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Abstract 

Adaptive behavior in daily life often requires the ability to acquire and represent sequential 

contingencies between actions and the associated outcomes. Although accumulating 

evidence implicates the role of dorsolateral prefrontal cortex (dlPFC) in complex value-based 

learning and decision-making, direct evidence for involvements of this region in integrating 

information across sequential decision states is still scarce. Using a 3-stage deterministic 

Markov decision task, here we applied offline, inhibitory low-frequency 1-Hz repetitive 

transcranial magnetic stimulation (rTMS) over the left dlPFC in young male adults (n = 31, 

mean age = 23.8 years, SD = 2.5 years) in a within-subject cross-over design to study the 

roles of this region in influencing value-based sequential decision-making. In two separate 

sessions, each participant received 1-Hz rTMS stimulation either over the left dlPFC or over 

the vertex. The results showed that transiently inhibiting the left dlPFC impaired choice 

accuracy, particularly in situations in which the acquisition of sequential transitions between 

decision states and temporally lagged action-outcome contingencies played a greater role. 

Estimating parameters of a diffusion model from behavioral choices, we found that the 

diffusion drift rate, which reflects the efficiency of information integration, was attenuated 

by the stimulation. Moreover, the effects of rTMS interacted with session: individuals who 

could not efficiently integrate information across sequential states in the first session due to 

disrupted dlPFC function also could not catch up in performance during the second session 

with those individuals who could learn sequential transitions with intact dlPFC function in 

the first session. Taken together, our findings suggest that the left dlPFC is crucially involved 

in the acquisition of complex sequential relations and in the potential of such learning. 
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Introduction 

Beyond its roles in working memory and cognitive control, many studies have begun to 

investigate the impacts of the lateral prefrontal cortex (PFC) in more complex aspects of 

value-based learning and decision-making. For instances, in situations where complex task 

rules need to be learned or in cases when multiple facets of a decision need to be jointly 

considered (see Dixon & Christoff, 2014, for review). Accumulated findings from lesion 

(Badre, Hoffman, Cooney, & D’Esposito, 2009) and functional magnetic resonance imaging 

(fMRI) studies (Braver & Bongiolatti, 2002; Bunge, Helskog, & Wendelken, 2009; Christoff et 

al., 2001; Koechlin, Ody, & Kouneiher, 2003; Smith, Keramatian, & Christoff, 2007) implicate 

regions such as the anterior and mid-dorsolateral PFC (Brodmann’s areas 10, 9/46) in 

learning abstract task rules and mental processing of relational information. Furthermore, 

converging evidence from a range of electrophysiological (e.g., Shima, Isoda, Mushiake, & 

Tanji, 2007) and imaging (e.g., Koechlin & Jubault, 2006) studies reveals a rostro-caudal axis 

of functional divisions in the frontal lobes, with the lateral PFC (particularly the mid-

dorsolateral regions) being involved in various aspects of abstract rule learning, including the 

acquisition of sequential relations or cross-temporal contingencies for action planning (see 

Badre & D’Esposito, 2009, for review). Of note, other than correlational evidence from brain 

imaging studies, results of studies applying non-invasive brain stimulation methods lend 

further support for lateral PFC’s roles in some of these functions. 

Of particular relevance, there are findings from studies applying transcranial magnetic 

stimulation (TMS) to transiently disrupt or excite local neural processing. Specifically, a 

common approach to study TMS effects on cognitive processes is to apply a train (series) of 

multiple TMS pulses over several minutes, called repetitive TMS (rTMS). Depending on the 

frequency, intensity and type of stimulations, rTMS could transiently excite or inhibit 

neuronal postsynaptic potentials (Pascual-Leone, Walsh, & Rothwell, 2000; Schlaak, Pascual-

Leone, & Siebner, 2007; Ziemann & Hallett, 2007). For instance, low-frequency (1-Hz) 

inhibitory rTMS applied over the right inferior frontal junction (Zanto, Rubens, Thangavel, & 

Gazzaley, 2011) or the superior frontal sulcus in the posterior left dorsolateral PFC 

(Philiastides, Auksztulewicz, Heekeren, & Blankenburg, 2011) have, respectively, been shown 

to attenuate attentional regulation of working memory or the efficiency of perceptual 

decision-making. Results from studies applying TMS to investigate abstract rule learning or 

cognitive decision-making also implicate various medial and anterior regions of the PFC in 
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these functions. Specifically, in tasks that require the integration of different aspects of 

choice options (e.g., amount, probability, and time point of reward), a disruption of the right 

dorsolateral PFC with 1-Hz rTMS was shown to increase the risky behavior of choosing low-

probability options that were associated with large reward (Knoch et al., 2006). Other 

studies of intertemporal choices showed that low-frequencey 1-Hz rTMS applied to either 

the left (Figner et al., 2010) or the right (Essex, Clinton, Wonderley, & Zald, 2012) 

dorsolateral PFC (dlPFC) disrupted the integration of information about the time point of 

reward and increased choices for immediate smaller rewards over larger but delayed 

rewards. As for investigations about the roles of dlPFC in maintaining mental 

representations (models) of complex decisions, a more recent study (Smittenaar, FitzGerald, 

Romei, Wright, & Dolan, 2013) applied inhibitory continuous theta burst transcranial 

magnetic stimulation (cTBS) during a probabilistic 2-stage Markov decision task (Daw, 

Gershman, Seymour, Dayan, & Dolan, 2011). In this case, a transient disruption of the right 

dlPFC reduced model-based choice behavior, which relied on representing the probabilistic 

structure of the task. Inhibtion of the left dlPFC only affected model-based behavior in 

individuals with low working memory capacity (Smittenaar et al., 2013). Taken together, 

existing findings show that the lateral PFC is implicated in effects of the amount, time point, 

or probability of reward on value-based learning and decision-making. However, questions 

about the potential causal roles of the lateral PFC in integrating information about 

sequential transitions between successive choice states are still pretty much open. 

Adaptive behavior in daily life often requires complex value-based learning and 

decision-making across successive steps. Specifically, it demands the ability to acquire and 

represent contingent relations between sequential actions and outcomes. Consider the 

example of a person who had just moved to a new city: the overall goal to get home from 

work as quickly as possible by the public transportation does not specify which sequence of 

actions would better serve the goal (e.g., taking the underground Line 1 and change to Line 3, 

or taking the Line 2 and then switch to bus). In such situations, the individual needs to learn 

the transitions between the succesive transfer points as well as the concurrent and 

temporally lagged action–outcome associations through trial and error (e.g., the ride on Line 

1 takes 5 min. vs. the ride with Line 2 needs 9 min.; however, at the next transfer point, 

there will be a 15-min. lag until Line 3 arrives, but only a 5-min. wait for the bus). Crucially, 

the individual needs to integrate information about the action–outcome contingences across 
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sequential states (e.g., one action leads to more waiting time than the other at the next 

transfer point), in order to choose the optimal route. An earlier study by Tanaka et al. (2004) 

investigated such sequential decision processes using a deterministic 3-stage Markov 

decision task. The property of a Markov decision task is that an action (or decision) at a given 

state not only determines the outcome on that current state but also determines the 

specific transition into the subsequent state. Learning the sequential state-dependent 

contingencies between choices and outcomes across multiple states is necessary to perform 

such tasks successfully. Specifically, blood-oxygen-level dependent (BOLD) activity in the left 

dlPFC was associated with the behavior of taking actions associated with minor negative 

consequences (e.g., small monetary losses) in earlier states in order to gain a better net 

outcome (e.g., a larger reward) at a later state in the sequence (Tanaka et al., 2004). In light 

of these results, we recently studied the effects of aging on learning complex sequential 

state transitions using a variant of the 3-stage Markov task (Eppinger, Heekeren, & Li, 2015; 

cf. Tanaka et al., 2004). Our results showed that aging is associated with performance 

decrement, particularly in situations that necessitate the learning of cross-state action–

outcome contingencies for optimizing long-term outcomes. The observed behavioral 

impairment was associated with under-recruitments of various regions of the PFC in older 

adults, including areas such as left rostrolateral, right dorsolateral, and right medial PFC. 

Most relevant for the current study, in younger adults the BOLD activity in left dlPFC 

(Talairach coordinates x = -41, y = 25, z = 22) was associated with shifts of the choice 

behavior towards taking the optimal sequential actions during the course of learning. 

Specifically, the BOLD activity in this region was high in the beginning of learning, but 

decreased after younger adults had acquired the transition structure of the task, as reflected 

in clear changes in their choice behavior (Eppinger et al., 2015). Together, these results 

suggest that the left dlPFC is involved in learning complex sequential relations. Relatedly, 

previous evidence also suggests that the left dlPFC is associated with processing higher-

order relations (i.e., relations of relations), beyond simple first-order associations between 

stimulus features (Bunge et al., 2009). 

To summarize, the correlational findings from fMRI studies in a young adult sample 

(Tanaka et al., 2004) and from an age-comparative sample (Eppinger et al., 2015) indicate 

that the left dlPFC is associated with acquiring complex sequential transitions as well as with 

aging-related impairments in this function. However, the direct effects of this region on 
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sequential decision-making still remain to be established. Therefore, in this study we set out 

to investigate the link between the left dlPFC and the process of integrating information 

about sequential state transitions in young adults by applying rTMS to transiently inhibit the 

left dlPFC. 

 

Materials and methods 

Participants 

Thirty-five young male participants were recruited through advertisements on the campus of 

Technische Universität (TU) Dresden. Our focus on male participants was motivated by 

results from previous studies showing that menstrual cycle related hormonal changes in 

females could affect cortical excitability (Inghilleri et al., 2004; Smith, Adams, Schmidt, 

Rubinow, & Wassermann, 2002). All participants were screened for rTMS eligibility (e.g., 

history of psychiatric illness or neurological disorder) before study participation (Rossi, 

Hallett, Rossini, & Pascual-Leone, 2011). Furthermore, handedness is known to be associated 

with individual differences in the lateralization of hemispheric activations during some 

cognitive and motor tasks (see Willems, van der Haegen, Fischer & Francks, 2014, for review), 

including the lateralization of the dorsal frontoparietal network (Petit et al., 2015). Thus, 

prior to study participation we explicitly asked the participants about their handedness and 

included only right-handed individuals. Four participants had to be excluded from the study 

because of difficulties in reliably discerning the motor threshold (n = 1), unusual transient 

facial muscle contractions during stimulation (n = 1) or because they were not able to 

participate in the second session due to personal reasons (n = 2). Thus, the effective sample 

consisted of 31 healthy young male participants (mean age = 23.8 years, age range: 19 to 32 

years, SD = 2.5 years). Since ten participants did not perform the task above the chance level, 

analyses of rTMS effects on choice behavior were focused on the non-chance performers (n 

= 21), who were in either of the two treatment groups (10 vertex-starters and 11 dlPFC-

starters) in a within-subject cross-over design (see below for more details about screening 

chance performers). 

Appraising the sample size, we conducted power calculations based on effect sizes 

estimated from prior studies. To this end, we first conducted a literature search with the 

following five criteria: the studies investigated effects of (1) 1-Hz inhibitory rTMS stimulation 

over (2) the dlPFC or nearby prefrontal brain regions on (3) relevant cognitive functions 
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(including decision-making, cognitive control, working memory) and (4) had a sample size of 

at least 10 subjects as well as (5) reported the necessary information for estimating effect 

sizes (i.e., F-statistics and relevant degrees of freedom). Following this procedure, we 

identified 8 studies with 13 reported effects in total for our analyses (i.e., Bahlmann, 

Beckmann, Kuhlemann, Schweikard, & Münte, 2015; Baumgartner, Knoch, Hotz, Eisenegger, 

& Fehr, 2011; Brüne et al., 2012; Hoffman, Jefferies, & Lambon Ralph, 2010; Kalbe et al., 

2010; Knoch et al., 2006; Philiastides, Auksztulewicz, Heekeren, & Blankenburg, 2011; 

Weigand et al., 2013). Specifically, effect sizes (partial eta-squared, i.e., η
2

partial) of these 

studies were estimated based on the F-statistics and the degrees of freedom of the 

associated effects (Lakens, 2013; Maxwell, Camp & Arvey, 1981). The estimated η
2

partial of 

these prior studies ranged from 0.19 to 0.39, with a mean of 0.27. To stay conservative in 

estimating the sample size, we calculated the power for detecting effects at the minimum 

and mean values of the η
2

partial estimated from prior studies. Using G*Power (Version 3.1.9.2), 

the estimated values of η
2

partial were first converted into generic effect sizes, resulting in f = 

0.48 (η
2

partial = 0.19) and f = 0.61 (η
2

partial = 0.27). Subsequently, we conducted an a-priori 

power analysis using these two levels of effect sizes for the repeated measures design, with 

two repeated measurements, a significance level of α = .05 (two-tailed), the statistical power 

(1-β) = .95 and an r = 0.5 for the correlation between the repeated measurements. The 

results of the power analysis suggest that a total sample of 18 or 12 participants would be 

required for detecting the rTMS x task condition interaction effects at the level of η
2

partial = 

0.19 (minimum) or 0.27 (mean), respectively. For detecting the rTMS main effect, the 

corresponding effect sizes would require 16 or 11 participants, respectively. Thus, the total 

effective sample size of our study (n = 21; 10 vertex-starters and 11 for dlPFC-starters) has 

sufficient power in detecting small to mean level rTMS effect sizes as observed in prior 

findings. The ethical committee of TU Dresden approved the study. All participants gave 

written informed consent for their participations. The participants received 8 Euro per hour 

for study participation as well as the additional amount of money (on average about a total 

of 15 Euro) they earned during the main experimental task as a bonus for their performance. 

Off-line rTMS protocol and within-subject cross-over design 

In the experimental condition, we applied a 20-minutes train (1200 pulses) of low-frequency 

1-Hz rTMS over the left dlPFC to transiently suppress neural activity in young adults. The 

target stimulation site of the left dlPFC was selected based on results from our previous fMRI 
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study (Eppinger et al., 2015), as this was the region associated with young adults’ earlier and 

more distinct behavioral choice shifts towards taking the optimal sequential actions during 

learning (the Talairach coordinates x = -41, y = 25, z = 22 reflect the peak of the BOLD 

activity). To navigate the TMS coil to this target brain region, we created a 3-D brain model 

from the participants’ individual T1-scans using the PowerMAG View Navigation software 

(Mag & More, Munich, Germany). The individual brain model was co-registered with the 

participant’s head and the TMS coil in our lab using specific position points tracked by an 

infrared camera (Polaris Vicra; Northern Digital Inc., Ontario, Canada). This allowed an online 

navigation, which made it possible to position the TMS coil on the participant’s head with an 

exact reference to the individual brain model and thereby more precise stimulations of the 

target location. In the control condition, as commonly done, we applied the stimulation into 

the interhemispheric cleft of the vertex (cf. Davis, Gold, Pascual-Leone, & Bracewell, 2013; 

Duecker, de Graaf, Jacobs, & Sack, 2013). A recent concurrent TMS/fMRI study showed that 

a short set of single-pulse suprathreshold TMS stimulations at 120% of motor threshold 

applied over the vertex during the resting state did not increase or interfere with ongoing 

BOLD activity at the stimulated site, in support of the use of vertex stimulation as a control 

stimulation (Jung, Bungert, Bowtell & Jackson, 2016). Furthermore, Jung et al. (2016) 

showed that vertex stimulation was associated with deactivations in various distributed 

brain regions, including the anterior cingulate cortex, inferior parietal lobe and precuneus, 

partly overlapping with the default mode network. Stimulations applied over vertex, 

however, did not affect the functional connectivity in this network. Juxtaposing Jung et al.’s 

results about vertex stimulation together with other findings about brain stimulation effects 

on the default mode network during the resting state (e.g., Eldaief, Halko, Buckner, & 

Pascual-Leone, 2011) and anti-associations between default mode and task-related 

networks (Anticevic et al., 2012) suggest that applying TMS over the vertex for protocols 

aiming at inhibiting task-related activity would be a conservative, rather than liberal, control 

stimulation. The target location of the vertex was set to the position of the Cz electrode of 

the 10-20 system (see Figure 1A for the stimulation sites). In our case, stimulation intensity 

was set at 100% of the participant’s individual motor threshold (see below for details of 

assessing individual motor threshold). 

To compare effects of left dlPFC and vertex stimulations, we used a within-subject cross-

over design (Figure 1B): for half of the participants (the dlPFC-starters) the stimulations were 
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applied over the left dlPFC in the first session and over the vertex in the second session, 

whereas the remaining half of the participants (the vertex-starters) received the stimulations 

in the reversed order. Across participants the two sessions were, on average, one week 

apart (mean interval = 7 days, SD = 0.4 day). The stimulations were applied off-line for 20 

minutes, with the main experimental task been performed immediately after the 

stimulations in each of the two sessions. 

 

 

Figure 1. rTMS stimulation sites (A) and the within-subject cross-over design (B). 

 

As cortical excitability varies across and within individuals (Ziemann & Hallett, 2007), we 

determined the stimulation intensity individually for each participant in relation to the 

cortical excitability as indicated by the motor threshold (MT) in each session. The MT 

represents the minimum amount of electrical energy needed to induce motor movement, 

which is visible in the contralateral limb or body when TMS is applied over the motor cortex 

(McConnell et al., 2001). The MT is also recommended as a measure of cortical TMS 

susceptibility when TMS is applied outside of the motor regions (Kaminski, Korb, Villringer, & 

Ott, 2011). Specifically, the MT is commonly defined as the lowest intensity capable to elicit 

motor evoked potentials (MEPs) greater than 50 µV peak-to-peak amplitude in at least half 

of consecutive trials (five out of ten in the current study) in resting or activated (slightly 

contracted) target muscles (Kobayashi & Pascual-Leone, 2003). We followed the Rossini-

Rothwell procedure (Rossini et al., 1994; Rothwell et al., 1999; cf. Tranulis et al., 2006) to 

determine the individual MT for each participant. We recorded MEPs on the first dorsal 

interosseous (FDI) muscle of the right hand that were elicited by a single pulse of TMS over 

the left motor cortex (M1). Specifically, an initial TMS pulse was delivered at a point located 
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approximately 5 cm lateral and 2 cm anterior from the position of the vertex (i.e., midpoint 

between nasion-to-inion and left-to-right preauricular) at an intermediate level of 50 % 

maximum stimulator output (MSO). If no MEP could be observed then the so-called “motor 

hotspot” for the FDI muscle was searched for systematically in an approximate 2 cm radius 

around this initial point. If necessary (i.e., if there was still no measurable motor response), 

the MSO was increased by 2% and the procedure was repeated. Following successful 

identification of a cortical point with reliable MEPs, stimulation intensity was systematically 

lowered by 2% until 5 out of 10 pulses produced MEPs with a 50 µV peak-to-peak amplitude. 

The percentage of MSO at this intensity was then considered the participant’s MT. The 

assessments of the MT and the administering of rTMS were done by using a MagPro X100 

Magstim Rapid Magnetic Stimulator (Magstim, Winchester, MA) and a MagStim figure-eight 

MCF-B65 butterfly coil (75-mm diameter double-circle). The single pulses of TMS were 

applied approximately every 10 seconds (± 1 second) with a varying interval between pulses 

(± 1 second) to avoid priming effects, which could affect the MEP signals. The signals were 

recorded using Ambu Neuroline 700 surface electrodes (Ambu GmbH, Bad Nauheim, 

Germany), a BrainVision ExG MR amplifier and BrainVision Recorder software (Brain 

Products GmbH, Munich, Germany). 

For applying the stimulations, the coil was held tangential to the participant’s head, with 

the handle pointing upright over the vertex or upright but diagonally in an inferior-to-

posterior orientation over the dlPFC. To keep the participants in relaxed mode, they could 

watch an episode of The Big Bang Theory, a popular American sitcom, during the 20 minutes 

of rTMS. Two episodes from the series were selected, one for each of the two sessions. All 

participants watched the same episode in the respective session. After the stimulation, 

participants immediately performed the 3-stage Markov decision task. During and after 

stimulation, none of the participants reported any adverse effects of the rTMS stimulation 

(e.g., headaches, scalp or neck pain). 

Experimental task and procedure  

We used a variant of the 3-stage Markov decision task (Figure 2A) as in our previous fMRI 

study (Eppinger et al., 2015), with minor modifications in trial duration, trial number, and 

reward magnitude. The modifications of trial duration and numbers were undertaken to 

adapt the task for the expected duration of rTMS after-stimulation effect. The task was 

programmed using the EPrime 2.0 software (PST Inc., Pittsburgh, PA). Task presentation and 
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data collection were conducted on a standard ASUS S56C laptop computer, with a 15.6-inch 

LED-screen. In a Markov decision task, an action at a specific choice state not only 

determines the outcome associated with the current state, but also the course of transitions 

to subsequent states (Tanaka et al., 2004). At each of the three states (s1, s2, s3), the 

participants were instructed to make a two-alternative forced choice between two possible 

action options by pressing one of two response keys after the state-specific visual stimulus 

was presented. The task consisted of two conditions: In the immediate reward condition, if 

the participant learned to take the optimal sequence of action (shown in green in Figure 2A), 

a small gain of 5 cents was rewarded at all three states. Contrarily, the other suboptimal 

sequence of action (shown in red in Figure 2A) consistently resulted in a loss of 5 cents at all 

three states. In this condition, the concurrent action–outcome associations at each of the 

three states was informative for the cumulative gains or losses across the series of 

sequential decisions. In the delayed reward condition, the optimal sequence of actions 

(shown in green in Figure 2A), was associated with small losses of 5 cents at the first two 

states (s1, s2) and a big reward of 25 cents at the third state (s3), resulting in a net gain of 15 

cents; whereas the suboptimal sequence of actions (shown in red in Figure 2A) was 

associated with small gains of 5 cents in the two initial states, but a big loss of 25 cents at 

the third state, resulting in a net loss of 15 cents. As such, the lagged, cross-state action–

outcome associations were important for performance in the delayed condition. The 

expected cumulative amount of rewards along the optimal sequence through a cycle of 

three states was the same for the immediate (+0.05 x 3) and the delayed (-0.05, -0.05, +0.25) 

conditions. The immediate and delayed reward conditions were manipulated block-wise, 

with one practice and three experimental blocks for each of the two conditions. The 

participants were instructed to maximize overall gains and minimize losses. 

Each trial started with the presentation of a fixation cross for a fixed interval of 0.5 

seconds. In case participants missed a response in the allowed 1-second response time 

window, the words “too slow” appeared on the screen and the trial was repeated. After the 

participant responded, the feedback for the current state as well as the amount of rewards 

accumulated thus far were presented for 1.5 seconds (Figure 2B). The timeout trials were 

discarded from the analyses (<3.5% in the vertex-starter group and <4.5 % in the dlPFC-

starter group).  
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Figure 2. Schematic figure of the 3-state Markov decision task with two conditions, showing the 

state transition structure (A) and trial procedure (B). 

 

The task started with the practice phase, during which participants were first introduced 

to all possible combinations of stimuli, actions and outcomes to familiarize them with the 

two learning conditions. Subsequently, they performed one practice block for each of the 

two learning conditions. The practice blocks were terminated once the participants reached 

a mean level of 60% in accurately choosing actions along the optimal action sequence or 

completed a maximum number of practice trials (36 and 72 trials were allowed for 

immediate and delayed condition, respectively). In each of the two sessions, during the 

experimental phase the participants completed 6 experimental blocks (3 blocks for each 

learning condition). In designing the task, colorful abstract figures were created using free 

software that was available online (gogoscrazybones.com) and processed in Photoshop for 

presentation purpose. Each of the colorful abstract figures denotes a specific state in a given 

block of a condition. Each practice and experimental block included a unique set of 3 

abstract figures to indicate the three states of a sequence. Altogether 24 colored abstract 

figures were shown in each of the two experimental sessions. A block entailed a total of 36 

trials (i.e., 12 cycles through the 3-state sequence), which resulted in 108 trials for the 

immediate and delayed reward condition each. The participants were randomly assigned to 

a counter-balanced ordering of the blocks. 

Measures of cognitive and motivational traits  

Besides the main experimental task, individual differences in motivation relevant traits were 

assessed by the commonly used BIS/BAS scales (Carver & White, 1994), which reflect 

individual differences in the sensitivity to reward (the BAS scale) or punishment (the BIS 

scale). Furthermore, we also included several psychometric tests to assess basic cognitive 
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abilities (i.e., reasoning, perceptual speed, memory and verbal knowledge). These measures 

were assessed to evaluate between-group comparability and to serve as covariates if 

necessary. Logical reasoning ability was assessed with the Wiener Matrizen-Test 2 (WMT-2). 

Test scores of the WMT-2 correlate highly (r = .74) with the popular Standard Progressive 

Matrices (Raven, Raven, & Court, 2000); thus, it is a suitable alternative test for assessing 

individual differences in analogical reasoning (Formann, Waldherr, & Piswanger, 2011). 

Cognitive speed was assessed by the Identical Pictures Test (Lindenberger, Mayr, & Kliegl, 

1993). Verbal knowledge was assessed by a German version of the Spot-a-Word Test, a 

lexical decision task used to assess verbal ability in adults (cf. Baddeley, Emslie, & Nimmo-

Smith, 1993; Lindenberger et al., 1993). We also assessed memory span using the Digit-Span 

Test from the Wechsler Adult Intelligence Scale (WAIS-IV; Petermann & Wechsler, 2012).  

Study procedure 

In Session 1, the participants first completed a demographic questionnaire, the BIS/BAS 

scales, the Identical Pictures Test and Spot-a-Word Test. After the psychometric tests, the 

individual motor threshold (MT) was determined, followed by the practice phase of the 

Markov decision task. Young adults then received the 20-minute rTMS stimulation over 

either the left dlPFC or vertex, depending on whether they were in the group of the dlPFC-

starters or the vertex-starters. Immediately following the rTMS stimulation, they completed 

the Markov decision task, which took on average 13 minutes. Before leaving the lab, they 

also performed the Digit-Span test. The procedure for Session 2 proceeded likewise, except 

that participants completed the WMT-2 reasoning test at the beginning of the session 

instead of the questionnaires and covariates collected in Session 1.  

Overview of data screening and analyses  

Statistical analyses were performed using Matlab (Mathworks Inc., Natick, MA) and R 

packages (version 0.98.932) in RStudio (www.rstudio.com). We first identified participants 

whose performance accuracy (the proportion of choosing options that are in the optimal 

action sequence) in the delayed reward condition was indeed above chance level by using 

the Chi-square contingency test. Those participants whose numbers of correct and incorrect 

trials in the delayed reward condition across both sessions differed significantly (p < 0.05) 

from the expected chance distribution (i.e., equal distribution of correct and incorrect trials) 

were classified as non-chance performers, whereas those participants whose numbers of 
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correct and incorrect trials did not differ significantly from the expected chance distribution 

were classified as chance performers. Altogether, we identified five chance performers in 

each of the two treatment groups (vertex- and dlPFC-starters).  

Next, control analyses comparing sample characteristics across the subsamples were 

conducted first using analyses of variance (ANOVA) on measures of cognitive and 

motivational traits as well as motor thresholds (see results summarized in Table 1). These 

analyses allowed us to first check for potential confounds before analyzing effects of rTMS 

stimulations on decision performance. When relevant, multiple comparison tests were 

performed using the Tukey-Kramer correction (Dunnett, 1980). Regarding motivational traits, 

the three subsamples (vertex-starters, dlPFC-starters and chance performers) did not differ 

in behavioral inhibition or approach (BIS/BAS) scores. Similarly, motor thresholds also did 

not differ between the groups (all p-values > 0.23). As for basic cognitive abilities, the groups 

also did not differ with respect to their scores on the Digit-Span, Identical-Pictures and Spot-

a-Word Tests (all p-values > 0.37), besides chance performers’ lower score on the WMT-2 

test assessing reasoning ability (p = 0.05). Given the chance performers’ lower reasoning 

ability, which might confound the effects of inhibitory rTMS on sequential decision-making 

and their floor-level (chance) performance in the delayed reward condition that is 

indistinguishable from the performance of an older-adult comparison sample (see 

supplementary information for details), we thus restricted the analyses of rTMS effects only 

to the non-chance performers.  

In each session, learning across blocks was computed based on mean accuracy and 

reaction times (RTs) for each participant across six consecutive equally sized trial bins (two 

bins per block) for the two experimental conditions. Furthermore, drift diffusion models are 

frequently used to decompose performance in forced two-alternative choice tasks into 

underlying processes of decision-making (Forstmann, Ratcliff, & Wagenmakers, 2016; 

Pedersen, Frank & Biele, 2016). Specifically, the drift diffusion model captures decision-

making as a process of continuous sampling of noisy decision evidence until a decision 

boundary in favor of one of the choice options is reached. Noise in the decision process 

could encompass noise in the perceptual representations of choice options as well as in the 

memory representations of choice–outcome associations. According to the model, the 

distributions of choice accuracy and RTs across trials depend on a number of parameters, 

three of which are central in most decision processes. The drift rate (v) models the efficiency 
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with which decision evidence could be integrated across trials to approach the decision 

boundaries: high drift rates reflect more efficient evidence integration. The boundary 

separation parameter (a), which adjusts the speed–accuracy tradeoff, indicates the amount 

of evidence needed until a decision criterion is reached: wider decision boundaries would 

reflect more cautious but slower decisions. The non-decision time parameter (Ter) captures 

the time taken by sensory encoding and motor processes. Of note, low-frequency rTMS 

applied over the posterior left dlPFC during perceptual decision-making has previously been 

shown to attenuate the efficiency of sensory information integration that was captured by 

one of the drift diffusion parameters (Philiastides et al., 2011). In the context of the Markov 

decision task here, at each decision state there is the possibility to transition into one of two 

possible subsequent states, depending on the participant’s choice at the given state. Thus, in 

addition to using decision accuracy and RTs as performance indices, we also applied the EZ-

diffusion model (Wagenmakers, van der Maas, & Grasman, 2007) to our data to further 

characterize potential effects of rTMS stimulation on different aspects of the decision 

process that are reflected in the parameters of the model. Specifically, we applied the model 

to each non-chance performer’s data from the immediate and delayed reward condition 

separately for the two simulation sessions, in order to estimate the three drift diffusion 

parameters described above. In the EZ-diffusion model, the parameters are estimated based 

on the individual’s decision accuracy as well as the mean and variance of RTs of the correct 

responses. In the context of the Markov decision task, these three parameters presumably 

reflect the efficiency of integrating information (v) about the sequential transitions, 

stringency of the decision criterion (a), and sensorimotor processing time (Ter). Before 

applying the model to our data, RT distributions associated with choices made in each of the 

three states were inspected separately for the immediate and delayed reward condition. All 

distributions can be characterized as ex-Gaussian, which is expected for RT distributions. 

Furthermore, key characteristics of the distributions (mean, variance, kurtosis and skewness) 

did not differ between the three choice states within conditions. 

All statistical analyses were conducted using linear mixed effects models with 

maximum-likelihood (ML) estimation and subjects as random intercepts. The intraclass 

correlation coefficient (ICC) is the recommended measure of effect sizes for models 

involving random effects (Maxwell, Camp, & Arvey, 1981). To ease the interpretation about 

the percentage of variance associated with a given effect, we also provide squared ICC 
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values for this information in the results section (Fern & Monroe, 1996). Given that the 

group factor (dlPFC-starters vs. vertex-starters) in the cross-over design fully determined 

which brain region was stimulated in each of the two sessions (i.e., left dlPFC or vertex 

stimulation), group and session effects were not separable when analyzed in a repeated 

measures design. Linear mixed effects models can differentiate these effects and flexibly 

account for degrees of freedom and model covariances at the within- (i.e., session, condition, 

learning bin) and between-subject (i.e., treatment group) levels (see Garrett et al., 2015; 

Thurm et al., 2016 for similar approaches). We conducted the linear mixed effects models 

using the lme function from the nlme package in R (Pinheiro, Bates, DebRoy, Sarkar, & R 

Core Team, 2015). Multiple-comparisons were carried out using pairwise t-tests (two-tailed) 

with Holm-correction for multiple testing (Holm, 1979). Specifically, in our analyses the 

between-subject factor Group refers to the distinction between the dlPFC-starter and the 

vertex-starter group. As for within-subject effects, the following four factors were used for 

the analyses of decision accuracy (proportion of choosing options in the optimal action 

sequence) and RT: the factor Treatment (indicating vertex or dlPFC stimulation), Session 

(referring to the two testing sessions, Session 1 (S1) and Session 2 (S2)), Condition (i.e., the 

immediate or delayed reward condition), and Bin (depicting the course of learning, from Bin 

1 to Bin 6). As the parameters of the diffusion model were estimated based on data from all 

blocks within a given learning condition, statistical analyses involving diffusion parameters 

included three of the above within-subject factors, but not the Bin factor. The normality of 

the distributions of all models’ residuals was examined using the Shapiro-Wilk-test (W-

statistic) as well as by visual inspection using Q-Q-plots. In case of normality violations, we 

performed permutation tests using permmodels from the predictmeans package in R. No 

substantial differences in the direction or magnitude of the observed effects were found in 

any of the permutated models. Lastly, Pearson’s correlation analyses were conducted to 

assess the cross-session correlations between the efficiency of integrating information about 

sequential transitions at Session 1 and making crucial state transitions at Session 2. 

 

Results  

We analyzed effects of rTMS on performance in both sessions in the two groups of young 

non-chance performers with respect to decision accuracy, RT and the three drift diffusion 

parameters (v, a, and Ter) derived from the EZ-diffusion model.  
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 rTMS effects on accuracy. In terms of within-subject effects, results of the linear mixed 

effects model for decision accuracy revealed significant main effects of Condition, F(1,436) = 

148.2, p < 0.0001, ICC = 0.50 (25.0%
1
), Session, F(1,436) = 160.2, p < 0.0001, ICC = 0.52 (27.0%), 

Bin, F(5,436) = 75.4, p < 0.0001, ICC = 0.68 (46.2%) and Treatment, F(1,436) = 5.7; p = 0.02, ICC = 

0.11 (1.2%). Furthermore, we also observed significant 2-way Treatment x Condition, F(1,436) = 

4.5, p = 0.03, ICC = 0.10 (1.0%), Session x Condition, F(1,436) = 47.5, p < 0.0001, ICC = 0.31 

(9.6%), Session x Bin, F(5,436) = 3.7, p = 0.003, ICC = 0.20 (4.0%) interactions and a significant 3-

way Treatment x Session x Condition interaction, F(1,436) = 8.5, p = 0.004, ICC = 0.14 (2.0%). 

The main effect of Bin was well in line with our previous findings (Eppinger et al., 2015), 

showing clear learning effects across the trial bins. Similarly, the main effect of Condition 

was as expected and replicated previous findings: overall, performance in the immediate 

reward condition was better than in the delayed reward condition (Eppinger et al., 2015; 

Tanaka et al., 2004). 

To further investigate the 3-way interaction indicating possible treatment group related 

effects, we conducted analyses with Group (vertex-starters vs. dlPFC-starters) as the 

between-subject factor and Condition (immediate vs. delayed reward) as within-subject 

factor separately for the two sessions. In Session 1, the results revealed a significant main 

effect of Condition, F(1,229) = 77.5, p < 0.0001, ICC = 0.50 (25.0%), no significant main effect of 

Group (p = 0.12), but a significant Group x Condition interaction, F(1,229) = 4.7, p = 0.03, ICC = 

0.14 (2.0%). Specifically, these results indicated that in Session 1 participants under dlPFC 

stimulation (the dlPFC-starters) performed significantly worse compared to participants 

under vertex stimulation (the vertex-starters) in the delayed reward condition (p = 0.004), 

whereas there was no difference between these two groups in the immediate reward 

condition (p = 0.46). Results from Session 2 again revealed a main effect of Condition, F(1,229) 

= 11.5, p = 0.0008, ICC = 0.22 (4.8%), showing better performance in the immediate than the 

delayed reward condition; however, there was no main effect of Group (p = 0.09) nor a 

Group x Condition interaction (p = 0.46). Together, these results (shown in Figure 3) indicate 

that without prior experience with the task, suppressing left dlPFC activity with rTMS 

specifically impaired sequential decision-making that involved delayed rewards: the average 

                                                      

1
 This value is the squared ICC, which indicates the percentage of variance associated with 

the effect 
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learning curve of dlPFC-starters reached a lower asymptote. In Session 2, the performance 

was overall higher, revealing the Session main effect. However, the performance of the 

vertex-starters who were on dlPFC inhibitory stimulation in this session was not surpassed 

by the dlPFC-starters, who were off the inhibitory stimulation in this case. Together, this 

pattern of results indicates that for vertex-starters, despite disrupted left dlPFC activity in 

Session 2 when they received dlPFC stimulation, their more efficient learning and higher 

performance level in Session 1 buffered their performance in the later session, without 

showing impairments. Note, however, as performance accuracy in Session 2 approached 

ceiling in both groups, results based on RT and diffusion parameters that take into account 

both accuracy and RT reported below could shed further light on this finding. 

 

Figure 3. Effects of 1-Hz rTMS on the proportion of optimal action by condition and session (error 

bars indicate one standard error). The dlPFC-starters received the stimulation (STIM) over 

the left dlPFC in Session 1 and the control stimulation (CONTROL) over the vertex in 

Session 2. The vertex-starters received the control stimulation (CONTROL) in Session 1 

and the stimulation (STIM) over the left dlPFC in Session 2. Key interaction effects in these 

results show that performance accuracy in the immediate reward condition was not 

affected by rTMS, whereas rTMS over the left dlPFC significantly attenuated performance 

in the delayed reward condition, particularly in Session 1.  
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rTMS effects on RTs. Regarding within-subject effects, results of the linear mixed effects 

model for reaction times (shown in Figure 4) revealed significant main effects of Treatment, 

F(1,436) = 9.4, p = 0.002, ICC = 0.15 (2.3%), Session, F(1,436) = 271.5, p < 0.0001, ICC = 0.62 

(38.4%), Condition, F(1,436) = 68.2, p < 0.0001, ICC = 0.37 (13.7%) and Bin, F(5,436) = 37.2, p < 

0.0001, ICC = 0.55 (30.3%). We also observed significant 2-way Treatment x Session, F(1,436) = 

4.0, p = 0.046, ICC = 0.10 (1.0%), Session x Condition, F(1,436) = 20.8, p < 0.0001, ICC = 0.21 

(4.4%), Session x Bin, F(5,436) = 4.3, p = 0.001, ICC = 0.22 (4.8%), Condition x Bin, F(5,436) = 7.1, p 

< 0.0001, ICC = 0.27 (7.3%) interactions and a significant 3-way Session x Condition x Bin 

interaction, F(5,436) = 2.6, p = 0.02, ICC = 0.17 (2.9%). Similar to the accuracy data, the main 

effects of Bin and Condition were as expected based on prior results (Eppinger et al., 2015; 

Tanaka et al., 2004). The 3-way interaction involving these two factors and the Session factor 

indicated that decision speed still improved across bins in the second session, but only in the 

delayed not in the immediate condition. Differing from the results for accuracy, no 3-way 

interaction involving the Treatment factor was observed. This indicates that the dlPFC-

starters consistently took longer times than the vertex-starters in making their decisions in 

both sessions, albeit they being under the control stimulation in Session 2. 

 

Figure 4. Effects of 1-Hz rTMS on reaction times by condition and session in young non-chance 

performers (error bars indicate one standard error). The dlPFC-starters received the 

stimulation (STIM) over the left dlPFC in Session 1 and the control stimulation (CONTROL) 

over the vertex in Session 2. The vertex-starters received the control stimulation 
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(CONTROL) in Session 1 and the stimulation (STIM) over the left dlPFC in Session 2.  Key 

interaction effects in these results show that rTMS over the left dlPFC significantly 

increased RTs in both conditions, with the effects being larger in Session 1. Learning 

significantly reduced RTs also in Session 2, but only in the delayed condition. 

 

rTMS effects on parameter estimates derived from the diffusion model 

Drift rate (v). In terms of within-subject effects, results of the linear mixed effects model 

for drift rate (shown in Figure 5) revealed significant main effects of Session, F(1,56) = 72.0, p < 

0.0001, ICC = 0.75 (56.3%) and Condition, F(1,56) = 56.4, p < 0.0001, ICC = 0.71 (50.4%). 

Moreover, a significant 2-way Session x Condition interaction, F(1,56) = 13.1, p = 0.001, ICC = 

0.43 (18.5%) was observed, reflecting a reduced effect of condition in Session 2. Follow-up 

post-hoc analyses showed that the expected effect of learning condition was observed in 

Session 1 (t(39.2) = 5.3, p < 0.0001) but was only marginally significant in Session 2 (t(35.6) = 2.0, 

p = 0.053). Furthermore, the results also yielded a significant 2-way Treatment x Session 

interaction, F(1,56) = 8.7; p = 0.005, ICC = 0.37 (13.7%). However, no significant 3-way 

interaction involving the Condition factor was observed. Thus, to further investigate this 2-

way interaction, post hoc analyses were carried out separately for each session with data 

averaged across conditions using t-tests to compare means of the two starter groups. This 

analysis revealed that the drift rate was significantly lower in the dlPFC-starters irrespective 

of task conditions in Session 1 (t(34.0) = 2.1, p = 0.04) as well as in Session 2 (t(38.8) = 3.3, p = 

0.002). These results suggest that rTMS stimulation over the left dlPFC impaired the 

efficiency of integrating information about sequential transitions across decision states. 

Furthermore, although in general the information integration rate of the dlPFC-starters 

increased in Session 2 when they were under the control stimulation, the increased 

integration efficiency was still lower that of the vertex-starters who received the inhibitory 

stimulation in this session, but initially had the opportunity to perform the task with 

undisturbed dlPFC function in the first session. 
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Figure 5. Effects of 1-Hz rTMS on drift rate by condition and session in young non-chance 

performers (error bars indicate one standard error). The dlPFC-starters received the 

stimulation (STIM) over the left dlPFC in Session 1 and the control stimulation (CONTROL) 

over the vertex in Session 2. The vertex-starters received the control stimulation 

(CONTROL) in Session 1 and the stimulation (STIM) over the left dlPFC in Session 2. Key 

interaction effects in these results show that drift rate (efficiency of information 

integration) was significantly higher in the immediate than in the delayed condition, with 

the effect being larger in Session 1. rTMS significantly attenuated the drift rates in both 

conditions, with dlPFC-starters showing lower drift rate across both sessions.  

 

Boundary separation (a). Results of the linear mixed effects model for boundary 

separation revealed a significant main effect of Session, F(1,56) = 19.7, p < 0.0001, ICC = 0.51 

(26.0%) and Condition, F(1,56) = 12.4, p = 0.0009, ICC = 0.43 (18.5%). No significant main effect 

of Treatment (p = 0.35) or any interactions (all p-values > 0.15) were observed. These results 

indicate that although the response criterion was more stringent (larger boundary 

separation) in Session 2 and in the immediate reward condition, it was not affected by rTMS 

stimulation. 

Non-decision time (Ter). Results of the linear mixed effects model for non-decision time 

revealed a significant main effect of Condition, F(1,56) = 12.1, p = 0.001, ICC = 0.42 (17.6%), 

with values of the Ter parameter being larger in the immediate than in the delayed condition. 
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A significant Session x Condition interaction, F(1,56) = 10.8, p = 0.002, ICC = 0.40 (16.0%) 

showed that the condition effect on non-decision time was only present in Session 1. 

Otherwise, no main effects of Treatment (p = 0.41), Session (p = 0.34) or other interactions 

(all p-values > 0.34) were observed. These results indicate that rTMS stimulation did not 

affect the speed of the non-decision (e.g., sensorimotor) aspect of the processing. 

Analyses of cross-session correlations 

To further explore whether the positive carry-over effect from Session 1 to Session 2 in the 

vertex-starters, who had the opportunity to perform the task in Session 1 with undisturbed 

left dlPFC, may reflect their benefits of being able to better integrate information about 

sequential transitions during initial learning in Session 1, we conducted additional cross-

session correlational analyses. Specifically, we expected that better information integration 

about sequential transitions might allow them to establish a better representation of crucial 

state transitions. To this end, for each vertex-starter we calculated the proportion of 

successful transitions from state 2 (s2) to state 3 (s3) in the delayed condition, which was the 

crucial transition to obtain the delayed large reward. Identical analyses were also conducted 

for the dlPFC-starters for comparison. One dlPFC-starter’s proportion of making the crucial 

state transition was more than 5 standard deviations below the group mean (SD = 5.28) and 

was thus excluded from the correlational analyses. Individual differences in successfully 

making the crucial state 2-to-3 transition correlated significantly between Session 1 and 

Session 2 across participants in both treatment groups (r = 0.56, p = 0.01), indicating test-

retest rank-order reliability in the decision performance assessed with the task. We further 

explored the specific relationship between the effect of rTMS on the efficiency of 

information integration as reflected in the drift rate parameter in Session 1 and successful 

state 2-to-3 transition in Session 2 separately for the two treatment groups. As shown in 

Figure 6, drift rates in Session 1 correlate positively with the proportion of making the crucial 

state 2-to-3 transition in the vertex-starters (r = 0.86, p = 0.001) but not in the dlPFC-starters 

(r = -0.03, p = 0.93). Together, this pattern of results indicates that the 3-stage Markov 

decision task has good rank-order reliability and that inhibitory 1-Hz rTMS stimulation over 

the left dlPFC during initial learning attenuated performance potential and the associated 

individual differences. 

In light of earlier results showing lateral PFC’s role in supporting relational integration 

processes during higher-order analogical reasoning (e.g., Bunge, Wendelken, Badre, & 
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Wagner, 2005; Christoff et al., 2001), we also checked whether the observed cross-session 

correlation between drift rate and making crucial sequential transition would remain 

significant after controlling for individual differences in analogical reasoning ability. In line 

with previous findings, across both the vertex- and dlPFC-starters reasoning ability as 

assessed by the WMT-2 in our data correlated moderately (r = 0.48, p = 0.03) with the 

behavior of making the crucial state 2-to-3 transitions in the delayed condition in Session 1. 

Importantly, however, in vertex-starters partialling out individual differences in reasoning 

ability or the overall performance of choosing the optimal actions in Session 2 only minimally 

attenuated the cross-session correlation between drift rate in Session 1 and the 

performance of making the crucial transition observed in Session 2 (r = 0.81, p = 0.008 and r 

= 0.76, p = 0.02 after controlling for reasoning ability or the overall performance accuracy, 

respectively). Taken together, these results indicate that in vertex-starters the positive carry-

over effects between sessions could be attributed to a positive relation between more 

efficient information integration about sequential transitions during initial learning in 

Session 1 and a great success in making the crucial state 2-to-3 transitions in Session 2. 

 

 

Figure 6. Cross-session correlations between drift rate estimated from data in the first session (S1) 

and the proportion of succeeding in making the crucial state 2-to-3 transition during 

session 2 (S2) in the delayed reward condition separated for vertex-starters and dlPFC-

starters. Using the Fisher r-to-z transformation to test the difference between these two 

correlations yielded a significant effect (z = 2.56, p = 0.01).  
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Discussions 

Although increasingly more findings from fMRI, lesion and TMS studies have lend support for 

the lateral PFC’s involvements in value-based learning and decision-making (for a recent 

review see Dixon & Christoff, 2014), its role in value-based sequential decision-making that 

requires the acquisition of complex sequential transitions and cross-temporal contingencies 

is not yet well established. To fill this gap, we used a within-subject cross-over design to 

investigate the effects of an off-line inhibitory rTMS protocol over young male adults’ left 

dlPFC on performance in a 3-stage deterministic Markov decision task. Other than effects on 

the sequential choice behavior and decision time, we also examined potential impacts of 

rTMS on drift diffusion parameters estimated using the EZ-diffusion model (Wagenmakers et 

al., 2007). Extending previous correlational findings from fMRI (Tanaka et al., 2004) and our 

own age-comparative study (Eppinger et al., 2015), results from the current study provide 

further support for the role of the left dlPFC in complex value-based learning and shed lights 

on the potential link between dlPFC and the efficiency of information integration across 

decision states during sequential decision making. The main findings are discussed in details 

below. 

Inhibitory stimulation applied over the left dlPFC attenuated the behavior of choosing 

options in the optimal action sequence, particularly in situations where the acquisition of 

sequential transitions across decision states is crucial for performing optimally in the long 

run. If only based on performance accuracy, at first sight it may seem that the reduced rTMS 

effect on decision accuracy in Session 2 could, in part, reflect a ceiling effect. However, 

subsequent analyses using a drift diffusion model that considers both accuracy and RTs 

suggest more principled influences of rTMS on acquiring representations of complex 

sequential transitions. First, the disadvantage of having to learn the task with inhibited left 

dlPFC during Session 1 persisted into Session 2, which was clearly evident in comparing the 

RTs of the dlPFC-starters with those of the vertex-starters. In both sessions, the dlPFC-

starters took longer to make their decisions. Second, results regarding the drift rate showed 

a similar pattern: dlPFC-starters consistently showed smaller drift rates than the vertex-

starters in both sessions, indicating that the integration of information about sequential 

transitions was impaired by inhibitory rTMS during initial learning in the first session and the 

negative consequence persisted into the subsequent session. Moreover, the effect of rTMS 
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on process parameters derived from the diffusion model was only specific to the information 

integration process. Although the parameters reflecting the stringency of the response 

criterion (a) and non-decision time (Ter) were sensitive to the time point of reward and the 

extend of learning as reflected, respectively, in the observed effects of learning condition 

and session, inhibitory rTMS over the left dlPFC did not affect either of these two 

parameters. Third, results from analyzing the cross-session relation between the efficiency 

of information integration and optimal choice behavior showed that, indeed, individual 

differences in drift rate during initial learning in Session 1 and the proportion of successfully 

making the crucial state transition for gaining the delayed reward in Session 2 was positively 

correlated in the vertex-starters. Those vertex-starters who were more efficient in 

integrating information across decision states during initial learning were also more 

successful in making the crucial transition in Session 2 to obtain the delayed larger rewards, 

even though their left dlPFC was inhibited in Session 2. Although alternative sets of stimuli 

were used and counterbalanced for the two sessions, the main sequential transition 

structures for the immediate and delayed conditions remained the same across sessions. In 

a standard one-session fMRI study without treatment cross-overs, we have previously 

shown that, during the course of learning within one session, BOLD activity in the left dlPFC 

was high during initial learning; however, BOLD activity decreased after the participants had 

acquired the sequence of state transitions (Eppinger et al., 2015). Extrapolating this pattern 

of prior results to interpret the current cross-session findings, the vertex-starters, who could 

learn more about the optimal choice sequence in the delayed condition with intact left dlPFC 

in Session 1, could generalize their learned representation of this sequential transition to 

Session 2. Once the representation of the sequential transition is learned, choice behavior is 

less depended on the dlPFC in Session 2, thus the performance of the vertex-starters in 

Session 2 while under inhibitory rTMS could still be buffered by the initial learning in Session 

1. Relatedly, although in Session 2 the learning of new stimulus–outcome pairs at each state 

would be required, such learning mainly involves simple concurrent within-state association 

but not cross-state integration, given that the general task transition structure has been 

acquired in Session 1. The learning of stimulus–outcome associations within each state relies 

relatively more on striatal than frontal activities (cf. Daw et al., 2011; O’Doherty, Dayan, 

Friston, Critchley & Dolan, 2003). Thus, inhibiting the left dlPFC of vertex-starters in the 

second session had relatively little influence on different measures of choice behavior. 
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Taken together, the cross-over design of 1-Hz rTMS in our study allowed us to investigate 

the roles of the left dlPFC in affecting complex value-based learning in which sequential state 

transitions involving lagged action-outcome contingencies are important for decisions. 

Unlike the dlPFC-starters, the vertex-starters were able to perform the task with 

uninterrupted left dlPFC function initially in the first session. This allowed them to more 

efficiently integrate information across decision states to acquire the sequential transition 

structure, which resulted in a higher performance level. Once they have learned the state 

transition structure, the decision performance becomes less dependent on the left dlPFC; 

thus, their performance and further learning during the second session was not impaired, 

even though their left dlPFC function was suppressed in this later session. These effects 

cannot be attributed to potential confounds in terms of between-group differences in basic 

cognitive or motivational traits, as both the vertex-starter and dlPFC-starter groups were 

comparable on a varieties of control variables that were also assessed.  

Our findings also extend previous studies on PFC’s roles in value-based learning and 

decision-making. In line with results from previous TMS studies on intertemporal choices 

(Essex et al., 2012; Figner et al., 2010) and model-based vs. model-free learning (Smittenaar 

et al., 2013), our results implicate dlPFC’s roles in complex value-based learning and decision 

making. Previous studies using intertemporal choice tasks focused mainly on lateral PFC’s 

function in integrating information about the time point of rewards (Essex et al., 2012; 

Figner et al., 2010); whereas studies on model-based vs. more-free learning focused on 

lateral PFC’s role in representing probability-based decision structures (Daw et al., 2011; 

Smittenaar et al., 2013). Having a different focus and by utilizing the deterministic 3-stage 

Markov task, our findings shed further evidence on left dlPFC’s roles in integrating complex 

sequential relations and temporal contingencies across decision states as well as the 

potential of such learning. Our findings are also in line with the results from a recent study, 

which showed that the anatomical integrity of the left prefrontal cortex, along with other 

regions (bilateral hippocampus), is associated with the individual’s ability of making 

sequential inference in a category reversal learning task (FitzGerald, Hämmerer, Friston, Li & 

Dolan, 2017).  

Furthermore, our results also lend support to evidence suggesting a rostro-caudal axis of 

PFC’s functional divisions. Accumulating evidence indicates that the anterior and mid-

dorsolateral PFC are involved in the learning of complex rules and processing relational 
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information (see Badre & D’Esposito, 2009, for review). Whereas previous studies on 

complex rule learning and relational integration applied tasks that tap analogical reasoning 

(e.g., Bunge et al., 2009, 2005; Christoff et al., 2001), our findings extend lateral PFC’s roles 

to situations involving the integration of sequential relations across value-based decision 

states. In our data, we also found that individual differences in reasoning ability as measured 

by the WMT-2 test correlated moderately with the performance success in making the 

crucial state 2-to-3 transition in the delayed reward condition. Of note, however, after 

controlling for individual differences in reasoning ability, the efficiency of integrating 

information about the sequential transitions during initial learning as reflected in the drift 

rate parameter assessed in Session 1 still uniquely predicted the success of making optimal 

choices at the crucial transition in Session 2, specifically in individuals who had the 

opportunity to acquire the state transitions during initial learning without interrupted left 

dlPFC function. Furthermore, our results are also in line with earlier finding suggesting that 

whereas the right lateral PFC seemed to be primarily sensitive to capacity demands of 

information processing imposed by the complexity of stimulus features, the left lateral PFC 

modulates the integration of higher-order relational information (Bunge et al., 2009). The 

rostro-caudal division of the frontal lobe functions (i.e., the rostro-lateral regions being more 

involved as the complexity of relational integration increases) may even extend further into 

the orbitofrontal cortex. Specifically, a recent study showed that the orbitofrontal cortex is 

implicated in the acquisition and representation of state transitions between 16 states in a 

complex learning task (Schuck, Cai, Wilson, & Niv, 2016).  

Other than clear negative aging-related differences in sequential decisions that could in 

part be attributed to an under-recruitment of regions in dlPFC (e.g., Eppinger et al., 2015), 

individual differences in young adults are also substantial. In our data screening analyses, 

about one third of the young participants performed at chance level and their rather low 

performance level was not distinguishable from that of an older-adult comparison sample 

(see supplementary information). Although the young chance performers did not differ 

significantly from the non-chance performers with respect to any of the control measures of 

cognitive and motivational traits, they scored lower for reasoning ability. This is in line with 

previous evidence suggesting that the lateral PFC supports relational integration during 

higher-order analogical reasoning tests (e.g., Bunge, Wendelken, Badre, & Wagner, 2005; 

Christoff et al., 2001). Furthermore, individual differences in working memory updating 
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might be another factor that could contribute to individual differences in the effects of rTMS 

on sequential decision making. It has been shown that working memory operation span 

modulated the balance between model-based and model-free value-based learning (e.g., 

Eppinger, Walter, Heekeren, & Li, 2013) as well as the effects of rTMS stimulation (e.g., 

Smittenaar et al., 2013) in a 2-stage Markov decision task. 

Taken together, given the multifaceted roles of dlPFC in value-based learning and 

sequential decision-making that require integrations across complex state transitions as well 

as the clear age-related impairment in such learning in older adults (Eppinger et al., 2015), it 

would be important for future studies to explore other stimulation methods, such as 

excitatory 10-Hz rTMS (e.g., Strafella, Paus, Barrett, & Dagher, 2001) or transcranial direct 

current stimulation methods (e.g., Filmer, Varghese, Hawkins, Mattingley, & Dux, 2016; see 

Filmer, Dux, & Mattingley, 2014; Passow, Thurm & Li, 2017 for reviews) over similar regions 

to explore possibilities for enhancing the acquisition and representation of complex 

sequential transitions in older adults. To this end, effort needs to be devoted towards 

adapting stimulation protocols for older adults, since the responses to brain stimulations 

have been shown to vary as a function of age and other factors. More generally, effects of 

brain stimulations are state-dependent (e.g., Learmonth et al., 2015), which could result in 

substantial interindividual variability in intervention outcomes (e.g., Eldaief et al., 2011). 

Furthermore, interindividual differences in baseline task performance (e.g., Jones & Berryhill, 

2012; Tseng et al., 2012), working memory functions (e.g., Smittenaar et al., 2013), and 

functional connectivity in the default mode network (Eldaief et al., 2011) may also modulate 

individual differences in the effects of TMS on task-related performance and brain functions. 

Thus, future research needs to invest considerable attention to assess baseline performance 

with broad ranges of relevant covariates and brain activities in the default mode network, in 

order to more closely delineate individual and age differences in the mechanisms underlying 

effects of TMS on complex value-based learning and decision-making. 
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Table 1. Comparisons of sample characteristics across subsamples of younger adults 

    

Demographic & 

psychometric 

measures 

Non-chance Non-chance Chance- 

vertex-starters dlPFC-starters performers Group effect 

(n = 10) (n = 11) (n = 10) 

mean (SD) mean (SD) mean (SD) p-value effect size 

    

Age 23.7 (1.1) 23.0 (2.1) 24.9 (3.4) p = 0.21 η2 = 0.12 

WMT-2 15.9 (2.0) 15.2 (1.6) 13.7 (2.2) p = 0.05 η2 = 0.24 

Digit-Span (S1) 15.6 (3.5) 15.8 (4.1) 17.0 (1.9) p = 0.61 η2 = 0.04 

Digit-Span (S2) 16.8 (4.0) 16.8 (4.6) 17.8 (2.6) p = 0.80 η2 = 0.02 

Identical Pictures 36.4 (3.7) 35.6 (5.0) 34.6 (3.5) p = 0.63 η2 = 0.03 

Spot-a-Word 20.6 (6.6) 20.4 (5.7) 17.1 (6.0) p = 0.37 η2 = 0.07 

BIS 17.0 (2.6) 18.6 (2.1) 18.7 (2.8) p = 0.23 η2 = 0.11 

BAS 13.0 (1.4) 13.2 (1.7) 13.5 (1.6) p = 0.72 η2 = 0.02 

MT (S1) 49.6 (6.3) 49.2 (5.6) 48.3 (5.5) p = 0.88 η2 = 0.01 

MT (S2) 51.1 (4.4) 50.2 (5.9) 48.2 (6.2) p = 0.50 η2 = 0.05 
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Figure Captions 

 

 

Figure 1. rTMS stimulation sites (A) and the within-subject cross-over design (B). 

 

Figure 2. Schematic figure of the 3-state Markov decision task with two conditions, showing 

the state transition structure (A) and trial procedure (B). 

 

Figure 3. Effects of 1-Hz rTMS on the proportion of optimal action by condition and session 

(error bars indicate one standard error). The dlPFC-starters received the 

stimulation (STIM) over the left dlPFC in Session 1 and the control stimulation 

(CONTROL) over the vertex in Session 2. The vertex-starters received the control 

stimulation (CONTROL) in Session 1 and the stimulation (STIM) over the left dlPFC 

in Session 2. Key interaction effects in these results show that performance 

accuracy in the immediate reward condition was not affected by rTMS, whereas 

rTMS over the left dlPFC significantly attenuated performance in the delayed 

reward condition particularly in Session 1.  

 

Figure 4. Effects of 1-Hz rTMS on reaction times by condition and session in young non-

chance performers (error bars indicate one standard error). The dlPFC-starters 

received the stimulation (STIM) over the left dlPFC in Session 1 and the control 

stimulation (CONTROL) over the vertex in Session 2. The vertex-starters received 

the control stimulation (CONTROL) in Session 1 and the stimulation (STIM) over 

the left dlPFC in Session 2.  Key interaction effects in these results show that rTMS 

over the left dlPFC significantly increased RTs in both conditions, with the effects 

being larger in Session 1. Learning significantly reduced RTs also in Session 2, but 

only in the delayed condition. 

 

Figure 5. Effects of 1-Hz rTMS on drift rate by condition and session in young non-chance 

performers (error bars indicate one standard error). The dlPFC-starters received 

the stimulation (STIM) over the left dlPFC in Session 1 and the control stimulation 

(CONTROL) over the vertex in Session 2. The vertex-starters received the control 
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stimulation (CONTROL) in Session 1 and the stimulation (STIM) over the left dlPFC 

in Session 2. Key interaction effects in these results show that drift rate (efficiency 

of information integration) was significantly higher in the immediate than in the 

delayed condition, with the effect being larger in Session 1. rTMS significantly 

attenuated the drift rates in both conditions, with dlPFC-starters showing lower 

drift rate across both Sessions.  

 

Figure 6. Cross-session correlations between drift rate estimated from data in the first 

session (S1) and the proportion of succeeding in making the crucial state 2-to-3 

transition during session 2 (S2) in the delayed reward condition separated for 

vertex-starters and dlPFC-starters. Using the Fisher r-to-z transformation to test 

the difference between these two correlations yielded a significant effect (z = 2.56, 

p = 0.01).  

 

 

 


