

5.2.1 Improvement of 3D Shape Retrieval using Deep Learning

The availability and widespread usage of large databases coupled with the need to explore 3D

models in depth as well as in breadth has sparked the need to organize and search these vast

data collections, retrieve the most relevant selections, and permit them to be effectively reused.

3D objects consist of geometric and topological information, and their compact representation is

an important step towards a variety of computer vision applications, particularly matching and

retrieval in a database of 3D models. The first step in 3D object matching usually involves finding

a reliable shape descriptor which efficiently encodes the 3D shape information. We are interested

in training the descriptors using deep learning to achieve high-level features which describe the 3D

objects more precisely. As a result, by employing the high-level features the overall process of 3D

object retrieval will be improved.

Inspired by recent successes of deep learning techniques in content-based image retrieval (CBIR)

[99], we intend to investigate the state-of-the-art deep learning approaches including DBN [101],

deep Boltzmann machine (DBM) [110], and deep neural networks (DNN) [111] for learning high-

level features. Recent results [99] from the extensive empirical studies on CBIR show that deep

CNN model pre-trained on large-scale dataset can be directly utilized for capturing high seman-

tic information in new CBIR tasks. Moreover, features extracted by pre-trained CNN model in

conjunction with proper feature refining frameworks, consistently outperform conventional hand-

71



crafted features on all datasets [99]. In future work, we will investigate more advanced deep

learning techniques and assess more other diverse datasets to give more insights for bridging the

semantic gap of 3D model retrieval. In particular, we will explore convolutional neural networks

CNN [112] for retrieving nonrigid 3D shape.

5.2.2 Medical Shape Analysis

Detecting unique phenotypes across populations can be achieved by quantitative analysis of bone

shape, provided that the databases of normal and abnormal pathologies are available. For future

work directions, we plan to perform statistical analysis on carpal bones of the human wrist by

representing the cortical surface of the carpal bone using spectral graph wavelet descriptor to sup-

ply a means for comparing shapes of the carpal bones across populations. Figure 5.1 shows an

example of carpal bone for a healthy male. Furthermore, we will utilize this representation in two

applications: (1) analysis of the differences in carpal bone shapes between women and men, and

(2) analysis of carpal bone shape differences between the right and left hand across the population.

More precisely, unlike our current SGWC-BoF method in which first aggregates local descriptors

of a shape and then subsequently represent each object by a global signature, we will propose a

novel framework of directly extracting global descriptor so-called global spectral graph wavelet

(GSGW). Thus, we will circumvent all the procedure of BoF paradigm which leads to a lower

computation time as well as higher analysis accuracy. Furthermore, we will evaluate the accu-

racy of our proposed framework in terms of multi-variant analysis of variance (MANOVA) and

permutation test for different sexes and carpal bones.

5.2.3 3D Shape Watermarking

Recent advances in designing and processing digital contents has led to the representation of the

valuable data in digital forms, which can be distributed through internet. Since digital contents

may easily be duplicable, we need to protect such contents for the purposes of ownership claiming

and authentication. Watermarking techniques have been used as effective solutions for solving the

copyright and ownership verification issues by embedding the watermark information directly in

a 3D object by modifying either the 3D mesh geometry or the topology of the triangles. How-

ever, these techniques are often susceptible to various kinds of attacks. We intend to develop 3D

watermarking techniques using multi-resolution mesh analysis (spectral decomposition and graph

wavelet transform) in an effort to show good resistance against attacks.
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Figure 5.1: 3D representation of left carpal bone for a healthy male.

5.2.4 Design of Wavelet Generating Kernels

In its current form, the proposed SGWC-BoF is generated using a Mexican-hat kernel, and it has

been shown to yield superior performance only with isometric or near-isometric transformations.

In the future, we will look more carefully into the optimal choice of other wavelet generating kernel

functions, thus extending the scope of the SGWC-BoF to more general classes of deformations.

Additionally, designing appropriate signatures for other shape analysis applications such as surface

denoising is a promising future work direction that we plan to explore.

5.2.5 From Image Processing to Geometry Processing

Generally speaking, this thesis provides a bridge to borrow ideas from image processing for

geometry processing, namely the wavelet framework for shape descriptors’ design. Abstractly, it

generalizes methods in the Euclidean space to the weighted graph space, resulting in a fruitful way

to understand 3D shapes by extending sophisticated methods in image domain via these tools. Our

future plan is to explore other tools to link these two fields, such as finding a proper generalization

of sparse coding and low rank matrix recovery based methods in the image domain for 3D surfaces.
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