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Abstract

Non-Gaussian data modeling with hidden Markov models

Elise Epaillard, Ph.D.

Concordia University, 2017

In 2015, 2.5 quintillion bytes of data were daily generated worldwide of which 90% were

unstructured data that do not follow any pre-defined model. These data can be found in a

great variety of formats among them are texts, images, audio tracks, or videos. With ap-

propriate techniques, this massive amount of data is a goldmine from which one can extract

a variety of meaningful embedded information. Among those techniques, machine learning

algorithms allow multiple processing possibilities from compact data representation, to data

clustering, classification, analysis, and synthesis, to the detection of outliers. Data modeling

is the first step for performing any of these tasks and the accuracy and reliability of this

initial step is thus crucial for subsequently building up a complete data processing frame-

work. The principal motivation behind my work is the over-use of the Gaussian assumption

for data modeling in the literature. Though this assumption is probably the best to make

when no information about the data to be modeled is available, in most cases studying a

few data properties would make other distributions a better assumption. In this thesis, I

focus on proportional data that are most commonly known in the form of histograms and

that naturally arise in a number of situations such as in bag-of-words methods. These data

are non-Gaussian and their modeling with distributions belonging the Dirichlet family, that

have common properties, is expected to be more accurate. The models I focus on are the

hidden Markov models, well-known for their capabilities to easily handle dynamic ordered

multivariate data. They have been shown to be very effective in numerous fields for various

applications for the last 30 years and especially became a corner stone in speech processing.

Despite their extensive use in almost all computer vision areas, they are still mainly suited
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for Gaussian data modeling. I propose here to theoretically derive different approaches for

learning and applying to real-world situations hidden Markov models based on mixtures of

Dirichlet, generalized Dirichlet, Beta-Liouville distributions, and mixed data. Expectation-

Maximization and variational learning approaches are studied and compared over several

data sets, specifically for the task of detecting and localizing unusual events. Hybrid HMMs

are proposed to model mixed data with the goal of detecting changes in satellite images

corrupted by different noises. Finally, several parametric distances for comparing Dirichlet

and generalized Dirichlet-based HMMs are proposed and extensively tested for assessing

their robustness. My experimental results show situations in which such models are worthy

to be used, but also unravel their strength and limitations.
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Chapter 1

Introduction

“Data is the new oil.”

- Clive Humby (UK mathemetician and architect of Tesco’s Clubcard), 2006

“The difference between oil and data is that the product of oil does not generate more

oil, whereas the product of data will generate more data.”

- Piero Scaruffi (cognitive scientist and author of History of Silicon Valley), 2016

In 2015, 2.5 quintillion bytes (2.5 × 1018) were generated every single day, which to be

stored on blu-ray discs would require 106 discs which, piled up, would be reach the height

of 4 times the Eiffel tower. Every minute, more than 200 million emails were sent, 12 hours

of videos uploaded on Youtube only, 277,000 tweets, 216,000 Instagram posts, more than

800,000 Facebook status and comments along with 136,000 pictures were shared. Estimates

give 90% of the generated data is unstructured such as texts, images, audio tracks, or

videos. These vertiginous figures keep on increasing every year, in an exponential way and

predictions give estimates of 50,000 GB per second of Internet global traffic for 2018. So

yes, data is the new oil that, if used along with appropriate techniques, can give humans

at large a new understanding of their reality, change their lives by shaping their digital

experience from their tastes and habits, and maybe soon solve global political, societal, and
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biological issues by finding patterns in these data to reduce crime, reduce costs, improve

urban planning, waste management, cure diseases,... [4, 5]

Among these techniques, machine learning algorithms allow multiple processing possi-

bilities from compact data representation, to data clustering, classification, analysis, and

synthesis, to the detection of outliers. Data modeling is the first step for performing any of

these tasks and the accuracy and reliability of this initial step is thus crucial for subsequently

building up a complete data processing framework.

Machine learning models can be divided into two categories, discriminative and gener-

ative. Discriminative models are typically used for classification or categorization of the

data, and include Support Vector Machines (SVMs), linear and logistic regressions, neural

networks, conditional random fields, or random forests. Generative approaches aim at mod-

eling how the data is generated. The resulting model can be then used to address various

other tasks. Generative models include hidden Markov models (HMMs), mixture models,

Naive Bayes, or Latent Dirichlet allocation.

Most probabilistic models fall into the second category by modeling via distributions

how the data have been generated. The simplest generative probabilistic models are the

probability density distributions (pdf) that are widely used to easily model a set of data

or a parameter. For instance waiting queues are often modeled with a Poisson distribution

and measurement errors as a Gaussian.

When data are multimodal, a single distribution does not have the ability to represent

these data accurately and mixture models can be used for modeling them.

1.1 Mixture models and use of the Gaussian

Mixture models are a weighted sum of distributions that can be expressed as:

p(x⃗♣θ) =
M
∑

m=1

wmpm(x⃗♣θm) , (1)

where the pm’s are call the components of the mixture, and the wm’s the weights of the

components. θ = (θ1, . . . , θM ) denotes the set of parameters of the distributions of the
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mixture model, with θm the parameters related to the distribution pm.

Their modeling ability is far more powerful that the one of a single distribution and

have been proven for multiple applications, such as count data modeling and classifica-

tion [6], classification schemes for myoelectric signals [7], object classification and forgery

detection [8]. Mixture models have been mostly studied for the Gaussian [7,9,10], often for

their mathematical convenience, with the Central-Limit theorem justifying this assumption.

However, for this to hold, the training data set would need to contain a huge number of

samples which is, most of the times, not the case and even not useful or desirable as it

increases the computational time for the model estimation. Therefore, when some data

properties are known (for instance the support, the positivity or negativity), it seems more

reasonable to choose to model the data by probability distributions that share the same

properties which will result in a more accurate, more compact model and which will, in

some cases allow the generation of new data sharing the properties of the modeled ones.

Previous works have shown this for many distributions such as the Dirichlet [11], generalized

Dirichlet (GD) [12], and Beta-Liouville [13] for proportional data (or vectors of proportions,

see below), the inverted Dirichlet [14], generalized inverted Dirichlet [8], Rayleigh [15, 16],

Weibull [17], Student’s-t [18], Poisson [19], Langevin [20], and asymmetric Gaussian [21].

1.2 Proportional Data

The work realized in this thesis mainly focuses on proportional data (also called compo-

sitional data) that most commonly appear in the form of histograms and naturally arise

in a number of situations such as in bag-of-words methods. A proportional data sample

x⃗ = (x1, ..., xD) has the following two properties:

• xd > 0, ∀d ,

•
∑D

d=1 xd = 1 ,

which has for direct consequence that the support of the xd’s is limited to ]0, 1[.

These data are clearly non-Gaussian (positivity, finite support, asymmetry) and their

modeling with distributions belonging the exponential family such as the Dirichlet, the
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generalized Dirichlet, or the Beta-Liouville, that have common properties, rather than with

Gaussian distributions, have been shown to be more accurate in a number of applications

in the case of mixture modeling [11–13].

1.3 Distributions definitions

I define hereafter the three main distributions used in this thesis and set the notations for

their parameters.

The D-dimensional Dirichlet distribution can be expressed as:

Dir(x⃗♣α⃗) =
Γ(

∑D
d=1 αd)

√D
d=1 Γ(αd)

D
∏

d=1

xαd−1
d , (2)

where Γ denotes the Gamma function and α⃗ = (α1, ..., αD), the distribution’s parameters,

all real and strictly positive. This distribution is defined for positive data that sum up to

one: x⃗ ∈ R
D
+ and

∑D
d=1 xd = 1.

The D-dimensional generalized Dirichlet distribution, which embeds the Dirichlet as a

special case is defined as:

GD(x⃗♣α⃗, β⃗) =
D
∏

d=1

Γ(αd + βd)

Γ(αd)Γ(βd)
xαd−1

d

(

1 −
d

∑

r=1

xr

)νd

, (3)

where α⃗ = (α1, ..., αD) and β⃗ = (β1, ..., βD) are the distributions’ parameters, all real and

strictly positive. νd is a combination of these parameters and equals to βd − αd+1 − βd+1,

if d ̸= D, and to βD − 1, otherwise.

Finally, the D-dimensional Beta-Liouville distribution, which also embeds the Dirichlet

as a special case is defined as:

BL(x⃗♣α⃗, α, β) =
Γ(

∑D
d=1 αd)Γ(α + β)

Γ(α)Γ(β)

D
∏

d=1

xαd−1
d

Γ(αd)

( D
∑

d=1

xd

)α−
∑

αd
(

1 −
D

∑

d=1

xd

)β−1

, (4)

where α⃗ = (α1, ..., αD), α and β are the distributions’ parameters, all real and strictly
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positive.

These latter two distributions are defined for positive data that sum up to less than one:

x⃗ ∈ R
D
+ and

∑D
d=1 xd < 1, which corresponds to proportional data of dimension (D + 1).

1.4 Hidden Markov models

Mixtures models, though proving good performance for many applications, do not grasp any

temporal or ordering information in the data. When solving problems involving temporal

data (video processing, speech processing, sensor temporal measurements for instance),

other models are needed.

The models I focus on are the hidden Markov models, well-known for their capabilities to

easily handle dynamic ordered multivariate data. They have been shown to be very effective

in numerous fields for various applications for the last 30 years and especially became a

corner stone in speech processing. Despite their extensive use in almost all computer vision

areas, they are still mainly used for Gaussian data modeling [22–24].

The mathematical foundations of the HMMs have been first proposed by Baum [25] but

their wider practical use is mostly due to the early works of Rabiner and Juang in the field of

speech processing [26]. Based on [26], a first-order HMM is a probabilistic model assuming

an ordered observation sequence O = ¶O1, ..., OT ♦ to be generated by some hidden states,

each of them being associated with a probability distribution that governs the emission

of the observed data. The hidden states H = ¶h1, ..., hT ♦, hi ∈ [1, K], with K being the

number of states, are assumed to form a Markov chain.

At each time t, a new state is entered based on a transition matrix B = ¶bjj′ = P (ht =

j′♣ht−1 = j)♦ that specifies the transition probabilities between the states. Once in the

new state, an observation is generated following its associated probability distribution. For

discrete observation symbols taken from a vocabulary ϑ = ¶v1, ..., vS♦, the emission matrix is

defined as V = ¶Vi(k) = P (Ot = vk♣ht = i)♦, [t, k, i] ∈ [1, T ] × [1, S] × [1, K]. For continuous

observation vectors, the emission probability distributions are usually taken as Gaussian,

defined by their means µ and covariance matrices Σ, denoted ϕ = (µ, Σ) for concision, or
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mixtures of Gaussian [22–24,26]. In the latter case, denoting the set of mixture components

as L = m1, . . . , mM , a matrix C = ¶ci,j = P (mt = j♣ht = i)♦, j ∈ [1, M ], is defined with M

being the number of mixture components associated with state j (which can be assumed to

be the same for all states without loss of generality). An initial probability distribution π

controls the initial state. I denote an HMM as λ = ¶B, V, π♦ or ¶B, C,ϕ, π♦.

HMMs are well suited for classification tasks and rely on the probability of an obser-

vation sequence given a model λ, that is computed using a forward-backward procedure.

Model training consists in the estimation of the parameters that maximize the probabil-

ity of a given set of observations and is addressed with the Baum-Welch algorithm, an

Expectation-Maximization process. Finally, finding the most probable sequence of states

and mixture components that generated a series of observations can be solved with the

Viterbi algorithm [26].

The number of hidden states and the parameters’ initial values are set a priori. Both

are strongly linked to the model’s performance. Indeed, the former is a trade-off between

performance and complexity [27], while the latter leads the Baum-Welch procedure to con-

verge towards the closest local maximum of the likelihood function, not guaranteed to be

the global one given its high modality [24]. Finally, the choice of the emission distributions

also has to be set in advance and can thus only be induced by the data or the nature of

their features along with their properties.

1.5 Contributions

The first attempt for designing an HMM suited to proportional data has been published

in [28], where the learning equation for a Dirichlet-based HMM (based on a Expectation-

Maximization approach) are derived and enhanced performance compared to a Gaussian-

based model shown over synthetic data. No further study of the performance of such models

on real-world data has been performed before the work presented in this dissertation. Also,

no other HMM has been proposed since then for proportional data modeling though other

distributions and learning approaches could have been used too. This is this gap that the
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present work is striving to bridge.

In Chapter 2, a preliminary use example of Dirichlet-based HMMs is presented in the

context of texture classification in images. The classification capability of this type of HMM

over time-series of proportional features is demonstrated thanks to the use of a very reduced

vocabulary of 10 words in a bag-of-visual-word approach. This work can also be found in

the conference paper referenced as [29].

In Chapter 3, the learning equations of the Baum-Welch approach for generalized Dirich-

let and Beta-Liouville based HMMs are derived. Experiments on synthetic data along with

an application to action recognition in video sequences are presented for comparison be-

tween the Dirichlet and the generalized Dirichlet assumptions. These experiments can also

be found in the conference paper references as [30]. Finallly, larger scale experiments with

the Beta-Liouville are presented over several data sets with the goal of detecting and local-

izing unusual events in video surveillance footage, reaching state-of-the-art detection rates.

The theory and these experiments have been published in the journal paper referenced

as [31].

With the good modeling capabilities shown in the aforementioned works, one can expect

that a more accurate estimation of the HMM parameters is achieved, better performance

could be obtained. Therefore, in Chapter 4, I propose to derive the equation for the varia-

tional learning of the Dirichlet and the generalized Dirichlet based HMMs. Leading experi-

ences in the context of unusual event detection again, I was able to show how changing the

learning technique of the model can significantly improve the detection rate of anomalies in

videos. This work can also be found in the journal paper referenced as [32].

Chapter 5 presents a simple way of combining several existing HMMs models into a

hybrid HMM for modeling mixed discrete/continuous and continuous/continuous data. Ex-

periments on synthetic data show encouraging results and provide insights for future devel-

opments for modeling this utmost complex type of data. An original application for change

detection in a pair of satellite images illustrates how this new model can be used. This

work has been presented at the MMSP’15 conference where it received a Top 10% paper

award [33].
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In Chapter 6, I propose new parametric distances between the proposed Dirichlet and

generalized Dirichlet HMMs. This includes the research of meaningful quantities for char-

acterizing and assessing the performance of the proposed similarity measures, as well as

experiments over synthetic data. An illustration for the use of such distances over real-

world data provides hints about what information they can unravel in the scope of the

main application studied in Chapters 3 and 4. The work presented in this chapter is sub-

mitted

Finally, a general conclusion closes this dissertation and proposes open theoretical, prac-

tical, and applicative questions for future work on the topic (Chapter 7).
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Chapter 2

Preliminary work on the Dirichlet-based

HMM

2.1 Introduction

As mentioned in Chapter 1, the equations of the Dirichlet-based HMM (i.e., HMM with

Dirichlet mixtures as emission probability functions) have been first proposed in [28]. For

recall, a D-dimensional Dirichlet distribution is expressed as

Dir(x⃗♣α⃗) =
Γ(

∑D
d=1 αd)

√D
d=1 Γ(αd)

D
∏

d=1

xαd−1
d , (5)

where Γ denotes the Gamma function and α⃗ = [α1, ..., αD], the distributions’ parameters,

all real and strictly positive. This distribution is defined for positive data that sum up

to one: x⃗ ∈ R
D
+ and

∑D
d=1 xd = 1. As a preliminary work, this model has been applied

to real-world data in the context of texture classification. The choice of the application

has been mostly driven by the availability of public data sets, the usual representation of

textures in the form of histograms (proportional data), as well as by the need of using

data embedding apparent or latent dynamics. Furthermore, as for a first application of this

rather complex model, images were easier to handle than videos. Later on, this algorithm

has been successfully applied to video sequences (see Chapters 3 and 4).
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Most of our natural environment can be interpreted as textures, in the sense it is mainly

composed of more or less repetitive pattern involving some spatial dynamics. Their thorough

study is of great importance and texture categorization, segmentation, and synthesis have

been the topics of unnumbered studies with applications as various as medical imaging [34],

special effects [35], remote sensing [36], etc. HMMs have been seldom used for texture

classification purpose though their capabilities to unravel latent structures of textures that

direct observations could not provide alone has been brought to light long ago [37]. Their

capabilities have then been investigated in the wavelet domain [38–40] giving promising

results, but no further study seems to have been led with HMMs on this topic. As dynamical

processes, they seem however very appropriate to model textures that naturally embed

spatial dynamics.

One popular texture representation approach is the bag-of-visual-words (BoVW) method.

First introduced as the image counterpart of document classification works, it has been

broadly employed and shown to be efficient for texture classification tasks [41]. Among

the numerous studies employing it, [42] proposes two approaches known for their good

performance in text classification, namely Probabilistic Latent Semantic Indexing and Non-

negative Matrix Factorization. A sparse image representation is used by first detecting local

regions of interest with Harris- and Hessian-affine detectors and then extracting SIFT [43]

in these regions. A global texton-dictionary is built with an optimal number of textons

found to be 500 as a trade-off between computational load and performance. Classification

is finally led in an unsupervised manner. In [44], local regions are also detected and then

normalized to be mapped into subspaces. Texton-dictionaries of size 100 are built from dif-

ferent feature types (intensity and gradient) with several linear and non-linear embedding

methods and a Support Vector Machine (SVM) classifier is used. In [41], a method based

on the projection of a set of points from a high-dimensional space to a randomly chosen

low-dimensional subspace, referred to as random projections (RP), is developed. Images are

seen as an ensemble of patches from which RP features are extracted. Rotation-invariance

is obtained by sorting the pixels intensity or the pixels differences projections. Each texture

class is represented by a BoVW model of 40 to 80 textons, leading to a full dictionary of
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1000 to 2000 words. Classification is performed using nearest-neighbor (NN) and SVM clas-

sifiers. [45] makes use of fractal analysis to describe textures at different resolutions. The

authors provide an interesting comparison of multifractal spectrum (MFS) and histograms.

Their analysis shows that MFS overcomes the issue of the loss of spatial distribution in-

formation inherent to histograms by providing a multilayer aspect to key points count. In

comparison, the use of series of histograms over image patches is proposed to help main-

taining partial information about the spatial distribution of the key points (textons). This

makes the comparison of my method with this one of high interest.

In all these works, the dictionary size used goes from one hundred up to few thousands

words. The main contributions presented in this chapter are:

• to show that a well-tailored classifier can achieve state-of-the-art results with a dictio-

nary as small as of 10 visual-words, leading to the most compact representation ever

reported

• to confirm that the results on Dirichlet-based HMMs (HMMD) found with synthetic

data in [28] hold with real-world data.

Furthermore, my original representation uses series of histograms and gives rise, for com-

parison purpose with the NN classifier, to the need of a similarity measure for multiple

ordered histograms, leading to a generalization of the Bhattacharyya distance.

This short study has been presented at the 3rd International Conference on Adaptive

and Intelligent Systems (ICAIS’14) in Bournemouth, UK. The publication is referred as [29]

in the Bibliography section.

In the following the method’s steps are detailed in Section 2.2 before reporting experi-

mental results in Section 2.3, and concluding in Section 2.4.

2.2 Method steps

A common way to obtain proportional data from images is to work with a BoVW strategy.

In this preliminary work, the quality of the extracted features is not crucial to assess the
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performance of a classifier relatively to other classifiers, and I therefore simply use SIFT [43]

and a two-stage k-means clustering to build a texton-dictionary.

HMMD has in practice a big restriction on input data dimension that I empirically

found to be of the order of 10 (higher dimensions lead intermediate matrices to be singular,

causing invertibility issues). While this number is very small as a dictionary size, I chose

to give it a try and to perform my experiments with a global dictionary of only 10 words.

To the best of my knowledge, this constitutes the smallest dictionary ever reported for

experiments over large texture data sets, several orders lower than usual ones (500 words

in [42] and 1000 in [41] for a 25-class representation). However, it is worthwhile noticing

that 10 words theoretically have the capability to represent much more than 25 classes.

Supposing that only 2 value levels are allowed for each word (e.g., present or absent), 210

configurations are possible. Though the intra-class variability probably reduces the effective

number of classes that could be discriminated with such a naive representation, I state that

there is no need of hundreds of words to represent distinctively a few dozens classes.

2.2.1 Textons dictionary building

The SIFT detector proposed in [43] is used on each image with dense sampling (no local

region detector). Depending on the texture class, the number of descriptors extracted goes

from around 100 up to 7000. As the global dictionary aimed to be used is very compact,

it is problematic to have such inter-class variation in the number of extracted descriptors.

Indeed, if all kept when picking up the 10 words forming the dictionary, the words will

most likely be all taken from the classes with the richest representations and thus, not

be representative of the whole data set. Another issue might come from the too numerous

descriptors, leading to a computationally impractical clustering task. In order to avoid these

potential issues, a k-means clustering is performed on every image lowering its number of

descriptors down to 60. As the focus of the work presented in this chapter is on the

classification method, no further study has been conducted for optimizing this value which

is a trade-off between the image representation precision and the computational load of this

step. A set of N images is randomly selected from each of the c classes to form a training
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set. By the aforementioned process, 60 SIFT features per image are extracted. A second

k-means clustering is then applied to the gathering of all the training set features, i.e.,

60 × c × N SIFT vectors, from which 10 centers are obtained, forming the global dictionary.

These centers are later on referred to as SIFT-words.

2.2.2 Series of histograms computation

As mentioned earlier, textures are here considered as being quite repetitive patterns in-

volving some spatial dynamics. The embedding of these spatial dynamics into every image

representation is performed by scanning the image following a predefined path and building

a corresponding series of histograms. Each image is divided into P patches of equal size

and the scan path is arbitrarily defined as going from the upper row to the bottom one,

describing them from the left to the right. For each patch, all the originally extracted fea-

tures (i.e., the ones obtained before any clustering) are assigned to their nearest SIFT-word

in the dictionary. This operation results in a series of P 10-bin histograms (which can also

be interpreted as a 2D-histogram) representing the image. This process is used in both

training and testing phases.

2.2.3 Model computation and Classification

One HMM is trained for each texture class using the N available training series of his-

tograms. Two types of emission probability distributions are compared; Dirichlet mixture

models in the setting developed in [28] and Gaussian mixtures models which are the most

commonly used emission functions in HMMs applications. Same numbers of states K and

mixture components M , have been used in both cases, empirically determined by making

them vary from 1 to 4, values which keep the model computation tractable. It has been

noticed that when the product KM is too large (above 12 here), some class models fail to

be estimated (matrices singularities appear at some point, stopping the whole estimation

process). The best results have been obtained for KM products equal to 8 and 9.
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Changing the probability distributions from mixtures of Gaussian to mixtures of Dirich-

let involves modifying the initialization and the parameters estimation step in the EM-

algorithm (i.e., the M-step), keeping the rest of the HMM estimation algorithm unchanged.

The details of the distributions substitution are discussed in [28]. The model’s parameters

initialization has been shown intractable if accurately computed [28]. Following [28], KM

single Dirichlet distributions are initialized and then assigned to the HMM states in an

ordered manner, while other parameters are randomly initialized. More details about the

initialization are given in Chapter 3.

As a new image arrives, all its SIFT features are computed and allocated to the different

histograms bins depending on their location and value. Once the series of histograms is built,

its likelihood with respect to each class model is computed using a forward algorithm and

the image is classified into the category of highest likelihood.

2.2.4 Baseline method

To quantify the performance of the HMM classifiers, a baseline method using an NN classifier

is implemented. The Bhattacharyya distance between two histograms G and H

d(G, H) =

√

1 −
∑

i

√

G(i)
√

H(i) , (6)

where i denotes the bin number [46], can be straightforwardly generalized to series of T

histograms by

d(GT , HT ) =







√1 −
1

T

T
∑

t=1

∑

i

√

Gt(i)
√

Ht(i) . (7)

However, this distance, denoted BD1 later, is clearly not robust to translation. Working at

the patch level, if P patches are used then, P translated patterns exist. Hence, I propose

the following patch-translation robust distance, denoted BD2 :

dtr(GT , HT ) = min
p∈[1,P ]

d(GT , Hp
T ) , (8)
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Figure 2.1: Sample images from the UMD (left) and UIUC (right) data sets.

where the superscript p stands for the translation of the first patch of GT source image onto

the pth patch of HT source image, spatially warping around the other patches.1

2.3 Experiments

2.3.1 Results

This section assesses the performance of the HMMD classifier on real-world proportional

data compared to the HMMG and NN classifiers. From the results obtained with simple

mixture models in [11, 47, 48], the use of the Dirichlet distribution is expected to improve

the results obtained with a Gaussian-based model. To the best of my knowledge, this

work represents the first use of HMMD on real-world data. The work of [28], which first

introduced it, only presents experiments on synthetic data, generated from a known HMMD.

Therefore, the capabilities of HMMD have to be investigated and leveraged on more realistic

data. The experiments are performed on the two recent challenging natural texture images

data sets from UIUC [49] and UMD [45], and compared with other BoVW-based methods.

The UIUC and UMD data sets each contain 1000 images of size 480x640 and 1280x960

pixels, respectively, divided up into 25 different classes (40 instances in each). They are

challenging by the variety of 2D and 3D transformations and illumination variations present

in it. For fair results comparison, the UMD data set is downsampled to the same resolution

as the UIUC one. Sample images are presented in Fig. 2.1.

The experimental results presented here have been obtained by fixing M = K = 3

and P = 12 with random training sets of T = 5, 10, 20 images of each class, running the

algorithm 50 times. Results are reported in Figs 2.2 and 2.3. The F-score [50] of the

1One can note that the length T of the series of histograms is typically equal to the number of patches
P . However, the two distinct notations help to the clarity of the equations.
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Figure 2.2: Accuracy (in blue) and rank statistics of order 3 (in green) and 5 (in orange) for the different
classifiers on the UMD data set using 5, 10, and 20 training images per class.

Figure 2.3: Rank statistics of order 1 (recall), 3, 5, and 10 for the different classifiers on the UIUC data set.
The number after the ‘-’ indicates the number of training images per class.

proposed approach with T = 20 is 94.3% on the UMD data set and 91.7% on the UIUC

one (only the accuracy is reported on the graphs).

2.3.2 Comparison and interpretation

From these experiments, it is clear that the HMMD classifier can be used for real texture

classification purpose and outperforms NN classifiers independently of the data set. It is

worth noticing that the use of a dynamical model is not sufficient to get good classification

accuracy. Appropriate emission distributions that match features properties is essential

and the use of HMMs with non-suited probability emission functions dramatically degrades

the results even compared to a simple NN classifier. Careful study of features properties
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is therefore crucial for choosing these distributions. Experiments with HMMG even led to

the misclassification of entire classes which is critical for recognition applications. HMMD

performs better than the other tested classifiers even with a training set reduced to 5 images.

As expected, larger training sets improve the accuracy.

Rank statistics of order 3 and 5 show that most of time, even when not well-classified,

the likelihood of the query with respect to its ground truth class is high. Introduction of a

prior might help to improve the performance of the HMMD classifier (as shown later on in

Chapter 4). For instance, no advantage has been taken from the information about SIFT

density extracted at the first clustering level while it varies a lot depending on the texture

class and could thus provide a valuable clue.

The proposed patch-translation robust Bhattacharyya distance (BD2 ) systematically

improves the results of NN classification with respect to a simpler generalization (BD1 )

and gives acceptable accuracy on the UMD data set despite its simplicity. It however seems

less versatile than HMM classifiers as the results on the UIUC data set are significantly

more degraded with respect to the ones obtained with HMMD.

The proposed approach is compared with [41,42,44,45]. As said earlier, all these meth-

ods use BoVW strategies or similar texture representation and therefore constitute good

references to assess the performance of the presented method. On the UIUC data set, [42]

achieves 77.2% of accuracy using 500 textons (but unsupervised classification), [41], 95.8%

with 1000 textons, and [44], 97.9% with 100 textons. MFS approach [45] leads to 92.7%

of accuracy and the proposed one to 91.4% using 10 textons. On the UMD data set,

the proposed approach achieves an accuracy of 93.9%, equal to the one reported in [45],

while [41] and [44] reach 98.7% and 98.2%, respectively. In all cases, 20 training images

per class have been used. The correct classification rate of the proposed method falls only

few percents below current top state-of-the-art methods [41, 44], while using a dictionary

10 to 100 times smaller. This shows the potential power of the HMMD for proportional

data modeling. Moreover, these results might be further improved with more appropriate

features and optimized parameters.
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One weakness of the histograms is the loss of spatial information in the image repre-

sentation. I overcome this issue by considering series of histograms over patches while [45]

proposes a multi-resolution representation with MFS features. Both methods achieve same

or close results over the two tested data sets, showing that series of histograms can also

help to solve this point while being more straightforward.

The good results obtained while using an approximate clustering method for features

extraction (double stage k-means clustering, allowing easy convergence towards local ex-

trema), tend to confirm the observation made in [51] regarding the estimation precision

needed for the clusters centers to efficiently model data for classification tasks. Indeed, in

their study, the authors have shown that good accuracy results could be obtained even if the

dictionary textons were randomly selected. These conclusions open a window towards lower

complexity algorithms in this field, especially for applications involving restricted memory

size for image representation storage.

2.4 Conclusion

This preliminary work proposes a method based on a SIFT features double stage cluster-

ing in order to form a very compact 10-word dictionary. Series of histograms are used

for partially keeping spatial information and HMMD for performing the classification, out-

performing other tested classifiers. The initial guess that 10 words had the capability to

discriminate well among few dozens of classes proves to be true. Despite the huge changes

in scale, rotation, illumination and even more challenging 3D-transformations present in

the used data sets, this roughly determined 10-word dictionary performs classification with

a very acceptable accuracy. This raises the question of the necessity of the hundreds-word

dictionaries most often used in the literature.
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Chapter 3

EM-based learning of HMMs for

proportional data and their application for

anomaly detection and localization

3.1 Introduction

The development of informatics and cameras in the last decades led to the enforcement

of numerous public security policies and private security expectations that naturally led

to an outburst of research work on the topic of unusual event detection through video

surveillance [3,23,52–56]. Indeed, the increasing use of CCTV cameras [57,58], traditionally

monitored by human operators that simultaneously watch multiple screens for hours, invokes

the need for a capability to assist them in the real-time detection of threats and anomalous

events. Within the last few years, numerous acts of aggression and accidents that occurred

in public spaces have been recorded by video surveillance cameras and publicly released

afterward in the TV news, the internet, or the social media. This tends to demonstrate

that such systems can significantly aid the society in large to avoid incidents if monitored

automatically and in real-time, in order to communicate potential threats to the competent

authorities as promptly as possible.
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The release of real-world data sets [55,56] permits the development, testing, and quantifi-

cation of the efficiency of various methods with the goal of detecting such malicious threats.

From a probabilistic point of view, a threat (or anomaly) is a rare event, which means

that its occurrence has a low probability. Alternatively, it can be defined as a “divergence

from a dominant pattern” [59]. A threat can therefore take a countless number of different

forms that mostly depend on the context; someone walking can be considered as a normal

behavior in most cases, however, if the person walks in the opposite direction in an attempt

to avoid the crowd, then it could disclose a possible threat. Thus, it is highly challenging

to design an algorithm that is capable of recognizing, at early stages, a forthcoming threat.

The strategy in this case is to initially model normal activities for which it is easy to obtain

and process numerous non-malicious sample sequences, to subsequently define a threat as

an outlier [23,52,53].

As mentioned in Chapter 1, HMMs are used in various fields such as speech process-

ing [26], object and gesture classification [24, 27], and unusual event detection [23, 53]. It

is particularly suited when working with dynamic data such as videos. This model is first

trained on data (videos, audio signals, or most often features derived from them) whose

characteristics are known in order to model well a specific class of data. Further, when a

new data sequence arrives, the probability that it could have been generated by the model

is computed. Depending on the result, it is either accepted or rejected as belonging to the

tested class. In the context of threat (or event) detection, the model is usually trained

on non-malicious video sequences and thus represents the normality. All detected outliers,

corresponding to video frames (or parts of video frames) with a likelihood lower than a

predefined threshold, are then considered as anomalous and as potential threats.

Nowadays, the training process of an HMM itself is quite standardized, and improve-

ments mainly focus on its initialization in terms of topology and parameters estimation [24,

27,53]. One of the claimed reasons is that the initial tuning has a direct impact on the accu-

racy of the results. However, this model also involves emission probability functions for the

observation generation, which are the probability distributions assigned to each state of the

HMM. The choice of the employed type of emission probability distributions is very seldom
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discussed and Gaussian Mixture Models are typically applied as a standard [22–24,27], for

their mathematical convenience. However, the symmetric property of the Gaussian distri-

bution as well as its unbounded support may not be accurate to model the emission of all

data types, and enhanced results could be obtained using asymmetric emission probabil-

ity distributions with compact support. The latter fact was exploited in [60] by revealing

that Dirichlet mixture models yield better results than Gaussian ones in the context of

texture classification, and as previously said in [28] and in the published work [29] pre-

sented in Chapter 2, in an HMM framework, for synthetic and real-world proportional data

classification.

Although the Dirichlet mixture model offers a good alternative for proportional data

modeling, it suffers from a restriction on the data it can accurately model. Indeed, the

moment’s equations of the Dirichlet impose on the covariance to be negative, which is not

representative of the general case. From this observation, I propose in this chapter to

investigate and assess the capabilities of HMMs using generalized Dirichlet (GD) and Beta-

Liouville (BL) mixtures as emission probability distributions, as applied for threat and

event detection related to public security, and to compare them to Dirichlet-based HMMs’

performance. Both distributions belong to the exponential family, embed the Dirichlet

distribution as a special case, and are not constrained by the sign of their covariance [61].

An initial work presented in Section 3.4.1 of this chapter and published in [30] has been

done with GD-based HMMs and has shown superior performance on synthetic and real-

world data classification in the context of an action recognition application. To the best

of my knowledge, this is the first study attempting to integrate the generalized Dirichlet

and Beta-Liouville distributions into the HMM framework. This latter distribution has the

advantage of being represented by less parameters than the GD distribution and thus allows

the model estimation to be computationally faster.

The contributions presented in this chapter are the following:

• The complete derivation of the equations for the integration of the GD and BL dis-

tributions mixtures into the HMM framework. (Section 3.3)
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• The preliminary testing of these models over synthetic data and for an action recog-

nition classification task. (Section 3.4.1)

• The application of these new models to three different scenarios related to the surveil-

lance of public areas under real conditions. (Section 3.4.2)

• The analysis of the behavior of the models and the formulation of easily applica-

ble rules for the tuning of the detection threshold, depending on the available data.

(Section 3.4.2)

The theoretical parts of this chapter along with the experiments aiming at detecting

unusual events in videos have been published in a paper in the journal Pattern Recognition,

which is referenced in the Bibliography section as [31]. The experiments on synthetic

data and on the action recognition data set have been presented at the 6th IAPR TC3

International Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR’14),

in Montreal, QC, Canada. The publication is referenced as [30] in the Bibliography section.

The rest of this chapter is organized as follows: Section 3.2 presents the related work

focusing on both the theoretical contribution made in this chapter and on the issues of

unusual event detection and some of the most common approaches. Section 3.3 details

the equations of the GD- and BL-based HMMs, including the estimation of the distribution

parameters. Section 3.4 presents the experimental work done with these models. Conclusive

remarks are provided in Section 3.5.

3.2 Related work

At a time where video surveillance is widely used to insure security in public areas (e.g.,

airports, subway stations, university campus,...), real-time algorithms capable of detecting

abnormal events or behaviors would be of great help for operators in charge of simultane-

ously monitoring sometimes numerous video screens.

Crowded scenes and dynamic environments are the most challenging scenarios for anomaly

and event detection. In the literature, numerous tracking methods have been proposed [62–
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64] but all suffer from degraded performance as soon as the crowd becomes too dense. In-

deed, in crowded environments, the number of independent objects moving at the same

time as well as the occlusions it involves prohibit the use of tracking for high performance.

In [65], trajectories are used as main features but the authors propose to focus on trajec-

tories of sufficient length that link predefined zones of interest such as windows of stores

or paved areas of the road. The different groups of trajectories are modeled making use

of first order Markov chains over trajectories elements called tracklets. In [66], tracking is

only used as a support to detect human heads. Raw video input of these regions of interest

is then directly used to feed a 3D convolutional neural network and detect specific actions

such as being on the phone or pointing at something.

Dynamic background is an important restriction for tracking and more generally for all

movement-based methods. Typically, background subtraction methods are used to detect

foreground moving objects [3,62,67] but this requires to preprocess every frame, hence extra

computations.

In response to the drawbacks of the tracking and background subtraction, methods

that are working at a higher information level, from a global view of the situation, have

been developed [22,23,52,54,59]. They rely on different features such as optical flow, pixel

intensity gradients or dynamic textures. Bertini et al. [52] for instance present a purely data-

driven method with no assumption made on the used type of data or the type of unusual

event that can occur. The system is trained from video sequences in which no anomaly is

present, forming a statistical description of it from spatio-temporal features. The anomaly

detection is performed by computing the likelihood of a query sequence with respect to the

normalcy model and comparing it to an adaptive threshold. In this framework, multi-scale

observations as well as contextual information can also be taken into account. A recent

survey [68] dedicates a full section to the detection of anomaly in crowded environments.

In this context, the use of HMMs would be of particular interest. Indeed, the data

to be processed are dynamic and the nature of anomalies is unknown. HMMs can both

model normal scenes and then determine whether an unseen video sequence deviates from

this normality or not, which perfectly suits the anomaly detection purpose. In [52], the
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features used are histograms which, once normalized, can be seen as proportional data.

The likelihood criterion for anomaly detection works well, though the classifier uses a simple

adaptive threshold. Improved results are obtained to the cost of the addition of a second

scale and the use of contextual information which help reducing the false positive rate but

involve extra computations. To this end, the approach is an accumulation of processes

and the detection results are the intersection of the results of the different processes. This

superposition of processes is a clear limitation to the improvement of the global approach

and the use of a unique, more powerful model and classifier can lead to a more compact

representation of the data and thus a more accurate anomaly detection.

The use of HMMs has been popularized by Rabiner and Juang in [26] and a brief recall

of their definition and main properties was provided is Chapter 1. Since this fundamental

work, numerous extensions and adaptations of this model to specific applications have

been developed. Among these extensions, the study of time-series generated from multiple

processes and/or involving dynamics at different scales led to the development of factorial

HMMs [69]. In this framework, each state is broken down into a collection of sub-states,

often assumed to be independent at each time step for algorithmic complexity reduction.

State duration (i.e., state self-transitioning) has also been a study focus as classic HMMs

naturally embed a geometric distribution as for state duration, with parameter depending

on the state transition matrix [70]. Variable Duration HMMs have been a first attempt

to modify the state duration probability distribution [71]. At each state transition, the

duration of the new state is drawn from a probability mass function and the corresponding

number of observations is generated before drawing a new state accordingly to the state

transition matrix. An alternative, known as the Nonstationary HMM, that explicitly intro-

duces the time variable into the state transition matrix is proposed in [70]. This model has

been shown to be equivalent to the Variable Duration HMM though allowing an easier and

computationally more efficient parameter estimation.

The most widely used estimation algorithm for HMMs is the so-called Baum-Welch

algorithm, though its iterative nature can be prohibitive for some applications. [72] proposed

a non-iterative method for parameters estimation. Based on subspace estimation, the idea
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has been theoretically derived in [73] and provides, on a few conditions, a computationally

fast method to estimate HMMs with a finite discrete output.

HMMs have been initially developed for discrete and Gaussian data [26]. The multi-

plication of applications in domains such as weather forecast or medical studies raised the

need for modifying the original HMM algorithm so it can efficiently work with new data

types [28–30,74,75]. Longitudinal or panel data are time-series collected from multiple en-

tities. An example of these data in the context of a medical study could be the evolution of

some disease characteristics evaluated every day for a given period of time on a number of

patients (see [76] for a concrete example). At the entity level, data heterogeneity is involved

by the presence of multiple data sources. HMMs have been shown to be able to model this

heterogeneity by introducing a random variable in the model, known as the random effect,

that follows a predefined probability distribution. By doing so, the conditional indepen-

dence of the observed data given the latent states assumption is relaxed. [75] provides a

review of the use of these HMMs that are known in the literature as Mixed HMMs. With

a similar aim of adaptivity, [74] discusses circular data processing, i.e., data taking cyclic

values such as directions or angles. Von Mises, Wrapped Normal, and Wrapped Cauchy

are proposed as state emission probability distributions to handle such data. A Maximum-

Likelihood estimation algorithm is derived and applied to circular time-series. An HMM

with a reduced sensitivity to outliers compared to the Gaussian has been proposed [77], us-

ing Student’s t-mixtures as emission functions. In the same trend, the use of nonelliptically

contoured distributions has been proposed in order to model heavy-tailed or skewed data,

with an HMM based on multivariate normal inverse Gaussian distributions [78]. These two

last approaches have shown superior performance compared to the Gaussian-based HMM

for applications such as hand gesture, phonetic, or speaker recognition.

As for proportional data their modeling through HMMs has been first studied in [28]

where Dirichlet mixtures are used as emission probability functions, involving a deep mod-

ification of the M-step of the Expectation-Maximization algorithm (EM) for the Dirichlet

parameters estimation. A real-world application was presented in Chapter 2. Some limita-

tions of the Dirichlet distribution have been brought to light by [60]. Adapting HMM to
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generalized Dirichlet and Beta-Liouville mixtures emission probability functions is expected

to improve the modeling accuracy of a broader range of data. As mentioned in the intro-

duction, this distribution generalizes the Dirichlet while allowing a more flexible covariance

structure.

A few works have used the generalized Dirichlet and/or the Beta-Liouville distributions

for machine learning applications. Among these, the GD distribution has been used for a

document topic representation application in a Latent Dirichlet Allocation framework [79],

and for the design of generative kernels for Support Vector Machine [80]. The latter has

shown enhanced results compared to the use of the Dirichlet distribution for object recogni-

tion and content-based image classification. Recently, BL distributions have been exploited

in the context of mixture modeling for facial expression and action recognition applica-

tions [13,81].

As specified earlier, the main HMM framework for continuous data has been designed

assuming the data to be Gaussian. However, there is a wide range of applications in which

data or the used features are proportional. The Gaussian representation takes as an implicit

assumption an unbounded support of the variables and is therefore not adapted for a precise

modeling of this special data type. The following section develops the equations for the GD

and BL distributions, that also belong to the exponential family. I explicitly build the

parallel between the derivations for the two distributions, opening a window for an easy

adaptation of HMMs to other exponential distributions. The need of distributions that are

more complex than the Dirichlet is driven by the fact that it imposes an always negative

data covariance. Therefore, distributions that relax this restriction might logically be more

adapted to model all types of proportional data. GD and BL distributions both overcome

this limitation and embed the Dirichlet distribution as a special case, with the advantage

for the BL to be represented by a fewer number of parameters than the GD.
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3.3 EM learning of the generalized Dirichlet and Beta-Liouville

HMMs

3.3.1 Expected Complete-Data Log-Likelihood

I recall that D-dimensional GD and BL distributions are defined as

GD(x⃗♣α⃗, β⃗) =
D
∏

d=1

Γ(αd + βd)

Γ(αd)Γ(βd)
xαd−1

d

(

1 −
d

∑

r=1

xr

)νd

, (9)

BL(x⃗♣α⃗, α, β) =
Γ(

∑D
d=1 αd)Γ(α + β)

Γ(α)Γ(β)

D
∏

d=1

xαd−1
d

Γ(αd)

( D
∑

d=1

xd

)α−
∑

αd
(

1 −
D

∑

d=1

xd

)β−1

, (10)

where Γ denotes the Gamma function and α⃗ = (α1, . . . , αD), β⃗ = (β1, . . . , βD), α and β

the distributions’ parameters, all real and strictly positive. νd is a combination of these

parameters and equals to βd − αd+1 − βd+1, if d ̸= D, and to βD − 1, otherwise. Same

notation α⃗ is used in both cases as no confusion is possible between these two distributions

in what follows. However, the numerical values in both cases have no reason being the same.

These distributions are defined for positive data that sum up to less than one: x⃗ ∈ R
D
+ and

∑D
d=1 xd < 1. This corresponds to proportional data of dimension (D + 1).

Changing the emission probability distribution type involves modifications in the EM

estimation process. I set notations for the quantities

γt
ht,mt

, p(ht, mt♣x0, . . . , xT ) , (11)

and

ξt
ht,ht+1

, p(ht, ht+1♣x0, . . . , xT ) , (12)

that represent the estimates of the states and mixture components, and of the local states

sequence given the whole observation set, respectively. The E-step leads to γt
ht,mt

and
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ξt
ht,ht+1

estimates for all t ∈ [1, T ]. These two quantities are obtained using the initial pa-

rameters at step 1 and the result of the last M-step subsequently. They are computed using

a similar forward-backward procedure (not detailed here) as for an HMM with mixtures of

Gaussians.

The M-step aims at maximizing the data log-likelihood by maximizing its lower bound.

If Z represents the hidden variables and X the data1, the data likelihood L(θ♣X) = p(X♣θ)

can be expressed as

E(X, θ) − R(Z) =
∑

Z

p(Z♣X) ln(p(X, Z)) −
∑

Z

p(Z♣X) ln(p(Z♣X))

=
∑

Z

p(Z♣X) ln(p(X)) (Bayes’ rule)

= ln(p(X))
∑

Z

p(Z♣X)

= ln(p(X)) = L(θ♣X) , (13)

with θ, representing all the HMM parameters, omitted on the given variables side of all

the quantities involved. E(X, θ) is the value of the complete-data log-likelihood with the

true/maximized parameters θ. R(Z) is the log-likelihood of the hidden data given the

observations and has the form of an entropy representing the amount of information brought

by the hidden data itself (see Equation (30) for the detailed form of R(Z)). As I estimate

the complete-data log-likelihood using non-optimized parameters, I have E(X, θ, θold) ≤

E(X, θ), and hence E(X, θ, θold) − R(Z) is a lower bound of the data likelihood.

The key quantity for data likelihood maximization is the expected complete-data log-

likelihood which is written as

E(X, θ, θold) =
∑

Z

p(Z♣X, θold) ln(p(X, Z♣θ)) . (14)

In the case of a unique observation X = x⃗ (the case of multiple observation sequences

1Previously, I used x⃗ to represent a sample vector. X is here used to represent all the available data.
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is addressed later), the complete-data likelihood can then be expanded as

p(X, Z♣θ) = p(h0)
T −1
∏

t=0

p(ht+1♣ht)
T

∏

t=0

p(mt♣ht)p(xt♣ht, mt) , (15)

and the different terms identified as

p(X, Z♣θ) = πh0

T −1
∏

t=0

Bht,ht+1

T
∏

t=0

Cht,mt
BL(xt♣ht, mt) , (16)

when BL emission probability distributions are used. Equation (16) can be written the same

way for the GD distribution. I later refer to this equation as Equation (16’). Equation (78)

is then substituted into Equation (16) and the logarithm is applied to the expression. Using

the logarithm sum-product property, the complete-data log-likelihood is split up into eight

terms:

ln(p(X, Z♣θ)) = ln(πh0
) +

T
∑

t=0

ln(Cht,mt
) +

T −1
∑

t=0

ln(Bht,ht+1
)

+
T

∑

t=0

⎭

ln(Γ(
D

∑

d=1

αd)) + ln(Γ(α + β)) − ln(Γ(α))

− ln(Γ(β)) + (α −
D

∑

d=1

αd) ln(
D

∑

d=1

xd) + (β − 1) ln(1 −
D

∑

d=1

xd)

+
D

∑

d=1

⎭

(αd − 1) ln(xd) − ln(Γ(αd))

}}

. (17)

A similar equation can be derived from Equation (16’). Using Equation (17) or its

GD counterpart into Equation (14), the expected complete-data log-likelihood can then be

written:

E(X, θ, θold) =
K

∑

k=1

M
∑

m=1

γ0
k,m ln(πk) +

T
∑

t=0

K
∑

k=1

M
∑

m=1

γt
k,m ln(Ck,m)

+
T −1
∑

t=0

K
∑

i=1

K
∑

j=1

ξt
i,j ln(Bi,j) + LGD,BL , (18)
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with,

LGD(α⃗, β⃗) =
T

∑

t=0

D
∑

d=1

K
∑

k=1

M
∑

m=1

γt
k,m ×

⎭

ln(Γ(αk,m,d + βk,m,d)) + (αk,m,d − 1) ln(xt
d)

+ (νk,m,d ln(1 −
d

∑

r=1

xt
r)) − ln(Γ(αk,m,d)) − ln(Γ(βk,m,d))

}

. (19)

LBL(α⃗, α, β) =
T

∑

t=0

K
∑

k=1

M
∑

m=1

γt
k,m

⎭

ln(Γ(
D

∑

d=1

αk,m,d)) + ln(Γ(αk,m + βk,m)) − ln(Γ(αk,m))

− ln(Γ(βk,m)) + (αk,m −
D

∑

d=1

αk,m,d) ln(
D

∑

d=1

xd) + (βk,m − 1) ln(1 −
D

∑

d=1

xd)

+
D

∑

d=1

⎭

(αk,m,d − 1) ln(xd) − ln(Γ(αk,m,d))

}}

. (20)

Equation (18) is set making use of the two following properties, in which I omit to men-

tion θold in the given variables side of the probabilities involved. Using the independence of

ht and mt from ht+1, I get p(Z♣X) = p(ht = k, mt = m♣X)p(ht+1 = k′) with
∑K

k′=1 p(ht+1 =

k′) = 1. Similar steps bring p(Z♣X) = p(ht = k, ht+1 = k′♣X, mt = m)p(mt = m), with

∑M
m=1 p(mt = m) = 1.

Furthermore, if N ≥ 1 observation sequences are available, all can be used in order to

avoid overfitting. In Equation (18), a sum over n ∈ [1, N ] has to be added in front of the

entire formula. The sum over time goes then from 0 to Tn, the length of the n-th observation

sequence, and the xd’s become xd,n’s.

3.3.2 Update Equations of HMM and GD Parameters Estimation

The maximization of the expectation of the complete-data log-likelihood with respect to

π, B, and C is solved by introducing Lagrange multipliers in order to take into account

the constraints due to the stochastic nature of these parameters. The resulting update

equations are:

πnew
k ∝

N
∑

n=1

M
∑

m=1

γ0,n
k,m, Bnew

k,k′ ∝
N

∑

n=1

Tn−1
∑

t=0

ξt,n
k,k′ , Cnew

k,m ∝
N

∑

n=1

Tn
∑

t=0

γt,n
k,m , (21)
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where k and k′ are in the range [1, K], and m, in the range [1, M ].

GD distributions parameters update is less straightforward. Indeed, a direct method

would lead to maximize LGD(α⃗, β⃗) (Equation (19)). Instead of going through heavy com-

putations, I propose to use a practical property of the GD distribution that reduces the

estimation of a D-dimensional GD to the estimation of D independent one-dimensional

Dirichlet distributions (i.e., Beta distributions). The latter is a known problem that can be

solved using a simple Newton method [28, 82]. The use of this property calls the need to

express the problem in a transformed space that I refer to as the W -space. Each observation

x⃗ is transformed from its original space into its W -space by [60,61]:

Wd =

⎧

⎪

⎪

⨄

⎪

⎪

⋃

xd for d = 1

xd

\(

1 −
∑d−1

i=1 xi

)

for d ∈ [2, D] .

(22)

In the transformed space, each Wd follows an independent Beta distribution with pa-

rameters (αd, βd), which is also a one-dimensional Dirichlet distribution. The estimation of

the D Beta distributions governing the D Wd clearly leads to the complete characterization

of the GD distribution governing the observation vector x⃗. In the M-step of the HMMGD

algorithm, the update of the GD distribution parameters can thus be done using D times

a process similar to the one used in [28], considering the transformed data instead of the

original one. The other parameters (B, C, π, γ, ξ) are estimated from the original data.

The accurate initialization of the Dirichlet-based HMM parameters has been shown

in [28] to be intractable as soon as the product KM grows up. The same holds for other ex-

ponential distributions and following their recommendations, KM single GD distributions

are initialized with a method of moments that uses the transformed data (detailed in [83])

and are then assigned to the HMM states. The parameters π, C, and B, are randomly

initialized for fair comparison with the Dirichlet-based HMM proposed in [28]. However,

an initialization resulting from the clustering used in the method of moments is also pos-

sible. I observed throughout my experiments that, even with a random initialization, the

convergence towards quite precise estimates is quick (within a few iterations).

31



3.3.3 BL Parameters Estimation

Contrary to the GD distribution, there is no known transformation for simplifying the

estimation of the BL distribution parameters. A Newton-Raphson estimation method is

then used for maximizing LBL(α⃗, α, β) (Equation 20). The equations for the estimation of

a mixture of BL are developed in [84]. In my application, each BL distribution is separately

estimated which simplifies the equations. The global estimation equation is given by:

θnew = θold − H(θold)−1
∂L(X♣θold)

∂θold
. (23)

The Hessian matrix is computed from the second order derivatives of the likelihood.

The computation of these derivatives, which is straightforward and not detailed here, shows

the independence between the vector of variables α⃗ and the parameters (α, β). Therefore,

the Hessian matrix is composed of two diagonal blocks, one of size 2 × 2 and the other

one of size D × D. The inverse of the matrix can also be computed blockwise: H(θ)−1 =

diag(H(α1...D)−1, H(α, β)−1).

The upper term can be written simplifying the expression given in [84],

H(α1...D)−1 = S⋆ + δ⋆a⋆a⋆T , (24)

with

S⋆ = diag

⎭

−
1

γcumΨ1(α1)
, . . . , −

1

γcumΨ1(αD)

}

, (25)

a⋆T =

(

−
1

γcumΨ1(α1)
, . . . , −

1

γcumΨ1(αD)

)

, (26)

δ⋆ = −γcumΨ1(
D

∑

d=1

αd)

(

1 + Ψ1(
D

∑

d=1

αd)
D

∑

d=1

− 1

Ψ1(αd)

)−1

, (27)
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where γcum =
∑T

t=1 γt. 2

The lower block of the inverse of the Hessian matrix can be computed by hand from the

matrix itself as it is only a 2 × 2 matrix:

H(α, β)−1 =
γcum

♣H(α, β)♣
×

⎛

ˆ

∐

Ψ1(α + β) − Ψ1(β) −Ψ1(α + β)

−Ψ1(α + β) Ψ1(α + β) − Ψ1(α)

⎞

ˆ

ˆ
, (28)

where ♣H(α, β)♣ is the Hessian matrix determinant ♣H(α, β)♣ = (γ2
cum × ¶Ψ1(α)Ψ1(β) −

Ψ1(α + β)(Ψ1(α) + Ψ1(β))♦)−1.

By nature, the EM-algorithm is iterative and thus needs a stop parameter. As the data

log-likelihood is maximized by the means of its lower bound, convergence of this bound can

be used as such. This lower bound is given by E(X, θ, θold) − R(Z) (see Equations (13) and

(18)) and R(Z) is derived using Bayes’ rule:

p(Z♣X) = p(h0)p(m0♣h0)
T

∏

t=1

p(ht♣ht−1)p(mt♣ht)

= p(h0)
p(m0, h0)

p(h0)

T
∏

t=1

p(ht, ht−1)p(mt, ht)

p(ht−1)p(ht)
. (29)

Denoting ηt , p(ht♣x⃗) and using the independence properties set earlier, the following

expression is derived (see detail in [28]):

R(Z) =
K

∑

k=1

[

η0
k ln(η0

k) + ηT
k ln(ηT

k ) − 2
T

∑

t=0

ηt
k ln(ηt

k)

]

+
T

∑

t=0

M
∑

m=1

K
∑

k=1

γt
k,m ln(γt

k,m) +
T −1
∑

t=0

K
∑

k=1

K
∑

k′=0

ξt
k,k′ ln(ξt

k,k′) . (30)

This expression is valid for any type of emission function and stands for a unique ob-

servation sample. If more are to be used, a summation over them has to be added in front

of the whole expression, the index T has to be adapted to the length of each sequence, and

the η’s have to be computed for every sample. At each iteration, the difference between the

2Here the γ subscripts k and m are not mentioned as these two parameters are fixed (as said earlier,
each BL distribution is separately estimated). If N > 1 observations sequences are available, γcum =
∑N

n=1

∑T

t=1
γn,t.
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former and current data likelihoods is computed. Once it goes below a predefined thresh-

old, the algorithm stops and the current parameters values are kept for the HMM. This

threshold is a trade-off between estimates precision and computational time.

In the case of the HMMBL, the initial parameters are determined using the method

of moments with the assumption that the distribution is a Dirichlet. The reason for this

is the difficulty to have exact equations that can straightforwardly be solved for applying

the method of moments. Attempts with simplified equations and random initialization for

the BL parameters α and β yielded worst results than an initialization through a Dirichlet

distribution. However, as expected, this initialization can give initial parameters quite far

from their real value, especially for the parameter α, which is assumed to be the sum of the

N first parameters. In order to avoid a divergence towards very high values, I use a quite

large stop parameter (empirically set to 10−3 in my experiments) that still gives time to the

algorithm to well estimate the other HMM parameters (transitions, mixing coefficients,...),

while keeping the distributions parameters close to their initial estimates. The bias created

by this initial estimates has less impact than random values would have as it is present in all

models, and have thus a reduced impact in the likelihood computation in the classification

step, especially in the case of multiple classes modeling. Furthermore, choosing a large stop

parameter here reduces the computational time, which is a crucial specification for some of

the applications presented hereafter.

3.4 Experiments

3.4.1 Succinct comparative study of the behaviors of the Dirichlet/GD-

based HMMs

Synthetic data

As a first experiment, synthetic data are used in order to assess the benefits of using a

more general emission probability distribution than Dirichlet. This preliminary work to the

application of the new models to real-world data has only been led for the HMMGD model.

1000 observations sequences of length randomly taken in the range [10, 20] are generated

34



from known HMMs with randomly chosen parameters. The generation of GD samples is

described in [61]. The generative state and mixture component are recorded for each sample.

As proposed in [28], the performance is evaluated as the proportion of combinations of

states and mixture components correctly retrieved by an HMM trained on the generated

data. Multiple experiments are run by varying the number of states K, the number of

mixture components M , and the data dimension D. The study of the influence of D is of

particular importance as with proportional data, the greater D, the smaller the observation

values. Too small values, through numerical processing, can lead to matrices invertibility

issues which is not desirable for accurate estimation.

As stated earlier, the GD distribution relaxes the constraint on the sign of the data

correlation coefficients. The GD-based model is then expected to give a more accurate data

representation in the case the data are mostly positively correlated (i.e., more than half of

the data covariance matrix terms are positive). On the other hand, with mostly negatively

correlated data, HMMD should provide as good results with a reduced complexity. To verify

this, data are generated from known HMMs and an HMMGD and a HMMD are used in

order to retrieve the state and mixture component that generated every sample. However,

data generated from HMMGDs with parameters randomly and uniformly drawn in the

range [1, 60] are quasi-automatically mostly positively correlated. To overcome this point

I constrained some of the HMM parameters to follow a Dirichlet distribution expressed in

the form of a GD distribution. The three following scenarios have been used:

1. Data generated from HMMDs only (Scenario 1),

2. Data generated from an hybrid HMM with, for each state, half of the components

being Dirichlet and half GD distributions (Scenario 2),

3. Data generated from HMMGDs only (Scenario 3).

Extensive testing confirmed the expectations. Results are illustrated in Figure 3.1 using

a correlation ratio which represents the number of positively correlated variables (minus

the autocorrelations) over the number of negatively correlated ones. A ratio greater than 1

means the variables are mostly positively correlated and vice versa.
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Figure 3.1: Gain of accuracy using HMMGD compared to HMMD in function of the variables correlation
ratio. The gain of accuracy is computed as the difference between the two models’ performance.

Experiments have been led with K = 3 and M = 2. For scenario 1, HMMGD has a 85.3

% accuracy and HMMD 84.9%, confirming that both work equally well. For scenarios 2 and

3, HMMGD has an accuracy of 81.2% and 89.7%, respectively, and HMMD of 77.6% and

80.1%, respectively. As soon as some data are positively correlated, HMMGD outperforms

HMMD. It is observed in scenario 2 (correlation ratio close to 1), for unclear reasons, that

it is more difficult for the HMMs to retrieve the correct state and component the sample

comes from. Finally, the retrieval rate for data with a correlation ratio greater than 1 is

of 86.1% for HMMGD and of 78.4% for HMMD, and of 84.8% and 83.2%, respectively, for

correlation ratios smaller than 1. This shows HMMGDs overcome the weakness of HMMDs

for positively correlated data.

Table 3.1 reports the results of experiments led fixing D = 10, generating 100 sequences

only (because of time constraint), and letting K and M vary. According to the previous

results, only mostly positively correlated data are considered here (scenario #3). For any

combination (K, M), HMMGD achieves better results than HMMD showing the benefit of

using HMMGD when proportional data are processed. As the product KM increases, the

retrieval rate decreases which can be explained considering that the more distributions are

present, the closer to each other they are, and the more difficult it is to clearly assign a

sample to a distribution.

A bad initialization of the distribution parameters can give low retrieval rates. It can find
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Parameters (K,M) Product KM HMMD (%) HMMGD (%)

(2,2) 4 84.2 90.9

(2,3) 6 75.9 92.8

(3,2) 6 82.0 87.8

(2,4) 8 82.0 89.8

(4,2) 8 86.2 91.5

(3,3) 9 81.2 89.1

(3,4) 12 72.9 88.9

(4,3) 12 73.3 85.2

(4,4) 16 61.9 76.6

(5,5) 25 66.0 68.8

(10,5) 50 52.4 62.2

Table 3.1: HMMGD and HMMD retrieval rates with various (K, M) combinations

its origin in the convergence of the clustering algorithm, used as the first step of the method

of moments, towards local extrema. To overcome this issue, the initialization process can

be run several times and the comparison of the lower bound of the data likelihood with

these initial parameters be used to choose the best ones. However, this requires extra

computations and does not guarantee a good convergence of the clustering procedure, even

within several attempts. Here the interest was only into the relative performance of the

HMMGD compared to the HMMD then, this option has not been used. Instead, in order

not to introduce any bias from this issue, a unique clustering algorithm is used for both

initializations.

Figure 3.2 reports the results of experiments in which K = 3 and M = 2 and D increases

until retrieval rates degrade dramatically. For scenario 1, equivalent results are obtained

with both HMMs, HMMGD giving sometimes slightly better results at the cost of extra

computations (not reported on Figure 3.2). In other cases, HMMGD systematically outper-

forms HMMD up to the point data dimension is too high to perform calculations accurately

(intermediate matrices become singular). Fluctuations in the overall results are due to bad

initializations that involve retrieval rates to dramatically drop on some isolated runs. The

general shape of the curves and their relative distance clearly shows that, within an HMM

framework, mixtures of GD distributions give the best results and allow working with data

of higher dimension than Dirichlet ones. This performance improvement is obtained at the
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Figure 3.2: Retrieval rate (%) of HMMGD (in black) and HMMD (in blue) as a function of data dimension
for scenarios 2 (dash lines) and 3 (solid lines)

cost of a more complex model involving (2D − 2) parameters to be estimated for every GD

distribution compared to only D parameters for a Dirichlet one. These results are essential

to target real applications for which HMMGD could be a potentially efficient tool.

Action recognition

Confirmation of the superior performance of the GD-based HMM is obtained on real-world

data. The experiments are led on the Weizmann Action Recognition data set [85] which

is composed of video sequences featuring 10 different actions (such as walk, run, jump,...)

performed by 9 subjects. The features used are Histograms of Oriented Optical Flow [86]

and 10-bin histograms are built, with each bin representing a range of optical flow angles

with respect to the horizontal axis. The optical flow magnitude weights the contribution of

each pixel to the histogram. [86] showed that good classification results could be obtained

with features of dimension higher than 30 however, I preferred to use features of dimension

10 as, within my HMM-based framework, no improvement has been found when using more

bins. Finally, for time savings, the frame rate of the video sequences is divided by 2.

Experiments are led using a Leave-One-Out cross validation, the results are averaged

over 10 runs, and analyzed in terms of rank statistics. The optimal values K = M = 4

for both HMMs are empirically determined. With these parameters, the HMMD method
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achieves a 44.0% accuracy while the HMMGD one achieves 54.8%. Though these results

are low [86], they show the out-performance of the HMMGD over the HMMD. The rank

statistics of order 2 are 71.3% and 82.0% for the HMMD and the HMMGD, respectively.

Here again it is clear that the use of the GD model yields higher likelihoods for the correct

classes than the Dirichlet one and is thus much more adapted for real-world proportional

data modeling. Given the small size of the feature vectors (dimension 10) and the huge gap

between the rank statistics of order 1 and 2, HMMGD seems to have the potential to perform

accurate classification with a parameters fine tuning and the addition of a well-chosen prior.

This last point is supported by the results of the following experiment: a very simple

prior is added over the actions of the data set and combined with the already obtained

HMMGD results. For each video sequence, the greatest optical flow magnitude is computed.

The prior is then based on the average µOF and standard deviation σOF of the optical flow

magnitude maximum values of the set of video sequences available for each class (i.e., action

type). Its computation is totally data-driven, calculated from the training video sequences

available. Assumption is made that, for a given class, this maximal value follows a Gaussian

distribution of parameters µOF and σOF . As a new video sequence has to be classified, its

optical flow maximum magnitude m is computed. The prior is computed as a distance with

the following expression:

dprior = ♣CDF(m, µOF , σOF ) − 0.5♣ , (31)

where CDF(m, µOF , σOF ) denotes the cumulative distribution function of the Gaussian with

parameters µOF and σOF . The smallest the value, the highest the prior. The classification

is obtained combining this prior result with the HMMGD ones.

Therefore, for a new video sequence, the quantity dprior is computed for each class and

a first classification result is obtained and stored. Then, a second classification result is

obtained from the HMMGD itself. For each class, its rank in the HMMGD and in prior

results are added up. The video sequence is then assigned to the class with the lowest

score (i.e., the best cumulative rank). This simple prior used alone leads to a classification
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Figure 3.3: Rank statistics of HMMD, HMMGD, and of the combination of HMMGD with a prior

accuracy below 50% however, combined with HMMGD results, the algorithm ends up with

a 72.6% accuracy. The rank statistics of order 2 shows an even greater potential as it reaches

91.9%. Better results could be undoubtedly obtained with a more complex prior. However,

the study of the best tuning and prior choice is out of the scope of this application that

strives at showing the superior performance of HMMGD over HMMD. Figure 3.3 reports

the rank statistics for the three studied methods.

3.4.2 Anomaly detection framework

Method overview

I aim at assessing the performance of the proposed models for anomaly detection in public

areas. I rely on the features proposed in [52] as they have been specifically designed for

this type of application and have shown to be efficient for the data sets I use to lead my

main experiments (Section 3.4.3). I adapt these features to my HMM-based framework and

apply them to a wider range of situations (see Sections 3.4.3 to 3.4.5). I provide here a

brief description of the feature extraction method (see [52] for more details) and explain

the modifications I brought to them, in order for them to respect the constraints imposed

by the use of the previously presented HMMs.

The preprocessing of the frames consists in a gray-level resampling to the size 160 × 240

pixels, using a bicubic interpolation, and a noise reduction step performed with a simple
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Gaussian filter of size [3, 3] with σ = 1.1. The resampling allows a faster computation and,

for the data sets I used, keeps the moving objects at a size allowing the anomalies detection.

The video sequences are then divided into small volumes, called cuboids, each of them

being subdivided into 8 subregions, 2 along each direction. A 50% overlap of the cuboids

over the spatial directions and no overlap over the temporal dimension in the sampling grid

has been shown to be optimal from the computational point of view [52]. Three-dimensional

gradient-based features, represented in polar coordinates by a magnitude and two angles,

are used. At each pixel of each frame, the quantities
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are computed, with Gx, Gy, and Gt, being the gradients in Cartesian coordinates. The use of

a dense sampling gives rise to too many features and the dimension of the video sequences

representation has to be drastically reduced. For each subregion, a 12-bin histogram is

built through the quantization of φ into 4 values/bins and of θ into 8 values/bins. The

contribution of each pixel within a subregion is weighted by its magnitude. [52] concatenates

the histograms of the 8 subregions that compose a cuboid to form this cuboid features vector.

I propose here to model each cuboid by a series of 8 normalized histograms. This allows to

fill several requirements involved by the use of my HMMs:

• The length of the histograms is kept small (12 here), so that the data dimensionality

constraint mentioned earlier is respected ;

• The series of histograms illustrate a dynamic mechanism embedded in each cuboid ;

• The normalization ensures the data to be proportional ;

• Each cuboid is observed several times within the same and in different video sequences,

ensuring multiple observations, which is preferable for an accurate model estimation

and for avoiding model overfitting.
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For each cuboid location, an HMM is trained from all available observations. Classifi-

cation is performed by comparing the likelihood of each cuboid computed from the testing

videos to a threshold that depends on the location, i.e., each cuboid location has its own

threshold. I define this adaptive threshold using the minimum likelihood value of training

samples3 at each location and multiplying it by a factor k.

Choice of coefficient k

As it will be seen later on, the choice of the value of coefficient k is a key component for

the good performance of my approaches. The choice of this threshold should be guided by

the following considerations.

Case k > 1 This case assumes that some of the anomalous sequences will reach likelihood

values greater than some of the non-anomalous training sequences. This can especially occur

when the anomalies’ scale is the same as or smaller than the surrounding clutter’s one (e.g.,

UCSD data set, Section 3.4.3), or/and when there is a lot of available training sequences

with different dynamics. Indeed, varied training sequences also induce the trained HMM to

model the variability of the data as something normal. Therefore, some anomalies can be

interpreted by the model as an illustration of this variability and then, not be detected.

Case k = 1 This choice can be made as soon as the normal situation is highly repetitive, if

the anomalies’ scale is notably greater than the normal events’ one, and/or if the anomalies

dynamics are dramatically different from the clutter dynamics (e.g., the detection of a boat

approaching a pier, Section 3.4.4).

Case k < 1 This case assumes that some normal sequences will have a likelihood value

smaller than what has been seen in the training set. This is especially the case when too few

training samples are available to train the model. A reduced number of training samples

3In the ideal case, these samples should be part of a validation set, different from the training set, and
clear of any anomaly. However, in the case no validation set is available, this value can still be approximated
using training samples but keeping in mind that the value obtained for the minimum likelihood is more likely
to be higher than what it would have been with an independent validation set. The use of the multiplying
coefficient k helps controlling this bias and insures that the Equal Error Rate is reachable.
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often leads to overfitting, which will raise high likelihoods only for the samples that are very

similar to the training ones.

In a surveillance application, the user mostly wants to get close to the Equal Error Rate

(EER) point as it optimizes the ratio between the False Alarm Rate and the Miss Rate.

If one can rather easily guess if k should be greater or smaller than one, it seems quite

hard to choose its exact value when not equal to 1, as the likelihood levels can vary over

an extremely wide range of orders (in my experiments it approximately ranged from 10−20

to 10100). Therefore, the case k = 1 can be seen as an ideal case and has to be considered

as an important characteristic of the quality of the training set with respect to the used

type of classifier. In the following applications, I will pay attention to the methods leading

to k values close to 1. In other cases, the use of a validation set (anomalous and normal

samples different from the training ones) for this threshold’s tuning seems unavoidable. This

extra attention can drastically improve the model’s performance and is therefore absolutely

worthy.

3.4.3 Anomaly detection in crowds of pedestrians

In this experiment, I aim at detecting anomalies in the video surveillance sequences of the

public UCSD Ped1 and Ped2 data sets [4]. Each of these data sets is composed of video

sequences of pedestrians on a walkway and split into a training set, containing normal frames

only, and a testing set containing both normal and abnormal frames. The only difference

between these two sets is the camera viewpoint. A frame level ground truth is provided for

all test sequences. Figures 3.4 and 3.5 show frames from the training sets with different

crowd densities and anomalous frames from the Ped1 test set, respectively.

With cuboids of spatial size 40 × 40 pixels, I end up with 77 cuboids, hence 77 HMMs.

The likelihoods of the sequences with respect to the corresponding HMMs are computed

for the threshold setting. When a new video sequence arrives, the frames are processed by

batches of 8 frames (temporal length of the cuboids). The features vector of each cuboid

is computed, as well as its likelihood to match with the trained HMM that corresponds to

the same location in the training video sequences. In order to quantify the performance
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Figure 3.4: Frames from the UCSDPed1 (upper row) and UCSDPed2 (bottom row) training sets.

Figure 3.5: Anomalous frames from the UCSDPed1 data set (anomalies are circled).

of my approaches, I vary the coefficient k to find the EER and to compare it with a few

state-of-the-art methods.

The number of states K and mixture components M is determined using a k-means

clustering of the training data, with the number of clusters varying from 2 to 20, and then

considering the percentage of variance explained, which is expressed as:

Vexplained = 100 ×
dtotal − dwithin

dtotal

, (33)

where dtotal is the sum of the Euclidean distances of all features vectors to all the clusters

centroids and dwithin the distance of all features vectors to their closest centroid. Figure 3.6

reports the average curve of the normalized percentage of variance explained in function
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Figure 3.6: Normalized percentage of variance explained in function of the number of clusters (k-means),
averaged over all cuboids’ locations.

of the number of clusters for all cuboids’ locations. Beyond 6 clusters, the percentage of

variance explained does not significantly increase, while the addition of clusters makes the

model computationally more demanding (as it increases the number of parameters). The

number of clusters actually corresponds to the product K × M . I choose to set K = 2

and M = 3 as the number of states and mixture components, respectively. The setting

of K and M can also be done using the Bayesian Information Criterion [87], the Akaike

Information Criterion [88], or the Minimum Message Length method [10,60]. However, these

methods involve likelihood calculations and are thus computationally more demanding than

the simple method that I have applied.

The UCSD data sets provide specific video sequences for training. However, though

these sequences are supposed to be reference sequences for normal events, I picked out 3

sequences containing anomalies (bikers) in the Ped1 data set. As it is clear in my framework

that the training set has to be clear of any abnormal event, the training sequences numbered

2, 23, and 25 are discarded from my model training.

The HMM-based methods improve the results of [52] while using a unique scale (see

Table 3.2). The implementation of a second scale would lead to a significant increase of

the computational time which is prohibitive. For the Ped1 data set, the EER does not

give any preponderant model within the different HMMs proposed. However, the EER

only represents one point of performance, that is seen as optimal in most applications as it
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Figure 3.7: Example of False Negative Rate as a function of False Positive Rate for the three studied methods
for one run of the experiment on the Ped1 data set. k varying from 1 to 1020.

Method EER-Ped1 EER-Ped2

[52] Single scale 34.0% 32.0%
[52] 2 scales + context 31.0% 30.0%

[89] 31.0% 42.0%
[22] 32.4% 28.5%
[59] 27.0% 26.9%
[54] 17.8% 18.5%

HMMD 28.9% 18.5%
HMMGD 29.0% 22.0%
HMMBL 29.0% 16.6%

Table 3.2: Equal Error Rate for the detection task on UCSDPed1 and UCSDPed2 data sets. Values in bold
are the ones for which the EER is reached for a coefficient k value close to 1.

minimizes the two error types simultaneously. In order to discriminate the best model, I

look at the overall performance of these three methods computing the Area Under the Curve

(AUC). In this case, the training set is of significant size and contains large disparities at the

crowd density level, therefore the coefficient k is kept larger than 1, in the range [1, 1020].

The EER point is reached around k = 106. I compute the AUC over a range of k values

varying from 1 to 1020 and calculate the area under the obtained curve using a trapezoidal

numerical integration approximation. The AUC of the HMMD and HMMGD methods are

respectively 8% and 12% larger than the HMMBL one. This means that out of the EER

point, HMMBL will typically bring lower error rates than the two other models. This can
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be observed on Figure 3.7 which reports the performance of one run of the experiment on

the Ped1 data set.

For the Ped2 data set, the HMMBL clearly works better than the other models. More-

over, it reaches the EER for a coefficient k close to 1. HMMD also gets to the EER point

for k close to 1, whereas HMMGD models reach it for values much smaller than 1 (around

10−4), which could be expected as the training set is much smaller than the Ped1 one. Ped2

testing set is however completely unbalanced in terms of normal/abnormal frames ratio:

84.2% of the frames contain an anomaly. The Ped1 testing set is much more balanced with

56.2% of abnormal frames. In the case of an unbalanced data set with only two categories

involved, a fairer measure of the performance of a model is the Matthews correlation coef-

ficient (MCC), that takes into account the four terms of the confusion matrix. An MCC

equal to 1 means a perfect correlation between the ground truth and the results, a result

close to 0 means the classifier is not better than randomness, and a coefficient close to

-1 means a total opposition between the ground truth and the results. Over the range of

thresholds specified earlier, the average maximal MCC reached is 0.55 for HMMD, 0.50 for

HMMGD, and 0.62 for HMMBL, which confirms the better performance of the HMMBL

models.

Influence of the crowd density

The models are trained from video sequences representing different crowd densities. How-

ever, once trained, it is interesting to look at the performance of my models depending

on the crowd density of an unknown video sequence. For this experiment, I worked only

with the Ped1 testing set which is substantially larger than the Ped2 one (only 12 video

sequences). I split up the Ped1 data set into 2 subsets of approximately the same size.

The first subset, denoted LD, gathers 19 video sequences featuring low density crowds and

the second one, denoted HD, gathers 17 video sequences featuring high density crowds.

Table 3.3 reports the EER for this two subsets.

Though trained from various crowd densities, it is clear than all models perform better

when the crowd density is low, which confirms the intuition that anomalies are easier to
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Subset Ped1-LD Ped1-HD

HMMD 25.4% 36.2%
HMMGD 25.6% 33.4%
HMMBL 24.7% 35.8%

Table 3.3: Equal Error Rate for the detection task on UCSDPed1 LD and HD subsets.

detect in less crowded environments. A suggested improvement could be the addition of a

crowd density estimator and the training of several models (for different densities). This

possibility is not examined in the present work and left for future investigation.

Localization task

Over the 36 and 12 test sequences available in the Ped1 and Ped2 data sets, respectively, 10

(Ped1) and 9 (Ped2) are precisely annotated in order to evaluate the precision of the anomaly

localization4. For each frame in which an anomaly has been detected, I first look at the

presence or absence of a true anomaly and, in the case there is one, I look at the percentage

of well-detected abnormal pixels. If this percentage is higher than 40%, the anomaly is

considered as well-localized. The three proposed methods show quite similar results and

perform much better than most of the state-of-the-art methods. The localization results

are obtained by using the settings leading to the EER. Table 3.4 provides a comparison of

different methods ( [22] does not provide any result for the localization task).

Discussion

Beyond the direct comparison that can be done with [52] as only slightly modified features

have been used, I also compare my approach with other state-of-the-art methods. [89] pro-

posed a social force model based on the study of the interaction between multiple moving

particles. Frames are represented using optic flow and the normal behaviors are modeled

with a bag-of-words approach. The results over the UCSD data sets are taken from the re-

sults presented in [52]. Recently, a probabilistic approach for the detection and localization

4A full annotation for missing ground truth has been added later on in [3] but has not been used in these
experiments. The results used for comparison in Table 3.4 are the ones corresponding to the same partially
annotated ground truth. In Chapter 4 however, the fully annotated data set is used.
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Method Ped1 Ped2

[52] Single scale 27.0%
[52] 2 scales and context 29.0%

[89] 21.0%
[59] 78.9% 74.9%
[54] 64.8% 70.1%

HMMD 52% 77.2%
HMMGD 51% 74.7%
HMMBL 52% 73.5%

Table 3.4: Good detection rate at pixel-level (or true localization rate) on UCSDPed1 and UCSDPed2 data
sets.

of anomalies in which normal behaviors are modeled by the use of mixtures of dynamic tex-

tures has been proposed [54]. Several spatial scales are used within a hierarchical framework.

Spatio-temporal features based on a texture map and 3D Harris functions have been im-

plemented in a Gaussian-based HMM in [22]. Finally, the work of [59] shows the efficiency

of features based on a combination of histograms of oriented swarms (for the dynamics)

with histograms of oriented gradients (for the appearance). The anomaly detection is then

performed within a Support Vector Machine (SVM) framework.

My models perform better than both [52] and [89] in all cases. On the Ped2 data set,

for the detection task, the HMMBL model outperforms all other approaches. However,

[54] achieves better detection performance on the Ped1 data set. For the localization, the

three proposed methods achieve the best detection rate around 75% for the Ped2 data set

along with the method of [59] and, the best score for the Ped1 data set are the ones of [54]

and [59]. This lower performance has however to be interpreted considering the computing

time required for a frame. The three presented methods can process a frame within 0.2

seconds on a computer with 5GB RAM and a 3.4GHz CPU, working with Matlab. The

video sequences of the UCSD data sets have been recorded at a rate of 10 frames per

seconds which is a usual rate for video surveillance designs. The proposed methods seems

thus faster than the ones presented in [54] and [59] that both takes around 1.2 second per

frame, with a 2.8 GHz CPU, 2GB RAM and C programming, and with a 3.5 GHz CPU,

16 GHz RAM, and C++ programming, respectively. Since the training step is executed
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offline, my approaches are not far from running in real-time and might be able to do so

with an optimized coding and some operations realized in parallel (especially in the features

extraction step). Overall, the three models work fine for this type of applications with a

slight advantage for the BL-based HMM. As a side note, more recent publications results

over these data sets are presented in the next chapter of this dissertation, in Section 4.4.

3.4.4 Boat detection

As it is, my approach is applicable to any type of video sequence recorded with a still

camera if training data, corresponding to what is considered as the normal situation, are

available. To assess this point, I used the Boat-Sea video sequence from the Anomalous

Behaviour Data Set [56]. In this video, a still capture of an empty pier is recorded when a

boat arrives from the left side of the camera field. The aim is to detect, localize, and track

this event. This video sequence does not represent a big challenge for the detection task

itself as the environment is uncluttered and as there is no camera recording issue (i.e., jitter,

white stripes,...). However, it is interesting to look at the anomaly localization performance

of the proposed models.

The HMMs are trained using the first part of the video sequence, i.e., until the boat

appears on the left side of the image, while the rest of the sequence is used as the testing set.

The threshold k is set to 1, according to the analysis provided in Section 3.4.2. All three

models fully detect and track the boat, however, the HMMBL method involves less false

positive cuboids at other spots within a frame. Figure 3.8 reports the number of cuboids

featuring the boat as well as the number of abnormal cuboids detected by each of the three

studied models for every temporal unit (i.e., 8 frames).

The fact that all anomalous cuboids are not detected does not mean the boat is not

detected because of the cuboids’ spatial overlap. Table 3.5 reports the average number of

truly abnormal cuboids and those that are detected as abnormal cuboids by my models,

respectively. Figure 3.9 shows examples of the boat detection and precise localization for

the HMMBL model.

All three approaches succeed in detecting, localizing and tracking the boat whether it

50



Figure 3.8: Number of cuboid detected as abnormal by the three models in comparison with the true number
of abnormal cuboids by temporal unit of 8 frames.

Method Average

Ground truth 5.2
HMMD 8.2

HMMGD 10.6
HMMBL 6.7

Table 3.5: Average number of cuboids detected as abnormal in the Boat-Sea video sequence compared to
the ground truth.

is moving or still as it is in the last part of the video sequence. This last point is due to

the dynamic environment as my features are entirely movement-based. Even when still, the

presence of the boat disturbs the pattern of the sea (waves) and the stillness of the image

in this area raises a low model likelihood result, which allows the detection of the event

(presence of the boat).

3.4.5 Detecting anomalies at a security check point

The last proposed application aims at detecting people going in the wrong direction in

an airport security line-up. The video sequences, extracted from the Anomalous Behavior

Data Set [56], are recorded from a surveillance camera hung up to the ceiling and filming

vertically downwards. The first sequence, of about 200 frames, is clear of any anomaly and

thus used for the training step, while the rest of the sequences composes the testing set.
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Figure 3.9: Frames from the Sea-boat video sequence with superposition of the cuboids detected as anomalous
by the HMMBL model.

Figure 3.10: Sample frames from the Airport-WrongDir video sequences. From left to right: two normal
situations (people walking from the right to the left), a woman going the wrong way, people stuck on their
way. The two last frames are considered as anomalous.

Figure 3.10 shows a few frames from the data set.

From Figure 3.10, one can notice that the anomalies are of larger scale than in the two

previous applications. It seems thus logical to increase the size of the cuboids in order to

limit the number of false positive cuboids. I propose to use cuboids that are twice and four

times larger than the previously used ones, i.e., size 80 × 80 and 160 × 160 pixels. Each

frame is then entirely covered by 15 cuboids and 2 cuboids, respectively. The results are

reported in Table 3.6

The best performance in this case is achieved by the HMMGD model either with (k

values far from 1) or without tuning coefficient k. However, the performance of the three

methods dramatically varies depending on the scale of the cuboids. The use of cuboids of

Scale HMMD HMMGD HMMBL

40 × 40 18.6 13.9 24.8
80 × 80 23.0 15.8 45.7

160 × 160 40.9 28.6 53.8

Table 3.6: EER over the Airport-WrongDir data set depending on the cuboids size and the model used.
Results in bold are the ones for which the EER is reached for a coefficient k close to 1.
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size 40 × 40 results in a large proportion of false positive that asks for a coefficient k several

orders below 1 in order to reach the EER. Cuboids of scale 80 × 80 suffer this issue to a

smaller extent for the HHMD and HMMGD models. The HMMBL allows to reach the EER

for a k value close to 1 though the overall EER is high (compared to what can be achieved

with a precise tuning of k). Finally, contrary to smaller cuboids, cuboids of size 160 × 160

lead to a significant amount of missed anomalies for the HMMBL model and, to a smaller

extent, for the HMMD model. However, the behavior of the HMMGD model without tuning

k is the best obtained for this application. In this latter case, the EER is reached for k

close to 1 and has a higher value than the one obtained with smaller cuboids along with a

precise tuning of k yet is still acceptable. The processing time is greatly reduced because

of the smaller number of cuboids, hence the number of HMMs to estimate.

3.5 Conclusion

In this chapter, two new variants of the HMM, based on the generalized Dirichlet and

the Beta-Liouville distributions have been proposed and their learning equations via an

Expectation-Maximization procedure derived. Moreover, it provides the first results for

classification and anomaly detection of the Dirichlet-based HMM, only tested over synthetic

data before this work. The preliminary study confirmed the expectations and corroborated

the multiple studies that already proved that, in the case of mixture models and for pro-

portional data, the use of Dirichlet distributions provides a certain advantage. The two

proposed variants of the HMM allowed the improvement of the anomaly detection and lo-

calization performance compared with a simpler variant based on Dirichlet mixtures. This

provides new alternatives for proportional data modeling that arise in numerous situations

when compact data representation is needed. Based on the experimental results presented

in this chapter, these new models have the potential to enhance the results obtained with

the Dirichlet-based HMMs in a wide range of applications, while demanding the tuning of

few extra parameters in the case of the generalized Dirichlet version and only one extra

parameter for the HMMBL. Furthermore, as the tuning of the HMM is usually done offline,
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this extra parameters’ tuning does not have a significant impact on the model efficiency.

These new approaches allow the modeling of more general data as there are fewer restric-

tions on the data covariance structure, and as they can efficiently work with data of slightly

higher dimension than the Dirichlet-based HMM can.

The derivations provided for these two new models have been presented in such a way

that they can be easily re-used to derive HMM variants with other exponential probability

distributions. In this way, it should be possible to derive and use HMMs with probability

distributions that closely match the properties of the data that one need to model. I also

determined some easily applicable guidelines for the choice of the threshold to be used

for anomaly discrimination. I finally showed that the proposed methods could detect and

localize anomalies in a near real-time fashion without any code optimization, in a Matlab

implementation. The most time-consuming step is the computation of the features and the

use of features that are faster to compute would also help to reach a real-time processing.
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Chapter 4

Variational learning of HMMs for

proportional data

4.1 Introduction & Related Work

This chapter is in essence similar to the previous one but presents an alternative way for

reaching the same goal, and does it with a better performance. As already mentioned,

everyday, we are in the scope of multiple video surveillance cameras, when using public

transportation, parking lots, walking nearby governmental buildings, or simply buying gro-

ceries. The rapid growth of these recording systems has been mostly driven by global public

security concerns with respect to thieves, personal attacks, or terrorism, along with an al-

ways decreasing cost of hardware with a steady increase of the embedded features quality

(greater resolution, storage capacity,...) [58, 90]. The realm of data that can be extracted

from these systems and the goals that can be achieved through their smart use is huge

and various. They are today installed and used by governments, commercial companies,

and private citizens, all with different preoccupations and requirements [91]. Data pro-

cessing methods specifically adapted to these systems are required to answer these various

challenges.

I only briefly recall hereafter the different types of approaches that one can find in the

literature as details have been exposed in the previous chapter in Section 3.2. In a few
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words, early approaches were mostly based on tracking that becomes very challenging when

many entities are present at the same time in the camera field, especially due to occlusions.

Furthermore, tracking methods, when used alone, involve the loss of all appearance-related

information, and reveal themselves unable to discriminate between a car and a pedestrian

if both follow the same trajectory at the same speed for example. Most of these tracking

methods rely on the distinction between the background and moving foreground objects,

achieved through background subtraction methods which become somewhat unreliable when

working with a dynamic backgrounds.

Methods that avoid the drawbacks of the tracking and background subtraction tasks by

focusing on higher information levels such as optical flow, gradients-based quantities, or dy-

namic textures, and on a global understanding of the situation, are rising increasing interest.

Finally, some recent methods aim at modeling the relations between spatio-temporal points

of interest (STIPs) through graph representations [92, 93]. The most recent approaches

leading to the current state-of-the-art results are presented in more detail in Section 4.4.

Finally, in order to detect when a normal situation becomes abnormal, a binary or two-

class classifier is needed. As exposed in Chapter 3, the discriminative power of the classifier

is as important as having appropriate features and HMMs can be a very discriminative

classifier when used with the right assumptions. As mentioned ealier in this dissertation,

the recent years have seen their learning equations adapted to a variety of continuous

non-Gaussian data types (e.g., mixed [75], proportional [28], normal inverse Gaussian [78],

Student’s t [77] data) for application in numerous different fields.

[28] introduced the equations for learning an HMM based on mixtures of Dirichlet

emissions. The main modification compared to the typical Gaussian-based model occurs in

the M-step of the Expectation-Maximization (EM) algorithm, as it is in this step that the

emission distribution parameters are updated. In Chapter 3, the EM algorithm has been

derived for HMM based on mixtures of generalized Dirichlet. Estimating all the parameters

using an EM algorithm is the typical approached, the most widely used. This estimation

process is based on the computation of the likelihood of the available observation time-series

with respect to the model. This quantity is unfortunately computationally intractable
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as it involves a summation over all possible combinations of hidden states and mixture

components. The maximum likelihood approach, which aims at maximizing it, can lead

to overfitting and convergence towards a local maximum given the multimodality of the

likelihood function. Bayesian methods such as MCMC provide a way to approximate the

likelihood but involve extremely long computations that are prohibitive if many models

have to be learnt. More recently, variational Bayesian approaches have been successfully

proposed as a computationally tractable way of tackling this approximation. It has been

first studied in [94, 95] for discrete data, and then in [96] for Gaussian data, and in [97]

for Student’s-t data. Variational learning has also been applied to other machine learning

algorithms such as probability mixture models [11,98,99] for various types of distributions,

neural networks [100], and graphical models [101].

When estimated with the Baum-Welch algorithm, the HMMs parameters are consid-

ered as unknown but fixed values. The estimation starts from the initial guess which is

iteratively refined via E- and M-steps. At each iteration, the expected complete data like-

lihood is maximized with a guarantee to converge. Opposite, in Bayesian frameworks, all

parameters are considered as random variables. A prior distribution is chosen over each pa-

rameter and the posterior distribution is inferred using Bayes’ rule. The marginal likelihood

of the data (or evidence) is obtained by integrating out the parameters as expressed later

in Equation (36). This way, I define a family of models associated to a set of probability

scores. The computation of this marginal likelihood is however computationally intractable.

Some approximation methods exist but are either computationally expensive (e.g., MCMC

methods) or give poor results [96]. The variational Bayesian framework has proved to be

able to approximate the quantity accurately while being computationally tractable. Sim-

ilar to the Baum-Welch algorithm, it is an iterative technique alternating E- and M-steps

and guaranteed to converge. Compared to the variational Bayesian learning of HMMs for

discrete, Gaussian, or Student’s-t data, the assumption that the data follow mixtures of

Dirichlet distributions implies the introduction of an extra approximation over the Dirich-

let conjugate prior. It is therefore interesting to study how the increased flexibility of the

variational approach and the introduction of this approximation will balance in the overall
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performance of the algorithm, with respect to the Maximum Likelihood approach.

Indeed, the variational Bayesian learning of the Dirichlet parameters is not as straight-

forward as its conjugate prior distribution exists but is computationally intractable. [11]

showed that an approximate form could however be used with promising results for finite

Dirichlet mixtures modeling. Basing my work on this latter reference as well as other previ-

ous works on variational estimation, I propose here to derive the equations of the variational

Bayesian learning of the Dirichlet-based HMM (VBHMMD). This is the first contribution

presented in this chapter.

Although the Dirichlet models show good modeling capabilities for proportional data,

they rely on the assumption that the data have negative covariance [60]. To relax this as-

sumption and reach higher accuracy, generalized Dirichlet (GD) models can be used. These

distributions are both part of the exponential family and the Dirichlet is also a GD dis-

tribution [61]. GD models have also been studied in some machine learning applications,

and have been shown to be in most cases more effective than the Dirichlet-based ones. For

example, it has been used for document topic representation in a Latent Dirichlet Alloca-

tion framework [79], for texture classification [60] and web service intrusion detection [99]

with finite mixture models, and for the design of generative kernels for Support Vector

Machine [80]. The latter has shown enhanced results compared to the use of the Dirichlet

distribution for object recognition and content-based image classification.

From these observations, I also propose an extension of the VBHMMD model towards a

variational Bayesian generalized Dirichlet-based HMM (VBHMMGD). The extension of the

HMM to the generalized Dirichlet case will unravel a double advantage. Indeed, on top of

having a more flexible covariance structure, the use of this distribution, via the projection

of the data into a specific space, relaxes an assumption made on the independence of the

Dirichlet parameters when choosing the approximate conjugate prior for the Dirichlet model.

This makes this model of high interest when working with compositional data. To the best

of my knowledge, no work has developed so far the variational learning of the Dirichlet

and GD-based HMMs. My approach is validated in a crowd anomaly detection application
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using the Pedestrians UCSD data sets, giving among the best results to date in a near real-

time fashion. Furthermore, I show that my approach perfectly handles generated tampering

events on one of these data sets. Finally, applying my method to a tampering detection

data set from the Visual Analysis of People [102] with a moving camera allowed me to

leverage its strength and weaknesses.

The contributions presented in this chapter can be summarized as follows:

• The complete derivation of the equations for the variational Bayesian learning of the

Dirichlet-based HMM.

• The extension of the variational model to the case of the generalized Dirichlet.

• The application of these new models to the surveillance of public areas under real

conditions and the direct comparison to the EM-based learning.

• The analysis of the strength and weaknesses of the proposed approach and their

probable causes, giving meaningful hints for future directions of improvement.

The work presented in this chapter is currently under review for publication in IEEE

Transactions on Neural Networks and Learning Systems under the title Variational Bayesian

learning of generalized Dirichlet-based hidden Markov models.

In what follows, Section 4.2 derives the variational Bayesian learning of the Dirichlet-

based HMM and Section 4.3 extends the model to the generalized Dirichlet case. Experi-

ments over real-world data sets are carried out in Section 4.4 and 4.5 and conclusions are

drawn in Section 4.6.

4.2 Dirichlet-based variational Bayesian HMM

In this section, I derive the equations of the variational Bayesian learning of the Dirichlet-

based HMM. The main difference between the variational approach and the typical Baum-

Welch approach as introduced in the previous chapter is the fact that in the variational

approach, all the HMM parameters (i.e., transition matrix, mixing matrix, and initial state
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vector coefficients, as well as the parameters of the emission distributions) are considered as

being random variables. Therefore, when in the Baum-Welch approach the HMM parame-

ters are initialized and iteratively updated, in the variational approach the assumptions are

made over the prior distribution that the different HMM parameters follow. The parame-

ters of these prior distributions (called hyperparameters) are initialized and then iteratively

updated. The values of the HMM parameters are inferred from the estimated values of

these hyperparameters.

I first recall the general expression of the D-dimensional Dirichlet distribution with

parameters (α1, ...., αD),

D(X♣α1, ..., αD) =
Γ(

∑D
d=1 αd)

√D
d=1 Γ(αd)

D
∏

d=1

xαd−1
d . (34)

with, αi > 0, xi > 0, i ∈ [1, D],
∑D

i=1 xi = 1, and Γ(t) =
∫ ∞

0 xt−1e−xdx, the Gamma

function.

Following the general description of the HMMs provided in Chapter 1, the likelihood of

a sequence of observations (or time-series) X given the model is typically expressed as:

p(X♣A, C, π, α) =
∑

S

∑

L

πs1

[

T
∏

t=2

ast−1,st

][

T
∏

t=1

cst,mtp(xt♣αst,mt)

]

, (35)

where S is the set of hidden states, L the set of mixtures’ components. αij = (α1ij , . . . , αDij),

with i ∈ [1, K] and j ∈ [1, M ], where K stands for the number of states and M the

number of mixture components (which is assumed to be the same for each state without

loss of generality). For clarity’s sake, I derive the model for a unique observation sequence.

When more observations sequences are available (which is highly recommended to prevent

overfitting), a summation over the observation sequences has to be logically added in all

the equations involving the data sequences.

The exact computation of the likelihood is intractable as it involves the summation over

all possible combinations of states and mixtures components. The typical approach consists

in the maximization of the likelihood of the data with respect to the model, as done with
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the Baum-Welch algorithm [26]. However, this procedure has drawbacks such as overfitting

and is not guaranteed to converge towards the global maximum as the likelihood function

is in general multimodal.

The variational Bayesian approach to the model estimation problem uses the posterior

probability by assigning a prior to the parameters, and integrating it out to compute the

marginal likelihood of the data. All the model’s parameters are seen as random variables.

Using the complete data likelihood, it is expressed as

p(X) =

∫

dπdAdCdα
∑

S,L

p(A, C, π, α)p(X, S, L♣A, C, π, α) . (36)

The exact computation of this quantity is still intractable but a lower bound can be

derived by introducing an approximate distribution q(A, C, π, α, S, L) of the true posterior

p(A, C, π, α, S, L♣X). Using Equation (36), along with the Jensen’s inequality I obtain

ln(p(X)) = ln

⎭ ∫

dAdCdπdα
∑

S,L

p(A, C, π, α)p(X, S, L♣A, C, π, α)

}

≥

∫

dπdAdCdα
∑

S,L

q(A, C, π, α, S, L) ln

∮

p(A, C, π, α)p(X, S, L♣A, C, π, α)

q(A, C, π, α, S, L)

⨀

.

(37)

The inequality is tight when q equals the true posterior. Denoting the lower bound L(q),

one can easily find that

ln(p(X)) = L(q) − KL(q(A, C, π, α, S, L)♣♣p(A, C, π, α, S, L♣X)) , (38)

where KL is the Kullback-Leibler distance between the true posterior and its approximate

distribution [11].

As the true posterior distribution is computationally intractable, I consider a restricted

family of distributions. Following the assumption made in [11,94–97], I consider that q can

be written in a factorized form, i.e., q(A, C, π, α, S, L) = q(A)q(C)q(π)q(α)q(S, L), and this

61



holds for p too. Then, the lower bound can be written as

ln(p(X)) ≥
∑

S,L

∫

dAdCdπdαq(π)q(A)q(C)q(α)q(S, L)

⎭

ln(p(π)) + ln(p(A))

+ ln(p(C)) + ln(p(α)) + ln(πs1
) +

T
∑

t=2

ln(ast−1,st) +
T

∑

t=1

ln(cst,mt)

+
T

∑

t=1

ln(p(xt♣αst,mt)) − ln(q(S, L)) − ln(q(π)) − ln(q(A)) − ln(q(C)) − ln(q(α))

}

= F (q(π)) + F (q(C)) + F (q(A)) + F (q(α)) + F (q(S, L)) . (39)

This lower bound is not convex and there will in general exist multiple maxima, which

implies a dependence of obtained solution on the initialization.

The priors of all the parameters have to be defined in order to evaluate Equation (39). A

natural choice for the prior of parameters A, C, and π is the Dirichlet distribution. Indeed,

all the coefficients of these matrices and vector are strictly positive, less than 1, with each

row summing up to one.

I therefore logically define

p(π) = D(π♣φπ) = D(π1, ..., πK ♣φπ
1 , ..., φπ

K) ,

p(A) =
K
∏

i=1

D(ai1
, ..., aiK

♣φA
i1

, ..., φA
iK

) ,

p(C) =
M
∏

i=1

D(ci1
, ..., ciM

♣φC
i1

, ..., φC
iM

) . (40)

A conjugate prior has also to be defined over the Dirichlet parameters α. As for any

distribution belonging to the exponential family, it can be expressed as [11,103,104]:

p(α) = f(ν, µ)

[

Γ(
∑D

l=1 αl)
√D

l=1 Γ(αl)

]ν D
∏

l=1

e−µl(αl−1) , (41)

where f(ν, µ) is a normalization coefficient and (ν, µ) are hyperparameters. However, due

to the difficulty to evaluate the normalization coefficient, this exact prior is intractable and

an approximation has to be used in order to carry out the variational inference. Following
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the proposition of [98] and [11], a conjugate prior for the Beta distribution is used along

with the assumption that the Dirichlet parameters are statistically independent. The Beta

distribution is the special case of the unidimensional Dirichlet distribution, which makes

this approximation meaningful. A good approximation to the conjugate prior of the Beta

distribution is the Gamma distribution G expressed as follows

p(αijl) = G(αijl♣uijl, vijl) =
v

uijl

ijl

Γ(uijl)
α

uijl−1
ijl e−vijlαijl , (42)

with l ∈ [1, D], i ∈ [1, K] and j ∈ [1, M ]. The hyperparameters u and v are strictly positive.

p(¶α⃗ij♦K,M
i,j=1) =

D
∏

l=1

K
∏

i=1

M
∏

j=1

G(αijl♣uijl, vijl)

=
D
∏

l=1

K
∏

i=1

M
∏

j=1

v
uijl

ijl

Γ(uijl)
α

uijl−1
ijl e−vijlαijl . (43)

The variational inference consists in iteratively alternating two steps, namely the M-step and

the E-step. In the M-step, I consider the sequence of hidden states and mixture components

to be fixed. Therefore, the terms in Equation (39) that are function of (S, L) are ignored

in the following equations.

I first study the optimization of q(A), q(C), and q(π). This specific part of the optimiza-

tion, as independent from the emission distributions used, is common to other continuous

HMM and has therefore already been studied in [96] and [97]. For keeping the theory clear,

I only give the main equations and refer the reader to the aforementioned references for

more details. Gathering all quantities related to A in Equation (39), I obtain

F (q(A)) =

∫

dAq(A) ln

[
√K

i=1

√K
j=1 a

wA
ij−1

ij

q(A)

]

, (44)

with

wA
ij =

T
∑

t=2

γA
ijt + φA

ij , (45)
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and

γA
ijt , q(st−1 = i, st = j) . (46)

The latter quantity is a local probability, typically computed in the HMM framework using

a Forward-Backward algorithm [26]. Gibbs inequality leads to the following expression of

q(A) that maximizes F (q(A)):

q(A) =
K
∏

i=1

D(ai1, . . . , aiK ♣wA
i1, . . . , wA

iK) . (47)

In the same fashion, for π, I have

q(π) = D(π1, . . . , piK ♣wπ
1 , . . . , wπ

K) , (48)

with

wπ
i = γπ

i + φπ
i , (49)

and

γπ
i , q(s1 = i) . (50)

And for C:

q(C) =
K
∏

i=1

D(ci1, ..., ciM ♣wC
i1, ..., wC

iM ) , (51)

with

wC
ij =

T
∑

t=1

γC
ijt + φC

ij , (52)

and

γC
ijt , q(st = i, mt = j) . (53)

I now aim at optimizing F (q(α)), making use of the approximation presented in Equation

(42). From Equation (39), I have

F (q(α)) =

∫

dαq(α) ln

∮
√K

i=1

√M
j=1 p(αij)

√T
t=1 p(xt♣αij)γC

ijt

q(α)

⨀

. (54)
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Using Equation (43), the log-evidence maximization is given by

q(α) =
K
∏

i=1

M
∏

j=1

q(αij) , (55)

with,

q(αij) =
D
∏

l=1

G(αijl♣u
⋆
ijl, v⋆

ijl) . (56)

Further, quantities marked with a ⋆ superscript refer to the optimized parameters. To

this point, the problem is equivalent to the one of finding the variational solution of the

parameters of a finite Dirichlet mixture model. The estimation of this finite mixture has

been studied in [11] (precisely in Section B of Appendix A) and yields to the following

solutions for the hyperparameters u and v.

u⋆
ijl = uijl + Uijl , (57)

with, for i and j fixed and for P observation vectors

Uijl =
P

∑

p=1

⟨Zpij⟩ᾱijl

[

Ψ

( D
∑

d=1

ᾱijd

)

−Ψ(ᾱijl)+
D

∑

d=1,d̸=l

Ψ′
( D

∑

d=1

ᾱijd

)

ᾱijd(⟨ln(αijd)⟩−ln(ᾱijd))

]

.

(58)

and

v⋆
ijl = vijl − Vijl , (59)

with

Vijl =
P

∑

p=1

⟨Zpij⟩ ln(Xpl) . (60)

The responsibilities (or weight of the data samples with respect to each mixture component)

are defined within the HMM framework: if Xpt belongs to state i and mixture component

j, then Zpij = 1. Otherwise, Zpij = 0. Therefore ⟨Zpij⟩ =
∑T

t=1 γC
pijt = p(s = i, m = j♣X)

and the responsibilities are computed via a simple forward-backward procedure [26]. This

last optimization completes the M-step.
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In the E-step, the previously estimated parameters are kept fixed and q(S, L) is esti-

mated. As noticed in [96], Equation (39) can be re-arranged as

L(q) = F (q(S, L)) − KL(q(A, C, π, α)♣p(A, C, π, α)) , (61)

where

F (q(S, L)) =
∑

S

q(S)

∫

q(π) ln(πs1
)dπ

+
∑

S

q(S)

∫

q(A)
T

∑

t=2

ln(ast−1,st)dA

+
∑

S,L

q(S, L)

∫

q(C)
T

∑

t=1

ln(cst,mt)dC

+
∑

S,L

q(S, L)

∫

q(α)
T

∑

t=1

ln(f(xt♣αst,mt))dα

−
∑

S,L

q(S, L) ln(q(S, L)) , (62)

and the second term is fixed in this E-step.

By identification, I naturally define

π⋆
i , exp[⟨ln(πi)⟩q(π)] ,

π⋆
i = exp[Ψ(wπ

i ) − Ψ(
∑

i

wπ
i )] ,

a⋆
jj′ , exp[⟨ln(ajj′)⟩q(A)] ,

a⋆
jj′ = exp[Ψ(wA

jj′) − Ψ(
∑

j′

wA
jj′)] ,

c⋆
ij , exp[⟨ln(cij)⟩q(C)] ,

c⋆
ij = exp[Ψ(wC

ij) − Ψ(
∑

j

wC
ij)] . (63)

Ψ denotes the Digamma function and ⟨.⟩ denotes an expectation with respect to the quantity

indicated as a subscript.
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The last quantity to be optimized is

ln(p⋆(Xt♣αst,lt)) =

∫

q(α) ln(p(Xt♣αst,lt))dα , (64)

with

p(Xt♣αst,lt) =

[

Γ(
∑D

l=1 αijl)
√D

l=1 Γ(αijl)

D
∏

l=1

X
αjl−1
tl

]γC
ijt

. (65)

Substituting Equation (65) into Equation (64) yields

ln(p⋆(Xt♣αst,lt)) = γC
ijt

∫

q(α) ln

(

Γ(
∑D

l=1 αijl)
√D

l=1 Γ(αijl)

)

dα + γC
ijt

∫

q(α)
D

∑

l=1

(αijl − 1) ln(Xtl)dα .

(66)

The second integral of Equation (66) can be expressed as

D
∑

l=1

ln(Xtl)⟨αijl − 1⟩q(α) =
D

∑

l=1

ln(Xtl)

(

uijl

vijl

− 1

)

, (67)

while the first integral can be expressed in the form of an expectation that I denote J(αijl)

J(αijl) =

⨀

ln

(

Γ(
∑D

l=1 αijl)
√D

l=1 Γ(αijl)

)⨁

q(α)

. (68)

This expression is analytically intractable and I choose to use the approximation proposed

in [11] in which a lower bound of this quantity is derived and equals to

J(αijl) ≥ ᾱijl ln(αijl)

∮

Ψ

( D
∑

d=1

ᾱijd

)

− Ψ(ᾱijl)

+
D

∑

d=1,d̸=l

ᾱijdΨ′
( D

∑

d=1

ᾱijd

)

(⟨ln(αijd)⟩ − ln(ᾱijd))

⨀

, (69)

with

ᾱijl =
uijl

vijl

, (70)
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and

⟨ln(αijd)⟩ = Ψ(uijd) − ln(vijd) . (71)

Substituting Equations (63) and (69) into Equation (62), I obtain

F (q(S, L)) =
∑

S,L

q(S, L) ln

(

π⋆
s1

√T
t=2 a⋆

st−1,st

√T
t=1 c⋆

st,mt
f⋆(Xt♣αst,mt)

q(S, L)

)

. (72)

The optimized q(S, L) then is expressed as

q(S, L) =
1

W
π⋆

s1

T
∏

t=2

a⋆
st−1,st

T
∏

t=1

c⋆
st,ltp

⋆(Xt♣θst,lt) , (73)

with the normalizing constant W ,

W =
∑

S,L

π⋆
s1

T
∏

t=2

a⋆
st−1,st

T
∏

t=1

c⋆
st,ltp

⋆(Xt♣θst,lt) . (74)

Equation (74) is actually the likelihood of the optimized model (A⋆, C⋆, π⋆, α⋆, S, L) and

can be computed using a forward-backward algorithm [26,96].

Typically, the learning of all parameters is achieved through a succession of M-steps

followed by E-steps. F (q) is estimated at the end of each iteration until convergence is

reached.

Precisions about the implementation

Initial values for all priors have to be set. A natural choice for the Dirichlet prior param-

eters for A, C and π, is to take uniform hyperparameters. Therefore, no state or mixture

component is favored before the beginning of the learning scheme. For accurate convergence

u and v have to be set more carefully. A method of moments is used over the available

data in order to get a rough estimation of the Dirichlet parameters. I then set u equal to

these roughly estimated values of α and set v equal to 1. Therefore, the ratio of the two

hyperparameters matches with the mean of the Dirichlet parameters values.

The difference between the initialization of the Baum-Welch algorithm (non-variational)
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and the variational approach are crucial. In the variational case, only the parameters of

the distributions that the different HMM parameters follow (i.e., the hyperparameters)

are initialized. In the Baum-Welch approach, each HMM parameter has to be carefully

initialized. Assumptions are thus made at a higher level in the variational approach. It

makes the initialization more straightforward as for instance, only one parameter is needed

for the initialization of A, C, and π (with the assumption of uniform priors). Using a Gamma

prior for the Dirichlet parameters requires the initialization of two hyperparameters u and

v. However, the Dirichlet parameters are related to these parameters through their ratio

(that is the mean of the Gamma distribution), which makes their initialization reduced

to the initialization of a single parameter. This makes the entire variational initialization

less restrictive than the one of the previous chapter and the results less dependent on

the initialization. Similar conclusions are drawn for mixture models with the use of the

variational approach with respect to a non-variational one in [11].

However, as specified earlier, I found important in the experiments to use a rough

approximation of the Dirichlet parameters αinit for the initialization of the ratio u/v in

order to prevent the convergence towards a local maximum.

Furthermore, the estimation of the hyperparameters does not allow for a direct estima-

tion of the Dirichlet parameters but only of their average values. Therefore, some simple

manipulations of the quantities have to be performed in order to get accurate estimations

of the αi’s. To start with, by definition of the Gamma distribution I have

u/v = ⟨α⟩ , (75)

where the dimension subscripts have been omitted for the sake of clarity.

By approximating α by its mean, I can write the following

u/v
∑

u/v
≈

α
∑

α
. (76)

In the multidimensional case, when estimating the updated value of α, the sum over the
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dimensions is not available. However, it can be approximated by the sum of the initial

vector of α parameters (obtained with the method of moments). Therefore, the updated

value of α, denoted α′, is approximated as follows

α′ =
u/v

∑

u/v
×

∑

αinit . (77)

This approximation is especially used when computing the responsibilities of the HMM

γ and ξ, in the forward-backward algorithms.

In summary, the pseudo-code for the variational Bayesian learning of the Dirichlet-based

HMM is presented as Algorithm 1.

Algorithm 1 Variational Bayesian Learning of Dirichlet-based HMM

1: function vbhmmDirLearn(X, αinit, K, M , tol, maxIter)
2: ## Initialize hyperparameters ##
3: φA = ones(1, K) × 1/K
4: φC = ones(1, M) × 1/M
5: φπ = ones(1, K) × 1/K
6: vijl = 1, ∀i, j, l
7: uijl = αinitijl

, ∀i, j, l
8: ## Initialize HMM parameters ##
9: Draw the initial responsibilities γA, γC , and γπ from prior distributions with Eq.

(40)
10: Compute wA, wC , and wπ with Eqs. (45), (49), and (52)
11: Initialize A, C, and π with coefficients computed with Eq. (63)
12: ## Initialize HMM likelihood results and iteration count ##
13: hlikold = 106; hliknew = 105; iter = 0
14: while ♣hlikold − hliknew♣ ≥ tol & iter ≤ maxIter do
15: ## E-Step ##
16: Compute data likelihood dlik using X, u, v, and αinit with Eqs. (34) and (77)
17: Compute responsibilities γA, γC , and γπ with forward-backward procedure using

dlik, A, C, and π. Eqs. (46), (50), and (53)
18: Update u and v with Eqs. (57) to (60)
19: ## M-Step ##
20: Update wA, wC , and wπ using responsibilities γA, γC , and γπ with Eqs. (45),

(49), and (52)
21: Update A, C, and π using wA, wC , and wπ with Eq. (63)
22: ## Update stopping criteria ##
23: hlikold ← hliknew

24: Compute hliknew with Eq. (74) and forward-backward procedure
25: iter+ = 1
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4.3 Generalized Dirichlet-based variational Bayesian HMM

The model presented in Section 4.2 can be extended into a generalized Dirichlet based model.

The generalized Dirichlet distribution extends the Dirichlet one by relaxing the constraint

on the sign of the data covariance at the cost of being represented by more parameters. A

D-dimensional generalized Dirichlet distribution is defined as:

GD(x⃗♣α⃗, β⃗) =
D
∏

d=1

Γ(αd + βd)

Γ(αd)Γ(βd)
xαd−1

d

(

1 −
d

∑

r=1

xr

)νd

, (78)

where Γ denotes the Gamma function and α⃗ = (α1, ..., αD), β⃗ = (β1, ..., βD), α⃗ and β⃗

the distributions’ parameters, all real and strictly positive. νn is a combination of these

parameters and equals to βd−αd+1−βd+1, if d ̸= D, and to βD−1, otherwise. The definition

holds for positive data that sum up to less than one: x⃗ ∈ R
D
+ and

∑D
d=1 xd < 1. Therefore

x⃗ can be extended to a proportional vector of dimension (D + 1), where the (D + 1)-th

element completes the vector to 1.

This distribution has an interesting and convenient property, which calls the need to

express the problem in a transformed space that I refer to as the W -space. Each observation

vector x⃗ is projected to the W -space through the following bijective function [60,61]:

Wl =

⎧

⎪

⎪

⨄

⎪

⎪

⋃

xl for l = 1

xl

\(

1 −
∑l−1

i=1 xi

)

for l ∈ [2, D] .

(79)

One can mathematically show that ∀l, Wl ∼ Beta(αl, βl) = Dir(α1 = αl, α2 = βl). The

estimation problem is thus simplified as D smallest estimation problems of unidimensional

Dirichlet distributions. This problem splitting has the advantage of improving the precision

of the overall estimation. Indeed, the parameters being estimated one by one, an estimation

error for one of them has no impact over the others. Also, problems of smaller dimension are

in general easier to solve with precision than problem of higher dimensions. The combination

of these two advantages brings a substantial enhancement of the model fitting to the data,

and efficiency for further classification tasks.
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The framework is can be summarized as the following steps, a more complete pseudo-

code is given as Algorithm 2:

1. The data are projected onto the W -space.

2. For each dimension, the projected data are complemented to 1.

3. The VB-HMM with the Dirichlet assumption is applied to the complemented data,

one dimension at a time.

4. The estimated parameters are kept as the GD parameters for the original data.

5. The estimation of the other HMM parameters is still ran with the original data.

The interesting point with this extension is that it actually brings back all parameters

to unidimensional Beta. This is the special case for which the approximate conjugate prior

chosen for the Dirichlet actually matches the exact prior. Therefore, I can expect significant

improvements of the performance of this version of the algorithm compared to the Dirichlet

version.

4.4 Application: Anomaly detection in crowds

A first set of experiments over the public UCSD data sets Ped1 and Ped2 is carried out,

with the goal of detecting unusual behaviors in crowds of pedestrians from video surveil-

lance recordings on an academic campus [55]. I refer the reader to the previous chapter,

Sections 3.4.2 and 3.4.3 for the details about these data sets and the features I extract from

them.

For having comparable results with [52] and Chapter 3, all frames are converted to

grayscale and resampled to the size 160 × 240 pixels, using a bicubic interpolation. A

Gaussian filter of size [3, 3] with σ = 1.1 is also applied for reducing the noise. To keep

the comparison of the HMM learning methods as relevant as possible, the features that I

use are the same as in the previous chapter and therefore, variations in the final detection
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Algorithm 2 Variational Bayesian Learning of generalized Dirichlet-based HMM

1: function vbhmmGDLearn(X, αinit, βinit K, M , tol, maxIter)
2: ## Initialize hyperparameters and transform data ##
3: Initialize φA, φC , and φπ as in Algorithm 1
4: Project X in W-space as Wl, ∀l with Eq. (79) and complement projected data to 1

(Wl, 1 − Wl)
5: Initialize (uijl, vijl), ∀i, j, l
6: ## Initialize HMM parameters ##
7: Initialize A, C, and π as in Algorithm 1 using Eqs. (40), (45), (49), (52), and (63)
8: ## Initialize HMM likelihood results and iteration count ##
9: hlikold = 106; hliknew = 105; iter = 0

10: while ♣hlikold − hliknew♣ ≥ tol & iter ≤ maxIter do
11: ## E-Step ##
12: Compute data likelihood dlik using X, u, v, αinit, and βinit with Eqs. (77) and

(78)
13: Compute responsibilities γA, γC , and γπ with forward-backward procedure using

dlik, A, C, and π. Eqs. (46), (50), and (53)
14: for l ∈ [1, . . . , D] do
15: Update uijl and vijl, ∀i, j with Eqs. (57) to (60) where Wl is used in place of

X
16: ## M-Step ##
17: Perform M-Step as in Algorithm 1
18: ## Update stopping criteria ##
19: Update stopping criteria as in Algorithm 1
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accuracy can only be attributed to the HMM parameter estimation method (EM versus

variational).

I recall that an HMM is trained for each cuboid location using all the available ob-

servations from the training video sequences. When there is a new query sequence to be

classified, the likelihood of each cuboid in this new sequence is computed with respect to

the HMM that has been estimated at this location. This result is compared to a pre-defined

threshold which is tuned for each location using the minimum likelihood value of the train-

ing samples multiplied by a factor k. The multiplicative factor prevents potential outliers in

the training data to corrupt the classification results. Section 3.4.2 of Chapter 3 discusses

this multiplicative factor influence.

The cuboids used are of spatial size 40×40 pixels and have an 8-frame depth. Therefore

each frame is spread across 77 cuboids, each modeled by an independent HMM. As explained

before, video sequences to be classified are processed such as all their feature vectors are

computed. Then, the likelihood of the series of feature vectors (i.e., histograms) with respect

to their corresponding model are computed and compared to the pre-tuned threshold. The

anomaly detection part is run several times with different values of k in order to obtain the

performance at EER.

For comparison on the learning method only, I adopt the same initialization procedure

as in Chapter 3. As no significant improvement can be observed beyond 6 clusters, following

the Occam’s razor principle, the product M ×K is set to 6, with M = 3 and K = 2. Finally,

training sequences numbered 2, 23, and 25 are not used for the training phase as unexpected

anomalies have been spotted in them.

Each experiment is run 10 times and the results are averaged and analyzed at two

different levels.

• At the frame-level: The information I am looking at is whether a frame contains or

not an anomaly. The localization of the anomaly is not taken into account.

• At the pixel-level: An anomaly is considered as well-detected if and only if it is

detected at the correct location within the frame. Following the rules established
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by [55] for this data set, an anomaly is correctly located if at least 40% of its pixels

are detected as anomalous. As for the frame-level detection, if a frame does not

contain an anomaly but one pixel of the frame is detected as such by my algorithm,

the frame is considered as a false positive. Pixel annotations of each anomaly for every

abnormal frame are publicly available [3, 55].

The True Positive and False Positive Rates can therefore be expressed as:

TPR =
#of true positive frames

#of positive frames
, (80)

FPR =
#of false positive frames

#of negative frames
. (81)

Performance is then expressed in terms of EER for the frame-level analysis, which is the

ratio of misclassified frames at which the two error types equal, i.e., FPR = 1 − TPR,

and in terms of True Detection Rate (TDR), i.e., 1 − EER, at pixel-level. The EER at

pixel-level will differ form the one at frame-level due to the "lucky guess" detections, which

are anomalous frames detected as such but at the wrong spatial location. The pixel-level

results seem to me more relevant but for fair comparison with other approaches I present

both results in Table 4.1.

The most relevant and meaningful comparison of this work is the one with the results

of the previous chapter. Indeed, the implementation of the experiments over these data

sets only differs by the learning method used for the HMMs. The improvement in detection

accuracy and good localization brought by the use of the variational approach is clear,

especially under the generalized Dirichlet assumption. The comparison with [52], shows the

importance of the classifier choice for equivalent features.

Focusing on papers of the last few years leading to the current best results, I compare

my approach with 7 other methods. [22] used a Gaussian-based HMM along with spatio-

temporal features based on a texture map and 3D Harris functions. As my approach also

uses spatio-temporal features and HMMs, it provides an interesting comparison on how the
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Method EER-Ped1 TDR-Ped1 EER-Ped2 TDR-Ped2 Processing time (inferring), Config., Language

[52] 31.0% ⋆ 29% 30.0% 29% 0.1s/fr, CPU: 2.6GHz, RAM: 3GB
[22] 32.4% N/A 28.5% N/A 5.1s/fr, CPU: 2GHz, RAM: 4GB, Matlab
[92] 19.9% 68.2% N/A N/A 1.3s/fr, CPU: 3.4GHz , RAM: 4GB, Matlab
[93] 2.9% N/A 9.9% N/A N/A
[59] 27.0% 78.9% 26.9% 74.9% 1.2s/fr, CPU: 3.5GHZ, RAM: 16GB, C++

[54] 17.8% 64.8% 18.5% 70.1% 1.2s/fr, CPU: 3.5GHZ, RAM: 16GB, C++

[105] 24.0% 81.3% 24.4% 81.9% 0.4s/fr, CPU: 2.8GHz, RAM:128GB
[106] N/A N/A 19% 76% 0.04s/fr, CPU: 3.5GHz, RAM: 8GB, Matlab

HMMD 28.9% ⋆ 52.0% 18.5% 77.2% 0.2s/fr, CPU: 3.4Ghz, RAM: 5GB, Matlab
HMMGD 29.0% ⋆ 51.0% 22.0% 74.7% 0.2s/fr, CPU: 3.4Ghz, RAM: 5GB, Matlab
HMMBL 29.0% ⋆ 52.0% 16.6% 73.5% 0.2s/fr, CPU: 3.4Ghz, RAM: 5GB, Matlab

VBHMMD 31.4% 57.4% 12.5% 74.8% 0.2s/fr, CPU: 3.4Ghz, RAM: 5GB, Matlab
VBHHMGD 29.0% 61.8% 13.8% 80.3% 0.2s/fr, CPU: 3.4Ghz, RAM: 5GB, Matlab

Table 4.1: EER for the detection task and TDR at pixel-level for the localization task over the UCSDPed1

and UCSDPed2 data sets. The ⋆ symbol indicates results obtained over the original partially annotated
ground truth (later completed by [3])

combination features/emission probability can affect the global performance. [93] devised

an original approach by using points of interest detected using 3D Harris corner functions

at which histograms of gradients and optical flow are computed for appearance and motion

modeling. These information along with entities interactions are formulated as a graph

which is used along with an SVM for binary classification. However, the anomaly detection

is only performed at the frame-level. In the same trend, the method in [92] is based on

describing the frequent geometric patterns between spatio-temporal points of interest and

makes use of 3D-SIFT features and of Gaussian process regression for the modeling. [59]

combined histograms of oriented swarms (dynamics modeling) with histograms of oriented

gradients (appearance modeling) along with an SVM, and [54] proposed a hierarchical

approach using several spatial scales and mixtures of dynamic textures to build a normalcy

model. [105] presents an original use of spatial-temporal convolutional neural networks

applied to small spatio-temporal video volumes selected using optical flow. The networks

are fed with raw data bypassing the feature design step while capturing appearance and

motion information. Finally, [106] proposes to use a combination of two local self-similarity

descriptors (spatial and temporal) with a global descriptor learned using auto-encoders.

Reliable detection is obtained by fusing the local and global results.
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To strengthen results comparison across all methods, Table 4.1 reports the frame process-

ing time, the computer configuration, and the implementation language used. My method

counts among the fastest ones allowing near real-time processing. As a side note, the re-

ported processing times are given as a simple indication of what one can expect as frame

processing rate. One has to keep in mind that such processing times are heavily coupled to

the employed programming methods such as the use of parallel computing, vectorization,

and optimization techniques at large.

These results also clearly illustrate how the use of the generalized Dirichlet distribution

can drastically enhance the global performance of the variational Bayesian HMMs. These

improvements can have three sources:

• The more flexible covariance structure of the GD distribution (not restricted to be

negative) [61].

• The relaxation of the assumption over the statistical independence of the distribution

parameters, making the approximation of the conjugate prior over the distribution

parameters tighter.

• The splitting of the main estimation problem into independent sub-problems of lower

dimension via Equation (79)

The results over the Ped1 data set can seem a bit far from the best obtained results in the

last few years. However, this has to be analyzed with respect to the frame processing time

which is definitely lower than these more accurate methods. Only [105] and [106] show

equivalent or greater potential for efficient, real-time anomaly detection. My proposed ap-

proach provides the second to best results up to date over the Ped2 data set while being

faster than the best one in the literature to the best of my knowledge. The combination

of the chosen features with the HMMs seems to work clearly better over sequences fea-

turing pedestrians walking across the camera field. This is opposite to the results of [55]

(not reported in Table 4.1) that used optic flow based features, which is rather close to

gradient based features, but associates them with a bag-of-word representation of the video

sequences. This added to the fact that I use features that are similar to [52] which did not
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get this difference of performance between the two data sets, tend to indicate this behavior

might be induced by the HMMs themselves. The results presented in the previous chapter

comfort this interpretation. Overall, my system seems to be especially sensitive to motion

as a sideways view visually enhance speed variations compared to a front view.

4.5 Application extension: Tamper detection with still and

active camera

4.5.1 Synthetic tampering event detection with still camera

Tamper detection refers to the task of detecting when the video surveillance device experi-

ences a material issue such as defocusing, lens breaking, drive mechanism failure, voluntarily

occlusion of the visual field, among others. When such event occurs, the surveillance mis-

sion cannot be successfully performed anymore and, in most cases, a human operation is

needed in order for the system to work again. Furthermore, when a malicious individual

wants to operate in the camera field, one of his first act is likely to be directed towards

the destruction or at least impairment of the surveillance system. For these reasons, it is

highly desirable to have a solution working for both unusual events detection and tamper

detection, as these are complementary tasks aiming towards a same goal of public security.

The UCSD data set does not contain any example of tampering events. I synthetically

generated a set of 4 different types of tampering actions over the 10 first testing video

sequences of the Ped1 data set, taking as model some of the tampering events proposed

in [102]:

• Total Occlusion: Simulates the case in which the camera is fully covered by an opaque

object. I took frames from videos of the tamper detection data set presented in [102]

(see next section) that I introduced over the UCSD video sequences.

• Partial Occlusion: Simulates the case in which the camera field is partially occluded

by an opaque object. I simply added black patches at different spots in the video

sequences.
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Figure 4.1: Examples of tampering events on UCSD Ped1 frames. Upper row: normal frame (left), total
occlusion (center), partial occlusion (right). Lower row: light jitter (left), strong jitter (center), defocus
(right)

Table 4.2: Number of tamper events detected over the total number of tamper events.

Tamper HMMD HMMGD VBHMMD VBHMMGD

Total Occlusion 10/10 10/10 10/10 10/10
Partial Occlusion 9/10 10/10 10/10 10/10

Jitter 10/10 10/10 10/10 10/10
Defocus 10/10 10/10 10/10 10/10

• Jitter : Camera jitter impairs the quality of the images recorded by the camera. I

used the method [107], based on [108] and [109], for adding this effect to the video

sequences, with different settings.

• Defocus: When the camera is brutally defocused, a blurry effect appears on the video

frames. I added a rough Gaussian filtering (with window size from 5 × 5 to 50 × 50)

to simulate this tampering event.

Samples of the different tampering events are reported in Figure 4.1.

The results presented in Table 4.2 are in line with my expectations. Detecting an

anomaly occurring at a larger scale that the one of a pedestrian can be done flawlessly

by the proposed approach. The same framework but with a non-variational learning fails

at detecting the partial occlusion when it occurs in the bottom right corner. This may

be due to the fact that no dynamic event occurs in this part of the frame in most of the
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Blurring Detection Example

(a) Defocus
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Blurring Detection Example

(b) Strong defocus
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Total Occlusion Detection Example

(c) Full occlusion
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Partial Occlusion Detection Example

(d) Partial occlusion
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Jitter Detection Example

(e) Strong jitter
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Jitter Detection Example

(f) Light jitter

Figure 4.2: Detection results for random runs with the HMMVBD (GD version gives similar results).

training samples. Figure 4.2 reports some of the detection graphs in which the percentage

of abnormal cuboids is plotted with respect to time.

I can conclude that my approaches makes the video surveillance system robust to tam-

pering events while being efficient at detecting abnormal behaviors of pedestrians.

4.5.2 Tampering event detection with active camera

The lack of publicly available tamper detection data sets with a still camera setting did not

allow me to experiment more over real video sequences. However, the authors of [102] built

a tamper detection data set with video sequences recorded using a moving camera. Though

my framework has been designed for a still camera viewpoint, I found interesting to give a

try over this data set. It especially gives me insights about the strengths and weaknesses

of the features I used for the main application of this chapter and the previous one.

I used the Foyer data set, part of the bigger Visual Analysis of People (VAP) data

set [102]. The scenes are recorded in cycles from left to right and right to left with highly

variable illumination conditions. The tamper events are grouped into 3 large categories

that include in total 8 sub-categories: Occlusion (total occlusion, partial occlusion with
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fabric, partial occlusion from the camera positioning with respect to the room at the end

of the cycle), Displacement (reduced camera field, moving up, and moving fast), and Focus

(blur and motion blur). Between three and five samples for each event type are available

in addition to a long training video sequence for the two surveillance areas.

In [102], specific features are designed for each type of tamper event to be detected. The

design of such features is out of the scope of this paper and the only aim here is to investigate

the capabilities and weaknesses of the proposed approach when applied to a situation in

which the camera viewpoint is moving. In order to have a reference about the usefulness of

the features I use with respect to the classification model, I also used the histograms of the

intensities of the raw pixels for each full frame, still using a temporal length of 8 frames.

Table 4.3 gives the number of successful detections for the different tamper events for

the 2 types of HMMs:

Table 4.3: Number of tamper events detected over the total number of tamper events.

Tamper VBHMMD VBHMMGD

Total Occlusion 0/3 3/3
Partial Occlusion V1 3/3 3/3
Partial Occlusion V2 0/3 0/3

Blur 5/5 5/5
Motion Blur 4/5 5/5

Block 0/5 0/5
Move Up 1/5 1/5
Move Fast 4/5 5/5

More specifically, in [102] SURF features for blurring events [110], histograms of oriented

gradients (HOG) for occlusions, and features designed to track the displacement between

successive frames for the abnormal displacement events. In an integrated system, it is

difficult to imagine having a multitude of sophisticated features to be tracked in real time,

each related to a specific type of tempering event (which can additionally take multiple

forms).

Some successful and unsuccessful detection results are provided in Figure 4.3. In the

light of the results presented in Table 4.3, I can draw the following observations.
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(a) Block (b) Move faster (c) Move up (failure)

(d) Move up (success) (e) Focus blur (f) Motion blur

(g) Full cover (h) Partial cover V1 (i) Partial cover V2

Figure 4.3: Typical detection results for random runs with the VBHMMGD over the Foyer data set. The
ordinates represent the percentage of cuboids being detected as abnormal.

• Short span of the camera detection fails. This is totally expected within my proposed

framework. All seen situations are actually situation considered as normal by my

model. For detecting such events, one can simply use the gradient-based features out

of the histogram fashion, by tracking the average gradient along the x and y axes i.e.,

Gx and Gy, over time and comparing it to the pre-defined schedule movement.

• Vertical move of the camera not well detected. This is less expected but mostly comes

from the fact I always look at the norm of the spatial gradients together. There-

fore, transposing the horizontal move of the camera to a vertical one doesn’t change

the values of the features. Additionally, as I work with an active camera the range of
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appearance of training frames is wide and diverse, the difference in the frames appear-

ance when moving vertically is not strong enough to raise any alarm. Tracking the

average Gx and Gy over time and compare it to the pre-defined schedule movement

should allow the detection of such events.

• Partial cover at end of camera course (PartialCoverV2). My features and model fail

at detecting this situation. The reason is unclear but it is here a tamper event similar

to a mix of the short span and partial occlusion V1. The event to be detected is short

in length and most of the frame is normal.

The graphs reported in Figure 4.3 are raw and can be post-processed with a threshold

and a moving average to be smoother. The moving average would allow some extremely

short false detections that can occur regularly to be withdrawn. These are triggered in most

case by the change of direction of the camera movement. The GD version of my approach

allows the detection of more tamper events, especially the full cover one which is missed

when using the Dirichlet.

4.6 Conclusion

As a conclusion, I derived the variational learning for the Dirichlet HMM and extended

it to the generalized Dirichlet case. The combination of relaxing the constraint over the

data, using an approximate conjugate prior, and splitting the main problem into indepen-

dent lower dimensional sub-problems brought a clear improvement of the algorithm overall

performance. With these approaches, I also propose a realistic solution to the problem of

unusual event detection in crowds of pedestrians as they work in a near real-time fashion

which can easily be improved towards real-time (with the training of the models done of-

fline) using parallel programming. Their use yields convincing results over the UCSD data

sets, among the current best state-of-the-art methods. The system is also robust to tamper

detection which can be seen as anomalies at a larger scale. The application of the framework

to video recorded using a moving camera showed surprisingly good results with respect to

the fact the approach has been designed with the strong hypothesis that the camera is still
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(and thus the video frame split into cuboids). These latter experiments allowed to clarify

the cases in which my method can fail.
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Chapter 5

Extension to Hybrid HMMs for mixed data

5.1 Introduction

Along with the development of informatics and data collecting devices came data in the

form of complex structures that classic tools can barely handle or to the cost of inaccurate

modeling and extra complexity. Multivariate continuous and discrete mixed data became a

topic of high interest in the last few years. These data structures especially arise in health

studies, econometrics, genetics, and toxicology [111]. Basic methods such as the separate

processing of the outcomes of different types, the discretization of the continuous outcomes,

or the numerical scoring of the discrete outcomes suffer from both subjectivity (in the choice

of the rules) and loss of information [112], and are thus not satisfactory. The separation of

the outcomes, for instance, results in the loss of the correlation information and requires ad

hoc methods to fuse the results if a classification or clustering task is performed.

As conventional tools do not allow easy processing of these data, new approaches and

extensions of well-known methods have been developed. The estimation of mixed outcomes

correlations have been studied in numerous papers and [111] provides a review of the main

approaches that include methods based on joint probability factorization (ch. 6) and copula-

based representation (ch. 10,11), pseudo-likelihood pair-wise factorization (ch. 9), and latent

variable models (ch. 6). As for mixed data modeling, Bayesian Networks have been adapted

in [113], and [114] generalized the latent variable analysis method. Clustering have been
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studied in [115] for continuous and count longitudinal data. A regularized classifier for

discriminating between two classes with mixed continuous and categorical data is proposed

in [116] and a minimum distance based classifier is defined in [117]. In [118], a classification

model based on general mixed data models for mixtures of nominal, ordinal, and continuous

variables is developed. This latter model is an extension of the general location model, one

of the first proposed for mixed data analysis [119], in which categorical data are assumed

to be marginally distributed as a multinomial. A normal distribution that controls the

continuous variable is then assigned to each multinomial state. The main issue with this

model, and with most of the models developed for health studies, is the poor performance

or difficult generalization for multivariate data of more than a few dimensions.

In image processing, the pixels’ intensity is typically considered as continuous. There-

fore, continuous data of different types arise when different imaging systems are used to

capture a same scene. This is the case when a scene is captured with both a color and an

infrared cameras as reported in [120], a LiDAR (Light Detection and Ranging) and an optic

imaging system [121], or by a radar and an optic imaging systems as reported in [1] and [2].

Especially, the noises corrupting each system can be of different natures and their joint

processing has been seldom documented. SAR and ultrasound images typically contain

speckle noise [122, 123], while optic images embed noise typically modeled as an additive

Gaussian noise [124]. I found this topic to be understudied with only two approaches of

radar-optic images joint processing for change detection that could be found in [2] and [1].

In the former work a method that is able handle images that have a slightly different point

of view is proposed. It is based on the modeling of the dependence of the two images using

the copulas theory. In the latter work a manifold is learned by taking into consideration

the physical properties of the images, and especially the nature of the noise that they are

corrupted by. On a close topic, Li et al. tackle the problem of conflict resolution in hetero-

geneous data from different sources that can arise due to transmission errors, high levels of

noise, or malicious manipulation of the data [125]. They build an objective function that is

solved as a joint optimization problem. The study of heterogeneous continuous/continuous

data still needs a lot of studies to get a panoply of tools that can be chosen for processing
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them conveniently.

In this chapter, I propose to extend the hidden Markov model for multivariate data

of mixed types. As presented so far, HMMs exist for continuous data of numerous types

as well as for discrete data, but are not documented for multivariate mixed data. The

proposed approach is by some points close to the multi-stream HMMs [126,127] theory that

handles data coming from different sources but all modeled with distributions of the same

type. My proposed framework can handle multivariate mixed continuous/continuous and

discrete/continuous data. It does not make any assumption on the form of the probability

mass functions (pmfs) of the discrete data, that can also be represented as mixtures of

pmfs, which is rather unusual but essential in the case of mixed data modeling. A simple

pmf mixtures estimation method is proposed, and can process outcomes taking their values

into vocabularies (or ranges) of different sizes. This HMM can also fit continuous data

by mixtures of several different probability distribution functions as long as the equations

for the Baum-Welch algorithm (i.e., the EM procedure for the estimation of the HMM

parameters) are derived. Modeling data using accurate pmfs and pdfs greatly reduces the

number of parameters of the model compared with the more common fully Gaussian model.

The methods developed in the specific context of health studies often rely on basic

knowledge of the physical meaning of the outcomes so their correlations, for instance, can

be accurately modeled. However, and especially when working with images or videos, the

physical meaning of the data to be processed is often hidden behind complex preprocessing

operations (that lead to features) and it is thus essential to develop a model that does

not require any prior knowledge on the data. My model takes implicitly into account the

correlations between the different data types via the HMM parameters.

The work presented in this chapter has been presented at the 17th IEEE International

Workshop on Multimedia Signal Processing (MMSP’15) in Xiamen, China, where it received

one of the Top 10% Paper Award. The publication is referenced [33] in the Bibliography

section.

In the following, Section 5.2 presents the approach and the EM-algorithm used for the

parameters estimation. Section 5.3.1 reports the experiments led with synthetic data using
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the proposed hybrid HMM and a fully Gaussian HMM and Section 5.3.2 presents a real

application for change detection in a pair of optic and SAR images corrupted by noises of

different types (additive white Gaussian and multiplicative speckle noise, respectively). I

finally conclude in Section 5.4.

5.2 Theory

I first set the HMM notations for this chapter: the hidden states are denoted ¶k1, ..., kT ♦,

kj ∈ [1, K], with K the number of states, the pmf π controls the initial state, and the

transition matrix B control the state transition at each time t. In the case of mixtures

emission probabilities, the choice of the generating mixture mt is driven by the mixing

matrix C.

My hybrid HMM is able to handle sophisticated multivariate mixed data such as ob-

servations featuring different types of continuous outcomes (e.g., Dirichlet, Gamma, and

Gaussian), as well as discrete ones. Different discrete outcomes can have a different number

of categories, and the only assumption made in this work is the categorical or binary (two

categories) nature of these discrete outcomes.

The HMM parameters estimation is done with an EM-algorithm relying on both local

and global quantities, that relates to outcomes of one specific type and to all outcomes,

respectively. The outcomes are assumed to be ordered by type i.e., the r1-dimensional sub-

vector formed by the r1 first dimensions of the observation vectors follows an r1-dimensional

distribution and the following r2-dimensional sub-vector follows another r2-dimensional dis-

tribution (and so on if more than two distributions are present). When separate processing

is done for each type of data/distribution, all the outcomes of this type are processed at

once. The algorithm can be divided into four steps:

• Initialization. The continuous distributions parameters are separately initialized

using methods of moments and the pmfs parameters by counting occurrences in the

initial clusters, with the addition of a Dirichlet prior in order to avoid zero-values.

Opposite to what is done in some work about HMMs such as in [28], the HMM
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parameters B, C, and π are not randomly initialized but also determined from the

initial clustering (or part of it if the training set is too large), using a simple count of

the transitions between the different clusters.

• E-step. In this step, the quantities

⎧

⎪

⨄

⎪

⋃

ξkt,kt+1
, p(kt, kt+1♣x0, ..., xT ) ,

γkt,mt
, p(kt, mt♣x0, ..., xT ) ,

(82)

(83)

are calculated with x⃗ a data sequence. For each type of outcome, local (ξ, γ) pairs

are computed, as well as global pairs for all outcomes. To this purpose, the local,

distribution-related, observation likelihoods are combined as a product that stands

for the global likelihood used for the estimation of the global (ξg,γg) pairs.

• M-step. In this step, all the parameters are updated. B, C, and π are updated with

the global (ξg, γg) values with the usual formulas given in [28]. The different distribu-

tions parameters, denoted as θi’s are computed using the global updated parameters

B, C, π, along with the local quantities (ξ, γ).

• Convergence criterion Similarly to what presented in Chapter 3, the stopping

criterion is the sum of an entropy and an energy that is computed as the sum of

the energies contributions of the different types of outcome along with the HMM

parameters. When this quantity evolves by less than a threshold set to 10−3 in

my experiments or when a user-defined maximum number of iterations have been

completed (10 in the following applications), the current parameters are kept.

Although this algorithm is extremely simple, it performs well and allows the processing

of sophisticated data for which methods are severely lacking in the literature. The interlace-

ment of local and global quantities allows to get a single HMM that fits mixed observations

and is illustrated in Figure 5.1. In the E-step, the global likelihood computation, taken as

the product of the different local likelihoods, is an approximation that assumes the differ-

ent outcome types to be independent. However, the dependency between the outcomes is
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Figure 5.1: Local and global variables dependencies. The loop is used only if convergence (CV) is not reached.

embedded into the HMM parameters B, C, and π, which seems to be sufficient for accurate

modeling. Other approximations can be used, especially some developed for the multi-

stream HMMs [126]. However, they are derived for a single type of distribution and their

generalization to mixed data is not straightforward. I do not give any distribution type

or outcome more relevance than another in the following experiments. Adding weights to

the distribution types is possible though, and I refer the reader to the multi-stream HMMs

theories for optimal weights estimation techniques [128–130].

I first experiment this hybrid HMM with synthetic data of three different mixture types

namely, discrete, Gaussian, and Dirichlet. The use of pmfs mixtures into HMMs is rare and a

single pmf is usually assigned to each state. I could not find in the literature clear indications

about HMMs handling such mixtures and therefore developed my own method for their

update. Local γ’s are computed for each observation using the most recent parameters

available with a forward-backward algorithm. I estimate the number of expected emissions

for every discrete value, depending on the state and mixture component, as the sum of these

local γ’s. The results are then normalized to get valid pmfs. The Dirichlet implementation

is done with the equations of [28] and makes use of the global γ value for the Dirichlet

parameters estimation.
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Figure 5.2: Retrieval rates for N Gaussian, N Dirichlet, and N discrete outcomes (5 categories) with
N ∈ [2, 20] for hybrid HMMs (plain line) and Gaussian HMMs (dashed line).

5.3 Experiments

5.3.1 Synthetic data

Random data are generated from combinations of the three aforementioned types with

Gaussian means and Dirichlet parameters in the range [1,20], and Gaussian covariances in

the range [1,5]. The distribution parameters are randomly generated, which penalizes the

approach performance as the randomness does not insure the clusters to be actually very

different from each other. When two clusters are too close, confusion is willing to occur,

which lowers down the retrieval rate.

I use the same setting as in [28] and Chapter 3 of this thesis: 1000 sequences of length

randomly chosen in the range [10,20] are generated from a known HMM. The source state

and component of each observation sample is recorded. A fully Gaussian and a hybrid

HMMs are trained from the same initial clustering and thus, the same initial parameters B,

C, and π. I then try to retrieve the state and component that generated each observation

sample. I fixed K = 2 and M = 3 and ran each specific setting (vocabulary length,

dimension, distributions combination) at least 5 times. Results for a combination of the 3

outcome types are reported in Figures 5.2 and 5.3.

If N Gaussian, N Dirichlet, and N discrete outcomes are considered, hybrid HMMs

outperform fully their Gaussian equivalents except for very low dimensions, whatever the

number of categories the discrete outcomes can fall in. Figures 5.2 and 5.3 illustrate these
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Figure 5.3: Retrieval rates for N Gaussian, N Dirichlet, and N discrete outcomes (10 categories) with
N ∈ [2, 20] for hybrid HMMs (plain line) and Gaussian HMMs (dashed line).
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Figure 5.4: Number of model parameters as a function of the observations dimension for different HMM
settings, assuming equal number of outcomes of each type. The number in parenthesis indicates the number
of categories for the discrete outputs.

results. Moreover, the number of parameters of a Gaussian HMM grows with the square of

the data dimension. The discrete and Dirichlet HMMs reduce this to a linear dependency.

Therefore, whenever some parts of the outcome observations are discrete or proportional

(i.e., strictly positive and summing up to 1), using appropriate mixture types to model them

into an hybrid HMM is beneficial for the model compacity and thus, the processing time.

Figure 5.4 illustrates the number of parameters growth for different mixed data settings.

The retrieval rates have also been computed for data different from the training data,

giving same accuracies. Finally, the generation of samples from the trained HMM are

retrieved by the original HMM at the same level of accuracy than the trained one. This

shows the estimated HMM is accurate enough despite the approximations made in the

computation of the global likelihood. Furthermore, it has to be noted that the computation

of the retrieval rate at the sample level is highly penalizing as it does not take into account

the sequences as a whole and thus, do not completely describe the classification potential of

the model. Indeed, I found the trained hybrid HMMs to be able to classify unseen sequences

among two classes almost perfectly, though their retrieval rates were around 75%.
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The case of N Gaussian combined with N discrete outcomes, N ∈ [2, 20], is not presented

as a graph as I found the same retrieval rates either with hybrid HMMs or fully Gaussian

ones. However, the number of parameters for the hybrid HMM is the lowest one, as shown

in Figure 5.4, especially for high dimensions, and the Occam’s razor principle will thus favor

the choice of the hybrid model.

5.3.2 Change detection in satellite images

I validate my approach in a real situation by detecting changes in the pair of optic and

SAR images presented in Figure 5.5. In the case of an exceptional event such as a natural

disaster (e.g., flood, earthquake, drought, landslide,...), remote pictures of the area can be

helpful for measuring the impacted area of the event and characterizing its evolution. To do

so, a new image of the zone has to be obtained and then compared to a previously captured

one. However, there are chances that the imaging sensor taking the second picture is not

the same as the first one and can even have a totally different imaging system, especially

in an emergency situation1. Keeping this context in mind, [1] proposed an approach to

detect changes between an optic and a SAR image taken above the city of Gloucester. The

SAR image has been acquired by the TerraSAR-X satellite in 2007 after a flood, while the

optic image has been acquired before the flood. Figure 5.5 present the images used in this

application. The SAR image is available at the address referenced [132]. The optic image

as well as the hand-annotated change mask, are directly taken from the paper [1], so that

I am sure that all the images are well registered.

SAR images are corrupted by speckle noise that is usually considered as a multiplica-

tive Gamma noise [122], meanwhile optic systems are typically corrupted by an additive

Gaussian noise [124]. I propose to train a hybrid HMM based on a univariate Gaussian dis-

tribution along with a univariate Gamma distribution. This choice of univariate distribution

functions comes from the generalization of the Gamma distribution to a multivariate setting

that is not straightforward. Indeed, it has been the topic of numerous studies [133], leading

1One has to keep in mind that I place myself in the context of satellite imagery. Satellites trajectories
cannot be drastically changed (or at least not for the need of a single picture) and have a limited life span
(typically 5 to 15 years depending on the mission) [131].
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Figure 5.5: Optic image in gray levels (left) and SAR image with the change mask contour superimposed
(right). The change area is the black area at the bottom of the image, surrounded by the white contour.

to various definitions. I thus keep the generalization of HMMs to multivariate Gamma

distributions for future work. The use of univariate distributions imposes to describe the

image as a sequence of overlapping vectors. Therefore, a horizontal vector and a vertical

vector are built around each pixel i.e., the current pixel of interest lies at the center of the

vectors.

Three zones of the images, clear of any change, are chosen for the HMM training. These

patches correspond in total to less than 4% of the image and are reported in Figure 5.6.

Within these zones, a total of 180 pairs of row vectors are used for the HMM training. One

has to note here, that the use of columns vectors or of a combination of row and column

vectors would be equivalent. As I work with land pictures taken at very-high altitude,

no orientation carries more of less information than another. For the sake of clarity, the

sequences used are then two-dimensional, the first dimension being pixels’ intensities from

the optic image, and the second dimension representing the same pixels’ intensities from

the SAR image. The chosen parameters for the method are a length of 21 for the vectors,

and HMM parameters of K = 4 and M = 1. Typically, three landscape types can be seen

in the images (cities, fields with relief, and flat fields). However, using only three states

for the HMM is not satisfactory as the clustering of all data into three clusters does not

explain enough variance of the training set to be reliable, as it can be seen in Figure 5.7.

From this latter figure, K = 4 is inferred to be the acceptable minimum number of states.
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Intuitively, the forth state can prevent the outliers, that can be due to extreme values of

noise, for instance, to corrupt the estimation of the other states. Experiments with more

than four states have shown a continuous degradation of the results. Finally, the choice of

the vectors length is a trade-off between the detection precision (the longer the vector, the

blurrier the contours of the detected changed area) and the multiplication of false detection

(the smaller the vector, the more false detection there are).

Figure 5.6: Patches taken from the optic image (top) and the corresponding patches from the SAR image
(bottom).
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Figure 5.7: Percentage of variance explained in function of the number of clusters.

The equations for the update of the Gamma parameters are given in Appendix A.

Once the model is trained, the images are then scanned horizontally (rows) and vertically

(columns), the two-dimensional sequences are built, and the likelihood of each sequence with

respect to the trained HMM is computed. This likelihood value is seen as the similarity

measure of the vectors’ central pixel between the two images. A high likelihood corresponds

to a high similarity, while a low value corresponds to a low similarity. The intermediate

likelihood results along the rows and the columns are reported in Figure 5.8.

I use a threshold to find the value of the False Alarm Rate (FAR) such that it equals

1 − TD, TD being the True Detection rate. This value represents the Equal Error Rate.

Figure 5.9 reports the similarity map obtained after summation of the log-likelihood maps

obtained in the horizontal and vertical setting at the EER. The pixels at the border of the
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Figure 5.8: Normalized log-likelihood maps of the pixels processed in rows (left), columns (center), and the
summation of these two log-likelihoods maps. The lowest the likelihood, the darker.

image cannot be the central pixel of both a vertical and a horizontal vector and, for fair

comparison, I do not take them into account in the detection results. For fair comparison

again, the training zones are excluded as well from the detection results. Averaged over

10 runs, the EER of this method for this pair of images is 16.75% with standard deviation

0.20. The processing of the pair of images, training included, takes less than 7 minutes.

Figure 5.9: (left) Map of detected changes at FAR = 1−TD. The lowest the likelihood, the darker. The black
contour helps for visualization. (center) Same map with the mask superimposed. (right) False detections.

This method raised artifacts, mostly isolated points detected with a low likelihood (most

of them in light gray in Figure 5.9). In the case of a flood detection event, these points are

more than unlikely to be true positives. A morphological operation over the resulting map

is performed in order to remove these isolated points. With this extra operation, removing

artifacts with a maximal size of 20 pixels and an 8-pixel connectivity, the EER drops to
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16.11% with standard deviation 0.25.

I compare my method with the two recent state-of-the-art methods [1] and [2], and the

following classic methods: mean pixel difference, mean pixel ratio, correlation coefficient,

and mutual information. I did not re-implement these methods and directly took the results

from [1]. Detection maps results are reported in Figure 5.10, and Table 5.1 summarizes the

EER points for each method. These results have to be analyzed as being related to a unique

pair of images. My approach performance is in line with the method recently proposed by

Prendes et al. [1]. It outperforms the method of [2] and most of the classic methods. The

good results of the Mean Pixel Ratio method can be attributed to the fact that the area to be

detected is totally homogeneous [1]. In its current setting, the hybrid model I developed has

only 22 degrees of freedom (the HMM parameters B and π, the Gaussian parameters, and

the Gamma parameters), and thus provides a very compact representation of the similarity

of the data.

Figure 5.10: Raw results (no threshold) obtained with the methods from [1] (left), correlation coefficients
(center), and [2] (right).

Method FAR = 1 − TD

Mine 16.75 ± 0.20
Mine - no artifacts 16.11 ± 0.25

Copulas [2] 23.96
Manifold learning [1] 14.58

Correlation coef. 31.19
Mutual Info. 23.13

Mean Px. Diff. 21.75
Mean Px. Ratio 18.61

Table 5.1: Comparison of different methods for change detection in the pair of images presented in Figure
5.5.
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5.4 Conclusion

In this chapter, I proposed hybrid HMMs for mixed continuous/continuous and discrete/continuous

data modeling as a first study on the topic to the best of our knowledge. I showed that

while building these HMMs with a simple method, it is able to handle outcomes of 3 dif-

ferent types with a better accuracy and fewer parameters than fully Gaussian HMMs. The

application to real data for change detection in a pair of optic and SAR images assessed that

my method can compete with the current top state-of-the-art ones. While working on this

topic, it became clear that to this day, tools that can easily handle mixed data are seldom

and that this approach, with its adaptivity to numerous data types, gives a new alternative

for processing such data. Numerous rich application such as the one used to illustrate the

performance of the proposed method are waiting for such tools to be fully studied. As a

side note, the use of a single pair of images in this chapter but also in the cited papers is

due to the scarcity of the data in this domain, and to the fact most images are not made

publicly available by the different space agencies over the world. Therefore, one can see

the presented application as a proof-of-concept calling for a larger study involving more

approaches and more data.
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Chapter 6

Distances for Dirichlet and GD HMMs

6.1 Introduction

In the previous chapters we have seen that hidden Markov models are generative models

which first mathematical foundations have been set off in the 1960’s [25] and that are

since then widely used in a variety of fields, from speech processing [134, 135] to image

processing [136, 137], video processing [31, 138], and pattern recognition [139, 140] to name

but a few. First developed for discrete and Gaussian data, I showed that they are still mainly

used under these assumptions [22–24, 26], although more learning strategies have recently

been proposed for multiple types of distributions such as the Poisson [138], Student’s t [77],

normal inverse Gaussian [78], contaminated Gaussian [141], Dirichlet [28] and, in this thesis,

for the generalized Dirichlet (Chapters 3 and 4), Beta-Liouville (Chapter 3), and mixed

distributions (Chapter 5). I recall that an HMM model can be denoted as λ = (A, C, π, θ),

where A is the transition matrix defining the probability of transitioning from one state to

another and C is the mixing matrix (only present when working with mixtures) defining

the probability for each component within each mixture model. π is the probability mass

function for the choice of the starting state and θ represents the parameters relative to the

emission probability distributions.

Comparing the similarity of two HMMs has been first studied in [26] where a Kullback-

Leibler (KL) divergence based on the limit of the log-likelihood of an infinitely long data
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sequence generated by one HMM is proposed. A good estimation is obtained when using a

very long data sequence, which requires a lot of computations for the log-likelihood estima-

tion. In this chapter, I carry out a comparative study of parametric distances for Dirichlet

and generalized Dirichlet-based HMMs. The search of such distances relaxes many issues

encountered when using data-dependent distances. Indeed, relying on data provides a non-

deterministic distance while relying on parameters allows for deterministic distances to be

built. Moreover, the availability of data is not granted in all cases and data generation can

be difficult to achieve for some sophisticated distributions and is always time-consuming.

Also, good accuracy with data-driven metrics is achieved to the cost of the use of very

long data sequences. Finally, when working with distributions as the Dirichlet and the

generalized Dirichlet, the variance is often underestimated leading to peaky distributions.

Their likelihood values with respect to data samples go then beyond 1. In the forward

algorithm used to estimate the HMM likelihood, these values are multiplied multiple times

and, when the data sequence grows longer, computational overflow is often reached, making

this method complex to implement and unreliable, as shown later in this chapter.

The literature about the design of deterministic metrics for continuous HMMs is scarce

and most of the proposed distances or similarity measures require long data sequences gen-

erated from or modeled by the HMM to be computed [142–144]. Very few papers define

such distances that can further generalize to mixture-based HMMs and all of them are

defined in the context of the Gaussian. To the best of my knowledge, the only current

approaches fulfilling these requirements are the approaches by Sahraeian and Yoon [145]

and the approach by Zeng et al. [146]. The former defines similarity measures based upon

the ability to match hidden states from the two HMMs and then measures the sparsity of

the obtained correspondence matrix. This implies the choice of a distance to compare the

emission probability distributions, taken as the Kullback-Leibler (KL) divergence in their

study, which is transposed to a similarity measure by using its inverse or a negative expo-

nential form of a multiple κ of it. How to tune this coefficient remains unclear. The original

approach by Zeng et al. [146] relies on the computation of cumulative distribution functions

for building a global cumulative function for each HMM. These cumulative functions that
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are then compared over the range of possible (or most probable) values for the observations.

This metric, named HSD, is thus constrained to be used for unidimensional observations

only.

A true distance is expected to verify the 4 following conditions but when working with

sophisticated spaces, it is rather common to also define semi-distances that only verify the

3 first conditions. Denoting (λ1, λ2, λ3), three HMMs, ∀λ1, ∀λ2, ∀λ3:

• Non-negativity: dist(λ1, λ2) ≥ 0

• Identity: dist(λ1, λ2) = 0 ⇐⇒ λ1 = λ2, where the equality between two models is

defined by the equality of all their parameters, allowing permutations.

• Symmetry: dist(λ1, λ2) = dist(λ2, λ1)

• Triangle inequality:

dist(λ1, λ3) ≤ dist(λ1, λ2) + dist(λ2, λ3)

Furthermore I propose the following guidelines when designing a distance to which one

shall pay attention for the defined distance or semi-distance to be useful and reliable:

• The distance shall evolves accordingly to what the user would logically expect

• The distance shall evolves smoothly

• The distance shall be sensitive to the variations of any parameters (in the case of the

HMMs: the emission distributions parameters, the transition matrix, and the mixing

coefficients)

In the specific case of the HMMs, and with respect to the fact that the data likelihood

is often used as a decision/classification threshold, one shall also pay a special attention

to how the distance behaves with respect to the KL divergence as defined by Juang and

Rabiner in [147]:

DKL(λ1, λ2) = lim
T →∞

1

T
(ln(p(OT ♣λ1)) − ln(p(OT ♣λ2))) , (84)
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where OT represents a time-series of T observations.

Dirichlet and generalized Dirichlet-based HMMs have only recently been proposed and

applied to real-world situations. The learning equations of the former have been derived

in [28] in 2007 and applied for the first time on a real-world data set for texture classification,

action recognition, and anomaly detection in this thesis. The learning equations of the latter

have been derived as part of this thesis work. To the best of my knowledge, no work on

distances between these models has been done so far and this is the first comparative study

for parameters-base distances for these models.

My contributions are the following, (1) the replication of the results of [145] with the

addition of a third inner distance, the Probability Product Kernel [148] and of the results

of [146] over Gaussian-based HMMs for comparison (never studied before) and for highlight-

ing their sensitivity limitations in Section 6.2 ; (2) the non-trivial extension of the distance

proposed in [146] to the multidimensional case for the Dirichlet and the GD in Section 6.3

; (3) the proposition of two variants of a new distance, robust to mixture shuffling and to

component shuffling for HMMD and HMMGD in Section 6.4 ; and (4) a thorough study

of the behavior of the aforementioned distances with respect to variations of all parame-

ters and permutations of states and components, including pointing out at the strengths

weaknesses of some state-of-the-art distances with respect to each other through multiple

experiments with synthetic data and over two real-world data set, showing the reliability of

the new proposed distances in Section 6.5.

The overall goal of this comparative study is to give the option to anyone working with

these models to choose the distance or similarity measure fitting their needs the most and

to know what to expect from each one of them, as well as the influence of the tuning

parameters when there are some. This opens up possibilities for designing distance-based

algorithms in the HMM space such as hierarchical clustering (see Section 6.5.2), nearest

neighbors methods, etc.

The work presented in this chapter is being submitted in a journal in the field under

the title Data-free metrics for Dirichlet and generalized Dirichlet mixture-based HMMs - A

practical study.
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6.2 Preliminary results and problem setting

The motivation for the design of new parametric distances comes from the following prelim-

inary work in which I re-implement and test the methods proposed in [145], while adding

the Probability Product Kernel (PPK) from [148] as a distance measure between distri-

butions in their framework and study the influence of the variation of each parameter in

order to highlight an important limitation. I refer the reader to the original paper for the

implementation details but recall the main steps here: a correspondence between the states

is obtained from a similarity measure between the emission distributions of the HMMs. In

the case of mixture-based HMMs, only the KL divergence is proposed in the form of its

inverse or in the form of the inverse of its exponential multiplied by a factor κ. A sparcity

score over the correspondence matrix is computed as a reflection of the similarity of the

HMMs (the scarcer the matrix is, the more similar the HMMs are).

Following their work, I use 2-dimensional Gaussian HMMs. The transition matrices are

fixed at: A1 = A2 = T1 = [.6 .4; .4 .6] and the Gaussian means are set to µ1 = [1 1; 3 3] and

µ2 = [1 3 − d; 3 1 + d], with d varying from 0 to 2. Finally, the covariance matrices are set

to the identity for the first dimension and to C1,2 = [1 .3; .3 1] and C2,2 = [1 .1; .1 1] for the

second dimension.

Figure 6.1 shows that, as expected, the similarity increases with d and that the PPK

similarity measure can be used in this framework if transformed into a negative exponential

form. This approach is thus sensitive to the variations of the distributions’ parameters.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

S
im

ila
ri
ty

 s
c
o

re

Multidimensional Gaussian HMMs − Varying Gaussian parameters

 

 

1/KL

PPK

exp(−2*KL)

exp(10*PPK)

Figure 6.1: Varying Gaussian means with 2-dimensional Gaussian HMMs

Second, I study the sensitivity to the variations in the transition matrix while keeping the
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Gaussian parameters similar (but slightly different to avoid divisions by 0). The parameters

used are A1 = [.9 − d .1 + d; .9 − d .1 + d], A2 = T2 = [.1 .9; .1 .9], µ1 = [1 1; 3 3], and

µ2 = [1 1.1; 3 3.1]. The variances are kept small and equal to 0.1 in order to have a clear

difference between the components of the HMMs. I vary d from 0 to 0.8 and report the

results in Figure 6.2.

Only the two PPK-based similarities give logical trends. This shows the method to be in

general non-sensitive to changes in the transition matrix in the multidimensional Gaussian

case. In [145], this sensitivity is only studied in the case of discrete HMMs and the related

figure already showed a low sensitivity. An absence of sensitivity to changes in the transition

matrix reduces HMMs to be seen as mixtures models, discarding their essential dynamic

properties.
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Figure 6.2: Varying transition matrices with 2-dimensional Gaussian HMMs

Additionally, I study the influence of coefficient κ on the computed distances by making

it vary from 1 to 20 for the exponential forms of the approach (using the same parameters

as the ones used for Figure 6.1). The results, in Figure 6.3, pinpoint a major flaw of the

approach. The final similarity measure drastically varies, making the results non objective

unless under a careful study of this coefficient’s tuning.

With these results in mind, I study how the HSD approach [146] behaves compared

to the previously tested methods. As already said, its main limitation resides in the fact

that it only applies to unidimensional distributions. Its efficiency giving coherent distances

when the Gaussian parameters are changed is clearly illustrated in the original paper and

I only present the results for variations in the transition matrix. The parameters used are
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Figure 6.3: Varying κ with 2-dimensional Gaussian HMMs. Plain curves for PPK-based similarity and
dashed curves for KL-based similarities. κ varies from 1 to 10, κ = 1 for the lowest curve of each network of
curves.

A1 = [.9 − d .1 + d; .9 − d .1 + d], A2 = T2, µ1 = µ2 = [1; 3], and the variances equal to

0.10 and 0.11. Here and in all subsequent graphs, I plot the HSD distance ∆ as a similarity

score by computing exp(−∆), in order to be able to compare with the other approaches.

In Figure 6.4, the HSD metric perfectly grasps the variations imposed to the transition

matrix and, once again, the approach of [145], with whatever inner distance setting, does

not achieve to grasp these variations.
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Figure 6.4: Varying the transition matrix for unidimensional Gaussian HMMs.

These results clearly show the need of designing new distances for multidimensional

continuous HMMs that exhibit a sensitivity in changes of the distribution parameters, of

the transition matrix, and of the mixing matrix. As most research is led on the Gaussian

HMMs I shift the focus to HMMs designed for proportional data and relying on Dirichlet

and generalized Dirichlet distributions which are the main topic of this thesis.

In the following, I extend the work of [146] to overcome the unidimensional limitation

of the HSD distance for Dirichlet and the generalized Dirichlet using some of their natural
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mathematical properties. I also propose a distance based on several approximations of

Kullback-Leibler divergences at the level of the distribution, the mixture, and the HMM.

While many works make the assumption of mixtures composed of fixed components, and/or

of HMM with ordered states, I add the steps to handle all sorts of permutation that can

occur during the learning phase, ending up with the most robust parametric distance to the

best of my knowledge.

6.3 Extension of the HSD distance

I recall that a D-dimensional Dirichlet distribution is expressed as

p(x♣α) =
Γ(

∑D
d=1 αd)

√D
d=1 Γ(αd)

D
∏

d=1

xαd−1
d , (85)

with α = (α1, . . . , αD), αd > 0, and x = (x1, . . . , xD),
∑D

d=1 xd = 1. Γ(t) =
∫ ∞

0 xt−1e−xdx

is the Gamma function.

Similarly, a D-dimensional generalized Dirichlet distribution is expressed as

p(x♣α, β) =
D
∏

d=1

Γ(αd + βd)

Γ(αd)Γ(βd)
xαd−1

d

(

1 −
d

∑

r=1

xr

)νd

, (86)

with α = (α1, . . . , αD), αd > 0, β = (β1, . . . , βD), βd > 0, and x = (x1, . . . , xD),
∑D

d=1 xd <

1. νd is defined as νd = βd − αd+1 − βd+1 if d ̸= D and νD = βD − 1.

The limitation of the HSD distance to unidimensional distributions is due to the fact it

relies on the computation of the cumulative distribution function (CDF) of the distributions

composing the HMM. The concept of CDF is undefined for multidimensional distributions,

hence the distance cannot apply to them.

However, as previously mentioned, the generalized Dirichlet distribution has the follow-

ing property [60,61]:

Property 6.1 : A D-dimensional generalized Dirichlet, GD(α1, ..., αD, β1, ..., βD), is equiv-

alent to a set of D independent Beta distributions with the same parameters (αn, βn), n =
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1, . . . , D, in a particular transformed data space that is reached through a bijection. The

bijective function linking the two data spaces is expressed as W = ¶Wn♦1:D with:

Wn =

⎧

⎪

⎪

⎪

⎪

⨄

⎪

⎪

⎪

⎪

⋃

xn , for n = 1 ,

xn

1 −
∑n−1

i=1 xi

, for n ∈ [2, D] .

(87)

Beta distributions, are unidimensional by definition and their CDF is easily computable.

I can then make up a simple function that acts as an equivalent of the CDF for multidi-

mensional generalized Dirichlet distributions and keep the rest of the distance computation

untouched.

When working with the Dirichlet distribution, another transform is first required to

express it into a generalized Dirichlet form. Indeed, the Dirichlet is a degenerate case of

generalized Dirichlet [61].

Property 6.2 : A D-dimensional generalized Dirichlet GD(α1, ..., αD, β1, ..., βD), which

parameters verify βn = αn+1 + βn+1, for n = 1, . . . , (D − 1), is a Dirichlet distribution with

parameters Dir(α1, . . . , αD, βD).

Reversing this expression allows to express a Dirichlet distribution in the form of a gen-

eralized Dirichlet one and thus to apply an extended form of the HSD distance computation

to it.

In summary, Beta distributions are used to characterize the HMM in a transformed

data space and the HSD measure can be deployed using them. The resulting distance is

equivalent to the distance that could have been computed in the initial space as these two

spaces are connected through a bijection.

The computation of the HSD distance for multidimensional Dirichlet and GD distribution-

based HMMs follows the steps:

1. For each state of each HMM, express the Dirichlet distributions in their GD form [61]:

Dir(α1, ..., αD+1) ≡ GD(α1, ..., αD, β1, ..., βD), with βj = αj+1+βj+1 for j = 1, . . . , (D−

1) and βD = αD+1
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2. Initialize the distance ∆ and the value x to 0, and the step size to s = 1/L (hereafter,

L = 100)

3. Iteratively do L times the following steps:

(a) For each state k, dimension d, and HMMs i = 1, 2, compute BetaCDFi,k,d(αi,k,d, βi,k,d, x)

(b) For each state k of each HMM i, compute

CDFi,k =
∑D

d=1 BetaCDFi,k,d

(c) Compute the models’ CDFs using a dot product Fi = ⟨Πs,i, CDFi⟩

(d) Compute ∆ = ∆ + s × ♣F1(x) − F2(x)♣

(e) Increment x by s

When the models are based on GD distributions, the first step is obviously omitted.

Experimental results for this distance are reported in Section 6.5.

6.4 Proposed distance

6.4.1 General case

I propose to derive a parametric distance for HMMD and HMMGD under the assumption

that mixtures are indivisible elements. This means that either these mixtures have some

physical representation and that their components cannot be split up over different states,

or that the components found while initializing the HMM have been ordered following some

heuristic rules. The computation of this distance needs to take into account the potential

permutation of the mixtures over the different states.

As I intend to compute a parameter-based distance similar in behavior to the Kullback-

Leibler distance, I start from its definition for a given function f :

D(f1♣♣f2) =

∫

f1 ln

(f1

f2

)

. (88)

When data samples X = x1, . . . , xT are available, a Monte-Carlo approximation of
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Equation (88) gives:

D(f1♣♣f2) ≈
1

T

T
∑

t=1

(ln(f1(xt)) − ln(f2(xt))) . (89)

For this approximation to be accurate, T needs to be large enough. In the case of HMMs,

f1 and f2 can be identified as the likelihood of the data with respect to the HMMs λ1 and

λ2, respectively. As T increases, the computation of these quantities becomes heavier and

at some point, even prohibitive (see Section 6.5.1 for more details).

[143] devised a method to approximate an upper bound to the Kullback-Leibler diver-

gence for Dependence Trees and showed that it can be used for left-to-right HMMs that

can be considered as a special case of dependence trees. I start from the approximation

proposed as:

D(λ1♣♣λ2) ≤
K

∑

k=1

π′
k1

(D(aj ♣♣ãj) + D(bj ♣♣b̃j)) , (90)

where π′ is the stationary distribution of λ1.

The stationary distribution of an HMM is iteratively computed as proposed in [146]

following the recursive equation:

π′
t+1 = π′

tA , (91)

starting from the initial state probability mass function π′
0 = π.

Using Equation (90) implies that the distance does not take into account the transi-

tional phase of the HMM. However, my experiments show that even for HMMs trained on

short sequences, the distance behaves as expected and gives good discriminative results (see

Section 6.5.1).

The only experiments carried out in [143] on pure HMMs are with a simple discrete

HMM (with pre-defined parameters), two states and data of 3 dimensions. Therefore, more

extensive experiments with a similarly designed method are needed to assess the potential

discriminative performance of such parameter-based approximation of the KL divergence.

In Equation (90), the term D(aj ♣♣ãj) refers to the rows of the transition matrices. Each

row of a transition matrix is a probability mass function and therefore the KL divergence
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can be easily computed. However, given that the models I am working with do not have

a left-to-right topology, I first need to pair up the states of the two models. I propose

to see this task as a linear assignment problem and solve it using the Jonker-Volgenant

algorithm [149], which provides a faster implementation of the well-known Hungarian al-

gorithm. The Jonker-Volgenant algorithm provides a cost matrix for pairing up each state

of λ1 with each state of λ2, as well as the sequence of pairs that minimizes the assignment

cost. From this sequence of pairs, I build a permutation matrix R = ri,j , where ri,j = 1 if

state i of λ1 is optimally matched to state j of λ2 and 0 otherwise. The transition matrix

of the HMM λ2 is then permuted as Ã′ = RÃR. The mixtures assigned to each state are

permuted accordingly.

The second term of Equation (90), D(bj ♣♣b̃j) refers to the emission probability distribu-

tions assigned to each state which are, in my case, mixtures. The KL divergence of mixture

models does not have a closed form expression and then requires to be approximated. Her-

shey and Olsen [9] proposed a full review of techniques to approximate the KL divergence

between two mixtures of Gaussian. Studying the assumptions made, most of the approx-

imations they proposed can be applied to mixtures of Dirichlet and generalized Dirichlet

without restriction. The variational approximation they proposed is chosen here for the

good results it showed for the Gaussian case in [9], especially as the criterion used in that

study is the similarity to the classic data-based KL divergence estimation, which is also one

of my criteria for the design of this HMM distance.

Denoting the mixtures as P1 =
∑M

m=1 w1,mp1,m and P2 =
∑M

m=1 w2,mp2,m The varia-

tional approximation is written as:

D(P1♣♣P2) =
M
∑

m=1

w1,m

∑M
a=1 w1,ae−D(p1,m♣♣p1,a)

∑M
b=1 w2,be

−D(p1,m♣♣p2,b)
. (92)

The latter equation involves the computation of the KL divergence between two Dirichlet

(and generalized Dirichlet) distributions. The KL divergence between two D-dimensional
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Dirichlet distributions Dir1(α⃗1) and Dir2(α⃗2) can be expressed as:

KL(Dir1♣♣Dir2) = ln

(

Γ

( D
∑

d=1

α1,d

))

−
D

∑

d=1

ln(Γ(α1,d)) − ln

(

Γ

( D
∑

d=1

α2,d

))

+
D

∑

d=1

ln(Γ(α2,d)) +
D

∑

d=1

(α1,d − α2,d)Ψ

(

α1,d − Ψ

( D
∑

j=1

α1,j

))

, (93)

and the KL divergence between two D-dimensional generalized Dirichlet distributions

GD1(α⃗1, β⃗1) and GD2(α⃗2, β⃗2) is expressed as [150]:

KLGD(p♣♣q) =
D

∑

d=1

ln

(

Γ(α1,d + β1,d)Γ(α2,d)Γ(β2,d)

Γ(α1,d)Γ(β1,d)Γ(α2,d + β2,d)

)

−
D

∑

d=1

(α1,d − α2,d)

(

Ψ(α1,d) − Ψ(β1,d) −
d

∑

s=1

(Ψ(α1,s + β1,s) − Ψ(β1,s))

)

+
D

∑

d=1

(ν1,d − ν2,d)
d

∑

s=1

(Ψ(α1,s + β1,s) − Ψ(β1,s)) . (94)

The steps of the KL divergences computation are given in Appendices B and C, respectively.

The set of Equations (90) to (94), allows to compute a distance between two Dirichlet

or generalized Dirichlet-based HMM without the need for generating data of any kind. In

Section 6.5.1, I show how well this distance performs on HMMs with randomly generated

parameters, even when the HMM states are permuted. However, when working with real-

world data, in some cases, HMM are trained on abstract features extracted from the data

prior to the training. Some sets of equations for learning the HMM model do not impose

any constraint upon how the initial mixture components found in the data are assigned to

the states [28]. In that case, the sole assumption of state permutation is not strong enough

and would fail. Therefore, there is a need to design a simple method allowing for component

permutation between mixture models. Such a method is presented in the next section.

6.4.2 Special case

HMMs based on mixtures of Dirichlet have been first introduced in [28] and served as a

reference for the development of the HMMs based on mixtures of generalized Dirichlet in this
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thesis. The learning process requires initial values for all HMMs parameters, including the

emission distributions. This initialization is based on a simple k-means clustering followed

by a moment matching procedure. The estimated distributions are then grouped into

mixtures depending on the chosen values for K and M . The k-means clustering has no

constraint on the choice of the seeds, so does the grouping procedure and therefore, in

general, HMMs trained from the same data will have different mixtures (i.e., mixtures

composed of different components) assigned to different states. These HMMs are yet totally

equivalent and will perform the same way, with equivalent accuracies in classification tasks.

In these cases, the approach devised in the previous section does not make sense as one

of the assumptions made is not respected. In order to take into account all the possible

permutations, another quantity needs to be defined that allows to find a distance close to 0

when HMMs are equivalent even if their parameters, at first look, are different. The natural

KL divergence, achieves it by looking at the likelihood values directly.

In order to devise a new relevant quantity, I get inspired by this initialization process

of the HMM learning algorithm that relies of a k-means clustering among K ∗ M clusters.

As the subsequent grouping of components into mixture models impacts the values of the

transition matrix, of the mixing matrix, and of the initial state probability mass function,

I cannot rely on these parameters as is. In order to see how close two HMMs are, I need to

somehow revert this process i.e., to combine these parameters in order to decorrelate them

from the mixture models. The procedure can be illustrated with this question: What is the

closest equivalent of a non-mixture HMM that I can get from this mixture-based HMM?

Obviously this will be a loose equivalence and in no case a bijection. However, I propose

here a quantity that I call the flatten transition matrix that is simple and efficient enough

to compute discriminative distances as I show later on a small example using real-world

data in Section 6.5.2.

Building the flatten transition matrix A′ - This quantity reflects what the transition

matrix of a K-state mixture-based HMM with mixture of M components flatten into a non-

mixture HMM with K∗M component would be equivalent to. This approximation naturally
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depends on the transition matrix A = ¶aij♦K×K and the mixing matrix C = ¶cij♦K×M of

the HMM. Given that I work under the assumption of stationary HMM, the initial state

probability π is not involved. The flatten transition matrix is expressed as:

A′=

⋃

⎢
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⎢
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⎢
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a11c11 ... a11c1M a12c21 ... a1KcK1 ... a1KcKM

repeat over (M-2) rows

a11c11 ... a11c1M a12c21 ... a1KcK1 ... aK1cKM

a21c11 ... a21c1M a22c21 ... a2KcK1 ... a2KcKM

repeat over (M-2) rows

a21c11 ... a21c1M a22c21 ... a2KcK1 ... a2KcKM

...

...

aK1c11 ... aK1c1M aK2c21 ... aKKcK1 ... aKKcKM

repeat over (M-2) rows

aK1c11 ... aK1c1M aK2c21 ... aKKcK1 ... aKKcKM

⋂
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. (95)

The repetition of lines is due to the fact the transition matrix of mixtures-based HMMs

only depends on the previous hidden state and not of the mixture component by which the

observation is actually modeled. Therefore, even though I keep a square KM ×KM matrix

to match the shape of an HMM transition matrix, there are actually only K2M different

coefficients. All the rows sum up to one and thus A′ is a valid transition matrix.

There is no need for a mixing matrix C ′ as no mixture are then involved, and an extended

π′ initial pmf is computed as follows:

π′ = (π11c11, . . . , π11c1M , π12c21, . . . , π1KcK1, . . . , π1KcKM ) (96)

I now approximated a non-mixture HMM version of the original HMM. The single

distributions (mixture components) are assigned accordingly to the way A′ is constructed.

I can now apply the approach devised in the previous section to HMMs flatten this

way, by directly applying the linear assignment matching algorithm at the component level
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(which are now the states of the flatten version of the HMM).

6.5 Experiments

6.5.1 Practical study on synthetic data

In order to lead a comparative study of the different distances I design two types of ex-

periments. For the distance designed in Section 6.4, in which the assumption of mixture

having a meaningful representation and thus being composed of components always grouped

together, I carry out an extensive series of experiment over randomly generated HMMs mak-

ing each set of parameters vary independently of the others. I also present quantities that

are meaningful for comparing distances. Indeed, when working in a space where no natural

physical distance exist but only artificially designed ones, which reference to use to compare

how well is a distance doing? It mostly depends on the expectations of the one who uses it.

For this reason, the behavior of the distance has to be characterized under different aspects.

I propose the following quantities to this purpose:

• The correlation to the parameters average variation which gives an idea of how the

evolution of the distance follows the evolution of the individual parameters.

• The autocorrelation at lag 1 for a continuous variation of the parameters: Gives a

measure of the smoothness of the distance function with respect to the evolution of

the parameters. In the case of two models whose parameters continuously go further

away to each other, a coefficient close to 1 means a very smooth function, -1 means

an irregular/non-monotonic function which is not desirable.

• The average variation by unitary variation (for a variation of parameter d equal to 1)

of the parameters. This gives an idea of how discriminative the measure is.

• The correlation to the KL divergence computed from generated data. This illustrates

how the behavior of the parameter-based distances is compared to the reference data-

based one, especially in terms of stability.
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• The average distance to the KL divergence computed from generated data. This

illustrates how the behavior of the parameter-based distances is compared to the

reference data-based one, especially in terms of discriminability.

Among them, as the data-based KL divergence has some limitations, the points 1 to 3

are found to be the more reliable way of comparing distances. When the correlation of the

data-based KL divergence to the parameters variation is not strong, points 4 and 5 are not

relevant anymore.

As some works define similarities and not distances, the proposed distances are evaluated

as similarities by taking the inverse of the exponential i.e., e−dist. The data-based KL

divergence is computed by generated a sequence of data of length T = 100 from the reference

HMM. The value of T and its limitations in the case of the Dirichlet and generalized Dirichlet

are discussed later.

In the following experiments, all parameters are randomly drawn from uniform distri-

butions with Dirichlet parameters in the range [0, 20]. Therefore, the presented results are

penalized by some occurrences or low discriminability between some components that do

not occur in real scenarios (as the initial clustering would create a unique cluster for samples

following this distribution). The HMM parameters are fixed to K = 5, M = 2, D = 4,

these values are small enough to keep the component similarities occurrences low, and big

enough to have some of the distances failing. In the following experiments, the sensitivity

of the distances to the variation of each type of parameter is studied separately for a clear

illustration of the strength and weaknesses of each of them.

Experiment 1 - Sensitivity to variations of the distribution parameters The

parameters of the Dirichlet/GD distributions of one of the HMMs are varied by adding

a constant d between 0 and 20 to the concentration parameters. I expect the similarity

measures to start from 1 and rapidly decrease to 0 as the parameters variation is quite

important, and the analysis, exponential. Tables 6.1 and 6.2 report the performance results

of the approaches of [145], the proposed extension of the HSD distance, the data-based

Kullback-Leibler divergence, and the proposed distance. Figures 6.5 and 6.6 show the
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results of a typical run of the experiment (each set of experiments is repeated 20 times at

least).1

Figure 6.5: Varying the Dirichlet parameters between HMMs (typical run).

Figure 6.6: Varying the GD parameters between HMMs (typical run).

Besides the Sahr2 similarity measure, all similarity measures are sensitive to distribu-

tions parameters variations. However, the extended HSD and the proposed similarity mea-

sure are smoother in their evolution, Though the HSD is more correlated to the variation of

the parameters, its discriminative power is weak compared to the standard data-based KL-

divergence and the proposed measure. These observations are valid for both the Dirichlet

1For all experiments the labels have to be read as follow: DKL is the data-based KL divergence. Sahr1

and Sahr2 are the methods of [145] with similarities computed as the inverse of the distance and the inverse
exponential, respectively. HSD is the extended HSD distance presented in Section 6.3. Ours is the method
proposed in Section 6.4.
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Method Corr params Smooth Amp var Corr DKL Avg dist DKL

DKL -0.70 0.68 -0.05 1 0
Ours -0.75 0.72 -0.05 0.99 0.06
HSD -0.86 0.72 -0.01 0.95 0.19
Sahr1 -0.74 0.66 -0.04 0.97 0.12
Sahr2 -0.08 0.64 ≤-0.01 0.48 0.17

Table 6.1: Comparative performance of distances for variation of the Dirichlet distributions parameters

Method Corr params Smooth Amp var Corr DKL Avg dist DKL

DKL -0.62 0.58 -0.04 1 0
Ours -0.67 0.64 -0.05 0.95 0.06
HSD -0.90 0.75 -0.02 0.86 0.18
Sahr1 -0.74 0.65 -0.04 0.94 0.13
Sahr2 -0.36 0.61 -0.01 0.80 0.19

Table 6.2: Comparative performance of distances for variation of the GD distributions parameters

and the GD cases. As the graphs of typical runs show, the proposed distance follows very

well the evolution of the KL divergence while being deterministic and not relying upon any

data.

Experiment 2 - Sensitivity to variations of the transition matrix Randomly draw-

ing transition matrices T1 and T2, I make the transition matrix of the second HMM vary

from T1 to T2, while the transition matrix of the first HMM remains equal to T1. Therefore

the transition of the second HMM is computed as T d
2 = dT2 + (1 − d)T1. I expect the simi-

larity measures to start from 1 and decrease as the transition matrices become less similar.

Tables 6.3 and 6.4 report the performance results in the same manner as in Experiment

1. Figures 6.7 and 6.8 show the results of a typical run of the experiment. One should

note that as the mixtures of distributions are perfectly equal, the inverse-based similarity

measure of [145] is undefined.

Method Corr params Smooth Amp var Corr DKL Avg dist DKL

DKL -0.27 -0.03 -0.03 1 0
Ours ≤-0.99 0.73 -0.28 0.26 0.04
HSD ≤-0.99 0.73 -0.04 0.28 0.03
Sahr2 -0.21 0.08 ≤-0.01 ≥0.01 0.09

Table 6.3: Comparative performance of distances for variation of the transition matrices for Dirichlet-HMMs
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Figure 6.7: Varying the transition matrices between Dirichlet-HMMs (typical run).

Figure 6.8: Varying the transition matrices between GD-HMMs (typical run).

Variations in the transition matrices are more subtle than variations within the distri-

bution parameters. Indeed, it only impacts the way the time-series are ordered, not their

potential values. The DKL and Sahr2 similarity measures completely fail at detecting the

slow drift of one HMM with respect to the other. DKL could potentially detect it using a

bigger T value. However, as said earlier, this provokes overflow and make the distance slow

to compute. This makes it an unreliable distance to work with unless fine tuning of T is

Method Corr params Smooth Amp var Corr DKL Avg dist DKL

DKL -0.21 -0.06 -0.02 1 0
Ours ≤-0.99 0.73 -0.27 0.20 0.15
HSD -0.30 -0.05 -0.02 0.45 0.34
Sahr2 -0.04 0.04 0.00 -0.01 0.27

Table 6.4: Comparative performance of distances for variation of the transition matrices for GD-HMMs
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studied and a solution to overflow found (a simple scaling not solving the issue as, other

distribution then reach the machine precision and set most results to 0).

Both the extended HSD and the newly proposed distance perform well in the Dirichlet

case, being well correlated with the transition matrix variation and smooth. However the

HSD is far less discriminative than the proposed distance. In the case of the GD, it fails

and the proposed distance seems to be the only reliable option.

Experiment 3 - Sensitivity to variations of the mixing matrix Randomly drawing

mixing matrices R1 and R2, I make the mixing matrix of the second HMM vary from R1

to R2, while the mixing matrix of the first HMM remains equal to R1. Therefore, the

mixing matrix of the second HMM can be computed as Rd
2 = dR2 + (1 − d)R1. I expect

the similarity measures to start from 1 and decrease as the transition matrices become

less similar. Tables 6.5 and 6.6 report the performance results in the same manner as in

Experiment 1 and 2. Figures 6.9 and 6.10 show the results of a typical run of the experiment.

Figure 6.9: Varying the mixing matrices between Dirichlet-HMMs (typical run).

Variations of the mixing coefficients have a similar action on the generated data as a

variation of the transition coefficients: it only impacts the way the time-series are ordered

but not their values. It is therefore not surprising to see that the proposed approach allows

good discrimination, good smoothness, and good correlation with the variation of the mixing

coefficients. The extended HSD approach is valid here again in the Dirichlet case only but
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Figure 6.10: Varying the mixing matrices between GD-HMMs (typical run).

Method Corr params Smooth Amp var Corr DKL Avg dist DKL

DKL -0.57 0.16 -0.11 1 0
Ours -0.97 0.71 -0.20 0.59 0.10
HSD ≤-0.99 0.73 -0.05 0.57 0.12
Sahr1 -0.98 0.72 -0.16 0.58 0.11
Sahr2 -0.45 0.49 -0.02 0.27 0.07

Table 6.5: Comparative performance of distances for variation of the mixing matrices for Dirichlet-HMMs

with a weak discriminative potential. The Sahr1 similarity measure works surprisingly well

with just a bit less discriminative power than my proposed approach. However, it still relies

on the tuning of the κ parameter which is not straightforward.

Overall, only the proposed approach shows itself successful to detect and logically reflect

any kind of variation in the HMM model based on either Dirichlet or generalized Dirichlet,

without requiring any data not any parameter tuning. The proposed extension of the HSD

also reflects well the changes for Dirichlet-based HMMs but does not perform equally in the

generalized Dirichlet case when the transition of mixing coefficients vary. Its discriminative

power is lower which can also be the reason why it cannot achieve good performance when

Method Corr params Smooth Amp var Corr DKL Avg dist DKL

DKL -0.55 0.18 -0.23 1 0
Ours -0.97 0.71 -0.27 0.57 0.13
HSD -0.64 0.19 -0.05 0.69 0.14
Sahr1 -0.98 0.72 -0.14 0.59 0.14
Sahr2 -0.43 0.51 -0.01 0.35 0.48

Table 6.6: Comparative performance of distances for variation of the mixing matrices for GD-HMMs
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minor parameters of the HMMs vary. The discriminative power of this distance could be

enhance by adding a multiplicative coefficient when computing the approximate CDF while

making the distance performance dependent of the tuning of that new parameter.

6.5.2 Illustration with real data

The extension of the method suits more HMMs that are trained as described in Chapters 3

and 4, using a component-by-component, k-means based initialization. As no bijective

transformation is known between mixture-based HMMs, experiments validating my ap-

proach for the case when all components are assigned to different states are not possible

with synthetic data.

I present hereafter, usages of the metric through clustering operations. Besides showing

that the proposed metrics behaves in a logical way, I attempt to show the kind of information

can be unraveled by its use. HMMs represent abstract features in a very abstract way.

Therefore, the use of a ground truth of any sort to assess some clustering performance is

not possible and the metric should rather be considered as a tool for exploring the data

representation through HMMs.

A main constraint for clearly illustrating the proposed distance measure behavior is

that, as just said, HMMs seldom represent something concrete that are itself measurable

by a distance. Images appear to be a good way of getting some visual assessment of the

performance. Therefore, I study the behavior of the designed distance with respect to

HMMs trained over the UCSD Ped1 and Ped2 data sets, following the method presented

in Chapter 3. In this study, the video sequences of the data sets that represent pedestrian

walking on a university campus, are divided into 3D volumes. As the camera capturing the

sequence is still, each volume represents a fixed spatial area of the campus i.e., grass, trees,

walkway with pedestrians or a combination of two. An HMM is trained over each 3D volume

location thus, I expect my designed distance to show high similarity between HMMs trained

at similar locations (e.g., volumes representing the vegetation) and lower similarity between

HMMs representing volumes featuring vegetation versus the busy walkway for example. In

this application I fixed K = 3, M = 2, and D = 12 in coherence with Chapters 3 and 4.
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Figure 6.11: Camera field for the UCSD Ped1 (left) and Ped2 (right) data sets

However, working with real-data requires a few adjustments. First of all, for the Dirichlet

case, the parameters resulting from a training algorithm are oftentimes very high because

of the variance which is badly estimated. In order to counter this artifact involved by some

training methods, I use the mean of the Dirichlet (which is the normalized concentration

vector) and rescale it in the range [0, 20]. 2

After dividing the space into 77 overlapping patches (50% overlap) and training one

HMM per location, I propose to compute the distances between these HMMs to unravel

major patterns. I apply hierarchical clustering using my proposed similarity measure. I

report hereafter in Figures 6.12 and 6.13, the two and three main clusters found across the

trained Dirichlet HMMs.
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Figure 6.12: Two (left) and three (right) main clusters found in the UCSD Ped1 data set, Dirichlet-HMM
case.

The proposed measure allows the clustering of the two main zones of the camera field

(see Figure 6.11), the walkway versus the trees and grass where no dynamic action takes

place. The clustering among three clusters seems to unravel the zones where less dynamic

2There is no risk of confusion with potential estimation of Dirichlet with parameters below 1, as Dirichlet
distribution with such parameters exhibit several peaks on the "border" of the space they belong instead of
a unique strong peak. The initial clustering performed for initializing the HMM naturally prevents this case
to happen, as a distribution exhibiting two peaks would rather by approximate by two distributions with
one peak each (minimizing the intra-class variance).
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Figure 6.13: Two (left) and three (right) main clusters found in the UCSD Ped2 data set, Dirichlet-HMM
case.

actions take place in the Ped2 data set. The meaning of the third cluster in the Ped1 data

set is less clear. Looking at more cluster makes appear clusters whose visual meaning is not

obvious. However, there similarity could allow approaches based on contextual information

to refine the contextual areas.

Figures 6.14 and 6.15 report some clustering results over the same data sets using a

GD-based HMM. One can see that the clustering results are somehow different on Ped1 but

still make sense as the front view reduces the movements amplitudes that are far from it

(Figure 6.14). It tends to show once more that my approach is more sensitive to movement

than appearance. On the Ped2 data set, results similar to the Dirichlet case are found

(Figure 6.14). However, interestingly, on some runs, I am able to detect, by increasing

the number of cluster, a patch of the frame for which the HMM seems wrongly estimated

(Figure 6.15), as it shows a single patch in a cluster. Such information, could be used to

avoid using the corresponding HMM, and relying more on the neighboring ones as it is more

willing to raise false positives or to miss some anomalies.
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Figure 6.14: Two main clusters found in the UCSD Ped1 (left) and Ped2 (right) data sets, GD-HMM case.
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Figure 6.15: Five main clusters found in the UCSD Ped2 data set, GD-HMM case. The patch located at
row 5 and column 8 seems erroneous.

6.6 Conclusion

In this chapter, I proposed the first parametric distances for the Dirichlet and generalized

Dirichlet-based HMMs and, by extension, the Beta-based HMMs. I overcame the main

limitation of the HSD distance proposed in [146] by extending it to the multidimensional

case. Thought behaving as expecting for variations of the distributions and transition pa-

rameters, it failed at detecting changes in the mixing matrix. The approach I proposed,

showed a great ability to detect any change of any HMM parameter, with good discrimina-

tive ability and without requiring any data. Its good correlation to parameters variation as

well as its smoothness makes it the distance of choice for these models. By carrying out ex-

tensive experiments over synthetic data and providing a practical comparative performance

of five similarity measures, a careful choice of measure that fits the expectations of the

experimenter can be made. The extension of this distance for models trained by component

is illustrated with real-data and shows coherent results and a potential for exploring the

data representation through HMMs in order to detect erroneous estimations or to refine the

concept of neighbor in some approaches using contextual information such as [52].
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Chapter 7

Conclusion

The work presented in this thesis strove at adapting the broadly used HMMs to new data

types with a focus on proportional data and to show their powerful capacity at modeling

complex images and videos through applications for unusual event detection in videos and

change detection in images. The study of two different learning approaches unraveled how

considering the HMM parameters as random variables for estimation could substantially

improve estimation precision hence, the models’ performance. Wrongly estimated models

can however still appear due to outliers or noise and the design of distances within the HMM

space could be of great help for detecting them as well as for getting contextual information

about the processed data. A lot of work remains to be done around these graphical models

which, though a bit old and less used nowadays compared to extremely potent models such

as deep neural networks, still have the advantage to be quickly trained, compact models

that easily handle dynamical data, and that have a generative capacity.

In Chapter 2, showed that the model derived in [28] has good classifying capabilities

and can be integrated in a framework for proportional data modeling. Moreover the work

presented in this chapter proved that even very compact dictionaries in bag-of-words ap-

proaches could lead to good accuracies when classifying among couple of dozens of classes.

The limitation in the dimensionality of data that can be modeled could however be an issue

in some applications, and can be a subject of study in a future work.

In Chapter 3, I proposed the equations for the Baum-Welch learning algorithm for
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HMM based on generalized Dirichlet and Beta-Liouville mixtures as emission distributions.

Furthermore, application on synthetic and real data tends to show superior performance

of these new models compared to the Dirichlet distribution. The full framework proposed

for anomaly detection gives state-of-the-art results on one major data set for unusual event

detection in crowds while having an inference time close to real-time. Among the directions

that shall be explored as future work on the topic are an online setting for these models

to perform well under varying conditions such as season cycles, or day/night cycles for

outside video surveillance activities. Also, on a more technical point, the initialization

of the Beta-Liouville parameters shall also be studied and improved as using an initial

Dirichlet expressed in the form of a Beta-Liouville is neither satisfying from a theoretical or

an empirical point of view. As in general, estimation algorithms are very sensitive to their

initialization, closer initial estimates would most probably lead to an enhance performance

of the Beta-Liouville-based HMM.

Chapter 4 presented the major contribution of this thesis that is the derivation of the

variational learning for Dirichlet and generalized Dirichlet based HMMs. By considering

the HMMs parameters as random variables and by carefully choosing the prior distributions

to use, I showed that these models could outperform the models trained with a typical

Baum-Welch algorithm for similar applications. Future work should logically include the

Beta-Liouville distribution as well as a broader range of topics of application.

It was a good surprise to find in Chapter 5 that hybrid HMMs could be design following

very simple rules and give very encouraging results. The modeling of mixed data is still fairly

understudied and simple benchmarking methods are not easily found in the mainstream

programming toolboxes of most languages. Studies like the one presented here helps at

giving more tools for studying this complex data type and stop uniquely relying on the

Gaussian assumption in such cases. The design of a unification framework between multi-

stream and hybrid HMMs would be of great interest and could help integrating methods

(such as the weighting methods) from that former field to the latter one. On a more technical

note, a deeper study of the multivariate Gamma distribution in the HMM framework would

be interesting as no consensus seems to exist for this distribution definition yet, is used as
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an hypothesis for modeling the noise corrupting some radar images (speckle noise).

Finally in Chapter 6, I proposed several parametric distances between HMMs based

on the Dirichlet and the generalized Dirichlet distributions. Quantities for characterizing

such distances are proposed and their behavior with respect to the gradual change of all

HMM parameters are studied. Parametric distances for HMMs of all types are still sel-

dom. However, some studies have shown how contextual information in images and videos

could sometimes help reducing the false alarm rate, or detecting errors in the model esti-

mation. The design of basic and more sophisticated distances between HMMs should help

at designing more methods in this trend.

My hope is that the work realized in this thesis has shown the importance of studying the

type of data to model before blindly modeling it following a Gaussian assumption. Though

a Gaussian assumption may lead to good results, the use of appropriate tools/models will in

general improve the performance of the approach. Using simple rules, one can derive tools

around these adapted models for further comparing them to each other, or mixing them up

to model even more sophisticated types of data.
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Appendix A

Gamma Parameters Estimation

The Gamma distribution, parametrized with a shape α and a rate β parameters, is expressed

as Γ(x; α, β) = (βαxα−1e−xβ)/Γ(α), with α, β > 0 and x ≥ 0. Using the same notations

as in Chapter 3, the terms of the data log-likelihood function to be maximized for the

estimation of the parameters of the univariate Gamma distributions associated to each

state k and mixture component m can be written as

LGam(x; α, β) =
T

∑

t=0

K
∑

k=1

M
∑

m=1

γt
k,m

⎭

αk,m ln(βk,m)−xtβk,m +(αk,m −1) ln(xt)− ln(Γ(αk,m))

}

.

(97)

xt is the t-th element of the sequence of data of T elements (pixels in my case) and γk,m

is defined in Section 5.2. For each state and mixture component the maximization of this

quantity is iteratively performed by the Newton-Raphson method which is expressed as

⎛

ˆ

∐

αnew

βnew

⎞

ˆ

ˆ
=

⎛

ˆ

∐

α

β

⎞

ˆ

ˆ
− H−1(α, β)

∂LGam(x; α, β)

∂(α, β)
. (98)

In the case of the univariate Gamma distributions, the involved quantities can be easily

computed by hand.
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Appendix B

KL divergence between two Dirichlet

distributions

Hereafter are shown the steps to derive the Kullback-Leibler divergence between two multi-

dimensional Dirichlet distributions. The usual notation KL(p♣♣q) is used for the divergence

between a distribution p and another distribution q.

Let p(x♣α) and q(x♣a) denote two D-dimensional Dirichlet distributions as defined in

Equation (85) and derive the following quantity

KLdir(p♣♣q) =

∫

p(x) ln
p(x)

q(x)
dx . (99)

One typically recognizes the expression of an expectation with respect to p and I set the

following notation for it

KLdir(p♣♣q) =

⎬

ln
p(x)

q(x)

⟩

p(x)

= ⟨ln(p(x)) − ln(q(x))⟩p(x) . (100)
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Using Equations (85) and (100), I get

KLdir(p♣♣q) =

⎬

ln

(

Γ

( D
∑

d=1

αd

)

−
D

∑

d=1

ln(Γ(αd))

)

− ln

(

Γ

( D
∑

d=1

ad

)

+
D

∑

d=1

ln(Γ(ad))

)

+
D

∑

d=1

(αd − ad) ln(xd)

⟩

p(x)

, (101)

which can be simplified as

KLdir(p♣♣q) = ln

(

Γ

( D
∑

d=1

αd

)

−
D

∑

d=1

ln(Γ(αd))

)

− ln

(

Γ

( D
∑

d=1

ad

)

+
D

∑

d=1

ln(Γ(ad))

)

+
D

∑

d=1

(αd − ad)⟨ln(xd)⟩p(x) . (102)

With the Dirichlet distributions parameters known, the only quantity which needs to

be evaluated is ⟨ln(xd)⟩p(x). Making use of Equation (85),

⟨ln(xd)⟩p(x) =

∫

p(x) ln(xd)dx

=
Γ(

∑D
d=1 αd)

√D
d=1 Γ(αd)

∫

ln(xd)
D
∏

d=1

xαd−1
d dx . (103)

Using the property ln(x)xt =
d

dt
(xt) (and the fact the αi’s are independent) along with

the Leibniz integral rule,

⟨ln(xd)⟩p(x) =
Γ(

∑D
d=1 αd)

√D
d=1 Γ(αd)

∫ ∂

∂αd

( D
∏

d=1

xαd−1
d

)

dx

=
Γ(

∑D
d=1 αd)

√D
d=1 Γ(αd)

∂

∂αd

∫ D
∏

d=1

xαd−1
d dx . (104)

Using the fact that by definition the integral of the Dirichlet distribution is equal to 1,

I obtain

⟨ln(xd)⟩p(x) =
Γ(

∑D
d=1 αd)

√D
d=1 Γ(αd)

∂

∂αd

(

√D
d=1 Γ(αd)

Γ(
∑D

d=1 αd)

)

. (105)
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By recognizing the typical form of the logarithm function derivative and the digamma

function expression, I find

⟨ln(xd)⟩p(x) =
∂

∂αd

[

ln

(

√D
d=1 Γ(αd)

Γ(
∑D

d=1 αd)

)]

=
∂

∂αd

(

ln

( D
∏

d=1

Γ(αd)

))

−
∂

∂αd

(

ln

(

Γ(
D

∑

d=1

αd)

))

=
∂

∂αd

(ln(Γ(αd))) −
∂

∂αd

(

ln

(

Γ(
D

∑

d=1

αd)

))

= Ψ(αd) − Ψ

( D
∑

d=1

αd

)

. (106)

in which I made use of the fact that the αi’s are independent variables.

This last equation used in Equation (102) leads to the expression of Equation (93).
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Appendix C

KL divergence between two generalized

Dirichlet distributions

Hereafter are shown the steps to derive the Kullback-Leibler divergence between two mul-

tidimensional generalized Dirichlet distributions. The notations hereafter are the same as

in Appendix B.

Let p(x♣α, β) and q(x♣a, b) denote two D-dimensional generalized Dirichlet distributions

as defined in Equation (86) and derive the following quantity

KLGD(p♣♣q) =

∫

p(x) ln

(p(x)

q(x)

)

dx . (107)

I recall the equation of the GD distribution p:

p(x♣α, β) =
D
∏

d=1

Γ(αd + βd)

Γ(αd)Γ(βd)
xαd−1

d

(

1 −
d

∑

s=1

xs

)νd

, (108)

with νd defined as in Equation (78) and denoting its equivalent in q as cd.
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Using Equation (108) in Equation (107), I get

KLGD(p♣♣q) =

⎬

ln

(p(x)

q(x)

)⟩

p(x)

=
D

∑

d=1

ln

(Γ(αd + βd)Γ(ad)Γ(bd)

Γ(α)Γ(β)Γ(a + b)

)

+
D

∑

d=1

(αd − ad)⟨ln(xd)⟩p(x)

+
D

∑

d=1

(νd − cd)

⎬

ln

(

1 −
d

∑

s=1

xs

)⟩

p(x)

. (109)

It would be possible to derive the full expression of this KL divergence by using steps

similar to the ones presented in the case of the Dirichlet. However, the presence in this

case of a second expectation makes this method being heavy in computation and I prefer

using the following routine that is less straightforward, but less heavy to write to find the

expressions of the two expectations left in Equation (109).

I start by computing the derivative of a GD distribution with respect to all its parame-

ters.

∂p(x)

∂αd

= p(x)

[

Ψ(αd + βd) − Ψ(αd) + ln(xd) − ln

(

1 −
d−1
∑

s=1

xs

)]

, (110)

is valid for all d ∈ [1, D] if the last term is defined as equal to 0 in the case d = 1.

Similarly,

∂p(x)

∂βd

= p(x)

[

Ψ(αd + βd) − Ψ(βd) + ln

(

1 −
d

∑

s=1

xs

)

− ln

(

1 −
d−1
∑

s=1

xs

)]

, (111)

is valid for all d ∈ [1, D] if the last term is defined as equal to 0 in the case d = 1.

Integrating Equations (110) and (111) using the Leibniz rule and identifying the expec-

tation expressions, I get the following system of equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⨄

⎪

⎪

⎪

⎪

⎪

⎪

⋃

Ψ(αd + βd) − Ψ(αd) + ⟨ln(xd)⟩p(x) −

⎬

ln

(

1 −
d−1
∑

s=1

xs

)⟩

p(x)

= 0 ,

Ψ(αd + βd) − Ψ(βd) +

⎬

ln

(

1 −
d

∑

s=1

xs

)⟩

p(x)

−

⎬

ln

(

1 −
d−1
∑

s=1

xs

)⟩

p(x)

= 0 ,

(112)

(113)

149



which is valid for all d ∈ [1, D], with the last term of the left hand side being equal to 0 for

d = 1.

This system of equations can recursively be solved and lead to the solution:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⨄

⎪

⎪

⎪

⎪

⎪

⎪

⋃

⎬

ln

(

1 −
d−1
∑

s=1

xs

)⟩

p(x)

= −
d

∑

s=1

(Ψ(αs + βs) − Ψ(βs)) ,

⟨ln(xd)⟩p(x) = Ψ(αd) − Ψ(βd) −
d

∑

s=1

(Ψ(αs + βs) − Ψ(βs)) .

(114)

(115)

Using (115) in (109), I obtain the final expression:

KLGD(p♣♣q) =
D

∑

d=1

ln

(Γ(αd + βd)Γ(ad)Γ(bd)

Γ(αd)Γ(βd)Γ(ad + bd)

)

−
D

∑

d=1

(αd − ad)

(

Ψ(αd) − Ψ(βd) −
d

∑

s=1

(Ψ(αs + βs) − Ψ(βs))

)

+
D

∑

d=1

(νd − cd)
d

∑

s=1

(Ψ(αs + βs) − Ψ(βs)) . (116)
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