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Abstract 

 

Learning-induced plasticity in vascular properties in the human brain 

 

Avner Fitterman 

 

The brain is a plastic organ, able to undergo structural and functional changes 

following changing physiological contingencies, such as diseases and exercise training. 

However, the nature of the biological changes that underlie plasticity in the adult human 

brain is not fully understood.  

In light of this lack of knowledge of the biological mechanism behind brain 

plasticity, non-invasive imaging can be used to track plasticity changes in the living human 

brain. Quantitative and physiologically-specific magnetic resonance imaging (MRI) 

techniques are an ideal tool to study these mechanisms. Plasticity is believed to involve a 

variety of physiological mechanisms. Some of these mechanisms are neuronal in nature, 

such as synaptogenesis and changes in neuronal morphology, but changes in non-

neuronal tissue components are also thought to contribute, including angiogenesis. The 

latter may result in increased cerebral blood flow (CBF). CBF estimation can be obtained 

using arterial spin labeling (ASL). In this technique, water protons in blood are 

magnetically labelled and this labelling is used to measure the amount of blood that 

perfuses brain regions. The detection of blood perfusion changes during and following 

learning intervention would be indicative of a contribution of vascular plasticity to 

learning-induced changes. In this project, we will use ASL to measure plasticity-induced 

changes in CBF in motor areas during and following five days of motor task learning. 
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 The data acquisition took place at the Max Planck institution for human cognitive 

and brain science in Leipzig, so the author contribution was in processing the data and 

creating a pipeline for processing ASL data. The preprocessing was coded by the author 

on MATLAB, using FSL tools, as well as by developing his own algorithms, as was the case 

for the surround and sinc subtractions, the physiological filtering and creating the tSNR 

maps. For some of the subjects mapping for registration were created by the author, using 

algorithms developed by Pierre-Louis Bazin from the Max Planck Institute for Human 

Cognitive and Brain Sciences. Registration of CBF and tSNR maps to an anatomical space 

was done by the author using these mappings. Registration of these registered data to 

the MNI152 space was done using the flirt tool of FSL. Anatomical ROIs were created by 

the author. While the original functionally-defined M1 ROIs were created by another 

student at the Max Planck Institute, the author re-created ROIs for each subject at 

individual level analysis using FEAT tool of FSL. These ROIs were based on BOLD data and 

were registered to the anatomical space as well. The author also processed all the 

learning-related analyses.  
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Chapter 1 - Introduction 

 

1. Plasticity and Imaging – overview 

 

 In addition to the changes that occur in the brain as part of the development 

starting from the fetus, we now know that the brain is also capable of undergoing changes 

and reorganization in response to changing contingencies during the life span of a human 

[1]. Those contingencies may be of different types and time scales, and include recovering 

from diseases, learning and the adaptation to a shifting lifestyle. The development of 

brain imaging techniques has enabled the investigation of the impact of changing 

contingencies on the human brain. These imaging studies have provided accumulating 

evidence for the presence of plasticity-induced changes. Yet, the way this plasticity is 

implemented in the brain remains an open question. Animal studies allow us to 

characterize plasticity mechanisms with greater specificity, as more invasive tools are at 

the researĐhers’ disposal. In the case of human studies, this issue becomes more 

challenging, as the main tool of research is non-invasive brain imaging. 

Fundamentally, any imaging modality is sensitive to a specific physical mechanism, 

and each modality in isolation may provide only a limited amount of plasticity-related 

information. More specifically, in magnetic resonance imaging (MRI) the contrast is 

dependent on the different time decays of electromagnetic radiation sources due to 

differences in the environment, and cannot typically be used as a direct measure of a 

desired biological or physiological parameter. Nevertheless, MRI can be sensitive to 

certain components in the brain, such as blood, thanks to the magnetic properties of 

these components. This sensitivity to the blood compartment is the base for functional 

MRI (fMRI), as well as other techniques more specific to the cerebral vasculature. The goal 

of fMRI is to infer on the neural activity, which is the core of brain function, by acquiring 

time-series of images while this activity is expected. However, in MRI this kind of 

assessment can be obtained by the vascular response to the neural activity, rather than 
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directly. Hence the importance in the validation and improvement of fMRI technics by 

which vascular properties can be assessed. 

MRI thus enables the extraction of both functional and structural information. 

Moreover, being non-invasive, MRI consists a promising avenue in both clinical and 

research usages. In particular, it is a convenient tool for better characterizing plasticity-

induced changes. Quantitative MRI techniques can be exploited to more accurately study 

specific plasticity-related processes. Notably, a method for computing cerebral blood flow 

(CBF) will be used in the studies presented here. The main part of this thesis explores the 

CBF changes during learning of a motor task, which forms part of a larger multimodal 

ultrahigh field MRI study. Additionally, this thesis will present work on a quantitative fMRI 

technique as part of another project, in which an exercise intervention is used to induce 

brain changes.   

 

2. Background 

 

2.1 Animal Study 

 Physiological and biological changes during learning or physical exercise are the 

subject of extensive research, of which a significant portion is done on animals. Although 

animals have some limitations when used as a proxy for the anatomy and function of the 

human brain, animal studies have the eminent advantage of being easier to control. 

Controlling for effects of no interest poses significant challenges in human studies as the 

effect studied is typically mixed with confounding factors in any given intervention. For 

example, the challenge in examining the effect of exercise on the human brain is not only 

the difficulty to quantify the amount of exercise carried out by the subject, but also to 

exclude the effect of social interaction that may also affect the physiological parameter 

studied. Besides the possibility to better monitor and control animal behavior, more 

invasive methods can be implemented, allowing us to measure information on a cellular 

level. Histology staining techniques and electrical neural recordings are among the 

methods available in animal experiments [2-3]. In plasticity studies, histology might be 
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especially valuable as it is possible to count the numbers of neurons or synapses, for 

example. These biological parameters are not accessible by MRI, as the signal sources in 

standard MRI are averaged on the scale of millimeters. One drawback that exists however 

in invasive methods is the inability to continue with the intervention after performing the 

invasive procedure. Thus in many cases, a group of animals is required for each time point. 

 

2.1.1 Evidence for the relation between physical activity and improved cognition 

 Animal studies have been instrumental in establishing that changes in behavioral 

function, such as skill acquisition, are manifested and supported by biological and 

physiological changes in the brain. More precisely, several studies investigated a possible 

relation between exercise and improved spatial cognition in rodents [4-6]. In these 

experiments, a group of rodents with access to a running wheel, is compared with a 

sedentary group. Fitness of the rodents is assessed by measures such as the number of 

wheel revolutions and heart weight. Following to this period of exercise, their spatial 

cognition is examined by inspecting their performances in a Morris water maze (MWM). 

The interpretation of the results from these studies has to be carefully considered, as 

many factors may be involved in determining group differences. For example, the 

advantage of the physical benefits that the exercise group over the control group should 

not be confounded with improved cognition when evaluating the rodeŶts’ performances 

in the MWM. After taking these factors into consideration, these experiments showed a 

positive correlation between exercise and performance in the MWM, indicating plasticity-

related improvement in cognition. 

Nevertheless, these experiments reveal little regarding the specific exercise-

induced biological and physiological changes which enhance maze-related cognition. 

However, the involvement of certain biological processes that may support these changes 

can be tested. Some plasticity mechanisms thought to be involved are mediated by the 

Brain-Derived Neurotrophy Factor (BDNF) protein. This protein acts on hippocampal 

neurons, an area associated with the ability to form a ͞ĐogŶitiǀe ŵap͟ of the 

environment. By injecting a substance that mimics the BDNF receptor in the 
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hippocampus, the effect of this protein can be suppressed. Exercise-trained mice 

receiving this BDNF inhibitor were shown to performed in the maze equally poorly as a 

control group that did not exercise and did not receive the BDNF inhibitor [7]. This result 

suggests BDNF is involved in mediating exercise-dependent plasticity, though it does not 

imply that this process is sufficient. Changes at this molecular level are detectable only 

indirectly and are not accessible using conventional MRI.  

 Animal studies have however also shown changes at the macro scale. Other 

biological factors thought to contribute to learning-induced plasticity were suppressed to 

demonstrate their role. Kerr et al. tested two contributing mechanisms to enhanced 

learning ability in rats: neurogenesis (the formation of neuron cells) and angiogenesis (the 

formation of vessels) [8]. Kerr et al found that a group of rat receiving a neurogenesis 

inhibitor achieved the same improvements in a MWM following an exercise period as a 

group that did not received the inhibitor. On the other hand, a group that received an 

angiogenesis inhibitor performed as poorly as a sedentary group following an exercise 

period. This suggests that the enhanced ability to memorize a path in a maze is not 

supported by formation of new neurons, but may require the formation of new blood 

vessels. Although the findings of this study clearly support the role of cerebral vasculature 

as underlying mechanism of performance alterations, this study alone provides limited 

evidence for the contribution of exercise to changes in the vasculature. The limitation 

stems from the fact that the angiogenesis inhibitor damaged the rats’ ability to run, 

causing them not to reach the required amount of exercise.  

 

2.1.2 Association between exercise and cerebral vasculature 

Other studies demonstrated relation between enhanced exercise and changes in 

cerebral vascular properties [9]. Swain et al. indirectly assessed changes in blood volume 

in the motor cortex following 30 days of physical training [10]. A group of exercised-

trained rats presented higher deoxyhemoglobin (dHb) level and thus presumably higher 

blood volume in the region of interest. To further investigate vascular changes, cerebral 

blood flow (CBF) was measured during a hypercapnia challenge (while elevated levels of 
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CO2 are inhaled by the animal). This procedure, which was also done following the 

exercise period, serves as a biomarker of cerebral vascular reactivity (CVR). The 

assumption is that brain vessels possess certain capability to dilate as a response to 

increased levels of CO2. This ability is considered to be an indicator of the cerebral vascular 

function. Swain et al. found an increased CVR in the exercised-trained rat group. Although 

this finding might suggest improved vascular health, the author mentioned the possibility 

that changes in blood flow during hypercapnia are attributable to regular changes in 

blood CBF, rather than to the hypercapnic challenge. Although impaired CVR may be 

associated with poor cerebral health [11], some recent unexpected findings suggest that 

the relationship between CVR and vascular health may not be as simple as linear relation 

[12]. 

 Given this evidence for exercise-induced vascular plasticity, it may be expected 

that similar effects on the vasculature obtained by pharmaceutical means can be also 

obtained by exercise. Zhang et al investigated potential contribution of exercise to 

vascular recovery following a stoke [9]. Using a stroke model in rats, the influence of an 

exercise period on vessels recovery was examined. In stroke, the cells on the edges of a 

cerebral ischemia created by a stroke, also referred to as the ͞ isĐheŵiĐ peŶuŵďra͟, retain 

their metabolic activity despite suffering from an impaired blood flow. This leads to cell 

death in this penumbral region. A thrombolytic reagent may increase the blood flow into 

those areas, thereby saving brain cells. However, this procedure is temporary and involve 

sides effects. In this study, physical activity was shown to increase blood flow in the region 

of the stroke, thereby improving functional recovery of cells without the aide of 

pharmaceutics. 

 

2.1.3 Vasculature and motor learning 

 Exercise can be also regarded from the motor activity point of view. Although 

motor cortex activity was found during automated movements such as walking [13], it is 

often assumed that this kind of physical activity is associated with neural circuits 

comprising subcortical components and the spinal cord [14]. Thus the expected effect of 
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these automated movements on the brain will be in general more global. However, when 

the physical activity is not done automatically and requires skill acquisition, such as 

acrobatics, distinctive plasticity effects emerge. The root of the distinction is that learning 

that is involved in performing tasks of higher complexity, but not during exercise. 

Comparison between mere exercise and acrobatic physical activity of rats was done by 

Black [15]. The on-going improvement which was observed in the acrobatic learning 

group implied the existence of a motor learning process, which was in contrast to the 

static ability level of an exercise group using the running wheel. In terms of brain 

measurements, Black examined the paramedian lobule in the cerebellum, an area which 

is involved in fine adjustment of movements, as well as motor learning, among other 

functions. Purkinje cells, which are a type of neural cells, have a major role in the learning 

process [16]. It was found that learning was positively correlated to the number of 

synapses per Purkinje cell. Exercise, on the other hand, was characterized by angiogenesis 

in that area. The model offered by the authors to account for the different nature of those 

two effects relates to the nature of the physical activities and their energy demands. In 

the case of repetitive movements as in exercise, the intensive activation of the same 

neurons required enhanced energetic support without changing much the neural 

structure. In the motor learning group, the level of physical activity remained low. Instead, 

the acquisition of new motor skills required novel patterns of neural activity, thereby 

giving rise to new synapses. 

 

2.1.4 The context of this study 

 Despite these associations proposed by Black of exercise with vascular plasticity 

and motor learning with neural plasticity, it will be argued that the plasticity induced by 

motor learning also has a vascular component. Although the effect of exercise is expected 

to be related to more global vascular changes, the main hypothesis of this work is that 

those changes are supported by a vascular component which is manifested through blood 

flow changes, regardless of the specific nature of the changes induced by motor learning 

in the motor cortex. 
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2.2 Human studies 

2.2.1 Effects of exercise on cognition in aging brain 

 It is well established that the aging brain goes through anatomical and functional 

changes. Several studies have demonstrated that the anatomical changes are 

characterized by a loss of both grey and white matter volume. Functional changes, 

tracked using fMRI and positron emission tomography (PET), are characterized by 

reorganizations in activity pattern, among other changes [17-20]. Furthermore, these 

alterations may be related vasculature. The interdependencies of vasculature with the 

factors mentioned previously are not fully understood, and their interpretation is an on-

going challenge. The association between cerebrovascular properties and aging were 

studied across several decades using PET, as well as MRI. Nevertheless, the relation 

between cerebrovascular health (in terms of CBF and CVR) and aging is still poorly known, 

with large variability results, despite several studies demonstrating decline in 

cerebrovascular parameters with age [21-23].  

 The aging brain is associated with cognitive decline. Because life expectancy of the 

global population has been significantly increasing over the passed several decades, there 

is an increasing interest to address the causes of the decline in cognitive performance 

with age, as well as finding approaches by which those effects can be mitigated. The 

notion of the brain as a plastic organ gives rise to the possibility of provoking alterations 

that improve cerebral health. This possibility raises the question: what lifestyle should be 

adopted to divert the course of the cerebral health from the expected decline during 

aging? One of these approaches relates physical activity and fitness to the prevention of 

cognitive decline [24]. However, despite the bulk of literature demonstrating a positive 

effect of exercise on cognition, much ambiguity still exists. The ambiguity, and findings 

which sometime suggest insignificant correlation may be attributed to the vast variety of 

parameters considered in different studies, as pointed out by Cox et al in his review [25]. 

More importantly, these studies may not in fact be examining the exact same 

phenomenon as there is considerable implementation and technical variability across 
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studies. In other words, the definition of ͞eǆerĐise͟ or ͞phǇsiĐal aĐtiǀitǇ͟ may vary from 

one study to another. The way those definitions are realized depends, of course, on the 

training programs the subjects are going through, but also on the training program of the 

control group. The presence of an active control group allows a more refined 

interpretation of the results and can help us determine the best type of intervention for 

improving cognition.  

 This inconsistency in the existent literature and the still unclear relationship 

between exercise and cognition arising from the variability in control interventions make 

it necessary to use controlled interventions to identify the fundamental mechanisms that 

underlie the relationship between exercise and cognition. It has been suggested that the 

effects of physical activity on the brain occur at two levels [26]. At the molecular level, 

growth factors are released into the brain and facilitate processes of neuroplasticity [7]. 

This aspect of the effect of exercise was briefly addressed when BDNF was mentioned in 

the context of animal studies. The second level, one which will be more relevant to this 

work, is a supramolecular level, referring to neurogenesis and angiogenesis. However, 

neurogenesis in adults has so far only be demonstrated to occur in the hippocampus [27]. 

Angiogenesis, on the other hand, may comprise other vascular properties, such as blood 

volume and blood flow. The knowledge about angiogenesis arrives mainly from tumor 

researches, where dramatic increase in angiogenesis is observed [28]. The relationships 

between these and other vascular properties such as vessel density and capillary flow is 

complex however, often obligating researchers to impose important assumptions on their 

models. Moreover, angiogenesis, or any change in vascular properties may imply other, 

more fundamental neurobiological change, such as in the neural activity. This change in 

turn needs to be supported energetically by means of adaptations in blood supply to the 

relevant area. 

 Evidence for an association between fitness and cognition mediated by changes in 

vascular properties was reported by Brown el al [29]. In this study, two vascular properties 

were evaluated against age, fitness and cognitive level: cerebrovascular conductance 

(CVC) and mean arterial pressure (MAP). CVC gives an indication of the inverse of the 
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resistivity of arterial blood flow as it enters the brain. These parameters are measured 

using Doppler ultrasound to assess blow flow velocity. The expected relations of these 

parameters with age were observed, namely an increase in CVC and a decrease in MAP. 

More interestingly, age seemed to play similar role as the non-physical active lifestyle 

among the participants, as higher values of CVC were found in the physically active group 

compared to the sedentary, and lower MAP in the physically active group compared with 

the sedentary group. Being able to correlate cerebrovascular properties to cognitive level 

may provide evidence for the notion that vascular plasticity is the connecting link 

between fitness and cognition. This correlation, however, was found in this study to be 

non-significant. On the other hand, the same cerebrovascular parameters were found to 

correlate with cognitive level when measured via elevated values of CO2 (hypercapnia) in 

the blood. Brown speculated that at resting state (i.e., at baseline conditions), natural 

fluctuation in vascular properties conceal these relations. 

 Although these finding provide important information, by using imaging 

modalities such as MRI and PET much more specific information regarding vasculature, 

but also cerebral metabolism, can be obtained. For example, Local blood flow may be 

assessed over particular regions of interest (ROI). In the context of cognitive performance, 

these regions may be the frontal lobe, but also the hippocampus for its association with 

memory and spatial cognition [30]. The hippocampus has been the focus of several 

studies, including a study by Maass et al [31] showing a link between exercise and 

cognition. In his study, hippocampal blood perfusion was evaluated by an MRI technique 

that uses gadolinium as a contrast agent for perfusion. Hippocampal blood perfusion and 

performance on memory tasks were assessed before and after period of 3 months of 

aerobic exercise training. When comparing the two time points, increase in hippocampal 

perfusion and performance on the tasks were found in the younger participant but not in 

the older participants (the age range was between 60-77 years). That suggests that 

although the capability to plasticity-induced changes is degraded above certain age, it still 

exists in a relatively advanced age. 
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2.2.2 Activation patterns and functional MRI (fMRI)  

 While the findings from the resting state described above tell us about the overall 

relationship between physical activity and brain health, they do not provide information 

regarding the function of relevant brain regions, namely changes in activity patterns. 

Other issues may emerge when characterizing the neural activity of a cognitive task in 

aging. It has been shown that the intensity [32], as well as bilateral [19] neural activity 

increases with age, probably as part of a compensation mechanism for age-related 

processes occurring in the brain. This kind of reorganization of brain activity during aging 

will be readdressed in the context of motor learning.  

The neural activity can be evaluated indirectly by the same parameter of blood 

flow used in the study by Maass, for example, but also in terms of blood oxygen level 

dependent (BOLD). These methods are related to the neural activity through the need to 

sustain this activity energetically. The mechanism by which the energy demand changes 

is met is based on blood flow increase in the relevant areas for supplying more oxygen, 

thereby diluting the deoxyhemobglobin (dHb) content in the blood. The BOLD signal, 

being sensitive to that dilution is thus increasing. Not only is the relation between energy 

demand and neural activity complex, but the oxygen level, besides being dependent on 

the oxygen consumption rate, depends also on the local blood flow and blood volume. 

Finally, another factor which is not taken into account in the BOLD measurement is the 

baseline oxygen level. Many factors my affect this baseline, among them are the 

parameters of which their effect is under question, and yet BOLD measurement is not 

sensitive to it. 

 

2.2.3 Calibrated functional MRI 

 Given the difficulties in interpreting the BOLD signal in terms of neuronal activity, 

calibration methods were developed. In these methods, simultaneous BOLD and CBF 

measurements are used for evaluation of cerebral metabolic rate of oxygen (CMRO2). 

These methods require additional measurements during a gas manipulation, to estimate 

a calibration parameter called M, representing the local BOLD signal that would have 
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been obtained in case of complete elimination of deoxyhemoglobin. This parameter 

provides the missing link between the seemingly arbitrary nature of the BOLD baseline 

and a value with a clear physiological meaning, CMRO2. The original method, developed 

by Davis et al, used hypercapnia, which is known as vasodilator, to estimate M. 

Vasodilation causes increase in blood flow, thereby increasing the BOLD signal [33]. The 

increase in these two parameters is needed for M assessment. An alternative approach 

uses hyperoxia, which causes an increase in the BOLD signal due to the elevated level of 

oxygen [34]. It is considered as a more direct approach, as the oxygen inhalation causes 

an increased level of dissolved oxygen in the blood, pushing the physiological conditions 

towards the state where deoxyhemoglobin is eliminated. Finally, Gauthier et al developed 

a generalized calibration method in which CMRO2 can be extracted regardless of the type 

of the gas used [35]. Acquiring two separate measurements using two different gases, 

further enables to assess CMRO2 in physical units, as well as oxygen extraction fraction 

at resting state [36]. 

 In another study from 2012, Gauthier et al demonstrated the utility of 

hypercapnia-based calibration method by refining BOLD interpretation in the context of 

age-related changes [37]. Young and older adults participated in this study designed to 

investigate differences in neuronal responses between the two groups. The performance 

level in the Stroop task (a cognitive task designed to test the inhibition executive 

component) chosen for this study is known to be sensitive to the age-related cognitive 

decline. BOLD and CBF MRI measurements were acquired during the task and during 

hypercapnia for the implementation of the generalized calibrated method for assessing 

relative CMRO2 (rCMRO2) [35]. Despite differences in task performance between older 

and young adults, no significant differences were observed for the BOLD response or the 

CBF response during the Stroop task. Given a naïve interpretation of the BOLD signal, one 

could conclude that similar neuronal activity was present in both groups. However, since 

neither the scale nor the baseline are known, this conclusion would not necessarily be 

correct. The M value, obtained by acquiring additional measurements under a 

hypercapnic condition, provides this required scale. Lower M values were found for the 



 12 

older group over various task-relevant ROIs, suggesting that different oxygen 

consumptions in the two groups gives rise to the same BOLD signal due to underlying 

physiological differences. 

 BOLD signal calibration methods by gas manipulations still suffer from several 

major disadvantages. The need for additional measurements acquired during gas 

manipulation make this procedure difficult to implement in several contexts. This is due 

partly to a possible discomfort for the participant. The main issue however, relates to the 

sensitivity of the method to measurements characterized by large error [38]. That in turn, 

leads to large variability in the resultant CMRO2 assessment. BOLD measurement is 

subjected to many uncontrollable factors, either physiologically-related, or instrument-

related [39]. The CBF measurement originated essentially from the same type of scan as 

the BOLD, and thus suffers from the same drawbacks, except that those are magnified 

considerably by the fact that perfusion is weighted by subtracting two scans. By using one 

acquisition with gas manipulation, only a ratio of the CMRO2 during task can be assessed, 

relative to CMRO2 during baseline. This type of assessment involves 4 noisy 

measurements (BOLD and CBF during baseline and activation), causing the large 

variability in the relative CMRO2 measurement. For assessing absolute value CMRO2 with 

physical units, another set of measurements is included in the processing, further 

increasing the variability. It is for this reason that the CMRO2 values are averaged over a 

certain ROI rather than assessed voxel-wise. Each dimension in the 3-D ROI should be 

larger than the size of a voxel. Baseline measurements can be averaged over the entire 

cerebral cortex to provide enough signal averaging to obtain stable results, thereby 

however loosing the spatial specificity of the measurement. However, this kind of choice 

becomes more problematic for participants of higher age, as atrophy may reduce cortical 

depth to the level of voxel dimensions [40]. The tissue of interest in that case may only 

partly fill the voxel, typically causing an underestimation of the quantity measured. 

Furthermore, for modeling the BOLD signal, predefined parameters are used for 

describing the relation between bold response and magnetic susceptibility, as well as the 

relation between blood volume and blood flow. The optimal values for those parameters 
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are hard to determined as they vary as a function of the experimental setup, such as field 

strength [38,41].  

 In this study, a calibrated fMRI method is not discussed, however, it relies on CBF 

measurement which is in the center of this study. It therefore provides a motivation 

developing a CBF pipeline which can also serve in calibrated fMRI studies. 

 

2.3 Motor learning 

2.3.1 The multi-model plasticity imaging project 

 This project will focus on MRI data acquired at the Max Planck Institute for 

Cognitive and Brain Sciences in Leipzig as part of the multi-modal plasticity imaging 

(mMPI) project. The objective of the mMPI project is to characterize cerebral changes 

during and following learning of a motor task, while utilizing 7-Tesla MRI techniques that 

provide information beyond the information obtained using standard MRI. Five main 

modalities are exploited: quantitative susceptibility mapping (QSM) permits the 

construction of a vascular map [42], Diffusion Tensor Imaging (DTI), for obtaining 

tractography [43-44], quantitative T1 mapping, permits segmentation of cerebral cortices 

by utilizing their distinctive T1 values [45], and resting state fMRI, enables analysis of 

hemodynamics during resting state [46]. Finally, the method which will be in the center 

of this project, Arterial Spin Labeling (ASL), permits the assessment of CBF. The general 

hypothesis of the mMPI project is that the learning of a motor task across a few learning 

days will evoke changes in the brain, notably in the motor cortex [47].  

 

2.3.2 Body part representation in the motor cortex 

 It is well established that the organization of the brain function has a local 

component, namely, an association between brain region and a certain function. In the 

case of the sensorimotor system, this feature emerges quite naturally from the structure 

of the axonal network from the peripheral nervous system to the white matter tracts that 

reach the cerebral cortex. As afferent axons ascend from receptors near the skin to the 

brain stem, they assemble together in the spinal cord in a way the preserves the spatial 
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information of the different body parts with respect to each other. This topographic 

representation is preserved all the way up to the somatosensory cortex. The different 

body parts are therefore mapped onto this part of the cerebral cortex, and due to tight a 

relation between the input of sensory information and the output of motor information 

back to the different body parts, this representation appears also in the motor cortex 

(MC), anterior to the somatosensory cortex [48] 

Hence, each body part has a certain area of representation in the motor cortex, 

namely, an area that is activated when a subject is engaged in a motor task that requires 

a movement of that body part. Studies showed that there is an association between the 

ability to control a certain body part, and the size of its representation [49]. A different 

but related issue is whether this relation exist, not only with respect to different body 

parts within the same subject, but also for the same body part (which is involved in a 

certain motor skill) across different subjects. In other words, is there a relation between 

the MC representation extent and the skill level on a learned motor task? Studies have 

shown that certain areas in the grey matter and sub-cortices were found to a have larger 

volumes in expert populations, with a skill which is substantially more developed than in 

the average population [50]. In a study from 2003, Gaser et al. compared three groups 

different musical backgrounds [51]. A correlation between the level of musical skill 

(professional musicians, non-professional musicians and non-musicians) and grey matter 

volume was found across multiple brain regions, such as the superior parietal region, an 

area associated with integration of visual and sensory information. 

 

2.3.3 The motor areas 

 As can be inferred from the study by Gaser et al., the sensorimotor system is not 

isolated from other brain areas. In fact, the motor cortex itself is composed of different 

subareas [48]. The different motor areas are connected with other cortices, implying the 

involvement of other brain functions, including higher order cognitive function [48]. The 

motor areas differ from each other also by the amount of output that they project. The 

primary MC (M1) is the main contributor to the cortico-spinal tract (CST), the main 
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pathway from the cortex to the spinal cord [52]. That is in agreement with the executive 

function of M1, namely, sending descending motor information to the different body 

parts. Other important areas in the MC are the premotor cortex and supplementary 

motor area (SMA) which also receives input from the prefrontal cortex and pre SMA, and 

contributes a little to the CST [53]. Activation which also involves premotor cortex and 

SMA activation on top of the M1, suggests the involvement of movement planning and, 

more generally, processing that involves cognition [53]. This kind of processing may be 

associated with an earlier stage of motor learning when the movement sequence is not 

yet performed skilfully. 

 

   

Figure 1.1. Left: Pathways between the three compartment involved in movement: 

Motor cortex, cerebellum and basal ganglia. Taken from 

www.slideshare.net/SubhadeepDuttaGupta1/sensory-motor-processing-in-planning-

and-execution-of-movement. Right: Three of the subareas of motor cortex: primary 

motor cortex, supplementary motor area and the premotor cortex. Taken from 

www.dynamicbrain.ca/brain-anatomy-images.html 

 

 Thus the motor area contains several subareas, each one having its own neural 

architectonics and function. Motor learning animal and human studies have shown that 

neurons within the M1 population are capable of changing their function for encoding a 

newly acquired motor skill [54-56]. To investigate learning however, longitudinal designs 

http://www.slideshare.net/SubhadeepDuttaGupta1/sensory-motor-processing-in-planning-and-execution-of-movement
http://www.slideshare.net/SubhadeepDuttaGupta1/sensory-motor-processing-in-planning-and-execution-of-movement
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are more powerful than the cross sectional design used for example by the Gaser et al. 

study. The basic hypothesis may suggest that performance on a learned motor task 

(measured for example in terms of speed, correctness or synchronicity of movements) is 

positively correlated to the representation size within motor areas. This hypothesis was 

found to be partially true by Kleim et al. in the context of a rat study [57]. Two groups of 

rats were used, one that was learning a certain task and another that was physically 

active, but without any particular skill acquisition. Increase in the task-related 

representation area was found as expected, suggesting that more neurons in the M1 

participated in the movement of body parts related to the acquired skill. However, the 

onset of this organizational change occurred at at later time point than the performance 

improvement with respect to improvements in performance. In addition, the synaptic 

density was found to be increased in the skilled group, but again, this change was not 

synchronized with the improvements in performance. Moreover, the improvement rate 

presented by the learning group was highest in the early phases of learning. By the third 

day their performance was significantly improved, while the change in representation and 

synapse density became elevated only at the 7th and the 10th days. The author however 

stressed that only persisting effects were examined, while the possibility of salient effect 

of the time scale of few tens of minutes was not ruled out. 

 

3.4 Motor learning model 

 The last study shows that despite correlations between improved skill level and 

functional grey matter organization, any learning model should refer to other brain areas 

and mechanisms to fully explain how learning take place. In fact, there are two other brain 

compartments that have been shown to be involved in movement regulation. One of 

them is the basal ganglia (BS) which consist a collection of sub-cortical nuclei with 

pathways to cerebral cortices, including the motor cortex [58]. The other compartment is 

the cerebellum (CB), which also has connections to the cerebral cortex, notably the motor 

cortex, as well as input connections with ascending axons from the brain stem [59]. The 

CB has a role in motor functions such as movement adjustment, but there is also evidence 
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supporting its role in the learning process and particularly motor learning. This role arises 

from the special neuronal structure of the cerebellar cortex, which compares expected 

sensory information based on an output from the MC and actual sensory information. 

Learning emerges from discrepancies between these two sets of information. The BC and 

CB, together with the motor cortex are the main components of movement models [60]. 

 In light of this knowledge regarding the role of the CB, BS and MC in movement 

production, researchers have been working to decompose the motor learning process 

based on different behavioral parameters and to associate learning components with the 

CB, BS and MC or combinations of them. In a typical motor task, there are two 

performance parameters measured: precision and reaction time. Similar to the two 

different time scales observed by Kleim, also in the time scale of days, the improvement 

in each one of those two learning performance components has been found to take place 

across different amount of time. Precision improvements have been found to precede the 

shortening of reaction time, which takes place at a slower rate. These finding reflect the 

idea of two learning stages [61]. An early stage, characterized by fast and explicit learning, 

when the movements require the involvement of cortices other than the MC as cognitive 

processes are involved, and a later stage, more gradual stage, in which the sequence of 

movement is optimized. Learning is often associated with another stage, in which the 

motor skill is improved without practice in a process known as consolidation [62]. In terms 

of brain imaging findings, the early explicit stage is characterized by a decrease in the 

cerebellar BOLD response, correlating with the decrease in errors, and providing support 

to the role of the cerebellum in error correction [62]. The optimization stage, on the other 

hand, is characterized by an increased BOLD response in M1 which may suggests 

functional reorganization of M1 neurons, as discussed in the context of the study by Gaser 

et al [51]. At this stage, less activation is detected in the association areas, pre MC and 

SMA, but more activation is detected in M1 [62]. This process of gradual restriction of the 

cortical areas of activity measured during a task to parts of the M1 area can be regarded 

as minimization of the resources. This is reversely analogical to the dispersion of the 
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activation area seen during aging, perhaps as part of a compensation mechanism to the 

reduced functionality of certain brain areas with aging. 

 

3. The studǇ’s objective 

 

 In summary, there is a bulk of evidence concerning structural plasticity as well as 

the functional changes associated with it. The functional data acquired during motor 

learning research have so far mainly based on the BOLD contrast. As discussed in the 

context of calibrated fMRI and aging-related changes, there is however a need to better 

characterize vascular properties and thereby brain activity, since the BOLD response is 

related to CMRO2 (and therefore brain activity) through blood volume and blood flow. 

This interpretation ambiguity may also be problematic in the context of motor learning. 

Two main trends were pointed out, namely increase BOLD response in M1, and decrease 

in other motor cortex areas. Adding an evaluation of the CBF baseline changes in these 

areas will enable a better understanding the plasticity changes, but will also improve the 

neuronal interpretation of the BOLD response by providing additional information on the 

BOLD baseline. 

 To conclude, numerous studies have investigated the motor learning process and 

attempted to create a model describing the neural pathways and brain areas involved in 

this process and the way these compartments work together. However, the efforts to 

characterize these motor learning changes occurring did not fully exploit available MRI 

techniques to extraction relevant physiological information. For example, Gryga et al. 

have attempted to assess grey matter changes during motor learning. Using the same 

experimental paradigm as in this project, they demonstrated that changes in MC volume 

after learning were associated with performance [47]. However, there was no attempt to 

characterize grey matter changes in terms of physiological parameters. This is 

problematic, since changes in blood flow and vasculature have been shown to lead to 

artifactual volume changes [63]. As reviewed, CBF increases have reported following a 

physical activity, and according to a study by Chapman et al. [64], during cognitive 
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learning as well. Animal studies have not shown CBF changes during a motor task learning, 

but the limited scope of the available literature and the lack of CBF measurements in 

motor learning in humans require further investigation. The current work is thus based 

on knowledge acquired by studying various physiological processes which have not yet 

been merged into one experimental setup: on the one hand, the proven ability of the 

human brain for vascular plasticity following physical and cognitive interventions, and on 

the other hand, the induced grey matter changes demonstrated following a motor task 

learning, of which their neurophysiological interpretation remained unknown. This study 

both of those aspect by considering a vascular property in the context of a motor learning 

task.  
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Chapter 2 - Methodology  

 

1. Theory 

 

1.1 Principles of magnetic resonance imaging 

1.1.1 Signal source 

 The source of signal in magnetic resonance imaging (MRI) is the magnetization 

formed by ensemble of magnetic dipoles in the presence of a high magnetic field. Each of 

these dipoles is the spin of a water proton. Although these dipoles are in the quantum 

scale, the fact that their number is of the order of magnitude of the Avogadro number, 

allows the formation of a detectable magnetization vector. However, the detection is not 

direct, and it becomes possible to detect the MRI signal by evoking time changes in the 

magnetization direction, and consequently causing the emission of electromagnetic 

waves. More technically, initially the sample is at constant high longitudinal magnetic 

field, which for paramagnetic materials, induces a net magnetization vector constant in 

time, pointing at the direction of the magnetic field. The application of a radiofrequency 

(RF) pulse evokes a rotation of the magnetization vector about one of the transverse axes. 

The angle of this rotation (the flip angle (FA)) is determined by the amplitude and duration 

of the RF pulse. As the magnetization acquires a transverse component, it rotates about 

the longitudinal direction, thereby emitting electromagnetic EM) wave at the precession 

frequency. The dynamics of the magnetization vector including its interaction with the 

EM wave is explained via the Bloch equations [65]. 

 From the moment the magnetization is flipped towards the transverse plane, two 

simultaneous decay processes occur, which drive the system back to the equilibrium 

state. The more rapid decay among the two is associated with the dephasing of the spin 

rotations. The microscopic differences in the magnetic field across the sample cause the 

precession frequency of one spin to mismatch that of other spins. That, together with spin 

interactions, leads to increasing incoherence, and thus to a decay in the amplitude of the 

emitted EM waves with a time constant ଶܶ∗. The order of magnitude of the decay time 
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constant is tens of milliseconds. The longer process of decay is of the longitudinal 

magnetization characterized by the time constant ଵܶ, which is driven by spin-lattice 

interaction [66]. During this decay, the magnetization returns to its equilibrium 

orientation, namely, the longitudinal direction. To summarize, the transverse and the 

longitudinal components can be written as, 

  (1) ݉⊥ሺݔ, ,ݕ ,ݖ ሻݐ = ݉௭଴ሺݔ, ,ݕ −���−ሻ݁ݖ ��మ∗  

  (2) ݉௭ሺݔ, ,ݕ ,ݖ ሻݐ = ݉௭଴ሺݔ, ,ݕ ሻݖ (ͳ − ݁− ��భ) 

respectively, where ݉௭଴ሺݔ, ,ݕ  ሻ, the local longitudinal magnetization at equilibrium, willݖ

be written from now on as ݉ሺݔ, ,ݕ  ሻ, and � is the Larmor frequency. Since the signal isݖ

proportional to the transverse component, the main interest will be in equation (1). 

 Two other time parameters, traditionally are time to recovery (TR) and time to 

echo (TE), indicate the time duration between the application of two successive RF pulses 

and the time between an RF pulse and the image acquisition, respectively. These 

parameters are thus determined by the experimentalist, depending on the desired 

contrast. Since ଵܶ and ଶܶ∗ depend on the spin environment, TR and TE can be set in such 

a way that will emphasize one aspect or another of that environment. For example, large 

molecule, such as those that exist in fat shorten significantly the TR. On the other hand 

cerebral spinal fluid (CSF) contain mainly water and thus correspond to long ଵܶ. Setting a 

TR that capture this difference in the ଵܶ will lead to an image in which fat and CSF are 

highly contrasted. To eliminate the influence of different  ଶܶ∗ , the TE is set to be as short 

as possible. Letting the TR to be as long as possible, allows the magnetization to fully 

reacquire its longitudinal magnetization, the dependence on the ଵܶ and ଶܶ∗ Is minimized, 

and the image is mainly affected by the density of the water proton. That is know as 

proton density weighting. 
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1.1.2 Image acquisition 

 The spatial encoding of the imaging in MRI is done by magnetic field gradients. The 

Larmor frequency is related to the magnetic field, and thus to the applied gradient ܩ→, in 

the following way, 

  (3) � = −�ሺ�଴ + ∆�ሻ = −� ቀ�଴ + →ܩ ∙  ቁݐ→ݎ

where � is the gyromagnetic ratio of a proton, �଴ is the high longitudinal magnetic field 

(the ŵagŶet’s main magnetic field) and ݎ→ = ሺݔ, ,ݕ  ,ሻ. With gradients that change in timeݖ

eq. (3) becomes,  

  (4) � = −�ሺ�଴ + ∆�ሻ = −� ቀ�଴ + ׬ ሻ′ݐሺ→ܩ ∙ ଴�′ݐ݀→ݎ ቁ. 

 When applying gradients, this phase has to be added to eq. (1), which will become 

  (5) ݉⊥ሺݔ, ,ݕ ,ݖ ሻݐ = ݉ሺݔ, ,ݕ −�ሻ݁−��బݖ ��మ∗݁−�׬ �→ሺ�′ሻ∙�→ௗ�′�బ  

It can be seen from eq. (5) that the effect of the gradient is to modify the Larmor 

frequency. This fact is exploited to select a particular transverse slice in an image, by 

applying a gradient in the longitudinal direction. Only spins in the area along the 

longitudinal direction in which the magnetic field (which now varies along that direction) 

gives rise to a Larmor frequency within the RF pulse range, will be influenced by the pulse. 

Thus, the thickness of the slice is linearly related to the frequency range contained within 

the RF pulse. From now on, as the focus will be in a certain imaging slice selected as 

described above, the spatial encoding in the z direction will be disregarded. 

 The signal is composed of contributions from every point in the imaging slice. 

Therefore, the total signal is a spatial integration of eq. (5) (ignoring the decay term), 

ሻݐሺݏ (6)   = ,ݔሺ݉׭ ݌ݔሻ݁ݐሺ−��଴݌ݔሻ݁ݕ ቀ−� ׬ ሻ′ݐሺ→ܩ ∙ ଴�′ݐ݀→ݎ ቁ݀ݕ݀ݔ. 

Since the scalar multiplication in the second exponential involves the coordinate vector, 

the expectation is that the term that is multiplied by this vector will be related to the 

reciprocal vector, traditionally denoted by �→. That suggests the following definitions 

  (7) ฀௫ሺݐሻ = �ଶగ ׬ ଴�′ݐሻ݀′ݐ௫ሺܩ  

   �௬ሺݐሻ = �ଶగ ׬ ଴�′ݐሻ݀′ݐ௬ሺܩ . 
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Moreover, the time variable of the signal can be always replaced by new variables, related 

to the old ones. The components of the reciprocal space vector that were defined in (7) 

can serve as such. This can be regarded as new representation of the signal. Instead of a 

one-dimensional representation, namely with the time parameter, each point in time will 

correspond to the two components in the new two-dimensional representation of the 

signal. This two-dimensional space is referred to as k-space, which here is denoted with ܵ(�௫, �௬). 

   The signal equation can be viewed as a two dimensional Fourier transform of the 

longitudinal magnetization, and in the k-space coordinates can be written as, 

  (8) ܵ(�௫, �௬) = ,ݔሺ݉׭ ݌ݔሻ݁ݐሺ−��଴݌ݔሻ݁ݕ ቀ−�(�௫฀+ �௬ݕ)ቁ݀ݕ݀ݔ. 

The information regarding the sample is buried in ݉ሺݔ,  ሻ, since it is proportional to theݕ

proton density. Essentially, an MRI image is a proton density weighted map that can be 

further weighted using different time parameters such as  ଵܶ and ଶܶ∗. Hence the image 

itself can be obtained by an inverse Fourier transform of the signal in k-space 

It is evident From equation (8) that an MRI acquisition comes down to filling the 

k-space (i.e. signal sampling using variable values of �→ corresponding to different 

combination of ݔ and ݕ gradients). Consequently, there is a perpetual effort in MRI to 

sample as many points in k-space as possible during the acquisition. There are, of course, 

infinite ways of filling the k-space [67]. One may choose, for example, to use a large values 

of �→, while having a large sampling time, namely, large intervals between two adjacent �→ 

values. That will correspond to a high resolution image with a small field of view (FOV). 

Moreover, the trajectories in k-space may be varied according to the needs of the specific 

image acquisition. Using �→ values from the edges of the k-space at higher sampling rate 

will emphasize the fine details of the image, but will reduce its intensity. Signal obtained 

using small �→ values gives rise to larger intensity with smaller sensitivity to fine details. 

These signal manipulations are part of the notion of a pulse sequence design, a domain 

in which parameters, such as those related to timing, associated with RF pulse 

applications are determined according to specific interests.  
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The signal is related to an electromotive force induced on an electric circuit in a 

relation given by FaradaǇ’s law. According to FaradaǇ’s law, the electromotive force is 

minus the time derivative of the magnetic flux through the circuit. In MRI, the circuit is 

part of a receiving coil, and the magnetic flux is the surface integrated local 

magnetization, as it is considered to be the only time varied contribution to the magnetic 

field. The voltage induced on the coil consists the MRI signal is the measured quantity. 

Later it is amplified and digitalized such that it could be analyzed. 

 

1.1.3 7T-Tesla MRI 

 The motivation for using higher magnetic field emerges from the relation between 

the magnetization and the external magnetic field. Under the assumption of linearity, the 

total magnetization ܯ is related to the external magnetic field ܪ according to, 

→ܯ (9)   = �௠ܪ→, 

where �௠ is the magnetic susceptibility of the sample. For MRI purposes, given the nature 

of body tissues, the magnetic susceptibility may be treated as a scalar despite the fact 

that as the magnetization vector may not point at the same direction as the external field, 

it may be a tensor quantity. Since the susceptibility relates sample properties and 

magnetization (and hence the signal), it often has an important role as a biomarker of 

physiological information, such as vascular information [68]. A higher field will enhance 

signal differences created by susceptibility differences, thereby emphasizing this kind of 

information. On the other hand, susceptibility differences may emerge also from factors 

of no interest, causing degradation of the image quality. For example, at the interface 

between between two different materials. An example from the context for brain MRI, is 

the interface between the air in the nasal tunnels and bones, creating a signal loss around 

air-filled sinuses which worsen at higher field strength. Other challenges associated with 

susceptibility as well as the utilization of susceptibility differences will be addressed 

further, mainly in the context of functional MRI (fMRI). 

Another challenge associated with the use of higher magnetic fields is 

inhomogeneity in the received field. As the EM wave travels from the sample to the coil, 
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its amplitude changes at the rate of the proton Larmor frequency, whereas spatially it 

does not change much. The proton Larmor frequency at 7T is around 100 MHz which gives 

rise to a wavelength of about few meters in a vacuum. Although shorter than the 

wavelength of lower field scanners, that wavelength justifies the assumption of a spatially 

constant magnetization. However, when a sample is considered rather than vacuum, the 

electromagnetic wave velocity decreases, and thus the wavelength might be reduced to 

a few tens of centimetres, namely, the order of magnitude of the brain. In that case the 

assumption of constant magnetization field across the sample is not completely satisfied, 

causing possible distortions in the image. A similar argumentation can be applied for the �ଵ field, the amplitude of the exciting RF pulse applied by the transmitting coil. For 

correcting the effect of the spatially varied magnetic field, multiple coil elements 

(channels) are often used to   acquire the signal or to transmit simultaneously. The 

combination of different channels allows a better coverage of the �ଵ field, thereby 

increasing the �ଵ field homogeneity. 

 

1.2 Arterial spin labeling (ASL) 

1.2.1 Blood flow measurement – review 

Blood flow is a measure of the blood volume (including the plasma) that enters a 

certain region per unit time. The region may be a voxel and the flow may contain intra- 

and extra-vascular components. When the extra-vascular component is taken into 

account, there is an interest in the amount of flow per certain amount of tissue. Thus the 

units in that case will be flow per unit of mass, and although the terms flow and perfusion 

will be used interchangeably, in the context of MRI, only the definition of flow per unit 

mass will be used [69], unless stated otherwise. 

Certain imaging modalities have the capacity to assess blood flow. In ultrasound, 

the Doppler effect is at the core of the technique. Standard Doppler ultrasound exploits 

reflected sound waves from surfaces between two apparatus and time differences 

between emitted and received waves in the transducer. For flow measurement, the 

different wave length received from moving targets permits an assessment of its velocity. 
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The method, however is effective for high velocities such as in large vessels, and not 

sensitive enough for blood velocities in capillaries, for example. 

In other imaging modalities, such as positron emission tomography (PET) and 

single photon emission computed tomography (SPECT), a radioactive bolus of labeled 

water is injected into the blood. By scanning the subject in a detector sensitive to the 

radiation emitted by the bolus, highly sensitive map of the bolus concentration can be 

obtained. By considering the time profile of each voxel, blood volume and blood flow 

maps can be constructed. Similar concepts underlay endogenous MRI CBF measurement 

techniques. However, the physical principles underling the signal production is different. 

Instead of emitting radiation, the bolus is an MRI agent contrast, typically gadolinium. 

Since gadolinium is highly paramagnetic, it increases R2
* significantly, thereby creating a 

loss of signal in the vessel where it passes. The loss of signal can be treated similarly to 

the signal originating from the radioactive bolus in the case of PET and SPECT. ASL, on the 

other hand, is a noninvasive method — no contrast agent is required for creating the flow 

contrast. An advantage of ASL is that it can be used to measure tissue perfusion rather 

than vessel flow. This is because the bolus in contrast-agent techniques cannot penetrate 

the blood-brain barrier, and thus these techniques do not contain the extra-vascular 

component in their measurement. 

The multiplicity of imaging method to quantify blood flow in term of physical units 

allows the validation of one method with respect to another. ASL by its self is a group of 

methods with significant variation in measured CBF. However, also across imaging 

modalities, the observed CBF values are in accordance with PET technique for blood flow 

measurement [70].  

 

1.2.2 Basics of ASL 

All ASL techniques are based on the acquisition of two images, one acquired a few 

seconds after the other. The two images are acquired identically, except for flow encoding 

in alternate images. The flow encoding is achieved by applying a 180 degrees RF inversion 

pulse prior to the acquisition of every other images (referred to as the tag images), 
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manipulating the longitudinal magnetization in certain areas and subtracting the two 

images.  The position and orientation of the FOV should be such that brain perfusion is 

well captured. Such geometrical consideration will be further elaborated when the blood 

flow model will be discussed. Another pulse sequence consideration is the need to 

acquire the images quickly. Long acquisitions will fail to capture the blood flow, as will be 

discussed below. For this reason, echo planner imaging (consisting in filling of the entire 

k-space in one TE) is typically applied. Finally, the pulse sequence should be insensitive to 

any relaxation process, besides the one associated with the blood tagging. More 

specifically, axial magnetization decays are undesired, and thus mitigated by utilizing 

proton density contrast.  

The area affected by the inversion pulse varies between different ASL methods, 

and for simplicity, it will be assumed that is applied below the ROI. After the application 

an 1800 RF (inversion) pulse on the tagging area, the sources (typically ďlood’s plasma) in 

that area flow into the ROI, while their magnetization decays back to the equilibrium 

state. A few seconds after the application of the inversion pulse, the tag image is acquired 

at a moment where the incoming flow from the tag area has reduced the net longitudinal 

magnetization in the ROI. The reduction in the net longitudinal magnetization leads to a 

reduction in signal in the tag image with respect to a control image, in which no saturation 

pulse was applied. The difference in intensity between the two originates from inflowing 

sources to the region of interest, and thus the subtraction image is a perfusion weighted 

image. 

One of the main challenges in ASL is determining the duration between the 

inversion pulse and the tag image acquisition (post labeling delay, PLD) which optimizes 

the perfusion image in terms of artifacts and SNR. The actual value of this duration may 

vary as a function of various factor such as the strength of the magnetic field, anatomical 

properties and the ASL technique. However, some basic principles are valid regardless of 

these factors. This duration should leave enough time for the blood to flow from the 

tagging area to the region of interest. On the other hand, the image acquisition should be 

close enough to the moment of the application of the tagging pulse due to 2 processes: 
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the washout of the labeled blood from the ROI and the return of the longitudinal 

magnetization back to equilibrium state. In fact, the ASL pulse sequence is realizable 

because of the fact that the magnetization decay and the PLD happen to be of the same 

timescale. Because of this, using a higher field is beneficial in terms of ASL SNR, since a 

higher field prolongs T1 values. 

During the initial development of the ASL pulse sequences in the nineties, 

technological limitation associated with the rate at which gradients can be applied, often 

limites the acquisition to a single slice. However, utilization of EPI pulse sequence now 

enables multi-slice acquisitions of the entire 3-D ROI in one TR. The EPI acquisition scheme 

gives rise to the possibility to create perfusion data time series. The fundamental time 

resolution of that time series is twice the TR because of subtraction. EPI allows us to use 

a TR of a few seconds, keeping the time resolution high enough for functional MRI since 

the hemodynamic response is about 30 s and peaks around 6 s.  

ASL can be used to measure the localized hemodynamic response that 

accompanies brain activity. Furthermore, perfusion imaging has an advantage over BOLD 

in fMRI for determining the exact localization of the activity. Since the BOLD response is 

highly dependent on deoxyhemoglobin (dHb) concentration, it is biased towards veins. 

These can be several centimetres from the actual locus of activity (71). Under the 

assumption that the energetic requirement for neural activity is related to blood supply 

into the area of activity, which is reasonable considering that the brain cannot store 

oxygen and glucose locally, and ignoring MRI resolution limitation, CBF maps should 

provide a good localization up to the length scale of the distance between capillaries and 

neuron cells. 

Besides the difficulty to determine the PLD, perfusion measurements may include 

arterial blood that flows out of the FOV, instead of flowing into the capillaries. This bias is 

mitigated by a longer post-label delay before acquiring the tagged image. However, a 

longer PLD may cause a separate issue of decreased image contrast, related to T1 decay. 

Therefore, the timing of the sequence has to be carefully chosen to minimize both sources 
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of decreased data quality. Models that seek to quantify the perfusion signal address these 

types of issues and will be discussed later. 

 

1.2.3 ASL methods 

 ASL are typically categorized by the tagging method used. Three different types of 

RF radiation can be applied: continuous RF radiation (cASL), pseudo continuous radiation 

(pCASL) and an RF pulse (pASL). The latter will be in the focus of this project, while the 

other two will be briefly introduced. 

The continuous RF radiation is applied below the ROI and selectively affects only 

moving spins, and is thus referred to as flow-driven inversion [72]. The radiation is applied 

to a narrow slab where a gradient field is also applied. The slab is placed at the level of 

the carotid arteries since all the blood to the brain transits through these arteries.The 

movement along the gradient creates the effective field which is correspond to the 

Larmor frequency, thereby permitting the radiation to rotate the moving spins by 180 

degrees. The duration of the RF pulse should be long enough to permit the formation of 

enough tagged blood to cover the ROI once the tag reaches the brain. This parameter is 

thus strongly dependent on the blood velocity, but is usually set to 1-2 s. the amount of 

blood passing through the thin slab of the RF radiation correspond to the available 

perfusion signal that can be potentially produced. However, the tagging efficiency of this 

method is relatively low, and is typically about 80%. Another important disadvantage of 

this technique is that it causes high levels of specific absorption rate (SAR), which is a 

measure of the rate of the RF energy deposited in the tissues. Due to the limited amount 

of energy that can be safely deposited in tissue, this technique often cannot be used 

effectively.  

Pseudo-continuous ASL has similar properties as CASL in terms of the tagging 

strategy, but is different with respect to the way the inversion is achieved. Instead of a 

continuous radiation, a train of 180 RF pulses is applied, namely, fast sequence of many 

RF pulses applied one after the other. The duration between two sequential pulses is of 

the order of milliseconds and the total inversion duration is similar to CASL. The lack of 
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continuous radiation significantly reduces the SAR level. Moreover, the tagging efficiency 

obtained by this method is higher, as the tagging achieved by 180 inversion pulses, rather 

than flow-driven inversion. It is for this reason that pCASL becomes the preferred method 

for acquiring perfusion images and is usually used in cases where it is technologically 

feasible. 

A third method is pulsed ASL, which is a category of its own, as it may be 

implemented using different tagging strategies. Ideally, the only effect that the inversion 

has on the spins is their rotation by 180 degrees. Realistically, however, the pulse is 

accompanied by other effects, thereby necessitating certain adaptations, which are 

realized by the different tagging strategies. A general goal in ASL is to maintain the same 

conditions in the tag image acquisition as in the control acquisition, excluding the tagging 

effect. This kind of control is difficult to achieve due to off-resonance effects in the ROI, 

created by the inversion pulse. Ideally for example, the inversion pulse does not match 

the Larmor frequency of spin in the ROI. However, the various chemical environment of 

these spins shift the Larmor frequency, thereby creating a distribution which may overlap 

the inversion RF pulse profile and causing spins to depart from the equilibrium state 

necessary during the acquisition. Among the spins which are in a dynamic chemical 

equilibrium with other components of the chemical environment, some will interact with 

the magnetization available at the Larmor frequency during the image acquisition. This 

process is known as magnetization transfer (MT) and the different tagging strategies aim 

to avoid this effect. 

In the echo-planar imaging-based signal targeting by alternating radiofrequency 

pulses (EPISTAR) pulse sequence, the same inversion pulse applied below the ROI at the 

level of the carotid arteries for tagging inflowing blood, is also applied before the control 

acquisition above the ROI in a symmetric manner with respect to the ROI. The application 

of these two pulses cancels off-resonance effects. Another method is proximal inversion 

with control of off-resonance effects (PICORE) where the off-resonance inversion pulse 

(namely, a pulse without localizing gradient) is applied on all the brain before the 

acquisition of the control image. Once again, this method is designed to cancel off-
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resonance effect. Lastly, the method that is used in this project is flow-sensitive 

alternating inversion recovery (FAIR). In this pulse sequence an inversion pulse is applied 

on the ROI in both the tag and control images, thereby preventing the MT bias. However, 

the inversion pulse is extended to cover the coil sensitivity area in the tag image (i.e. the 

full body for a body coil or the whole head for a head-only coil as used here), while the 

inversion pulse is localized to the ROI during the control image acquisition. In terms of the 

physical mechanism producing the perfusion signal, prior to the control acquisition, 

untagged blood flows into the ROI during the PLD and slightly increases the available 

magnetization relative to the tagged blood. The tag acquisition should produce similar 

signal in the ROI, expect for the small signal increase produced by the incoming flow 

during the control acquisition. Therefore, by subtracting the tag image from the control, 

a perfusion weighted image is obtained. 

 As a direct consequence of the way the tagging is achieved, the three methods 

mentioned above differ also in terms of the interpretation of the perfusion signal. The 

contribution to the CBF signal of blood flow entering the FOV from above may not be the 

same as that from below. In the case of EPISTAR, the inversion pulse prior to the control 

acquisition above the FOV, leads to a negative contribution from incoming blood from 

above the FOV. In the case of FAIR, as the pulse sequences of both the control and tag 

images are spatially symmetrical, blood that enters from above the FOV has the same 

(positive) contribution as blood that enters from below. In the case of PICORE, blood 

enters from above should not have any contribution to the perfusion signal [73]. 

 

1.2.4 Quantification 

  We know from the basics of MRI that the measured quantity is an amplified 

current produced by the effect of RF radiation emitted by the spins of water protons on 

a receiving coil. A priori, structural or functional information is always given by the relative 

intensity of a voxel with respect to other voxels. Certain contrast mechanism can highlight 

certain aspects, but the value of each voxel will not have physical meaning of itself. To 

convert the ǀoǆels’ intensity to values that contain absolute physical meaning, a model 
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fact that not all the voxel contains tissue, is accounted for by the inclusion of the ratio 

coefficient of tissue and and blood. Statistical dynamics dictates an exponential clearance, 

and thus the expression for the clearance term is,  

ݐሺݎ (12)    − ሻ′ݐ = ݁−ሺ�−�′ሻ�� , 

where  is the brain-blood partition coefficient. This represents the ratio of water that 

entered the voxel at time t’, and is still in the voxel at time t. 

 It was implicit above that the water diffuses freely not only between blood and 

tissue, but also inside tissue. In other words, whatever the tissue might be, the 

assumption is that it is composed of a single compartment. This assumption also 

facilitates considerations of magnetization decay. It is assumed that once inside the voxel, 

the T1 constant changes from that of the blood to that of tissue, T1. In fact, the assumption 

of constant T1 across the capillary bed is realistic also in the case where different 

compartments are involved, given that the water exchange between them is fast enough 

(as is assumed regarding blood and tissue). The ratio of magnetization left at time t with 

respect to the magnetization in the voxel at time t’ is, 

   (13) ݉ሺݐ − ሻ′ݐ = ݁−�−�′�భ . 

 From these 3 functions, an expression of the ASL signal as a function of time can 

be constructed. Setting t=0 to be the time of the inversion pulse, at any time before Δݐ, 
the travel time of blood from the most proximate point of the labeling region to the voxel, 

the ASL signal in the voxel is zero. The moment tagged blood starts to enter the voxel, the 

dynamics is described by the convolution of the delivery function, c(t) and the 

multiplication of the functions associated with signal reduction, namely r(t-t’)∙m(t-t’). (The 

reason for the multiplication in the latter term is that each one of the functions, r(t-t’) and 

m(t-t’), represents the portion of tagging left in the voxel while ignoring the other 

function). This is valid as long as tagged blood keeps flowing into the voxel. This duration 

is denoted by �, and is estimated from the width of the tagging slab, given a certain blood 

velocity in that tagging area. Thus, assuming a constant flow over time, by multiplying this 

convolution by the flow, the ASL signal, is obtained, 

   (14) Δ݉ = ʹ݉��݂ ⋅ {ܿሺݐሻ ∗ ݐሺݎ] − ሻ′ݐ ∙ ݉ሺݐ −  ,{[ሻ′ݐ
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Unlike CASL, PCASL is not limited in the inversion pulse duration. PASL, on the other hand 

uses a short RF pulse, and the bolus duration is determined by the extent of the tagging 

slab. Therefore, in this case, the bolus duration is limited by the geometry of the RF coil. 

 T1 values increase with magnetic field strength. The difficulties involved in using a 

higher field scanner were pointed out in the context of the basics of MRI, yet given this 

theoretical framework alone, higher values of T1 are beneficial in ASL, as it results in 

higher ASL signal from reduced decay during the PLD. The slower the tagged spins 

inverted revert back to the equilibrium state, the larger the magnetization in the tag will 

deviate from that of the stationary spins. These consideration, regarding the bolus 

duration and T1 are summarized in figure 2.1. 

 From equation (17), it is still unclear how to account for the transit time Δݐ. This 

parameter is difficult to evaluate, and is also spatially dependent. To address this issue, a 

few strategies were developed. One of these strategies consists in multiple subtractions 

between the tag and control images. Thus, instead of acquiring the pairs of tag and control 

images with the same time interval between the inversion of the image acquisition (time 

from inversion, TI), a time series of ASL signal is acquired, by alternating the TI values. In 

fact, equation (17) can be regarded as a set of equations, one for each time point. Since 

there are only two unknowns, f and Δݐ, two time points are sufficient. Nevertheless, 

producing a time series ASL signal with additional TI values can be used to validate for the 

model, in cases where the ASL signal, which is independent of the model, follows the 

theoretical curve given by eq. (17) [77]. Another strategy utilizes an additional pulse 

during the tag and control acquisitions, a saturation pulse that ͞ resets͟ the blood labeling. 

In this method, quantitative imaging of perfusion using a signal subtraction (QUIPSS) [78], 

both the bolus arrival time and the bolus duration are eliminated from the calculation. 
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Figure 2.1. The theoretical curve of the ASL signal as a function of time, using variable 

time parameters. 

 

1.2.5 Quantitative imaging of perfusion using a single subtraction (QUIPSS) 

Although CBF quantification can be achieved using the described model and 

certain assessment of the time parameters, the QUIPSS pulse sequences may improve the 

accuracy of the procedure. Two different approaches may by used to implement the 

QUIPSS strategy. One of them uses a saturation pulse below the imaging slab, and in the 

other the saturation pulse is applied on the imaging slab. 

By applying a saturation pulse on the imaging slab, before both the control and 

the tag acquisitions, the labeling of all the spins present in the imaging slab during the 

saturation pulse is eliminated. However, blood which enters the imaging slab after the 

saturation pulse will renew the labeling supply to the imaging slab. This period of renewal 

is known, since it is the moment of the application of the saturation pulse. It can be 

regarded as the moment when tagged blood starts flowing into the imaging slab. An a 

priori estimation of the bolus arrival time is required, but any estimate of this value will 

be sufficient, as long as it does not exceed the bolus duration. It is then provided that 

labeled blood will enter the imaging slab right after the saturation pulse. 

The time duration between the saturation and the inversion pulse is denoted by 

TI1, whereas to the image acquisition is denoted by TI2. Thus, the conditions for the first 

QUIPSS method on these time parameters are, 

   (20) 
ଵܫܶ > Δܫܶݐଶ < Δݐ + � 
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where the ASL signal for that case can be estimated as, 

   (21) ∆݉ሺܶܫଶሻ = ʹ݉�ሺܶܫଶ − ��ଵሻ݂�݁−��మܫܶ  .ଶሻܫሺܶ�ݍ
 The assumption of the first QUIPSS technique (QUIPSS I), that tagged blood is still 

flowing into the imaging slab, should hold also in the second QUIPSS technique (QUIPSS 

II), with the additional requirement that not all the tagged blood left the tagging area. 

Given that the saturation pulse is applied in this case on the tagging area, this is equivalent 

to the requirement that, 

ଵܫܶ (22)    < �. 

With the saturation pulse applied to the tagging area, it is assumed that immediately after 

TI1, no more tagged blood leaves the tagging area. TI2 should be set such that during the 

acquisition, no more tagged blood enters the imaging slab. Given the fact that after the 

application of the saturation pulse TI1 represents the bolus time, this condition is 

equivalent to the requirement that, 

ଶܫܶ (23)    > ଵܫܶ + Δt 
 Under this condition, the ASL signal is given by, 

   (24) ∆݉ሺܶܫଶሻ = ʹ݉฀ܶܫଵ݂�݁−��మ��  .ଶሻܫሺܶ�ݍ
 The QUIPSS methods can be summarized by considering the two parts of equation 

(17) corresponding to the two non-zero parts. QUIPSS I consists of resetting the ASL signal 

at a time point that is within the first time interval, thereby eliminating Δݐ. Knowing the 

time of the image acquisition enables the usage of the equation that is valid in this time 

interval, an equation that does not contain the bolus duration. QUIPSS II consists of 

resetting the ASL signal at a time point within the second time interval, thereby 

eliminating �. In this case Δݐ is absent from the equation. Thus, in both methods, both Δݐ 
and � were eliminated from the calculations. 

 

1.3 ASL data analysis 

1.3.1 Subtractions 

The flow-dependent signal from the ASL data must be isolated prior to quantifying 

CBF. The ASL signal will then serve as the input to the standard kinetic model in which CBF 
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is calculated (see theory section). A model for the assessment of ASL signal given a series 

of N interleaving tag and control images was formulated by Liu et al [79]. The following 

notation was adapted from Liu’s study. Given a time series y[n] of interleaving tag and 

control images, the ASL signal at a time point n (where n = 1,2,3 … N) can be assessed by, 

[݊]ݍ (25)   = [ሺ−ͳሻ௡+ଵݕ[݊ + ͳ]] ∗ ݃[݊], 
namely, the convolution of the filter g[n] with the ASL signal with interleaving signs. 

 The choice of a filter determines the type of averaging performed over its window, 

as well as the weight given to each time point. A simple pair-wise subtraction (the 

subtraction scheme which was implicitly referred to when the ASL pulse sequence was 

described) will correspond to the filter, 

   (26) ݃ଵ[�] = [ͳ,ͳ], 
where the convolution is performed as, 

[′݊]ݍ (27)    = ∑ [ሺ−ͳሻ�+ଵݕ[݊′ + �]]݃[�]ଶ�=ଵ , 

where Ŷ’ is odd, or explicitly, 

[′݊]ݍ (28)    = (௬[ଶ]−௬[ଵ]௬[ସ]−௬[ଷ]௬[଺]−௬[ହ]⋮ ). 

Simple subtraction can also involve each time point from the raw data twice (except the 

2 end points) to thus obtain an ASL signal composed of nearly the same number of time 

points as in the raw data. This can be described as up-sampling of the perfusion time 

course by interpolating the additional points. This type of filtering may be beneficial when 

time resolution is particularly important, such as the case when there is an activation 

expected during a certain time interval. 

 Pairs of tag and control can be also averaged if they are associated with the same 

perfusion time point. More specifically, a control time point can be subtracted from the 

tag time points of both sides. This kind of subtraction is known as a surround subtraction, 

and its filter is, 

   (29) ݃ଶ[�] = [ͳ,ʹ,ͳ] 
where the explicit result of the convolution is, 
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[݊]ݍ (30)    = (−௬[ଷ]+ଶ௬[ଶ]−௬[ଵ]௬[ସ]−ଶ௬[ଷ]+௬[ଶ]−௬[ହ]+ଶ]௬[ସ]−௬[ଷ]⋮ ) 

 lastly, a third type of filter is the sinc filter, defined as, 

   (31) ݃ଶ[�] =  �ߨ/ሻʹ/�ߨሺ݊�ݏ
in this case, any window width of the filter can be used, however, the time point will be 

weighted with a factor of 1/݊ߨ as the image is n time point from the center of the window. 

To assess the impact of subtraction scheme on the resulting CBF data, all three 

subtractions schemes were implemented in this study and compared using the statistical 

F-test. 

 

1.3.2 Motion correction 

In any analysis performed across time the assumption is that the coordinates of a 

certain area in the image correspond to the same area in an image at any other time point. 

This assumption is becoming increasingly problematic with increasing time duration 

across which the images were acquired. This assumption is no longer valid in case of 

motion. 

In the scanner, the subject is instructed to avoid from head movement. However, 

some types of motions are unavoidable, such as breathing. This type of motion is a 

periodiĐ ŵotioŶ of ǁhiĐh the effeĐt is the appearaŶĐe of ͞ghost͟ oďjeĐts iŶ the iŵage. 

Such phenomenon is addressed in case those artifacts are visually detected in the image. 

It can be resolved by inspecting the frequency domain of the signal, and filtering out the 

frequency correspond to the frequency of the breathing. However, the standard 

procedure for cancelling the effect of motion is by aligning the images according to a 

certain reference. For that purpose, there are several algorithms that can be 

implemented, and as the goal is optimization, there are different approaches regarding 

the optimization procedure. Mathematically, those procedures are characterized by the 

cost function, of which its minima represent the optimal choice of parameters. The way 

the cost function is defined determines a certain choice of optimization. 
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The algorithm implemented in this study takes the image of the middle time point 

(considered here as time point zero) as a reference image. The procedure described 

below was done simultaneously towards the two time directions. For each volume, a 

search for the transformation parameters that minimize the cost function is performed. 

There are two search area parameters in each step, correspond to two different stages of 

the motion correction. A more coarse initial search with searching window of 8 mm 

isotropic. This is followed by a more refined search with searching window of 4 mm. The 

search in the first image adjacent to the zeroth image assumes a priori that no motion 

occurred. For the next image along the time series, the transformation found between 

the zeroth image and the first, is first applied on the zeroth image. Then the search 

procedure is identical as was described for the first volume. For the third volume, the 

second transformation is first applied on the zeroth volume and the procedure continues 

similarly for the rest of the volumes.  

The optimization is done with respect to 7 motion parameters. Three rotations 

about the 3 Cartesian axes, 3 translations, one for each direction, and the displacement. 

The combination of the of these 7 parameters that minimize the cost function serves for 

the transformation and is plotted in figures 2.2 across the time points. Since the shape of 

the brain is preserved across the time point, the transformation is a rigid body 

transformation. Once the transformations were determined, an interpolation algorithm 

is performed for evaluating the new values of the voxels, values that are weighted by the 

new corrected locations of the old voxels. 

There are sevens steps in total for trilinear interpolation [80]. Three steps to 

interpolate each of two collinear points (points p1234 and p5678) with respect to the 

point needed to be interpolated (point v), and a final last step to interpolate point v using 

points p1234 and p5678. Point v represents the corrected intensity in the voxel in the 

motion corrected image, whereas points p1-p8 are points of the image before the 

transformation being at the new locations assigned by the transformation. d1 is the ratio 

of the distance between v and p1234 and the distance between p1234 and p5678, where 

d2-d7 where determined similarly. The last step of the algorithm will be calculated by, 
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reduce the averaging. The compromise often adapted is to set the FWHM to be of the 

order of magnitude as the voxel dimensions. 

 

1.3.3.2 Physiological noise 

 the sampling rate of the perfusion time series is 8.6 s (2TR). Therefore, any noise 

component with period shorter than 7 s cannot be filtered from the data. Noise 

components of period longer than 7 s are associated with physiological changes that 

might affect the temporal SNR (tSNR). The respiratory and cardiac cycles are among the 

contributors for the physiological noise, although other factors have been pointed out as 

well. Those factors are related to hemodynamic metabolic fluctuations occurring mainly 

in gray matter areas, and are not fully understood [81]. It is for that reason that 

physiological noise is dominant in susceptibility weighted images, namely, it is TE 

dependent [82]. Therefore, physiological filter becomes more crucial in BOLD time course. 

However, no pulse sequence can prevent completely BOLD contamination as TE cannot 

be completely zero (in this study TE = 9.2 ms). 

 Assuming independent noise components ��, the total noise is, 

   (35) � = √∑ ��ଶ� . 

Here we distinguish between two noise components, �଴ and �� which are the thermal 

Gaussian distributed noise and physiological noise, respectively. tSNR is defined as, 

ܴܰܵݐ (36)    = ௌ� 

where S is the time averaged signal. Using those definitions, an expression for the 

physiological to thermal noise ratio can be obtained, 

   (37) 
���బ = √ቀௌ�ோబ�ௌ�ோቁଶ − ͳ  

where SNR0 is the special SNR. Thus, this ratio is scaled asymptotically with the SNR. That 

gives rise to the different nature of the physiological noise, consisting of physiological 

fluctuations which factorize the signal, rather than being an additional term as in the case 

with thermal noise. The noise factorization factor multiplying the signal is denoted by, 

which with the signal can be used to express the physiological noise, 
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The free parameters are determined upon minimization of the error. Given this 

assumption, the physiological noise can be regressed out by considering the following 

analogous equations, 

   (43) ݉� = ��ܾ� + �݂ 
 instead of being interested in the fitted model (namely the regressor xi multiplied by the 

optimization free parameters), the ͞error͟ is of interest, as it represents the blood flow 

filtered from physiological noise.  

 

1.3.4 ASL signal calibration 

For quantification of the ASL signal, a measurement of the blood magnetization at 

equilibrium (mb) is required (see theoretical section). In ASL techniques in which the spins 

in the ROI are not inverted during the control acquisitions, the control images can be used 

for computing mb. In other cases, such as in this study, a separate pulse sequence is 

acquired on top of the ASL tag-control images, using a long TR. Several approaches exist 

for this evaluation. They can be classified into two main types: global value and voxelwise. 

In the case of a global value approach, the assumption is that mb changes very 

little between voxels containing blood flow and can be represented by a single global 

value. Estimating mb voxelwise introduces another source of variability, thereby 

increasing the uncertainty in resultant CBF values. Although it may not improve the 

accuracy, this approach spatially stabilizes the CBF map [83]. For the order of magnitude 

of several Tesla, it can be farther assumed that T1 value of blood does not differ much 

from that of brain tissues, thereby justifying an average across the entire brain for 

obtaining an evaluation of mb. That method can be implemented in case there is no 

anatomical information which allows more refined evaluation. However, difference T1 

does vary quite significantly across the brain, manly in transition between between gray 

matter (GM), white matter (WM) and cerebral spinal fluid (CSF). 

Therefore, other global methods consist on assessing the equilibrium 

magnetization by averaging only across brain area of type i, where i corresponds to GM, 

WM or CSF. By taking into account the T2
* differences between the area used and that of 
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a blood, as well as the signal obtained from a proton density image, ߩ�, the equilibrium 

magnetization of the area i can be converted to mb according to, 

  (44) ݉� = ఘ�ఘ�݉�݁ቆ భ�మ�∗ − భ�మ�∗ ቇ்�
. 

In the analysis, the control volumes were extracted from the time course and were 

served for the evaluation of m0. 

 

2. Methods 

 

2.1 Experiment design 

2.1.1 The motor task 

The objective of this study was to detect changes in resting blood flow in motor areas, 

following and during learning of a motor task. The motor task used here is a sequential 

pinch force task (SPFT), in which a visual input has to be responded to by finger 

movements. The visual input is a moving bar (a reference bar, RB) that the subject sees 

on a screen. Simultaneously to the RB movement, the subject controls the position of 

another bar (FB) by exerting force on a pressure sensor device (figure 2.3). The subject 

has to match the position of the FB to the position of the RB by exerting the right amount 

of pressure. 

There are two sequences involved in the experiment design, namely, two types of RB 

motion to which participants had to match the position of the FB. The simple sequence 

and the learning sequence. In the simple sequence the RB follows a pure sinusoidal 

motion, whereas in the learning sequence the RB performs a more complex movement, 

namely a superposition of several sinusoidal components. The simple sequence has two 

purposes. It is the sequence performed by the control group. Since following this 

sinusoidal pattern is an easy task to perform, no learning is expected to occur across the 

different sessions of the task after the initial familiarization with the device. This can be 

verified by observing a stable level of performance across days. Given that learning is 

associated only with improving performance, the control group can account for effects 

that are involved in the task, but not related to learning, such as the brain activation 
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evoked by the hand movements per se. The simple sequence is also used in the training 

group to localize the ROI of learning-related brain areas. The assumption is that areas 

associated with the finger movement during the simple sequence contain subareas that 

are responsible for learning during the learning sequence. 

Two measures are used to evaluate performance on the task. One is the amplitude 

difference between reference bar and the force bar for estimating accuracy. A second 

measure is lag cross correlation from which the reaction time can be inferred. These 

metrics are not shown here as learning was assessed across days rather than as a function 

of performance.  

 

 

Figure 2.3. Left: the custom made pressure sensor used in the task. Right: a schematic 

diagram of the training sequence. 

 

2.1.2 The learning timeline 

 The main part of the experiment timeline is 5 successive days of learning, in which 

the learning group performs one learning session per day of 20 minutes. On three of these 

learning days, an MRI acquisition is performed. Four days before the learning sessions, 

the participants are familiarized with the task by performing a simple sequence. An MRI 

acquisition is also performed on this day and the activation provoked by the simple task 

area is localized using a BOLD acquisition. BOLD is used during this initial session to ensure 

adequate SNR since BOLD is a more sensitive technique than ASL. As the main goal of this 

study is to detect changes in CBF, the CBF measurement of this pre-learning day is 

considered the baseline for the possible learning-induced changes. Twelve days following 

the last learning day, the participants performed once again the same task to account for 
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A Gaussian filter of FWHM = 4 mm was chosen and was applied on the raw data (since 

the ASL data processing consists entirely on linear operations, the Gaussian filtering may 

be applied at any step). This FWHM was chosen to preserve as much as possible 

anatomical boundaries while still increasing SNR. 

For the physiological filter the T1-w image was brain extracted and registered to the 

ASL native space. The functional intensity threshold of the brain extraction was 0.35. The 

CSF was then extracted from the T1-w image in qT1 space using a K-means algorithm with 

3 classes. The matrix produced from the registration of the anatomical image to the ASL 

native space was used for registering the segmented CSF to the ASL native space. To 

exclude CSF outside the ventricles, a template of the ventricles from an MNI atlas was 

also registered to the ASL native space. The registration was done using a similar strategy, 

where an anatomical image in the same space as the atlas, the MNI152 space, was 

registered to the ASL space. The matrix used for this registration was then used to 

transform the ventricle template to the ASL native space. A liberal threshold was 

implemented on the registered ventricle template for ensuring that the segmented 

ventricle of each subject will be included within the ventricle template. Then a 

conservative threshold was used for the binarization of the segmented ventricles. 

Before subtraction, the volumes were inspected visually to ensure that corrupted data 

would be excluded. In a few cases, the data were corrupted during the file transfers, 

requiring the retransferring of data from the server at the Max Planck institute. The ASL 

data were pair-wise subtracted for all the subject. For the scan from day 0, we used also 

surround and sinc subtraction for statistical comparison using F-test. After subtractions, 

the perfusion data were time averaged for all the time points, whereas on day 0, the data 

were also spatially averaged over GM for the statistical analysis. 

To obtain the CBF maps, the average PWI images were used as the input into the  

oxford command line in FSL. The model for quantification is described in the theory 

section. The selected inversion efficiency was 0.98, a typical value for pASL. The T2
* of 

blood was set to 37.5 ms, T1 of blood was set to 2.23 s, and T1 of CSF was set to 4.4 s.  
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For the purpose of the calculation before registration, perfusion data were truncated, 

for removing slices containing artifacts in the lower and upper parts of the image. After 

truncation, 9 out of the 15 slices were kept, containing the ROI. A similar procedure was 

done for data in MNI152 space (see below), leaving 41 out of the original 91 slices in the 

image.  

Most of the ASL data processing was done on FSL in a MATLAB programming 

environment. 

 

2.4.2 Registration 

Registration is a process in which an image is modified by a transformation to 

match the coordinate space of another, typically a reference, image. This procedure is 

often needed when two are more images of different types, of different subjects or 

acquired at different times must be compared or combined. To be able to do any 

operation or to refer to certain coordinates of one image based on information that exists 

in the other image (such as anatomical information), these two images have to be in the 

same coordinate space. In other words, they have to match, in the sense that the 

coordinates of a certain location in the brain will be the same in both imagesMost of the 

analysis described so far was performed in the same coordinates as those of the images 

received from the scanner, with the exception of the anatomical needed for the 

physiological noise. In this case, since the ventricles cannot be extracted from the ASL 

data, as it does not contain clear anatomical information, an anatomical image was 

registered to the ASL space. For performing ROI analysis however, the CBF maps have to 

be registered to a common template in a space where the ROI can be extracted. 

The registration of the CBF maps (and SNR maps) was done in two steps. First, the 

ASL data was registered to quantitative T1 space (qT1), using mappings constructed at the 

Max Planck institution in Leipzig, per subject and per day, using sinc interpolation. qT1 

refers to a subject-specific template, constructed by the co-registration of the five 

anatomical images from each participant. The anatomical data acquired per subject and 

day allowed the construction of mappings that transformed each one on the ASL data at 
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2.4.3.1 Anatomical region of interest 

As was discussed in the introduction, the main region of interest covers M1. In this 

study, the SMA was also be extracted for calculation. These two areas were masked in 

the MNI152 common space after being extracted from Oxford-Harvard brain atlas. The 

brain atlas assigns integer value of intensity to each different brain area in the 

parcellation.  

 

Figure 2.6. Left: a sagittal view of the Oxford-Harvard parcellation. M1 is in red, and 

SMA is in pink. Right: an axial view of the atlas. The M1 extends across the angular 

gyrus, whereas the SMA is mainly at more medial location. 

A MATLAB script was used to create 2 images in which only the area desired was 

included, one image for each area, and their area was restricted to the left hemisphere 

since the task was performed with the right hand. Multiplying each one of these mask 

with the CBF maps, allowed to average only over these areas. However, these areas were 

not specific enough, as the changes are expected to come from a specific area of the M1, 

namely the area associated with finger movements. Therefore, a more refined 

localization was implemented. 
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Figure 2.7 the Oxford-Harvard templates for the M1 (blue) and the SMA (light blue) laid-

out on the MNI152 brain template. 

 

2.4.3.2 Functionally-defined M1 region of interest 

Although CBF was measured before and after learning rather than during learning, 

the expectation is that learning-induced changes will occur mainly in regions activated 

while the subjects performs similar finger movements as they perform during learning, 

since these are the areas involved in the task. Plasticity can occur with the repetitive use 

of neurons, and hence the association between task-related areas of activation and CBF 

changes. This assumption allows to be more specific regarding the region of interest, as 

there are areas in M1 that a priori can be considered as non-task-related, namely, areas 

associated with other body parts. 

The task-related ROI was determined using the BOLD response to the simple 

sequence performed on day 0. The BOLD response is obtained by acquiring a time series 

of images that are sensitive mainly to the deoxyhemoglobin level in blood. Areas of 

activation are localized by exploiting the fact that there is an hemodynamic response in 

areas of activation. This hemodynamic response means that these areas are flooded with 

oxygenated blood, creating a signal difference between baseline and activation. Thus the 

BOLD time series acquisition should include a baseline period, namely when the subjects 

do not move their figures, and an activation period, namely when the subject engage in 

performing the control sequence of the task. 

For preparing the functionally-defined M1 ROI based on the BOLD response, the 
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FEAT software tool of FSL was used. A high pass filter was applied to the BOLD time course 

to filter out signal component with period longer than 150 s. The MCFLIRT tool of FSL 

software [15] was then used for motion correction and a 4 mm FMHW Gaussian filter was 

used for spatial smoothing. The chosen kernel corresponds to the smoothing kernel used 

also with the ASL data. A general linear model (GLM) model with a boxcar regressor (a 

predictor for the activation component of the signal) corresponding to the rest-activation 

period of the task was used. a graphical representation of the regressor is shown in figure 

2.8. 

 

Figure 2.8. Regressor’s graphical representation. The height of the red line and the and 

the brightness of the background represent the value of the regressor  

A Z-test was performed to determine significance level of activation using threshold of z 

= 2.3. Cluster thresholding was selected for defining contiguous areas and then 

determining by a statistical test whether they consist a cluster, using threshold of p = 0.05. 

 

2.4.3.3 Localization by temporal signal to noise ratio 

The last localization method was based on the exclusion of voxels where the tSNR 

was not high enough to provide a reliable measure of the perfusion signal. For that 

purpose, the perfusion time course is considered, namely, after the subtraction of the 

raw ASL data and before time averaging. Since the signal consists of only base, a time 

average is an indication to the signal, whereas the standard deviation is an indication for 

the noise.  

Reproducibility was defined as the mean coefficient of variability across subjects 

of the mean CBF in M1 between the day 0 scan and the pre-training scan of training day 

1. 

Statistics on the CBF data was calculated using IBM SPSS for Windows, version 23 

(Armok, NY, USA: BM Corp). 
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1.2 Motion correction  

The motion correction optimized parameters are plotted for in figure 3.2 for a random 

subject. No severe motion artifacts were observed across all the subjects. This was 

quantitatively confirmed by comparing the corrected time series to the original. The 

average motion effect was 1.1∙ ͳͲ−ଷ ±0.4∙ ͳͲ−ଷ  and thus the effect of the motion 

correction was limited. In the example shown in figure 3.2 a relatively significant 

translation occurred slightly after the 30th volume.  

 

 

 

Figure 3.2. The different motion parameters as a function of the volume number. 

 

1.3 Brain extraction 

Brain extraction of ASL data is more challenging than for standard BOLD data as the 

TE typically used is shorter and therefore gives rise to a bright scalp signal. An example of 

successful brain extraction in a representative subject is shown in figure 3.3. The main 

non-brain element is the scalp. The removal of the scalp was performed successfully for 
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all subjects. The inclusion or exclusion of brain tissue in this process is determined by a 

functional intensity threshold that may range between 0-1. Here it was set to 0.5 

uniformly through all subjects. 

 

  

Figure 3.3. Brain extraction. Left: before brain extraction. Right: after brain extraction. 

 

1.4 Filtering 

The effect of the spatial filter is shown in figure 3.4 for a random subject. The filter 

resulted in lowered extreme values and decrease in the signal averaged across all brain 

for non-zero voxels. The whole-brain average (non-zero voxels) across subjects for day 0 

was 7.30±1.77 a.u. before filtering and 3.67±0.96 a.u. after filtering. However, the total 

intensity was preserved. 

 

    

Figure 3.4. Spatial Gaussian filtering. Left: Before filtering. Right: after filtering. 

 

scalp 
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The procedure performed on the anatomical image prior the segmentation of the CSF, 

is shown in figure 3.5.  

             

Figure 3.5. Left to right: the T1-w image before and after brain extraction. The registered 

T1-W image in ASL native space. 

Initial CSF segmentation yielded an image containing both the ventricles and the 

sub-arachnoid space CSF (Figure 3.6). The ventricles area was successfully extracted from 

this image using the ventricle template from the MNI152 atlas. This extraction could not 

however precisely preserve the shape of the ventricles. The threshold was set such that 

voxels outside of the ventricles would be completely excluded, causing also a loss of 

voxels within the ventricles. However, the threshold was set such that for all subjects 

there was a sufficient number of voxels to average. 
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Figure 3.6. Top: the segmented CSF in qt1 space (left) and in ASL native space (right). 

Middle: the ventricle template in MNI152 space (left) and in ASL space (right). Bottom: 

the ventricles mask in the ASL space.  
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Figure 3.7. An ASL raw data time course of a randomly selected voxel of three different 

subject. Left column: after physiological filtering, right column: before physiological 

filtering. 

The signal from the ventricles was then regressed out of the ASL signal (Figure 3.7). 

The effect of the tagging can be seen across the time courses. Odd time points are tag, 

and thus tend to be minima, whereas the even tend to be maxima. The physiological filter 

modestly modified the time course. In some cases, it enhanced the effect of the tagging, 

as can be seen between time points 20-25 in the upper row (Figure 3.7). Once averaged 

over brain areas and across subjects however, the removal of the signal from the 
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2.3 Temporal signal to noise ratio 

The averaged tSNR in GM across all subjects in day was 0.73±0.18. The 

physiological filter did not improve the tSNR, as the value without filtering the ASL time 

course was 0.74±0.17. Mean tSNR on day 0 in M1, SNA and functionally-defined M1, 

averaged across subjects is given in figure 3.10.  Figure 3.11 shows a tSNR map for a 

random subject, with no threshold, and with thresholds of 0.3 and 0.6. As the threshold 

was increased the similarity between the averaged values with and without the 

physiological filtering remained the same. The average SNR with threshold of 0.6 was 

1.03±0.14. As seen in Figure 3.10, thresholding reduced predominantly white matter 

voxels, though the higher threshold yielded a significant loss in low SNR grey matter 

voxels. 

 

Figure 3.10. tSNR as a function of time for the SMA, M1 and functional M1. The shaded 

area represents the learning period. 
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   ]  

Figure 3.11 SNR maps for non-threshold, and 0.3 and 0.6 thresholds 

 

3. Cerebral blood flow assessment on the regions of interests 

 

3.1 Reproducibility  

 Between day 0 and the first training session no CBF change is expected, and thus 

those two scans can serve to evaluate the reproducibility. The coefficient of variability 

across subjects for day 0 versus day was found to be 0.16,0.20 and 0.25 for the M1, SMA 

and GM respectively. Calculating reproducibility using intraclass correlation (ICC), we 

found values of 0.57, 0.67 and 0.62 for the M1, SMA and GM respectively. 

  

3.2 Mean Cerebral blood flow 

 In order to show task-dependent short term and longer term learning, the average 

M1 and SMA CBF values from anatomically-defined ROIs for all ASL acquisitions are shown 

in Figure 3.12 and 3.13 respectively. 
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Figure 3.12. Averaged CBF over the M1 as a function of time for pre (orange) and post 

(blue) scans. 

The same plot is shown in figure 3.13 for the SMA 

 

 

Figure 3.13. Averaged CBF over the SMA as a function of time for pre (orange) and post 

(blue) scans. 
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Mean CBF in ROI defined by using the functional localizer is shown in Figure 3.14. 

Only the training group was considered in defining this ROI. 

 

          

Figure 3.14. Averaged CBF over the functionally-defined M1 as a function of time for 

pre (orange) and post (blue) scans. 

 

 

Table 3.1. P-values evaluating the significance in changes across the training days. 

 

 

Table 3.2. P values evaluating the significance of changes between the pre and the post. 
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The CBF differences in the functionally defined ROI of the pre-scans in the 4 time 

points with respect to the individual baseline (day 0) was calculated and then averaged 

across subjects. The results are summarized in table 3.3. 

 

 

Table 3.3. Differences between pre scans and the baseline scan on day 0 for each one 

of the training sessions where scanning took place and retention day.  

Finally, the mean CBF was calculated at the M1 and SMA, using a GM mask for 

excluding voxels of WM region. Averaged values across subjects as a function of time are 

given in figure 3.15 

 

 

Figure 3.15. Left: Averaged CBF over region included within the M1 and GM as a function 

of time for pre (orange) and post (blue) scans. Right: Averaged CBF over region included 

within the SMA and GM as a function of time for pre (orange) and post (blue) scans. 

 

 

 

 

 



 68 

Chapter 4 - Discussion 

 

1. Data processing 

 

1.1 Subtractions 

Three different subtraction schemes were tested. As described by Liu et al, the effect 

of the subtraction is equivalent to a time-domain filter, where pair-wise subtraction is a 

low-pass step function filter. The data presented here shows a bias towards higher CBF 

values when using sinc subtraction. It is not clear, however, what is the source of the bias 

towards higher values in surround and sinc subtractions. Nevertheless, the differences 

were minor and probably would not have a large impact on the end learning results. 

 

1.2 Motion correction and brain extraction 

Motion correction was the first operation done on the ASL raw data. Since the brain 

extraction was based on multiplication of all the volumes in the ASL time course with a 

brain mask of the first volume, that fact enabled the optimization of the brain extraction, 

where the alignment of the volumes is highly important. Moreover, the presence of a 

scalp in the motion correction may lead to better results, as the high contrast of the scalp 

provides a reference line, thereby rendering the search process in the motion correction 

algorithm more stable. Brain extraction serves in cleaning the noise from the image 

background and reducing edges artifacts. An alternative approach for brain extracting of 

a time course, is brain extraction volume by volume. Comparison between the 2 

approaches yielded better results when masking the first volume, as less edges artifacts 

were observed. 

Due to the small volume of the 32-channel coil on the 7T machine, motion is typically 

modest at 7T. Additionally, as only experienced MR participants were allowed to 

participate in 7T experiment, data from this machine has been found to be small in most 

studies from the Max Planck Institute. This was reflected in our data and the motion in all 
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subjects found to be small. Therefore, this also indicates that the low SNR of our data 

cannot be attributed to movement.   

 

1.3 Filtering 

The objective of the spatial filtering was to increase SNR, while maintaining the 

internal structures, mainly that of the gyri. The chosen FWHM was larger than the voxel 

dimension (4 mm in comparison to 3 mm), but smaller than the typical kernel size used 

in fMRI studies (2x the voxel size). This was done to preserve cortical structure, notably 

the in the area of the motor cortex, but was larger than the voxel size to gain SNR. 

 For the purpose of the physiological filter the ventricle region had to be extracted 

from the ASL data, using anatomical information. The rationale for the exclusion of other 

CSF area besides the ventricles relates to the fact that the spatial resolution was not high 

enough to ensure that partial volume effects due to nearby grey matter would be 

minimal. Contaminating the ASL signal from CSF with real CBF signal will undermine the 

working principle of the filter. Fitting the MNI152 ventricle template to the individual 

registered ventricles in ASL space was problematic due to the variability in the shapes of 

ventricles of different subjects. The registration used here could not account in this case 

for that variability, since the individual reference image of the ASL data does not contain 

anatomical information. Also, linear registration was used and we were thus unable to 

locally deform the image. To compensate for this, a low threshold was used when 

binarizing the registered MNI152 ventricle template. Since it was then multiplied by the 

CSF mask, it was unimportant if it contained areas outside the ventricles of an individual 

subject. Future implementations of this method could use the individual anatomical 

information rather than the MNI152 to better define the ROI.  

 One of the effects of the filtering procedure on the ASL time course was the 

cancellation of the baseline component. The was expected, as the signal emerging from 

the ventricles contains a similar baseline component to any other brain area. In fact, this 

baseline is partly related to the noise to be removed. However, the physiological noise is 

associated with changes in this baseline. This should not influence the flow-dependent 
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component however, as this flow-dependent signal consists of the difference between 

time points. The physiological filter also changed the relative intensities between time 

points, but these changes were minors. Since the effect of the filter is mainly on the 

baseline rather than on the effect of the tag and control, it can be concluded that the 

signal from the ventricles is not significantly affected by changing physiological 

parameters, and thus has limited ability to filter out physiological noise. It could be that 

other brain areas would be better suited for filtering out noise terms from the CBF. One 

possibility is the white matter. There is reason to believe that white matter is more 

representative of the physiological fluctuations and may serve as a better regressor. 

However, although CBF in WM is low, it is not zero, and thereby by may lead to a loss in 

perfusion signal. Future studies could assess the relative merits of CSF and WM signal for 

noise correction. 

 

2. Quantification 

 

 CBF values in the brain showed the expected distribution, namely higher values in 

GM area in comparison with WM. Moreover, for GM area, the values were in the 

physiological range, although below some values previously found for a similar 

population. The lower values may be the result of non-optimized GM extraction in this 

study. The GM mask did not perfectly cover the circumvolutions of the cerebral cortex, 

leading to the partial volume inclusion of CSF inside sulci and WM. 

 Another aspect of the processing which may have led to sub-optimal CBF 

quantification was the measurement of the fully relaxed magnetization M0. Two methods 

of calibration were tested, using a single value for M0 and a voxel-wise M0 methods. The 

single value method led to CBF values that were out of the expected physiological range, 

and thus was not used further. The voxel-wise method, on the other hand, yielded values 

within the expected physiological range. The reason for the overestimation of the CBF 

value using the single value method was underestimation of M0 of CSF. On the other 

hand, the voxel-wise method does not depend on an estimation of a single value, but is 
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based on local information. The draw back in this case, is the additional spatial variability 

introduced into the CBF calculation. This factor was not found to dominate in our CBF 

estimation and the voxel-wise method provided CBF maps with more physiological values. 

 Finally, the registration of the CBF data to the common MNI152 space was not 

optimal. As can be seen in figure 3.9, some of the geometrical characteristics of the image, 

namely the shape of the brain, and cerebral cortex reflected from the CBF map, were not 

well aligned with the MNI152 template. This was problematic for quantification within 

anatomically-defined ROI from the Oxford-Harvard atlas (M1 and SMA) since these ROIs 

may not always be well aligned with GM voxels. This problem was less present in the case 

of the GM ROI, as this ROI was defined using individual anatomy rather than an atlas in 

template space. In the case of these anatomically-defined ROIs, this mis-alignment due 

to non-optimized registration therefore led to a lower mean SNR. 

 

3. Temporal signal to noise ratio 

 

 ASL is known to be a low SNR technique, and the SNR on a head-only 7T scanner 

has typically been found to be lower than at the more commonly used 3T field strength. 

This is both due to field inhomogeneities and because the coil does not cover the neck 

area, making it necessary to use older and more inefficient ASL techniques such as FAIR. 

Although ASL is a low SNR technique, tSNR maps can be used to filter out voxels that 

deteriorate the overall image SNR. As expected, the voxels with higher SNR are located in 

areas of higher CBF values, which are also typically areas of interest. Moreover, the 

standard deviation across subjects decreased as the SNR increased with higher tSNR 

threshold. Thus, preserving only high tSNR voxels contributes to the stability of the data. 

While this technique may in general be beneficial, it was somewhat limited in this case 

due to the lower SNR nature of the 7T data used. The threshold could not be set too high, 

as the number of voxels reduces rapidly with threshold, and may not cover the ROI, or be 

sufficient for properly averaging. 
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4. Cerebral blood flow assessment over regions of interest 

 

While the ROI CBF comparisons performed yielded non-significant results, making the 

results of this study difficult to interpret, several remarks can be made regarding the 

results. 

Although statistically insignificant due to large variances across participants, we have 

found two opposite trends in CBF as a function of time, mainly in the M1 and SMA ROIs, 

one relates to the pre scans, and the other to the post scans. The post scans that started 

at their maximal CBF level at the first day of learning, were found to have a lower value 

at the second time point, and even lower at the third time point, the last training day. 

Although increased in the retention session in the M1 and SMA, the CBF level did not 

return to its maximal value observed at the first day of training. The pre scans, on the 

other hand, started by low CBF values, increased significantly between the first and the 

second day, and retained their level in the retention day. This was not the case in the 

functionally-defined M1 ROI, where CBF decreases over time. 

An intriguing aspect of this data is that while non-significant, the pre-training M1 and 

SMA CBF on all days except day 1 was found to be higher than the post-training CBF. This 

was especially the case in SMA ROI. A similar pattern was found across training days for 

M1, though the CBF differences were lower in this area.  

These results are interesting in the light of previous fMRI learning results, where M1 

tends to show decreased BOLD activation over time, while that of the SMA tends to show 

increases across days. While the CBF changes were very low and may not explain the fMRI 

data, it is possible that this task could increase blood at the earliest stage of the learning 

(day 1 was the only time point where CBF level in post scan exceeded the level in pre-

scan), and decrease at advanced stages. The fact that CBF decreases between the pre and 

post scan might be attributed to an unknown bias, perhaps related to a difference In 

physiological state due to breathing rate changes during the task for example, which is 

counteracted in early training days by the effect of the training working to increase CBF. 

In later days, this effect becomes less and less significant as the subjects acquire higher 



 73 

skill in performing the task. The time range of the possible task effect is unknown, since 

the ASL data were time-averaged. However, the fact that the ASL acquisition was 

performed immediately after the task supports the possibility that the observed trend 

was related to the task. 

Except for the functionally-defined M1, when taking into account both pre and post 

scans, while statistically insignificant, an overall trend of increase CBF is observed. This 

indicates that learning may have a global effect on CBF, though this is likely partly masked 

by the high inter-subject variability. These considerations highlight the need for taking 

into account learning behavior when analyzing these results. In fact, the original study 

this is based on, showed a learning-related anatomical change, but this was only the case 

when correlating with behavior rather than day [47]. This is likely because there are 

several sub-groups of learners, with some subjects diluting the learning effect with a poor 

performance on the task. 

However, if it is assumed that the day 0 versus day 5 difference is indicative of a 

learning effect which could be unveiled through more appropriate analyses of the data, 

the direction of the change over days is interesting. The CBF across days seems to increase 

across days (except for the functionally-defined M1), while some other studies have 

found that the M1 signal typically decreases across days [62]. An increased CBF could lead 

to a decreased BOLD signal through baseline effects. This is because the BOLD signal is a 

relative change from an unknown baseline. If this baseline is higher, than a similar 

hemodynamic change would lead to a smaller fractional change from baseline. It is 

therefore possible that previous studies showing a decreased BOLD across days are 

actually showing an increased BOLD baseline across days. Therefore, the interpretation 

that this decreased BOLD is due to a reduction of the importance of certain motor 

subareas in well-known tasks may be erroneous. The current study cannot unfortunately 

determine whether this is the case. However, a future study using this task and a 

calibrated fMRI framework could breakdown the BOLD signal into its component, 

including CBF, and determine whether this is the case. 
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5. Caveats 

 

5.1 Registration 

The neural activity, and therefore the expected areas of plasticity changes are 

located in a relatively well defined area in the motor cortex, namely, the finger area in the 

homunculus of the M1. Therefore, it is required that the anatomy of the motor cortex of 

each subject will be identified in the CBF maps. Thus, the accurate projection of the CBF 

on an anatomical image is necessary and can only be optimally achieved if the registration 

allows local deformations. In a linear registration with 12 DOF, the deformations can be 

done only globally, and thus not allowing customization, based on the individual 

difference in the brain structure. 

In this study, the ASL data was registered to an anatomical space. However, for 

extracting the ROI, a template of the ROI had to be overlaid on the ROI in the anatomical 

space. Alternately, as was the case in this study, the CBF in the anatomical space can be 

registered to the same space of the ROI templates. Although the anatomical information 

can then serve for that purpose, it cannot be fully exploited using only linear operations. 

Future analyses could include non-linear deformations to improve the registration of the 

data to anatomical landmarks.  

 

5.2 Lack of behavioural data 

As mentioned previously, one of the greatest limitations of the current analyses is 

that they do not take into account the difference in behaviour between individuals. 

Another student also working on this data has done an analysis of the behavioural data 

and shown that there is a significant amount of variability in learning behaviour across 

subjects (personal communication). Since in previous use of this task this variability has 

been shown to be an important determinant of the ability to detect learning-related 

changes in MRI signals, it is possible that the current approach of quantifying learning 

across days is flawed. Future analyses of this data will use performance-related change in 
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CBF rather than daily comparison to assess the importance of vascular changes in the 

learning of this task.  

 

5.3 ASL technique 

As was discussed in the theoretical section, PASL is not the only technique that can 

be used to assess CBF in non-invasive MRI. The leading technique is pCASL, both in terms 

of SNR and reproducibility. This technique requires the flow of blood through a relatively 

thin slab of tagging in the neck area, and thus the existence of a special coil on top of a 

head coil for a 7T head-only machine such as the one used in this project. In the absence 

of a tagging coil, FAIR pulse sequence can be implemented using the head coil only. In this 

technique, outside of the imaging slab where no inversion pulse has affected the control 

image, the subtraction gives rise to extremely high intensity in the upper and lower parts 

of the image (see figure 4.1), as the tag image, in which the inversion pulse affects the 

entire brain, is subtracted from the control. These areas which are out of the imaging slab 

had to be removed, and consequently, part of the motor cortex was not included in the 

ROI. 

 

 

Figure 4.1. An image for demonstration the tagging artifact at upper and lower slices 

where the color scale is saturated.  

Despite its advantages as a quantitative, physiologically-specific technique, ASL 

suffers from significant drawbacks. Large variability in CBF is often found among the 

different techniques, but also within a technique. As it is obtained from the subtraction 

of two similar images, it is by nature a low SNR technique. However, when implemented 
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well, ASL has been found to be reproducible and consistent with the nuclear medicine 

gold standards [85-86]. However, this is especially the case for pCASL sequence which 

include background suppression and multiple transit times. Moreover, in this specific 

case, although the QUIPSS methods make it unnecessary to estimate the bolus arrival 

time and the bolus duration, the assumption of uniform tagging is still needed. In other 

words, at any point in the imaging slab it is assumed that the same amount of tagged 

blood is entering. For example, it does not account the different transient times for 

different voxels, as is the case where the transit distance is longer. Certain imaging 

processing pipelines correct for that fact by applying slice timing correction. Future 

analyses of this data could include this approach.  

 

6. Future work 

 

Some areas of future improvements in terms of analysis possibilities have already 

been mentioned throughout the text. In summary, one of the main areas of improvement 

would be to implement a more robust registration to the common template using non-

linear methods. Moreover, the template used to define the predefined ROI can be 

improved and combined the with functional localization. The improvement in predefining 

the ROI can be done by manual segmentation of brain areas after definition of areas 

functionally involved in the task using the functional localizer from day 0. The more 

distinct learning results shown for functionally-defined M1 show that in this task, 

precision is crucial, and thus this study can highly benefit from such a procedure. Other 

regions such as SMA should follow the same procedure and have a greater chance of 

showing learning-induced results as SMA is not as impacted as M1 from the loss of slices 

due to FAIR tagging issues (see paragraph one one the ASL technique section above). 

Additionally, inclusion of the behavioural data is likely to help tease out the learning 

effects. Future analyses of this data will include a linear regression of performance to 

identify learning-induced CBF changes. 
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Beyond the scope of this study, improvements in ASL implementation could be 

used to obtain more accurate and reliable learning-related CBF changes. Given the 

limitations of the 7T machine available for this study, a 3T implementation may be more 

likely to yield sufficient SNR since pCASL sequences are easier to implement on standard 

3T machines. Furthermore, if the purpose is simply to measure resting CBF, a background-

suppressed multi-delay pCASL sequence would be more likely to detect small CBF 

changes. Alternatively, a dual echo non-background suppressed single delay pCASL 

sequence with additional time points for further averaging could be used to perform a 

calibrated fMRI study of motor learning. Especially if the QUO2 methods is used, this 

would allow to decompose the BOLD signal into its different baseline and reactivity 

components. This would permit a more nuanced understanding of the vascular and neural 

changes associated with motor learning. 

This study also included additional data acquisitions which will, in the future, allow 

a better understanding of the learning process. During learning on each MRI acquisition 

day, the task was performed in the machine while vascular space occupancy (VASO) and 

BOLD data were acquired. VASO allows measurement of cerebral blood volume (CBV) 

change during a task. By combining the flow change before and after the task, with the 

BOLD and CBV change during the task, we may obtain a better understanding of the 

learning process involved in this task.  

Beyond the scope of the mMPI project which this study was a part of, motor 

learning research can also benefit for combining electroencephalography (EEG), either 

separately or simultaneously to BOLD acquisition. EEG provides a direct measure of neural 

activity with high temporal resolution, thereby enables to characterize another aspect, a 

functional aspect, of the changes occurring during motor learning. Although the source 

localization in EEG consists a challenge, the combination of BOLD-EEG may provide 

complementary information regarding the source location. 

Finally, as was discussed in the introduction, calibrated fMRI is another tool for 

addressing the investigation of plasticity induced changes in a quantitative way. Detecting 

changes in CBF can reveal only one aspect of neural plasticity. A next step might be 



 78 

exploiting information regarding CBF in a motor learning related area and assessing 

CMRO2. The ASL processing tool that were developed in this study can serve for research 

of that kind in the future. 

 

7. Conclusions 

 

 The purpose of this study was to detect changes in CBF during and following a 

motor learning paradigm over 5 days. In most ROIs we have found a possible trends of 

increase CBF with learning. However, all comparisons between different time points were 

found to be non-significant. This is likely due to the low SNR of the ASL technique and the 

high variability both inter and intra-subject observed in our data. This variability may be 

lowered by improved processing and taking into account performance to account for 

individual learning rates. However, this study is intrinsically limited by the SNR of our FAIR 

approach, limited coil coverage, and short duration of the learning sessions. The learning 

session lasted only about 20 minutes, and thus it may be challenging to detect changes 

associated with this paradigm, especially when using a low SNR technique was large. 

Despite the low intensity of the learning activity, changes were detected in the previous 

studies, providing a motivation to explore those changes more quantitatively. However, 

the current work provides a tool, namely, an ASL data processing pipeline, as well as 

practical suggestions regarding a possible continuation in the search for characterizing 

the vascular aspect of motor learning.  
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