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Abstract

Pursuit of one goal typically precludes simultaneous pursuit of another. Thus, each exclu-

sive activity entails an “opportunity cost:” the forgone benefits from the next-best activity

eschewed. The present experiment estimates, in laboratory rats, the function that maps

objective opportunity costs into subjective ones. In an operant chamber, rewarding electrical

brain stimulation was delivered when the cumulative time a lever had been depressed

reached a criterion duration. The value of the activities forgone during this duration is the

opportunity cost of the electrical reward. We determined which of four functions best

describes how objective opportunity costs, expressed as the required duration of lever

depression, are translated into their subjective equivalents. The simplest account is the

identity function, which equates subjective and objective opportunity costs. A variant of this

function called the “sigmoidal-slope function,” converges on the identity function at longer

durations but deviates from it at shorter durations. The sigmoidal-slope function has the

form of a hockey stick. The flat “blade” denotes a range over which opportunity costs are

subjectively equivalent; these durations are too short to allow substitution of more beneficial

activities. The blade extends into an upward-curving portion over which costs become dis-

criminable and finally into the straight “handle,” over which objective and subjective costs

match. The two remaining functions are based on hyperbolic and exponential temporal dis-

counting, respectively. The results are best described by the sigmoidal-slope function. That

this is so suggests that different principles of intertemporal choice are involved in the evalua-

tion of time spent working for a reward or waiting for its delivery. The subjective opportunity-

cost function plays a key role in the evaluation and selection of goals. An accurate descrip-

tion of its form and parameters is essential to successful modeling and prediction of instru-

mental performance and reward-related decision making.

Introduction

Opportunity cost

“Lost time is not found again”—Bob Dylan, Odds and Ends
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Time is the quintessentially scarce good [1, 2]. Its supply cannot be increased, no matter how

much we might wish otherwise, and its quantity is insufficient for the full satisfaction of our

needs and wants. Time invested in reaping a particular benefit could have been spent instead

in pursuit and enjoyment of another. By choosing to invest time towards attainment of one

goal, we forgo the benefits of alternatives that cannot be pursued simultaneously. Thus, con-

sumption of time is one of the fundamental costs of any activity, one that must be taken into

account by any mechanism for optimizing the selection of goals and actions. Economists use

the term, “opportunity cost,” to refer to the foregone benefits of the most valuable activity that

was eschewed in favour of the one pursued [3, 4]. This concept also plays an important role in

accounts of the behavior of non-human animals [2]. For example, time spent foraging for food

reduces time available for other activities essential for survival [5, 6].

The present paper concerns the psychophysical function that translates the objective time

spent pursuing a reward into a subjective opportunity cost. Such psychophysical functions fig-

ure prominently in accounts of perception and decision making. For example, the functions

that transform objective gains and losses into changes in subjective value and that transform

objective probabilities into subjective decision weights lie at the core of prospect theory [7, 8],

arguably the most influential single account of human decision making. Psychophysical trans-

formation of value plays a similarly important role in accounts of reward-seeking decisions in

laboratory animals [9–13]. We show that like the functions at the core of prospect theory, the

function that evaluates opportunity costs is non-linear and has a form that is consequential for

reward-seeking decisions.

We investigated evaluation of opportunity costs by rats working for rewarding electrical

stimulation of the medial forebrain bundle (MFB). Performance for such stimulation is

remarkably stable over time and is not undermined by accumulating satiety, as is the case for

natural rewards, such as food. This makes it feasible to run long test sessions during which

many rewards are collected under near-constant conditions, thus facilitating the collection of

the large datasets required to describe the subjective mapping of opportunity costs. Multiple

models of this function were tested. Determining which of these is best has implications for

accounts of inter-temporal choice. For instance, the tested functions provide different answers

to the question of whether time spent working to earn a reward, which imposes an opportunity

cost, is evaluated in the same way as time spent waiting for delivery of a reward that has already

been earned, which drives delay discounting.

This experiment also has implications for efforts to model, distinguish, and characterize

neural processes underlying reward pursuit. One such effort, Shizgal’s “reward-mountain”

model, relates reward-seeking behavior to the magnitude, cost, and risk of the returns. In early

versions of this model, the objective opportunity cost contributes to valuation directly [14–17],

whereas in later implementations and applications [18–21], objective opportunity costs

undergo psychophysical transformation. The present paper pits the psychophysical function

adopted in that work against three alternatives.

The schedule of reinforcement

In the present work, electrical stimulation of the MFB sets the strength of the reward, whereas

a novel schedule of reinforcement sets the opportunity cost. In operant experiments, the con-

tingency between responses and reward delivery is determined typically by ratio or interval

schedules of reinforcement. Conover and Shizgal [22] argue that both of these schedule types

fail to control the opportunity cost stringently; the subject retains partial control. To remove

control of opportunity costs from the subject and grant it exclusively to the experimenter, we

have developed a novel schedule of reinforcement called the “fixed, cumulative, handling-time
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schedule” (FCHT schedule) [15, 23]. On this schedule, the rat accumulates work time by hold-

ing down a lever. A reward is delivered when the cumulative time that the rat has depressed

the lever (“work time”) reaches a criterion duration. The accumulation of hold time pauses

when the lever is released but increments again when the lever is next depressed.

We refer to the criterion duration of accumulated work time as the “objective price” of the

reward, objective in the sense that it is a physical quantity determined by the experimenter.

This quantity is controlled strictly on the FCHT schedule. Unlike the case of ratio schedules,

the subject has no control over the minimum inter-reward interval, and unlike the case of

interval schedules, all work performed by the subject is credited towards earning the next

reward.

Holding down the lever precludes engagement in other activities, such as grooming, resting

and exploring. Thus, the rewards from these alternate activities are foregone when the subject

works. In a manner consistent with economic accounts [3, 4], we equate the foregone benefits

with the opportunity cost of pursuing the reward offered by the experimenter.

Performance for rewarding electrical brain stimulation on the FCHT schedule provides a

tightly controlled, stable, and simplified context in which to study the contribution of opportu-

nity costs to reward-seeking behavior. For a foraging animal in a natural setting, opportunity

costs are composed of multiple components associated with search, procurement, handling,

and consumption. Substitution of brain-stimulation reward (BSR) for a natural reward and

imposition of the FCHT schedule collapses the components of the opportunity cost into one

variable: the required cumulative work time (objective price). Manipulation of this variable

changes, in an orderly fashion, the proportion of the trial time spent working for BSR on the

FCHT schedule (“time allocation”) [15, 18]. This makes it possible to estimate the subjective

valuation of opportunity costs with considerable precision. The inference of subjective oppor-

tunity cost from performance on the FCHT schedule is described in the following section.

The dependence of FCHT performance on the balance between benefits

and costs

The reward-mountain model [15, 18] expresses the payoff from work performed on the FCHT

schedule in terms of the balance between benefits and costs. In the present experiment, the

benefit arises from the neural signal triggered by the MFB stimulation, which is presumed to

simulate the benefit derived from naturally incurring rewards [24–27]. This benefit is dis-

counted by the product of two types of costs, one stemming from the time devoted to work

(the opportunity cost) and the other from the exertion entailed in holding down the lever (the

effort cost):

Ub ¼
R

ð1þ xÞ � Psub
ð1Þ

where

Psub = subjective opportunity cost

R = intensity of the subjective reward signal triggered by the brain stimulation

Ub = payoff from the brain stimulation, and

(1 + ξ) = subjective rate of exertion experienced while holding down the lever

We control R by setting the pulse frequency of the electrical stimulation [15, 18], and we

assume that subjective exertion is constant under the conditions of the experiment. If so, we

can infer Psub if we can estimate Ub, which we do by means of a behavioral-allocation function
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[15, 18] derived from the single-operant matching law [28–30]:

T ¼ Tmin þ ðTmax � TminÞ �
U a

b

U a
b þ U a

e

� �

ð2Þ

where

a = the payoff-sensitivity exponent

T = the proportion of trial time spent holding down the lever (“time allocation”)

Tmax = maximal time allocation

Tmin = maximal time allocation

Ub = payoff from a train of rewarding brain stimulation, and

Ue = payoff from leisure activities

Thus, Eqs 1 and 2 link the quantity we wish to infer, the subjective opportunity cost of the

reward (Psub) to a quantity we observe: the proportion of trial time that the rat devotes to work

(T).

Symbols and acronyms are listed in Table 1.

The translation of objective price into subjective opportunity cost

The purpose of this study is to describe and explain the “subjective-price function” used by the

subject to evaluate the objective price of the reward. At least two stages are involved. The first

entails estimation of the criterion work duration, whereas the second entails valuation of the

resulting estimates.

Estimation of time intervals has been studied and modeled extensively. In one influential

account [31], subjective estimates are directly proportional to objective time intervals, with

scalar error and constant coefficient of variation. Formally,

tsub ¼ ftðPobjÞ ð3Þ

where

tsub = the subjective time estimate

Pobj = the objective price

ft = the function that translates the objective price set by the experimenter into a subjective

time estimate. In Gibbon’s theory, ft is scalar.

The subjective estimate of the time worked is converted into a subjective-price estimate by

a second function, fv:

Psub ¼ fvðtsubÞ ð4Þ

where

fv = the function that valuates tsub, thus translating it into a subjective opportunity cost

The units of Psub are defined in S1 File.

Substituting for tsub, we obtain:

Psub ¼ fvðftðPobjÞÞ ð5Þ

The subjective-price function is then generated by embedding ft in fv:

Psub ¼ fPsub
ðPobjÞ ð6Þ

where

fPsub
= the subjective-price function
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Table 1. Definition of symbols and acronyms.

Symbol or

acronym

Units Meaning

AIC Akaike information criterion

a price-sensitivity exponent

BSR brain stimulation reward

D s delay to reinforcement

F Hz pulse frequency

Fhm Hz pulse frequency at which reward intensity is half-maximal

Fmid Hz pulse frequency at which time allocation is mid-way between its minimum

and maximum values

FCHT Fixed-cumulative-handling-time

ft interval-timing function

fPsub subjective-price function

fv time-valuation function

g reward-growth exponent

Kh delay-discount constant

Ku utils

hedon−1
constant that translates reward intensity into payoff

Kx exponent of exponential-price function

Pobj s objective price (set by the experimenter)

Pobj_e s objective price (set by the experimenter) at which time allocation to pursuit

of a maximal reward is half-way between its minimum and maximum

values

Pobjmid s For a given value of F, the price that drives T half-way between its

minimum and maximum values

Psub s oomph−1 subjective price

Psubbend transition parameter of sigmoidal-slope function

Psub_e s oomph−1 subjective price at which time allocation to pursuit of a maximal reward is

half-way between its minimum and maximum values

Psubmid s oomph−1

Psubmin s oomph−1 minimum subjective price

R hedon reward intensity

Rrel reward intensity expressed as a proportion of its maximal value

Rmax hedon maximal reward intensity

S hedon reward magnitude

T time allocation

Tmax maximal time allocation

Tmid time allocation half-way between its minimum and maximum values

Tmin minimal time allocation

tsub s subjective time

Ub util utility of brain stimulation reward

Ue util utility of alternate activities (everything else)

V delay-discounted reward value

ξ oomph s−1 constant determining the rate of subjective exertion

See S1 File for discussion and definition of units.

https://doi.org/10.1371/journal.pone.0182120.t001
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This composite function (fPsub
) translates objective work times (the price of the reward, Pobj)

into subjective opportunity costs (Psub). In the following section, we discuss the four candidate

forms for this function that will be assessed in the present study.

Competing candidates for the subjective-price function

Objective-price function. The simplest form that the subjective-price function can

assume is the identity function. Formally,

Psub ¼ Pobj ð7Þ

Estimation of time intervals is a noisy process [31]; additional noise would be expected in

valuation of the associated opportunity cost. Thus Psub in Eq 7 should be interpreted as the

central tendency of a distribution of estimates. In addition, the subjective-price function can-

not extend indefinitely. There is only so long an animal can work for a reward and still manage

to survive, given that energy stores are finite [33]. In practice, there is a limit on the testing-ses-

sion duration during which performance for rewarding brain stimulation remains stable and a

much lower limit on the highest price that the rat will pay for the reward. The highest price

tested in the current study was 238.5 s.

The plot in Fig 1A shows the objective-price function in double logarithmic coordinates.

This function becomes increasingly unrealistic as the duration of the required hold time (the

price) decreases. For example, according to the function portrayed in Fig 1A, the benefit/cost

ratio (“payoff”) from a reward of given strength that requires 0.10 s of work to obtain is one

half the payoff from that reward when only 0.05 s of work are required. However, reducing the

objective price from 0.10 s to 0.05 s is unlikely to be significant to the animal because the 50 ms

thus freed up are insufficient to perform a worthwhile alternate activity. The realization that

opportunity costs cease to matter below some minimal duration is what drove us to modify

the objective-price function in the manner described in the next section.

Sigmoidal-slope function. We propose that the subjective-price function is flat over the

shortest work times, rises at the same rate as the objective price once work times become sub-

stantial, and transitions smoothly between these two segments (Fig 1B). The proposed func-

tion thus has the form of a hockey stick, with a flat blade that curves into a straight, diagonally

oriented handle; the handle has a slope of 1 when plotted in double logarithmic coordinates.

Note that the handle corresponds to the objective-price function, whereas the blade and curved

connecting region deviate from it. The integral of a sigmoid has the required form:

Psub ¼

Z
1

1þ e
Psubmin

� Pobj
Psubbend

� �dPobj ð8Þ

¼ Psubmin
þ Psubbend

� ln 1þ e

Pobj � Psubmin

Psubbend

0

B
B
@

1

C
C
A ð9Þ

where

psubmin
= the minimum subjective price and

psubbend
= a constant that controls the abruptness of the transition. from “blade” to “handle”

Linear-price function. The rationale for the objective- and sigmoidal-slope functions

treats the valuation of work time as distinct from delay discounting. Work time refers to time

spent fulfilling the response requirement for procuring a reward, whereas reinforcement

Valuation of opportunity costs
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Fig 1. A: Objective-price function. Subjective prices are equal to objective prices, as assumed in early studies using the reward-mountain model

[14–17]. B: Sigmoidal-slope function. The functional form resembles a hockey stick. The flat “blade” of the function denotes the range over which

costs are subjectively invariant. That portion merges with an upward-bending segment over which the costs are discriminable, but do not yet rise at the

same rate as the objective price. The final “handle” portion denotes the range over which the relationship between objective and subjective costs is

scalar. Changing the value of the Psubmin parameter shifts the curve vertically, whereas changing the value of the Psubbend parameter alters the abruptness

of the transition between the blade and the handle. C: Linear-price function. This is the subjective-price function derived from Mazur’s [32] hyperbolic-

discounting equation. The greater the value of Kh, the faster the function rises. In order for the terminal slope to approach unity, Kh must equal 1. (The

lines look curved because they are plotted in double logarithmic coordinates; in linear coordinates, they would be straight.) D: Exponential-price

function. This is the subjective-price function derived from exponential discounting. The larger the Kx value, the more rapidly the function rises. See S1

File for a discussion of units.

https://doi.org/10.1371/journal.pone.0182120.g001
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delays refer to time spent waiting for reward delivery after the response requirement has

already been satisfied. What if these two times were subject to analogous forms of valuation?

From that viewpoint, the time that elapses while holding down the lever is construed as a delay

between response initiation and reward delivery. Here, we adapt two widely used delay-dis-

counting functions for application to the FCHT paradigm.

In a typical delay-discounting experiment, the agent is offered a choice between perfor-

mance of two responses that deliver rewards of different magnitudes after delays of different

duration [34, 35]. Alternatively, the agent may be offered an implicit choice [28, 29] between

performance of a single response that triggers a delayed, experimenter-controlled reward and

performance of alternate activities such as resting, exploring or grooming [36, 37]. In either

case, the value of the prospective reward at the time of response selection declines as the

expected time of reward delivery recedes into the future. To apply this delay-discounting per-

spective to performance on the FCHT schedule, this delay-driven decline in value is recast as a

cost of waiting. This requires that the delay-discounting function be inverted. (Value declines

as a function of delay, whereas the cost of waiting grows.)

Behavioral data obtained from many types of experimental subjects and in many delay-dis-

counting paradigms are well described by Mazur’s hyperbolic delay-discounting equation

[32]:

V ¼
S

1þ ðKh � DÞ ð10Þ

where

V = discounted subjective value of the future reward

S = a constant representing reward magnitude

Kh = a constant that determines how abruptly the value of the function declines as the delay

grows, and

D = the delay in seconds from the completion of the response requirement to delivery of the

reward

Inversion transforms Mazur’s equation from a rectangular hyperbola into a straight line:

1

V
¼

1

S
� 1þ Kh � Dð Þ½ � ð11Þ

The S parameter represents the magnitude of the reward (e.g., the number of food pellets).

The reward-mountain model that we have fit to the data already includes a variable, “subjective

reward intensity,” that replaces Mazur’s S parameter [14, 15, 18]. Thus, we remove the scale

parameter from Eq 11 in order to arrive at an expression for the subjective price of the reward.

Given that the required work time is to be treated as a delay to reward delivery, we substitute

the objective price (Pobj) for D in Eq 11; to describe the escalating cost of waiting for reward,

we equate the inverted, delay-discounted value (1

V) in Eq 11 to the subjective price (Psub). The

resulting equation thus expresses the subjective price of holding down the lever as a function

of the required work time in a manner analogous to hyperbolic discounting of reward as a

function of the delay to reward delivery:

Psub ¼ 1þ ðKh � PobjÞ ð12Þ

We call Eq (12) the “linear-price function.” Note that this function differs from the objec-

tive-price function only by an additive constant (the y-intercept, which is equal to one) and a

slope constant. The additive constant nonetheless produces a substantial change in the shape

of the function in the double-logarithmic plot (Fig 1C) and causes the linear-price function to

Valuation of opportunity costs
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deviate from the objective-price function in the general manner we have advocated, which

blunts the impact of changes over the lowest range of prices.

The linear-price function has only one parameter in contrast to the sigmoidal-slope func-

tion, which has two. Thus, the linear-price function is less flexible than the sigmoidal-slope

function but faces less stringent criteria in model-fitting comparisons, which prize simplicity

and penalize the addition of parameters. The sigmoidal-slope function can transition more

abruptly from blade to handle; both blade and handle are truly straight, whereas they are only

approximately so in the case of the double-logarithmic plot of the linear-price function. In

order for the linear-price function to behave normatively at larger objective prices, Kh must

equal one. However, that value prevents the function from approximating a flat blade at low

prices. Lower values of Kh (e.g., 0.1) can provide good approximations of a flat blade, but at the

cost of dramatically compressing the subjective-price values; for example, when Kh = 0.1, sub-

jective prices rise at only 10% of the rate of rise in the objective prices.

Exponential-price function. The final function evaluated in this study is derived from

another discounting function, one that has been used widely in economics [38] and machine

learning [39]. Just as inversion changes the Mazur equation into the linear-price function,

inversion (changing the sign of the exponent) transforms the exponential-discounting func-

tion into an exponential-price function:

Psub ¼ eKx�Pobj ð13Þ

where

Kx = a constant that controls the rate at which subjective price grows

The exponential-price function is illustrated in Fig 1D. Like the linear-price function, it has

only a single parameter. Unlike both the linear-price function and the sigmoidal-slope func-

tion, the exponential-price function cannot have a straight or approximately straight handle.

Like the linear-price function and unlike the sigmoidal-slope function, the exponential-price

function cannot have a truly flat blade.

In principle, any number of additional functions could have been tested, although in prac-

tice, time and resource constraints dictated that we restrict the number of candidates. For sim-

plicity, we have confined ourselves to four: the simplest possible function (the objective-price

function), a modification of this simple function to deal more realistically with low prices (the

sigmoidal-slope function), and functions derived from the two most common expressions for

temporal discounting (the linear- and exponential-price functions). Even this restricted test

allows us to determine how the subjective-price function employed in the most recent version

of reward-mountain model [18] fares in competition with plausible alternates. In that work,

the objective-price function was replaced by the sigmoidal-slope function on the basis of a pri-
ori assumptions. Here we determine empirically whether the sigmoidal-slope function in fact

provides a better description of the data.

Measuring the subjective-price function. In this study, we set out to obtain data of suffi-

cient density and precision to determine which of the four functions best accounts for the

effect of varying opportunity cost. We used an experimental paradigm for quantitative mea-

surement of reward seeking: operant performance on the FCHT schedule in rats working for

rewarding electrical stimulation of the MFB. This paradigm is based on a model [14, 15, 18]

that describes how reward seeking depends on the cost and strength of rewards. The model

generates a curved surface enclosing what is called the “reward mountain,” which is depicted

in Fig 2. A separate version of the model was generated using each of the price-mapping

functions described above (Eqs 7, 9, 12 and 13); panels A and B of Fig 2 show the surfaces gen-

erated by the reward-mountain models incorporating the objective-price and sigmoidal-slope

Valuation of opportunity costs
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functions, respectively. As the contrast between panels A and B illustrates, the different subjec-

tive-price functions generate surfaces with different shapes. This allows us to determine which

subjective-price function provides the best fit to the data.

The reward-mountain surfaces shown in Fig 2 are defined by the following equation:

T ¼ Tmin þ ðTmax � TminÞ �

Fg

Fg þ Fg
hm

� �a

Fg

Fg þ Fg
hm

� �a

þ
PsubðPobjÞ

Psub eðPobj eÞ

 !a

2

6
6
6
6
4

3

7
7
7
7
5

ð14Þ

where

a = the payoff-sensitivity exponent. This parameter determines the steepness of the mountain

along the price axis.

Fhm = the pulse frequency that produces half-maximal reward intensity. This parameter deter-

mines the location of the reward mountain along the pulse-frequency axis.

g = the intensity-growth exponent. This parameter determines the steepness of the intensity-

growth function and contributes to the steepness of the mountain along the pulsefrequency

axis.

Pobj = the objective price (opportunity cost).

Pobj_e = the objective price at which the time allocation to pursuit of a maximal reward falls

halfway between Tmax and Tmin. This parameter determines the location of the reward moun-

tain along the price axis.

Fig 2. The reward mountain. Allocation of time to reward seeking as a function of the cost and strength of reward. A: The surface predicted by the

version of the reward-mountain model incorporating the objective-price function. B: The surface predicted by the version of the reward-mountain model

incorporating the sigmoidal-slope function. The heavy black line traces the contour corresponding to “mid-range” time allocation (half-way between the

minimal and maximal values). Given that the two surfaces differ in shape, we can choose between the subjective-price functions embedded in the

respective models (and in the linear-price and exponential-price functions as well) by determining which surface best fits the data. Note that the x-axes

represent Pobj, the objective price. The subjective-price functions determine how Pobj is translated into Psub, the subjective price of the reward. The

surfaces produced by the version of the reward-mountain model incorporating the linear- and exponential-price models can be seen in Fig 5C and 5D.

https://doi.org/10.1371/journal.pone.0182120.g002
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Psub(Pobj) = one of the four subjective price functions defined by Eqs 7, 9, 12 & 13. These func-

tions translate the objective prices (Pobj) represented on the x-axes of Fig 2A and 2B into sub-

jective prices (Psub).

Psub_e(Pobj_e) = the subjective price at which time allocation to pursuit of maximal reward falls

halfway between Tmax and Tmin. This constant is obtained by passing Pobj_e through a subjec-

tive-price function.

T = time allocation.

Tmax = maximal time allocation.

Tmin = minimal time allocation.

With reference to Eq 14, we can define the objective of this study as finding the form of the

subjective-price function (the mapping of Pobj into Psub) that provides the best and most realis-

tic fit of the surface to the data.

In prior experiments [14–21], the surface defined by Eq 14 has been estimated by sampling

sparsely from the independent-variable space so as to obtain sufficient data to fit the model

accurately while minimizing the required testing time. The space represented by the cost and

strength of reward (Fig 2) is traversed along three paths, one parallel to the strength axis (the

pulse-frequency “pseudo-sweep”), one parallel to the cost axis (the price pseudo-sweep), and

one running diagonally from the intersection of the pulse-frequency and price pseudo-sweeps

(the radial pseudo-sweep). To estimate the subjective-price function in the present study, we

added frequency pseudo-sweeps at equally spaced intervals along the logarithmic objective-

price axis. Different versions of the reward-mountain model were then fitted to the data, each

incorporating one of the subjective-price functions described above (Eqs 7, 9, 12 and 13), and

the goodness of fit was assessed by means of the Akaike Information Criterion (AIC) [40].

Methods

Subjects

Animal-care and experimental procedures were carried out in accordance with the principles

in the Canadian Council on Animal Care’s (CCAC) Guide to the Care and Use of Experimen-

tal Animals, with the approval of the Concordia University Animal Research Ethics Commit-

tee (certificate #: 30000302). Six male Long-Evans rats (Charles River breeding farms,

St. Constant, Québec, Canada) that weighed between 450 g and 600 g at the time of surgery

served as subjects. They were housed individually in plastic cages and had unlimited access to

food (Purina Rat Chow) and water. A reverse light cycle was in effect (lights off from 08:00 to

20:00). The rats served as subjects in a previous experiment [21] in which the current was var-

ied and the frequency-following function was estimated. The subjective-price experiment was

conducted prior to the frequency-following experiment.

Surgical procedure

Prior to surgery, a subcutaneous injection of atropine sulfate (0.05 mg/kg, sc) was given to

reduce bronchial secretions. Ten minutes later, a ketamine-xylazine mixture (10/100 mg/kg,

ip) was administered to induce anesthesia. To confirm that the level of anesthesia was suffi-

ciently deep, the tail was pinched 5 min after administration of the ketamine-xylazine mixture.

Buprenorphine (0.05 mg/kg, sc) was administered as an analgesic, and penicillin-g (0.3 ml, sc)

was administered to prevent infections. Xylocaine jelly was applied in the ears to prevent dis-

comfort from the stereotaxic ear bars. The anesthetized rat was mounted into a stereotaxic

frame. Anesthesia was maintained during the remainder of the surgical procedure by adminis-

tration of isoflurane through a snout-mounted mask affixed to the stereotaxic frame.
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Six jeweller’s screws embedded in the frontal and parietal bones served as anchors for the

electrode assembly. A 5 cm thread of copper wire was wrapped around two of the skull screws,

which served as the anode for the stimulation circuit. The other end of this wire was crimped

to a male Amphenol pin. A monopolar stimulating electrode (0.25 mm in diameter), fashioned

from a 000 stainless steel insect pin and insulated with Formvar to within 0.5 mm of the tip,

served as the cathode. An insulated wire was soldered to the insect pin and terminated in a

gold-plated male Amphenol pin. The stimulation electrodes were lowered into place using

standard stereotaxic manipulators, aimed at the lateral hypothalamus of the left hemisphere

with reference to the Paxinos and Watson atlas [41] (AP: -2.8 mm from bregma, ML: -1.7 mm

from the midline, DV: 9.0 mm from the skull surface). Dental acrylic was used to secure the

electrode and connector to the skull and jeweller’s screws. The Amphenol pins were inserted

into an externally threaded, nine-pin connector (Scientific Technology Centre, Carleton Uni-

versity, Ottawa, Ontario, Canada). Rats were given a 1-week recovery period after surgery to

allow healing before preliminary testing began.

Apparatus and materials

The stimulation lead was attached to an electrical swivel at the top of the test box, allowing the

rat to circle without becoming tangled in the lead. A second cable linked the swivel to the out-

put of the constant-current stimulator.

The test boxes were 34 cm × 23 cm × 60 cm with Plexiglas walls and a hinged Plexiglas

front door. Two retractable levers (1.5 cm × 5 cm) (ENV–112B, MED Associates, St. Albans,

Vermont) were located in the center of the right and left walls, 10 cm above the wire-mesh

floor; only the right lever was used in the present experiment. A cue light, located 2 cm above

the lever, was illuminated when the lever was depressed. A house light, located on the back

wall 35 cm from the floor, flashed between trials.

General summary of the behavioral testing procedures

The subjects underwent 3 phases of behavioral testing:

1. preliminary testing

2. training (frequency sweeps, price sweeps, 3D sampling)

3. the subjective price experiment proper (estimation of the subjective-price function).

Performance for rewarding brain stimulation was measured as a function of two indepen-

dent variables (referred to as the experimental parameters): pulse frequency and objective

price. A trial is defined as a period within a daily session during which the values of these two

independent variables remain fixed. The value of one or more of these variables was changed

from trial to trial, but remained fixed within a trial. The composition and duration of the trials

within the test sessions at each phase of testing are described in detail below. Throughout the

experiment, stimulation consisted of 0.5 s trains of rectangular, cathodal, constant-current

pulses, 0.1 ms in duration.

Detailed description of the behavioral protocol

Preliminary testing. Preliminary testing using manually controlled stimulators allowed

the experimenter to determine whether the stimulation electrode was effective (screening) and

to determine the values of the independent variables (pulse frequency and current) supporting

maximal response rates for each rat. An FR-1 schedule of reinforcement was in effect. At first,

weak stimulation trains (low current and pulse frequency) were delivered. The stimulation
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current was increased gradually if the rat failed to approach the lever and no signs of aversion

or motor-effects were observed. The rat was trained to press the lever using standard shaping

techniques. Once shaped, subjects were transferred to an automated operant set-up controlled

by a customized program named “PREF” developed by Steve Cabilio (Concordia University,

Montréal, Québec, Canada). The subsequent experimental phases were conducted in the auto-

mated setup.

Task details. Schedules of reinforcement. During all phases of the study following the

initial screening, a fixed cumulative handling-time (FCHT) reinforcement schedule was

employed. This schedule sets the objective opportunity cost of a stimulation train, which we

call the “objective price.” The FCHT imposes the cumulative work time that the rat must invest

to harvest the reward [15, 23]. Work time accumulates on a clock as the subject depresses the

lever. The accumulation of work time pauses when the lever is released and then resumes

incrementing when the lever is next depressed. The reward is delivered when the cumulative

work time reaches a criterion duration (the objective price). The schedule name refers to the

concept of handling time in behavioral ecology.

Objective prices spanned 0.125 s to 238.5 s. (Because of the PC clock-system constraints,

the actual price is not exactly equal to the experimenter-set price, but is very close. The error is

somewhat larger at the lower prices but is unlikely to be of great consequence given that the

models predict little or no change in subjective price in this range. Table A in S1 File shows the

differences between the experimenter-set price and actual (computer-set) price, from 0.125 s

to 16 s. For simplicity, we refer to the objective prices by their experimenter-set values.)

The black-out delay. The lever was extended at the beginning of the trial and withdrawn

for a 2-4 s black-out delay immediately after reward delivery. The duration of this black-out

delay was dependent on the properties of the stimulation in each subject. Aversive or motoric

side-effects limit time allocation, and thus, the duration of the black-out delay was adjusted in

the training sessions so as to minimize this interference. If the maximal time allocation was 0.6

or less when the black-out delay was 2 s in the initial training condition, the black-out delay

was increased.

Trial time and duration. Trial time was defined as the total duration within a trial during

which the lever was extended and depression of the lever incremented the cumulative work

time. The trial time during the experiment proper was set to be 25 times the price of the

reward, except in the case of prices<1 s, in which case the trial time was 25 s.

Cue light over lever. The cue light was illuminated to signal the rat when the lever was

depressed sufficiently to achieve a switch closure.

The inter-trial interval. The 10 s inter-trial intervals were signalled by flashing the house

light.

Priming stimulation. During the screening and training on frequency and price sweeps,

the pulse frequency of the priming train was set to the same value as in the train that would be

triggered by the lever on that particular trial. During training on the 3D sampling procedure

and during the estimation of the subjective-price function, a fixed, high pulse-frequency value

was used for the priming stimulation at the start of all trials.

Triadic trial structure. Due to the possibility that the rat’s standards of evaluation would

drift over the course of a test session, a triadic trial structure was employed during training on

the 3D sampling procedure and during the main phase of the experiment (when the subjec-

tive-price function was estimated). This structure provides repeated exposure to two standard-

ized extremes with which to compare the conditions in effect on the test trial. The triadic trial

structure is illustrated in Fig 3. Each experimental trial is embedded between two “bracketing

trials.” During the first bracketing trial (the leading trial), the pulse frequency was set to the

maximum value a given rat would encounter in the experiment, and the price was 1 s. During
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the second bracketing trial, (the trailing trial) the pulse frequency was set to a very low value,

and the price was 1 s.

Sampling matrices of independent-variable values. The experimental parameter space

from which we sampled was organized into matrices composed of 2 columns, one for each

of the independent variables {F: pulse frequency (Hz), Pobj: objective price (s)}. (The current

remained constant throughout all phases of the experiment.) Three types of sampling matrices

were employed:

Fig 3. Triadic-trial structure. On test trials, pairs of price and pulse-frequency values are drawn at random from a large set, without replacement; the

ranges of these two variables tested in Rat F12 are shown in curly braces. Test trials are interposed between two types of “bracket” trials on which the

price of pulse frequency are fixed. On leading-bracket trials, the price is 1 s, and the pulse frequency is set to the maximum value the rat can tolerate

without showing signs of aversion or pronounced, forced, stimulation-evoked movements. On trailing-bracket trials, the price is also 1 s, but the pulse

frequency is set to a value far too low to support operant responding. The cycle of three trials until every pair of price and pulse-frequency values in the set

used on the test trials has been selected, thus completing a “survey” of the reward mountain. The price and pulse-frequency values shown (for Rat F12)

are depicted in detail in Fig 4D.

https://doi.org/10.1371/journal.pone.0182120.g003
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1. Pulse-frequency sampling matrix: the pulse frequency varies across rows while objective

price remains constant. The same set of objective prices was used for all rats. In contrast,

the pulse frequencies were selected separately for each rat so as to cause time allocation to

grow in sigmoidal fashion as the pulse frequency was increased, with the steeply rising por-

tion of the sigmoid near the center of the pulse-frequency range.

2. Price-sampling matrix: the objective price varies across rows while the pulse frequency

remains constant. The pulse frequency, determined separately for each rat, was set to the

highest value that the rat could tolerate without showing signs of aversion or excessive stim-

ulation-induced movement. The objective prices were selected separately for each rat so as

to cause time allocation to decrease in sigmoidal fashion as the price was increased, with the

steeply falling portion of the sigmoid near the center of the price range.

3. Radial-sampling matrix: pulse frequency and objective price co-vary across rows. The pulse

frequencies and objective prices were selected separately for each rat so as to cause time

allocation to decrease in sigmoidal fashion as the pulse-frequency was decreased and the

price was increased, with the steeply falling portion of the sigmoid near the center of the

pulse-frequency and price ranges.

The sampling matrices can be visualized in the 2D experimental parameter spaces:

[Log10(PulseFrequency) vs. Log10(ObjectivePrice)]. Each row in a sampling space is denoted by

a single point in the parameter space. For example, Fig 4A illustrates a pulse-frequency sam-

pling matrix, Fig 4B illustrates a price-sampling matrix, and Fig 4C illustrates a radial-sam-

pling matrix (green) along with the frequency (red), and price (blue) sampling matrices.

In the example presented in Fig 4A, the price is fixed at 4 s and the pulse frequency at 185

Hz on one trial; on another, the price is fixed at 4 s and the pulse frequency at 167 Hz, etc. In

the frequency- and price-sweep training conditions, there were 9 rows in a sampling matrix.

In training during 3D sampling and during the main experimental phase (estimation of the

subjective-price function), there were 14 rows within each sampling matrix for rats F12, F16,

F17 and F18, and 9 rows for rats F3 and F9. In these phases of the study, the experimental

parameter values for each trial were drawn from a row of a sampling matrix, without replace-

ment. The experimental phase used to measure the subjective price function employed 1

price-sampling matrix, 7 pulse-frequency sampling matrices, and 1 radial-sampling matrix

(Fig 4C).

The trial time was set to allow the rat to harvest a maximum of 25 rewards (e.g., 1 s

price × 25 rewards = 25 s trial time, 2 s price × 25 rewards = 50 s, etc.). The black-out delay is

excluded from the trial time. A survey is defined as a complete test of all rows of the entire set

of sampling matrices employed at a given phase of the study.

Training. The 3 training phases served to establish and stabilize task performance as well

as to determine the experimental parameter values that drove time allocation from its minimal

to maximal values; these parameter values were used subsequently to estimate the subjective-

price function. The first two training phases are referred to as “sweeps,” an ascending or

descending sequence of experimental parameter values. In the third training phase, the experi-

mental parameter values were sampled randomly from the 3 sampling matrices. The trials car-

ried out using these sampled values were embedded within bracketing trials (i.e., the triadic

trial structure was employed).

1. Frequency sweeps. Frequency sweeps were carried out by stepping sequentially through

the pulse-frequency sampling matrix from row to row. One sweep refers to a test of all rows

of the sampling matrix.

This matrix consists of 9 rows; the objective price remains fixed, whereas the pulse
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frequency decrements from row to row by equal logarithmic steps (e.g., Fig 4A). For exam-

ple, if the logarithmic step size was set to 0.05, then the pulse frequencies were: 185, 167,

149, 132, 118, 105, 93, 83, 75 Hz.

The first trial in the set served as a warm-up trial; this pulse frequency was the same as that

of the second trial. The data from the warm-up trial were discarded from the analysis. One

Fig 4. Sampling matrices. A. An example of a pulse-frequency sampling matrix. The position of each red marker is determined by the pulse-frequency

and price values in the corresponding row of the matrix. The trajectory defined by the set of red markers constitutes a pulse-frequency sweep. B. A

corresponding example of a price-sampling matrix and price sweep. C. The trajectory of a radial pseudo-sweep (green) is shown along with the trajectories

of the pulse-frequency (red) and price (blue) pseudo-sweeps. The prefix, pseudo-, refers to the fact that the depicted locations in the parameter space

were visited in random order during each experimental session. In contrast, the trajectories shown in A and B (training on price-frequency and price

sweeps) were traversed sequentially. D. The full set of pseudo-sweeps used to estimate the subjective-price function. The values shown were used to test

Rat F12.

https://doi.org/10.1371/journal.pone.0182120.g004
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daily session consisted of a total of 10 sweeps; the data from the first sweep were discarded

from the analysis. In the first frequency-sweep session, the price was set to 1 s. If the maxi-

mal time allocation was at least 0.8, the price was raised to 2 s on the next session. If the

maximal time allocation was less than 0.8, the current and pulse frequencies were adjusted

to drive performance to a time allocation value of at least 0.8. The price was increased until

it reached 4 s. The range of pulse frequencies was adjusted such that there were several

points along each of the upper and lower asymptotes and along the sloping portion of the

psychometric curve relating time allocation to pulse frequency.

2. Price sweeps. Following completion of frequency-sweep training, price-sweep training was

undertaken by repeatedly stepping sequentially through the price-sampling matrix from

row to row. An example of a price-sampling matrix is presented in Fig 4. The pulse fre-

quency was set to the maximum value used in pulse-frequency sweep training and

remained fixed while the objective prices were varied by equal, ascending logarithmic steps

across 9 rows. For example, at a step size of 0.11 logarithmic units, the tested prices were:

2.4, 3.1, 4, 5.2, 6.7, 8.6, 11.1, 14.3, 18.4 s. An individual sweep consisted of a total of 10 trials:

the first trial of the sweep was a warm-up, set to the same price as the one in effect on the

second trial. The range and starting price were adjusted such that there were several points

on the upper and lower asymptotes and on the sloping portion of the time allocation versus

price plot. Because the rats required long trial-time durations at high prices, only 2-3 sweeps

were conducted per daily session. In total, the rats trained in this condition for approxi-

mately 10-15 daily sessions.

3. 3D sampling. During this phase of training, a third sampling matrix, the “radial-sampling

matrix” (Fig 4C), was introduced along with the triadic trial structure (Fig 3). In frequency-

and price-sweep training, the experimental parameters for the “test” trials were chosen

from sequential rows of a single sampling matrix. Thus, the value of the “swept” indepen-

dent variable changed in ascending or descending order. In contrast, during 3D sampling,

a row from one of the three matrices {frequency, price, radial} was chosen at random to

determine the experimental parameters for the “test” trial. Thus, the values of the indepen-

dent variables for the “test” trial changed in a random order from triad to triad during 3D

sampling.

In the radial-sampling matrix (green points in Fig 4C), both price and pulse frequency vary

from row to row in logarithmic steps. In successive rows, the price increases while the pulse

frequency decreases. The trajectory of the pulse-frequency and pulse values in the parame-

ter space [Log10(Pulse Frequency) versus Log10(Objective Price)] was aimed so as to pass

through or near the point defined by the model parameters, [Log10(Pobj_e), Log10(Fhm)].

Parameter Pobj_e positions the 3D function along the price axis; it is the objective price in

seconds that supports half-maximal responding for maximal rewarding electrical stimula-

tion. Parameter Fhm positions the 3D function along the pulse-frequency axis; it is the

pulse frequency that produces half-maximal reward intensity. The trajectory through the

parameters [Log10(Pobj_e), Log10(Fhm)] ensures there is sufficient data to obtain accurate

estimates of these critical parameters and an accurate fit of the reward-mountain model.

The extremes of the pulse-frequency and price ranges were established on the basis of

the data from frequency-sweep and price-sweep training, and the intervening values were

generated using a simulator developed by Yannick Breton in MATLAB (The Mathworks,

Natick, MA).

In this phase, the row that determined the experimental parameters for a given trial was

sampled at random and without replacement from the following matrices:
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• Pulse-frequency sampling matrix (pulse frequency varies across 9 or 14 values, fixed 4 s price)

• Price-sampling matrix (objective price varies across 9 or 14 values, fixed high pulse

frequency)

• Radial-sampling matrix (objective price and pulse frequency co-vary across 9 or 14 values)

A complete survey was composed of a complete set of the trials defined by all the rows of

the 3 sampling matrices. In total, for all subjects, there were 126 trials per survey: 42 test tri-

als and 84 bracketing trials. For rats F3 and F9 in which there were 9 rows per sampling

matrix, the 5 center rows of each sampling matrix were visited twice in a survey. For rats

F12, F16, F17, and F18, in which there were 14 rows per sampling matrix, each row was vis-

ited only once in a survey.

For rats F3 and F9, equal logarithmic intervals separated all values along each pseudo-

sweep. For rats F12, F16, F17 and F18, equal logarithmic intervals separated the central 10

elements, and the logarithmic intervals separating the highest and second highest values, as

well as the lowest and second lowest value, were twice that of the intervals separating the

central points. The logarithmic intervals separating the second and third highest value, as

well as the second lowest and third lowest value was one and a half times the interval sepa-

rating the central points. The intervals were spaced in this manner to ensure that the steep

portion of the psychometric curves, which determines the values of the location parameters,

was sampled more densely than the less critical, flatter regions at the ends (Fig 4D).

After 5 surveys in this condition, the reward-mountain model was fit to the data using the

objective-price function (Eq 7). If the radial-sampling matrix did not pass through, or close

to, the crosshair defined by the two model parameters [Log10(Pobj_e), Log10(Fhm)], then the

radial-sampling matrix was adjusted using the mountain simulator. After an additional 5

surveys, the data were analyzed again, and if the radial-sampling matrix passed through the

location parameters, 5 more surveys were conducted. The results obtained during this

phase were used to choose experimental-parameter values used in the next phase.

The subjective price experiment proper (estimation of the subjective price function).

During this final phase of the study, data were collected so as to fit the full 3D reward model

and to derive the subjective-price function. The triadic trial structure (Fig 3) was employed.

Nine sampling matrices were employed. An example of a 9-matrix set is presented in Fig 4D.

The sampling matrices employed were:

• Pulse-frequency sampling matrix at 0.125 s (pulse frequency varies across 9 or 14 values,

fixed 0.125 s price)

• Pulse-frequency sampling matrix at 0.25 s (pulse frequency varies across 9 or 14 values, fixed

0.25 s price)

• Pulse-frequency sampling matrix at 0.5 s (pulse frequency varies across 9 or 14 values, fixed

0.5 s price)

• Pulse-frequency sampling matrix at 1 s (pulse frequency varies across 9 or 14 values, fixed 1 s

price)

• Pulse-frequency sampling matrix at 2 s (pulse frequency varies across 9 or 14 values, fixed 2 s

price)

• Pulse-frequency sampling matrix at 4 s (pulse frequency varies across 9 or 14 values, fixed 4 s

price)
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• Pulse-frequency sampling matrix at 8 s (pulse frequency varies across 9 or 14 values, fixed 8 s

price)

• Price-sampling matrix (objective price varies across 9 or 14 values, fixed high pulse frequency)

• Radial-sampling matrix (objective price and pulse frequency co-vary across 9 or 14 values)

The radial-sampling matrix, price-sampling matrix, and pulse-frequency sampling matrix

(with the price set to 4 s) were similar or identical to those used in the preceding conditions.

One survey consisted of a complete set of the trials defined by all rows in all 9 sampling matri-

ces; 2 daily sessions, each about 6 to 7 hours in duration, were required to complete a survey.

In total, for each subject, there were 378 trials per survey: 126 test trials and 252 bracketing tri-

als. For rats F3 and F9 in which there were 9 rows per sampling matrix, the 5 center rows of

each sampling matrix were visited twice in a survey. For rats F12, F16, F17, and F18, in which

there were 14 rows per sampling matrix, each row was visited only once in a survey. After 5

surveys had been collected, the data were analyzed, and, if necessary, the experimental parame-

ters were adjusted as described in the 3D sampling section above. A total of 8-11 surveys were

collected following the final adjustment of the experimental parameters.

Statistical analysis

Raw data. The raw data were the onset time and durations of “holds” (intervals during

which the lever was depressed by the rat); “release times” (intervals during which the lever was

extended but not depressed by the rat) were computed by determining the duration between

the end of a given hold and the onset of the subsequent hold. Total work time included 1) the

cumulative duration of hold times during a trial, and 2) release times less than 1 s. The latter

correction was used because during very brief release intervals, the rat typically stands with its

paw over or resting on the lever [23]. Therefore, we treat these brief pauses as work and sub-

tract them from the total release time.

In the calculation of total work and release times, the values prior to the first encounter

with the reward were excluded. These data were removed because at the start of a randomized

trial, the rat does not yet know the strength or cost of the reward; it needs at least one encoun-

ter with the reward to learn the values of the reward parameters [18].

The dependent measure plotted on the 3D graphs is time allocation (T): total corrected

work time as a proportion of total trial time.

The reward-mountain model. The surface that was fitted to the time-allocation (T) data

obtained at each of the values in the 9 sampling matrices (Fig 4C) as defined by Eq 14.

In the same rats, we have previously estimated the function that translates the experi-

menter-set pulse frequencies, F, to the induced firing frequency [21]. That work shows that the

pulse frequencies employed here, which are�316 Hz, are within the range of perfect frequency

following. Thus, the experimenter-set pulse frequencies were used as proxies for the induced

firing frequencies.

Four versions of Eq 14 were fitted to the time-allocation data; in each version, one of the

subjective-price functions described by Eqs 7, 9, 12 and 13 was substituted for Psub. An addi-

tional version of Eq 14 was fitted to the data from rat F17. This is a variant of the sigmoidal-

slope function (Eq 9) with the Psubbend
parameter set to 0.5, a value close to the across-subject

mean of the estimates obtained when this parameter was free to vary.

Resampling. The dataset for each rat was assessed individually. To fit the model to the

data, a bootstrapping method [42] was employed, as follows.

A survey refers to one complete test of the 9 sampling matrices. The complete dataset con-

sists of n (7-11) surveys per rat. Thus, n T values were obtained for each combination of
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pulse-frequency and objective-price values (i.e., for each row of a sampling matrix). (In Fig

4, each combination of pulse-frequency and objective-price values is represented by a col-

ored marker.) A resampled dataset was produced by drawing n T values, with replacement,

from the set obtained at each combination of pulse-frequency and objective-price values.

Rats F12, F16, F17, F18, were tested at 126 combinations of pulse-frequency and objective-

price values (14 combinations × 9 sampling matrices). Resampled T values for a particular

combination of pulse-frequency and objective-price values might consist of data from sur-

veys {2,3,5,1,8,8,2,10,1,1}, the second combination from surveys {4,9,1,9,4,7,5,3,6,8}, etc. One

thousand such resampled subsets of T values were generated for each of the 126 combina-

tions of pulse-frequency and objective-price values. The 3D mountain model (Eq 14) was

then fit individually to each of the 1000 datasets using the non-linear least-squares routine in

the MATLAB Optimization Toolbox (The Mathworks, Natick, MA). The mean values of the

parameters {a, g, Fhm, Psub_e, Tmax, Tmin} across the 1000 data sets were determined, along

with the parameters of each of the subjective-price models {Psubmin
, Psubbend

, Kh, Kx}. 95% confi-

dence intervals about each estimated parameter were calculated by excluding the lowest 2.5%

and highest 2.5% of the estimates.

Histology

Following the estimation of the subjective-price function, the subjects underwent two addi-

tional experiments [43], which lasted 8 months. After completion of these experiments, the

rats were anesthetized with a lethal dose of sodium pentobarbital. The brains were removed

and were fixed with a 10% formalin solution for at least two weeks. Coronal sections, 30 to 40

μm thick, were cut with a cryostat, and tip locations were determined under low magnification

with reference to the stereotaxic atlas of Paxinos and Watson [41].

Results

The fits of the reward-mountain models incorporating the objective-price function, linear-

price function, and the sigmoidal-slope function converged in all cases, thus providing param-

eter estimates and a statistical basis for evaluating goodness of fit. In contrast, the reward-

mountain model incorporating the exponential-price function converged successfully only in

the cases of rats F3, F16, and F17. In the remaining cases, the fits failed to converge, and good-

ness of fit cannot be evaluated.

Surface fits and contour graphs

The surfaces generated by the reward-mountain models (Eq 14) and their proximity to the

data are illustrated in Fig 5. This figure shows the empirical data from rat F16 superimposed

on the fitted surfaces defined by each of the four subjective price functions (Eqs 7, 9, 12 and

13) Analogous plots for the remaining rats are shown in Figs A, B, C, E and F in S1 File.

The black contour line slices the mountain at the “mid-range” time allocation (half-way

between Tmin and Tmax). In functional form, the contour line is expressed as:

LogðFmidÞ ¼ LogðFhmÞ þ
1

g
� Log

PsubðPobjÞ

Psub eðPobj eÞ � PsubðPobjÞ

 !" #

ð15Þ

where

Fmid = the pulse frequency at which time allocation is mid-way between its minimum and

maximum values, and

Psub(Pobj) = the output of one of the four proposed subjective price functions.
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The derivation of Eq 15 is presented in S1 File.

The contour graphs corresponding to the fitted surfaces in Fig 5 are shown in Fig 6. Super-

imposed on the contour graphs are colored symbols denoting the pseudo-sweeps; each symbol

represents a tested pair of objective-price and pulse-frequency values. Also shown in Fig 6

are the fitted location parameters {Pobj_e,Fhm} of the reward-mountain model [18] and their

Fig 5. Time allocation as a function of the strength and cost of reward. The colored symbols represent the proportion of trial time allocated to

reward seeking by rat F16 as a function of price and pulse frequency. The corresponding legend and contour plots are presented in Fig 6. Each of the

fitted surfaces is defined by one of the four subjective-price functions (Eqs 7, 9, 12 and 13). Analogous plots for the remaining rats are shown in Figs A, B,

C, E and F in S1 File.

https://doi.org/10.1371/journal.pone.0182120.g005
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surrounding 95% confidence intervals. (Please see Eq 14 for the definitions of the location

parameters.) Note that the confidence intervals are narrowest in the case of the sigmoidal-

slope function. Analogous plots for the remaining rats are shown in Figs G, H, I, K and L.

Derivation of the trade-off between pulse frequency and objective price

It is not always easy to visually discern the goodness of fit of a curved surface to multiple data

points (e.g., in Fig 5). To complement the 3D depiction, 2D pulse-frequency-vs.-objective

price trade-off functions were plotted along with interpolated data points: the pulse frequen-

cies and/or objective prices corresponding to the mid-range T.

Spline functions (a series of smoothly joined polynomial segments) were fit to each of the

2D psychometric plots of time allocation vs. pulse frequency and time allocation vs. objective

price using the MATLAB spline-function routine. For example, when 10 surveys were col-

lected, there were 90 2D plots (9 sampling matrices × 10 surveys). For each spline function fit

Fig 6. Contour plots corresponding to the surfaces in Fig 5. Time allocation is represented by the grey level, as shown in the bar at the upper right.

Each colored symbol represents a tested pair of objective-price and pulse-frequency values (i.e., a row of a sampling matrix); each color-shape

combination denotes a different pseudo-sweep. The horizontally oriented series of blue squares represents the price pseudo-sweep, whereas the

diagonally oriented series of green circles represents the radial pseudo-sweep. All the remaining series are pulse-frequency pseudo-sweeps carried out at

different prices. The vertical blue line represents the fitted value of the Pobj_e location parameter, whereas the horizontal red line represents the fitted value

of the Fhm location parameter (Eq 14). The colored bands surrounding the location-parameter lines are 95% confidence intervals. Analogous plots for the

remaining rats are shown in Figs G, H, I, K and L in S1 File.

https://doi.org/10.1371/journal.pone.0182120.g006
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to the data from a test carried out with the pulse-frequency sampling matrix, the pulse fre-

quency corresponding to the mid-range time-allocation value (Fmid) was determined. Simi-

larly, for each spline function fit to the data from a test carried out with the price-sampling

matrix, the objective price corresponding to the mid-range time-allocation value (Pobj_mid) was

determined. For each spline function fit to the data from the test carried out with the radial-

sampling matrix, both Fmid and Pobj_mid were determined. Given that these values were inter-

polated from the empirical data, they are independent of the mountain model, and thus their

proximity to the fitted surface reflects how well this surface fits the data.

The bootstrap method [42] was employed to estimate the mean Fmid and Pobj_mid values and

the surrounding confidence intervals. One thousand resampled Fmid values were obtained

from the tests carried out with each of the 7 pulse-frequency sampling matrices and the single

radial-sampling matrix. One thousand resampled Pobj_mid values were obtained from the tests

carried out with each price-sampling matrix and radial-sampling matrix. The means of the

1,000 resampled values were calculated, and the corresponding 95% confidence interval was

obtained by excluding the lowest 2.5% and highest 2.5% of the estimates. These means and

confidence intervals are plotted in Fig 7 along with the pulse-frequency-vs.-objective-price

trade-off functions derived from the surface fits. Analogous plots for the remaining rats are

shown in Figs M, N, O, Q and R in S1 File.

It is important to keep in mind that Fig 7 shows deviations in a plane orthogonal to the

one in which goodness-of-fit was assessed. The deviations of the interpolated means from the

curves in Fig 7 are horizontally oriented with respect to the 3D structure (Fig 5); they are in the

plane defined by the pulse frequency and price. In contrast, the deviations on which the good-

ness-of-fit measure is computed are vertically oriented; they are arrayed along the time-alloca-

tion dimension (the vertical axis of Fig 5). Where the fitted surface is steep, a small horizontal

deviation corresponds to a large vertical one. Whereas the deviations shown in Fig 7 are

restricted to a single altitude, the level half-way between the minimum and maximum time

allocation, the the goodness-of-fit measure is based on the vertical deviation of all data points

from the fitted surface (Fig 5). What Fig 7 emphasizes are systematic deviations of neighboring

pseudo-sweep data from the fitted surface (e.g., in the case of the three shortest durations in

Panel D). The same point is made rather subtly in Fig 5 by the fact that the data points between

the middle and shoulder of the corresponding curves in Panel D lie beneath the fitted surface.

Subjective price as a function of objective price

In addition to the six parameters of the reward-mountain model (a, g, Log10(Fhm), Log10(Psub_e),

Tmax, Tmin) [18], the surface fits return the subjective-price parameters (Psubbend
, Psubmin

, Kh, Kx),

which are listed in Table 2 for rat F16 and in Tables B-G in S1 File for all six rats.

These parameter values were substituted into the subjective price functions (Eqs 7, 9, 12

and 13), which are plotted in Fig 8 (dashed lines). The interpolated data points in Fig 7

(Log10½Pobjmid
�, Log10[Fmid]) were transformed into subjective-price values, using the parameters

obtained from the surface fits. The following equation (derived in S1 File) was used to carry

out this transformation:

Log10ðPsubmid
Þ ¼ Log10ðRrelÞ þ Log10ðPsub eÞ ð16Þ

where

Rrel ¼
Fg

Fg þ Fg
hm

Psubmid
= the subjective price corresponding to mid-range time allocation (half-way between

Tmin and Tmax)
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This transformation provides a visual depiction of the four fitted subjective-price models

along with interpolated data points. It is evident from Fig 8A and panels A of Figs S-X in S1

File that the deviations of the interpolated data points from the fitted surfaces are particularly

large and systematic in the case of the objective-price function. The form of this function is

very different from the trajectory of the data points. It would not have helped had we allowed

Fig 7. Comparison between interpolated data points and pulse-frequency-versus-objective-price trade-off functions derived from the

surface fits. The solid line is the contour in Fig 6 representing mid-range time allocation (half-way between Tmin and Tmax) by rat F16. The

corresponding data points were interpolated by means of spline fits to the data from the pulse-frequency, price, and radial pseudo-sweeps.

Analogous plots for the remaining rats are shown in Figs M, N, O, Q and R in S1 File.

https://doi.org/10.1371/journal.pone.0182120.g007
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the y-intercept or exponent to assume values other than one because the resulting functions

would still be linear in double logarithmic coordinates, whereas the interpolated data points

clearly trace out non-linear trajectories. Analogous plots for the remaining rats are shown in

Figs S, T, U, W and X in S1 File.

Model comparisons

The AIC [40] was employed to determine which model best fits the data. The AIC statistic pro-

vides an estimate of the relative superiority of the tested models by balancing the goodness of

fit with the complexity of the model (the number of parameters). The AIC statistic was calcu-

lated separately for the fit of each model to the (non-resampled) dataset for each rat and is pre-

sented in Table 3 along with associated statistics. On a relative scale, the more negative the AIC

value, the better the model. The difference between the AIC for all of the models and the high-

est ranked model, termed ΔAIC, was determined. The likelihood corresponding to each ΔAIC

was then calculated (likelihood = e(-ΔAIC/2)) to estimate the probability that a given model is

better than the highest ranked model. The Akaike weight is the probability that the model is

Table 2. Best fitting parameter values for rat F16.

Function Parameter Fitted estimate CB low CB high CB width

Objective a 1.99 1.52 2.91 1.39

g 9.42 7.43 24.08 16.65

Log10(Fhm) 1.85 1.75 1.89 0.14

Log10(Psub_e) 0.92 0.86 0.98 0.11

Tmax 0.94 0.90 0.96 0.05

Tmin 0.20 0.18 0.23 0.05

Sigmoidal a 2.35 2.06 2.72 0.66

g 3.06 2.66 3.53 0.87

Log10(Fhm) 1.88 1.83 1.93 0.10

Log10(Psub_e) 0.97 0.93 1.00 0.07

Log10ðPsubminÞ 0.33 0.22 0.42 0.20

Psubbend 0.21 0.03 0.52 0.49

Tmax 1.00 1.00 1.00 0.00

Tmin 0.15 0.13 0.17 0.04

Linear a 15.44 5.79 25.00 19.21

g 2.01 1.65 2.49 0.84

Kh 0.04 0.02 0.10 0.08

Log10(Fhm) 1.44 1.22 1.68 0.46

Log10(Psub_e) 0.14 0.06 0.29 0.23

Tmax 1.00 1.00 1.00 0.00

Tmin 0.16 0.15 0.18 0.03

Exponential a 16.80 2.65 25.00 22.35

g 2.06 1.62 2.97 1.35

Kx 0.04 0.01 0.16 0.14

Log10(Fhm) 1.44 1.21 1.87 0.66

Log10(Psub_e) 0.17 0.06 0.61 0.55

Tmax 1.00 1.00 1.00 0.00

Tmin 0.16 0.15 0.18 0.04

CB = 95% confidence band.

https://doi.org/10.1371/journal.pone.0182120.t002
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the best model among the whole set of candidate models (Akaike weight = likelihood / sum of
likelihood of all models). The evidence ratio is the proportion of instances in which the highest

ranked model is more likely to be better than a given model (evidence ratio = Akaike weight of
highest ranked model / Akaike weight of given model). The goodness-of-fit statistics for each of

Fig 8. The subjective-price functions obtained by fitting the four models. The dashed lines are the subjective-price functions

corresponding to the contours in Fig 7 representing mid-range time allocation (half-way between Tmin and Tmax) by rat F16. These

functions were computed by back-solving Eq 15 for Psub, given the fitted values of Fhm, g, and Psub_e (e.g., Table 2) and the values of the

two independent variables at each point along the contour line in Fig 7. The data points were transformed in the same manner. Analogous

plots for the remaining rats are shown in Figs S, T, U, W and X in S1 File.

https://doi.org/10.1371/journal.pone.0182120.g008
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the four models are presented from best to worst, for each rat, in Table 3. The three cases in

which the reward-mountain model incorporating the exponential-price function (rats F9, F12

and F18) did not converge on best-fitting values of the exponent are designated “DNC.”

The Akaike weights show that the sigmoidal-slope function provides the best fit by far to

five of the six datasets. In those cases, the Akaike weight for the sigmoidal-slope function

equals one (rounded for 5 decimal places), whereas it rounds to zero for the remaining func-

tions. In these five datasets, the evidence ratios favor the sigmoidal-slope function over the

next best-fitting function by seven to thirteen orders of magnitude.

In the case of rat F17, the exponential-price function fit marginally better than the sigmoi-

dal-slope function: the Akaike weights are 0.63 and 0.37 for the exponential-price function

and the sigmoidal-slope function, respectively. This discrepancy would have been larger had

we evaluated the models by means of the Bayes Information Criterion (BIC) [44] rather than

the AIC because the BIC penalizes extra parameters more heavily than the AIC. However, by

fixing the value of Psubbend
(to the mean of the fitted values for all six rats), the sigmoidal-slope

Table 3. Model comparison.

Rat Model AIC Value ΔAIC Likelihood Akaike Weight Evidence Ratio

F3 Sigmoidal -2018.1 0.0 1.00E+00 1 1.00E+00

Exponential -1968.4 49.7 1.64E-11 0 6.11E+10

Linear -1960.6 57.5 3.34E-13 0 2.99E+12

Objective -1453.6 564.4 2.75E-123 0 3.63E+122

F9 Sigmoidal -1876.8 0 1.00E+00 1 1.00E+00

Linear -1814.7 62.1 3.32E-14 0 3.01E+13

Objective -1333.4 543.4 1.02E-118 0 9.84E+117

Exponential DNC DNC DNC DNC DNC

F12 Sigmoidal -1841.8 0 1.00E+00 1 1.00E+00

Linear -1790.8 51 8.23E-12 0 1.21E+11

Objective -1447.4 394.4 2.24E-86 0 4.47E+85

Exponential DNC DNC DNC DNC DNC

F16 Sigmoidal -1415.2 0 1.00E+00 1 1.00E+00

Linear -1376.8 38.4 4.57E-09 0 2.19E+08

Exponential -1375.7 39.5 2.65E-09 0 3.78E+08

Objective -1166.5 248.7 9.88E-55 0 1.01E+54

F17 Exponential -1580.6 0 1.00E+00 0.63 1.00E+00

Sigmoidal -1579.5 1.1 5.91E-01 0.37 1.69E+00

Linear -1566.2 14.4 7.44E-04 0 1.34E+03

Objective -1385.1 195.5 3.48E-43 0 2.87E+42

F17

FB

Sigmoidal FB -1581.5 0 1.00E+00 0.5 1.00E+00

Exponential -1580.6 0.9 6.26E-01 0.31 1.60E+00

Sigmoidal -1579.5 2 3.70E-01 0.19 2.70E+00

Linear -1566.2 15.3 4.65E-04 0 2.15E+03

Objective -1385.1 196.5 2.18E-43 0 4.59E+42

F18 Sigmoidal -2200 0 1.00E+00 1 1.00E+00

Linear -2164.3 35.7 1.80E-08 0 5.56E+07

Objective -1582.5 617.5 8.13E-135 0 1.23E+134

Exponential DNC DNC DNC DNC DNC

FB refers to the version of the sigmoidal-slope function in which the value of the Psubbend parameter is fixed at 0.5. DNC designates fits that failed to converge.

https://doi.org/10.1371/journal.pone.0182120.t003
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function is left with only one free parameter, placing it on the same footing as the exponential

subjective-price functions. This “fixed-bend” variant of the model fits the data for rat F17 mar-

ginally better than the exponential subjective-price function: the Akaike weights are 0.50 and

0.31 for the fixed-bend variant of the sigmoidal-slope function and the exponential-price func-

tion, respectively.

In summary, the sigmoidal-slope function provides the best fit to the data in five of six

cases, and the remaining case can be regarded as a draw.

Histology

Fig 9 shows the electrode-tip locations, which are all situated in the lateral hypothalamus.

There is no apparent relationship between the subjective-price results and the location of the

electrode tip.

Discussion

In their landmark paper on motivation and behavioral decision making [45], McFarland and

Sibley assert that “it is always possible to classify the behavioral repertoire of a species in such a

Fig 9. Location of the electrode tips. The filled symbols represent the location of the electrode tips, as determined by examination of the stained brain

sections. The plates are from the Paxinos and Watson atlas [41].

https://doi.org/10.1371/journal.pone.0182120.g009
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way that the classes are mutually exclusive in the sense that the members of different classes

cannot occur simultaneously.” A simplified rephrasing reads: “animals cannot ‘do more than

one thing at a time’.” The concept of the opportunity cost of time flows naturally from this pos-

tulate. Time invested in achieving one objective is necessarily subtracted from the time avail-

able to achieve alternate goals that cannot be pursued simultaneously. The foregone benefits

that would have accrued from achievement of those alternate goals thus contribute to the cost

of the objective that was ultimately sought.

Competing accounts of the subjective-price function

In this paper, we ask how the subjective value of time spent working for rewarding electrical

brain stimulation is related to the opportunity cost incurred. Four versions of the opportunity-

cost function were tested. The objective-price function is the simplest: time is translated into

subjective opportunity cost on the basis of strict proportionality. The sigmoidal-slope function

converges on the objective-price function when the time required to procure a reward is long

but deviates from it as the required time becomes very short. This deviation is driven by the

decreasing availability of alternate, substitutable activities. Once the time required to procure

a reward becomes so brief as to preclude performance of a beneficial alternate activity, then

further reduction in the required time ceases to reduce the subjective opportunity cost. The

remaining two functions treat the valuation of opportunity costs as an instance of delay dis-

counting. The longer the time required to procure the reward, the longer the delay between

initiation of the reward-seeking action and its fulfillment. These subjective-price functions

discount the reward progressively as its opportunity cost grows. The linear- and exponential-

price variants differ only in the form of the discounting function applied.

As we argue below, determining which of the four functions fits best is important, not only

for accurate modeling of performance for rewarding brain stimulation, but also for the more

general issue of how opportunity costs contribute to decisions about selection and achieve-

ment of physiological, reproductive and social goals.

The subjective-price function and the reward-mountain model

The reward-mountain model (Eq 14) expresses time allocated to the pursuit of rewards as a

function of their strength and cost. Work time is an unavoidable component of the costs

entailed in operant pursuit of reward. Thus, the form of the reward mountain must reflect the

way subjective opportunity costs grow as the work time required to obtain a reward increases.

In effect, the subjective-price function is embedded within the reward-mountain model, either

implicitly, as in the initial versions [14, 15], or explicitly, as in a recent revision [18]. The good-

ness of fit of the reward-mountain model thus provides a criterion for selecting among differ-

ent variants of the subjective-price function. That is the approach adopted here.

According to the reward-mountain model, the experimenter can compensate for an

increase in the price of rewarding electrical brain stimulation by making a compensatory

increase in the strength of the stimulation; the rat is thereby induced to hold constant its allo-

cation of time to reward pursuit in the face of the price increase. This trade-off between the

cost and strength of the reward is reflected in the shape of the contour lines that describe the

reward-mountain surface (Eq 15; Figs 2 and 5). Underlying the trade-off between the two

objective variables, stimulation strength and required work time, is a reciprocal relationship

between their subjective counterparts, subjective reward intensity and subjective price [14, 15,

18]. Time allocation remains fixed provided that the ratio of subjective reward intensity and

subjective price doesn’t change. In the early versions of the model [14, 15], the objective-

price function was assumed, and thus the contour lines trace out what is called the “reward-
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intensity-growth function” (Fig 10, upper panel), which maps the relationship between subjec-

tive reward intensity and stimulation strength. This function determines the magnitude of the

changes in stimulation strength required to compensate for changes in subjective price.

Simmons and Gallistel [13] demonstrated that the reward-intensity-growth function rises

as a power function over low stimulation strengths, decelerates at higher stimulation strengths,

and eventually levels off. Sonnenschein and Shizgal [46] used a logistic function to describe

this behavior. In double logarithmic coordinates, the logistic reward-intensity-growth function

is shaped like an upside-down hockey stick, with a straight, diagonally oriented handle (Fig 10,

upper panel: a) and a horizontally oriented blade (Fig 10, upper panel: c). Stimulation strength

is represented by the y-axis in the coordinate space for the contour map of the mountain (Fig

10, middle and lower panels), whereas it is represented by the x-axis in plots of the reward-

intensity-growth function (Fig 10, upper panel). Thus, in the variant of the reward-mountain

model that incorporates the objective-price function [14, 15] (Fig 6A), the contour lines trace

out a rotated version of the reward-intensity-growth function (Fig 10, middle panel). When

prices are low, relatively weak stimulation strengths suffice to drive time allocation above its

minimal value. The reward-intensity-growth function rises steeply over this range, and thus a

small increment in stimulation strength suffices to offset a given change in price, causing the

contour lines to rise with a shallow slope (Fig 10, middle panel: a; note the different scales of

the x- and y-axes). As the reward-intensity-growth function decelerates, ever-larger offsetting

increments in stimulation strength are required to offset a given increase in price, and the con-

tour lines bend upwards (Fig 10, middle panel: b). Once the reward-intensity-growth function

levels off, further changes in stimulation strength can no longer compensate for increments in

price, and the contour lines run vertically (Fig 10, middle panel: c).

As Eq 15 implies, the shape of the contour lines generated by the versions of the reward-

mountain model that incorporate the three more complex subjective-price functions under

consideration (sigmoidal, linear, and exponential) is no longer determined exclusively by the

reward-intensity-growth function but also reflects the form of the subjective-price function

(e.g., Fig 10, lower panel). As the price is reduced to very low values, all three of these subjec-

tive-price functions bend the contour lines toward the horizontal (Figs 6B, 6C and 6D and 10:

lower panel), albeit in different ways. The fact that reward-mountain surfaces of different

shapes are produced by the four subjective-price functions provides is the basis for the method

used here to determine which function fits the data best.

The sigmoidal-slope function fits best

In five of the six datasets, the Akaike weights for the sigmoidal-slope function are overwhelm-

ingly greater than those for the remaining subjective-price functions. The exponential function

noses out the sigmoidal-slope function in the case of the remaining dataset (from rat F17),

but when the number of free parameters in these two subjective-price functions is equated by

fixing the value of the Psubbend
parameter at 0.5 (the mean estimate for the six datasets), the sig-

moidal-slope function achieves a marginally better Akaike weight than the exponential-price

function. Although from a model-fitting perspective, there is little basis for choosing between

these two functions in the case of the data from rat F17, the sigmoidal-slope function provides

by far the best fit to the data from the entire group of rats.

Compatibility of the different subjective-price functions with normative

behavior

According to the expression for payoff embedded within the reward-mountain model (Eq 1),

increases in the subjective intensity of a reward compensate perfectly for increases in its
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Fig 10. The contours of the reward mountain reflect the form of the reward-intensity-growth function.

Upper panel: the reward-intensity-growth function, as described by Simmons and Gallistel [13] and by

Sonnenschein, Conover and Shizgal [46]; the parameters {Fhm,g} are from the fit of the objective-price

function to the data from rat F18. Middle panel: Contour map of the reward-mountain variant that incorporates

the objective-price function; the parameters {a,Fhm,g} are again from the fit of the objective-price function to
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subjective price. In the case of the objective-price function, this is true for objective prices, as

well as for subjective ones, because the two are equal. The ratio of reward intensity to objective

price is simply a rate, analogous to the key determinant of choice in influential theories of

operant performance [28, 47, 48]. An agent employing the objective-price function to evaluate

opportunity costs would be indifferent when offered a choice between an intense reward

requiring a long work time (high price) and a weaker reward requiring a shorter work time

(lower price), provided that the ratio of reward intensity and work time were the same for

either option (i.e., reward intensity accrued at the same rate). Such behavior can be said to be

“price-neutral.” The objective price per se has no bearing on choice; it influences choice only

in terms of its relationship to the reward intensity: It is the ratio of the reward intensity to the

objective price that matters. In contrast, an agent that eschews high-priced rewards in favour

of lower-priced rewards earned at the same rate can be said to be “price-averse,” and an agent

that seeks out such high-price rewards while neglecting lower-priced rewards earned at the

same rate can be said to be “price-seeking.”

Let us assume that the value of a given volume of a 1-molar solution of sucrose is ten times

the value of the same volume of a 0.1-molar solution. Faced with a choice between 1 ml of the

1-molar solution that can be earned with 50 s of work and 1 ml of the 0.1-molar solution that

can be earned with 5 s of work, a price-averse agent would choose the latter, a price-seeking

agent would choose the former, and a price-neutral agent would be indifferent. To achieve

equipreference by the price-averse agent, the price of the 1-molar solution would have to be

reduced. At the equipreference point, the price-averse agent would be leaving “money on the

table” because it could harvest sucrose at higher rate by choosing the 1-molar solution exclu-

sively. The price-seeking agent would have the complementary problem. To achieve equipre-

ference by that agent, the price of the 1-molar solution would have to increased. At the

equipreference point, that agent could have earned sucrose at a higher rate by choosing the 0.1

molar solution exclusively. Only the price-neutral agent would choose normatively, manifest-

ing equipreference only when the two options deliver sucrose at the same rate.

The mean value of the fitted Psubmin
parameter obtained from the fits of the sigmoidal-price

function is 1.85 s (the antilog of 0.26, the value given in Table 4 for Log10ðPsubmin
Þ). Given this

value and Psubbend
¼ 0:5, the subjective price is within 1% of the objective price once the latter

exceeds 3.18 s. In other words, the fitted sigmoidal-price functions converges on the objective-

price function quite rapidly, as can be seen in the plots of the individual fits in Fig 11A. Beyond

the point of convergence, an agent employing the sigmoidal-slope function behaves in a price-

the data from rat F18. The contours are rotated traces of the reward-intensity-growth function in the upper

panel. Lower panel: Contour map of the reward-mountain variant that incorporates the sigmoidal-slope

function; the parameters {a,Fhm,g,Psubbend ,Psubmin} are from the fit of the sigmoidal-slope function to the data

from rat F18. These contours reflect the non-linear form of both the reward-intensity-growth and subjective-

price functions. The contours defined by the reward-mountain variants incorporating the objective- and linear-

price functions (not shown) also bend toward the horizontal at low prices.

https://doi.org/10.1371/journal.pone.0182120.g010

Table 4. Sigmoidal-slope function: Estimated parameter values.

Parameter mean SEM median IQR

Log10ðPsubminÞ 0.26 0.04 0.29 0.10

Psubbend 0.50 0.18 0.41 0.44

Measures of central tendency and dispersion of the parameter estimates obtained for the sigmoidal-slope

function. SEM = standard error of the mean; IQR = inter-quartile range.

https://doi.org/10.1371/journal.pone.0182120.t004
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neutral, normative manner. Agents employing the subjective-price functions derived from

temporal discounting do not (with one exception noted below).

The fitted values of the Kh parameter for the six datasets range from 0.04 to 0.14 (Tables

B-G in S1 File). These values of the parameter of the linear-price function generate strongly

price-seeking behavior because the subjective price rises much more slowly than the objective

price. This is illustrated in Fig 11B and by the discrepancy between the Pobj_e and Psub_e values

(Table H in S1 File). Whereas the subjective-price estimates produced by the sigmoidal-slope

function have converged on the corresponding objective prices well before Pobj_e the subjec-

tive-price estimates produced by the two functions derived from temporal discounting deviate

substantially from the corresponding objective prices. For example, time allocation by rat F03

was halfway between its minimal and maximal values when the objective price (Pobj_e) was

14.12 s (red curve in Fig 11B). According to the fitted value of the Kh parameter for this rat

(0.05), this Pobj_e value is equivalent to a subjective price of only 1.73 s. Doubling the objective

price to 24.24 s, and thus halving the rate at which reward intensity accrues, increases the sub-

jective price generated by this linear-price function by only a factor of 1.39, to 2.41 s. In com-

parison to a price-neutral agent, an agent behaving in the manner prescribed by this linear-

price function would be at a strong disadvantage in environments that included high-price

rewards due to its exaggerated proclivity to pursue high-price options. The only value of the

Kh parameter that would generate approximately normative choice would be unity. None of

the fitted values come close.

Among the four subjective-price functions evaluated here, the exponential-price function

generates the most extreme deviations of subjective from objective prices. For example, con-

sider the best-performing fit of this function, which was obtained in the case of the data from

rat F17 (yellow curve in Fig 11C). Time allocation is halfway between its minimal and maximal

values at an objective price of 8.77 s, and the corresponding subjective price is 198.31 s (off-

scale in Fig 11C). The already-large discrepancy between the objective and subjective price

explodes as the objective price is further increased. Given the fitted value of 0.6 for the Kx

parameter, doubling the objective price to 17.54 s drives the subjective price to 37,197.6 s. In

that range, choice would be spectacularly price-averse.

Deviation from normative choice cannot in itself disqualify a functional form from consid-

eration. Indeed, studies of decision making in humans [7, 8, 49], as well as in laboratory ani-

mals [50, 51], have documented many such systematic deviations. Nonetheless, flamboyant

deviations, such as those predicted by the exponential-price function fitted to the data from rat

F17, demand particularly strong empirical confirmation. This is lacking in the case of the sub-

jective-price functions derived from temporal discounting. Not only do these functions fare

much less well than the sigmoidal-slope function in describing the data from the current

study, they also deviate from the results of a previous study in which a different empirical

method, conjoint measurement, was used [52, 53]. The results of that study are consistent with

the sigmoidal-price function and the normative behavior it generates.

Implications

The results strongly support the recommendation [18] that the version of the reward-moun-

tain model incorporating the sigmoidal-slope function should be used in future applications.

Note that the objective-price function provided the worst fit to all six datasets (Table 3). Unlike

the other functions considered, the objective-price function generates contour lines that con-

tinue to run diagonally as the price is reduced to very low values (Fig 10, middle panel: a).

In contrast, the sigmoidal-slope function forces the contour lines to run horizontally at the

lowest prices (Fig 10, lower panel: a), which improves the fit of the model and provides a more
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Fig 11. Fitted subjective-price functions for each rat. The black diagonal line in each panel is the

objective-price function (“OP_func”). The fits of the sigmoidal-slope, linear-price, and exponential-price

models to the data from each rat are shown in color in panels A, B, and C, respectively. Only three curves are

shown in panel C because the fits of the exponential-price function in question converged only in these cases.

Unlike the plots in Fig 1 and in Figs S-X in S1 File, the y-axes in these plots are scaled identically.

https://doi.org/10.1371/journal.pone.0182120.g011
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reasonable account of behavior when prices are so low as to preclude substitution of a gainful

alternative activity.

It would be impractical to obtain individual estimates of the parameters of the sigmoidal-

slope function in all future applications of the reward-mountain model. That would require

repeating the current experiment each and every time the reward-mountain model were

applied to new data, which would extend the required testing period unreasonably. Instead, we

recommend fixing the parameters of the sigmoidal-slope model to the mean values reported

here, which are reported in Table 4. Given these values, the subjective price converges rapidly

with the objective price; once the objective price exceeds roughly 3.18 s, the subjective price is

less than 1% greater than the objective price.

Linear versus logarithmic representation of subjective time. According to Eq 5, the sub-

jective-price function contains within it a function, ft, that translates objective time into a sub-

jective scale. There is a longstanding debate about whether this transformation is linear [31,

54] or logarithmic [55, 56]. The results reported here fit most gracefully with the linear

account. The logarithm function is concave down: it changes most quickly over low values and

decelerates continuously. In contrast, the best-fitting subjective-price function evaluated here,

the sigmoidal-slope function, is concave up; that function is flat over low values and then accel-

erates until it approaches scalar growth. In order to reconcile logarithmic subjective-time with

the results, the time-valuation function, fv, would have to invert the subjective-time function,

ft, (i.e., by exponentiation) and then transform the result further to achieve the form of the sig-

moidal-slope function. No such acrobatics are required of the linear-time account. Indeed, the

x-intercept of a linear-time function could contribute to Psubmin
.

Working for reward versus waiting for reward. The results have potential implications

that could extend well beyond the reward-mountain model and experiments on intracranial

self-stimulation. Among these is the possibility that time spent spent working for reward is

evaluated differently than time spent waiting for reward. A related distinction of potential

interest concerns the consequences of having, or losing, agency over the time of reward

delivery.

In the FCHT task, credit toward earning a reward accumulates as a result of the rat’s agency:

The rat puts time on the work clock by actively holding down the lever. Performing this action

brings the reward progressively closer in time, much like handling of a prey item by a forager

(e.g., opening a shell) or travel to a new patch. The rat is also free to abandon holding down

the lever. Thus, the response does not commit the rat to a period of passive waiting: the rat can

switch into leisure activities at any time before the full price has been paid.

In contrast, the subject in a temporal discounting experiment has no control over time

that elapses during the delay to reward delivery. Once the delay interval starts, the subject has

already exercised the agency available to it by performing the operant response and now must

wait helplessly until the programmed delay expires. By performing the operant response, the

rat makes a commitment it cannot cancel: it must wait out the full delay. Could the exagger-

ated preference for immediacy that is expressed in hyperbolic delay discounting reflect the

desire to minimize the duration of this binding commitment to passive waiting?

We suspect that differences between the evaluation of time spent working for and waiting

for reward contributed to the superior performance of the sigmoidal-slope function in com-

parison to the subjective-price functions derived from discounting. Recall that the sigmoidal-

slope function converges on the objective-price function quickly (within roughly 3 s in this

study). After that time, the incremental increase in subjective price is constant, as Fig 8 shows.

This is as predicted by the framework developed here. If the benefit of alternate activities

remains stationary, the incremental opportunity cost of holding down the lever in the FCHT
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task is also deemed to be constant: it is simply the incremental value of leisure. In contrast, in

the temporal-discounting accounts, the incremental cost of waiting, expressed as a proportion,

varies as function of delay to reward delivery. This variation is flamboyant in the case of the

exponential-price function.

It has been proposed that rewards are discounted differently by delay and physical effort

[57, 58]. However, these studies do not address or manipulate opportunity costs, which are the

subject of the present work. To our knowledge, the distinction proposed here between time

spent working and waiting for reward has received little or no attention in the literatures on

inter-temporal choice and reward valuation. We suggest that it could prove profitable to

explore this distinction experimentally.

Future directions

The conjecture that time spent working or waiting for reward is evaluated differently invites

and demands a direct test. This could be done within the reward-mountain paradigm by inter-

posing delays to reward delivery after the response requirement (work time) has been satisfied.

Would a “classic” discounting function describe valuation of time spent waiting for rewards

already earned [32, 36, 37], whereas the sigmoidal-slope function would continue to describe

the valuation of time spent working for reward? An analogous head-to-head comparison

could be carried out readily in human participants working and waiting for monetary rewards.

Sources of reward that aren’t under direct experimental control, such as the fruits of leisure

activities, play a central role in Herrnstein’s depiction of single-operant responding [28, 29],

in behavioral-economic accounts [59], in a recent reinforcement-learning model [60, 61], and

in our account of performance on the FCHT schedule [15, 18, 23]. In contrast, such “back-

ground” rewards are typically omitted from explanations of temporal discounting. It would be

interesting to explore the consequences of integrating such background sources of reward into

accounts of inter-temporal choice.

Another issue that should be addressed in future work is the discrepancy between the por-

trayal of opportunity costs here and in accounts of operant performance derived from machine

learning [60–62]. As in economic accounts [3, 4], opportunity cost is equated here with the

highest-valued option forgone (a leisure activity), whereas in the accounts developed within

the machine-learning tradition (and within optimal-foraging theory [63]), the opportunity

cost reflects the average value of the environment as a whole, thus encompassing both the

experimenter-controlled reward and the fruits of leisure. Moreover, the account presented

here treats the benefits of leisure as a scalar function of leisure time, whereas more complex

benefit-of-leisure functions have been explored in a promising manner by Niyogi and Dayan

[60, 61]. Additional work will be required to determine the relative virtues and drawbacks of

these different approaches and accounts. Exquisite experimental control, stability of perfor-

mance over time, and very high data density make the intracranial self-stimulation paradigm a

promising way to address such issues in future work.

Supporting information

S1 File. The Supporting-Information file contains text that a) specifies the units of subjective

price, b) provides a derviation of the equation for the mid-range contour line, c) provides

back-solutions of the subjective-price functions, and d) describes a computer problem that

caused small deviations of the objective prices from the intended values (summarized in

Table A). Six additional tables (Tables B-G) list the best-fitting parameter values for each of

the rats). Another table (Table H) compares the fitted values of Pobj_e and Psub_e. Twenty-four

figures are included: Figs A-F show time allocation as a function of the strength and cost of
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reward for each rat, Figs G-L show contour plots corresponding to the surfaces in Figs A-F,

Figs M-R show comparisons, for each rat, between interpolated data points and pulse-fre-

quency-versus-objective-price trade-off functions derived from the surface fits, and Figs S-X

show, for each rat, the subjective-price functions obtained by fitting the four models.
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