
i

Modelling and Solving Decentralized and

Dynamic Aircraft Landing Scheduling

Problems

A Thesis

In

The Department

Of

Mechanical, Industrial and Aerospace Engineering (MIAE)

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science at

Concordia University

Montréal, Québec, Canada

November, 2017

© Hamidreza, Rezaei, 2017

ii

This is to certify that the thesis is prepared:

By: Mr. Hamidreza Rezaei

Entitled: Modelling and Solving Decentralized and Dynamic Aircraft Landing

Scheduling Problems

and submitted as in partial fulfillment of the requirements for the degree of:

Master of Applied Science in (Industrial Engineering)

Complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. W. Xi Chair

Dr. A. Bulgak, MIAE Examiner

Dr. A. Awasthi, CIISE External Examiner

Dr. M. Chen Supervisor

Dr. C. Wang Co-Supervisor

Approved by:

 Chair of Department or Graduate Program Director

 Dean of Faculty

Date:

iii

Abstract:

Aircraft landing problem (ALP) is considered as a scheduling problem where aircrafts are

sequenced and allocated with appropriate time slots. In this thesis ALP problem is

investigated where several constraints such as aircraft’s landing time windows, minimum

separation time and position shifting constraints are taken into consideration. Existing

approaches such as optimized solution based methods and heuristic methods to tackle

different aspects of the problem are reviewed, and a static mathematical model is studied.

The mathematical model is solved and verified using random data generated from

simulation. The data are generated based on Pierre Elliott Trudeau International Airport

(YUL) in Montreal, Quebec, Canada as well as from relevant data base library.

AnyLogictm software was used to simulate aircraft landing operations in a runway

environment. An agent based simulation was designed to include the dynamic event of

aircrafts arrivals to the runway system.

In the agent based system, an iterative bidding framework is used to generate flight

landing schedule in a decentralized environment. In the decentralized environment, we

consider each flight as a self-interest agent competing with other flights to get the most

appropriate landing time. The efficiency of the decentralized approach is also studied.

The results of the decentralized approach are compared with the centralized ALP

solution. The results show that the agent based solution approach is able to generate

reasonable landing comparing to optimal aircraft landing schedule from the centralized

ALP model.

iv

Acknowledgments:

I would like to thank God whom without him nothing would have been possible. I am

pleased to thank following persons who have supported me both technically and

emotionally during this study.

I would like to thank Dr. Mingyuan Chen and Dr. Chun Wang, my thesis supervisors, for

their supervision, technical support and valuable guidance as well as for their patience

and comments that helped me through this research. It was my pleasure to work under

their supervision as a master student.

My friend Zhijie for his technical guidance and support and sharing his experiences and

knowledge to complete my thesis.

My lab partners Jair, Armaghan, Omar, Cesar, and Yasser Ghahremany for sharing all the

pleasant moments during this research.

Last but not least I would like to express my gratitude to my family for their continuous

support and love.

v

Table of Contents

Abstract…………….…………………………………..…………...……...…................iii

Acknowledgments……………….………………….....…….…………………...…….. iv

Table of Content………………………………………...………………………..............v

List of Tables………………………………...……………………………………..…..viii

List of Charts and Figures………………………….……………………...……...…..viii

Introduction and Motivations…………………………………………………….……..1

1.1 Aircraft Landing Problem (ALP)…………………..………………………...………..1

1.2 Challenges and Motivation…………………………….……………………...............2

1.3 Contributions………………………………………………………………………….3

1.4 Outline of the Thesis…………………………………….………………….……...….4

Chapter 2 Literature Review………………………………....…………………………5

2.1 Optimized Based Solution…………………………………………………………….5

 2.1.1 Mixed Integer Programming………………………………….………………………..5

 2.1.2 Dynamic Programming…………………………….…………..……………………….6

 2.1.2 Branch and Bound………………………………………………….…………………...9

 2.1.3 Branch and price…………………………………………………..…………………...10

2.2 Heuristic Based Solution……………………………………………………………..10

 2.2.1 Evolutionary Algorithm……………………………………...………………………...10

 2.2.2 Local Search……………………………………….……………………………………12

 2.2.3 Tabu Search………………………………………….………….………………………13

 2.2.4 Simulated Annealing………………………………………….………………………..13

 2.2.5 Ant Colony……………………………………….………….……....…………………..14

2.3 Distributed Optimization…………………………………………………………….14

Chapter 3 Mathematical Model……………………………………………….……….18

3.1 Definitions……………………………………………………………………………18

vi

 3.1.1 Holding Patterns and maneuvers……..…………...………………....……………..19

 3.1.2 Minimum Time Separation……………………..…..………………………………...19

 3.1.3 Time Window………………………..………………….……………………………...20

 3.1.4 Precedence Constraint……………..…………….…………………………………...21

 3.2 Objective Function………………………………………………………………….21

 3.3 Mathematical Model………………………………………………………………..22

 3.3.1Constraint Position Shifting (CPS)……………………...…………………………...22

Chapter 4 Dynamic Scheduling…………………….………………………………….26

 4.1Challeng and Approach……………………………………………………………..26

 4.2 AnyLogic Implementation………………………………….…………...………….26

 4.3 Simulation…………………………………………………………………………..27

 4.3.1 Procedure……………………………………………………………………………...28

 4.4 Termination Condition………………………………………….……...…………...31

 4.5 Results………………...…………………………………….………………………31

 4.5.1 Data Description …………………..……………………...….……………………...31

 4.5.2 Experimental Results………………...……………………………………………….32

 4.6 Conclusion…………………...………………………………….………………….36

Chapter 5 Distributed Optimization………………...….…………...………………...38

 5.1 Distributed Optimization for ALP………………………………………………….38

 5.2 Flight Scheduling Problem……………………...….………………………………40

 5.3 Centralized Formulation…………...……………….………………………………40

 5.4 Revenue and Cost Structure………………………………………………………...41

 5.5 Iterative Bidding Framework……………………………………………………….42

 5.6 Requirement-Based Bidding Languages……………………………....……………43

 5.7 Iterative Bidding………………………………………...…….……………………44

 5.7.1 Initialization…………….…………………....………………………………………..44

 5.7.2 Price Update and Bidding…………….….………….………………………………45

 5.7.3 Termination Checking……………………..………………….…...………………...47

vii

 5.7.4 Winner Determination………………………..……………………………………...48

 5.8 Example……………………………...……….…………………………………….49

 5.9 Data and Experimental Result…………………………………….………...……...50

Chapter 6 Conclusion and Future Work………...……...…….………………………54

Appendix I………………...……………………...………….………………………….56

Appendix II……………………...………………………………………………………58

Appendix III……………………………………..………....…………………………...62

Data ……………………………………...……………....……………………………...68

References…………………...…………………...………………….…………………..70

viii

List of Tables:

Table 3-1: Minimum Time Separation Between Landing Aircrafts 20

Table 4-1: ALP result with different objective function ... 32

Table 4-2: Aircraft landing time with 20 aircraft .. 33

Table 4-3: Simulation results with different arival rates .. 36

Table 5-1: Iterative bidding data set example ... 49

Table 5-2: Iterative bidding example result .. 50

Table 5-3: Experimental result of iteration bidding model ... 52

List of Charts and Figures:

Chart 4-1: Deviation of aircrafts target time with objective 3 .. 34

Chart 4-2: Deviation of aircrafts target time with objective 2 .. 34

Chart 4-3: Deviation of aircrafts target time with objective 1 .. 35

Figure 2.1: Directed graph network .. 8

Figure 3.1: Different maneuver techniques .. 9

Figure 3.2 Cost variation in aircraft time window .. 23

Figure 4.1:Approaching Aircraft to the runway ... 28

Figure 4-2: Controller Chart ... 29

Figure 4-3: Dynamic scheduling algorithm flowchart .. 30

Figure 5-1: Iteration bidding protocol... 45

1

Chapter 1: Introduction and Motivation

In this chapter Aircraft Landing Problem (ALP) is described. The challenges of the

problem are discussed. The approaches to tackle the problem and the main contributions

of this thesis are provided. Later, the overview of the thesis outline is explained.

1.1 Aircraft Landing Problem (ALP)

According to International Air Transport Association (IATA), demand for air travel

increases on average by 6.3% each year (IATA, 2016). This growth in demand results in

traffic congestion in landing aircrafts, takeoff aircrafts, taxi way at the runway. To tackle

this problem some changes like enlarging the en-route traffic capacity have taken palace

resulting in a shifting of the bottleneck from en-route to airports (Soomer, Franx, 2008).

One option to reduce traffic congestion at airports is to build new runways. Building a

new runway can be highly costly or impossible due to airport configurations. Another

option is to make the best use of the current resources. ALP optimization is an elective

tool to find the best solution in minimizing total related overall cost using available

resources.

While considering safety factors, Air Traffic Control System (ATC) must take several

criteria into account. Runway utilization is an important criteria to be considered in

airport management scheme. One way to achieve best usage of runway is to use aircraft

2

landing delay. Since runway scheduling, en-route scheduling, gate assignment and

baggage handling are linked with each other, aircraft delays have a great impact on whole

airline operations. Furthermore, punctuality is an important interest of airlines companies.

1.2 Challenges and motivation

When schedule landing time of the aircrafts, ATC attempts to establish the minimum

separation time between two aircrafts. Because of wake vortex effect depending on

aircraft weights and sizes, each aircraft must maintain a standard separation distance from

following and to leading aircraft. Wake vortex is caused by warm air from aircraft engine

leaving air turbulence behind causing air instability for the following aircrafts. These

challenges raise a need for optimized landing schedules meeting safety standards and

considering stakeholder interests.

In the literature, most mathematical models for aircraft landing scheduling consider a

fixed number of aircrafts that are already in the system ready to land at any time. Some of

these models may not consider some critical issues for practical implementation.

Another factor that affects runway scheduling is dynamic events such as aircraft new

arrival to the system, weather conditions, poor visibility and unforeseen technical

problems. These dynamic events may have a great impact on the scheduling process and

should also be considered

3

1.3 Contributions

This research considers a mathematical model for ALP the mathematical model is based

on that in Beasley et al (2000). Various objective functions such as minimizing total

aircraft delay time, makespan, and overall flight costs are considered. A position shifting

constraint with binary variable is also added to the model. The model was verified with

the generated data observed from YUL airport.

A simulation was developed with numerical experiments to investigate the impact of new

aircraft arrival to the system and its impact on the optimal solution of the ALP model.

The model is designed to reschedule the optimal solution by arriving new aircraft to the

runway area and assign the best landing time. The model was tested with several new

aircrafts arrival rate including rush hour and regular time at the runway, and the solutions

was compared with each other.

The main contribution of the thesis is to develop a negotiation framework for solving

ALP problem in a distributed optimization fashion. Considering decentralized

environment of the aircraft landing scheduling, an iterative bidding procedure is proposed

to schedule landing aircrafts in a wider time horizon where aircrafts negotiate for the best

landing time slot. In this thesis the distributed ALP problem is concerned with overall

cost reduction of the landing aircrafts. Furthermore, the efficiency of the decentralized

ALP model and the mathematical model was tested and compared with each other.

4

1.4 Outline of the thesis

In the next chapter, the Aircraft Landing Problem (ALP) research literature is reviewed.

In Chapter 3, a mathematical model is introduced for solving ALP. In Chapter 4, a

simulation model considering dynamic ALP decentralized models is introduced. In

Chapter 5, decentralized model for ALP problem is presented and the efficiency of the

proposed framework is investigated. Chapter 6 presents the summary and conclusions.

5

Chapter 2: Literature review

In this chapter, common approaches used to solve aircraft landing problem are explained.

Generally, ALP problem solving can be divided into two categories: exact optimization

and approximate solutions. Approximate solutions such as heuristics and meta-heuristics

are usually used for solving larger instances or when problems need to be solved with a

larger instances in real time.

2.1 Optimization Based Solution

In this section, optimization based approaches commonly used to solve ALP problems

are introduced.

2.1.1 Mixed integer programming

 Mixed integer programming (MIP) is widely used to tackle ALP problems. Solving MIP

by using optimization software is often time consuming. MIP models have been used as

base models to be solved by other methods such as dynamic programming or heuristic

algorithms. Beasley et al (2000) presented a mixed integer model for solving ALP with

single runway and extended it to solving multiple runways problem. In his model,

minimum separation time between landing aircrafts and time windows with preferred

landing time are considered. To minimize deviation between target and actual landing

time a solution method based on linear programming relaxation was developed. The

author also introduced a heuristic method to determine the upper bound on optimal

6

solution for tightening the time windows for each aircraft. Dirk Briskorn (2014)

developed several MIP models for both single and multiple runways. The author solved

each model in polynomial time but is not fast enough to be used for real time application.

Farhadi and Ghoniem (2014) studied Doha International Airport and proposed a heuristic

method based on a MIP model considering First Come First Served (FCFS) sequencing

approach with focus on delay and fuel cost reduction. Artiouchine (2007) proposed a MIP

model considering different holding patterns with airport tower controllers making

certain aircrafts to wait for certain amount of time before landing.

2.1.2 Dynamic Programming

Dynamic programming (DP) is a method which breaks the problem down into a sequence

of simpler problems and tackle the problems one by one using the answer of one stage to

get the answer of the next stage. It continues solving the problem until the best optimal

solution is reached. It divides the problem into different inter related stages where each

stage is solved independently from the next stage. DP models can be solved either

backward or forward. In the forward approach the first stage is the initial stage to be

solved while in the backward approach the first stage is considered as the final stage of

the problem.

DP method is a common approach for solving scheduling and sequencing problems, and

is widely used in solving aircraft landing and scheduling problem Psarafti (1976) first

used a backward dynamic algorithm for ALP solving problem in a single runway

considering constraint position shifting. The author first considered a number of aircrafts

waiting for landing where the preferred landing time for all aircrafts is equal to zero.

Likewise he proposed a dynamic programming algorithm for travel sales man problem.

7

He considered each aircraft as a node and minimum time separation as a link between the

nodes. The goal of his approach is to find aircraft sequencing where either aircrafts sum

landing time or latest landing time is minimized. Then he extended the model into two

runways case without considering CPS.

Bayen (2004) considered ALP as a single job shop problem with a given processing time

and deadline where the objective functions are minimizing the sum of starting time, and

minimizing the time of the last assigned job (makespan). He considered a holding time

for a single class of aircraft then solved the model with a combination of dynamic

programming and linear programming.

Brentell (2006) developed a forward DP model of Psarafti by considering earliest arrival

time for each aircraft. As an objective function, Brentell considered minimizing sum of

landing times. Each aircraft based on their classes should be sequenced in a non-

decreasing order of earliest arrival time. He also proposed a forward DP for holding time

where all aircrafts are circling in several holding patterns (stack) to be landed. Brentell

(2009) studied Stockholm Arlanda airport comparing FCFS sequencing policy with

several approaches. He implemented the algorithm into discrete event simulation for ALP

problem in a single runway. Using several statistical methods, he analyzed the effect of

sequencing algorithm on the ALP model, delay-sharing strategy, arrival rate and wake-

vortex mix.

Balakrishnan (2006) solved the aircraft landing and takeoff scheduling under constraint

position shifting, and introduced an acyclic directed graph where nodes represent a sub

sequence of aircraft landing order. She considered maximum position shifting which is

solved as a shortest path problem using DP algorithm. According to FCFS order aircrafts

8

are labeled 1 to n. There are n stages representing the final position of an aircraft in the

final sequence. Each stage includes several nodes with the length of min {2k + 1, P}

where k is maximum position shifting and p represents one stage. For example, for k=1

and p=5 then length of subsequence is 3 with the ending point of 5. An arc (i , j) from

node i in stage p to node j in stage p+1 represents minimum time separation between the

last and the first aircraft in their subsequence. In the subsequence the first {2k, p}

aircrafts of node j is the same as the last min {2k, p} aircrafts of node i. For instance, for

k=1 and p=5 there is a link between subsequence (2-4-6) in stage 5 and (4-6-5) in stage 6

(Figure 2.1).

 Figure 2.1.Directed graph network for P=6 and k=1 (Balakrishnan, 2006)

9

Nodes in each stage are all possible subsequences with the maximum position shifting of

1. Black nodes do not belong to any final sequence and is pruned from the network. The

main objective function is to minimize makespan of the CPS graph.

𝑇𝑗
∗ = max{ 𝑒(𝑗) , min(𝑇𝑖

∗ − 𝛿𝑖𝑗)} , 𝑖 𝜖 𝑝(𝑗): 𝑇𝑖
∗ ≤ 𝐿(𝑖)

The objective function finds the shortest path from the beginning(source) to each stage j

to the final node (sink) with respect to earliest e(j) , and latest 𝐿(j), landing time of

aircraft j, and the minimum separation time between node i and j, 𝛿𝑖𝑗 . 𝑝 (j) represents set

of subsequences that are feasible to node i. She also solved the problem for minimizing

the sum of delay of all aircrafts.

Lieder et al (2015) developed a dynamic programming algorithm for large instances with

different classes of aircraft in a multiple independent runways case. The model is solved

for a number of aircrafts up to 100 with a positive target time and time window. As an

objective function minimization of total delay subject to necessary separation time

between two landings are also considered.

2.1.3 Branch and Bound:

Ernest (1999) proposed a branch and bound method by developing a basic Mixed Integer

Programming (MIP) model of landing problem. The method minimizes penalty cost for

aircrafts that land ahead or after their target time. The model is subject to the time

window and necessary separation time constraints. They solved the problem by a set of

partial landing orders of aircrafts. A space search heuristic to determine an upper bound

for the branch and bound method is also proposed.

10

Beasley et al (2000) used linear programming tree search to solve the mixed integer

binary model. He showed that their model can deal with several issues such as: different

objective functions, precedence constraint and runway workload balancing.

2.1.3 Branch and Price:

Wen et al (2005) first developed a column generation exact algorithm for aircraft landing

problem. They proposed a mixed integer programming model, and reformulated it as a

set partitioning problem. Using the set partitioning problem an exact branch and price

algorithm is developed. Applying Beasley et al (2000) instances they tested their

algorithm for 50 aircrafts and four runways. The optimal solutions with less than 500

columns generated are produced in a reasonable computation time.

Ghoniem (2015) formulated a mixed integer problem which is solved by Branch-&-Price

algorithm that outperforms in the standard solvers. In his model they both considered

aircraft landing and takeoff time for a multiple runways problem.

2.2 Heuristic Based Solutions:

Heuristic based solutions are designed to find a close answer to the optimal solution in a

quick timing when the problem is too large or needs to be solved in a real time. In this

section most common heuristics approaches for the ALP are introduced.

2.2.1 Evolutionary Algorithm:

Genetic Algorithms (GAs) is one the most common approaches originated from evolution

theory which is based on natural selection process and genetics. It mimics biological

11

evolution. The basic process of GAs is divided into several steps: Initialization, Fitness,

Selection, Recombination and Evaluation. In the process, decision variables are

converted to set of string binary digits (gens), and an initial population (parents) is

generated. By applying genetic operators such as: mutation, cross over and selection new

generation of solution (children) is generated from the initial population.

In the crossover, the children will inherit/reject the common genes from the parents in an

equal chance. In mutation, new solution is reached by filliping binary variables in an

opposite way of the population with a certain probability, and selection operator chooses

new generation based on the fitness function.

Pinol and Beasley (2006) considered multiple runways for aircraft landing problem. They

presented two population heuristic algorithm Scatter search and bionomic algorithm.

Scatter search relies on deterministic process instead of randomness. Opposite to the

Genetic Algorithm, scatter search is not limited to binary variables. Bionomic algorithm

is less used algorithm among other heuristics. It is based on a graph which represents

parents and population structure. In their research two different objective functions are

considered: a non-linear and a linear objective function. Linear objective function

penalizes deviation of earliness and lateness from the target time. The nonlinear objective

function penalizes a quadratic of positive and negative deviation from landing after and

before target time. They used Operation Research (OR) data base of Beasley et al (2000)

for a large number of 500 aircrafts.

Hu and Di Paolo (2008) used the neighboring relationship between every two aircrafts to

build a chromosome as a binary zero-one matrix. The matrix can be adopted as a uniform

12

crossover operator. Using simulation study they showed that the binary-representation-

based GA outperforms the permutation representation-based GA algorithm.

Hu and Chen (2005) proposed a new genetic algorithm in a dynamic environment. The

algorithm is solved using Receding Horizon Control (RHC) for the problem of arrival

scheduling and sequencing (ASS).The goal is to minimize the total delay. The total delay

is deviation of the actual landing time from the earliest landing time. To test their

algorithm, problem instances of Bianco et al (1997) is used, and they compared their GA

performance with the approach of Bianco et al (1997).

2.2.2 Local Search:

Local search is one of the common heuristic methods that find the best solution in a

search space. Local search tries to make improvement by comparing the solution with

other search spaces. The common approach is to start with an initial solution and replace

it with a better solution by exploring other neighborhoods. The procedure is to start with

an initial solution to find the local optimal solution. Then, it moves to another

neighborhood until no better solution can be found. The drawback of the local search

algorithm is that the solution is in the local optimal solution and it may be trapped to a

search space while there exist a better solution. To avoid this problem some efficient

approaches based on the problem’s structure were introduced.

Soomer and Franx (2007) implemented a local search heuristic for landing problem in a

single runway. Their algorithm is designed to find an optimal sequence of flights and

landing times. Furthermore, a MIP model for aircrafts sequencing is provided. Using

neighborhood of the flights sequence, local search tries to improve it in a way that a new

sequence does not change significantly from the previous solution.

13

Liu (2015) proposed a Genetic local Search (GLS) algorithm. GLS implements local

search into genetic algorithm framework. In the GLS local search is used to improve the

initial population that is randomly generated in the first step where aircrafts landing times

is assigned.

2.2.3 Tabu Search:

Tabu Search (TS) is an extension of local search algorithm with the difference that it has

capability of not being trapped in a local optimal solution. To find the best possible

solution Tabu Search iteratively moves from one neighborhood to another. Using a

memory based structure it creates a list of tabu moves that already investigated. TS has

the ability of searching for a better solution in other areas that classic local search

algorithm might not be able to explore. Similar to the local search algorithm, the

exploring procedure can be terminated by a predefined function.

In the runway scheduling, TS algorithm is mostly used for takeoff and rerouting problem.

For example, Sema et al (2014) used TS algorithm for aircraft rerouting problem for two

runways in Milan Malpensa Airport. As an objective function minimization of maximum

delay is considered.

2.2.4 Simulated Annealling:

Simulated Annealling is a stochastic neighborhood search algorithm where it starts by

randomly generating an initial solution and compare the cost with its neighborhood. The

process is terminated until the optimal or near optimal solution is reached. One of the

advantages of simulated annulling is the capability of not being stuck in the local optimal

points.

14

Salehipour et al (2009) used simulated annealing and Variable Neighborhood Search

(VNS) method to tackle ALP problem and runway assignment. To acquire more efficient

result the initial solution is reached by genetic algorithm.

2.2.5 Ant Colony:

Ant Colony algorithm is based on real ant colony behavior where the ants try to find the

shortest path to their nest or source of food, and it’s been used wildly for combinatorial

optimization problems. In the literature review, several approaches based on ant colony

optimization were proposed for solving ALP problem. For instance, Zhan et al (2010)

used ant colony optimization algorithm to solve ALP problem in a congested situation.

As an objective function their algorithm tries to reach the optimal sequence with

minimization of total aircrafts delay time.

2.3 Distributed Optimization

Distributed optimization is a decentralized approach where there is neither global control

nor global data storage. In the decentralized approach tasks are usually distributed

between different parts of the system such that the work load of the optimization and

control is spread out during different parts of the system. Distributed optimization

approaches can results to a higher speed and reliability of the problem solving process.

Distributed optimization can be referred as Agent Based model when there are certain

numbers of collaborating agents. The agents have their own goals or tasks to accomplish.

15

G.SMITH (1990) developed the Contract Net Protocol to determine a distributed problem

solver which includes negotiation process. In his approach nodes with specific tasks are

defined in a way that none of the nodes has sufficient data to solve the problem and

negotiation between nodes is necessary to achieve the global solution. The negotiation

process is designed that each node is capable of communicating with every other nodes.

In his algorithm each node can take either controller role, manager or they can get both

rolls at the same time for different contracts. Manager is in charge of processing the

results of the execution where controller is in charge of the actual execution.

A contract is built by mutual communication between managers and controllers.

Managers announce tasks to be evaluated by controllers. Controllers send a bid to those

tasks that suits them. The manager evaluates the bids and awards contracts to the nodes

that are most appropriate. Then the negotiation process may be iterated. The controllers

play a roll of manager and assign tasks to the other nodes. The whole process can be

divided into several steps including: Task announcement, task announcement processing,

bidding, bidding process, contract processing, and termination.

In the task announcement a node announces a task including information such as: a brief

description of the task, eligibility that nodes have to meet to be able to participate in the

negotiation process, biding criteria and expiration date of the task which is a deadline for

the nodes to bid the task. In the announcement processing part each node checks for the

eligibility once that it receives the announcement. Then, it ranks the task according to its

criteria. In the bidding once a node receives different tasks, it selects the one that is most

attractive and submit the bid. In the bidding process, a node has a list of bids from

different nodes after collecting all the bids. Then, the node awards the one that is most

16

appropriate for the task. After winning the contract, the controller and the manager

communicate with each other to give the sufficient information for the task to be done.

The manager can terminate the task processing after or before the job is done.

In the agent based approach, one of the main issues is to define the structure of the

system. Defining the structure of the system facilitates communication and task

distribution between agents to get the most appropriate result. Shen (2006) provided a

comprehensive agent based review on the works that have been done in the

manufacturing process planning and scheduling. He compared agent based approach with

the traditional approaches. Tumer (2007) developed an agent based system for air traffic

flow management and tested the model in the FACET – an air traffic flow simulator

developed at NASA. In their multi agent algorithm they considered “fixes” ground

aircraft controller, as an agent. The agents are responsible for aircrafts that are in their

area to keep safe distance between each other. Through a reward processing, each agent

learns the best value for the safe distance between other aircrafts such that it benefits both

individual agents and overall system.

Patrice Godin (2005) used MAS as a decentralized model for dynamic outpatient

scheduling problem where some booked timeslots are canceled. The manager allocates

time slots to the patients. They introduced three kinds of agents of outpatient agent,

directory facilitator and diagnostic service. The outpatient agents represent patients

assistant that keep the schedule updated. Directory facilitator agent collects information

from outpatients and provides registration. Diagnostic service agent plays a role of the

clinic secretary. The agent works through the negotiation protocol to achieve an overall

solution for the time slot allocation problem.

17

Sousa (1999) introduced a Holonic Architecture for the dynamic scheduling of

manufacturing systems. Using the contract net protocol, the author developed a

negotiation protocol. The negotiation protocol is able to adopt dynamic changes and

some conflicts between agents.

There are several papers used auction based theory to develop airlines networking and

scheduling. For example, George L. Donohue et al (2003) studied an auction based model

for allocation of system airspace resources. Dian Sheng et al (2015) developed auction

based system to allocate time slots to the airlines where there is an uncertainty in demand.

S.J. Rassenti et al (1982) introduced sealed-bid combinatorial auction for airlines which

allows the airlines to compete over landing or takeoff slots.

18

3. Mathematical Model

In this chapter, ALP problem is studied. General definitions and constraints are

described. In order to implement the model in dynamic optimization and decentralized

algorithms in chapter 4 and 5, a MIP model based on Beasley et al (2000) model is

introduced. The model considers a single runway for landing only. In the MIP model, we

assume that there is a fixed set of aircrafts reaching the runway requesting a landing time

to be allocated by the controller in the control tower. In addition, we assume that we

already know all the information (such as aircraft preferred landing time, velocity, time

window, etc.) that is needed to generate landing schedule for each aircraft. The set of

aircraft is known and fixed when the aircraft reach the Extended Terminal Maneuvering

Area (E-TMA) 30 to 40 minutes before their landing. The aircraft approaching the

runway are under control of the Terminal Radar Approach Control (TARCON). Finally,

the landing time is assigned to an aircraft when it reaches the final path 20 minutes before

their target landing time.

3.1 Definitions:

In this section common terms and definitions used in the ALP problem model are

described.

19

3.1.1 Holding and Maneuvers

Holding an aircraft in the air may happen when an aircraft arrives earlier than the

scheduled time or due to the traffic congestion, bad weather conditions, and emergency

situations. Several aircrafts can be on hold at the same time. ATC rules require that the

late aircrafts go on hold in a descending order of altitude. The holding patterns have

several restrictions that each aircraft must follow depending on its type, speed, and

runway situation. To hold an aircraft, there are four main techniques used by the

controller including vector for space (VFS), holding pattern (HP), detour, and shortcut.

Figure 3.1 illustrates the techniques commonly used to hold an aircraft.

Figure 3.1 different maneuver techniques (Mesgarpour, 2006)

3.1.2 Minimum Time Separation:

The most important safety factor to schedule aircraft landing is minimum time separation

which is established by the International Civil Aviation Organization (ICAO). Because of

wake vortex effect between each pair of aircrafts, the trailing aircraft should maintain a

minimum separation space to avoid danger of instability that is caused by the leading

20

aircraft. Minimum time separation mainly depends on aircraft weight as shown in table

3.1.

According to the ICAO weight category, aircrafts are classified in three types of heavy,

medium and light type. For example, aircrafts Boeing B777 and Airbus A330 are heavy

aircrafts and aircraft Boeing B737 and Airbus A320 models are medium and Bombardier

CRJ700 and Embraer Z145 are light aircrafts.

Let a, b and c represent the aircraft classes heavy, large and small respectively, and 𝛿 is

the time separation between each two classes. Equation 1, triangle inequality, ensures that

the time separation between sequencing aircrafts from different classes is met.

For all aircraft class a, b and c: 𝛿𝑎𝑐 ≤ 𝛿𝑎𝑏 + 𝛿𝑏𝑐(Equation 1)

Landing (second) Trailing Aircraft

Leading Aircraft Heavy Large Small

Heavy(greater than 300 000 lb) 96 157 196

Medium(between 15 500 and 300 000 lb) 60 69 131

Light(less than 15 500 lb) 60 69 82

 Table 3.1 Minimum separation time between landing aircrafts (ICAO)

3.1.3 Time Window Constraints:

In aircraft landing schedule, each aircraft has earliest landing time (ELT) and latest

landing time (LLT). The scheduled landing time (LT) of an aircraft, should be between

ELT and LLT. The earliest landing time is based on the maximum safe speed at which an

aircraft can land. The latest landing time is based on the amount of fuel carried by the

aircraft and the maximum time for which it can be on hold before landing.

21

3.1.4 Precedence Constraint

The precedence constraint is usually determined by airlines in order to apply particular

operations, and manage urgent flights. The constraint restricts some flights from being

overtaken by other flights on the same route.

3.2 Objective Function:

In the ALP problem, a variety of stakeholder interests are involved. In order to consider

stakeholder interests different objective functions are considered in the related literature.

The stakeholders are Air Traffic Control (ATC), Airports, Airlines, and Governments.

Each of the stakeholders has their own specific objectives that may be in conflict with

others. The most used ALP objective functions in the literature are:

-Minimizing makespan

-Maximizing runway utilization

-Minimizing total delay

-Minimizing deviation from planed landing time

-Minimizing environmental effect (noise and pollution)

In our model, we considered three objectives. The first objective is to minimize

makespan which minimizes the last actual landing time of the aircraft. Minimizing the

makespan is equivalent to maximizing the runway throughput. To consider airline’s point

of view, we set the second objective to minimize the total delay of all aircrafts. The last

22

objective includes minimizing of the unfairness. Minimizing unfairness means to spread

out the delay time caused by minimizing the make span through all aircrafts.

3.3 Mathematical Model:

In this section we introduced mathematical ALP model which is based on the Beasley

(2000). Beasley modeled the scheduling landing problem using a mixed integer zero-one

formulation. The objective function is to minimize the makespan (Equation 1). He also

considered the objective function to minimize deviation from the aircraft’s target time

(Equation 2). The target time is the time when an aircraft lands in its most economical

speed known as cruise speed.

𝐿𝑇𝑖 represents the actual landings time of aircraft i where there is a fixed set of p aircrafts

waiting in line.

Minimize maximum [𝐿𝑇𝑖 , 𝑖 = 1, . . , 𝑝] (Equation 1)

To consider deviation from target time of all aircrafts (Equation 2) is implemented.

TW = ∑ max{ 𝑇𝐺𝑖
𝑛
𝑗=1 − 𝐿𝑇𝑖 , 0 } + ∑ max {𝐿𝑇𝑖 − 𝑇𝐺𝑖

𝑛
𝑗=1 , 0} (Equation 2)

The given 𝑇𝐺𝑖 represents the preferred landings time of aircraft i. Figure 3.2 shows the

variation in cost of aircraft's time window from equation 2.

23

To include fairness in actual landing time assignment to all the aircraft the last objective

(Equation 3) is considered.

∑
𝐿𝑇𝑖

𝑝

𝑝
𝑖=1 (Equation 3)

3.3.1 Constraint Position Shifting (CPS):

Constraint Position Shifting (CPS) is used to prevent the model from placing an aircraft

far away from its initial position in the FCFS order. The CPS constraint first was

introduced by Dear (1989) and developed by Balakrishnan (2007).

CPS constraint maintains fairness among all aircraft by not allowing them too much

deviation from their position in FCFS order. It implies that aircrafts cannot move more

than a certain number from their first position in FCFS order. For example, if the number

of allowed moves is 2, for an aircraft with 4th position in FCFS order, only position of

2th, 3th, 4th, 5th, and 6th can be taken. In our model in order to define such a constraint we

used the binary decision variable 𝑥𝑖𝑗 indicating the order of actual landing time. To

indicate initial position of each aircrafts in FCFS order we defined 𝐹𝑖𝑗. We defined the

Figure 3.2 cost variation in aircraft time window (Beasley et al, 2000)

24

constraint in a way that all aircrafts have the flexibility of moving one position backward

or forward from their initial position in the FCFS order.

Decision variables:

𝑥𝑖𝑗 = {
1 𝑖𝑓 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑖 𝑙𝑎𝑛𝑑𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝐿𝑇𝑖𝑏 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑙𝑎𝑛𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑖 𝑡𝑦𝑝𝑒 𝑏

Objective Function:

Minimize max 𝐿𝑇𝑖 + TW + ∑
𝐿𝑇𝑖

𝑛

𝑛
𝑖=1

Subject to:

1) 𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1 ∀ 𝑖, 𝑗 ∈ 𝑁 , 𝑖 ≠ 𝑗

 2) 𝐿𝑇𝑖𝑎 + 𝛿𝑎𝑏 ≤ 𝐿𝑇𝑗𝑏 + 𝑀(1 − 𝑥𝑖𝑗) ∀ 𝑖, 𝑗 ∈ 𝑁 , 𝑖 ≠ 𝑗 𝑎, 𝑐 ∈ 𝐶

 3) 𝐿𝑇𝑖𝑏 + 𝛿𝑏𝑎 ≤ 𝐿𝑇𝑗𝑎 + 𝑀(𝑥𝑖𝑗) ∀ 𝑖, 𝑗 ∈ 𝑁 , 𝑖 ≠ 𝑗 𝑎, 𝑏 ∈ 𝐶

4) 𝐸𝐿𝑇𝑖 ≤ 𝐿𝑇𝑖 ≤ 𝐿𝐿𝑇𝑖 ∀𝑖 ∈ 𝑁

 5) 𝐿𝑇𝑖𝑝𝑖𝑗 ≤ 𝐿𝑇𝑗 ∀ 𝑖, 𝑗 ∈ 𝑁 𝑖 ≠ 𝑗

 6) 𝑥𝑖𝑗 = 𝐹𝑖𝑗 ∀ 𝑖, 𝑗 ∈ 𝑁 𝑖 ≠ 𝑗 + 1 & 𝑖 ≠ 𝑗 − 1

 𝑥𝑖𝑗 ∈ {1, 0} ∀ 𝑖, 𝑗 ∈ 𝑁 𝑖 ≠ 𝑗

 𝐿𝑇𝑖 ≥ 0 ∀𝑖 ∈ 𝑁

25

The objective function minimizes the last assigned landing time to the aircraft, the

deviation from all aircraft’s actual landing time, and unfairness among all the aircrafts.

Constraint (1) ensures that either aircraft 𝑖 lands before aircraft 𝑗 or aircraft 𝑗 lands

before 𝑖. Constraint (2) and (3) consider minimum time separation between each pair of

aircrafts. Constraint (4) represents aircraft’s time window such that each aircraft should

land between its earliest and latest possible landing time. Constraints (5) represents

precedence constraint where 𝑝𝑖𝑗 is a binary variable with the value of 1 if aircraft 𝑖 must

land before aircraft 𝑗, and 0 otherwise. This constraint ensures that if aircraft 𝑖 must lands

before 𝑗 then aircraft 𝑖 is scheduled earlier than aircraft 𝑗. Sources of such constraints are

the airlines themselves, which have precedence constraints due to priority flights. In

addition, arrivals on the same jet route are constrained to not overtake each other.

Precedence constraints can also represent the restricted freedom available to taxiing

departures that are not allowed to overtake each other (Balakrishnan, 2010) (Carr, 2004).

The last constraint ensures that aircrafts can only move one position from FCFS order.

In this model aircrafts occupancy time, the time from runway touchdown until leaving the

runway and required maneuvering time are not considered. The model was solved and

verified in OplCplex Optimization Studio 1263 software, and the results are discussed in

the next chapter.

26

Chapter 4. Dynamic Scheduling

In this chapter, in order to study the impact of new aircraft arrival on the aircraft landing

scheduling, dynamic ALP optimization problem using AnyLogic simulation software is

investigated. A brief overview of the AnyLogic environment is described and the

implementation of the model into the software is explained.

4.1 Challenges and Approach:

Runways are highly dynamic areas which directly affects the scheduling. These dynamic

events that happen at the airport are one of the issues of implementing the ALP model.

One of the most dynamic events that affects the aircraft landing scheduling is the new

arrival of aircrafts to the airport. While the static models consider a fixed number of

aircrafts, there is a new aircraft appearing to the radar system every few minutes. Due to

the obligatory minimum time separation, the utilization of the runway mainly depends on

the order of aircraft’s landing. For instance, the makespan for five heavy types of aircrafts

following by another five but light weight aircrafts is much less than the makespan of a

heavy type followed by one light weight in the sequence.

 After scheduling a fixed set of aircrafts and putting them in an optimal order, when a

new aircraft comes to the system it may be more efficient to put the new aircraft in the

last or second last in the optimal order. For example, if we already scheduled ten

aircrafts, scheduling the new aircraft in the 9th or 10th position may results in a better

27

utilization of the runway, instead of ignoring the new arriving aircraft. The traditional

way to tackle this problem is to run the static model over and over waiting for the new set

of aircrafts to arrive to the system. This approach is not very efficient because it does not

consider the minimum time separation between the last aircraft in the optimal sequence

and the first aircraft in the new set. Furthermore, the number of aircrafts in the set to

solve the problem can be an issue itself. To include this dynamic event of aircraft new

arrival, we implemented ALP problem using AnyLogic simulation software.

4.2 AnyLogic Implementation

AnyLogic is a simulation tool that covers three methodologies framework including:

Agent Based models, Discrete Event Simulation models and System Dynamics. Each of

these features is used for different level of abstraction and complexities. The software

was written based on Java Script and gives the flexibility to structure environments with

different abstraction level. In addition, there is a solver engine OptQuest that is used for

linear programming optimization purposes.

4.3 Simulation

To study the impact of the dynamic events at the runway, we simulated the ALP model

where aircrafts appear on the system making the controller reschedule the model with

updated information. To have more flexibility on communication between aircrafts and

the controller, we used the agent based framework where there is a main environment

28

agent, aircraft agent, and the controller agent. The main agent is the environment of the

runway including aircraft agent and controller agent. Aircraft agent is responsible for

generating new aircraft arrival every few minutes and assigning attributes to each of them

randomly. The aircraft’s attributes include the type, earliest and latest landing time and

aircraft’s number.

4.3.1 Procedure:

 Once an aircraft arrives on the system, it sends its information to the controller agent.

The controller agent receives the aircraft’s information and puts them in the collection

list. The collection list is a module that keeps necessary information for the optimization

part. Figure (4.1) shows aircrafts approaching on the runway from different zone. Zone C

is the place for those aircrafts that have not appeared in the controller’s radar yet.

Aircrafts in zone B are those who send their information and participate in rescheduling

every time a new aircraft arrives to this area. Zone A is for aircrafts who are too close to

the runway to participate in rescheduling. These aircrafts are not allowed to get new

landing times and are excluded from the collection list.

Figure 4.1 Approaching aircrafts to the runway

29

As it is shown, the controller runs the model with an objective function of minimizing the

maximal landing time with the constraints, which was mentioned in the previous section.

A new aircraft appearing on the radar in zone B makes the controller run the optimization

model to assign temporary landing time to the aircraft. Those aircrafts that are too close

to the runway will keep their last assigned landing time as their actual landing time and is

removed from the system.

Figure 4.2 Controller chart

The figure (4.2) shows the environment of the controller agent. The communication

between agents is adjusted through the Connection module. To show the behavior of the

controller, the state chart is used. The normal state of the controller agent is to wait for a

30

new aircraft arrival. Once a new aircraft arrives on the system, a massage is sent from the

aircraft agent to the controller. Then the controller changes its status to the checking state.

In the checking state, the controller looks for those aircrafts who are not eligible for the

scheduling optimization, and removes them from the collection list. Having updated

information, the controller agent sends a message to the Function module to run the

optimization model. Function is the module where the OptQuest solver is called. Once

the model is solved the controller announces the landing times to the aircrafts and returns

to the waiting status looking for new aircrafts to join the system.

 The language of the solver engine is based on Java Script and the optimization model is

written by calling the OptQuest library. The results of the simulation are shown in the

next section.

Figure 4.3 Dynamic Scheduling Algorithm Flowchart

New
Arrival

Announce
the Result

Call the
Solver

Add to the
Collection List

More Than
Three?

Too Close
to the

Remove From the
Collection List

Yes

Yes

No
oo

No

31

4.3.2 Termination:

To maintain the minimum separation time between aircrafts, one cannot be removed from

the set when time separation between them is applied. To avoid such a problem the

participation in scheduling optimization model can be terminated when a new arrival

aircraft’s time window does not overlap with the other aircraft’s time windows. The

largest minimum separation time between two aircrafts is three minutes (Table 3.1).

When the time window of the new aircraft does not overlap with other aircrafts, the

minimum separation time between the new aircraft and other aircrafts is met. The landing

time of the new aircrafts will be at least as big as the separation time between all other

aircrafts and the new aircraft. Checking the aircrafts time window, the controller can

terminate the optimization and assign the actual landing time to the aircrafts.

4.5 Results:

In this section the data and the results of the ALP model and simulation implementation

is shown.

4.5.1 Data Description:

The aircrafts time window data is set according to the OR library ALP problem. Each

aircraft time window’s length varies from 6 to 8 minutes, and target time is on average 2

minutes after earliest arrival time. For the aircrafts type we studied Pier Eliot Montreal

Airport (YUL) aircrafts arrivals within a week of April 2017. According to the data that

we collected 59% of the aircrafts were medium weight, 31% light weight, and 10% of

them were heavy weight. The average arrival rate of aircraft in a busy day was 0.25

32

Table 4.1 ALP with different Objective functions with up to 50 aircrafts

aircrafts per minute or one aircraft every 4 minutes, and it varies to one aircraft every 7

minutes (www.skyscanner.ca).

4.5.2 Experimental Results

The static model is run with three different objective functions up to 50 aircrafts as larger

instances cannot be solved in a reasonable time. We run the model for each objective

separately as each objective function can be used in a certain situation. Objective number

one considers minimizing the makespan which is applicable during rush hours at the

airport which happens during high seasons in the weekends. Objective number two

considers minimizing total delay, and Objective number three consider both objectives

number one and two in addition to the fairness.

Table 2 shows the impact of using different objective functions to the aircrafts landing

time. The model is solved for 20 aircrafts and the data, and the actual landing time for

each objective is shown. The number in the first column shows the position in the FCFS

order. The actual landing times is set to an increasing order. For instance, second row

shows that aircraft with the third position in the FCFS lands at 51.04 as a second aircraft

in the set.

No. Aircrafts Obj 1 (min) Time (sec) Obj 2(min) Time(sec) Obj 3(min) Time(sec)

10 81.34 0.12 4.29 0.12 151.02 0.25

20 116.19 0.14 9.39 0.12 208.651 0.20

30 273.97 0.18 9.83 0.24 401.89 0.23

40 379.31 0.26 11.68 0.32 584.06 0.33

50 455 0.32 15.25 0.33 697.83 0.39

33

Table 4.2 ALP position shifting with 20 aircrafts

Charts 4.1 to 4.3 show the deviation from actual landing time and target time for 50

aircrafts .The black line represents target time and the points represent the actual

Landing time.

Chart 4.1 shows the makespan and the actual landing time of 50 aircrafts. The model was

solved with objective function 3 of minimizing the total tardiness, makespan and

unfairness. As the chart indicates, 41 aircrafts land according to their target time where

the total tardiness is 15.59 with the makespan of 457.32.

Position

(FCFS)

Type Earliest

Landing

Time(min)

Latest

Landing

Time(min)

Target

Time(min)

Actual

Landing

Time Obj 1

Actual

Landing

Time Obj 2

Actual

Landing

Time Obj 3

1 Medium 38.81 45.78 39.83 38.81 39.83 39.83

3 Medium 44.45 51.04 45.77 51.04 45.77 45.77

2 Small 54.66 61.46 55.66 57.82 55.66 55.66

4 Small 58.82 65.02 61.06 58.82 61.06 59.77

5 Medium 60.60 66.85 62.39 61.44 63.68 62.39

6 Heavy 67.13 73.78 70.09 72.24 70.09 70.09

7 Medium 68.82 75.73 70.83 73.39 72.61 72.61

8 Heavy 69.39 75.57 71.49 75.57 71.46 71.46

9 Small 79.85 86.83 82.56 79.85 80.13 80.13

10 Medium 80.34 87.22 82.75 82.47 82.75 82.75

11 Medium 81.25 87.37 83.48 83.62 83.9 83.9

13 Medium 81.98 88.06 84.34 87.43 86.38 86.05

12 Small 83.62 90.05 85.38 90.05 85.38 85.05

14 Small 88.36 95.13 90.22 91.05 90.22 90.22

15 Medium 95.96 101.99 97.87 98.06 97.87 97.87

16 Heavy 100.24 107.17 102.42 100.24 101.02 101.02

17 Medium 100.78 107.70 102.17 105.95 102.17 102.17

18 Heavy 102.02 108.13 104.54 108.13 104.54 104.54

19 Small 110.18 116.95 111.75 110.18 111.75 111.75

20 Medium 116.19 122.77 118.30 116.19 118.3 116.19

34

Chart 4.2 Deviation of aircrafts target time for objective 2

Chart 4.1 Deviation of aircrafts target time for objective 3

35

Chart 4.3 Deviation of aircrafts target time for objective 1

Comparing chart 4.1 and 4.2, obviously using objective function 2 of minimizing total

tardiness results into less deviation in target landing time where the total tardiness stands

at its minimum amount of 15.25 and the makespan of 459.94 has only 2 minutes and a

few seconds difference compared with objective function 2.

As chart 4.3 illustrates the propagation of aircrafts actual landing time is at its higher

level when most of the landing time occurred toward earliest landing time. In this case

the Air Traffic Controller (ATC) makes the best usage of the runway whiles the total

tardiness stands at its highest rate 130 with the makespan of 455.44.

Table 4.3 shows the results observed from running simulation with three arrival rates.

Based on our observation from Pier Eliot Montreal Airport (YUL) during the busiest time

of the year in the weekend our minimum arrival rate is set to 4 minutes which changes to

10 minutes during regular time in the weekdays. Based on the dynamic optimization

algorithm the maximum number of aircrafts participates in the scheduling optimization is

36

16 when the arrival rate is set to be 4 minutes where the last landing times occurs at

142.67.

Mean Inter Arrival

Time (minute)

Maximum Number of Aircrafts Objective Maximize Utilization

4 16 142.67

5 13 112.86

10 5 67.93

Table 4.3 simulation result with different inter arrival time

4.6 Conclusion:

In this chapter a static model has proposed. The model includes three different objective

functions. Each objective function applies for different situations. As the results show the

best utilization of the runway can be achieved by using the first objective function. The

disadvantage of using the first objective function is large deviation from aircrafts target

time. Similarly using the second objective function leads to the minimum total delay time

of the aircrafts making the makespan much larger. And the last objective function results

into a reasonable total delay time and the runway utilization. As a conclusion the first

objective function maximizing runway utilization can be used during rush hours at the

airport and the last one can be used during regular hours. In addition, applying

Constraint Position Shifting makes the ALP problem more practical. As it is shown in the

table 2 according to the FCFS order there is no more than one movement in the optimal

sequence.

To implement the static model AnyLogic simulation software has been used. The

dynamic feature of the aircraft landing problem for different aircrafts arrival rate has been

37

studied. For the simulation part the first objective function, maximizing the runway

utilization, has been used. Based on Table 4.3 the result is as the same as what we

expected in the static ALP model.

38

Chapter 5. Distributed Optimization

In this chapter we introduce an agent based scheduling system to minimize the overall

cost of aircraft landing problem in a decentralized fashion. To develop a decentralized

scheduling algorithm, iteration bidding frame work is implemented and the result of the

algorithm is compared with ALP centralized model introduced in chapter 3 and 4.

5.1 Distributed Optimization for ALP

During last two decades distributed optimization gained more attention for large

problems. Distributed optimization is coordination of different agents among where each

agent is responsible for its own decision making problem. In the distributed optimization

the workload of the problem is distributed between the agents, and opposite to the

centralized model there is no data storage at one place where local decision making in a

decentralized approach contributes to a global solution in the system. In the following

section the landing problem for decentralized aircraft landing is described, procedure

steps and the mathematical model is explained, and an example is illustrated.

We consider the ALP problem in a wider time horizon where aircrafts are willing to

schedule their landing time at the airport. This situation happens during bad weather

situation when there is a cancelation so the airlines need to reschedule their landing time at

the runway.

We focus on a setting where aircrafts may have different cost of landing within different

time windows. The ATC needs to schedule the flights in a way that aircrafts minimum

39

separation time constraints are satisfied, all the time windows are assigned in runway and

at the same time, the overall costs are minimized.

We formulate the ALP model with the objective of reducing the overall flight costs. The

model is basically the same as the ALP model introduced in chapter 3 and used in chapter

4 for dynamic scheduling.

In the decentralized approach, we designed aircraft landing problem in a way that the

flights are modeled as self-interest agents and the cost of landing time window is their

private information, which is not known to the ATC. The objective of the airline company

is to maximize its profit which is the difference between the flight revenue and the cost for

landing within the assigned time window. On the other hand, the objective of the ATC

agency is to maximize the overall price from covering all flights while the cost of each

flight is unknown.

We design a negotiation framework to solve the ALP. The framework is implemented by

an iterative bidding procedure. It also provides flight scheduling process automation,

which allows the ATC agency and the flights to construct efficient service schedules.

The rest of the chapter is organized as follows. In section 3, ALP model is described.

Section 4 presents the structure and components of the proposed iterative bidding

framework. Section 5 evaluates its performance through a computational study.

40

5.2 Flight Scheduling Problem

As it was mentioned before, we consider the ALP problem in a decentralized environment

in which the costs of flights are unknown to the ATC. In order to compare the results with

the decentralized approach. We reformulate the ALP model in a wider time horizon with

the objective function of overall cost reduction. Since we consider ALP in a wider time

horizon we refer it as a landing flight scheduling problem. In this section, we first

introduce the binary model in a centralized environment to demonstrate the newly

introduced features.

5.3 Centralized Formulation

For the centralized flight scheduling problem we formulate ALP with binary decision

variable. The flight scheduling problem consists of a set of 𝑛 aircrafts and an air traffic

controller. The aircrafts land in a runway and the minimum time separation between

aircraft class 𝑎 and aircraft class 𝑏 is denoted by 𝛿𝑎𝑏. An aircraft 𝑖 has an earliest possible

landing time 𝑒𝑙𝑡𝑖and a latest possible landing time 𝑙𝑙𝑡𝑖. The aircraft will not land before its

earliest possible landing time or after the latest possible landing time. We assume that𝑟𝑖is

the flight revenue of aircraft 𝑖 which lands before.𝐶𝑖𝑡represents the cost of aircraft

𝑖 landing at time 𝑡. Let 𝑍𝑖𝑡be 1 if aircraft 𝑗 lands at time 𝑡 ∈ 𝑇and 0 otherwise.

Consequently the actual landing time of aircraft 𝑖 is 𝑍𝑖𝑡. 𝐿𝑇𝑡. The ALP involves the

scheduling of exact landing times such that all the scheduling constraints are satisfied and,

at the same time, the over profit is maximized. Let 𝑥𝑖𝑗 be a binary decision variable with

41

the value of 1 if aircraft 𝑖 lands before aircraft 𝑗 and 0 otherwise. With this assumption, we

can conveniently model the problem as a mixed integer program.

𝑚𝑖𝑛 ∑ ∑ (𝑍𝑖𝑡
𝑇
𝑡 ∗𝑛

𝑖 𝐶𝑖𝑡)

Subject to:

 𝑥𝑖𝑗 + 𝑥𝑗𝑖 = 1 ∀ 𝑖, 𝑗 ∈ 𝐴 𝑖 ≠ 𝑗 (1)

 𝑒𝑙𝑡𝑖. ∑ 𝑍𝑖𝑡
𝑚
𝑡 ≤ ∑ 𝑍𝑖𝑡

𝑚
𝑡 . 𝐿𝑇𝑡 ≤ 𝑙𝑙𝑡𝑖 ∀ 𝑡 ∈ 𝑇, ∀ 𝑖 ∈ 𝐴 (2)

 ∑ 𝑍𝑖𝑡𝑎
𝑚
𝑡 . 𝐿𝑇𝑡 + 𝛿𝑎𝑏 ≤ ∑ 𝑍𝑗𝑒𝑏

𝑚
𝑒 . 𝐿𝑇𝑒 + 𝑀(1 − 𝑥𝑖𝑗) ∀ 𝑡 ∈ 𝑇, ∀ 𝑖, 𝑗 ∈ 𝐴 𝑖 ≠ 𝑗 (3)

 ∑ 𝑍𝑗𝑒𝑏
𝑚
𝑒 . 𝐿𝑇𝑒 + 𝛿𝑏𝑎 ≤ ∑ 𝑍𝑖𝑡𝑎

𝑚
𝑡 . 𝐿𝑇𝑡 + 𝑀(𝑥𝑖𝑗) ∀ 𝑡 ∈ 𝑇, ∀ 𝑖, 𝑗 ∈ 𝐴 𝑖 ≠ 𝑗 (4)

 𝑥𝑖𝑗 , 𝑍𝑖𝑡𝑎 ∈ {1,0} ∀ 𝑖, 𝑗 ∈ 𝐴 𝑖 ≠ 𝑗 , ∀ 𝑡 ∈ 𝑇 (5)

The objective function minimizes the total cost of landing aircrafts. Constraint (1)

represents either aircraft 𝑖 lands before aircraft 𝑗 or aircraft 𝑗 lands before 𝑖.Constraint (2)

represents aircrafts time window such that each aircraft should land between its earliest

and latest possible landing time. Constraint number (3) and (4) consider minimum time

separation between aircraft 𝑖 from type 𝑎 and aircraft 𝑗 from type 𝑏, where M is a positive

large number which is used for constraint formulation logic. Constraints (5) and (6) are

binary and non-negative integer constraints respectively.

5.4 Revenue and Cost Structure:

A flight revenue mostly comes from passengers ticket (around 75 percent) and 15 percent

comes from cargo and 10 percent comes from other transports services (Airline-

42

Economic.asp). Flight agencies play an important role for selling the ticket to the

passengers. The revenue of a flight can be calculated by the amount of cargoes and the

price of a sold ticket to the passengers.

There are different factors associated with a flight cost including: fuel cost, flying

operation cost, maintenance cost, crew costs, passenger services and travel agencies.

Labor costs are common to nearly all of those categories. Some flight costs are fixed while

others depends on flight duration time. For instance, if a flight missed its target time

missing connection cost between connected flights might happen where the airline are

responsible to provide the passengers with proper services until they reach to the next

available flight. Similarly, fuel cost increases when they are hold above the runway

waiting in the line to land. The latter case mostly happens during rush hours. For our

model we only consider those costs that increase by the flight landing time as time passes:

Fuel cost, flying operation, Crew cost, Missing connection cost.

5.5 Iterative Bidding Framework

The proposed iterative bidding framework is a price mechanism based on Chun Wang et

al (2011) in which the airport and aircrafts negotiate the landing time by adjusting the

price on time windows. In this section, we first introduce the requirement-based bidding

language used by the aircrafts to express the landing requirements in the bid. Then we

describe the iterative bidding procedure which consists of four components, namely

initialization, price update and bidding, bid screen and termination and winner

determination. The iterative bidding framework allows the airport and aircrafts interact in

43

a systematic way to generate the landing schedule collaboratively. It also allows

negotiation over price and landing time concurrently.

5.6 Requirement-Based Bidding Languages

In this problem, the cost of aircrafts is based on the landing time window. During the

negotiation with airport, an aircraft expresses its preference in a conditional statement

consists of two elements: landing time window and price. In this subsection, we propose a

requirement-based language to represent the preferences.

The airline company could be indifferent to landing within a certain time window. We

define the atomic bid (C-Bid) to represent an aircraft’s value over a time window defined

by 𝑒𝑙𝑡 and 𝑙𝑙𝑡. A C-Bid is a 4-tuple< 𝐶, 𝑒𝑙𝑡, 𝑙𝑙𝑡, 𝑝 > in which 𝐶 is the category of the

aircraft,𝑒𝑙𝑡 is the start time of a landing time window, 𝑙𝑙𝑡 is the end time of a landing time

window, and 𝑝 is the price that the aircraft is willing to pay for landing within this time

window 𝑒𝑙𝑡 < 𝑎𝑙𝑡 ≤ 𝑙𝑙𝑡, where 𝑎𝑙𝑡 stands for the actual landing time of this aircraft. C-

Bids can be connected by 𝑋𝑂𝑅 connective as an 𝑋𝑂𝑅-C-Bid to represent the values that

an aircraft has on different time windows. For example, < 𝐶𝑖 , 𝑒𝑙𝑡𝑖,1, 𝑙𝑙𝑡𝑖,1, 𝑝1 > 𝑋𝑂𝑅 <

𝐶𝑖, 𝑒𝑙𝑡𝑖,2, 𝑙𝑙𝑡𝑖,2, 𝑝2 > means that aircraft 𝑖 is willing to pay 𝑝1 if its landing time is allocated

to 𝑒𝑙𝑡𝑖,1 < 𝑎𝑙𝑡𝑖 ≤ 𝑙𝑙𝑡𝑖,1, and𝑝2 if it’s landing time is allocated to𝑒𝑙𝑡𝑖,2 < 𝑎𝑙𝑡𝑖 ≤ 𝑙𝑙𝑡𝑖,2. The

aircrafts only needs one landing time, and there is no overlap between the two time

windows.

Assume that an aircraft has 𝑚𝑘 time windows within the acceptable time window.

Accordingly, an 𝑋𝑂𝑅-C-Bid with 𝑚𝑘 C-Bids can represent the aircraft’s valuations within

44

the acceptable time window. The full valuation of an aircraft can be represented by<

𝐶𝑖, 𝑒𝑙𝑡𝑖,0, 𝑙𝑙𝑡𝑖,0, 𝑝0 > 𝑋𝑂𝑅 < 𝐶𝑖 , 𝑒𝑙𝑡𝑖,1, 𝑙𝑙𝑡𝑖,1, 𝑝1 > 𝑋𝑂𝑅 < 𝐶, 𝑒𝑙𝑡𝑖,2, 𝑙𝑙𝑡𝑖,2, 𝑝2 >

 𝑋𝑂𝑅, … , 𝑋𝑂𝑅 < 𝐶𝑖, 𝑒𝑙𝑡𝑖,𝑚𝑘
, 𝑙𝑙𝑡𝑖,𝑚𝑘

, 𝑝𝑚𝑘
>, where𝑒𝑙𝑡𝑖,0 = 𝐸𝐿𝑖,𝑙𝑙𝑡𝑖,0 = 𝐿𝐿𝑖, and 𝑝0 = 𝑟𝑖.

The time windows are adjacent, i.e., 𝑙𝑙𝑡𝑖,𝑘−1 = 𝑒𝑙𝑡𝑖,𝑘for1 ≤ 𝑘 ≤ 𝑚𝑘.

5.7 Iterative Bidding

In this section the iterative bidding process is explained. It includes four steps of

Initialization, Bidding, Termination Checking and Winner determination.

5.7.1 Initialization

Before submitting the first bid, the aircrafts need to initialize a reserve price for their

landing requirements, which is between its preferred landing time and any other delay

time. The reserve price is set to 0 in order to maximize the profit. With the given fixed

revenue, an aircraft’s profit for a time window is the remainder of deducting bidding

price, fixed cost and variable from the revenue at each round of bidding. Then the

aircrafts bid for the time window with the highest profit. The bidding price of the first

round equals the reserve price of that time window.

45

5.7.2 Price Update and Bidding

At each round𝑡 (𝑡 > 1), aircrafts start from updating their bidding prices for the time

window submitted at round 𝑡 − 1. There are three different scenarios for aircrafts to act

out at round 𝑡 depending on the provisional allocation status determined at round 𝑡 − 1:

(1) if an aircraft’s bid was not awarded in the provisional allocation at round 𝑡 − 1, it can

Figure 5.1 Iteration Bidding Protocol

No

Yes

No

Start

End

Calculating Pay

off

Solving

Price Updating

Bidding

Terminate?

Participate

?

Yes

46

increase its bidding prices by 𝜀 on the time window it bids for at round 𝑡 − 1 or rounds

before 𝑡 − 1, where 𝜀 is the minimum price increment imposed by the airport. Since

aircrafts are assumed to be rational in maximizing their profits, they in general do not bid

with an increment more than 𝜀. (2) If an aircrafts is provisionally assigned a time window

at round 𝑡 − 1, they may want to keep their bidding price unchanged at next round, which

means they are allowed to repeat the same bids at round 𝑡. However, the aircrafts are not

prevented from entering a higher bid in future rounds in this scenario, and (3) we

consider an ultimate time window for those aircrafts who are not assigned a schedule at

the final round. The cost for ultimate time window is set higher than other time windows.

The model is run one more round to assign these aircrafts a landing time within that

ultimate time window. The latter case may happen when the fuel will run out at the end

time of the time window and the profits of every other time windows become negative.

After updating bidding prices, an aircraft needs to compute the profit of time widows

again based on the updated bidding prices to determine the maximum profit time

window. In computing such a time window or time windows, an aircraft 𝑖 solves a

maximization problem 𝑚𝑎𝑥𝑖∈{1≤𝑘≤𝑚𝑘}[𝑟𝑖
𝑡(𝑙𝑙𝑡𝑖,𝑘) − 𝑝𝑖

𝑡(𝑙𝑙𝑡𝑖,𝑘)] and obtains a set of C-Bids

with equally maximum profit, where 𝑝𝑖
𝑡(𝑙𝑙𝑡𝑖,𝑘)represents the bidding price for 𝑙𝑙𝑡𝑖,𝑘 at

round 𝑡.Then the aircraft randomly choose one from the set of C-Bids with maximum

payoff and bid for updated bidding price. In the scenario that an aircraft has entered into

final bid status, it is no longer allowed to increase its bidding price. However, the aircraft

can repeat its final bid in future rounds until termination. We setup this final bid repeating

arrangement here is to allow the temporarily excluded bids to come back to the game to

further increase the airline company’s profit. In the iterative bidding process, some bids

47

can be temporarily “excluded” from the provisional allocation because, in a specific

round, there is a particular combination of allocation constraints and resource

requirements with higher overall profit. Along with the bidding continues, that particular

situation may have changed to allow the previously excluded bids back to the bidding

process. However, those bids will not be submitted again without this setting if their costs

have been reached during the “excluded” periods, which means the aircraft will not

choose to bid them, even though the time windows become available in subsequent

provisional allocations.

5.7.3 Bids Screening and Termination Checking

In this stage, the airport first screens out the invalid bids from all bids received from

aircrafts. Those bids will not enter into winner determination procedure. There are two

types of invalid bids: (1) any bids with bidding price lower the highest one for that same

C-Bid received in previous rounds, (2) bids with increased prices from aircrafts who have

already declared their final bidding status previously.

The aircraft then checks the termination condition against the valid bids. The bidding will

terminate at the round with no price updates for all valid bids, which means all aircrafts

participating bidding in this round have repeated their bids. After the bidding terminates,

the airport allocates landing time to the aircrafts according to the final allocation at their

bidding prices. If the termination condition is not satisfied and the procedure continues,

the winner determination model will take the set of valid bids as input and solve the

problem. The auction goes back to price update and bidding after the winner

determination.

48

5.7.4 Winner Determination

In the following winner determination model, we take 𝑋𝑂𝑅-C-Bids from aircrafts as

input.We modeled the ALP to winner determination linear programming where the output

would be a timeslot assigned to an aircraft with a certain price. In order to consider

different time slots for winner determination model we defined a binary variable 𝑍𝑖𝑡 = 1 if

aircraft i assigned to a time slot before its landing time t, and 𝑍𝑖𝑡 = 0 otherwise. The goal

of objective function is to maximize the total price of the agents in the timeslots they bid

for.

𝑚𝑎𝑥 ∑ ∑ (𝑍𝑖𝑡
𝑇
𝑡 ∗𝑛

𝑖 𝑃𝑖𝑡)

Subject to:

∑ 𝑍𝑖𝑡
𝑇
𝑡 ≤ 1 ∀ 𝑡 ∈ 𝑇, ∀ 𝑖 ∈ 𝐴 (1)

 𝑥𝑖𝑗 + 𝑥𝑗𝑖 ≤ 1 ∀ 𝑖, 𝑗 ∈ 𝐴 𝑖 ≠ 𝑗 (2)

 𝑒𝑙𝑡𝑖. ∑ 𝑍𝑖𝑡
𝑚
𝑡 ≤ ∑ 𝑍𝑖𝑡

𝑚
𝑡 . 𝐿𝑇𝑡 ≤ 𝑙𝑙𝑡𝑖 ∀ 𝑡 ∈ 𝑇, ∀ 𝑖 ∈ 𝐴 (3)

 ∑ 𝑍𝑖𝑡𝑎
𝑚
𝑡 . 𝐿𝑇𝑡 + 𝛿𝑎𝑏 ≤ ∑ 𝑍𝑗𝑒𝑏

𝑚
𝑒 . 𝐿𝑇𝑒 + 𝑀(1 − 𝑥𝑖𝑗) ∀ 𝑡 ∈ 𝑇 ∀ 𝑖, 𝑗 ∈ 𝐴 𝑖 ≠ 𝑗 (4)

 ∑ 𝑍𝑗𝑒𝑏
𝑚
𝑒 . 𝐿𝑇𝑒 + 𝛿𝑏𝑎 ≤ ∑ 𝑍𝑖𝑡𝑎

𝑚
𝑡 . 𝐿𝑇𝑡 + 𝑀(𝑥𝑖𝑗) ∀ 𝑡 ∈ 𝑇, ∀ 𝑖, 𝑗 ∈ 𝐴 𝑖 ≠ 𝑗 (5)

 𝑥𝑖𝑗 , 𝑍𝑖𝑡𝑎 ∈ {1,0} , ∀ 𝑖, 𝑗 ∈ 𝐴 𝑖 ≠ 𝑗 , ∀ 𝑡 ∈ 𝑇 (6)

The objective function maximizes the total price on the assigned time slot. Constraint 1

ensures that an aircraft can only be assigned to one of its time windows. Constraint 2-6 is

basically as the same as constraint in the centralized model.

49

5.8 Example:

In this section, a worked example of assigning landing time to five flights is explained.

For the sake of simplicity, we considered maximum number of three time windows for

each flight, and the number of the aircrafts was set to five. However, the main model

does not have this restriction. The revenue for each flight is fixed during scheduling. The

cost of each time window varies from one to another, in an increasing order. The data of

the worked example is illustrated in table 5.1. For example for aircraft number one we

considered two time windows of (1, 3) and (3, 12) with cost of $33 and $47 respectively.

The third column of the table indicates the revenue of each flight.

Aircraft

No.
C Bid Revenue

1 (1,(1,3),33), (2,(3,12),47) $100

2 (1,(3,4),45), (2,(5,6),50) $130

3 (1,(4,8),30), (2,(11,13),35),(3,(18,30),37) $130

4 (1,(6,10),40), (2,(11,12),44) $150

5 (1,(6,10),40), (2,(11,12),50),(3,(13,14),70) $120

Table 5.1 Iterative Bidding Data Set Example

All the flights are willing to be scheduled in a time window with the minimum cost.

Assume that the price increment (𝜀 = $5) set by the ATC agent. At the beginning, when

the scheduling process starts, all flights calculate their payoff and bid for the one with the

minimum cost. In the first iteration, flights 1 to 5 bid for the first time window with the

lowest cost with the starting price of 0. The ATC agent receives the bids and calculates

50

the winner determination model. After several iterations and price increments, at the end

of the last round, exact landing time of the aircrafts are assigned with the related cost.

The final result of the iteration bidding model for the example is shown in table 5.2. The

second column of the table shows aircraft type. The third column shows the number of

assigned time window. The forth column indicates the exact landing time of the aircraft

regarding to the minimum time separation. The fifth and the last column show the cost

and the price related to the assigned time window to the aircraft.

Aircraft

No.
Type

Time

window

Landing

time
Cost Price

1 Medium 2 12 $47 $97

2 Light 2 5 $50 $130

3 Light 1 4 $30 $130

4 Medium 2 9 $20 $130

5 Medium 1 8 $40 $120

Table 5.2 Iterative Bidding Example Result

In order to compare the results of the iterative bidding example with the ALP centralized

model, we solved the centralized model with the same data set. As Table 5.2 shows, the

overall cost for iterative bidding model is $ 187 which is close to the optimal solution

achieved by centralized model of $158.

5.9 Data and Experimental Result

To represent practical output of the experiment, real scaled data for aircrafts time window

is used. The type of aircraft that is used in the model is as the same as data used in chapter

51

3 and 4. For the aircrafts type we studied Pier Eliot Montreal Airport (YUL). Based on OR

library data base, the length of aircraft time window is considered from 6 to maximum 9

minutes. For the winner determination model, the revenue of each flight is estimated based

on the number of the tickets sold of a flight and cargo expenses, the latter of which is

considered as a fixed amount for each flight. We considered two types of cost: fixed cost,

and variable cost. Fixed costs include total crew cost, maintenance cost and fuel cost. And

missing connection cost is considered as a variable cost which changes with different time

window within the time horizon. Since the fuel and other associated costs do not change

significantly they are categorized as a fixed cost, when compared with missing connection

costs due to the delayed flights. The models is coded in ILOG OPLStudio1263

(Optimization Programming Languages, IBM) and solved using ILOG CPLEX.

 After running the model all aircrafts are assigned with a proper landing time which

maintains the safety factors. The model is tested with ten different group of instances up to

20 aircrafts. For each group ten different instances are randomly generated. The

experimental result is shown in (Table 5.3). The effectiveness of the decentralized model

is confirmed by comparing it with the centralized ALP model with ten different instances.

Table 5.3 shows the optimal cost for iterative model framework and centralized ALP

model. The first column of the table shows groups of instances. For each group the

average of ten different instances are considered. Second column shows the number of

aircrafts used to solve the model.

52

Group
Number of

Aircraft

Bidding solution

cost

Bidding solution

Payment

Optimal ALP

Solution

1 5 $175 $425 $135

2 5 $140 $245 $105

3 10 $295 $490 $210

4 10 $345 $770 $300

5 15 $495 $1100 $415

6 15 $535 $1250 $405

7 20 $570 $1060 $475

8 20 $645 $1320 $510

9 20 $560 $1150 $420

10 20 $630 $1455 $545

Table 5.3 experimental result of iteration bidding model

We tried minimum number of five aircrafts and solved the model up to 20 aircrafts. For

the 20 aircrafts the model is solved less than two seconds. As we increase the number of

aircraft to 25 the model is not solved in a reasonable time as it may takes more than one

minute to reach the solution.

Third column indicates the bidding solution cost which is the overall cost of assigning the

aircrafts with proper landing time within selected time window. Forth column shows

bidding solution payment which is the overall cost and total price of the time windows that

the aircraft bid for. The last column shows the optimal solution of the centralized ALP

with the same data set as its decentralized model. Comparing the iterative bidding model

with centralized ALP solution, we observed iterative bidding solution achieves on average

of 78% of the optimal solution obtained by ALP solution. The epsilon value is set to 10$

and the initial price for each iteration is set to 0.

53

Comparing centralized model with our agent based model, the centralized model reaches

the optimal solution, and the agent based model reaches a solution close to optimal

solution. Our model’s advantages is that the agent based model considers the decentralized

environment of the ALP problem with the price of not being optimal solution. Next

chapter discuss the conclusion and related research future work.

54

6. Conclusion and Future Work

In this thesis the issue of Aircraft Landing Problem was investigated. In chapter three, a

static model was introduced and verified. The CPS constraint was added to the static

model. In chapter four, to study dynamic impact of the new arrival aircraft to the ATC

system, the ALP model was implemented and tested in Any Logic simulation software.

In chapter five, a distributed mathematical model using iterative bidding framework for

ALP in a wider horizon was introduced.

In the implementation of the ALP model the impact of the new arriving aircrafts with

different arrival rates has been tested. The inter arrival rates during busy time and regular

time have a great impact on the model size and controller work load. Considering

dynamic events of arriving new aircraft and landing aircrafts, decreases the

computational workload as it excluded the aircrafts that has reached the final approach at

the runway and ready to land.

In chapter five, we proposed an iterative bidding framework for flights landing scheduling

using ALP with a binary mathematical model. The iterative bidding framework facilitates

the negotiation between flights and the ATC. The negotiation model assigns an exact

landing time to each flight while it minimizes the total cost at the same time. As a result of

comparing centralized and decentralized models, the decentralized model has reached a

proper solution close to the optimal solution of the centralized model. Furthermore,

developing ALP as an agent based model, considers negotiation between aircrafts and the

ATC. In the iteration bidding framework, each aircraft is self-interest agent making

decisions according to their own benefit. Designing agent based ALP model, consider

55

communication between agents in a decentralized environment and achieve an efficient

solution to the problem. It also add time complexity to the problem where we solved the

decentralized model up to 20 aircrafts in a real time. Larger number of aircrafts couldn’t

be solved in a reasonable time by ILOG CPLEX. As a future work a heuristic can be

developed to solve the decentralized model with larger number of aircrafts in a real time.

Another future research direction to the ALP agent based model is to improve the

efficiency of the solution. Current decentralized ALP model does not allow aircrafts to bid

for their previous timeslots they bid in the previous iterations. The efficiency of the

algorithm can be enhanced by allowing the aircrafts to be able to bid for all the time

windows at the same time.

56

Appendix I

Main Iterative Bidding. Mode: Cplex

stringrunID="ALP";

main
{
 thisOplModel.settings.mainEndEnabled=true;

 varreturnedTotalSolutionValue;
 varreturnedProviderRevenue;

 functioniterativeRun(inputFile,epsilon)
 {
 writeln("Started iterative run");
 varsource=newIloOplModelSource("iterativeBidding.mod");
 vardef=newIloOplModelDefinition(source);
 varCplex=newIloCplex();
 vardata=newIloOplDataSource(inputFile);

 varepsilonData=newIloOplDataElements();
 epsilonData.epsilon=epsilon;

 varbaseOpl=newIloOplModel(def,Cplex);
 baseOpl.addDataSource(data);
 baseOpl.addDataSource(epsilonData);
 baseOpl.generate();
 varopl;
 vartotalNumberOfBids=0;
 for(vari=1;i<=20000;i++)
 {
 if(i==1)opl=baseOpl;
 else{
 opl=newIloOplModel(def,Cplex);
 opl.addDataSource(baseOpl.dataElements);
 opl.generate();
 }
 Cplex.solve();
 opl.postProcess();

 if(i%1==0) {
 printNextInput(opl,inputFile+"- iteration
"+i+".dat");
 }

 for(varoinopl.one) {
 for(vartinopl.T){
 writeln("------ZZ: "+opl.ZZ[o][t]);
 }
 }

57

 totalNumberOfBids+=opl.numberOfBids;

 // termination conditions

 varallAircraftAssigned=true;

 for(varfinopl.one) {
 //writeln("every services got assigned?" +
c3.isAssigned);
 if(f.isAssigned==0)
 {
 allAircraftAssigned=false;
 break;
 }
 }
 if(allAircraftAssigned)
 break;

 //check if no customer can bid in the next iteration (only
check bidding customer)
 varanyAircraftHasBid=false;
 for(varfinopl.one) {
 if(f.flightTB.tw!=null!=null&&
 f.isAssigned==0&&
 f.isInFinalState==0)
 {
 anyAircraftHasBid=true;
 break;
 }
 }
 if(!anyAircraftHasBid)
 break;

 if(i>1)
 opl.end();
 }

 baseOpl.end();data.end();epsilonData.end();def.end();Cplex.end();source.
end();
 }

 functionprintNextInput(opl,outputFileName)
 {
 varnextInput=newIloOplOutputFile(outputFileName);

 nextInput.writeln("one=");
 nextInput.write(opl.one);
 nextInput.writeln(";\n");

 nextInput.writeln("s=");
 nextInput.write(opl.s);
 nextInput.writeln(";\n");

58

 nextInput.writeln("P=");
 nextInput.write(opl.P);
 nextInput.writeln(";\n");

 nextInput.writeln("feasiblePackages=");
 nextInput.write(opl.feasiblePackages);
 nextInput.writeln(";\n");

 nextInput.writeln("ZZ=");
 nextInput.write(opl.Z);
 nextInput.writeln(";\n");

 nextInput.close();
 }

 iterativeRun("biddingData.dat",30);

}

Appendix II

Iterative Bidding. Mode: Cplex

intepsilon=...;

intn=5;
rangep=1..n;// number of flights

rangeA=1..3;//class type

tupletimeWindow
{
 floatelt;
 floatllt;
}

tupletimeBundle
{
 timeWindowtw;
}

tupleQ{
 keyintNo;
 intClass;
 intflightTBID;
 timeBundleflightTB;
 intisAssigned;

59

 intisInFinalState;
}

tupleFeasiblePackage
{
 keyintfpid;
 timeBundlepackageTB;
 floatbc;
 floatrevenue;
 intisBid;

}

floats[A][A]=...;//minimum sepration time
intP[p][p]=...;//precedence 0/1 number
{Q}one= ...;
{FeasiblePackage}feasiblePackages[one]=...;

dvarbooleanX[one][one];
rangeT=1..15;
intTS[T]=...;

dvarbooleanZ[one][T];
intZZ[one][T]=...;

intnumberOfBids=0;

executeinit
{

 //generate bids
 for(vari=1;i<=one.size;i++) {

 if(one.get(i).isAssigned==0)
 {
 //check if it's the first round
 if(one.get(i).flightTB.tw.llt!=0)
 {

 varoldFP=feasiblePackages[one.get(i)].get(one.get(i).flightTBID);
 // writeln("oldFP is "+oldFP.visitBundle + " ,price is:
" + oldFP.price);

 oldFP.bc+=epsilon;

 writeln("after subtracting,price is "+oldFP.bc);
 }

 varmaxUtility= -1;
 varmaxUtilityFP;

 for(varfp2infeasiblePackages[one.get(i)])
 {

60

 writeln(fp2.packageTB+" : revenue is
"+fp2.revenue+", price+cost is "+fp2.bc);
 varutility=fp2.revenue-fp2.bc;
 writeln(" max utility is
"+maxUtility+", utility is "+utility);

 if(utility>maxUtility)
 {
 maxUtilityFP=fp2;
 maxUtility=utility;
 }
 }

 if(maxUtility!= -1) {
 numberOfBids++;
 maxUtilityFP.isBid=1;

 one.get(i).flightTBID=maxUtilityFP.fpid;

 one.get(i).flightTB.tw.elt=maxUtilityFP.packageTB.tw.elt;

 one.get(i).flightTB.tw.llt=maxUtilityFP.packageTB.tw.llt;
 writeln(one.get(i).No+" bid
"+one.get(i).flightTBID+", with "+one.get(i).flightTB+" with price
"+maxUtilityFP.bc+" and utility = "+maxUtility);
 }else{
 one.get(i).isInFinalState=1;
 //With ultimate timeWindow setting
 for(vartinT) {
 if(ZZ[one.get(i)][t]==0){
 one.get(i).flightTBID=1;

 one.get(i).flightTB.tw.elt=feasiblePackages[one.get(i)].get(1).packageTB
.tw.elt;

 one.get(i).flightTB.tw.llt=feasiblePackages[one.get(i)].get(1).packageTB
.tw.llt;
 }else{
 ///Without ultimate timeWindow setting
 oldFP.bc-=epsilon;
 one.get(i).flightTBID=oldFP.fpid;

 one.get(i).flightTB.tw.elt=oldFP.packageTB.tw.elt;

 one.get(i).flightTB.tw.llt=oldFP.packageTB.tw.llt;

 writeln(one.get(i).No+" is in final
bid: "+one.get(i).flightTBID+" with "+oldFP.bc);
 }
 }
 }
 }
 }
}

61

//Winner Determination Model Start

//dvar float+ LT[one];

//tuple decision{
// Q q;
// FeasiblePackage fp;
//}
//{decision} d = {<i,j> | i in one, j in feasiblePackages[i]};

//dvar boolean Z[z in d];

maximizesum(zinone,tinT)(Z[z][t]*(item(feasiblePackages[z],
<z.flightTBID>).bc));

subjectto{

 cons00:///////XOR

forall(finone)// forall(f in one)
sum(tinT)Z[f][t] <=1;// sum(z in d : z.q == f)Z[z] <= 1;

cons01:///////sequence
forall(iinone,jinone:i!=j)
 X[i][j] +X[j][i] <=1;

 cons021:////////time window
 forall(finone)//forall(f in one)
 sum(tinT) (Z[f][t]*TS[t]) <=f.flightTB.tw.llt; //LT[f] <=
f.flightTB.tw.llt * sum(z in d : z.q == f)Z[z];

 cons022:////////time window
 forall(finone)//forall(f in one)
 sum(tinT)Z[f][t]*TS[t]
>=f.flightTB.tw.elt*sum(tinT)Z[f][t];//LT[f] >= f.flightTB.tw.elt * sum(z in d
: z.q == f)Z[z];

cons03://///minimum separation

forall(iinone,jinone:i!=j)// forall(i in one , j in one : i!=j)
 sum(tinT) (Z[i][t]*(TS[t] +s[i.Class][j.Class]))
<=sum(einT)(Z[j][e]*TS[e]) +1000*(1-X[i][j]);//LT[i] + s[i.Class][j.Class] <=
LT[j] + 1000*(1 - X[i][j]);

cons4://///minimum separation
forall(iinone,jinone:i!=j)// forall(i in one, j in one : i !=j)
 sum(einT) (Z[j][e]*(TS[e] +s[j.Class][i.Class]))
<=sum(tinT)(Z[i][t]*TS[t]) +1000*X[i][j]; //LT[j] + s[j.Class][i.Class] <=
LT[i] + 1000*X[i][j];

}

executefinish

62

{

 thisOplModel.settings.mainEndEnabled=true;
 for(varfinone) {
 for(vartinT) {
 ZZ[f][t] =Z[f][t]
 if(Z[f][t]==1)
 writeln("Aircraft "+f.No+": Landing at "+ (t));
 }
 }
}

Appendix III

AnyLogic-OptQuest

try {

traceln("Start solving");

 // Create Engine

 Engine engine = createEngine();

 // Set stop time, initialize random number generator:

 engine.setStopTime(50);

 engine.setDefaultRandomGenerator(new Random());

 // Create optimization engine

 final COptQuestOptimization opt =

ExperimentOptimization.createOptimization(engine);

//int P = Main.controller.collection.size();

 ///Data

double [] [] S = {{ 1.6, 2.62, 3.27 },

 { 1, 1.15, 2.18 },

 { 1, 1.15, 1.37 },

 };

ArrayList<Double> ELL = new ArrayList<Double>();

 for (Aircrafts ac : controller.collection){

63

 ELL.add(ac.EL);

 }

 for(int i=0; i<ELL.size();i++){

 traceln("ELL"+(i)+" from solver: " + ELL.get(i));

 }

 ArrayList<Integer> Type = new ArrayList<Integer>();

 for (Aircrafts ac : controller.collection){

 Type.add(ac.type - 1); }

 for(int i=0; i<Type.size();i++){

 traceln("Type"+(i)+" from solver" + Type.get(i));

 }

 ///Dicision Variable

//int[][] x = new int [P][A];

ArrayList<ArrayList<COptQuestBinaryVariable>> v = new

ArrayList<ArrayList<COptQuestBinaryVariable>>();

for (int i = 0 ; i < controller.collection.size(); i++){

 //define an arraylist A

 ArrayList<COptQuestBinaryVariable> A = new

ArrayList<COptQuestBinaryVariable>();

 for(int j = 0; j <controller.collection.size(); j++){

 final COptQuestBinaryVariable x = new COptQuestBinaryVariable();

 //add x to A

 A.add(x);

 }

 //add A to v

 v.add(A);

}

for (int i=0; i<v.size(); i++){

 for (int j=0; j<v.get(i).size(); j++){

 opt.AddVariable(v.get(i).get(j));

 }

}

64

//double [][] LT = new double[20][3];

ArrayList<ArrayList<COptQuestContinuousVariable>> LT = new

ArrayList<ArrayList<COptQuestContinuousVariable>>();

for (int i = 0 ; i < controller.collection.size(); i++){

 ArrayList<COptQuestContinuousVariable> B = new

ArrayList<COptQuestContinuousVariable>();

 for(int j = 0; j <3; j++){

 final COptQuestContinuousVariable y = new

COptQuestContinuousVariable();

 LT.SetLowerBound(0);

LT.SetUpperBound(1000);

 B.add(y);

 }

 LT.add(B);

}

traceln(" ************** ");

for (int i=0; i<LT.size(); i++){

traceln("defining dv(row): " + LT.size());

 for (int j=0; j<LT.get(i).size(); j++){

 traceln("defining dv(column): " + LT.get(i).size());

 opt.AddVariable(LT.get(i).get(j));

 }

}

final COptQuestContinuousVariable max = new COptQuestContinuousVariable();

 max.SetLowerBound(1.0);

 max.SetUpperBound(1000.0);

opt.AddVariable(max);

////////////////////Objective Function

 final COptQuestObjectiveFunction obj = new COptQuestObjectiveFunction();

 obj.SetMinimize();

 obj.AddVariable(max,1);

 opt.AddObjective(obj);

65

 ///////////////////////Contraints

 //1)max>= LT[i][a] for all i in ac.NO

 traceln("----------");

 traceln("Collection in solver: " + controller.collection.size());

 traceln("type in solver: " + Type.size());

 for (int i = 0 ; i < controller.collection.size(); i++){

int a = Type.get(i);

traceln("LT in solver: " + LT.size());

 final COptQuestGEConstraint constraint1 = new COptQuestGEConstraint();

constraint1.AddVariable(max,1);

 traceln("a: " + a);

 constraint1.AddVariable(LT.get(i).get(a),-1);

constraint1.SetRHS(0);

 opt.AddConstraint(constraint1);

 }

 //2)x[i][j]+x[j][i]=1 for all i&j in collection.size()

 for (int i = 0 ; i < controller.collection.size(); i++){

 for(int j = 0; j < controller.collection.size(); j++){

 if(i!=j){

 final COptQuestEQConstraint constraint2 = new COptQuestEQConstraint();

constraint2.AddVariable(v.get(i).get(j),1);

constraint2.AddVariable(v.get(j).get(i),1);

 constraint2.SetRHS(1);

 opt.AddConstraint(constraint2);

}

}}

 //3) LT[i][a] +S[a][b] <= LT[j][b] + 1000*(1-x[i][j])

 for (int i = 0 ; i < controller.collection.size(); i++){

 for(int j = 0; j < controller.collection.size(); j++){

 if(i!=j){

 int a = Type.get(i);

66

 int b = Type.get(j);

 final COptQuestLEConstraint constraint3 = new COptQuestLEConstraint();

constraint3.AddVariable(LT.get(i).get(a),1);

constraint3.AddVariable(LT.get(j).get(b),-1);

 constraint3.AddVariable(v.get(i).get(j),1000);

 constraint3.SetRHS(1000-S[a][b]);

opt.AddConstraint(constraint3);

 }}}

 //4)LT[j][b]+S[a][b]<= LT[i][a]+1000*x[i][j]

 for (int i = 0 ; i < controller.collection.size(); i++){

for(int j = 0; j < controller.collection.size(); j++){

 if(i!=j){

 int a = Type.get(i);

 int b = Type.get(j);

 final COptQuestLEConstraint constraint4 = new COptQuestLEConstraint();

constraint4.AddVariable(LT.get(j).get(b),1);

constraint4.AddVariable(LT.get(i).get(a),-1);

 constraint4.AddVariable(v.get(i).get(j),-1000);

 constraint4.SetRHS(-S[a][b]);

 opt.AddConstraint(constraint4);

 }}}

 //5) LT[i][a] >= EL[i]

 for (int i = 0 ; i < controller.collection.size(); i++){

int a = Type.get(i);

 final COptQuestGEConstraint constraint5 = new COptQuestGEConstraint();

constraint5.AddVariable(LT.get(i).get(a),1);

constraint5.SetRHS(ELL.get(i));

 opt.AddConstraint(constraint5);

}

 //6) LT[i][a] <= LL[i]

 for (int i = 0 ; i < controller.collection.size(); i++){

67

int a = Type.get(i);

 final COptQuestLEConstraint constraint6 = new COptQuestLEConstraint();

constraint6.AddVariable(LT.get(i).get(a),1);

 //constraint6.AddVariable(-1,ELL.get(i));

 constraint6.SetRHS(ELL.get(i)+5);

 opt.AddConstraint(constraint6);

 }

// Set the number of iterations to run

opt.SetMaximumIterations(50);

// Add suggested solution (initial solution)

//COptQuestSolution suggestedSolution = opt.CreateSolution();

//suggestedSolution.SetVariableValue(v, 50.0);

//opt.AddSuggestedSolution(suggestedSolution);

// Perform optimization

opt.Optimize();

//solution.SetObjectiveValue(obj, root.objective);

// Output results

COptQuestSolution bestSolution = opt.GetBestSolution();

//variable = bestSolution.GetVariableValue(v);

traceln("///////////Best objective: " +

format(bestSolution.GetObjectiveValue(obj)));

//main.parameter = variable;

// main.log.println();

for (int i = 0 ; i < controller.collection.size(); i++){

 for(int j = 0; j < controller.collection.size(); j++){

 if(i!=j){

 variable = bestSolution.GetVariableValue(v.get(i).get(j));

 traceln("///////////////x"+(i)+(j)+"= " +

format(bestSolution.GetVariableValue(v.get(i).get(j))));}}}

 for (int i = 0 ; i < controller.collection.size(); i++){

 int a = Type.get(i);

 variable = bestSolution.GetVariableValue(LT.get(i).get(a));

68

 traceln("///////////////LT"+(i)+(a)+"= " +

format(bestSolution.GetVariableValue(LT.get(i).get(a))));}

 // main.log.println("Best objective: " +

format(bestSolution.GetObjectiveValue(obj)));

} catch (COptQuestException e) {

traceln(e.Description());

//main.log.println("!!!!!!!!" + e.Description());

 }

Data Sample:

69

70

References:

Shen, Weiming. 2002. “Distributed manufacturing scheduling using intelligent agents.”

IEEE intelligent systems, pages 88-94.

Shen, Weiming, Lihui Wang, and Qi Hao. 2006. “Agent-Based Distributed

Manufacturing Process Planning and Scheduling: A State-of-the-Art Survey.” IEEE

Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews: A

Publication of the IEEE Systems, Man, and Cybernetics Society 36 (4): 563–77.

Brentnall, A. R., and R. C. H. Cheng. 2008. “Some Effects of Aircraft Arrival Sequence

Algorithms.” The Journal of the Operational Research Society 60 (7). Palgrave

Macmillan UK: 962–72.

Salehipour, Amir, Leila Moslemi Naeni, and Hamed Kazemipoor. 2009. “Scheduling

Aircraft Landings by Applying a Variable Neighborhood Descent Algorithm: Runway-

Dependent Landing Time Case.” Journal of Applied Operational Research 1 (1): 39–49.

Soomer, M. J., and G. J. Franx. 2008. “Scheduling Aircraft Landings Using Airlines’

Preferences.” European Journal of Operational Research 190 (1): 277–91.

Pinol, H., and J. E. Beasley. 2006. “Scatter Search and Bionomic Algorithms for the

Aircraft Landing Problem.” European Journal of Operational Research 171 (2): 439–62.

Artiouchine, Konstantin, Philippe Baptiste, and Christoph Dürr. 2008. “Runway

Sequencing with Holding Patterns.” European Journal of Operational Research 189 (3):

1254–66.

Farhadi, Farbod, Ahmed Ghoniem, and Mohammed Al-Salem. 2014/8. “Runway

Capacity Management – An Empirical Study with Application to Doha International

Airport.” Transportation Research Part E: Logistics and Transportation Review 68: 53–

63.

Bennell, Julia A and Mesgarpour, Mohammad and Potts, Chris N. 2013 “Airport runway

scheduling.” Annals of Operations Research

Sousa, Paulo, and Carlos Ramos. 1999. “A Distributed Architecture and Negotiation

Protocol for Scheduling in Manufacturing Systems.” Computers in Industry 38 (2): 103–

13.

Tumer, Kagan, and Adrian Agogino. 2007. “Distributed Agent-Based Air Traffic Flow

Management.” In Proceedings of the 6th International Joint Conference on Autonomous

http://link.springer.com/article/10.1007/s10479-012-1268-1
http://link.springer.com/article/10.1007/s10479-012-1268-1

71

Hu, Xiao-Bing, and Wen-Hua Chen. 2005/8. “Genetic Algorithm Based on Receding

Horizon Control for Arrival Sequencing and Scheduling.” Engineering Applications of

Artificial Intelligence 18 (5): 633–42.

Liu, Yu-Hsin. 2010. “A Genetic Local Search Algorithm with a Threshold Accepting

Mechanism for Solving the Runway Dependent Aircraft Landing Problem.” Optimization

Letters 5 (2). Springer-Verlag: 229–45.

Lieder, Alexander, Dirk Briskorn, and Raik Stolletz. 2015. “A Dynamic Programming

Approach for the Aircraft Landing Problem with Aircraft Classes.” European Journal of

Operational Research 243 (1): 61–69.

Godin, Patrice, and Chun Wang. 2010. “Agent-Based Outpatient Scheduling for

Diagnostic Services.” In 2010 IEEE International Conference on Systems, Man and

Cybernetics. doi:10.1109/icsmc.2010.5642281.

Smith, Reid G.1980“The contract net protocol: High-level communication and control in

a distributed problem solver.” IEEE Transactions on computers. Pages 1104-1113

Samà, Marcella, Andrea D’Ariano, Paolo D’Ariano, and Dario Pacciarelli. 2014.

“Comparing Centralized and Rolling Horizon Approaches for Optimal Aircraft Traffic

Control in Terminal Areas.” Transportation Research Record: Journal of the

Transportation Research Board 2449: 45–52.

Ghoniem, Ahmed, and Farbod Farhadi. 2015. “A Column Generation Approach for

Aircraft Sequencing Problems: A Computational Study.” The Journal of the Operational

Research Society 66 (10). Palgrave Macmillan UK: 1717–29.

Ghoniem, Ahmed, Farbod Farhadi, and Mohammad Reihaneh. 2015. “An Accelerated

Branch-and-Price Algorithm for Multiple-Runway Aircraft Sequencing Problems.”

European Journal of Operational Research 246 (1): 34–43.

Ernst, Andreas T., Mohan Krishnamoorthy, and Robert H. Storer. 1999. “Heuristic and

Exact Algorithms for Scheduling Aircraft Landings.” Networks. An International Journal

34 (3): 229.

Hu, X. B., and E. Di Paolo. 2008. “Binary-Representation-Based Genetic Algorithm for

Aircraft Arrival Sequencing and Scheduling.” IEEE Transactions on Intelligent

Transportation Systems 9 (2): 301–10.

Beasley, John E and Krishnamoorthy, Mohan and Sharaiha, Yazid M and Abramson, D

2000.” Scheduling aircraft landings—the static case”. Transportation science. Pages

180-197

Balakrishnan, Hamsa. n.d. “Algorithms for Scheduling Runway Operations Under

Constrained Position Shifting.” doi:10.1287/opre.1100.0869.

72

Zhan, Z. H., J. Zhang, Y. Li, O. Liu, S. K. Kwok, W. H. Ip, and O. Kaynak. 2010. “An

Efficient Ant Colony System Based on Receding Horizon Control for the Aircraft Arrival

Sequencing and Scheduling Problem.” IEEE Transactions on Intelligent Transportation

Systems 11 (2): 399–412.

Wang, Chun and Wang, Zhiguo and Ghenniwa, Hamada H and Shen, Weiming. 2011.”

Due-date management through iterative bidding” IEEE Transactions on Systems, Man,

and Cybernetics-Part A: Systems and Humans

Bayen, A. M., C. J. Tomlin, Yinyu Ye, and Jiawei Zhang. 2004. “An Approximation

Algorithm for Scheduling Aircraft with Holding Time.” In 2004 43rd IEEE Conference

on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

doi:10.1109/cdc.2004.1428880.

Briskorn, Dirk, and Raik Stolletz. 2013. “Aircraft Landing Problems with Aircraft

Classes.” Journal of Scheduling 17 (1). Springer US: 31–45.

Brentnall AR (2006) Aircraft arrival management. PhD thesis, University of

Southampton, UK

Lucio Bianco, Paolo Dell’Olmo, and Stefano Giordani.1997. "Scheduling Models and

Algorithms for TMA Traffic Management"

Ball, Michael and Donohue, George and Hoffman, Karla. 2006.” Auctions for the safe,

efficient, and equitable allocation of airspace system resources”. Combinatorial auctions.

MIT Press Cambridge, MA

Rassenti, Stephen J and Smith, Vernon L and Bulfin, Robert L.1982.” A combinatorial

auction mechanism for airport time slot allocation”. The Bell Journal of Economics.

Pages 402-417. JSTOR

Sheng, Dian and Li, Zhi-Chun and Xiao, Yi-bin and Fu, Xiaowen. 2015.” Slot auction in

an airport network with demand uncertainty”. Transportation Research Part E: Logistics

and Transportation Review. Pages 79-100. Elsevier

http://www.iata.org/Pages/default.aspx

https://www-01.ibm.com/software/commerce/optimization/modeling/

www.skyscanner.ca

http://www.iata.org/Pages/default.aspx
https://www-01.ibm.com/software/commerce/optimization/modeling/

