
Efficient Transactional-Memory-based

Implementation of Morph Algorithms on

GPU

Shayan Manoochehri

A Thesis

in

The Department of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

August 2017

© Shayan Manoochehri, 2017

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Shayan Manoochehri

Entitled: Efficient Transactional-Memory-based Implementation of Morph Algorithms on

GPU

and submitted in partial fulfillment of the requirements for the degree of

M. Comp. Sc.

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

______________________________________ Chair

Dr. T.-H. Chen

______________________________________ Examiner

Dr. H. Harutyunyan

______________________________________ Examiner

Dr. R. Jayakumar

______________________________________ Supervisor

Dr. D. Goswami

Approved by __

Chair of Department or Graduate Program Director

 Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

Date __

iii

Abstract

Efficient Transactional-Memory-based

Implementation of Morph Algorithms on GPU

Shayan Manoochehri

General Purpose GPUs (GPGPUs) are ideal platforms for parallel execution of applications

with regular shared memory access patterns. However, majority of real world multithreaded

applications require access to shared memory with irregular patterns. The morph algorithms,

which arise in many real world applications, change their graph data structures in unpredictable

ways, thus, leading to irregular access patterns to shared data. Such irregularity makes morph

algorithms more challenging to be implemented on GPUs which favor regularity. The

Borouvka’s algorithm for calculating Minimum Spanning Forest (MSF), and multilevel graph

partitioning are two examples of morph algorithms with varied levels of expressed parallelism.

In this work we show that a transactional-memory-based design and implementation of the

morph algorithms on GPUs can handle some of the challenges arising due to irregularities such

as complexity of code and overhead of synchronization. First, we identify the major phases of

the algorithm which requires synchronization of the shared data. If the algorithm exhibits certain

algebraic properties (e.g., monotonicity, idempotency, associativity), we can use lock-free

synchronizations for performance; otherwise we utilize a Software Transactional Memory (STM)

based synchronization method. Experimental results show that our GPU-based implementation

of Borouvka’s algorithm outperforms both the fastest sequential implementation and the existing

STM-based implementation on multicore CPUs when tested on large-scale graphs with diverse

densities. Moreover, to show the applicability of our approach to other morph algorithms, we do

a pen-and-paper implementation and complexity analysis of multilevel graph partitioning.

iv

Dedication
I dedicate this thesis to my mother and brothers who always supported me with love, and to

the memory of my father who taught me to be strong and kind to others.

v

Table of Contents

List of Tables, Figures and Algorithms ………………………………………………………….vi

1 Introduction ...1

2 Background ...6

2.1 GPU Architecture ..6

2.1.1 GPU System Model ...6

2.1.2 GPU’s Synchronization Mechanisms ..8

2.1.3 The Locks Challenges ...9

2.2 Transactional Memory Model ...10

2.2.1 Transactional Memory ...10

2.2.2 Progress Guarantees ..12

2.2.3 Transactional Execution ..14

2.3 Overview of GPU STMs ...16

2.3.1 Block Level STM ..16

2.3.2 Hierarchical Validation STM ..19

2.3.3 Lightweight STM ..20

3 Transactional-Memory-based Implementation of Minimum Spanning Forest Algorithm on

GPU..23

3.1 Transactional-Memory-based Minimum Spanning Forest ...25

3.1.1 Edge Discovery Phase ...27

3.1.2 Merge Phase ..30

3.1.3 Optimization ..35

3.2 Experimental Evaluations ...36

3.3 Summary ...41

4 Transactional-Memory-based Implementation of Graph Partitioning on GPU42

4.1 Multilevel Graph Partitioning ...43

4.1.1 Coarsening ...45

4.1.2 Initial Partitioning ..47

4.1.3 Un-coarsening ..48

vi

4.2 Multi-threaded Graph Partitioning ..49

4.2.1 Coarsening ...50

4.2.2 Initial Partitioning ..52

4.2.3 Un-coarsening ..53

4.3 Segmented Sort and Pack ..56

4.3.1 Segmented Scan ...56

4.3.2 Primitives Built On the top of Scan ...60

4.4 Transactional-Memory-based graph partitioning ..62

4.4.1 Graph Data Structure ...64

4.4.2 Coarsening ...64

4.4.3 Un-coarsening ..71

4.5 Summary ...75

5 Conclusion & Future Works ...77

References ..79

vii

List of Tables, Figures and Algorithms

Table 3.1 USA Road Networks, Random, and R-MAT graphs………………..………….…….37

Table 3.2 K40 GPU versus serial and STM-based parallel on CPU…….………………….…...38

Figure 2.1 GPU’s Execution Model…………………………………………………….……..….6

Figure 3.1 A graph with 4 vertices and 5 edges in the CSR format….………………….………27

Figure 3.2 Result of edge discovery phase in example graph……………………………….…..29

Figure 3.3 Merge in example graph following the edge discovery phase……………….……...32

Figure 3.4 Comparison of execution time of CPU versus different GPUs...........………………39

Figure 3.5 Execution times on Tesla GPU versus serial on CPU for random/R-MAT graphs....39

Figure 4.1 Multilevel graph bisection adopted from [32]……………………………………….45

Figure 4.2 Matching stage of coarsening phase…………….…………………………………...51

Figure 4.3 Up-sweep phase of work-efficient sum scan algorithm adopted from [36]……........57

Figure 4.4 Down-sweep phase of work-efficient sum scan algorithm adopted from [36]…..….58

Algorithm 2.1 Illustration of deadlock case in GPU………………………………...………….10

Algorithm 2.2 Illustration of simple fix to deadlock issue in GPU…………………...………...10

Algorithm 3.1 Borouvka’s MST algorithm…………………………………..…………...……..24

Algorithm 3.2 MST edge discovery operation……………………………………………...…...30

Algorithm 3.3 Mark function used in priority based STM…………………………………...….33

Algorithm 3.4 Merge operation using STM transactions……………………………………......35

Algorithm 4.1 Up-sweep (reduce) phase of a work-efficient sum scan algorithm………………56

Algorithm 4.2 Down-sweep phase of a work-efficient parallel sum scan algorithm…………...57

Algorithm 4.3 Reduce (up-sweep) phase of a segmented scan algorithm………………………59

Algorithm 4.4 Down-sweep phase of a segmented scan algorithm……………………………..60

1

1 INTRODUCTION

An application with data-level parallelism (DLP) contains computations that can be

performed on many data items simultaneously. In contrast, the task-level parallelism is expressed

in computations wherein multiple tasks can be executed in parallel. An application with data-

level parallelism scales with the increase in amount of data, whereas an application with task-

level parallelism scales as the number of functionalities increase [1]. GPUs are throughput-

driven, highly multithreaded processors benefiting the applications with large data-level

parallelism to achieve high performance. DLP computations can either be performed in regular

or irregular fashion, as we discuss in the following.

An application’s behavior, with respect to the control flow and memory access patterns, is

largely determined by its degree of dependency to the values of data items. When the

dependency is predictable or follows a pattern, the data-parallelism is regular; otherwise, the

behavior of the application is irregular. In regular parallelism, roughly identical computation is

performed on each data item; therefore the load balance on processing cores is easy to achieve

leading to efficient utilization of the system resources. Furthermore, the predictable memory

access patterns can be exploited to improve the efficiency of memory transfers, i.e., memory

accesses exhibit spatial and temporal locality as the result of predictable behavior expressed in

the regular computation which can be exploited for DLP computation optimizations.

On the contrary, in irregular parallelism, the amount of computation performed in each data

item can be quite variable. The challenges to efficiently perform these computations are mainly

due to: (1) the control flow of each data item’s processing is data-dependent, which leads to load

imbalance. (2) The branch divergence arising due to if-then-else constructs, which can lead to

underutilization of the SIMD hardware in GPUs. (3) The irregular memory access patterns,

which make it difficult to group memory transfers that exhibit temporal and/or spatial locality

into one memory request (memory coalescing), leading to underutilization of the high memory

bandwidth available in GPU.

2

Widespread deployment of GPUs in the recent years has resulted in substantial speedup of

applications with regular memory access patterns. However, many real world applications

exhibit computations with irregular DLP. Some of the irregular computations are originated from

the complexity of data structures they use, e.g. graphs. Morph algorithms [2] are a type of

irregular algorithms that change the underlying graph data structure in unpredictable ways,

making them difficult to exploit memory coalescing and mitigate control flow divergence on

GPUs. Moreover, the implementation of the morph algorithms in massively multi-threaded

environments give rise to synchronization problems caused by dynamic data sharing. This leaves

us with a question with no clear answer: how should we reduce the cost and complexity of

synchronization overheads in these applications to be able to fully utilize the processing power of

the thousands of GPU cores?

Examples of some of the morph algorithms are: Borouvka's Minimum Spanning Tree (MST)

algorithm [3] to find a minimally weighted subset of the graph edges that connects all the

vertices without any cycle; multilevel graph partitioning to divide the underlying graph to

partitions of roughly equal size via three phases: coarsening, initial partitioning, and un-

coarsening; and Delaunay Mesh Refinement (DMR) to transform triangles of the given

triangulated input mesh that do not conform to certain quality constraints by recreating the

neighborhood around them. Parallelizing morph algorithms on GPUs exemplifies the challenges

of executing irregular real world applications, and is the focus of our research.

Over the past few years, there have been some implementations of morph algorithms on GPU,

which are relatively complex and non-scalable. Vineet et al [4] implemented a recursive

formulation of Borouvka’s algorithm on GPU using CUDA primitives such as scan, segmented

scan, and split. However, their approach is not only complicated but also doesn’t scale well to

larger graphs due to the restrictions on the input graph. Nasre et al. [5] implemented the

Borouvka’s algorithm on GPU, avoiding any synchronization all together. On the downside, they

proposed a rather complex algorithmic technique deviating from the phases of the original

algorithm, e.g., it included a phase to break the formation of cycles among components to

prevent race conditions. Moreover, their approach did not prove to be quite efficient, which

could be due to the extra work required to avoid synchronization, as we show in our

experimental results.

3

On the other hand, there are other works which are not quite reliable, e.g., Nasre et al. [6]

have proposed a techniques to improve the performance of DMR algorithm by performing a

three-phase race-and-resolve synchronization method using global barriers. Unfortunately, global

barriers can result in poor performance on GPU due to load imbalances caused by dissimilar

workloads. Moreover, it has the potential of causing livelocks which makes it an unreliable

technique.

Software Transactional Memory (STM) [7] is a software method supporting transactional

programming of synchronization operations. It simplifies development of parallel code by

allowing the programmer to mark sections of the code that should be executed concurrently and

atomically in an optimistic manner. High abstraction level of STM makes the transition from the

algorithmic design to implementation a natural process as opposed to tedious programming

efforts required in a lock-based implementation.

Cederman et al. [8] implemented two versions of blocking and non-blocking STMs on GPUs

that work with the granularity of one thread-block, which limit the proper utilization of system

resources. They employed linear and exponential backoff functions to recover from transactional

conflicts as well as avoiding livelocks. Later, Xu et al. introduced GPU-STM [9] with a

hierarchical validation approach which is a combination of timestamp-based and value-based

validations. They used locks-sorting to avoid livelocks. None of the above STMs showed good

scalability, mainly due to expensive conflict detection mechanism they employed.

Following Xu et al. [9], Holey et al. [10] presented a scalable Lightweight Software

Transactions for GPUs with a back-off strategy to avoid livelocks. Their work is more efficient

as compared to GPU-STM as it lowered the overhead of STM by introducing two variations of

STM supports: ISTM (invisible reads) and PSTM (pessimistic). ISTM introduced invisible reads

to reduce conflicts during a transaction where reads with no modifications to memory locations

comprised the good portion of memory accesses. PSTM is a simpler, yet more effective, method

in majority of applications where transactions regularly read and write to the same memory

location. It treats the writes and reads in the same manner, leading to simpler design and reduced

overhead, therefore, resulting in higher scalability especially when the contention level is high.

4

Shen et al. [11] introduced a priority rule based STM (PR-STM) which incorporates a lock

stealing technique to avoid the possibilities of both livelocks and deadlocks by prioritizing

transactions based on the threads’ identifiers. We built our STM on top of PR-STM and

incorporated the optimization technique used in PSTM to lower some of its overheads. Both

Shen’s and Holey’s work show a good level of scalability in the benchmark applications they

used. However, we chose to build on the work of Shen mainly because of the backoff strategy

which is not a natural match for GPU due to its SIMD hardware.

In this thesis, we demonstrate efficient transactional-memory-based design and

implementation of some of the morph algorithms on GPUs. We believe that transactional-

memory-based design facilitates the scalable implementation of the algorithm and reduces the

amount of programming effort. In each major phase of the algorithm, we first attempt to extract

certain algebraic properties of the computation (e.g., monotonicity, idempotency, and

associativity) [6] to exploit lock-free transactions for performance. Otherwise, we utilize an STM

based synchronization method. We also apply different optimization techniques like “warp

segmentation” [12] in our implementation to maximize the load balance which can lead to proper

GPU utilization and good performance.

To show the effectiveness of our transactional-memory-based approach, we implemented the

Borouvka’s algorithm on GPU: in the first major phase of the Borouvka’s algorithm (edge

discovery), we extract certain algebraic properties of the computation (monotonicity) [6] to

exploit lock free synchronization. The edge discovery phase is monotonic due to ever

decreasing values produced in finding the MSF edges. However, due to lack of such properties in

the merge phase, we apply STM based synchronization, using our priority-based STM

implementation. Moreover, to show the applicability of our approach to other irregular

algorithms, we perform a pen-and-paper design and analysis of a transaction-memory-based

multilevel graph partitioning algorithm, wherein STM transactions are used during coarsening

(matching stage) and un-coarsening (refinement stage) phases.

The main contributions of this research are as follows:

 Design and implementation of an STM-based Borouvka’s MSF algorithm. The STM-

based approach improves the programmability and cost of synchronization as

5

compared to some other existing approaches that use fine-grained locks or algorithmic

methods to avoid locks altogether. The STM-based approach is also simple to

implement, which reduces the gap between the original algorithm and its actual

implementation.

 Implementation of a priority-based STM to be used in the synchronization steps of a

morph algorithm.

 Comparison of our experimental evaluations with the sequential and STM-based

multicore implementations of MSF for large graphs (both real-world and artificial)

demonstrates substantial performance improvement.

 We demonstrate the applicability of our approach to other morph algorithms by

discussing a pen-and-paper design and complexity analysis of the multilevel graph

partitioning algorithm.

The rest of this thesis is organized as follows: chapter 2 elaborates the background

information including GPU architecture, Transactional Memory, and an overview of STM

implementations on GPU. Chapter 3 elaborates the design and implementation of the

transactional-memory-based Borouvka's algorithm on GPU and our priority-based STM; this is

followed by a discussion on the experimental evaluations and analysis. In chapter 4 we discuss

the design and analysis of a transactional-memory-based multilevel graph partitioning algorithm.

Finally, Chapter 5 concludes the thesis with a discussion on future works.

6

2 BACKGROUND
2.1 GPU Architecture

In this section, we first start by outlining the system model of GPU and then explain GPU’s

synchronization mechanisms, namely atomic operations and barriers. Finally, the challenges of

using locks in GPU are discussed.

2.1.1 GPU System Model

SP SP

Blocks
assigned to

SM0

Blocks
assigned to

SM1

SM 0 SM 1

Shared
Memory

Shared
Memory

Global Memory

Figure 2.1. GPU’s Execution Model.

A GPU application starts on the CPU and uses a compute acceleration API such as CUDA

[13] to launch a highly multithreaded kernel onto the GPU. Introduced by NVIDIA, CUDA is a

general purpose parallel computing architecture to execute compute-intensive programs on

NVIDIA’s graphics processors. Moreover, CUDA provides a compiler for a language based on

C/C++ with the extensions in order to run kernel codes (functions) on the NVIDIA’s GPU. In the

following we use all the terminologies related to CUDA.

7

GPUs support thousands of threads executing in parallel. Such computing power is provided

by an array of streaming multiprocessors (SM). Each kernel launch consists of a hierarchy of

threads, called a grid, executing the same compute kernel. The thread hierarchy organizes threads

as thread blocks wherein each thread block is scheduled to one of the SMs as a single unit of

work, staying there until all of its threads complete execution. At execution time, threads within

the same thread block are further partitioned into warps [13] to exploit their regularities and

spatial localities.

As it is shown in Figure 2.1, each SM consists of an array of simple cores that are referred to

as streaming processors (SP). In a given cycle, the SPs belonging to a single SM execute the

same instruction but on different memory locations, an execution model known as single

instruction multiple data (SIMD) or single instruction multiple threads (SIMT) [13] due to

hardware threading. Threads within the same warp are simultaneously scheduled to the SIMT

cores or SPs, and thus are executed in lockstep fashion, while threads across different warps are

executed asynchronously in a multiple instruction multiple data (MIMD) like fashion. Moreover,

using memory access coalescing mechanism, multiple consecutive accesses to the same DRAM

row are coalesced to generate a single memory request, leading to an efficient memory operation.

Moreover, the arrangement of threads into warps by the programmer provides optimizations

with respect to control flow. Ideally, threads within the same warp execute through the same

instruction path, so that the GPU’s SIMT cores can execute them in lockstep fashion. However, a

warp may encounter a branch divergence when its threads diverge as the result of data-dependent

branches. Modern GPUs contain masking hardware to handle branch divergence until the threads

re-converge.

Note that GPU kernel can be launched with any number of thread blocks that can go beyond

the capacity of GPU on-chip resources. The thread blocks of a grid are enumerated and

distributed to multiprocessors with their available execution capacity, i.e., the launch unit

dispatches as many thread blocks as the GPU’s capacity, and dispatches the remaining thread

blocks when the resources are released by completed thread blocks; this process ends when all

the thread blocks are dispatched and completed. Such hardware-accelerated thread scheduling

mechanism distinguishes GPUs from other processors such multi-core. Therefore, given such

8

mechanism, GPU applications can decompose their workloads into as many threads as possible

without imposing any major overhead.

The GPU contains an on-chip memory in each SM, which is explicitly managed by a

programmer, referred to as the shared memory. The shared memory is accessible among

different threads of each SM-assigned thread block. On the other hand, global memory, which is

an off-chip device memory, is accessible to all threads in a GPU kernel. The access latency of

device memory is high which can potentially make the memory accesses costly.

To compensate for such high memory latency, (1) consecutive memory accesses to device

memory from different threads in a warp are automatically coalesced, i.e., combined into a single

larger access, exploiting GPU’s large memory bandwidth, and (2) fast context switching in each

processing core help to perform some useful computation while waiting for the memory

operation to complete, where only a limited number of threads are allowed on each processing

core. As opposed to global memory, local memory is private to individual threads, although, it

also resides in the off-chip device memory.

2.1.2 GPU’s Synchronization Mechanisms

Atomic Operations

GPUs provides hardware-based atomic operations for the GPU kernels to synchronize critical

sections with supports for both shared and global memory spaces. Such atomic mechanisms are

capable of updating a memory location atomically with a new value computed based on the old

value. An atomic operation involves 3 steps: reading the old value from the memory location,

modifying it into a new value, and writing the new value back to memory where all three steps

are performed atomically with respect to the thread executing the atomic operation.

Moreover, the atomic operations are the basic primitives for constructing synchronization

mechanisms such as locks, barriers, non-blocking data structures and software transactional

memory. Among different types of atomic primitives, atomic compare-and-swap (CAS) is the

basis to build other atomic primitives in GPUs such as atomic min, max, add and etc. An atomic

CAS receives 3 input parameters: the memory location to be updated, the expected old value at

the location, and a new value; this primitive will write the new value into the memory location

9

only if the location’s current value is equal to the expected old value. If the operation is

successful the old value is returned to the thread, otherwise, the new value is returned to indicate

the failure, i.e., the atomic primitive of current thread aborts as other thread has changed the

value of the location before the current thread has a chance to complete. The CAS may be

repeated using a loop construct until it succeeds.

Barriers

A barrier provides synchronization among a set of threads such that none get past the barrier

until every thread in the set has reached to the barrier. Barriers can be used in a programming

method known as bulk-synchronous programming [14] wherein the computation is divided into

multiple phases, with each phase consisting of a set of independent tasks executed concurrently,

therefore, avoiding any race conditions. I.e., the barrier between subsequent phases ensures that

all tasks are finished and their updates have reached to the global memory before proceeding to

the next phase.

However, if the tasks are dissimilar, this process leads to load imbalance and underutilization

of system resources. This is because the threads which have finished their assigned tasks quicker

may have long idle time at the barrier, waiting for other threads to catch up. Therefore, bulk-

synchronous programming is more effective for applications with regular parallelism, in which

threads are assigned with roughly the same amount of workloads.

Multi-core processors usually implement barriers via the use of atomic operations. In the

simplest implementation, each thread atomically increments a single counter, and then spins until

the counter equals to the total number of threads participating in the barrier. Modern GPUs

provide hardware barrier instructions that synchronize threads at the level of thread block (using

__syncthreads in CUDA), which can be utilized to implement software-based global barriers

which involves all the kernel’s threads.

2.1.3 The Locks Challenges

In addition to traditional challenges of lock-based synchronization, concurrency issue can be

even more troublesome due to GPU’s SIMT execution paradigm. For example, as shown

Algorithm 2.1, assume that there are two threads within a warp competing for a spinlock. In this

10

situation, one of them acquires the lock, and waits at the start of critical section for re-

convergence, while the other spins forever, leading to deadlock.

1. repeat locked = CAS(&lock,0,1)

2. until locked = 0;

3. //critical section …

4. Lock = 0;

Algorithm 2.1. Illustration of deadlock case in GPU.

1. done = false;

2. while done == false do

3. if CAS(&lock,0,1) == 0 then

4. //critical section …

5. lock = 0;

6. Done = true;

Algorithm 2.2. Illustration of simple fix to deadlock issue in GPU.

The updated version of Algorithm 2.1 (Algorithm 2.2) a local “boolean” variable is added to

fix the issue. This algorithms works well when each thread acquires a single lock, however,

when two threads from the same warp attempting to acquire two locks in reverse orders, it leads

to livelock. I.e., when a thread incurs locking failure, it releases the lock acquired and retries but

since warps execute the same instruction in lockstep fashion, those two threads loop forever.

Therefore, due to livelocking issue, fine-grained locking on GPUs is extremely challenging.

2.2 Transactional Memory Model

In this section we discuss the basic idea and benefits of using Transactional Memory as

opposed to conventional synchronization method by means of locks. Subsequently we discuss

the progress guarantee provided by different types of systems underlying the Transactional

Memory, and finally we discuss the common steps of transactional execution of a typical STM

system.

2.2.1 Transactional Memory

11

Herlihy et al. [15] introduced transactional memory (TM), a new multiprocessor architecture

implemented by straightforward extensions to any multiprocessor cache-coherence protocol,

which provides an efficient and easy-to-use synchronization technique without using locks. In

contrast, conventional mutual exclusion using locks ensures that only one thread at a time can

operate within the critical sections, while serializing access to the shared memory locations. TM,

on the other hand, can circumvent common problems associated with locks, including priority

inversion, which occurs when a lower-priority thread is preempted while holding a lock needed

by higher-priority threads; convoying, which occurs when a thread holding a lock is de-

scheduled causing other threads capable of running wait; and difficulty of avoiding deadlock.

TM allows programmers to define transaction as a block of code with read-modify-write

operations which atomically updates multiple memory locations. Building on the hardware based

TM [15], Shavit et al. [7] proposed a software transactional memory (STM), a software method

for supporting flexible programming of transactions; their design, however, has a major practical

limitation in its transaction definition which its data set and operations should be known in

advance, i.e., it uses static transactions. This limitation was later addressed in the following TM

designs, making the transactions dynamic.

The underlying TM system should ensure the transactions, are (1) executed atomically,

meaning that either all or none of a transaction’s operations are executed, and (2) in isolation,

meaning that transactions do not observe un-committed updates of other transactions in (shared)

memory. Therefore, the TM system can provide an abstraction which frees the programmer from

the complexity and caveats of dealing with low level synchronization primitives. I.e., the TM

paradigm greatly simplifies concurrent programming compared to the traditional lock-based

techniques, that is, using TM system, the programmer does not need to write code via locks to

ensure mutual exclusion.

The TM system automatically executes transactions in parallel for performance, while

resolving data-races among concurrently executed transactions. The programmer only need to

mark the code block which has to be executed atomically and the TM ensures its correct

execution and good performance. With a well-implemented TM system, transactions can

approach a performance comparable to that of fine-grained locking. Despite having a diverse

12

programming syntax, TM code has been shown to be less error-prone than locks [16], while

being easier to understand [17]. Moreover, the programmer can compose transactions using TM

[15], which further boosts programmer productivity as compared to traditional programming

using locks.

Even though a TM system execute transactions concurrently, to execute correctly it should

satisfy the serializability as its basic correctness criterion. Serializability defines how a set of

committed transactions may update the memory system [15], and it is satisfied when transactions

appear to execute serially, that is, the steps of one transaction never appear to be interleaved with

the steps of other transactions. Hence, The TM system should ensure that the current execution is

serializable, that is, equivalent to executing the same set of transactions in a serial order. In a

serializable order, every transaction behaves as if it is executed serially one after another. By

showing that all transactions committed by a TM system satisfy serializability, atomicity and

isolation are also satisfied. Note that serializability only requires the concurrent execution of

transactions to have at least one equivalent serial order, that is, it does not restrict which serial

order should be matched by the concurrent execution.

2.2.2 Progress Guarantees

Conventional lock-based concurrency control methods guarantee data consistency by

enforcing mutually exclusive access to critical sections guarded by locks that are exclusively

acquired by concurrent threads. Once a lock has been acquired by a thread, other concurrent

threads demanding to acquire the same lock are forced into a wait state until the lock is released

by the thread owning it. Therefore, the waiting threads may spin, yield, or ask the scheduler to

block them, that is, they can’t make forward progress until the lock is released. This wait state is

the major cause of the various problems including deadlock, priority inversion and convoying.

Similar to the initial STM implementation [7], the proposed non-blocking STMs provide

synchronization mechanism to circumvent the problems caused by mutual-exclusion using locks,

so the failure of any number of threads could not prevent the remainder of the system from

making progress. As a result, non-blocking STMs are not relying on the poor scheduling

decisions and performed well in spite of arbitrary thread termination. To support non-blocking

property, the non-blocking STMs exclude the use of locks because the locks could be held by

13

threads and never be released. However, due to the efficiency limitations of the non-blocking

STMs, most of the recent STMs are blocking, and hence, lock-based, an approach which has

shown better performance in practice, partly due to its design simplicity.

In the non-blocking STMs, threads do not need to wait, e.g. spin, to gain access to a shared

memory location in face of contention. That is, the transactions in a non-blocking STM are free

from wait state, when run by concurrent threads. Instead of waiting, a thread may either abort

and optionally retry later; or abort the conflicting thread. In other words, non-blocking STM

permit concurrent reads/writes to the shared memory locations, while guaranteeing consistent

updates using atomic primitives such as CAS. As we discuss in the following, the non-blocking

STMs can be classified according to the kind of progress guarantee they provide to wait-

freedom, lock-freedom and obstruction-freedom.

The strongest progress guarantee is wait-freedom which, while having the poor performance,

guarantees a transaction always succeeds in a finite number of its own steps, therefore,

eliminates the occurrence of deadlocks as well as starvation. This guarantee is usually only

relevant to real-time systems, where predictability is compromised with performance.

A weaker and more practical guarantee is lock-freedom, which guarantees that, given a set of

concurrent transactions, at least one transaction makes progress in a finite number of execution

time steps of any other transaction. In spite of the name, lock-freedom does not necessarily

preclude locks, as long as these can be revoked. Lock-freedom eliminates the occurrence of

deadlocks but not starvation. E.g., the original proposal for STM suggested by Shavit et al. [7]

was a lock-free STM with no use of locks.

An even weaker guarantee is obstruction-freedom. It guarantees that a transaction will always

succeed if it is executed without conflicts with other transactions. This leads to greater

simplification and flexibility in the design of non-blocking STMs. This property strong enough

to prevent deadlock and priority inversion, but requires separate mechanisms such as exponential

back-off to avoid livelock. A contention manager is often required to achieve high throughput

and to prevent livelocks. Thus, in practice, obstruction-free STMs seem to be faster than wait-

free and lock-free alternatives.

14

In contrast to the above mentioned progress guarantees the non-blocking STMs provide, the

blocking STMs provide no guarantees at all since they use locks. Regardless of the lack of

progress guarantees, they allow for a simpler design and, according to Ennals [18], a potentially

more efficient implementation. Moreover, (1) the majority of programs incorporating STM use it

to improve the performance, (2) in the programming models, it is acceptable for one atomic

operation to block other atomic operations of the same or lower priority, and (3) the number of

threads in an application can be adaptively be matched to the number of physical processing

cores, thus, making it unlikely for a thread’s transaction to be blocked by another transaction

which its thread has been swapped out. The disadvantage of using a blocking implementation is

that it makes the STM much more dependent on the scheduler.

2.2.3 Transactional Execution

In this section, we outline the common steps of transactional execution for a typical STM

system. We start by giving a formal definition of transaction: A transaction is a sequence of

instructions, including reads and writes to memory that either commits, that is, executes to the

end atomically, or aborts with no effect. All the speculative writes to memory location performed

by a committed transaction become permanent, and hence, visible to the rest of the system, while

the speculative writes of an aborted transaction is discarded. The STM system usually needs a

version management mechanism to record the speculative writes to ensure a consistent memory

view from different threads, along with conflict detection mechanism to detect the dependence

violations between different transactions.

Version management can be performed eagerly at the time of memory access, or lazily when

the transaction commits. In the eager mechanism, the changes are optimistically applied directly

to the memory locations as a transaction makes progress, while logging the old values stored in

the memory locations to an undo log which is used to revert the changes in case of abort.

Generally, eager version management performs well when conflict detection rate is low, while

lazy version management is more effective in high contention workloads [19]. However, in the

lazy, rather pessimistic, mechanism, the speculative writes will be logged in transaction-private

redo logs until the commit time which is the time that the transaction’s speculative writes are

stored to memory, whereas the redo log is discarded when the transaction aborts.

15

Similar to version management, conflict detection can be performed either eagerly or lazily.

Eager conflict detection detects violation early, thus, is able to lessen redundant work by the

threads and make computation and memory resources available for other threads. Besides, with

the eager conflict detection, the aborted transaction are allowed to retry early. On the other hand,

in the lazy mechanism, the conflict detection is optimistically executed at the commit time,

allowing for higher degree of concurrency due to the reduced abort rate. Note that the selection

of conflict detection mechanism depends on the chosen version management mechanism. In

eager version management, conflicts on writes need to be detected eagerly before any write to

the memory locations, whereas the conflicts on reads can be detected either eagerly or lazily.

The data conflicts can be detected by tracking the transactional reads and writes to memory

locations recorded by transactions within the (shared) memory, hence, making them visible to

other transactions. To do so, most of the STM implementations dedicate a separate (shared)

memory space for either one memory location or a group of memory locations (memory stripe)

to record the tracking entries which include information such as version number, which is used

for invisible reads, ownership (lock) status, current executing thread, operation type (read or

write) and old/new value for each memory location accessed. Each transaction also keeps a local

copy of such entries for each speculative read or write operation performed.

A STM system can abort transactions either explicitly based on the logic of code, or implicitly

due to the conflicts with concurrent transactions. The implicit conflict detection along with

resolution, which is the abort followed by retry, mechanisms avoid the deadlocks which naive

fine-grained locking implementations suffer from. In practice, STM usually aborts transactions

even before a deadlock takes place, typically as soon as the conflict is detected.

In a typical STM system, performing an abort operation, generally reverts all the changes

made by the transaction, effectively voiding the entire transaction, and subsequently releases the

ownership of the acquired memory locations. This is commonly referred to as

transaction rollback. While when a transaction completed successfully via the commit operation,

the changes to memory locations become visible to other threads by releasing the ownership of

the acquired memory locations.

16

To maximize the degree of concurrency, STM implementations typically differentiate among

reads and writes to memory locations, allowing several transactions to read the same memory

location concurrently, as long as no update is performed by any transaction at the same time.

This doesn’t violate the data consistency as the transactions are only reading from the same

location. On the other hand, the conflict occurs when at least one of the transactions writes to the

memory location while any other transaction read from the same location.

2.3 Overview of GPU STMs

Providing efficient STM support on GPU is challenging due to sheer large number of

lightweight threads in GPU as compared to few powerful threads in CPU. Such lightweight

threads could experience substantial performance overheads with transaction management tasks

such as tracking dependences (version management), detecting dependence violations (conflict

detection), locally buffering data before a transaction commits, and re-executing aborted

transactions across thousands of GPU threads at runtime.

In the following we briefly highlight some of the major works to design and implement STMs

on GPUs and compare their effectiveness with respect to efficiency and scalability.

2.3.1 Block Level STM

Cederman et al. [8] have designed and implemented two versions of blocking and non-

blocking STMs on GPUs that work with the granularity of one thread-block, thus, avoiding intra

warp livelock. However, such granularity limits the proper utilization of system resources. Their

non-blocking STM follows the obstruction-free design proposed by Harris et al. [20]. Both

STMs perform lazy version management using the redo logs for best performance in applications

with high contention, while detecting the conflicts at commit time, i.e., applying lazy conflict

detection. They employed linear and exponential back-off functions to recover from transactional

conflicts. Below, we first briefly review the design techniques used in the non-blocking STM,

using the design outlined by Harris et al., followed by their blocking STM implementation, and

then report the performance related comparison among these two STMs.

Non-blocking STM

17

Harris et al. [20] argue that helping proposed by Shavit et al. [7] is expensive due to the heavy

contention it generates. Therefore, instead of helping mechanism, they proposed a mechanism

based on locks stealing with merge (during stealing phase) and redo (during lock release phase)

operations as we explain in the following.

At commit time, a transaction attempts to acquire all the locks it requires to get exclusive

access to its memory locations. If a transaction has acquired all its locks, but not yet written the

new values, other conflicting transaction can steal locks from it, using the new value that is to be

written. However, if the transaction has not yet acquired all its locks, the stealer transaction may

abort it before attempting to acquire its own locks.

In the stealing phase, the stealer transaction merges the transaction entries from the

conflicting transaction, which we refer to it as victim, to its own. However, stale updates may

occur during the lock release phase of a victim transaction, where the stealing transaction makes

updates to the shared memory locations before the victim transaction does, and then the victim

transaction makes its stale updates to those locations, overwriting the most recent updates made

by the stealer transaction.

To avoid such stale updates, when the victim transaction discovers a potential risk of stale

updates, on detecting a stolen lock, it redoes the updates to the memory locations corresponding

to the stolen lock, using the new value for the location stored in stealer’s transaction entries, only

if the stealer is no longer active. Therefore, the most recent update is always performed to the

shared memory locations.

Blocking STM

In the blocking STM, during the execution of a transaction, for each memory location

accessed for read, a check is performed to see whether its lock has been taken by other

transaction or not. If the lock is taken, the transaction waits until it the lock is released before

transferring its value to its local memory. This check is done once again to make sure the lock is

still free, and has not been taken yet, otherwise, the check is repeated until the lock is free again.

For writes to the memory locations, however, since the STM uses lazy version management, all

18

the memory updates are applied locally using the redo log corresponding to the thread

performing transaction.

At commit time, the blocking STM transaction needs to ensure that no other thread block has

changed any of the memory locations accessed earlier, that is, read and/or written, before it can

write back the updates to shared memory. Therefore, each of the accessed memory locations is

checked, and if the original value read matches the current value in shared memory, its lock is

acquired using a compare-and-swap (CAS) atomic operation. Recall that the CAS operation will

only succeed as long as the lock status has not changed in the meantime. Any failure in acquiring

the locks, or the lock has already been taken, causes the transaction to abort. Once all locks have

been successfully acquired, the updates are written back to the shared memory, followed by

releasing the locks. Note that, in case of abort, all the already acquired locks should also be

released for functional correctness as well as data consistency.

To evaluate and compare the effectiveness of STMs, Cederman et al. [8] carried out their

experiments with 2 different contention levels. In the first version, the threads in test applications

perform some local work before executing the transactions, leading to a low contention scenario,

while in the second version, the high contention scenario is achieved, by having most of the work

performed through transactions.

Overall, based on their reported result, at a low level of contention, the blocking and the non-

blocking STMs both scale similarly, that is, when the number of thread-blocks increases, the

number of operations per millisecond grows equally. In addition, the average number of aborts

per transaction is about the same in both STMs. With higher contention, however, the

performance with respect to the number of operations per millisecond is better using the non-

blocking STM, and hence, the corresponding test applications display higher level of scalability.

Given different back-off schemes, there were no significant change in performance and abort

rate. This could be attributed to the hardware scheduler’s behavior and the fact that there is only

one transaction per thread-block. Consequently, regardless of limited concurrency level in the

STMs proposed by Cederman et al., providing additional progress guarantees, such as

obstruction-freeness, appears effective to improve performance, while a blocking STM is simpler

to implement.

19

2.3.2 Hierarchical Validation STM

Xu et al. [9] proposed an STM system on GPU which consists of a hierarchical validation

(HV) technique and an encounter-time lock-sorting mechanism with commit-time locking, which

we refer to as HSTM, attempting to address the major challenges of using fine-gained locking on

GPU: (1) by ensuring good scalability with respect to the massive multithreading, and (2) by

preventing livelocks caused by the SIMT execution paradigm of GPUs. Unlike block level STM

we discussed earlier which suffers from limited concurrency, HSTM supports per-thread

transactions for each thread within a thread block. Furthermore, the HSTM uses the early conflict

detection for reads and late detection for writes, while implementing the lazy version

management.

The hierarchical validation technique combines timestamp-based validation (TBV) with

value-based validation (VBV), two commonly used conflict detection strategies. At the cost of a

slight increase in memory requirements, and of the potential contention on a shared timestamp

counter, performing the TBV significantly reduces the high overhead of using the VBV alone,

whereas the VBV is helpful to eliminate false conflicts caused by timestamp-based validation.

The TBV is implemented by associating a timestamp with each group of shared memory

locations (memory stripe) to indicate when these location was last modified. A transaction also

acquires a timestamp indicating the time, referred to as linearization point, when its effects

become visible to the rest of the system. Thus, the comparisons of the order of execution is made

possible, providing the HSTM system an opportunity to skip validation when the memory

location was last modified before the transaction’s linearization point.

 In GPU, the back-off mechanism is not ideal to avoid livelocks, because threads within the

same warp cannot wait for different delays due to the lockstep execution. To adopt a back-off

mechanism specific to GPU, when lock acquisition is required, first, the threads within a warp

try to acquire locks in parallel, and then those which failed try to acquire locks again

sequentially. Hence, livelocking within a warp is avoided by sequentially locking, which could

cause a bottleneck during commit and thus degrade performance. Therefore, in the HSTM, the

encounter-time lock-sorting together with commit-time locking is used so that the transactions

20

can acquire the locks in the same order. Hence, livelock-freedom is ensured, and no backoff

mechanism is required. Unfortunately, the HSTM suffers from poor performance and low level

of scalability which can be attributed to high overhead of its validation mechanism.

2.3.3 Lightweight STM

The inadequate scalability which previous STM implementations exhibit is due to high

overheads in their transaction management, especially in conflict detection. To address this

problem, Holey et al. [10] proposed a low overhead, lightweight STM (LSTM) so that the

applications could scale satisfactorily to thousands of threads available in GPU-based systems.

Given a program, the LSTM exploits the characteristics of the program to either trade−off

conflict detection accuracy with detection overheads or avoid tracking entry updates on reads by

making reads invisible to other transactions. Holey et al. showed, with their proposed techniques,

programs with varying levels of contention can scale to thousands of threads on GPU.

In order to implement LSTM, Holey et al. [10] suggested two flavors of transactional support

exploiting an overall transaction’s property calculated for a program: visibility. This property can

be calculated by dividing the total number of writes followed by reads to the memory locations

over the total number of reads. Note than this property can be variable during the runtime of a

program. The LSTM uses eager version management along with eager conflict detection on

writes or eager/lazy conflict detection on reads, depending on the transaction’s visibility,

performed during a transaction.

In eager conflict detection, a transaction can abort other transaction while it gets aborted later,

therefore, the livelock is not avoidable. For instance, two transactions can keep on aborting each

other, leading to a livelock. To avoid livelocks a backoff mechanism is utilized in the LSTM by

adding a variable delay before restarting aborted transactions to ensure forward progress. In the

following, we briefly discuss both abovementioned transactional supports.

The pessimistic transactional support of LSTM specifically targets the applications that in

good portion of their execution time, the same memory locations are read and then written within

the same transaction, that is, they own high values for visibility property we discussed earlier.

Such support reduces the conflict detection overhead which is possible by tracking the

21

speculative reads and writes equally, leading to a quite simple, yet low overhead conflict

detection mechanism. I.e., in addition to regular read−write conflicts, a conflict can also be

detected even if two threads read the same memory location, exploiting the fact that if a

transaction in a program reads a location, it will most likely write to the same location.

Therefore, the read conflicts are detected eagerly, leading to early release of the computation and

memory resources.

Conversely, in programs which do not exhibit such memory access behavior, they will incur

high overhead costs due to false conflicts. I.e., given pessimistic transactional support, the

performance of LSTM could hurt when a program has higher number of reads than writes within

its transactions. This is caused by fewer actual updates to the memory locations, therefore,

majority of the conflicts detected are false, leading to low performance.

To implement pessimistic support, the tracking entry for each memory location records which

thread has accessed it by using the id of thread wherein a conflict is detected by a single CAS

atomic operation.

In second transactional support, which is known as invisible read, the conflicts on reads are

optimistically detected/validated in lazy fashion at commit time. I.e.., speculative reads are

invisible to other transactions, and because they do not modify the tracking entries, this leads to

faster transactional reads. This support suits the programs which during their execution, only

small portion of reads to memory locations are followed by writes to the same locations, yielding

to higher performance. Recall that both transactional support designs detect conflicts on writes

eagerly.

Each tracking entry used for detecting dependence violations in invisible read support is

consist of version number and lock status, we refer to the combination as version locks. The

version lock can be implemented using an unsigned integer to represent lock status with the lease

significant bit and the rest of the bits for version number. Thus, using versioned locks speculative

reads remain invisible to other transactions, while writes are still visible. Note that the version

number is locally stored in transaction private memory and compared with the shared memory at

commit time.

22

Holey et al. evaluated their proposed techniques against the fine-grained locking and two

state-of-the-art STMs previously discussed, from the standpoint of overheads and scalability.

They also used the benchmarks with varying degree of contention, number of memory

operations, and transaction sizes for their experimentations. Their results show that the proposed

STM support considerably outperforms the earlier STM works, while achieving performance

comparable to fine grained locking. Specially, their techniques perform better than other STM

designs which specifically target high−contention workloads, on programs with higher conflict

rates.

Overall, when critical sections contribute to small portion of the total execution time, that is,

the programs spend significant time executing the native code, both transactional supports show

low overhead cost. I.e., if the time spent in transactions is relatively short, the STM overheads

can be amortized by non−transactional execution in the program. Moreover, among pessimistic

and invisible read transactional supports, pessimistic version performs better under high

contention and when same data are read first and then written in the transaction.

Recall that in the STM design of Cederman et al. [8], a transaction executes at a thread block

level rather than at a thread level, that is, the threads within a thread block do not fall into race

conditions; this assumption, of course, is not practical in order to fully utilize the system

multiprocessors as SIMT engines. To have a fair comparison, however, Holey et al. modified this

design so that each thread within a thread block can take independent transaction(s).

Subsequently, they showed LSTM design scales better as the number of GPU threads increases

compared to both STM implementations of Cederman et al. and HSTM.

Lower scalability of both Cederman et al.’s STM and HSTM can be attributed to consistency

checks performed on reads, which hinders their performance. In Cederman et al.’s STM the read

operation waits until a concurrent write from other transaction to the same location is complete,

while HSTM performs incremental validation after each read that involves timestamp checking

followed by value−based validation for all reads performed earlier within a transaction. Note that

even though these STMs employ lazy version management, but even under high contention the

eager mechanisms of LSTM outperforms, which is due to lightweight conflict detection

mechanisms.

23

3 TRANSACTIONAL-MEMORY-

BASED IMPLEMENTATION OF

MINIMUM SPANNING FOREST

ALGORITHM ON GPU
Minimum Spanning Tree (MST) is used in many real world applications, e.g., distributed

networks [21], VLSI design, and medical imaging [22]. Parallelizing of MST calculation on

GPUs exemplifies the challenges of executing irregular applications on these platforms. An MST

algorithm on an undirected connected graph finds a minimally weighted subset of the graph

edges that connects all the vertices without any cycle. If the graph has several connected

components, then it involves calculating the Minimum Spanning Forest (MSF) which constitutes

one MST for each connected component.

Among the different proposed algorithms for MSF, the Borouvka’s algorithm [3] has the most

expressed parallelism. It calculates a subset of the graph edges for each connected subgraph of

the forest that spans all the vertices with minimum cost. As illustrated in Algorithm 3.1, for each

such subgraph G, all the vertices are initialized as individual components. The algorithm iterates

through the components and connects each component to another component with a minimum

cost path from the component. The iterative process continues until only one component is left.

1. Input: an undirected graph G

2. // each component ci initially contains one vertex

3. T = {c1,c2,c3…ck}

4. while (number of components in T) >1 {

5. for each component ci in T{ // edge discovery phase

6. S = {};

7. for each Vertex vj in ci {

8. e = minOutComponentEdge (vj);

9. S.add(e);

24

10. }

11. T.add (minEdge(S));

12. } // end of edge discovery phase

13. mergeComponents(T); // merge phase

14. } // end of while loop

15. Output: T is minimum spanning tree of Graph G

Algorithm 3.1. Borouvka’s MST algorithm

Over the past few years, there have been several implementations of morph algorithms on

GPUs, which are relatively complex and non-scalable. Vineet et al [4] implemented the

Borouvka’s MST algorithm on GPU, using CUDA primitives such as scan, segmented scan, and

split on a recursive formulation of Borouvka’s algorithm. However, their approach is not only

complicated but also doesn’t scale well to larger graphs due to the data restrictions, e.g., by

imposing some restrictions on the edge weights and the number of vertices. Though it shows

substantial performance gain for some types of graphs, their approach is not applicable to other

larger graphs, e.g., for the majority of the randomly generated large graphs in section 3.2 of this

chapter.

On the other hand, Nasre et al. [5] implemented the Borouvka’s algorithm on GPU, avoiding

the synchronization all together. However, they proposed rather complex algorithmic techniques,

such as subgraph addition together with multiple phases deviating from the phases of the original

algorithm, e.g., it included a phase to break the formation of cycles among components to

prevent race conditions. Their approach, however, did not prove to be quite efficient as we show

in our experimental result which could be due to the extra work required to avoid

synchronization. In section 3.2, we do a further comparison with their work.

Kang et al [23] designed and implemented an STM based Borouvka’s algorithm on a

multicore CPU system with 64 cores. They concluded that satisfactory performance, compared to

the fastest known sequential implementation, can be achieved only if further solutions are

available to lower the overhead of transactional memory, e.g., by having a transactional memory

at the hardware level. As we will see in the experimental results (section 3.2), their work has

some additional limitations for randomly generated large graphs due to restrictions in the number

of disconnected components.

25

In this chapter, we demonstrate an efficient transactional-memory-based design and

implementation of the Borouvka’s algorithm on GPUs. In the first phase of the Borouvka’s

algorithm (edge discovery), we extract certain algebraic properties of the computation (e.g.

monotonicity) [6] to exploit lock-free synchronizations (i.e., synchronizations using atomic

instructions). The edge discovery phase is monotonic due to ever decreasing values produced in

finding the MSF edges. However, the second phase of the algorithm (merge phase) lacks such

algebraic properties and hence we utilize STM as a synchronization mechanism in this phase.

In addition to STM, we apply different optimization techniques like “warp segmentation” [12]

in our implementation to maximize GPU utilization and load balancing, which are found to

significantly enhance efficiency and performance.

The rest of this chapter is organized as follows: Section 3.1 elaborates our transactional-

memory-based design and implementation of Borouvka's algorithm on GPUs. The experimental

evaluations are discussed in section 3.2. Finally, section 3.3 concludes the chapter with a

summary of our work.

3.1 Transactional-Memory-based Minimum Spanning Forest

In this section we discuss the design and implementation of a transactional-memory-based

MSF algorithm. We partition the Borouvka’s algorithm (Algorithm 3.1) into two main phases:

edge discovery and merge. In the edge discovery phase, there exists an algebraic property of

monotonicity which helps implement lock-free synchronizations using atomic operations. This is

further elaborated in the following. In the merge phase, however, there are no such algebraic

properties and hence we resort to an STM-based synchronization mechanism to overcome race

conditions.

In the edge discovery phase, each vertex in a component initially finds its minimum-weight

edge (edge suggestion) to other components. Based on the original Borouvka’s algorithm

(Algorithm 3.1), the edge suggestions of different vertices in a component are stored in a set

from which the least expensive edge is selected. In contrast, in our implementation, all the

vertices of a component can write their edge suggestions to a shared location in a lock-free

approach. We exploit the disjoint-set data structure to represent the components, wherein each

26

component C contains a disjoint-subset of vertices; a tree data structure represents such a

disjoint-subset with its root vertex as the representative of C. Additionally, the “union” operation

merges two subsets into one by attaching the root of the tree associated with one subset into

another, and the “find” operation locates the subset’s representative of a constituent vertex by

traversing its corresponding tree. The representative maintains the shared location. A vertex’s

edge suggestion is compared with its representative’s shared location and if such suggestion is

less expensive, then the representative’s content is replaced.

Since we are only interested in retaining the least expensive of edge suggestions in each

subsequent comparison, the edge weight in a component representative monotonically decreases.

As such, the corresponding algebraic property of monotonicity is exploited to discover the least

expensive edge suggestion for a component. If an atomic-free approach is used (i.e., without the

use of atomic operations like “compare and swap”) to handle the critical race in writing to a

shared location in a component representative, we are required to repeat the edge discovery

phase until there is no further change in the content of any component representative. However,

through our experiments we noticed that such atomic-free approach could result in more work

due to increased number of iterations in finding the MSF of moderate size graphs. Hence we use

atomic “compare and swap” operations in the edge discovery phase because the focus of our

work is on large graphs.

In the merge phase, we use the minimum-weight edges, which are discovered and collected in

each component representative, to connect their endpoint components (disjoint subsets) via

disjoint-set “union” operation. Since components may run into race to join with each other,

synchronizing the merge operations is inevitable. We resort to an STM-based synchronization

mechanism by implementing a priority-based STM for the merge phase. The STM facilitates a

natural mapping of the merge phase to the implementation code, e.g., variable sized transactions

are handled seamlessly as opposed to fine-grained synchronization using locks.

27

1 2 3 0 2 0 1 3 0 2

0 1 2

NbrIndices 0 3 5 8 10

NbrVertexIndices

2

1 33

4 6

7 5

3

4 3 6 4 7 3 7 5 6 5EdgeWeights

Figure 3.1. A graph with 4 vertices and 5 edges in the CSR format

Two optimization techniques are applied at the end of the merge phase: pruning and flattering.

Pruning reduces the workload of the edge discovery phase in the subsequent iterations by

eliminating the edges whose endpoints are located in the same component. In flattening, each

vertex’s parent is updated to point to the root vertex (i.e., the component representative),

reducing the cost of disjoin-set “find” operations in future invocations.

To minimize the global memory overhead for the graph representation on the GPU, we use

the Compressed Sparse Representation (CSR) format. Figure 3.1 shows the 3 arrays that

constitute CSR:

• NbrVertexIndices: stores the adjacency list of graph’s vertices.

• NbrIndices: contains the indices of the adjacency set of each vertex in NbrVertexIndices.

• EdgeWeights: holds the weights of the edges corresponding to the vertices in

NbrVertexIndices.

In the following subsections, we discuss the edge discovery and merge phases in detail.

3.1.1 Edge Discovery Phase

The main task of the edge discovery phase is to determine the minimum-weight edge from

each component of the graph connecting it to other components. In each component, it first finds

the minimum-weight edge (edge suggestion) for each vertex connecting it to adjacent vertices in

other components. This is followed by finding the minimum of these edge suggestions:

discovered MST edge.

28

To implement this phase on a GPU, the naive approach is to have each thread in charge of

processing one vertex and all its incident edges. However, in CUDA-capable GPUs, a set of 32

contiguous threads of a warp execute in the SIMD fashion. So, due to different number of

neighbors of each vertex in the graph, the threads in the warp can have dissimilar workloads,

resulting in intra-warp load imbalances and hence performance degradation.

To address the above problem, in our approach we utilize the “warp segmentation” technique

[12] in which the adjacency lists of the vertices are grouped in different sized segments. Each

warp is assigned to 32 consecutive vertices (we call them warp-assigned vertices) and their

adjacency lists, which are copied to the fast shared memory in a warp to maximize the

processing speed. However, since these adjacency lists could not fit into the shared memory of a

warp, they are streamed into a shared buffer in chunks of 32 neighbors.

Hence, all the threads in the warp collaborate iteratively in processing the neighbors of the

warp-assigned vertices, resulting in increased load balance. During each iteration, threads of a

warp perform parallel reduction to find the minimum-weight edges incident on the warp-

assigned vertices. Upon finding such minimum-weight edge in each vertex (i.e. edge suggestion),

it is compared with the current value of the component’s representative which monotonically

retains the least expensive of such edge suggestions.

Figure 3.2 shows the result of edge discovery performed on a graph with three components:

A, B and C. The figure also shows the MST edges discovered in each component by retaining

the least expensive edge suggestions made from the component’s vertices. For example, the least

expensive edge is selected among all edge suggestions made to component A’s representative

(i.e. vertex 2), which is illustrated by pointers from vertices 1, 2, 3 and 4 to vertex 2. The final

suggestion of component A is the MST edge incident on vertex 2 (in component A) connecting

to vertex 5 (in component B).

Algorithm 3.2 illustrates the edge discovery phase. Initially, a shared memory buffer

_Shared_Suggestions is allocated as a placeholder for all incident edges of each warp-assigned

vertex (line 2). The second shared memory buffer is allocated to fetch indices of NbrIndices

corresponding to the warp assigned vertices (lines 3-4). Each warp thread determines the region

within NbrVertexIndices and EdgedValues arrays that belongs to the 32 assigned vertices (lines

29

5-6). Finally, the warp threads iterate in a for-loop over all the edges incident on the warp-

assigned vertices to determine the minimum-weight edges (lines 7-18).

1

4

2

3

7

5 6

8

11

9

10

1

2 6

4

3

5

(A,1)

(C,6)

(A,3)

(A,4)

(C.5)

(B,2)A

B

C

(B,1)

Remaining Edges
MST Edges
Discovered MST Edges
Pointers to Component’s Rep

Figure 3.2. Result of edge discovery phase in example graph

1. parallel-for warp {

2. declare _Shared_Suggestions[blockDim] of Edge;

3. declare _Shared_NbrIndices[blockDim] of Integer;

4. _Shared_NbrIndices [warpThreadBlockOffset +laneID]

 = NbrIndices [GlobalThreadID];

5. startEdgeIndex // boundary start

 = _Shared_NbrIndices [warpThreadBlockOffset];

6. endEdgeIndex //boundary end

 = NbrIndices [warpGlobalOffset + 32];

7. for (edgeIndex = startEdgeIndex + laneID;

 edgeIndex < endEdgeIndex; edgeIndex += 32) {

8. segment = getWarpSegParams(edgeIndex, endEdgeIndex);

9. if segment.warp_assigned_vertex is not active continue;

10. reduceWithinWarpSeg (edgeIndex, segment);

11. if segment.inSegId == 0 // first thread in a segment

12. if segment.warp_assigned_vertex has no edge suggestion

13. deactivate(segment.warp_assigned_vertex);

14. else {

15. rootVertex = find (segment.belongingVertex);

30

16. suggest(rootVertex, segment.belongingVertex);

17. }

18. } // for loop end

19. } // parallel-for warp end

Algorithm 3.2. MST edge discovery operation

All the consecutive edges belonging to a warp-assigned vertex form a segment within a warp,

wherein the parallel reduction is performed to find the minimum-weight edge. Therefore, during

the for-loop iterations, each warp thread first determines which of the 32 warp assigned vertices

owns the current edge using a binary search within _Shared_NbrIndices; this is followed by

detecting the segment size and its index (inSegId) inside the segment (line 8). Having the

segment information, the minimum-weight edge is determined by parallel reduction (line 10).

Following the reduction step, the first thread of each segment compares the minimum-weight

edge, stored in _Shared_Suggestion buffer, with the rootVertex (i.e. representative of the

component) of its warp-assigned vertex (lines 15-16). However before such comparison, if the

current warp-assigned vertex does not have any edge suggestion left, it will be deactivated (line

13). Eliminating such vertices from the components improves the algorithm efficiency by

reducing useless computations in the following edge discovery phases (line 9). In performing the

comparison (via suggest function), the suggested weight is compared to the current weight in the

root vertex and the minimum of both is retained in global memory through an atomic operation

(e.g. “compare and swap”). Subsequent comparisons with each component’s vertices

monotonically decreases the current suggested weight in each component until the minimum of

such weights is found.

3.1.2 Merge Phase

In the merge phase, components of the graph are merged together to form larger components

using the MST edges discovered in previous phase (edge discovery). For this purpose, each

component’s representative (root vertex) is queried to get its discovered MST edge, from which

the neighbor vertex of the other component can be located. Subsequently, the root vertex of the

other component is located using the neighbor vertex. Finally two components are merged into

one by selecting one of the root vertices as the root vertex of newly constructed component.

31

During the merge phase, components may run into critical race to join with each other. To

avoid such race conditions, we exploit synchronized transaction to perform merge within the

critical section; we call it merge transaction. The merge transaction atomically reads all the

vertices involved to locate the root vertex of the other component, followed by updating them to

point to the root vertex of the new component. Here, we design and implement a lightweight

priority-based STM as a synchronization mechanism for the merge transactions.

Figure 3.3 shows the merge phase following the edge discovery phase for the example graph

in Figure 3.2. First, in the race among components A, B and C to merge with each other (A to

merge with B, B to merge with A, and C to merge with A), component B successfully proceeds

resulting in component new B which is constructed encompassing all the vertices from the

previous components A and B. As the result of the merge, vertex 2, previously the root vertex in

component A, now points to vertex 7 which is the component new B’s root vertex (Figure

3.3(a)).

Later, component C proceeds to merge with the newly created component, new B, which now

contains the vertex 3, previously a member of component A. The vertex 3 is the neighbor vertex

located using the discovered MST edge for component C. The thread processing the root vertex

10 of component C starts a new transaction which first locates the root vertex (vertex 7) of vertex

3 and then updates vertex 7, previously the root vertex of component B, to point to component

C’s root vertex (vertex 10). Finally, within the same transaction, vertices 3 and 2 are updated to

point to vertex 10, which is the component new C’s root vertex.

To support STM based transactions, we include an unsigned integer as a tracking entry in

each vertex of the graph. The most significant bit of the tracking entry indicates the lock status

and the remaining bits are used for the priority of the thread performing a transaction. We define

threadID value as the priority for a thread where the highest value indicates the lowest priority.

Each thread allocates a local array of vertices to keep track of all the vertices participating in an

STM transaction. The size of the local array is a constant L, i.e., the longest transaction size. A

transaction of size greater than L aborts and restarts until its size is lowered as the side effect of

merging of other components.

32

1

4

2

3

7

5 6

8

11

9

10

C

New B

A

Remaining Edges
MST Edges
Discovered MST Edges
Pointers to Component’s Rep

Figure 3.3(a). Merging component B with A to create new B

1

4

2

3

7

5 6

8

11

9

10

New B

New C

Figure 3.3(b). Merging component C with new B

Figure 3.3. Merge in example graph following the edge discovery phase

If a thread inside a transaction requires to access a vertex, it first attempts to atomically mark

its tracking entry by updating its priority value to its own id. Marking is successful when the

tracking entry is not locked (lock bit is 0) and its priority is lower than thread’s; otherwise the

transaction aborts and restarts. Following a successful marking, any modification to the vertex is

33

kept in the local array until the end of transaction. At the end of marking and modification phase,

a thread rechecks the tracking entry of each vertex it requires and if its priority hasn’t changed, it

attempts to acquire its lock. The transaction aborts if any of its required vertices’ priorities has

been changed or if any of the lock bits have been set by other transactions with higher priority.

Once all the locks are acquired successfully, the local memory changes are applied to the global

memory via the commit function and the locks are released. Before releasing the locks, we need

to invoke the __threadfence instruction [13] to ensure that the changes reach to the global

memory, thus avoiding any inconsistency caused by the weak memory consistency model [24] in

CUDA GPUs.

1. function mark(){

2. globalLockPriority = vertices [index].lockPriority;

3. if globalLockPriority > thread.priority

4. || isLocked(globalLockPriority) {

5. rollback();

6. return false;

7. }

8. if thread.priority > globalLockPriority

9. && !isLocked(globalLockPriority) {

10. oldValue = atomicCAS(&vertices[index].lockPriority,

11. globalLockPriority, thread.priority);

12. if gLockPriority != oldValue

13. rollback();

14. else

15. return true;

16. }

17. return false; }

Algorithm 3.3. Mark function used in priority based STM

Algorithm 3.3 illustrates the mark function used in our priority-based STM. At the beginning

of the mark function, a thread’s transaction tries to mark its required vertex. If the vertex is

already locked (lock bit is 1) or the thread’s priority is lower than the current priority, the

transaction rollbacks (lines 2-6); otherwise the thread attempts to replace its priority using the

34

“compare and swap” (CAS) [13] atomic operation (lines 8-11). If the CAS operation is not

successful then the transaction rollbacks via rollback function (lines 12-13).

If a transaction fails within the marking phase then the tracking entries are reset by invoking

the rollback function. The rollback function replaces the priority values of the tracking entries

with the lowest priority through the CAS atomic operation, which implicitly releases the locks by

resetting the lock bits. Resetting of tracking entries gives the subsequent transactions chances to

proceed with marking in a non-blocking fashion.

In our implementation, the priority part of the tracking entry is set to a maximum integer

value (indicating the lowest priority) using the CAS atomic operation to signify that there is no

previous marking of the vertex. This is in contrast to the work of Shen et al. [11] where a

separate bit is dedicated to represent the marking status for a memory location. Moreover, we

improved the performance of our STM implementation by removing the overhead of versioning

in [11], which is required to enable the invisible reads; this is possible because in our algorithm

each read of a memory location (vertex) is followed by a write operation.

Algorithm 3.4 illustrates the merge phase in more detail. Initially each vertex is assigned to a

thread. Before a thread starts a transaction, it first checks whether the root vertex is still a valid

root vertex, i.e., its component has not yet been merged with other components; so it stops

further processing if the current vertex is not a valid root vertex (lines 2-4). Subsequently, by

performing transactional disjoint-set find function, it can terminate the transaction if the root

vertex has already been attempted to be merged by other transactions (lines 6-12). Hence, by

performing the above checks, we avoid the overhead of transactions as far as possible.

 The transactional disjoint-set union function is invoked using the root vertex, which holds

information about the neighbor vertex in the other component as an end-vertex of the discovered

MST edge. The union function internally invokes the find function to locate the other

component’s root vertex before updating it to point to the root vertex of the newly merged

component (line 16). Finally, if all the locks of the marked vertices are acquired successfully

through the acquireLocks function (line 18), the local changes are applied to the global memory

via the commit function and the transaction completes successfully. Similar to the rollback

35

function, tracking entries are reset within the commit function following updates to the global

memory.

1. parallel-for warp {

2. parentIndex = vertices [vertexID].parentIndex;

3. if parentIndex != vertexID

4. return;

5. while true { // beginning of transaction

6. (rootVertex, boolean)= find (vertexID);

7. if boolean { // marking was successful

8. rootVertexIndex = rootVertex.vertexIndex;

9. if rootVertexIndex != vertexID {

10. /* component has merged before */

11. rollback();

12. break; // transaction completed

13. }

14. } else

15. continue; // to restart transaction when marking failed

16. boolean = union(rootVertex);

17. if boolean // marking was successful in union

18. boolean = acquireLocks();

19. if !boolean // locks acquisition failed

20. continue; // restart transaction

21. else

22. commit();

23. break; // transaction completed

24. } // end while

25. } // parallel-for warp end

Algorithm 3.4. Merge operation using STM transactions

3.1.3 Optimization

36

In each iteration of the MSF algorithm, the graph is pruned and flattened at the end of the

merge phase so that the workload of the both edge discovery and merge phases decreases in the

following iterations. The rationale behind pruning is that, in an undirected graph, each edge is

repeated two times in the adjacency list with opposite directions. Pruning eliminates all the edges

whose opposite direction edges have already been added to the MSF. Furthermore, it removes all

the edges whose end vertices are already placed in the same component after a merging phase.

Pruning is realized using a kernel dedicated to remove such edges, which exploits “warp

segmentation” [12] for load balancing of the edge-processing threads. During pruning, we set the

value of a removed edge to max (upper bound on edge weight) so that this edge will be

disregarded in the edge discovery phase of the following iterations.

Flattening performs the “path compression” of the disjoint-set data structure. It utilizes the

“pointer doubling” technique, replacing the parent of each vertex by its grandparent. To have a

better load balance of the running threads, at each iteration of flattening, only one level of

“pointer doubling” is applied to each vertex. Note that this operation is not requiring any

synchronization as we exploit the idempotency algebraic property.

Both pruning and flattening operations are executed in parallel as there is no dependency

between them. The two operations are terminated when there are no more changes in the graph,

i.e., all required edges are removed and all vertices are pointing to their root vertices.

3.2 Experimental Evaluations

In this section, we evaluate the performance of our transactional-memory-based MSF

implemented using CUDA on two different GPUs, and compare it with both the serial and the

STM-based implementation on a multicore CPU. At the end, we also compare our experimental

results with those of Nasre et al. as reported in [5].

Experimental Setup

To evaluate our transactional-memory-based MSF, we choose some of the sparse graphs of

large and moderate sizes from USA road networks [25] as summarized in Table 3.1 In addition

to these real world graphs, we generate 4 other large sparse graphs using the random GTgraph

37

Graph Generator [26]; the sizes of two of the graphs are chosen to be close to the real world

western USA road network and for the other two, the number of edges is halved. Moreover, we

generate multiple denser random/R-MAT [26] graphs which are used to demonstrate the speedup

and scalability of our work.

We carried out the experiments using two GPUs of different strengths: a server/workstation

based NVIDIA Tesla K40 with 2880 stream cores, 288GB/sec of memory bandwidth, 12GB of

GDDR4 memory, and core boost clock of 875 MHz; and a desktop based Quadro K1200 with

512 steam cores, 80GB/sec of memory bandwidth, 4GB of GDDR5 memory, and core boost

clock of 1124 MHz. For comparison purposes, we used Boost graph library’s [27]

implementation for fastest sequential algorithm on our Intel Core i7-6700 CPU with 8 cores and

16GB of DDR4 memory. Moreover, on the same CPU we ran the multicore STM-based

implementation [23]. For all compilations, we used gcc 4.4.7 with O2 optimization level on the

Scientific Linux 6.8 operation system.

Table 3.1. USA Road Networks, Random, and R-MAT graphs

Graph Name Description N.Vertices N.Edges

USA Full USA Road Network 23.9M 58M

W Western USA Road Network 6.2M 15M

E Western USA Road Network 3.5M 8.7M
FLA Florida Road Network 1M 2.7M
NY New York City Road Network 264K 733K

RND1 random graph 6.2M 15M

R-MAT1 Power-law graph 6.2M 15M

RND2 random graph 6.2M 7.6M

R-MAT2 Power-law graph 6.2M 7.6M

Experimental Results

Table 3.2 summarizes the execution time comparisons of our implementation on Tesla GPU

(CUDA) versus sequential and multi-core STM-based [23] implementations. Table 3.2 also

includes abort rates of transactions in our GPU-based implementation.

Referring to the size of each graph, we can infer that the larger graphs with lower abort rates

achieved better speedups for sparse real world graphs, e.g., among the road networks from Table

38

3.1, the graph named USA is the largest one which resulted in 4.52 times speedup relative to the

serial implementation while showing relatively lower abort rate. For the same graph we achieved

2.69 times speedup relative to STM-based multi-core implementation. In contrast, the NY graph

is the smallest sized among the road network graphs. However, it resulted in the highest abort

rate (77%) and a lower speedup as compared to other larger real world graphs. In summary, for

majority real world graphs, our implementation outperforms the serial and multi-core

counterparts.

Table 3.2. K40 GPU versus serial and STM-based parallel on CPU

Parallel(ms) Serial(ms) CUDA App(ms)
Abort

Rate

Speedup

vs Parallel

Speedup

vs Serial

USA 36064 60546 13407 0.38 2.69 4.52

W 7980 14568 3451 0.38 2.31 4.22

E 4157 6581 1959 0.37 2.12 3.36

FLA 1082 1346 736 0.72 1.47 1.83

NY 301 278 217 0.77 1.39 1.28

RND1 * 47220 8133 0.01 * 5.81

R-MAT1 * 46678 6786 0.03 * 6.88

RND2 * 19360 5538 0.01 * 3.5

R-MAT2 * 19141 4791 0.03 * 4

Graph

Name

 i7-6700 CPU TeslaK40 GPU

 *. Failed to produce results

In random and R-MAT generated graphs, when the number of edges doubles, the better

speedup is achieved, e.g. R-MAT1 with double the number of edges (15M) as compared to R-

MAT2 (7.6M) achieved better speedup (6.88 versus 4). While both the graphs show negligible

amounts of conflicts among the threads (shown by abort rates), the better performance is due to

the higher degree of concurrency due to 2880 CUDA cores in the Tesla GPU. The STM-based

implementation on CPU failed to produce any results, as the large number of MSTs due to many

disconnected components in the generated graphs is a limiting factor.

39

Figure 3.4. Comparison of execution time of CPU versus different GPUs

Figure 3.5. Execution times on Tesla GPU versus serial on CPU for random/R-MAT graphs

In the next experiment, we use denser random graphs with 3M vertices and the number of

edges ranging from 15M to 75M. As illustrated in Figure 3.4, the computational time on the

40

Tesla K40 GPU is considerably better than both desktop Quadro GPU and serial run on CPU. In

a graph with 15M vertices and 75M edges, we achieved a speedup of 21 on Tesla GPU as

compared to the fastest sequential algorithm. The better result on Tesla GPU as compared to that

of Quadra GPU can be attributed to the scalability of the approach with larger GPUs with

increasing number of cores (e.g. 2880 CUDA cores on a Tesla GPU as compared to 512 on a

Quadro) in spite of increase in the amount of synchronization required due to increased degree of

concurrency.

Subsequently, we generate random and R-MAT graphs of different number of vertices

ranging from 3M to 10M and with the same number of edges (30M). Figure 3.5 illustrates the

execution times on CPU and GPU. Increasing the number of vertices, while keeping the number

of edges fixed, increases the sparseness of the graph; however it raises the execution time mainly

due to the inevitable memory latency and extra work required in the merge phases with

additional vertices. However, the performance of the transactional-memory-based GPU

implementation is still significantly better than the serial implementation on CPU.

We were not able to evaluate the implementation of Nasre et al [5] for our input graphs

because the code was not publicly available at the time of our experiments. Hence, in the

following, we compare with the reported results. The experiments in [5] were performed on a

Tesla C2070 GPU with 448 CUDA cores and 144GB/sec of memory bandwidth. In comparison,

the number of CUDA cores and the bandwidth in K40 are respectively over 6 and 2 times greater

than C2070. The results in [5] show a processing speed of 1.61M edges/sec for the largest

roadmap graph in the data set, i.e., USA. In our experiments, the corresponding processing speed

is 4.30M edges/sec when run on a Tesla K40 GPU. For the largest, densest graph in [5], i.e., a

randomly generated R-MAT graph with 1M vertices and 8.3M edges (RMAT20), the reported

processing speed is 0.31M edges/sec. In comparison, for the densest of our input graphs, i.e., an

R-MAT graph with 3M vertices and 30M edges, we achieved a processing speed of 3.30M

edges/sec. Interestingly, the number of vertices (edges) in our test graph is 3 (3.61) times greater,

while the rate of processing of the edges is over 10 times higher. Finally, we performed a test on

a generated graph with the same attributes as RMAT20 in [5], which resulted in processing of

3.6M edges/sec, i.e., over 11.6 times higher than that reported in [5].

41

3.3 Summary

In this chapter, we designed and implemented a transactional-memory-based Borouvka’s

MSF algorithm on GPU. MSF is a morph algorithm with irregular memory access pattern. We

showed that we could reduce the gap between the original algorithm and its implementation

through a transactional-memory-based approach. Extracting the algebraic properties of the

algorithm in the first phase (edge discovery) helps implement fast lock free transactions.

However, in the second phase (merge phase), due to lack of such algebraic properties, we

implemented a priority based STM to synchronize its transactions which ensures the transactions

to be both deadlock- and livelock-free. We also exploited several optimization techniques (e.g.,

pruning, flattening, and “warp segmentation”) to improve performance.

42

4 TRANSACTIONAL-MEMORY-

BASED IMPLEMENTATION OF

GRAPH PARTITIONING ON GPU

Graph partitioning arises in different application areas such as VLSI design, task scheduling

and scientific computation. The goal for a graph partitioner in such applications is to partition a

graph into roughly equal sized parts while the edge connections between different parts are

minimized. For example, to efficiently perform some of the parallel computations, a graph

partitioner initially partitions the task interaction graph of the computation, in which the tasks

and communications among them are modeled via vertices and edges, respectively. As a result,

the tasks are fairly distributed among the processing units, leading to workload balance, and the

data transferred via partition’s cross-part edges are reduced. The graph partitioning is an NP-

complete problem which makes it an attractive problem for researchers who are targeting for

algorithms generating higher quality partitions with least runtime.

In past three decades, different approaches for graph partitioning have been proposed. Among

these methods, spectral scheme derives the partition from the spectrum of the adjacency matrix.

However, in the downside, spectral method comprises of an expensive, time consuming

computation of eigenvector, corresponding to the second smallest eigenvalue. Geometric

methods, on the other hand, are only applicable to graphs wherein the geometric information is

available. Recently, however, a class of algorithms known as multilevel paradigm has gained

popularity which aims for decreasing the partitioning time at the cost of somewhat decreased

partition quality. For the rest of our discussions, we explore this class of graph partitioning

algorithms.

The aim of this chapter is to show the implementation aspects for an efficient, transactional-

memory-based graph partitioner on massively multithreaded GPUs. In doing so, the multilevel

scheme is exploited as the main design strategy with the introduction of GPU specific operations,

aiming to improve performance as compared to other parallel implementations. In short,

43

multilevel scheme consists of three phases: coarsening, initial partitioning and un-coarsening.

During the coarsening phase a large graph is successively reduced in size. This is achieved by

matching the densely connected vertices followed by collapsing the matched vertices, producing

an intermediate coarser graph which is used as an input for the next level coarsening phase. The

coarsening terminates when the size of the coarsest graph is small enough so that the initial

partitioning can be performed using a more expensive algorithm to obtain a partition of high

quality. Then, in un-coarsening phase the resultant partition is projected to the immediate finer

graph, followed by refinements made to improve its quality. This process is repeated until the

final partition is achieved with the refinements applied to the original graph in last pass of the

un-coarsening phase.

To efficiently parallelize the coarsening and un-coarsening phases of graph partitioning on

GPUs, exploiting associativity algebraic property, we utilized the segmented scan primitives

along with different high-level primitives derived from them, e.g. “sort” and “pack”. A

segmented scan primitive is the general form of the scan primitive where the parallel scan

operations are performed on arbitrary segments of the input array versus the entire array. The

segments are commonly specified by a head-flag array where each segment is marked at its first

element. These primitives are useful during contraction and pre-refinement stages performed at

coarsening and un-coarsening, respectively. STM transactions are used during matching and

refinement wherein synchronized access to shared data is required. Additionally, we utilize

“warp segmentation” to maximize the throughput by reducing the load imbalance during

marking processes. These are further elaborated in the following.

In the following, section 4.1 outlines the basic idea of graph partitioning. In section 4.2, a

multi-threaded implementation on multicore [28] is discussed. The main structure of the

algorithm used in our implementation uses this work as the baseline. In section 4.3, we review

the GPU implementation of segmented sort and pack primitives. Finally we discuss the

transactional-memory-based implementation of graph partitioning on GPUs in section 4.4.

4.1 Multilevel Graph Partitioning

In this section, we outline the basic idea of multilevel graph partitioning algorithm used as the

basis of the design and implementation for partitioning of large graphs in parallel platforms. We

44

start by giving the formal definition of k-way graph partitioning and then we go through the

formulation of each phase of multilevel method.

Given a graph G = (V, E) with |V| = n, wherein V and E are the set of all vertices and edges,

respectively, the goal is to partition G into k disjoint parts: V1, V2, V3 …Vk, such that each part

contains roughly n/k vertices, and the number of edges whose endpoints resides in different parts

is minimized. The set of such parts constitutes a partition for the input graph.

To account for graphs in which the weights are associated with vertices and edges, the k-way

graph partitioning problem is extended to find a partition wherein the sum of vertex weights in

each disjoint part Vi is roughly the same as others whereas the sum of edge weights for edges

connecting different parts, which from now on we refer to as edgecut, is minimized. Besides, the

set of all edges where each has endpoints residing on different parts of partition is called the cut

in a graph partition. Moreover, the endpoints of the edges in cut are referred to as boundary

vertices. The result of portioning is commonly represented by an array P of length n holding a

value between 1 and k specifying the part number each vertex belongs to.

A common, simple solution to k-way partition problem is the recursive bisection. This method

first performs the initial bisection (2-way partition) of V into 2 parts, and then recursively keep

bisecting each part until the k-way partition is produced. Internally, the multilevel method is used

to perform each bisection within the recursive algorithm.

The 3-phase structure of the graph bisection using multilevel approach is as the following. In

coarsening phase, the graph G0 is coarsened down to a graph Gm with substantially reduced

number of vertices, that is, a sequence of smaller graphs, G1, G2, G3 … Gm, are generated such

that |V0| > |V1| > |V2| > … > |Vm|. During initial partitioning phase, a 2-way partition of the

coarse graph Gm = (Vm, Em) is computed such that each part contains roughly half of the vertices

of original graph G0. In un-coarsening phase, the resulting partition Pm is consecutively projected

back to each finer graph Gm-1, Gm-2, Gm-3 … G2, G1 and G0, whereas the refinement is performed at

each step to reduce the edgecut, i.e., the partition Pm of Gm is projected back to G0 by going

through intermediate partitions, Pm-1, Pm-2 … P1, P0, with refinement performed at each

transition. Figure 4.1 depicts the multilevel graph bisection. In the rest of this section we discuss

each of these phases in more details.

45

Figure 4.1. Multilevel graph bisection adopted from [32]

4.1.1 Coarsening

Coarsening of a graph is realized by the matching stage followed by the contraction. At each

step of matching, each set of vertices V
v
 of graph Gi are matched followed by a collapse during

contraction to form a single, coarse vertex v of the next denser graph Gi+1. Since the bisection of

the coarsest graph Gm will be ultimately projected back to original graph G0, it is essential to

have a good estimation of the original graph G0 in Gm. In order to achieve such an estimation,

during contraction stage, the set of vertices V
v
 are merged into a coarse vertex v with its weight

reflecting the weights of the vertices in V
v
 and its incident edges contains the edges connected to

the vertices in V
v
. This will ensure the weight and connectivity information is preserved in

coarser graphs: G1, G2, G3 … Gm, which is required later in initial partitioning of Gm and each

pass of un-coarsening to successively improve the quality of the partition.

In order to generate a coarser graph Gi+1 from Gi, the adjacent vertices are collapsed to form

coarse vertices in Gi+1 based on the result of computation in the matching. In doing so, a coarse

46

vertex is generated which its weight is set to the sum of the vertex weights in V
v
, and then its

incident edges are constructed by combining the edges connected to vertices in V
v
 as the

following. At first, the edge connecting the vertices in V
v
 are removed. Then if some of the

vertices in V
v
 share the same adjacent vertex u not in V

v
, all incident edges on u connecting u to

vertices in V
v
 are replaced by a new edge. Finally, the weight of the newly created edge is set to

the sum of weights of the above incident edges.

A matching Mi of graph Gi is a set of edges with distinct matched endpoints. Given Mi, the

next level coarser graph Gi+1 can be induced by collapsing the matched vertices of Gi into coarse

vertices, whereas the unmatched vertices remain intact in the coarser graph. Since the goal is to

coarsen a graph into a graph as small as possible, the minimum number of unmatched vertices

are desired; this leads to having Mi with greater size, i.e., the size of matching Mi has a direct

effect on the size of the successive coarser graph, which indirectly reduces the number of

coarsening passes. Hence, in the matching stage we aim for finding a matching with larger size:

maximal matching. A matching is maximal if for any of the edges not present in the matching, at

least one of its endpoints is matched, i.e., it is included in Mi.

A simple, yet efficient, approach to compute a maximal matching is random matching (RM)

[29, 30]. This approach generates a maximal matching in a greedy fashion as the following. The

vertices are randomly visited, and if a vertex v has not yet been matched, then one of its

unmatched adjacent vertices, vertex u, is randomly selected, then its incident edge is included in

the matching, and u is marked as matched. However, if no such a vertex u exists, vertex v

remains unmatched in the final matching. The complexity of RM algorithm is O(|E|). Since the

high quality of a partition is achieved when the edgecut is minimized, RM cannot be an ideal

choice.

It’s easy to show that the total edge weight of the coarser graph Gi+1 is reduced by the overall

edge weight of the matching Mi. Consequently, a maximal matching Mi with large total edge

weight is more beneficial to substantially reduce the edge weight of the coarser graph Gi+1. As

discussed in [31], the coarser graph Gi+1 with lower overall edge weight has smaller edgecut. For

this reason, a maximal matching which contains edges with large weights is desired. Heavy Edge

Matching (HEM) [32] is a technique to obtain such maximal matching. Similar to RM, HEM is a

47

randomized algorithm wherein the vertices are visited randomly, but rather than randomly

matching a vertex v with one of its unmatched adjacent vertices U, the vertex v is matched with a

vertex u which is connected with by a heaviest edge among other edges connecting v to the

vertices in U. The complexity of the HEM algorithm is O(|E|), which is asymptotically similar to

that of RM.

4.1.2 Initial Partitioning

In initial partitioning phase of the multilevel graph partitioning, the coarse graph Gm is

bisected into two roughly equal size parts, generating partition Pm. This partition is used to

partition the original graph G0 because the weight associated with each vertex (edge) in Vm (Em)

reflects some distinct set of vertices (edges) in G0. I.e., since the connectivity information

together with the vertices weights of G0 has been preserved during the coarsening phase, a good

partition of much smaller coarse graph Gm applied to G0, by going through intermediate graphs,

generates a reasonably accurate partition in G0.

Karypis et al. in [32] implemented an initial partitioning algorithm based on KL algorithm

[33] with some modifications as we will be discussing below. KL Algorithm is an iterative

algorithm to find the locally optimal 2-way partition (bisection) of the given graph Gm. However,

the behavior of KL algorithm is affected by the quality of the initial bisection. Among different

techniques to find a good initial bisection, greedy graph growing partitioning (GGGP) suggested

in [32] is based on a strict breadth first search (BFS) which operates as the following: starting

from a random vertex v, GGGP algorithm grows the area around v by inserting the vertices into

the growing region of BFS if such vertices reduce the edgecut, giving the priorities to vertices

with larger decrease. We may require to repeat performing the GGGP algorithm a few times,

from different random vertices, before a suitable initial cut is discovered.

Given a decent initial bisection, in each pass of KL algorithm a subset of vertices from each

part is found which when swapped will result in a partition with reduced edgecut. This process is

repeated as long as such a subset can be found, otherwise the state of the computation has been

reached to the local minimum, at which point no further improvement is possible. The KL

algorithm is a local optimization algorithm, with restrictions to get out of local minima.

Conversely, in a class of more expensive algorithms, known as hill-climbing, the search can

48

continue to find the global minimum state by moving a group of vertices across a partition

boundary at each point in time, therefore, a higher quality partition can be revealed.

Karypis et al. [32] followed the work of Fiduccia and Mattheyses [34] who reduced the

runtime of KL algorithm by using appropriate data structures, reducing the complexity, from

O(|E| log2(|E|)) per iteration in KL algorithm, to O(|E|). Additionally, Fiduccia and Mattheyses

proposed a slight change in original KL algorithm by suggesting to move only one vertex across

partition boundary at a time, versus swapping a pair of vertices of KL algorithm.

Given a 2-way partition P, the gain gv of a vertex v is defined as the amount of edgecut

reduction/increase resulted by moving v from one part of the partition to the other, that is, the

difference between the sum of the edge weights for the incident edges on v belonging to the

partition’s cut, and the sum of the edge weights for the v’s incident edges whose endpoints reside

on the same part as v. Given this definition, if gv is positive (negative), then the edgecut is

reduced (increased) by gv if v is moved to the opposite part of the partition. The gain gv can be

formulated as the following:

gv = Ov - Iv

Ov = Σ weight(v,u) ∀ (u,v) ∈ E : P[u]!=P[v]

Iv = Σ weight(v,u) ∀ (u,v) ∈ E : P[u]=P[v]

Having the gain computed for each vertex, in each iteration the vertex with the largest gain

from the larger part is selected, and moved to the other part. After the vertex move, the partition

connectivity of each vertex u adjacent to v changes, hence, the associated gain is updated.

Additionally, the moved vertex is marked so that it will not be considered for move in the same

iteration.

While the original KL algorithm continues until all the vertices have been

speculatively moved, the implementation in [32] terminates as soon as L number vertex moves

with no edgecut decrease has reached. This considerably reduces the runtime of the process.

Note that last L speculative moves are reverted if they in fact increase the edgecut rather than

decreasing it.

4.1.3 Un-coarsening

49

During the un-coarsening phase, the partition Pm is successively projected back to each finer

graph Gm-1, Gm-2, Gm-3 … G2, G1, and G0 , wherein the partition label of each coarse vertex v in

Gi+1 is assigned to the set of vertices V
v
 of next level finer graph Gi. Having the vertices in Gi

with more degrees of freedom resulted from the projection step, the refinement step performs the

swapping of partition’s parts of such vertices to further reduce the edgecut in Pi.

There have been different refinement algorithms, which are essentially variants of the KL

algorithm, proposed with good results in final partition quality of the graph partitioning. One of

such refinement schemes, known as boundary KL refinement (BKL) introduced by Karypis et al.

[32], performs more efficiently because it inserts only a subset of vertices based on their gain, as

opposed to all vertices, in an appropriate, refinement-related data structure. The algorithm in [32]

is based on the observation that only small number of vertices result in edgecut reduction, and

such reduction mostly occurs in the first pass of the refinement. Moreover due to nature of

refinement, most of the vertices are swapped along the boundary of a cut. Therefore, only

boundary vertices are required to be inserted into the refinement-related data structure.

Furthermore, as the number of vertices is significantly smaller in coarser graphs, a refinement

stage can take more passes to further reduce the edgecut with no significant performance

degradation as opposed to finer graphs with higher number of vertices. Hence, an adaptive

mechanism proposed in [32] during refinement is beneficial which adjusts the number of

refinement passes based on the number of vertices in the intermediate graphs.

Recall that Karypis et al. also proposed to terminate a pass when there is no more decrease in

edgecut after certain number of attempts (L). Even though reducing the number of the swapped

vertices also helps reduce the runtime, the major improvement in asymptotic complexity is due

to reduced number of vertices inserted into the data structure; hence, leading to the major impact

in the overall runtime.

4.2 Multi-threaded Graph Partitioning

In this section we discuss the multi-threaded implementation (from now on we refer to it as

mt-metis) [28] of multilevel graph partitioning using multicore CPUs based on shared memory

architecture. The good experimental results of mt-metis are mainly achieved through applying

50

barrier based synchronization in both matching and refinement stages, avoiding any fine grained

synchronization overhead. In the following, we review the implementation of each major phase

in mt-metis graph partitioning: coarsening, initial partitioning and un-coarsening, along with the

data structures and algorithms used.

4.2.1 Coarsening

As discussed in section 4.1, to build the next-level coarser graph, each step of coarsening of

the multilevel graph partitioning consists of vertex matching followed by graph contraction

through collapsing the matched vertices into coarse vertices and merging the adjacency lists of

such vertices.

Mt-metis parallelize the matching stage by first distributing the vertices of the graph among

the threads; hence, each thread subsequently carries out the matching only for the local vertices

which it owns. The HEM matching algorithm is also adopted by mt-metis to find a match for

each vertex. This, however, requires the threads to read/write to the vertices assigned to other

threads where the matched vertex is not a local vertex to a thread, leading to race conditions. In

the following we discuss how mt-metis resolves such conflicts.

Initially, exploiting the shared memory architecture, a shared matching array Mtchs is created

in which each element corresponds to a vertex of the graph. Hence, each thread is able to freely

read any location in Mtchs in order to lookup the matching status of a vertex followed by writing

to the same location read earlier if the matching has been determined.

Given the graph Gi = (Vi, Ei), to remove the possibility of race conditions during the

reads/writes from/to the locations in Mtchs, one approach is to employ the fine-grained locking

as synchronization method. However, the excessive locking of fine-grained locking

synchronization leads to poor performance. This approach can be slightly improved by

synchronizing the write operations, i.e., excluding the read operations, and incurring the extra

cost to ensure consistency.

To address the high overhead of the fine-grained locking mechanisms, mt-metis uses an

approach which relies on the heuristic nature of matching as the following. As each thread

matches two vertices, it may (if the match is not local) populate memory locations in Mtchs

51

corresponding to both local and non-local vertices. However, in absence of locking, the matching

for some of these vertices could be lost by the writes made by other threads. As a result, upon

completion of the matching performed by all threads, a second step to resolve the write conflicts

is required. We call this correction step.

During correction step, each thread goes through the list of its local vertices and for any vertex

v with an asymmetrical matching (Mtchs[v] = u and Mtchs[u] = v), it matches it with itself.

Since the number of vertices in the graph is considerably greater than the number of threads, the

asymmetrical incidences are insignificant; therefore, asymmetrical incidences will not impact the

size of the maximal matching Mi. Figure 4.2 depicts an example demonstrating this 2-step

matching process performed on a graph with 8 vertices.

1(1)

2(6)

4(5)

5(4)

6(2)

3

3

3(0)

7

4

7
7

6

5
0(3) 6

10

3 4 6 0 5 4 2Step 1

Step 2 3 1 6 0 5 4 2

3

 0 1 2 3 4 5 6

Figure 4.2. Matching stage of coarsening phase

Once the final matching is produced, a 4-step parallel computation [41] is performed over

Mtchs in order to assign coarse vertex numbers for each pair of matched vertices, generating

vertex mapping array CMaps in which each element corresponding to a vertex points to the

coarse vertex in next level graph. This 4-step parallel computation which is performed prior to

contraction step is as the following. Starting with CMaps whose elements are initialized to 0, for

52

each vertex v with index value i, the i
th

 element in CMaps is set to 1 if the value of i is less than

or equal to the index value of its matched vertex u, that is:

i <= Match[i]

A parallel prefix-sum is then performed over CMaps followed by a process to subtract one from

each element. Finally, for each v if the value of its index i is greater than the index value of its

matched vertex u, i
th

 element in CMaps is set to the value of the element with index value of u,

that is:

 CMaps[i] = CMaps[Match[i]] : i > Mtchs[i]

The following example demonstrating this 4-step process performed on the result of matching

from Figure 4.2:

 0 1 2 3 4 5 6 # Vertices

[3 1 6 0 5 4 2] # Step 1: Input matching array

[1 1 1 0 1 0 0] # Step 2: Set each CMaps’s element to 1 if i <= Match[i]

[1 2 3 3 4 4 4] # Step 3.1: Inclusive prefix sum on CMaps

[0 1 2 2 3 3 3] # Step 3.2: Subtract 1 from each of the CMaps’s elements

[0 1 2 0 3 3 2] # Step 4: Set CMaps[i] to CMaps[Match[i]] if i > Match[i]

Having both Mtchs and CMaps array properly populated with above procedures, the final

operation (contraction) is to produce the coarser graph Gi+1. To do that, having the coarse

vertices in Gi+1 divided among the threads, each thread merges the adjacent lists of the set of

matched vertices V
v
 in Gi for each coarse vertex v in Gi+1 following the same procedure outlined

in section 4.1.1.

4.2.2 Initial Partitioning

Although the problem size of initial partitioning is small, the parallelization of it using mt-

metis is still effective to reduce its total runtime compared to that of serial version. Two methods

of parallelization were experimented in mt-metis are parallel bisecting and parallel k-sectioning

which we explain below.

Parallel bisecting is a recursive algorithm wherein each phase consists of a bi-section of the

input graph until k-way partition is constructed, i.e., given p threads, at the beginning, each

thread bisects the input coarse graph Gm, generating GL and GR. This is followed by a

53

synchronization among threads to perform a min-reduce so that the 2-way partition with the

minimum edgecut can be selected for further processing. Afterwards, the threads are split into

two groups, each receiving either GL or GR as input to bisect their part, followed by selecting the

best 2-way partition for the next level. This recursive process ends after log2(k) levels of a binary

tree, producing the k parts of the partition. In parallel k-sectioning, each thread individually

produces the k-way partition via recursive bisection, and then all threads synchronize so that the

best partition among all of the threads is selected via a min-reduce operation.

As shown in [28], the parallel k-sectioning is faster, in spite of having less number of parallel

tasks, compared to parallel bisecting. This is attributed to the cost of the barrier synchronizations

required in parallel bisecting.

4.2.3 Un-coarsening

Similar to the original multilevel algorithm discussed in section 4.1, mt-metis performs a

projection followed by a refinement at each step of un-coarsening phase. However, unlike the

original algorithm in which the initial partition is a 2-way partition, mt-metis starts with a k-way

initial partition to encourage the concurrency among threads, i.e., the threads work on different

parts of the partition at the same time leading to proper utilization of multiple cores. This change,

on the other hand, other than complicating the gain calculation, requires to broadcast updates to

the neighbors when the corresponding vertices move during refinement. To avoid these side

effects, one can employ an estimated value for gain to simplify its calculation. As discussed in

[35], the external cost value can be computed by dividing the value edgecut against all external

partition’s parts by the root square of total number of external partition’s parts connected to a

boundary vertex.

The parallelization of projection stage is straightforward as the threads can work in isolations

and with no data sharing among them. However, the refinement stage is serial in nature, thus to

make a concurrent refinement, some relaxation to the original algorithm and data structures is

necessary. On the downside, parallelizing the refinement process causes race conditions because

the concurrent threads may access the same parts of the input graph at the same time: vertices,

edges and the partition’s parts. Recall that in the optimal refinement algorithm we discussed in

section 4.1.3, in each iteration the vertex with the largest gain from larger part of the bisection is

54

selected, and moved to the other part. Therefore, given a k-way partition at each pass of

refinement, care should be taken to assure the weight balance of the partition is maintained.

 To avoid data consistency issues of refinement-related data, one way of synchronization is

through fine-grained locking. This is done by locking the partition’s parts involved in vertex

moves to ensure no partition’s part exceeds the allowable size leading to an imbalance. However,

this approach leads to poor performance mainly due to the bottleneck caused by the small

number of partition’s parts. Moreover, the excessive locking also degrades the performance

when threads work on disjoint parts of a partition. To address the problems of fine-gained

locking, mt-metis introduced heuristics based on barrier synchronization. In the following, first

we discuss the relaxation made to the original algorithm to be able to perform a concurrent

refinement, and then we outline the heuristics incorporated to reduce the cost of synchronization.

 One way to implement the refinement algorithm is to use a priority queue as an appropriate

data structure to store the boundary vertices based on their precomputed gains. As we discussed

in section 4.1, we are only concerned with boundary vertices as opposed to all the vertices of the

graph. One way of implementing the appropriate data structure for refinement-related data is

priority queue, however, rather than constructing a single global priority queue one can create

local, per-thread priority queues for the boundary vertices. The benefit of such relaxation

technique is to make a parallel refinement stage to reduce its overall runtime, i.e., the threads

working on disjoint queues in parallel lead to increased parallelism and speed up. Note that even

though the local priority queues are not as effective as the global one, the overall impact on the

partition quality is minimal, as shown in [28].

One issue that may arise using this implementation is that if two boundary vertices connected

by a quite heavy edge swap partition’s parts, depending on the weights other incident edges, this

can lead to an increase in the edgecut. In mt-metis this issue is addressed by limiting the vertices

to move across partition boundaries in only one direction at a time, i.e., at each pass of the

refinement, the vertices are considered to move alternately from a partition’s part with lower

label number to higher one and vice versa.

Once a thread de-queue a vertex v from its priority queue, it finds the best eligible partition’s

part Vi as the destination of the move. Vi is eligible if its weight plus the weight of v is under the

55

maximum tolerable amount, and the best partition’s part is the one with the largest weight of the

per-adjacent partition’s part cut, that is, the sum of the weights of edges connecting v to the Vi is

the maximum.

To avoid race conditions, mt-metis assigns an update buffer to each thread to receive messages

for pending/committed vertex moves initiated by other threads. Moreover, as we explain below,

the barriers are used as the means of synchronization for the operations of threads. Each thread

also uses a local “set” data structure to communicate the potential changes in the partition’s parts

weights with other threads. Each element of this set represents a partition’s part to reflect the

total associated weight following such wright increases/decreases in partition’s parts after vertex

moves.

After a thread removes a vertex v from its local priority queue, it determines to which part of

partition it should move v to. Assuming the source and destination part are denoted by VS and

VD, respectively, this move can have a potential weight increase w in VD, and the decrease of the

same amount in VS. Since the vertex moves impact the partition connectivity of its adjacent

vertices, the thread initiating such move will require to update the gains of these adjacent

vertices. If the adjacent vertices are local, the pending changes are stored locally, whereas the

pending changes to the non-local adjacent vertices are stored as messages in the buffers of the

threads owning these vertices.

After fixed number of pending vertex moves completed, the threads synchronize at a barrier,

so they can communicate the potential weight changes to partition’s parts with each other; this is

to ensure that the balance of partition’s parts are preserved. Upon completion of the

communication, at next barrier point, the threads can decide whether to commit the change in the

partition’s connectivity of their local vertices as the result of moves, or to revert the moves

violating the partition balance. The threads again synchronize at next barrier, so they can update

their local vertices’ partition connectivity for the moves committed by other threads. This

process is repeated until all of the priority queues are emptied. Refinement is terminated after a

certain number of passes, or when no vertex is moved in the last refinement pass.

56

4.3 Segmented Sort and Pack

Segmented scan is the building block we use to efficiently implement the transactional-

memory-based graph partitioning algorithm. Thus, in this section, we first discuss the algorithms

required to implement the segmented scan primitive, starting from the basic (unsegmented) scan

primitive for having a similar main structure, and then, we outline high-level primitives:

“enumerate”, “copy” and “split-and-segment” built on top of the segmented scan primitive.

Finally we discuss how these high-level primitives are used to implement the “sort” and “pack”

operations applied to segmented input of adjacency lists arrays used in the graph partitioning

implementation (section 4.4).

4.3.1 Segmented Scan

The scan primitive requires global knowledge of all data elements as input array and an

associative binary function ⊕ with an identity element to operate on these elements. Associative

binary operations include addition [with identity 0], min, max, logical AND, and logical OR. If

the input is an array of elements such as:

 [a0, a1, a2, a3 …]

then an exclusive scan primitive outputs an array of:

[i, a0, a0⊕a1, a0⊕a1⊕a2 . . .].

An inclusive scan, in contrast, produces the output of:

[a0, a0⊕a1, a0⊕a1⊕a2, a0⊕a1⊕a2⊕a3 . . .]

wherein an inclusive scan is implemented by an extra step: adding the input array to the

exclusive output array.

1. for d = 0 to log2 n−1 do

2. for all k = 0 to n−1 by 2d+1 in parallel do

3. x[k+2
d+1
−1]=x[k+2

d
 −1] + x[k+2

d+1
−1]

Algorithm 4.1. The up-sweep (reduce) phase of a work-efficient sum scan algorithm

1. x[n−1]=0

2. for d = log2 n−1 down to 0 do

3. for all k = 0 to n−1 by 2d+1 in parallel do

4. t = x[k+2
d
−1]

5. x[k+2
d
−1]=x[k+2

d+1
−1]

57

6. x[k+2
d+1
−1]=t + x[k+2

d+1
−1]

Algorithm 4.2. The down-sweep phase of a work-efficient parallel sum scan algorithm

In the following, we briefly discuss the details of the work-efficient scan formulation of

Sengupta et al. [36] implemented on GPU using CUDA. Unsegmented scan of n elements

requires two passes over the array: “reduce” and “down-sweep”, as shown in Algorithm 4.1 and

4.2, respectively, wherein each thread processes two elements at a time. The “reduce” navigates

a binary tree, with log2(n) levels, from its leaves to the root in order to compute partial-sums for

internal nodes. While having the partial-sums, the “down-sweep” computes the final result at

leaves navigating the tree from the root down to the leaves. Each “reduce” or “down-sweep”

operation requires log2(n) parallel steps. The overall work complexity is O(n) because the

amount of work is reduced in half at each step. The behavior of the “reduce” and “down-sweep”

is illustrated for an input array of 8 elements in Figure 4.3 and 4.4. Notice that in Figure 4.4 the

first step zeros the last element of the array.

Figure 4.3. Up-sweep phase of work-efficient sum scan algorithm adopted from [36]

58

Figure 4.4. Down-sweep phase of work-efficient sum scan algorithm adopted from [36]

As the number of elements can easily exceed the maximum number allowable for a single

thread block, the partial-sums of the input array is initially computed by each thread block. These

results are used as inputs to a second-level recursive scan wherein each element of its output is

then uniformly added to all elements of the corresponding block in the first-level scan. To be

able to process the input arrays of large size, this process recursively continues until there is only

one thread block left.

The segmented scan primitive [37] in GPU is a generalized form of the scan primitive which

performs parallel scans on arbitrary sized segments of the input array as opposed to entire input

array. The segments are commonly identified by a head flag array with the same size as the input

array in which each segment is marked by its first element in a corresponding element in head

flag array. The work-efficient segmented scan implementation on GPU [38] has the same

complexity as scan: O(n), but it’s three times slower.

Segmented scan formulation is the extension of work-efficient scan [36], wherein Sengupta et

al. slightly altered the “reduce” and “down-sweep” phases of the scan algorithm so that it could

be efficiently implemented on GPU. In the following we briefly examine the segmented scan

algorithm using “sum”, also known as prefix-sum, as the binary scan operation; however any

other binary associative operator can seamlessly be applied to this algorithm.

59

1. for d = 1 to log2 n−1 do

2. for all k = 0 to n−1 by 2d+1 in parallel do

3. if f [k+2d+1−1] is not set then

4. x[k+2d+1−1]=x[k+2d−1] + x[k+2d+1−1]

5. f [k+2d+1−1]= f [k+2d −1] | f [k+2d+1−1]

Algorithm 4.3. Reduce (up-sweep) phase of a segmented scan algorithm

Algorithm 4.3 presents the “reduce” phase of the segmented scan. Similar to “reduce” in scan,

the tree is traversed from the leaves to the root of a binary tree. However, in addition to the

partial-sums, it computes the partial OR flags by applying the logical OR of two input head flags

while traversing the tree (line 5). Notice that in Algorithm 4.3 variable x denotes the partial-sums

and f denotes the partial OR flags.

The “down-sweep” phase is shown in Algorithm 4.4. To compute the final segmented scan

output, the “down-sweep” phase, similar to the scan, navigates the tree from the root to leaves

using the partial-sums induced from the “reduce” phase. Similar to scan, in the segmented scan,

the right child is computed as the sum of the value of its parent p and the former value of p’s left

sibling (lines 10-11) except for the following conditions: If the flag in the right position of p is

set in the head flag array then right child is set to 0, the identity element, (lines 6-7) and if the

partial OR stored in p’s position is set, the right child is set to the former value of p’s left sibling

(lines 8-9).

In multi-block segmented scan, a second-level segmented scan is performed before the

“down-sweep” starts. The last elements of partial sum and partial OR tree of each block are used

as inputs to the second-level segmented scan. In addition, the first element of the head flag array

of each block is received as the third input. Upon completion of the second-level segmented

scan, the “down-sweep” receives the corresponding element of second-level segmented scan’s

output as the last element of each block. I.e., the last element of K
th

 block is set to the K
th

 element

in output of the second-level segmented scan. In contrast, in the scan, the last element of each

block is set to 0, and the partial-sums are propagated among blocks by a uniform add.

1. x[n−1]=0

2. for d = log2 n−1 down to 0 do

3. for all k = 0 to n−1 by 2d+1 in parallel do

60

4. t=x[k+2
d
−1]

5. x[k+2
d
−1]=x[k+2

d+1
−1]

6. if fi[k+2d] is set then

7. x[k+2
d+1
−1]=0

8. else if f [k+2d −1] is set then

9. x[k+2
d+1
−1]=t

10. else

11. x[k+2d+1−1]=t + x[k+2d+1−1]

12. Unset flag f [k+2d −1]

Algorithm 4.4. Down-sweep phase of a segmented scan algorithm

4.3.2 Primitives Built On the top of Scan

In the following, we outline some of the high-level primitives [38] built on top of the

segmented scan: “enumerate”, “copy” and “split-and-segment”. These high-level primitives are

the building blocks of “pack” and “sort” operations utilized in the GPU implementation of the

transactional-memory-based graph partitioning algorithm.

Enumerate

The “enumerate” operates on an input array of data elements along with a head flag array

which contains a true/false “boolean” value for each element. The output of an “enumerate”

primitive is an array with the same size as input wherein each output element corresponding to

an input element contains the total number of elements to the left of that element in input array

with their “boolean” values set to true. The extension of “enumerate” to a segmented input arrays

operates on segments rather than the entire array, for example:

enumerate ([t f f t f t t] [t f t f]) = [0 1 1 1 2 2 3] [0 1 1 2]

To compute “enumerate”, exclusive segmented scan is performed on a temporary array each

element set to 0 (false) or 1 (true) corresponding to the “boolean” value of the element in the

head flag array. The “enumerate” is the first step in “pack” (compact) operation. The “pack” is

useful when one is interested in preserving the elements with a common attribute in an input

array, e.g., if some elements are marked as true for an input array, upon completion of

“enumerate” step, each true element holds the address of a location in the output array. At the

61

end of “pack” operation, all elements marked as true are stored in the corresponding locations to

the addresses they hold.

Copy

The “copy” operation in its generalized form copies the element at the head (or tail) of the

segment to all other elements in that segment, for example:

copy ([c b a] [d e]) = [c c c] [d d]

The “copy” is implemented by setting all non-head elements to 0 in a temporary array and

performing a segmented inclusive scan on that array.

Split-and-segment

The “split” primitive takes an input array of elements to partition it into two parts, i.e., bisect

it, with all the false elements on one part of the output and all the true elements on the other part.

However, the “split-and-segment” operating on a segmented input array performs an independent

split on each segment. In the following example the letters: “t” and “f” next to data elements

represent the “boolean” values of true and false, respectively:

split-and-segment ([at bf cf] [df et ff]) = [bf cf] [at] [df ff] [et]

To derive the addresses of true elements, Sengupta et al. [38] used additional computation, so

that the computation requires only one pass of scan (“enumerate”). The following example

depicts their formulation using an input array of 7 elements:

[t f t f f t f] # Initial input array

[0 1 0 1 1 0 1] # E = set 1 for false elements

[0 0 1 1 2 3 3] # F = “enumerate” with false=1

 4 # NF = add the last elements in E and F arrays

 # NF now holds the total no. of false values

[0 1 2 3 4 5 6] # Thread IDs

[4 5 5 6 6 6 7] # T = ID - F + NF

[4 0 5 1 2 6 3] # Address = if E is 1 then set the value of F else T

Segmented quicksort [38] (we refer to it as “sort”) is another useful application of segmented

scan. The “sort” operation in a segmented input array is used to order the elements of each

62

segment in parallel. The “sort” is an iterative algorithm formulated as the following. A selected

pivot element in each segment, e.g., this could be the first element in the segment, is distributed

across a segment via “copy” primitive, and then comparing each element with the pivot, a

segmented head flag array is generated. Note that on alternating passes the comparison is

performed by either greater than or greater-than-or-equal. Having the head flag array, the

subsequent “split-and-segment” operation bisects each segment of the input array, moving the

smaller elements to the head of the array and the larger elements to the tail. The algorithm is

repeated until there is only one element in each segment. The following example shows the

quicksort performed with two passes wherein each pass requires two segmented scans: one for

the pivot “copy” and the other for “split-and-segment” operation:

[5 6 7 4 3] # Initial input array

[5 5 5 5 5] # Distribute pivot across segment via “copy”

[f t t f f] # Set true if Input > pivot else false

[5 3 4][7 6] # Split-and-segment

[5 5 5][7 7] # Distribute pivot across segment via “copy”

[t f f][t f] # Set true if Input >= pivot else false

[3 4 5][6 7] # Split-and-segment

4.4 Transactional-Memory-based graph partitioning

In this section, we discuss the implementation of the transactional-memory-based graph

partitioning on GPU. As discussed before, multilevel scheme consists of three phases:

coarsening, initial partitioning and un-coarsening. In the following we briefly explain the

techniques used to implement the coarsening and un-coarsening phases on GPU.

In the coarsening phase, the original graph G0 is successively reduced in size producing the

sequence of intermediate coarser graphs, with each pass comprising of matching stage followed

by contraction stage. In the matching stage, first using “warp segmentation” for each vertex a

matching candidate is found applying the HEM method, and then using the STM transactions the

result of the matching candidates are stored in the matched vertices. In the event of conflicts

between transactions, underlying STM system will help resolve such conflicts by allowing only

one of the transactions to proceed and roll back the others. This is followed by generating the

mapping array which for each vertex contains the corresponding vertex in the coarser graph.

63

During the contraction stage, the next level coarser graph is generated using the result of the

matching from the preceding matching stage. In doing so, the adjacency list of all the vertices are

first stored in a temporary array such that the matched vertices will have their adjacency lists

reside next to each other, creating new segments of such adjacency lists. Subsequently,

performing the “sort” operation based on the coarse vertex, the vertices with common the coarse

vertices reside next to each other within these new segments. Finally, using the “warp

segmentation” technique and “pack” operation we only keep distinct vertices, generating the

adjacency list of the coarser graph. The coarsening phase continues until the size of a coarse

graph is small enough so that we can execute the initial partitioning using a more expensive

computation such as mt-metis on a multicore platform to obtain an initial partition of high

quality.

Starting with an initial partition, in each pass of the un-coarsening phase the partition of

current graph is projected back to the immediate finer graph, within projection stage, followed by

refinement stage to improve the quality of partition in the finer graph. The projection stage is

carried out by mapping the partition’s part label (number) assigned to each coarse vertex v: Pi[v]

to the set of matched vertices V
v
 in next level finer graphs Gi-1. This stage can be performed in

parallel, with no synchronization required, wherein each GPU thread operates on a vertex

assigning its part number using its corresponding coarse vertex’s part number. Each refinement

stage includes multiple iterations to compute/update the gain for boundary vertices followed by

moving the vertices with highest gains to other parts of partition. Since the priority queue is not a

appropriate data structure to be used in GPU, being serial in nature, to properly utilize the

hardware threads we mimic such queue’s behavior. To do that, we go through iterations with

each iteration only covering a restricted range of gain values such that initially, given a range

with high gain values, the vertices with the highest gains are moved and in the following

iterations, the vertices with lower gains are moved by extending the range to lower gain values.

To initially compute or update the gain for each boundary vertex v, the vertices of its

corresponding adjacency list are grouped into segments based on the common partition’s parts

these vertices are residing in so that we can compute per-part edgecut. In this computation we

utilize the segmented scan based operations (“sort” and prefix-sum) and the “warp segmentation”

technique.

64

Moving a boundary vertex v from one part of the partition to other part involves invalidating

the affected adjacent boundary vertices, updating the total weight of both source and destination

parts, inactivating v to avoid further move in current refinement iteration and updating v’

partition’s part number to the new part. Note that these operations should all be performed

together to maintain the data consistency, requiring us to utilize STM transaction to apply all the

required changes.

In the following, section 4.4.1 outlines the data structure used to represent graphs in our

implementation. Implementations of the coarsening and un-coarsening phases are detailed in

sections 4.4.2 and 4.4.3 respectively. Furthermore, we perform the cost analysis in each of these

sections.

4.4.1 Graph Data Structure

The data structure used to represent graph G = (V, E) consists of three arrays following the

CSR format: The first array, called Vrtcs, stores information related to the vertices and their

adjacency list addresses, the second array, we refer to as NbrVrtxIndices, stores the adjacency

lists of the vertices; each adjacency list of a vertex in NbrVrtxIndices commonly represents a

segment on which the segmented scan primitives operate. The third array, we call EdgeWeights,

holds the weights of the edges corresponding to the vertices in NbrVrtxIndices. For each vertex v

∈ V, Vrtcs[v] contains the following quantities:

 p: index to the vertex which v is being matched with

 w: the weight of v

 noOfEdges: the size of the adjacency list, i.e., the degree of v

 indOfEdges: the index into NbrVrtxIndices that is starting position of adjacency list

corresponding to v

4.4.2 Coarsening

Given a graph Gi = (Vi, Ei), each pass of the coarsening phase consists of matching stage

followed by contraction. During matching, first for each vertex u a match is found, and then each

set of matched vertices V
v
 in Gi is mapped to a coarse vertex v in the next level coarser graph

65

Gi+1. The graph Gi+1 will be generated in contraction stage by merging the matched vertices and

their associated adjacency list, constructing coarser vertices and edges.

Recall that as in mt-metis implemented for a multicore platform, the lower number of threads,

as compared to the number of vertices, makes it feasible to apply the heuristic matching. Using

this matching each thread freely matches its local vertices, and then, joins to other threads at a

barrier point. This, however, leads to minimal asymmetric matches which threads resolve in

isolation after the barrier point. Nevertheless, such heuristic is not applicable to the GPUs due to

significantly higher number of threads in these SIMD platforms as opposed to multicore;

therefore, we resort to STM transactions as a less costly alternative. To find and store the match

condidates for each vertex, similar to mt-metis, we opt HEM technique combined with “warp

segmentation” for performance. In doing so, an edge with maximum weight is found in each

adjacency list using parallel reduction. Subsequently, having the match candidates, the match for

each vertex is finalized using the STM transactions.

In each pass of contraction stage, the vertices and edges of Gi+1 are constructed by merging

each set of matched vertices in V
v
 to a coarse vertex v of Gi+1 along with combining the edges

incident on the vertices in V
v
 into the coarse edges incident on v. In contraction stage, exploiting

the associativity as algebraic property, the segmented scan based operations such as prefix-sum,

“sort” and “pack” are utilize to achieve maximum concurrency and efficiency. Moreover, the

“warp segmentation” is utilized to mark the head flag array before the “pack” operation. In the

following each of these stages: matching and contraction, is elaborated in more details.

In matching, for each vertex, using HEM technique, a candidate match is found. The match in

HEM is an unmatched adjacent vertex connected with via the heaviest incident edge, if such

adjacent vertex exists. However, we relax the requirement of being unmatched vertex as the

actual matching is performed later, as we discuss below, via STM transactions. In doing so,

initially the “warp segmentation” with an internal parallel reduction with max as associative

operation is used so as to find the match for each vertex v applying HEM method. This is

followed by writing the matched candidate in the matched vertices. However, the write conflicts

may occur when storing the result of the match for two vertices marked as matched either with

66

each other or with a third vertex at the same time. This requires us to use some sort of

synchronization to address the race conditions, i.e., to resolve the conflicts.

One way to perform synchronization is via the fine-grained locking; however, this method is

quite costly and leads to poor performance in GPU. The high overhead of fine-grained locking is

mainly due the high number of GPU threads competing to acquire locks, e.g., using spin locks,

which unnecessarily wastes the memory bandwidth. Therefore, we utilize STM as a less costly

alternative. We opt the lightweight priority based STM implementation to manage the conflicting

transactions. Successful execution of an STM transaction links the matched vertices using the

match vertex field p described above, i.e., p will contain the index to its matched vertex, in the

each of the matched vertices, or its own index if no match found.

Similar to mt-metis, to perform the matching and contraction operations, the Mtchs and

CMaps arrays are utilized. Recall that the Mtchs stores the result of matching carried out by STM

transactions and the CMaps stores the result of mappings for each set of matched vertices in Gi to

a coarse vertex in Gi+1. Note that, following each coarsening pass, both of these arrays are

retained in memory to hold the data required during un-coarsening phase. Although the use of

Mtchs sounds redundant, knowing that the pair of matched vertices are linked together via p

fields in the matched vertices, it is in fact essential so as to be able to perform prefix-sum

operation which operate on array data structure. Therefore, having the Mtchs populated, similar

to mt-metis, the prefix-sum based algorithm computes the mappings from matched vertices in Gi

to coarse vertices in the Gi+1. This algorithm is fully described in section 4.2.1 using an example.

Upon completion of the matching, the contraction stage starts by receiving the mappings

stored in CMaps in order to build the CSR data structure (NbrVrtxIndices, EdgeWeights, and

Vrtcs arrays) of next level coarser graph Gi+1. In doing so, we require some temporary tables to

perform segmented scan operations such as prefix-sum, “sort” and “pack” operation as we

explain in the following.

First, a temporary array called VrtcsTemp is created with its size equal to the number of

vertices in Gi+1, and then each of its elements, which corresponds to a coarse vertex v of Gi+1,

receives the sum of the number of adjacent vertices (degree) of its matched vertices V
v
 in Gi.

Additionally, we create a temporary array called NbrVrtxIndicesTemp in which for each coarse

67

vertex v the adjacency lists of vertices in V
v
 reside next to each other so as to form a new

segment. Lastly, to store the edge weight associated to each vertex in the adjacency lists of each

newly created segments, a temporary table called EdgeWeightsTemp is created.

Subsequently, given above temporary tables, a prefix-sum performed on VrtcsTemp locates

the starting position within NbrVrtxIndicesTemp to which the adjacency lists of vertices in V
v

will be stored. Recall that the segments are required to be marked using a temporary head flag

array; thus, the marking is performed within the same process. Having VrtcsTemp populated with

starting position of each segment, the NbrVrtxIndicesTemp is populated by the adjacency lists of

all matched vertices. In doing so, each thread processing v copies the adjacency lists of vertices

in V
v
 to NbrVrtxIndicesTemp while in the meantime storing the corresponding edge weight in

EdgeWeightsTemp. Since to combine the edges in Gi we require their corresponding endpoints in

Gi+1, the NbrVrtxIndicesTemp will be populated by the indices of coarse vertices. Note that this

process is performed fully in parallel with no data sharing between threads whatsoever.

Next, the “sort” operation is performed on NbrVrtxIndicesTemp wherein the indices of coarse

vertices in each segment represent the sort keys. Upon completion of the “sort”, in each segment

the vertices with common coarse vertices reside next to each other. Successively, utilizing the

“warp segmentation” technique, in each segment one of the duplicate vertices are marked to be

removed, while the sum of the edge weights is stored in corresponding element in

EdgeWeightsTemp. Moreover, if the vertex of Gi+1 in the segment is equal to the corresponding

coarse vertex of the belonging vertex, that is, an edge exists between two matched vertices, the

vertex is marked so as to be removed. The result of such marking is stored in a temporary head

flag array FlagTemp, wherein the 0 values signify the vertex to be removed and 1 values imply

the remaining ones with the aggregate edge weights.

Having the FlagTemp populated with markings, the “pack” operation is performed to build

the NbrVrtxIndices and EdgeWeights arrays of the next level coarser graph Gi+1. By performing

the “pack” operation the index offset of each remaining vertex within its adjacency list in Gi+1 is

obtained. Subsequently, having the result of “pack” operation, the size of adjacency list

corresponding to each coarse vertex v in Gi+1 is found by incrementing the last index offset of

each segment by one, and stored in a temporary array SizeTemp ,with its size equal to number of

68

vertices in Gi+1, in a corresponding location to v. A prefix-sum operation on SizeTemp results in

the offset address of each adjacency list within NbrVrtxIndices of Gi+1; the result of this

operation is stored in temporary array OffsetTemp. Having the address within NbrVrtxIndices for

each adjacency list (stored in SizeTemp) together with the index offset for each adjacent vertex

within it (stored in OffsetTemp) the vertices corresponding to the remaining edges for each v is

copied from its adjacency list segment in NbrVrtxIndicesTemp to NbrVrtxIndices of Gi+1.

Finally, the Vrtcs of Gi+1 is constructed by populating the value of noOfEdges and indOfEdges

for each v from SizeTemp and OffsetTemp, respectively. Then the v’s weight in w field is set via

the CMaps and Mtchs arrays.

Cost Analysis

Given a GPU-like machine with p processors in the “Threaded Many-core Memory” (TMM)

model [39], [40], the time complexity (Tp) of an algorithm is comprised of both the

computational and memory complexity; it is assumed that the program is perfectly scheduled.

The computational complexity is formulated in terms of work T1, the total amount of

computation steps using one processor, and span T∞, the amount of computation steps on the

critical path wherein the number of processors are presumed to be infinite. The memory

complexity is derived using a parameter which is the total number of memory transfers (either

grouped or not) from/to global memory to/from shared memory. Moreover, Tp depends on a

number of machine/program parameters such as the latency to slow memory L, memory

bandwidth to slow memory C, hardware limit on the number of threads per core X, size of fast

local memory per core group Z and the number of available hardware threads :

Tp = (max (T1/p, T∞, L / p))

The following is the summary of major steps in each pass of the coarsening phase we use as

quick reference during the computational and memory analysis utilizing the (TMM) model:

1. Given graph Gi, for each vertex find a match candidate utilizing the HEM technique

and the “warp segmentation” along with the internal parallel reduction (max) function.

2. Execute STM transactions to perform the actual matching using the candidates stored

in vertices to finalize the match.

3. Populate the Mtchs array by fetching the result of matching stored in the vertices.

69

4. Perform the steps including the prefix-sum operation on Mtchs to compute/store the

mappings in CMaps.

5. Populate each element of VrtcsTemp with the total number of adjacent vertices of the

matched vertices.

6. Perform prefix-sum on VrtcsTemp to find the positions of the adjacency lists of each

coarse vertex in NbrVrtxIndicesTemp/ EdgeWeights before merging.

7. “Copy” the adjacency lists from NbrVrtxIndices / EdgeWeights to

NbrVrtxIndicesTemp / EdgeWeightsTemp.

8. Perform “sort” operation on adjacency list as segments in NbrVrtxIndicesTemp.

9. Using the “warp segmentation”, mark the duplicate vertices to be removed in each

segment of NbrVrtxIndicesTemp, while storing the aggregate edge weights of the

corresponding edges in EdgeWeightsTemp.

10. Perform “pack” operation to obtain the index offset of each coarse vertex v within its

adjacency list of NbrVrtxIndices in Gi+1.

11. Populate the SizeTemp with the size of adjacency list corresponding to each v.

12. Perform prefix-sum operation on SizeTemp to find each v’s adjacency list starting

address within NbrVrtxIndices in Gi+1, storing the result in OffsetTemp.

13. Using SizeTemp and OffsetTemp, “copy” the remaining vertices (after removing the

duplicates) from adjacency list segments of NbrVrtxIndicesTemp to NbrVrtxIndices.

14. Populate the elements of Vrtcs in Gi+1 using SizeTemp, OffsetTemp, CMaps and Mtchs

arrays.

From the above list, five major categories of operations can be inferred: the parallel scan

(both segmented and un-segmented versions), “warp segmentation”, “copy”, “populate” and

matching STM transaction. Using TMM model, our approach to analyze the time complexity is

to find the largest term among the cost of these categories for T1, T∞ and parameters required

to come up with Tp equation. Note that the input graph is assumed to be connected with n

vertices and m edges, i.e., m>=n.

The scan and segmented scan primitives as well as operations based on them, as discussed

earlier in section 4.3, has the total work of T1 = O(n) and the span of T∞ = O(log2(n)), and since

70

the memory access patterns in these primitives are regular, and hence, predictable, the memory

transfers can be grouped in chunks of size C, resulting in = O(n/C).

The steps using the “warp segmentation” involve processing all the edges which results in the

work T1=O(m) and the span T∞ =O(m/n). Using “warp segmentation” technique, the edges are

processed in chucks of size C, therefore, the total number of memory transfers is = O (m/C).

For the “copy” operation, it is easy to show that total work is T1 = O(m) and the span is T∞

=O(1) while the total number of memory transfers is = O(m/C) by grouping the memory

accesses. Similarly, In the “populate” operation, the total work is T1 = O(n), while the span is T∞

= O(1); however, the memory accesses are not predictable so that it incurs On) of memory

transfers.

The STM transactions has the total work of T1 = O(n) when one processor performs the

transactions serially, i.e., is absence of synchronization. The total number of memory operations

is = O(m) as the memory accesses are not predictable. The span is T∞ = O(Δ), i.e., the

maximum degree of graph. This span (O(Δ) indicates the upper bound of the total time required

when all the threads, each processing one of the adjacent vertices of a common vertex with

degree Δ, finish their transactions such that only one of them can succeed to match; recall that

the number of p is assumed infinity in T∞. With similar logic, the total number of passes in the

coarsening phase (which is equal to that of un-coarsening phase) is O(Δ) because in each pass

STM transactions match and contract one edge out of all the remaining edges with common

vertex. Note that threads run concurrently when executing these transactions on all the vertices

of graph. As a result, the runtime Tp equation can be expressed as the following:

Tp = Δ(max (m/p, m/n, Δ, log2 (n), m L / p))

In the above equation, the first term is O(m/p), since in both “warp segmentation” and “copy”

the total work is T1 = O(m); note that we assumed m>=n. Also depending on the number of

vertices/edges in the input graph and graph’s maximum degree Δ, the span T∞ is the maximum of

O(log2(n)) , due to the cost of scan primitive; O(Δ), due to STM transactions; and O(m/n) due to

the “warp segmentation”. Finally, the total number of memory operations is the largest term

O(m) which belongs to the STM transactions.

71

4.4.3 Un-coarsening

Given a coarse graph Gi, each pass of un-coarsening phase consists of projection stage

followed by multiple iterations of refinement stage until there is no substantial improvement can

be made in the edgecut. That is, the partition Pi obtained for Gi, is projected to finer graph Gi-1

where i>=1 producing initial version of Pi-1, and then, Pi-1’s edgecut is iteratively improved by

the vertex moves followed by updating the gain values for boundary vertices affected by the

changes in the edgecut. This process continues until the edgecut is no longer getting any

significant improvement. The un-coarsening phase ends when the partition projected to the

original graph is refined, leading to the desired partition, i.e., the result of the graph partitioning.

Parallelization of projection stage is straightforward. It is carried out by mapping the

partition’s part label (number) assigned to each coarse vertex v: Pi[v] to the set of matched

vertices V
v
 in next level finer graphs Gi-1. In particular, each thread processing a vertex u of Gi-1

belonged to V
v
 first finds the coarse vertex v in Gi which is mapped to, and then sets u’s

partition’s part number to that of v, that is:

P i-1 [u] =Pi [v]: i>=1

Recall that the refinement stage involves the moving of the boundary vertices to adjacent

parts in the current partition with the purpose of reducing the edgecut. However, to obtain the

order of these vertex moves, the boundary vertices are required to be prioritized based on their

gains. Thus, we require to initally compute the gain for each boundary vertex before performing

the actual vertex moves.

Given a partition, the gain of a boundary vertex v is equal to the maximum value among all

the edgecut reduction made against the external parts, assuming the move is individually

performed to such parts. That is, assuming v is moved to the external partition’s parts one at a

time, the maximum reduction in edgecut that can be realized among all these moves is the gain

associated to v. As it will be explained with more detail in the following, using the segmented

scan based operations (“sort” and prefix-sum) and the “warp segmentation”, the v’s adjacency

list are grouped into segments based on the common partition’s parts at their endpoints and then

the per-part edgecut is computed so as to calculate the gain associated to v.

72

Following the actual move made for each vertex v, the vertices adjacent to v need to reflect

the changes in their gain values. Therefore, during each vertex move, the boundary vertices

adjacent to v are marked as having invalid gains so that they are not considered to be moved in

the current iteration, requiring their gain to be computed again in the following iteration. That is,

each iteration alternates between gain calculation and vertex moves. Moreover, after v moved to

other part of the partition, it is marked as inactive to be excluded from further moves in current

refinement stage. This helps expedite the convergence of overall refinement process. Note that

when vertices are marked as inactive, they don’t require gain recalculation any longer, therefore,

helping to performance improvement by reducing the unnecessary computation.

Recall that in mt-metis, to leverage the concurrent processing using multiple cores, the

computation is relaxed by using per-thread priority queues rather than a single, global queue to

insert vertices based on their gains. Consequently, the vertex with highest grain can be extracted

by each thread from its dedicated queue before performing the vertex moves. This approach,

however, is not appropriate for the GPU architecture mainly due to high number of hardware

threads.

To streamline the refinement process while increasing the parallelism by leveraging thousands

of GPU cores, we apply a heuristic to approximate the behavior of the priority queues used in

mt-metis. In doing that, we iteratively select and move vertices whose gains fall into the given

range of gain values starting from the range which contains highest values. To allow the chance

of move to boundary vertices, at each iteration of refinement the given range is extended to cover

lower (positive) gain values. The second advantage of this approach, other than being suited for

GPU, is to reduce the contention among STM transactions by reducing the number of threads

which process the transactions.

As briefly mention earlier, we use the segmented scan based operations to find the gain for

each boundary vertex together with the partition’s part against which such gain is achieved. First,

the adjacency lists stored in NbrVrtxIndices are sorted using the partition’s part number as sort

key. This is done via the “sort” operation on adjacency lists array NbrVrtxIndices wherein each

adjacency list represents a segment. Then, using the “warp segmentation” the new, smaller

segments containing the vertices with same partition’s part number are marked within each

73

adjacency list. This results in a segmented array used as the input to the segmented prefix-sum

operation to compute the per-part edgecut for each boundary vertex v.

Recall that to compute the gain we require to compute the total weights of edges connecting v

to the adjacent vertices residing in the same partition’s part to be subtracted from the v’s

maximum per-part edgecut. As such, , given the result of the prefix-sum operation, v’s gain is

computed using the “warp segmentation” with the parallel reduction (max) by first finding the

maximum per-part edgecut to external partition’s parts, and then subtracting it by the total

weight of edges connected to the partition’s part v resides in. Note that here we compute the

exact value of v’s gain as opposed to the estimated gain computed in mt-metis.

To move a boundary vertex and marking its boundary adjacent vertices indicating that their

gains are not valid for current iteration, we use STM transactions ensuring the consistency of

such refinement-related data. That is, using STM transactions guarantees the boundary vertices

in source and destination partition’s parts are not moved by other threads’ transactions during

vertex move. In addition, during STM transaction we need to inactivate the boundary vertex to

avoid further move in current refinement iteration and updates its partition’s part number. Lastly,

to ensure the partition balance is maintained during refinement, extra checks are required within

STM transaction before updating the weight of partition’s parts (both the source and destination

parts) involved in a vertex move.

Since the number of parts in a given partition is significantly smaller than the number of

vertices in a large graph, simply using the general STM transaction on the involved partition’s

parts will lead to the bottleneck and overall poor performance of the graph partitioning. This

issue can be addressed by increasing the throughput of transactions to mitigate the side effect of

such bottleneck. In doing so, we employ an inner transaction which takes care of update to the

source and destination parts, within the main (outer) transaction; when both inner and outer

transactions performed successfully the vertex move is complete. That is, the thread performing

the inner transaction attempts to update the weights of the partition’s parts affected by a tentative

vertex move. When an attempt failed, the inner transaction is rolled back and restarted until it

commits; such commit operation also causes the outer transaction to commit. However, these

74

attempts are performed as long as a balanced partition is still attainable, otherwise both the outer

and inner transactions are rolled back with no further attempt.

Cost Analysis

Similar to the complexity analysis of the coarsening phase, we list the major steps of each

pass during the un-coarsening phase, followed by categorizing these steps to simplify the

analysis process to find the time complexity Tp:

1. Perform projection in which each thread processing a vertex in finer graph Gi-1

populates its partition’s part using that of corresponding coarser vertex in Gi.

2. Perform segmented based “sort” operation on NbrVrtxIndices to put the vertices

with the same partition’s part next to each other in each adjacency list.

3. Using the “warp segmentation”, create the new smaller segments within each

adjacency list where the vertices with the same partition’s part.

4. Perform segmented prefix-sum to compute the per-part edgecut each boundary

vertex v, including to the partition’s part v is residing in.

5. Set the gain range in the CPU host if this is the first time or extend it to cover lower

gain values.

6. Find the v’s gain by performing parallel reduction using the “warp segmentation”

to find the maximum of the total edge weights to external partition’s parts, and then

subtracting it by the total weight of edges connected to the partition’s part v

currently resides in.

7. Perform STM transactions to move each boundary vertex which its gain falls into

the given range of gain values.

8. Repeat starting from step 2 until the number of moves falls below some threshold

or there is no boundary vertex with positive gain left.

Examining the above steps, the following four major categories of operations can be

extracted: the segmented scan (“sort” and prefix-sum), “warp segmentation”, “populate”, and the

STM transactions. Similar to the analysis we made in coarsening phase, we find the largest terms

for T1, T∞ and parameters among these categories in order to find Tp.

75

As explained in coarsening phase, recall that an segmented scan based operation has the total

work of T1 = O(n), the span of T∞ = O(log2(n)), and total number of memory transfers =

O(n/C). Using the “warp segmentation” results in work T1 = O(m), span T∞ = O(m/n), and the

total number of memory transfers is = O(m/C). For the “populate” operation, the total work is

T1 = O(n) and the span is T∞ = O(1) while the total number of memory transfers is = O(n).

The STM transactions has the total work of T1 = O(m) where we assume one processor

performing the STM transactions serially whereas no synchronization required. To find the span,

we closely study the bottleneck of the process which is the most expensive item wherein the

inner transactions acquire the partition’s part’s locks when moving vertices from one part to the

other. We consider a condition where each thread has to wait for all the other threads in other

parts to finish their transactions when moving a vertex to one of the other (k-1) parts. As a result,

such thread needs to wait maximum O(k) times to perform its transaction. Moreover, there are

maximum n/(k(2m/n)) waiting (outer) transactions in each part where (2m/n) is average degree of

each vertex, i.e., T∞ = O(k (n
2
/2m k))= O(n

2
/m), and since we assumed m>=n, this is results in

span T∞=O(n).

Total number of memory operations is = O(m). Note that the memory accesses are not

predictable so that we can’t group the memory transfers into chucks of C size. As discussed in

coarsening phase complexity analysis, the total number of passes in un-coarsening is O(Δ).

Therefore, the runtime Tp equation is expressed as the following:

Tp = Δ(max (m/p, n, m

L / p))

In the above equation, the first term is O(m/p) due to the “warp segmentation” wherein the

total work is T1 = O(m), assuming m>=n. The span T∞ and the total number of memory

operations are equal to O(n) and O(m), respectively, which both terms are due to STM

transactions.

4.5 Summary

In this chapter we discussed the implementation aspects for an efficient transactional-

memory-based multilevel graph partitioner on massively multithreaded GPUs in two of its

phases: coarsening and un-coarsening. STM transactions were applied to matching, during

76

coarsening, and refinement, during un-coarsening, wherein synchronized accesses to shared data

are required. Additionally, we utilized “warp segmentation” to maximize throughput by reducing

the load imbalance during marking processes. Whenever possible, we employed GPU specific

operations aiming to improve the efficiency and scalability. In doing so, we used segmented scan

primitives along with different high-level primitives derived from them, e.g. “sort” and “pack”.

We concluded the chapter by analyzing the complexity of our implementation using the TMM

model.

77

5 CONCLUSION & FUTURE

WORKS

General Purpose GPUs (GPGPUs) are ideal platforms for regular computations. However,

majority of real world multithreaded applications require access to shared memory with irregular

access patterns. Among these irregular computations, those using morph algorithms are more

challenging mainly due to unpredictability and high cost of synchronization overhead, and the

complexity of code implementation. We have addressed these issues in our transactional-

memory-based approach.

In our research, we chose 2 case studies of morph algorithms: the Borouvka’s algorithm for

calculating MSF and multilevel graph partitioning. First, we identify the major phases of the

algorithm which requires synchronization to shared data. If we could extract certain algebraic

properties (e.g., monotonicity, idempotency, associativity), we can use lock-free

synchronizations for performance. Otherwise, we used our priority based STM for

synchronization, which facilitates a natural transition from algorithm design to implementation.

In addition, we employed several techniques in different phases of the algorithms, e.g., “warp

segmentation" and segmented scan primitives, to achieve load balance and enhanced GPU

resource utilization.

Experimental results show that our GPU-based implementation of Borouvka’s algorithm

outperforms both the fastest sequential implementation and the existing STM-based

implementation on multicore CPUs when tested on large-scale graphs with diverse densities.

Moreover, we compared the efficiency and scalability of our approach with existing approaches

on GPU.

Finally, to show the applicability of our approach to other morph algorithms, we discuss a

pen-and-paper design and implementation of STM-based multilevel graph partitioning and its

complexity analysis using the TMM model.

78

In future works, we plan to apply similar transactional-memory-based approaches to other

morph graph algorithms and investigate the possibility of generalizing the approach for other

GPU-based irregular applications.

79

REFERENCES

[1] J. Hennessy, D. Patterson, “Computer architecture: a quantitative approach” Elsevier, 2011.

[2] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T. Lee, A.

Lenharth, R. Manevich, M. Méndez-Lojo, D. Prountzos, X. Sui, “The tao of parallelism in

algorithms,” In Proceedings of the 32nd ACM SIGPLAN conference on Programming language

design and implementation, pp. 12–25, ACM, 2011.

[3] O. Borůvka, “O jistém problému minimálním (About a certain minimal problem),” Práce

mor. přírodověd. spol. v Brně III 3, pp. 37-58, 1926.

[4] V. Vineet, P. Harish, S. Patidar, P. J. Narayanan, “Fast minimum spanning tree for large

graphs on the GPU,” In Proceeding of the Conference on High Performance Graphics, pp. 167-

171, ACM, 2009.

[5] R. Nasre, M. Burtscher, K. Pingali, “Morph algorithms on GPUs,” In Proceedings of ACM

SIGPLAN Notices, 48(8), pp. 147-156, ACM, 2013.

[6] R. Nasre, M. Burtscher, K. Pingali, “Atomic-free irregular computations on GPUs,” In

Proceedings of the 6th Workshop on General Purpose Processor Using Graphics Processing

Units, pp. 96-107, ACM, 2013.

[7] N. Shavit, D. Touitou, “Software transactional memory”, Distributed Computing, 10(2), pp.

99-116, 1997.

[8] D. Cederman, P. Tsigas, M.T. Chaudhry, “Towards a software transactional memory for

graphics processors,” In Proceedings of Euro-graphics Symposium on Parallel Graphics and

Visualization, pp. 121-129, 2010.

[9] Y. Xu, R. Wang, N. Goswami, T. Li, L, Gao, D. Qian, ”Software transactional memory for

GPU architectures,” In Proceedings of Annual IEEE/ACM International Symposium on Code

Generation and Optimization, ACM, 2014.

80

[10] A. Holey, A. Zhai, “Lightweight software transactions on GPUs, ” In Proceedings of 43rd

International Conference on Parallel Processing, pp. 461-470, IEEE, 2014.

[11] Q. Shen, C. Sharp, W. Blewitt, G. Ushaw, G. Morgan, “PR-STM: Priority Rule Based

Software Transactions for the GPU,” European Conference on Parallel Processing, pp. 361–372,

2015.

[12] F. Khorasani, R. Gupta Laxmi, N. Bhuyan, “Scalable SIMD-Efficient Graph Processing on

GPUs,” In Proceedings of International Conference on Parallel Architecture and Compilation,

pp. 39-50, IEEE, 2015.

[13] Nvidia. CUDA. Retrieved September 7, 2016 from http://www.nvidia.com/cuda.

[14] L. G. Valiant. “A bridging model for parallel computation,” Communications of the ACM,

33(8), pp. 103-111, 1990.

[15] M. Herlihy, J. E. B. Moss, “Transactional Memory: Architectural Support for Lock-Free

Data Structures,” In Proceedings of the 20th Annual International Symposium on Computer

Architecture, pp. 289-300, ACM, 1993.

[16] C. J. Rossbach, O. S. Hofmann, E. Witchel, “Is transactional programming actually easier?”

In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, 45(5), pp. 47-56, 2010.

[17] V. Pankratius, A.-R. Adl-Tabatabai, “A study of transactional memory vs. locks in

practice,” In Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms

and Architectures, pp 43-52, ACM, 2011.

[18] R. Ennals, “Efficient software transactional memory,” Technical report, Intel Research

Cambridge, UK, 2005.

[19] T. Harris, J. Larus, R. Rajwar, “Transactional Memory,” Synthesis Lectures on Computer

Architecture, 5(1), pp. 1-263, 2010.

81

[20] T. Harris, K. Fraser, “Language Support for Lightweight Transactions,” In ACM SIGPLAN

Notices, 38(11), pp. 388-402, ACM, 2003.

[21] Y.C. Tseng, T.T.Y. Juang, M.C. Du, “Building a multicasting tree in a high-speed

network,” IEEE Concurrency, 6(4), pp. 57-67, 1998.

[22] L. An, Q.S. Xiang, S. Chavez, “A fast implementation of the minimum spanning tree

method for phase unwrapping,” IEEE Transactions on Medical Imaging, 19(8), pp. 805-808,

2000.

[23] S. Kang, D.A. Bader, “An Efficient Transactional Memory Algorithm for Computing

Minimum Spanning Forest of Sparse Graphs,” In Proceedings of the 14th ACM SIGPLAN

symposium on Principles and Practice of Parallel Programming, 44(4), pp. 15-24, 2009.

[24] S.V. Adve, K. Gharachorloo, “Shared Memory Consistency Models: A Tutorial”, IEEE

Computer Journal 29(12), pp. 66-76, 1995.

[25] DIMACS 10 challenge graph collection – Graph Partitioning and Graph Clustering,

Retrieved January 25, 2016 from http://www.cc.gatech.edu/dimacs10/downloads.shtml.

[26] D. A. Bader, K. Madduri, "GTgraph: A Synthetic Graph Generator Suite," Technical

Report, 2006.

[27] J. Siek, L. Lee, A. Lumsdaine, "The Boost Graph Library: User Guide and Reference

Manual," Addison-Wesley, 2002.

[28] D. Lasalle , G. Karypis, “Multi-threaded Graph Partitioning,” In Proceedings of 27th

International Symposium on Parallel and Distributed Processing, pp. 225-236, IEEE, 2013.

[29] T. Bui, C. Jones, “A heuristic for reducing fill in sparse matrix factorization”, In

Proceedings of the 6th SIAM Conference, Parallel Processing for Scientific Computing, pp.

445-452, 1993.

[30] R. Leland, B. Hendrickson, “A Multilevel Algorithm for Partitioning Graphs, Technical

Report SAND93-1301, Sandia National Laboratories, 1993.

http://dl.acm.org/citation.cfm?id=2511454&CFID=931577471&CFTOKEN=51559590
http://dl.acm.org/citation.cfm?id=2511454&CFID=931577471&CFTOKEN=51559590

82

[31] G. Karypis, V. Kumar, “Analysis of Multilevel Graph Partitioning,” Technical Report, TR

95-037, Department of Computer Science, University of Minnesota, 1995.

[32] G. Karypis, V. Kumar, “A fast and highly quality multilevel scheme for partitioning

irregular graphs”, SIAM Journal on Scientific Computing, pp. 359-392, 1998.

[33] B. W. Kernighan, S. Lin, “An efficient heuristic procedure for partitioning graphs”, Bell

System. Technical Journal, 49, pp. 291-307, 1970.

[34] C. M. Fiduccia, R. M. Mattheyses, “A linear time heuristic for improving network

partitions”, In Proceedings of 19th IEEE Design Automation Conference, pp. 175-181, 1982. 

[35] D. LaSalle, G Karypis, “A parallel hill-climbing refinement algorithm for graph

partitioning,” 45th International Conference on Parallel Processing, pp. 236-241,IEEE, 2016.

[36] M. Harris, S. Sengupta, J.D. Owens, “Parallel prefix sum (scan) with CUDA,” GPU gems,

3(39), pp. 851-876, 2007.

[37] J.T., Schwartz, “Ultracomputers,” ACM Transactions on Programming Languages and

Systems , 2(4), pp. 484-521, 1980.

[38] S. Sengupta, M. Harris, Y. Zhang, J.D. Owens, "Scan primitives for GPU computing," In

Graphics hardware, vol. 2017, pp. 97-106, 2007.

[39] L. Ma, K. Agrawal, R. D. Chamberlain, "A memory access model for highly-threaded

many-core architectures," Future Generation Computer Systems, vol. 30, pp. 202-215, 2014.

[40] M. Lin, R.D. Chamberlain, K. Agrawal, "Analysis of classic algorithms on GPUs," In

Proceedings of High Performance Computing & Simulation, pp. 65-73, IEEE, 2014.

[41] B. Goodarzi, M. Burtscher, D. Goswami, "Parallel Graph Partitioning on a CPU-GPU

Architecture," In Proceedings of Parallel and Distributed Processing Symposium Workshops,

pp. 58-66. IEEE, 2016.

