
Ultrasound Elastography: Direct Strain

Estimation

Hossein Khodadadi

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University
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ABSTRACT

Ultrasound Elastography: Direct Strain Estimation

Hossein Khodadadi

Ultrasound elastography involves measuring the mechanical properties of tissue, and

has many applications in diagnostics and intervention. Ultrasound elastography tech-

niques mainly target obtaining strain images from raw Radio-Frequency (RF) echo

field produced by ultrasound machine without adding any hardware. A common step

in different elastography methods is imaging the tissue while it undergoes deforma-

tion and estimating the displacement field from the images. A popular next step is

to estimate tissue strain, which gives clues into the underlying tissue elasticity mod-

ulus. To estimate the strain, one should compute the gradient of the displacement

image, which amplifies the noise. The noise is commonly minimized by least square

estimation of the gradient from multiple displacement measurements, which reduces

the noise by sacrificing image resolution.

The first part of this thesis propose a new method which adaptively adjusts the

level and orientation of the smoothing strain images using two different mechanisms.

First, the precision of the displacement field decreases significantly in the regions

with high signal decorrelation, which requires increasing the smoothness. Second,

smoothing the strain field at the boundaries between different tissue types blurs the

edges, which can render small targets invisible. To minimize blurring and noise, we

perform anisotropic smoothing and perform smoothing parallel to the direction of
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the edges. The first mechanism ensures that textures/variations in the strain image

reflect underlying tissue properties and are not caused by errors in the displacement

estimation. The second mechanism keeps the edges between different tissue struc-

tures sharp while minimizing the noise.

The second part of this thesis introduces a 2D strain imaging technique called SHORT-

CUT (meSHing Of gRadienT in DP for direCt Ultrasound elasTography) based on

minimizing a cost function. The cost function incorporates similarity of echo am-

plitudes and tissue continuity. The proposed technique is fast, robust and accurate

and it directly produces the strain images from RF data using a novel dynamic pro-

gramming (DP) configuration. Unlike the standard DP algorithm which discretizes

the decision space (displacement field) and search in the space of piecewise constant

functions, the proposed DP discretizes the gradient of the decision space (strain field)

and search the space of continuous piecewise linear functions. Eliminating the dis-

placement differentiation block and performing a global search instead of local search

which exist in all of the available strain estimation techniques result in substantial

improvement in SNR, CNR and accuracy of the estimations. The effectiveness of the

proposed methods is investigated through simulation data, phantom experiments, and

in vivo patient data.
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Chapter 1

Introduction

Acoustic waves with frequencies above 20 kHz are considered as ultrasound. Medical

ultrasound machines typically use a frequency range of 1 MHz to 10 MHz. Since

medical ultrasound is non-ionizing, inexpensive, real-time and easy to use, it is the

preferred modality in many diagnostic and surgical procedures in both equipped and

unequipped clinics and hospitals. A probe which consists of an array of small piezo-

electric transducers is responsible for both triggering and sensing acoustic waves. The

probe is placed on the surface of the skin and triggers the skin with acoustic waves.

A short ultrasound pulse is transmitted by the probe into the tissue where a portion

of it is reflected from numerous interfaces between tissue types with different acoustic

properties. The reflected waves (echoes) travel back to the piezoelectric crystals and

are converted to electrical voltages by the same piezoelectric effect. This unprocessed

electrical signal is called the Radio-Frequency (RF) signal. By measuring the envelope

of these RF signals and converting them to brightness, the B-mode image is produced
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which is the main visual output of ultrasound machines. Given the propagation speed

of sound, the depth of a tissue boundary can be calculated by measuring the transit

time from the initial pulse transmission to reception of the echo. The amplitude of the

echo represents the relative difference of acoustical properties at the boundary. The

back-scattered echoes from the resolution cell, which is an approximately ellipsoidal

area, forms the pixels in an ultrasound image. Speckles [1], which are responsible

for the grainy appearance of the ultrasound image, are created by the interference

of scatterers in a resolution cell. In spite of their random appearance, the speckle

patterns are reproducible in the sense that they remain identical if the same object

is scanned again under the same conditions (same direction, frequency and focusing).

This property opens a new horizon for extracting more information (e.g., about the

mechanical properties of the tissue) from the raw RF data.

Ultrasound elastography is an emerging field of research which aims to reveal

the mechanical properties of tissue and has numerous applications in both diagnos-

tics and surgical planning [2–8]. Numerous techniques have been used in ultrasound

elastography which can be predominantly categorized into dynamic and quasi-static

elastography. In quasi-static elastography, the tissue is deformed slowly and dis-

placement field is estimated using the pre and post-deformed ultrasound RF data.

Differentiating the displacement field produces the strain image. They can also be

used in an inverse problem formulation to calculate tissue elasticity modulus [9, 10].

In dynamic elastography, on the other hand, a quantitative measure of the mechanical
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properties of the tissue is obtained by following the acoustic wave propagation using

ultrasound. Dynamic elastography uses the wave equation of shear waves and hence,

do not need to know the stress distribution to estimate the local Young’s modulus.

However, since both compression and shear waves are present in the studied medium

and the waves rebound at the interfaces and are mixed together, it’s very difficult to

distinguish them. Therefore, the quality of estimations in dynamic elastography is low

and it’s very sensitive to the boundary conditions. More comprehensive surveys on

dynamic elastography can be found in [4,11]. Exploiting the fact that shear waves are

three times slower than compression waves and using transient excitation, transient

elastography was developed to overcome these limitation by separating shear waves

from compression waves. Acoustic Radiation Force Impulse Imaging (ARFI) [12] is a

transient elastography method which uses the acoustic radiation force in the form of

one focalized ultrasound beam. The radiation force slightly displaces the tissue and,

similar to quasi-static elastography, the displacement field is estimated. Following

the displacement and the relaxation of tissue depending on the radiation force allow

the deduction of elasticity and viscosity at the focal spot only [13]. The disadvan-

tages of ARFI are the deposited energy in the medium which can cause consequent

heating [14, 15] and the fact that it cannot be used to quantitatively estimate tissue

Young’s modulus although the measured parameters strongly depend on it.

This thesis investigated some important problems in quasi-static elastography,

with a special focus on free-hand palpation elastography. Unlike dynamic elastog-

raphy (unless it is combined with an inverse problem approach [9, 10]), quasi-static
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elastography cannot compute the tissue elasticity modulus. However, since they can

estimate larger displacement fields compared to that of shear-wave elastography, they

may produce strain images with better Signal-to-Noise Ratio (SNR) and Contrast-To-

Noise ratio (CNR) and they need no equipment and technology other than traditional

ultrasound machines. Various methods have been proposed for displacement estima-

tion from RF data, commonly referred to as Time-Delay Estimation (TDE). The

most widely used TDE techniques are window-based methods, where RF data is di-

vided into several small windows (segments) and the displacement of each window is

estimated using either phased-based [16] or amplitude-based [17–20] techniques. The

amplitude-based techniques maximize Cross Correlation (CC) or Normalized Cross

Correlation (NCC) of the two corresponding pre and post-deformed windows to com-

pute the tissue displacement. On the contrary, in the phased-based approaches, the

phase information of the RF data is used for displacement estimation. Window-based

methods are very sensitive to signal decorrelation and need to compromise between

better spatial resolution with small windows and higher accuracy with larger windows.

Formulating the TDE as an optimization problem is a popular alternative

method for computing the tissue displacement [7, 16, 18, 21–24]. These methods ex-

ploit the prior information of motion continuity in tissues, and therefore are robust

to signal decorrelation. In [7, 21] a dynamic programming analytical minimization

(DPAM) technique is proposed which consists of a cost function that incorporates
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both similarity of RF echo amplitudes and the prior information of displacement con-

tinuity. Using this cost function, DPAM estimates 2D displacement field, and after

applying a spatial derivative operator to the displacement field, the strain image is

computed. Estimating the strain by performing spatial derivative of the displacement

field amplifies the noise. Thus, a least-squares estimation of the strain is commonly

performed, which reduces the spatial resolution. At the end, the resulting strain im-

ages are smoothed laterally by a Kalman filter.

As mentioned in the previous paragraph, the strain image is obtained by taking

spatial derivative of the displacement field and taking derivative amplifies the noise.

To overcome this challenge, in the first part of this thesis we propose a new method

which adaptively adjusts the level and orientation of the smoothing in strain images

using two different mechanisms. The precision of the displacement field decreases sig-

nificantly in the regions with high signal decorrelation, which requires increasing the

smoothness. The first mechanism aims at producing uniform precision strain images

by adjusting the level of smoothness. Smoothing the strain field at the boundaries

between different tissue types blurs the edges, which can render small targets invisi-

ble. The second mechanism minimizes blurring and noise by performing anisotropic

smoothing parallel to the direction of edges. The first mechanism ensures that tex-

tures/variations in the strain image reflect underlying tissue properties and are not

caused by errors in the displacement estimation. The second mechanism keeps the
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edges between different tissue structures sharp while minimizing the noise. We vali-

date the proposed method using phantom and in-vivo clinical data.

All of the aforementioned methods, including our proposed method in the pre-

vious paragraph, follow a pipeline paradigm that consists of displacement estimation

followed by strain estimation and a smoothing filter. Aside from amplifying the noise

by taking the derivative of the displacement field, the other disadvantage of these

pipeline methods is that they do not exploit the information of the RF data in the

strain estimation step, and utilize only the noisy displacement field to calculate the

strain. The authors in [25] replace this pipeline paradigm with a direct strain esti-

mation method that uses both the initial RF data and the calculated displacement

field to estimate a high quality and accurate strain image in a unified framework.

The inherit advantages of direct strain estimation without computing the gra-

dient of the displacement field has caught the attention of the researchers recently

[19, 26, 27]. Most of the existing direct methods calculate the strain image by apply-

ing local/global adaptive temporal stretching of the signals in the time or frequency

domain. In [19] and [26], a two-step method is proposed to use optical flow with local

warping to calculate displacements and strain, simultaneously. To compensate for the

signal de-correlation due to non-axial motion of tissue scatterers, in [27] the authors

propose a direct average strain estimation (DASE) method using the weighted nearest

neighbor method. In [28], power spectrum shift (a frequency-domain characteristic)
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is estimated by cross correlation to calculate the strain image. Another frequency-

domain method is discussed in [29], where the local strain is estimated by maximizing

the spectral correlation between the pre- and post-compression echo signals using it-

erative frequency-scaling of the latter. Direct strain estimation in frequency domain

can also be achieved through phase-based approaches, where the strain is modeled as

a function of phase [30,31].

All of the aforementioned papers suffer from at least one of the following short-

comings:

� Producing strain images with an acceptable SNR and CNR requires global 2D

search; however, existing global search methods are not suitable for real-time

applications.

� All of the existing real-time algorithms use either local search or global search

on only one axial line, and unless the seed-line is placed in a carefully selected

position, there is a substantial possibility that the algorithm fails.

� Most of the existing algorithms find displacement field first, and then calculate

the gradient of that to compute the strain field; and this reduce the SNR and

CNR of the strain image significantly.

� Without a prior information about displacement/strain field, huge jitter and

false peak hopping noise will emerge, and the existing algorithms that use reg-

ularization, penalize strain (to maintain motion continuity).
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To overcome these challenges, in the second part of this thesis, we introduce a 2-D

strain imaging technique by minimizing an appropriate cost function which incor-

porates the similarity of echo amplitudes and tissue continuity. The proposed tech-

nique which we call it SHORTCUT (meSHing Of gRadienT in DP for direCt

Ultrasound elasTography), directly produces the strain images from RF data using

a novel dynamic programming (DP) configuration. As a result, it is robust, accurate

and computationally efficient. Unlike the standard DP algorithms which discretize

the decision space (displacement field) and search in the space of piecewise constant

functions, the proposed DP discretizes the gradient of the decision space (strain field)

and searches the space of continuous piecewise-linear functions. Eliminating the dis-

placement differentiation block and performing a global search instead of local search,

which is typically done in all of the available strain estimation techniques, result in

substantial improvement in SNR, CNR and accuracy of the estimations. It also sub-

stantially reduces the computational complexity. Note that the displacement images

are the side product of this algorithm and they can be obtained by integrating the

strain images. The accuracy and robustness of this method comes from the fact that

DP is a global optimization algorithm. It is robust since it can only be locally affected

by signal decorrelation caused by scatterer motion in high axial compression and non-

axial motions of the probe. This is due to the fact that the proposed algorithm solves

1D DP optimization problem for each axial line independent of the results of neigh-

boring axial lines which obstruct the propagation of a failed estimation. It is also

accurate in the sense that it always finds the globally optimal estimations. However,
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1D DP estimation means that the estimated strain images are not smooth laterally.

Although a simple lateral averaging filter will solve the problem but, to further im-

prove the results, a 2D DP with a special bilateral filter is used instead which uses the

information of the neighboring axial lines with good performance measure to refine

the estimates. Depending on the initial setting, this method can operate somewhere

between a few milliseconds to a few seconds, and is thus potentially suitable for real-

time elastography. It is also worth mentioning that this method is compatible with

parallel computing, which can drastically decrease the computation time when multi-

ple processors are available. The effectiveness of the proposed method is investigated

through simulation data, phantom experiments, and in vivo patient data. The results

are compared with a previous work tackling the same problem, called DPAM, which

confirms the merits of the present approach.

1.1 Outline of Thesis

Following this introduction, in Chapter 2 we present an algorithm that can, under

certain assumptions, generate strain images with uniform precision but varying reso-

lution. The uniform precision property ensures that textures/variations in the strain

image reflect underlying tissue properties and are not caused by errors in the displace-

ment estimation. The algorithm has also the capability of keeping the edges between

different tissue structures sharp while minimizing the noise. This is demonstrated

by the phantom and in-vivo clinical data. The proposed technique is compared with
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three common methods in this field, which confirm the effectiveness of the proposed

algorithm. However, further clinical studies will be necessary to assess the benefits

of the algorithm in practice.

In Chapter 3, we introduce a 2-D strain imaging technique based on minimizing

a cost function using a novel DP technique. In the first part of this chapter, a 1D DP

is proposed and in the second part the method is extended to 2D DP. In the third

part of this chapter, an extensive simulation phantom study is presented followed by

an experimental phantom study where the performance and behavior of the proposed

method is assessed. The last part of this chapter is a clinical study on five patient

data,followed by some concluding remarks. The results presented in this chapter are

published in [32].

1.2 Publications

The results of this master’s thesis and the author’s other collaborative research during

his master’s work are published in or submitted to a jurnal and a number of conference

proceedings [32–37] which are listed below.

� H. Khodadadi, A. G. Aghdam, and H. Rivaz, “Ultrasound elastography: Direct

strain estimation,” IEEE Transactions on Medical Imaging, vol. In preperation,

2017.

� H. Khodadadi, A. G. Aghdam, and H. Rivaz, “Edge-preserving ultrasonic strain
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imaging with uniform precision,” in 37th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC), Aug. 2015,

pp. 3835-3838.

� M. Khosravi, H. Khodadadi, A. G. Aghdam, and H. Rivaz, “Cooperative reced-

ing horizon controller for multi-target interception with obstacle avoidance,” in

proceedings of the 55th IEEE Conference on Decision and Control (CDC), Dec.

2016, pp. 93-98.

� M. Khosravi, H. Khodadadi, H. Rivaz and A. G. Aghdam, “Cooperative Control

for Multi-Target Interception with Sensing and Communication Limitations: A

Game Theoretic Approach,”, in Proceedings of the 54th IEEE Conference on

Decision and Control, Dec 2015, pp. 1048-1053.

� M. Khosravi, H. Khodadadi, H. Rivaz and A. G. Aghdam, “Maximum Reward

Collection Problem: A Cooperative Receding Horizon Approach for Dynamic

Clustering,”, in Proceedings of the 2015 ACM Conference on Research in Adap-

tive and Convergent Systems.Oct. 2015, pp. 38-43.

� M. Khosravi, H. Khodadadi, H. Rivaz and A. G. Aghdam, “Cooperative Re-

ceding Horizon Control of Double Integrator Vehicles for Multi-Target Inter-

ception,” in Proceedings of the American Control Conference, July. 2015, pp.

5525-5530.
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Chapter 2

Edge-Preserving Ultrasonic Strain

Imaging with Uniform Precision

2.1 Introduction

Ultrasound Elastography is usually composed of two separate steps: (i) estimation

of a displacement field and (ii) inferring mechanical properties from the displace-

ment field. In this chapter we are focused on the second step in which it is common

to estimate a strain image, which is the spatial derivative of the displacement field

and is highly correlated with mechanical properties of tissue. A popular method for

performing the spatial differentiation is piecewise-linear least square regression [38],

which provides a trade-off between resolution and signal to noise ratio. Since differ-

entiation amplifies high frequency noise, most strain estimation techniques combine

differentiation with smoothing to increase the Signal-to-Noise Ratio (SNR) of the
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strain image. An overview of common techniques for estimating high SNR strain

images is provided in [39].

Previous work for estimating the strain field has two major disadvantages. First,

it does not take into account the precision of the displacement field. To address

this shortcoming, a technique for uniform precision strain estimation is introduced

in [39], which adaptively increases the level of smoothness in regions with low precision

displacement estimates. Second, smoothing blurs boundaries of edges between regions

of low and high strain values. A technique for generating sharp strain images with high

SNR is introduced in [7] based on Kalman filtering. The present work combines the

advantages of these two techniques by introducing a uniform precision edge-preserving

strain imaging technique based on bilateral filtering.

Bilateral filtering was first popularized in the computer vision community by

Tomasi and Manduch [40] as an alternative to anisotropic diffusion, and has since been

used in many applications in computer vision and image processing. It starts with

a standard spatial Gaussian kernel, which is then modified based on image intensity

values. The idea is that if a neighboring pixel has a very different intensity value

compared to the center pixel, its averaging weight is reduced. Therefore, it reduces

the noise while preventing over smoothing.

In this dissertation, we adaptively adjust both the level and orientation of

the smoothing kernel and introduce a novel uniform precision edge-preserving strain

imaging technique. Among many different variations of elastography methods, we

focus on quasi-static elastography [2,41], where tissue deformation is slow and hence
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its dynamical properties can be ignored. However, the techniques that we develop

here can also be applied to other variations of elastography.

This chapter is organized as follows. In the next section, we describe the our uni-

form precision edge-preserving filter in detail. We then provide experimental results

and compare our method against both uniform precision [39] and Kalman filtering [7]

strain estimation techniques using both phantom and in-vivo patient data. Conclu-

sions and avenues for future work are provided in Section 2.5.

2.2 Edge-Preserving Filters

The boundary between two different tissue types is an edge in the strain image which

contains useful information and must be preserved while smoothing. Failing to pre-

serve the edges may render small targets inviable. In this section, an overview of

bilateral filters for edge preserving is presented. Bilateral filtering is a technique to

smooth an image while preserving edges, and can be traced back to the nonlinear

Gaussian filters in the work of Aurich and Weule [42] or Tomasi and Manduchi [40]

where its name was first coined. Fast versions of this filter using a piecewise-linear

approximation in the intensity domain and appropriate subsampling are introduced

in [43]. The underlying idea behind a bilateral filter is fairly straightforward: the in-

tensity value at each pixel in an image is replaced by a weighted average of intensity

values from nearby pixels as in nearly all smoothing filters. However, unlike other

filters, the weights here depend not only on the Euclidean distance of pixels, but also
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on the radiometric differences (e.g. range differences). Similar to the notion of the

Euclidean distance closeness, intensity similarity the in range domain is introduced in

bilateral filtering and the overall weight of a pixel in the average is computed by mul-

tiplying the spatial closeness and range similarity. This makes the filter nonlinear but

preserves sharp edges because although pixels from different sides of the edges may

be close in terms of Euclidean distance, their intensities are not similar. Therefore,

they will have small weights in the weighted average. In other words, the smoothing

will be parallel to the direction of the edge. Note that the term range qualifies quan-

tities related to pixel values like intensities. The formulation of a bilateral filter is as

follows [40]:

IBF (x) =
1

Wp

∑
xi∈Ω

I(xi)fr(‖I(xi)− I(x)‖)gs(‖xi − x‖), (2.1)

where Wp is the normalization factor given by:

Wp =
∑
xi∈Ω

fr(‖I(xi)− I(x)‖)gs(‖xi − x‖). (2.2)

In the above equation, Ω is the window centered at x and I(x), IBF (x) are the original

and filtered images, respectively. Moreover, functions fr(·) and gs(·) are the range

and spatial kernel for smoothing difference in intensities and coordinates, respectively.

Gaussian functions are good candidates for the spatial and range kernel as they give

a low weight to pixels that are either spatially far or have dissimilarity in photometric
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range. Therefore, those two functions are chosen as follows:

fr(x) = Gσr(x) =
1

2πσ2
r

e
− x2

2σ2r , (2.3a)

gs(x) = Gσs(x) =
1

2πσ2
s

e
− x2

2σ2s . (2.3b)

The bilateral filter with Gaussian functions has two parameters: σr and σs.

The spatial spread σs is chosen based on the desired amount of smoothness or low-

pass filtering. A large σs would include the intensities of pixels from more distant

image locations in the domain. Similarly, the photometric spread σr in the image

range determines how close in range the pixels should be in order to be considered

as similar pixels. Figure 2.1(a) shows an example of a simple gray-scale image with

an edge in the middle which is perturbed by Gaussian noise. Figure 2.1(b) depicts

the result of applying a bilateral filter with σr = 0.1 and σr = 10 to this image and

Figure 2.1(c) shows the kernel of the bilateral filter at a point located on the edge in

which it is clear that only the weight of the pixels that are located at one side of the

edge are non-zero; therefore, the edge will be untouched.

2.3 Uniform Precision Edge-Preserving Filter

In this section, first a method for calculating the precision is reviewed, and then

the main contribution of this chapter, which is a proper integration of both edge-

preserving and uniform precision in one filter, is presented.
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Figure 2.1: (a) An example of a gray-scale image; (b) smoothed image filtered by a
bilateral filter, and (c) Gaussian kernel at the edge of the image I(50, 50).
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It was shown in [44] that the precision p of the displacement data can be es-

timated, under some simplifying assumptions, from complex cross-correlation ρ of

matched displacement windows of pre- and post-deformation data. The precision

p(x, y) and cross-correlation ρ(x, y) can be computed as follows [44]:

ρ(Ωn, d̂n) =

∑
{x,y}∈Ωn

I1(x, y)I2(x+ d̂xn, y + d̂yn)

1
2

∑
{x,y}∈Ωn

|I1(x, y)|2 + |I2(x+ d̂xn, y + d̂yn)|2
, (2.4)

p(x, y) =
ρ(Ωn, d̂n)

1− ρ(Ωn, d̂n)
, (2.5)

where Ωn is the displacement window, I1, I2 are the pre- and post-deformation images,

and d̂xn, d̂yn are the estimated axial and lateral displacements, respectively. In this

work, the assumption of negligible lateral displacement in [44] and [39] is relaxed

since both axial and lateral displacements are calculated.

Knowing the precision, the goal is to adapt the smoothing to the precision of

the image while keeping the edges untouched. The adaptation mechanism should

blur the regions with low precisions while preserving the regions of high precision.

The range kernel is in charge of the edge-preserving function of the filter and should

remain untouched. Since the level of smoothing is related to the spatial kernel of

the bilateral filter, adapting the parameter σs to the precision of the image seems

to be a logical approach. When the precision is high, the parameter σs should be

low, and vice-versa. The only difficulty that remains is defining the mathematical
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relationship between σs and p. Suppose that a Gaussian blur is used to smooth an

image. The cut-off frequency of this linear low-pass filter in each direction is fc ∝ 1
σs

,

and consequently the resolution in each direction will be R ∝ σs, where σs is the

Gaussian spatial spread. Now, suppose the raw strain data contains independent

measurements from the same relatively homogeneous strain distribution. The filtered

strain precision in such cases will scale with the size of the Gaussian kernel width.

Note that the 2D kernel will have a size proportional to the square of the 1D kernel

size [39]. Bearing in mind that the kernel size is proportional to the spatial spread, if

the precision of the original image was p0, the precision of the smoothed image would

be:

p(x, y) ∝ p0(x, y)σ2
s(x, y). (2.6)

This leads to:

σs(x, y) =
k√

p0(x, y)
. (2.7)

Substituting (2.7) in (2.6) will cancel out the initial precision p0(x, y) from Eq. (2.6)

and therefore a uniform precision image can be produced. The precision scaling factor

k can tune the level of overall precision after smoothing.

The above reasoning for Gaussian blur can be extended to the bilateral filter

because the range kernel does not change the spatial kernel size. Note that the

computation time of this approach is less than or equal to that of a bilateral filter

because the size of the kernel is reduced when the image has certain degree of precision.
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Figure 2.2: The result of different methods applied to the phantom data: (a) The axial
displacement; (b) the raw strain data calculated by simple discrete differentiation of
the axial displacement; (c) the precision image; (d) the result of the least-squares
method applied to the axial displacement; (e) the result of the least-squares method
with Kalman filter applied to the axial displacement, and (f) the result of the proposed
uniform precision edge-preserving filter applied to the raw axial strain image.
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It should be noted that a precision value of zero results in σs =∞ in eq. (2.7).

In practice, σs cannot be infinity; thus, a maximum spatial spread is defined, denoted

by σmax, and any value higher than that is substituted by σmax.

2.4 Experimental Results

In this section, phantom results and patient trail are presented. The RF data is

acquired from an Antares Siemens system (Issaquah, WA) at the center frequency

of 6.67 MHz with a VF10-5 linear array at a sampling rate of 40 MHz. To evaluate

the proposed filter, first the 2D AM method introduced by Rivaz et al. [7] is used

to produce axial and lateral displacement images from the RF data, and then the

proposed method is applied to the displacement images to calculate the precision and

the strain. To compare the results, two other methods are also applied to the data

which are as follows:

1. Least-squares method : This isthe most common approach that is used for gen-

erating the strain image from the displacement image. Roughly speaking, the

least-squares method computes the strain in each pixel by calculating the slope

of a line fitted to the displacement data of a window in the axial direction. To

make the strain more accurate, the line window could be a plane in 2D, where

the strain is calculated for the center of the plane.

2. Least squares with Kalman filter : This approach, originally proposed by Rivaz

et al. [7], further smoothes the resulting strain of the least squares in the lateral
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direction. The Kalman filter is used as it has the ability to keep the edges while

smoothing the rest of the image.

A Gaussian blur filter is used to pre-process the strain image, and due to the

fact that the strain image is produced by calculating the displacement in the axial

line, the resulting strain image needs more smoothing in the lateral direction so an

asymmetric kernel is used for the filter.

In the experiments, the parameters of 2D AM are set to α = 5, βa = 10,

βl = 0.005, and T = 0.2 (eqs. (12) and (20) in [7]), and the tunable parameters of

the DP are chosen as αα = αl = 0.15 (eq. (1) in [7]). In the precision calculation

the window size is Ω = 40, while the spatial and range spreads in the bilateral filter

can adapt to the image properties (σs = Width(I)
10

, σr = Imax−Imin
16

). Finally, in the

proposed filter, the maximum spatial spread is σmax = 30, the range spread adapts

to the image (σr = Imax−Imin
16

) and the scaling factor of precision is k = 3.

2.4.1 Phantom Data

Figure 2.2 shows the phantom results obtained by different methods. It can be ob-

served from this figure that the least-squares method produces a somehow smooth

strain data with very blurry edges. Furthermore, the least squares with Kalman filter

output is more or less the same as that of least-squares operation, but is more smooth

in the lateral direction. It is worth noting that the Kalman filter tends to keep the

edges untouched when smoothing in the lateral direction. Figure 2.2(f) depicts the
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Figure 2.3: The result of different methods applied to the patient data. (a) The
Axial displacement generated; (b) the raw strain data calculated by simple discrete
differentiation of the axial displacement; (c) the precision image; (d) the result of the
least-squares method applied to the axial displacement; (e) the result of the least-
squares method with Kalman filter applied to the axial displacement, and (f) the
result of the proposed uniform precision edge-preserving filter.
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result of the proposed uniform precision edge-preserving filter applied to the raw ax-

ial strain image. The uniform precision property of the filter is not distinguishable

here because the precision of the phantom result is already somehow uniform (Figure

2.2(c)).

2.4.2 In-vivo Data

The data is acquired from patients undergoing open surgical radiofrequency (RF)

thermal ablation for primary or secondary liver cancer. We are thankful to Drs. Boc-

tor and Choti from Johns Hopkins Hospital for sharing the data with us. Figure 2.3

shows the ultrasound and strain images of a patient before ablation. A hard tumor,

marked with an arrow, is hardly visible in the ultrasound image. The result of apply-

ing different methods to this data clearly shows the merits of the proposed uniform

precision edge-preserving filter. Figure 2.3(f) offers a more informative and less de-

cisive image for the diagnostic applications, because it smoothes the unreliable noisy

regions while keeping the information of the precise regions and the edges untouched.

2.5 Conclusions

In this chapter, we present an algorithm that can, under certain assumptions, generate

strain images with uniform precision but varying resolution. The uniform precision

property ensures that textures/variations in the strain image reflect the underlying

tissue properties and are not caused by errors in the displacement estimation. The
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algorithm can also keep the edges between different tissue structures sharp while

minimizing the noise. This is demonstrated by the phantom and in-vivo clinical

data. The results are compared with three common methods in this field of research,

confirming the effectiveness of the proposed algorithm. However, further clinical

studies will be necessary to assess the benefits of the algorithm.
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Chapter 3

Ultrasound Elastography: Direct

Strain Estimation

3.1 Introduction

Assume two consecutive ultrasound Radio-Frequency(RF) echo field I1(i, j) : i ∈

N≤m × j ∈ N≤n → R and I2(i, j) : i ∈ N≤m × j ∈ N≤n → R, which are taken before

and after the tissue undergoes a deformation. Define Am×n ∈ R and Lm×n ∈ R as

the axial and lateral displacement matrices (the out-of-plane motion is not considered

here) where each of their elements ai,j and li,j satisfy ‖ai,j‖ ≤ amax and ‖li,j‖ ≤ lmax,

and amax and lmax are the maximum possible axial and lateral displacement estimates,

respectively.

The ultrasound elastography problem deals with finding these two matrices (A and

L) such that I1(i, j) = I2(i + ai,j, j + li,j). Note that calculating I2(i + ai,j, j + li,j)
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may need a sub-pixel interpolation of I2. we write this as an optimization problem

using a simple cost function as follows:

min
A,L

P = min
A,L

[Φ(I1, I2, A, L) + αΨ(A,L)] (3.1)

where the first term Φ(I1, I2, A, L) is a penalty function for speckle decorrelation,

assuming echo signals can be fully restored, and the second term Ψ(A,L) is a penalty

function for losing motion continuity and α is the weight of regularization. This

optimization problem was solved by a dynamic programming technique named the

Viterbi algorithm [45]. Dynamic programming (also known as dynamic optimization)

is a method based on Bellman’s principle of optimality [46] for solving a complex

problem by breaking it down into a collection of simpler subproblems such that each

subproblem corresponds to a discrete decision, solving each of those subproblems

just once, storing their solutions (memorization) and reusing them next time the

same subproblem occurs. The decisions should follow each other sequentially and

the cost corresponding to each decision should only depend on the previous and not

the future decisions (causality). This approach can usually save computation time

at the expense of a modest expenditure in storage space. As shown in Figure 3.1,

costs will be calculated going forward in two adjacent data points using eq. (3.1).

To save computing time, these values will be stored in a 3D array Cj
i (k) and the

Viterbi algorithm can efficiently trace back the global optimum solution from i = n

to i = 1(See the thick line path in Figure 3.1). This algorithm was selected because
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of its efficiency and simplicity. It is important to note that this optimization process

will only be used to determine the displacement vector in integer precision due to the

nature of the Viterbi algorithm. In [21], this algorithm is used to find the displacement

matrices A and L in integer precision. The formulation of this algorithm is as follows.

Assuming that ultrasound images consist of n A-lines, we define data and smoothness

terms as follows

∆(i, j, ai,j, li,j) = |I1(i, j)− I2((i+ ai,j, j + li,j)| , (3.2)

S(ai,j, li,j, ai−1,j, li−1,j) = (ai,j − ai−1,j)
2 + (li,j − li−1,j)

2. (3.3)

The cost function at the ith sample of the jth A-line is

Cj
i (ai,j, li,j) = ∆(i, j, ai,j, li,j)+min

δa,δl

{
Ci−1,j(δa, δl) + Ci,j−1(δa, δl)

2
+ αS(ai,j, li,j, δa, δl)

}
.

(3.4)

In this chapter, using a novel DP configuration, we introduce a fast, robust and accu-

rate direct 2-D strain imaging technique called SHORTCUT (meSHing Of gRadienT

in DP for direCt Ultrasound elasTography) based on minimizing a cost function. The

cost function incorporates similarity of echo amplitudes and tissue continuity. Unlike

the standard DP algorithm which discretizes the decision space (displacement field)

and search in the space of piecewise constant displacement functions, the proposed

DP discretizes the gradient of the decision space (strain field) and searches the space

of continuous piecewise linear displacement functions. Eliminating the displacement
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Figure 3.1: An illustration of the Viterbi algorithm. Here, i represents different steps
where the optimum state should be simultaneously estimated and SN represents N
possible selections of states for each step. The cost in each state (circles) is determined
by eq. (3.1) and it is the minimum cost of reaching that state from any previous step
state. To save computing time, these values will be stored in a 3D array Cj

i (k) and the
Viterbi algorithm can efficiently trace back the global optimum solution from i = n
to i = 1(See the thick line path).
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differentiation block and performing a global search instead of local search which exist

in all of the available strain estimation techniques result in substantial improvement

in SNR, CNR and accuracy of the estimations. Note that the displacement images

are the side product of this algorithm and they can be obtained by integrating the

strain images. The robustness of this method comes from the fact that DP is global

optimization algorithm. Therefore, not only its accurate in the sense that it always

finds the globally optimal estimations but also it can only be locally affected by sig-

nal decorrelation (caused by scatterer motion in high axial compression and non-axial

motions of the probe). This is due to the fact that the proposed algorithm solves 1D

DP optimization problem for each axial line independent of the results of neighboring

axial lines which obstructs the propagation of a failed estimation. However, 1D DP

estimation means that the estimated strain images are not smooth laterally. Although

a simple lateral averaging filter will solve the problem to some extent, to further im-

prove the results, a 2D DP with a special bilateral filter is used instead which use the

information of the neighboring axial lines with good performance measure to refine

the estimates. Given different initial settings this method can operates somewhere

between a few milliseconds to a few seconds and is thus also potentially suitable for

real time elastography.

This chapter consist of three sections. the first section deals with the proposed

1D SHORTCUT. The second section improve the estimation by introducing a 2D

SHORTCUT. The effectiveness of the proposed method is investigated in section three
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through simulation data, phantom experiments, and in vivo patient data whereby the

results are compared with a similar previous work called DPAM [7].

3.2 1D SHORTCUT

Consider two echo signals corresponding to two A-lines acquired before and after

compression. A 1D DP is formulated in which the axial strain field and lateral

displacement is discretized. Assume the possible axial strain values lies in the interval

[amin, amax]. Let also the set S = {ak : amin < ak < amax}Nk=1 which partition the

strain space into N + 1 intervals. Similarly, assume the set L = {lk : lmin < lk <

lmax}Mk=1 partition the lateral displacement field intoM+1 intervals where lmin and lmax

are the minimum and maximum possible lateral displacement values. Displacement

field is needed to calculate the similarity measure in the cost function and the main

idea of the new DP method is to discretizes the gradient domain (strain) instead

of displacement. Therefore, the proposed method needs an initial condition on the

first step of DP. Fortunately, here we know that the first step in axial line always

have zero displacement, however in the lateral search this is not the case i.e. we

do not know the lateral initial condition a-priori. Therefore the possible states in

3.1 are combination of discretized axial strain and lateral displacement i.e. S × L.

Lateral displacement always has much lower SNR and CNR than axial since the

displacement in lateral direction is very small and also because the resolution of the

ultrasound is low in the lateral direction. Therefore it is only computed to improve
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the axial displacement which means that subsample estimation in the lateral direction

is not necessary. Similar to eqs. (3.4) and (3.1), the new DP cost function consists

of speckle decorrelation (the brightness difference between the two signals) term and

regularization term and both are formulated as sum of absolute differences (SAD)

which is computationally inexpensive to compute and has been shown to have good

robustness against outliers [47]. The proposed 1D DP cost function is proposed as

follows

Ci
j(aij, lij) =

|I1(i, j)− I2(i+ bD(aij)c, j + lij)− Í2(i+ bD(aij)c, j + lij){D(aij)}|
Ienv

1 (i, j)

+ min
sa,dl

[
Ci−1
j (sa, dl) +Rj(aij, lij, sa, dl)

]
,

(3.5)

Rj(aij, lij, sa, dl) = αa|aij − sa|+ αl|lij − da|. (3.6)

where D(aij) =
∑i

k=0 a(k, j) is the axial displacement and a0j = 0 and Ienv
1 is the

envelope of I1 used for normalization of the error. Note that bD(aij)c and {D(aij)} =

D(aij) − bD(aij)c represent the floor and fraction part of D(aij). Note also that

minimization of the above cost function will provide both axial strain and lateral

displacement on the j Axial line and aij and lij can take values from set S and L,

respectively.
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3.3 2D SHORTCUT

The 1D SHORTCUT presented in the previous section will simultaneously estimate

both axial strains and lateral displacements in any axial RF-line, however, this leads

to two shortcomings. First, estimating strains and displacements on individual RF-

lines, 1D SHORTCUT only utilizes a small fraction of the information available from

the entire image. Second, regularizing the axial strain and lateral displacement only

on the axial direction results in discontinuous estimation between adjacent RF-lines

which produce visible artifacts in the form of vertical streaks in the resulting images.

Note that when substantial signal decorrelation exists in the specific axial line not

only the vertical artifact can be more prominent but also insufficient information may

cause the 1d SHORTCUT to fail on that specific axial line. The DP cost function

eq. (3.5) of the previous subsection is modified here to allow for 2-D estimation and

smoothness regularization:

Ci
j(aij, lij) =

|I1(i, j)− I2(i+ bD(aij)c, j + lij)− Í2(i+ bD(aij)c, j + lij){D(aij)}|
Ienv

1 (i, j)

+ min
sa,dl

[
Ci−1
j (sa, dl) +Rj(aij, lij, sa, dl)

]
,

(3.7)

Rj(aij, lij, sa, dl) =
∑
k∈Ω

[αaωk|ai(j+k) − sa|+ αlωk|li(j+k) − da|], (3.8)
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where Ω is a 1D lateral window centered at axial line j and ωk are lateral regularization

weights computed by the following 1D bilateral filter [40]:

ωk =
fr(‖R(j + k)−R(j)‖)gs(‖k‖)

Wp

, (3.9)

where the Wp is the normalization factor

Wp =
∑
xi∈Ω

fr(‖R(j + k)−R(j)‖)gs(‖k‖) (3.10)

and

R(j) =
n∑
i=1

|I1(i, j)− I2(i+ bD(a∗ij)c, j + l∗ij)− Í2(i+ bD(a∗ij)c, j + l∗ij){D(a∗ij)}|
Ienv

1 (i, j)
,

(3.11)

is the residual of the jth axial line computed from the optimal values found by the

1D SHORTCUT. Functions fr and gs are the error and spatial kernel, respectively.

Gaussian functions are good candidate for both the spatial and error kernels as they

give a low weight to pixels that are either spatially far or have high output residual.

Note that relatively high residual in any pixel means that due to higher signal decor-

relation the 1D SHORTCUT has not been able to find a good estimates compare to

its neighbors:

fr(x) = Gσr(x) =
1

2πσ2
r

e
− x2

2σ2r , (3.12)
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gs(x) = Gσs(x) =
1

2πσ2
s

e
− x2

2σ2s . (3.13)

The bilateral filter with Gaussian functions has two parameters: σr and σs. The

spatial spread σs is chosen based on the desired amount of smoothness or low-pass

filtering. A large σs includes the intensities of pixels from more distant locations in

the domain. Similarly, the residual spread σr determines how close the residual of

any adjacent axial line should be to the minimum residual found in that window to

contribute meaningfully in the lateral regularization. Its worth mentioning that σr is

not fixed and will be updated for each window.

3.4 Simulation Results

Simulation phantoms can help assessing the performance of the proposed approach

since they provide a ground truth strain image. Two simulation phantom are needed

which correspond to the pre and post-compression ultrasound images. The first ul-

trasound RF-data is created using Field II [48] software by distributing numerous

scatterers in a volume and passing them through a filter with the point spread func-

tion of the ultrasound probe as its kernel. The parameters of the ultrasound probe

are set to mimic commercial probes. The probe frequency is 7.27 MHz, the sampling

rate is 40MHz and the fractional bandwidth is 60%. ABAQUS (Providence, RI)

software is then utilized to mesh and compress the resulting ultrasound image using
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finite element simulation. The outcome of the finite element simulation is the 3D dis-

placement of the mesh nodes and in order to find the displacement of each scatterer,

displacement of its neighboring nodes are interpolated. Finally, the second ultra-

sound image is generated by moving the scatterers according to their corresponding

displacements.

In this section. the displacement and strain fields are calculated using the proposed

method and are compared with the ground truth and DPAM method [7]. The unit-

less metric signal-to-noise ratio (SNR) and contrast to noise ratio (CNR) are also

calculated to better assess the performance of the methods according to

CNR =
C

N
=

√
2(s̄b − s̄t)2

σ2
b + σ2

t

, (3.14)

SNR =
s̄

σ
, (3.15)

where σ2
t and σ2

b are the spatial strain variance of the target and background, s̄t and

s̄b are the spatial strain average of the target and background, and s̄ and σ are the

spatial average and variance of a window in the strain image, respectively.

Figure 3.2 depicts the B-mode RF images of the simulation phantom before and

after compression. The results of both DPAM and the proposed 1D SHORTCUT

method are represented in Figure 3.3 in which the first row compares the axial images

produced by the two approached with the ground truth. As one can see not only the

proposed method outperforms the DPAM approach in terms of the SNR and CNR,

but also it preserved the fine boundaries of the simulated blood vessel very well. It’s
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Figure 3.2: Simulation Phantom B-Mode (a) Pre-Compression (b) Post-Compression
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Figure 3.3: The result of different methods applied to the simulation phantom data:
(a) Axial strain of the DPAM approach (b) Ground Truth stain image (c) Axial strain
of the SHORTCUT approach (d) Lateral displacement of the DPAM approach(e)
Lateral displacement of SHORTCUT approach (f) Logarithm of absolute residual
in DPAM (g) Logarithm of absolute residual in SHORTCUT (h) Absolute Error of
DPAM strain image w.r.t. the Ground Truth (i) Absolute Error of SHORTCUT
strain image w.r.t. the Ground Truth.
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worth mentioning that the result of 1D SHORTCUT method is smoothed laterally

by a simple averaging filter of kernel size 7 and σ = 3. Other parameters of eq. (3.5)

are set to αa = 0.5, αl = 1.4.

The SHORTCUT algorithm globally minimize a cost function, eq. (3.5), which is

composed of normalized residuals, eq. (3.11) (i.e., the intensity similarity measure),

and the regularization terms eq. (3.6). In other words the regularization terms

constrain the space of admissible strain images and the resulting optimized strain

image will not necessarily minimize the residuals. Figure 3.3(f)-(g) compares the

normalized residuals of the two method. Note that in order to better show the detail

of the residual pattern, the intensity of these images are scaled logarithmically. The

layered patterns in 3.3(f) reveals in the DPAM approach was not able to fully capture

the RF data information. The residual image of 1D SHORTCUT is depicted in 3.3(g)

and it almost resemble a white noise which means that it had been able to capture all

the information of the RF data. Lastly, 3.3(h)-(i) show the absolute error between the

ground truth and DPAM, SHORTCUT method, respectively. The DPAM approach

have been vulnerable around the boundaries of the simulated blood vessel. To better

visualize the accuracy of the estimation a 3d presentation of the ground truth strain

and the results of both DPAM and 1D SHORTCUT is showed in Figure 3.4

Table 3.1 shows substantial improvement in the SNR (15.51%) and CNR (18.71%)

of the strain maps produced by 1D SHORTCUT compared to DPAM. Note that the

SNR and CNR of the ground truth strain image with the same target and background

boxes are 37.08% and 27.08%, respectively. In order to quantify the strain estimation
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(a)

(b)

Figure 3.4: Simulation Phantom strain profile (a) DPAM (b) SHORTCUT
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Table 3.1: The Simulation phantom results of DPAM and 1D SHORTCUT approach
are compared in terms of SNR, CNR, residual mean, residual median. The Normalized
Mean Absolute Error(NMAE) of the strain images w.r.t. the ground truth are also
reported in percentage. Target and background windows used for CNR calculation
are shown in Figure 3.3.

Method SNR CNR Residual Mean Residual Median NMAE

DPAM 42.47 23.35 0.2354 0.1693 7.78%
SHORTCUT 49.055 27.72 0.195 0.149 6.10%

Improvement % 15.51% 18.71% 17.16% 12% 21.6%
Ground Truth 37.38 27.08 - - -

accuracy, Normalized Mean Absolute Error (NMAE) is defined as follow:

NMAE = 100%.
Σm
i=1Σn

j=1|I
i,j
estimated − I

i,j
GT |

Σm
i=1Σn

j=1IGTi,j
, (3.16)

where I i,jGT and I i,jestimated are the intensity of the i, j pixel in the ground truth and

estimated image, respectively. This measure by definition represents the absolute

accuracy error one should expect to have in percentage. The last column in Table 3.1

shows a 21.6 percent improvement in the accuracy of the proposed method compared

to the DPAM.

3.4.1 The effect of changing the regularization coefficient

In order to assess the robustness of the proposed algorithm, the effect of changing

the regularization parameter αa in eq. (3.6) on the performance of the proposed 1D

SHORTCUT is considered. The regularization coefficient together with N which de-

termine the number of discretizes strain values sampled uniformly from the interval

[amin, amax] (the interval of possible strain values), are the only influential parameters
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Figure 3.5: A visual presentation of the result of changing the regularization param-
eter on the performance of the DPAM (second column) and 1D SHORTCUT(first
column) methods applied to the simulation phantom data
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Figure 3.6: The result of changing the regularization parameter on the performance
of the DPAM(second column) and 1D SHORTCUT(first column) methods applied to
the simulation phantom data
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of the proposed algorithm. Figure 3.5 depicts the strain image produced by DPAM

and 1D SHORTCUT with different regularization coefficients. The surprising result

of this analysis was that the proposed algorithm can produce fairly impressive strain

image quality with CNR = 18.26 and NMAE = 11.31% even when the regulariza-

tion parameter is set to zero. This due to the fact that since DP in SHORTCUT

only searches in the domain of continuous piecewise linear displacement functions,

the problem is no longer ill-posed and does not need regularization. In other words,

motion continuity (the regularization term in eq. (3.3)) is already preserved by con-

straining the global search in the domain of continuous piecewise linear displacement

functions. This is not true for the DPAM which fail at small regularization coeffi-

cients. A more clear picture arise when the performance measures are compared over

a big regularization parameter span in Figure 3.6. This figure highlights shortcomings

of DPAM at low regularization weights and lack thereof in 1D SHORTCUT.

3.5 Experimental Results

For experimental evaluation, RF data is acquired from an Antares Siemens system

(Issaquah,WA) at the center frequency of 6.67MHz with a VF10-5 linear array at

a sampling rate of 40MHz at Johns Hopkins University. In this section, phantom

results and patient trials of both SHORTCUT and DPAM methods are presented and

compared.
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Figure 3.7: Eperimental Phantom B-Mode (a) Pre-Compression (b) Post-
Compression
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Table 3.2: The SNR and CNR of the strain images of the experimental phantom.
target and background windows used for CNR calculation are shown in Figure 3.8.
The SNR is calculated for the background window.

Method SNR CNR Residual Mean Residual Median

DPAM 51.22 6.28 0.56 0.41
SHORTCUT 483.7 101.96 0.26 0.20

Improvement Percentage 844.3% 1523.56% 53.6% 51.2%

3.5.1 Phantom Results

An elastography phantom (CIRS elastography phantom, Norfolk, VA) is compressed

0.2 inch axially using a linear stage, resulting in an average strain of 2%. The Young’s

elasticity modulus of the background and the lesion under compression are respec-

tively 33kPa and 56kPa. Two RF frames are acquired corresponding to before and

after the compression which are depicted in Fig 3.7(a)-(b). The axial strain is cal-

culated using both 1D SHORTCUT and DPAM methods. Fig. 3.8(a)-(d) shows the

axial strain and lateral displacement maps. These results confirms that the SHORT-

CUT algorithm can produce smooth images without compromising the edges. Table

3.2 shows very large improvement in the SNR (844.3%) and CNR (1523.56%) of the

strain maps produced by 1D SHORTCUT compared to DPAM. The lack of visible

structure of 1D SHORTCUT residual compare to DPAM residual image in the last

row of Figure 3.8 together with the huge improvement in residual mean (53.6%) and

median (51.2%) confirms that the global optimization worth the extra computation

time.

Since the phantom data contains a known lesion which produce distinct edge in the
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Figure 3.8: The result of different methods (first column DPAM and second column
1D SHORTCUT) applied to the phantom data: (a) Axial strain of the DPAM ap-
proach (b) Axial strain of the SHORTCUT approach (c) Lateral displacement of the
DPAM approach (d) Lateral displacement of SHORTCUT approach (e) Logarithm
of absolute residual in DPAM (f) Logarithm of absolute residual in SHORTCUT
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strain field, it can be used to find the spatial resolution using modulation transfer

function (MTF). Modulation Transfer function is an established method for estimat-

ing the spatial resolution of medical imaging systems that was relatively recently

extended to elastography [49]. The spatial resolution of the reconstructed images

is determined with a three-step approach [50, 51]. First, the edge spread function

is computed by averaging the pixel values across the background-inclusion interface.

Second, the line spread function (LSF) is computed by differentiating the edge spread

function. Third, the MTF is determined by computing the Fourier transform of the

LSF and normalizing the resulting function to zero spatial frequency

MTF (k) =
Ξ(k)

Ξ(0)
. (3.17)

This measure along with CNR, SNR, residual mean and residual median will be used

in this section to assess the effect of different number of strain discretization N and

regularization α. For the DPAM method, the effect of regularization on the resid-

uals have been assessed and it has been shown that adding the regularization term

will eliminate many of the local minima and makes the displacement field smooth, a

generally desired attribute. However, since SHORTCUT is a global optimization ap-

proach, the convexity and local minima of the cost function is of no concern. As it was

showed in the previous section, the SHORTCUT algorithm can produce acceptable

performance measures even with zero α.
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Figure 3.9: The effect of changing the regularization α on the ESF, LSF and MTF
(spatial resolution) when different methods applied to the phantom data. The first
column is the result of 1D SHORTCUTP and the second column is the result of
DPAM.
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The effect of changing the regularization weight

The simulation data analysis on the effect of changing the regularization parameter αa

in eq. (3.6) on the performance of the proposed 1D SHORTCUT is repeated here on

the phantom data. As stated earlier, the existence of a distinct edge in the phantom

data make the measurement of the spatial resolution possible. Figure 3.9 compares the

ESF, LSF and MTF of both DPAM and 1D SHORTCUT and it shows that the edge is

much sharper in the proposed method overall and at high regularization parameters,

the edges are not smoothed out DPAM. Figure 3.11 depicts the strain image produced

by DPAM and 1D SHORTCUT with different regularization coefficients. Here also the

proposed algorithm can produce impressive strain image quality with CNR = 13.44

and SNR = 25.68 even when the regularization parameter is set to zero. This is

not true for the DPAM which fail at small regularization coefficients. A more clear

picture arise when the performance measures are compared over a big regularization

parameter span in Figure 3.10. This figure confirms the failing of DPAM at low

regularization parameter and lack thereof in 1D SHORTCUT. The last row of this

figure shows that the proposed algorithm achieved the global minimum of the residual

which is substantially better compared to DPAM.

The effect of number of strain discretization

The regularization coefficient together with N which determine the number of dis-

cretizes strain values sampled uniformly from the interval [amin, amax] (the interval of

possible strain values), are the only parameters of the proposed algorithm. In this
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Figure 3.10: The effect of changing the regularization α on the CNR, SNR and
residual mean and median when different methods applied to the phantom data. The
first column is the result of 1D SHORTCUT and the second column is the result of
DPAM
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Figure 3.11: A visual presentation of the result of changing the regularization param-
eter on the performance of the DPAM (second column) and 1D SHORTCUT(first
column) methods applied to the experimental phantom data
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part, the effect of changing the number of strain discretization N on the performance

of the 1D SHORTCUT is assessed. Figure 3.12 represents the MTF, CNR, SNR and

other performance measures when N sweep from only two strain levels (in this mode

SHORTCUT produces black and white strain image and can be used for classifica-

tion) to 100 levels. In terms of spatial resolution, the performance of the algorithm is

almost stable. However at lower number of strain levels the CNR, SNR and residual

mean and median is not good. at these numbers, substantially better performance

can be achieved when α is modified accordingly (in this study the α is assumed to be

constant at α = 7.8). Since with Lower N the jumps of the strain is higher therefore

one needs bigger α to produce high quality strain images. Generally speaking higher

N will result in lower residual error. Figure 3.13 shows axial strain image for different

N which shows that given a fix α higher N will result in smoother but almost equally

sharp images. The proposed algorithm was tested on a desktop with Intel Core i7 3.4

GHz CPU. Figure 3.14 shows the computation time of this algorithm with different

N when the number of lateral displacement levels is M = 10. This figure shows that

the computation time grows linearly with the N . The same relationship holds for M

since the total computation is in order of O(3×N ×M × n×m)

3.5.2 Clinical Study: in-vivo data

The In-vivo data is acquired from five patients undergoing open surgical radiofre-

quency thermal ablation for primary or secondary liver cancers. This data is col-

lected as follows at Johns Hopkins Hospital: for the first patient, ultrasound RF data
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Figure 3.12: The effect of choosing different number of strain discretization N on the
performance measures applied to phantom data
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Figure 3.13: Effect of different number of strain discretization N on the qualitative
features of the strain images produced by 1D SHORTCUT.
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is acquired only after ablation. For the second, third, and fourth patients, ultrasound

RF data is collected both before and after ablation. Data collection from the tu-

mour involved holding the probe is hard-to-reach locations and angles, which lead

to unwanted out-of-plane motions of the probe. In addition, micro-bubbles and high

temperature gradients created by the ablation process add noise in the the RF data.

Furthermore, the pulsation of hepatic vessels create complicated deformation fields.

Therefore, the pre- and post-compression images suffer from high levels of decorrela-

tion.

Figures 3.15, 3.17, 3.19, 3.21, 3.23 depict the pre- and post-compression B-mode im-

age of the five patients. Figures 3.16, 3.18, 3.20, 3.22, 3.24 compare the axial strain

images, lateral displacement images and residual images of the 2D SHORTCUT with

DPAM. In all of the axial strain images of different patients, the 2D SHORTCUT

outperforms the DPAM in terms of CNR and SNR specially in the upper and lower

quarter of the image which is over-smoothed in DPAM. This can also be confirmed

in Tables 3.3, 3.4, 3.5, 3.6, 3.7 where large improvements in terms of CNR, SNR,

residual mean and residual median are evident. Although DPAM has failed on some

local regions, the proposed 2D SHORTCUT has been able to find the global optimal

solution and has not been failed. Notice that the dynamic range of strain variation

in SHORTCUT is much higher than DPAM. This is especially more recognizable in

Figure 3.22 and Figure 3.24 where from the same RF data SHORTCUT produced

strains as high as 0.03 and 0.03 compare to 0.02 and 0.015 in DPAM. This can be

justified by the fact that the SHORTCUT algorithm does not penalize higher strain
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Table 3.3: The patient 1 results of DPAM and SHORTCUT approach are compared
in terms of SNR, CNR, residual mean, residual median. Target and background
windows used for CNR calculation are shown in Figure 3.16.

Method SNR CNR Residual Mean Residual Median

DPAM 5.35 3.87 0.67 0.47
SHORTCUT 25.55 23.27 0.586 0.397

Improvement Percentage 433.6% 501.3% 12.5% 17%

Table 3.4: The patient 2 results of DPAM and SHORTCUT approach are compared
in terms of SNR, CNR, residual mean, residual median. Target and background
windows used for CNR calculation are shown in Figure 3.18.

Method SNR CNR Residual Mean Residual Median

DPAM 2.66 2.60 0.637 0.45
SHORTCUT 17 19.48 0.562 0.415

Improvement Percentage 539% 649.2% 11.8% 7.8%

Table 3.5: The patient 3 results of DPAM and SHORTCUT approach are compared
in terms of SNR, CNR, residual mean, residual median. Target and background
windows used for CNR calculation are shown in Figure 3.20.

Method SNR CNR Residual Mean Residual Median

DPAM 10.5 13.18 0.596 0.432
SHORTCUT 44.48 60.09 0.497 0.339

Improvement Percentage 323.6% 355.9% 16.6% 21.52%

Table 3.6: The patient 4 results of DPAM and SHORTCUT approach are compared
in terms of SNR, CNR, residual mean, residual median. Target and background
windows used for CNR calculation are shown in Figure 3.22.

Method SNR CNR Residual Mean Residual Median

DPAM 1.872 0.328 0.5482 0.3913
SHORTCUT 15.94 22.53 0.372 0.242

Improvement Percentage 751.5% 6768.9% 32.14% 38.15%

value eq. (3.6) as it is the case in DPAM eq. (3.3), it regularizes the derivative of

the strain i.e. the tissue change is regularized. In order to better visualize results in

these two patient pink color scale is used instead of gray scale.
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Figure 3.15: Clinical Study patient 1 B-Mode images (a) Pre-Compression (b) Post-
Compression
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Figure 3.16: The result of different methods (first column 2D SHORTCUT and sec-
ond column DPAM) applied to the patient 1: (a) Axial strain of the 2D SHORTCUT
approach (b) Axial strain of the DPAM approach c) Lateral displacement of the 2D
SHORTCUT approach (d) Lateral displacement of DPAM approach (e) Logarithm
of absolute residual in 2D SHORTCUT (f) Logarithm of absolute residual in DPAM
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Figure 3.17: Clinical Study patient 2 B-Mode images (a) Pre-Compression (b) Post-
Compression
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Figure 3.18: The result of different methods (first column 2D SHORTCUT and sec-
ond column DPAM) applied to the patient 2: (a) Axial strain of the 2D SHORTCUT
approach (b) Axial strain of the DPAM approach (c) Lateral displacement of the 2D
SHORTCUT approach (d) Lateral displacement of DPAM approach (e) Logarithm
of absolute residual in 2D SHORTCUT (f) Logarithm of absolute residual in DPAM
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Figure 3.19: Clinical Study patient 3 B-Mode images (a) Pre-Compression (b) Post-
Compression
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Figure 3.20: The result of different methods (first column 2D SHORTCUT and
second column DPAM) applied to the patient 3: (a) Axial strain of the 2D SHORT-
CUT approach (b) Axial strain of the DPAM approach (c) Lateral displacement of
the 2D GDP approach (d) Lateral displacement of DPAM approach (e) Logarithm of
absolute residual in 2D SHORTCUT (f) Logarithm of absolute residual in DPAM
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Figure 3.21: Clinical Study patient 2 B-Mode images (a) Pre-Compression (b) Post-
Compression
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Figure 3.22: The result of different methods (first column 2D SHORTCUT and sec-
ond column DPAM) applied to the patient 4: (a) Axial strain of the 2D SHORTCUT
approach (b) Axial strain of the DPAM approach (c) Lateral displacement of the 2D
SHORTCUT approach (d) Lateral displacement of DPAM approach (e) Logarithm
of absolute residual in 2D SHORTCUT (f) Logarithm of absolute residual in DPAM.
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Figure 3.23: Clinical Study patient 5 B-Mode images (a) Pre-Compression (b) Post-
Compression
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Figure 3.24: The result of different methods (first column 2D SHORTCUT and sec-
ond column DPAM) applied to the patient 5: (a) Axial strain of the 2D SHORTCUT
approach (b) Axial strain of the DPAM approach (c) Lateral displacement of the 2D
SHORTCUT approach (d) Lateral displacement of DPAM approach (e) Logarithm
of absolute residual in 2D SHORTCUT (f) Logarithm of absolute residual in DPAM
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Table 3.7: The patient 5 results of DPAM and SHORTCUT approach are compared
in terms of SNR, CNR, residual mean, residual median. Target and background
windows used for CNR calculation are shown in Figure 3.22.

Method SNR CNR Residual Mean Residual Median

DPAM 6.81 3.03 0.5592 0.4014
SHORTCUT 20.75 26.23 0.4572 0.2956

Improvement Percentage 204.7% 765.7% 18.25% 26.35%
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

In the first chapter of this thesis, we have presented an algorithm that can, under

certain assumptions, generate strain images with uniform precision but varying res-

olution. Uniform precision property ensures that textures/variations in the strain

image reflect underlying tissue properties and are not caused by errors in the dis-

placement estimation. The algorithm has also the capability of keeping the edges

between different tissue structures sharp while minimizing the noise. This is demon-

strated by the phantom and in-vivo clinical data. The results are compared to three

common methods in this field which showed the effectiveness of the proposed algo-

rithm, however, further clinical studies will be necessary to assess the benefits of the

algorithm.

The second chapter of this thesis introduces a 2-D strain imaging technique called
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SHORTCUT (meSHing Of gRadienT in DP for direCt Ultrasound elasTography).

The proposed technique is simple, fast, robust and accurate and it directly produces

the strain images from RF data using a novel dynamic programming (DP) technique.

Unlike the standard DP algorithm which discretizes the decision space (displace-

ment field) and search in the space of piecewise constant functions, the proposed DP

discretizes the gradient of the decision space (strain field) and search the space of

continuous piecewise linear functions. The proposed algorithm results in substantial

improvement in SNR, CNR and accuracy of the estimations. This is mainly the con-

sequence of three major paradigm shifts compared to the available strain estimation

techniques in the literature:

� Eliminating the displacement differentiation block,

� penalizing the tissue discontinuity instead of strain values,

� performing a global search rather than local search.

The robustness of this method emanates from the fact that DP is global optimization

algorithm, therefore not only its accurate in the sense that it always finds the globally

optimal estimations but also it can only be locally affected by signal decorrelation.

To further improve the results, a 2D version of SHORTCUT was also introduced

which utilizes a special bilateral filter. The effectiveness of the proposed method is

investigated through simulation data, phantom experiments, and in vivo patient data.

The results are compared with previous work called DPAM which confirms the merits

of this approach. Given different initial settings this method can operates somewhere
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between a few milliseconds to a few seconds and is thus also potentially suitable for

real time elastography. It is also worth mentioning that this method is compatible

with parallel computing which can drastically decrease the computation time when

multiple processors are available.

4.2 Future Work

There are several ways that this algorithm can be improved or altered for a specific

application. We list the possible future work as follow:

� Speed of this algorithm can be significantly increased by an adaptive compro-

mise between global and local search in DP. One idea could be that once the

problem is solved for an axial line the information of this solution can bound

the search domain of the neighboring axial lines.

� There also exists numerous algorithms for reducing the computational burden

of DP without prior information such as branch and bound algorithm in which

unnecessary branches are eliminated from the search. Nearly all of these algo-

rithms need a trade-off between the global and local search.

� This algorithm can be coupled with an inverse problem formulation to calculate

the elasticity modulus.

� Results may be improved by solving a 2D DP which is formulated by defining

a tree that connects all the pixels in the RF data.
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� Since this algorithm can produce strain images with any number of strain levels,

it can be used for classification of different tissues.

� Finally, a temporal filter of the like discussed in the third section of chapter three

can also be added to evoke the extra information maintained in the successive

RF data.
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