
Game-Theoretic Foundations for Forming Trusted Coalitions of
Multi-Cloud Services in the Presence of Active and Passive Attacks

Omar Abdul Wahab

A Thesis
In

The Concordia Institute
for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy (Information and Systems Engineering) at
Concordia University

Montréal, Québec, Canada

October 2017
c© Omar Abdul Wahab, 2017

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Omar Abdul Wahab

Entitled: Game-Theoretic Foundations for Forming Trusted Coalitions of Multi-Cloud
Services in the Presence of Active and Passive Attacks

and submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Information and Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining committee:

Chair

Dr. Hua Ge

External Examiner

Dr. Robin Cohen

Examiner

Dr. Juergen Rilling

Examiner

Dr. Rachida Dssouli

Examiner

Dr. Roch Glitho

Supervisor

Dr. Jamal Bentahar

Co-supervisor

Dr. Hadi Otrok

Approved by

Dr. Chun Wang Graduate Program Director

November 22, 2017

Date of Defence

Dr. Amir Asif Dean, Faculty of Engineering and Computer Science

Abstract

Game-Theoretic Foundations for Forming Trusted Coalitions of Multi-Cloud
Services in the Presence of Active and Passive Attacks

Omar Abdul Wahab, Ph.D.
Concordia University, 2017

The prominence of cloud computing as a common paradigm for offering Web-based
services has led to an unprecedented proliferation in the number of services that are de-
ployed in cloud data centers. In parallel, services’ communities and cloud federations have
gained an increasing interest in the recent past years due to their ability to facilitate the
discovery, composition, and resource scaling issues in large-scale services’ markets. The
problem is that the existing community and federation formation solutions deal with ser-
vices as traditional software systems and overlook the fact that these services are often
being offered as part of the cloud computing technology, which poses additional challenges
at the architectural, business, and security levels.

The motivation of this thesis stems from four main observations/research gaps that
we have drawn through our literature reviews and/or experiments, which are: (1) leading
cloud services such as Google and Amazon do not have incentives to group themselves
into communities/federations using the existing community/federation formation solutions;
(2) it is quite difficult to find a central entity that can manage the community/federation
formation process in a multi-cloud environment; (3) if we allow services to rationally select
their communities/federations without considering their trust relationships, these services
might have incentives to structure themselves into communities/federations consisting of a
large number of malicious services; and (4) the existing intrusion detection solutions in the
domain of cloud computing are still ineffective in capturing advanced multi-type distributed
attacks initiated by communities/federations of attackers since they overlook the attacker’s
strategies in their design and ignore the cloud system’s resource constraints.

This thesis aims to address these gaps by (1) proposing a business-oriented commu-
nity formation model that accounts for the business potential of the services in the formation
process to motivate the participation of services of all business capabilities, (2) introducing
an inter-cloud trust framework that allows services deployed in one or disparate cloud cen-
ters to build credible trust relationships toward each other, while overcoming the collusion

iii

attacks that occur to mislead trust results even in extreme cases wherein attackers form
the majority, (3) designing a trust-based game theoretical model that enables services to
distributively form trustworthy multi-cloud communities wherein the number of malicious
services is minimal, (4) proposing an intra-cloud trust framework that allows the cloud sys-
tem to build credible trust relationships toward the guest Virtual Machines (VMs) running
cloud-based services using objective and subjective trust sources, (5) designing and solv-
ing a trust-based maxmin game theoretical model that allows the cloud system to optimally
distribute the detection load among VMs within a limited budget of resources, while consid-
ering Distributed Denial of Service (DDoS) attacks as a practical scenario, and (6) putting
forward a resource-aware comprehensive detection and prevention system that is able to
capture and prevent advanced simultaneous multi-type attacks within a limited amount of
resources.

We conclude the thesis by uncovering some persisting research gaps that need further
study and investigation in the future.

iv

Acknowledgements

I would like to express my gratitude to Almighty GOD for granting me the health, ability,
and patience to complete this thesis.

I would like to thank my Ph.D. supervisors Dr. Jamal Bentahar, Dr. Hadi Otrok and
Dr. Azzam Mourad for their continuous guidance and full support. I was lucky to have
been surrounded by such professional, inspirational, and caring advisors. Thanks for hav-
ing believed in me and motivated me to pursue my graduate studies. You gave me the
opportunity and curiosity to explore my academic capacity and paved the way to what I am
now.

Moreover, I would like to thank my Ph.D. committee members Dr. Rachida Dssouli, Dr.
Juergen Rilling, Dr. Roch Glitho, and Dr. Robin Cohen for their valuable time and effort
in reviewing my thesis and providing me with insightful comments and recommendations.
Your deep knowledge and expertise have made every encounter a great opportunity to
discuss new ideas and enhance the quality of the research outcomes.

Furthermore, I would like to thank all my colleagues in the research lab at Concordia
University especially Ahmad Bataineh, Mona Taghavi, Gaith Rjoub, Nagat Drawel, Afaf
Mousa, and Laura Zapata-Aspiazu for providing me with a warm and friendly atmosphere
to work in. I would like also to thank my non-concordian friends Hanine Tout and Adel
Abusitta as well as my non-academic friends with whom I shared precious and enjoyable
moments. Your presence has allowed me to appreciate my stay in Montreal and added lots
of fun to my Ph.D. journey.

This research would not have been possible without the financial assistance of the
Fonds de recherche du Québec - Nature et technologies (FRQNT) and Concordia Univer-
sity. This support was very important for me to alleviate the financial burdens and focus on
my research duties.

Last but not least, I would like to thank my parents for their endless and unconditional
love and support. Their guidance has been always important for me to overcome the
difficulties of life. Without my mother (Mona), father (Mohammad), sister (Amanie), and
two brothers (Amine and Ayman), I could not have been able to succeed throughout my
life and become the person I am today.

v

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Research Context and Motivations . 1

1.2 Problem Statement and Research Questions 2

1.3 Research Objectives and Contributions . 4

1.4 Thesis Structure . 6

2 Background and Literature Review 8

2.1 Service-Oriented Architecture (SOA) . 8

2.1.1 Cloud Computing . 9

2.1.2 Web Service . 10

2.1.3 Cloud Federation . 11

2.1.4 Community of Services . 11

2.1.5 Trust and Reputation in the SOA . 12

2.2 Game Theory . 12

2.2.1 Coalitional Game Theory . 15

2.2.1.1 Transferable Utility (TU) Games: 16

2.2.1.2 Non-Transferable Utility (NTU) games: 20

2.2.2 Non-Cooperative Game Theory . 23

2.3 Literature Review and Discussions . 24

vi

2.3.1 Cooperation Models in SOA . 25

2.3.1.1 Services Communities . 25

2.3.1.2 Cloud Federations . 27

2.3.2 Stackelberg Games . 28

2.3.3 Intrusion Detection Systems in Cloud Computing 30

2.3.3.1 Network-based Detection Systems 30

2.3.3.2 Host-based Detection Systems 31

2.3.3.3 Hypervisor-based Detection Systems 32

3 Trust and Reputation Models in the Service-Oriented Architecture: Classifica-
tion, Challenges, and Future Directions 34

3.1 Motivations of the Survey . 35

3.2 Existing Surveys . 35

3.3 Research methodology . 37

3.4 Problem Statement and Research Questions 38

3.5 Trust and Reputation in SOA . 40

3.5.1 Single Services . 41

3.5.1.1 Feedback-based models 42

3.5.1.2 Statistics-based models . 44

3.5.1.3 Fuzzy-logic-based models 44

3.5.1.4 Data-mining-based models 45

3.5.2 Composite Services . 46

3.5.2.1 Statistics-based models . 47

3.5.2.2 Game-theoretic-based models 48

3.5.3 Communities of Services . 49

3.5.3.1 Analytical Models . 50

3.5.3.2 Game-theoretic-based Models 52

3.5.4 Summary of Findings . 53

3.6 Discussions and Research Directions . 54

vii

3.6.1 Single Architecture . 54

3.6.2 Composite Architecture . 55

3.6.3 Community-based Architecture . 56

3.6.4 Future Perspectives . 58

3.7 Impact of malicious services on the composite and community-based archi-
tectures . 59

3.8 Conclusion . 61

4 Forming Communities Among Services Deployed in Clouds Having Uneven
Business Capabilities 63

4.1 Proposed Community Formation Model . 64

4.1.1 Solution Overview . 64

4.1.2 Aggregation Functions . 65

4.1.3 Utility Functions . 67

4.1.4 Followers Payment Selection Game 68

4.1.5 Leader’s Utility Maximization Game 71

4.2 Industrial Impact: A Complete Scenario . 72

4.3 Experimentations and Empirical Analysis 76

4.3.1 Experimental Setup . 76

4.3.2 Experimental Results . 78

4.4 Conclusion . 80

5 Towards Trustworthy Multi-Cloud Services Communities 82

5.1 System Model and Assumptions . 83

5.1.1 System Model . 83

5.1.2 Attack Model and Assumptions . 85

5.2 The DEBT Trust Framework . 86

5.2.1 Service Discovery . 86

5.2.2 Trust Establishment . 88

5.2.3 Trust Bootstrapping . 93

viii

5.2.4 Illustrative Example . 95

5.3 Trust-based Hedonic Coalitional Game . 98

5.3.1 Game Formulation . 98

5.3.2 Hedonic Coalition Formation Algorithm 100

5.3.3 Analysis of the Trust-based Hedonic Game 102

5.4 Experimental Results and Analysis . 104

5.4.1 Experimental Setup . 104

5.4.2 Experimental Results . 106

5.5 Conclusion . 109

6 Optimal Load Distribution for the Detection of VM-based DDoS Attacks in the
Cloud 111

6.1 System Model and Assumptions . 112

6.1.1 System Model and Strategies . 112

6.1.2 Attacker Strategy . 113

6.1.3 Hypervisor Strategy . 114

6.1.4 Attack Model . 114

6.2 Building Trust on Virtual Machines . 116

6.2.1 Objective Trust: Virtual Machines Monitoring 116

6.2.2 Subjective Trust: Recommendations Collection 118

6.2.3 Trust Aggregation . 119

6.2.4 Trusting Newly Deployed VMs . 121

6.3 Determining the Optimal Detection Load Distribution Strategy: Trust-based
Maxmin Game . 122

6.4 Numerical Example . 126

6.5 Experimental Results and Analysis . 130

6.5.1 Experimental Setup . 130

6.5.2 Experimental Results . 133

6.6 Conclusion . 136

ix

7 Resource-Aware Detection and Defense System Against Multi-Type Attacks
in the Cloud 137

7.1 Problem Formulation . 137

7.1.1 System Model . 138

7.1.2 Attack Model . 140

7.2 Adaptive Detection Load Distribution Strategy: Bayesian Stackelberg Game 143

7.3 Learning-based Detection and Defense System: Repeated Bayesian Stack-
elberg Game . 146

7.3.1 Virtual Machines Risk Assessment 147

7.3.2 Services Deployment and Defense Mechanism 151

7.3.3 Honeypot Deployment and Attackers’ Types Recognition 153

7.4 Experimental Results and Analysis . 156

7.4.1 Experimental Setup . 156

7.4.2 Experimental Results . 158

7.5 Conclusion . 164

8 Conclusion and Future Directions 166

Bibliography 170

x

List of Figures

1.1 Architecture of the multi-cloud services communities 2

1.2 Research methodology and objectives w.r.t the identified research questions 6

2.1 Virtualized cloud system: Hypervisors manage a set of hardware resources
and host a set of VMs . 9

2.2 Classification scheme: Game theoretical models are classified based on the
underlying situations . 14

2.3 Inclusion relationships among stability concepts in hedonic games 23

2.4 Classification scheme of the cooperation models in the SOA 25

2.5 Classification scheme of the intrusion detection systems in cloud computing 30

3.1 Classification scheme: Trust and reputation models are classified based on
the architecture of services they target (high-level classification), and the
technique they use to build the trust within each architecture (low-level clas-
sification) . 41

3.2 Impact of selective request drop attack on the composite architecture . . . 60

3.3 Impact of DoS, Outage, and Sybil attacks on the composite architecture . . 60

3.4 Impact of Sinkhole, Composition Exclusion, and Component Exclusion at-
tacks on the composite architecture . 61

3.5 Impact of selective request drop attack on the community-based architecture 61

3.6 Impact of DoS, Outage, and Sybil attacks on the community-based architec-
ture . 62

3.7 Impact of Sinkhole, Community Exclusion, and Member Exclusion attacks
on the community-based architecture . 62

4.1 Satisfaction of leaders, followers, and users respectively 78

xi

4.2 Impact of the preselection set size and quota size on the leaders utility . . . 79

5.1 Social network graph: Vertices represent services and edges represent the
interactions among services . 84

5.2 Methodology of the trust-based multi-cloud services communities model . . 85

5.3 Percentage of malicious services: Our trust-based model minimizes the
number of malicious services . 104

5.4 Performance metrics: Our model improves availability, response time, and
throughput compared to the Availability and QoS models 104

5.5 Performance metrics: Our model improves availability, response time, and
throughput compared to the Hedonic Federations model 105

5.6 Average coalition size: Our trust-based model generates coalitions of smaller
size . 107

5.7 Bootstrapping accuracy: Our bootstrapping mechanism achieves high accu-
racy rate . 108

6.1 Attack scenario: Attackers distribute their attacks over a set of VMs to mini-
mize the detection probability, while hypervisors distribute the detection load
over the set of guest VMs to maximize this minimization 113

6.2 Solution methodology of the optimal detection load distribution model . . . 114

6.3 Detection performance: Our model increases the percentage of detected
attacks and decreases the percentages of false negatives and resources
wastage compared to the price-based maxmin and the fair allocation strategy 132

6.4 Resources usage: Our model minimizes the CPU, memory, and network
bandwidth usage under DDoS attack compared to the price-based maxmin
and the fair allocation strategy . 132

6.5 Servicing and execution times: Our model reduces the tasks’ servicing time
compared to the price-based maxmin and the fair allocation strategy and is
efficient in terms of execution time . 135

7.1 Repeated Bayesian Stackelberg Game: The repeated Bayesian Stackelberg
game is composed of four main phases: Bayesian Stackelberg game, Risk
Assessment, Services Deployment, and Honeypots Deployment 147

7.2 Detection performance: Our solution improves the detection performance
and is scalable to the increase in the number of co-hosted VMs compared
to the one-stage Stackelberg, maxmin, and fair allocation strategies 159

xii

7.3 Detection performance: Our solution improves the detection performance
and is scalable to the increase in the percentage of co-resident malicious
VMs compared to the one-stage Stackelberg, maxmin, and fair allocation
strategies . 159

7.4 Defense mechanism: Our defense mechanism maximizes the percentage
of survived services and takes less than one second to run 161

7.5 Training and classification times: The training and classification times en-
tailed by our attackers’ types recognition technique are acceptable 163

7.6 Execution time: Our solution is efficient in terms of execution time and grows
polynomially with the increase in the number of co-hosted VMs 164

xiii

List of Tables

2.1 Game theory components . 13

2.2 Payoff matrix of the players in the Prisoner’s Dilemma game 24

3.1 Criteria for the trust and reputation models in the single services’ architecture 42

3.2 Comparison summary between the main trust and reputation approaches in
the single architecture . 46

3.3 Criteria for the trust and reputation models in the composite services’ archi-
tecture . 47

3.4 Comparison summary between the main trust and reputation approaches in
the composite architecture . 49

3.5 Criteria for the trust and reputation models in the community-based archi-
tecture . 51

3.6 Comparison summary between the main trust and reputation approaches in
the community-based architecture . 52

3.7 Comparison summary among the class models in each architecture 53

3.8 Summary of the main trust and reputation approaches proposed for services 54

4.1 Airline Web services’ parameters . 73

5.1 Combination of the bpa’s of services A and B 90

5.2 Combination of services A and B’s belief with the bpa of C 91

5.3 Combination of S4 and S7’s beliefs . 96

5.4 Combining S4 and S7’s combined beliefs with the beliefs of S6 97

6.1 Notations . 115

xiv

6.2 Datacenter properties . 131

7.1 List of attacks w.r.t the associated vulnerabilities 140

7.2 Virtual machine worth scale and description 148

7.3 Vulnerability scale and description . 149

7.4 Threat scale and description . 149

7.5 Risk Scale and description . 150

7.6 Risk levels determination example . 150

7.7 Attacks occurrence distributions on Xen hypervisors 158

xv

Chapter 1

Introduction

In this chapter, we introduce the context of our research work, highlight the problems
tackled in this thesis, pose the corresponding research questions, and finally identify the
goal and objectives of our research work.

1.1 Research Context and Motivations

Services’ communities1 [82] have been proposed as an effective platform for address-
ing the discovery, composition, and resource scaling problems in the Service-Oriented
Architecture (SOA). The idea is to group services sharing the same functionality into a set
of homogenous clusters. Although numerous community formation models can be found
in the literature, these models deal with Web services as traditional software systems and
overlook the fact that these services are being (often) offered nowadays as part of the
cloud computing technology, which raises additional challenges at the business, architec-
tural, and security levels. Consequently, the aim of our research work is to propose a
novel community-based services’ architecture that accounts for these aforementioned new
constraints. We refer to such an architecture as Multi-Cloud Services’ Communities. The
system model of this architecture consists of a set of services deployed in different cloud
centers and belonging to different cloud services’ layers as depicted in Fig. 1.1.

Fortunately, such an extension extends the benefits provided by the community-based
architecture. In fact, besides the aforementioned benefits of the traditional services’ com-
munities, multi-cloud services’ communities provide additional benefits for both providers
and customers. Practically, such an architecture increases the flexibility of providers in

1In the rest of the thesis, the terms coalition and community are used interchangeably.

1

�

Community of Email Services

Community of VMs

������������	�

�

�����������	

�������������

�����������	�

������������	�

�������������

������������	�

Community of Web Servers

������������	�

������������	�

Figure 1.1: Architecture of the multi-cloud services communities

managing requests and meeting the Service Level Agreement (SLA) requirements by al-
lowing them to move workloads from one provider’s site to another in a seamless manner
and allowing the cooperation among services belonging to different clouds. Moreover, the
referred architecture allows for redundant computation in the sense that the same applica-
tion logic may be deployed at different providers’ sites, where every incoming request gets
performed by more than one service instance. The motivation is to improve the availability
by reducing the risk of an instance failing before completing the task. Similarly, the referred
architecture allows us to break down the customer’s data at the bit level in order to enable
its parallel processing by service instances sharing the same application logic but resid-
ing at different providers’ sites. Besides optimizing latency and throughput, protecting the
privacy and security of the data is an additional motivation for customers to favor such a
model, where each provider can be aware only of a small part of the data [65].

1.2 Problem Statement and Research Questions

The current community formation models [20, 166, 91, 21, 82, 70, 73, 63], although de-
signed to work well when all services reside in a single cloud center, are unable to support
a multi-cloud community formation model due to several limitations at the architectural,
business, and security levels. From the architectural point of view, the common trend in
forming services’ communities is the use of a Service-Level Agreement (SLA) [24] contract
to regulate the formation process, where a certain service is statically designated as a
master for the community to control the formation and security issues. However, the dis-
tributed nature of cloud-based services plays against the existence of such a central entity.
Practically, the fact that services are deployed in data centers that are located in disparate

2

parts of the World means that these services are managed by different parties and are
owned by different providers. Therefore, finding a common third party that is trusted by all
providers and that can manage all these services is quite challenging. This leads us to our
first research question (RQ1):

• RQ1: How can we decentralize the community formation process in order to
allow the formation of communities gathering services that reside at different
cloud centers?

From the business point of view, the current community formation approaches overlook
the business potential of the services during the formation process and treat all of those
services in the same manner, which demotivates the contribution of the well-positioned
services in that process. This makes the existing models ineffective in modeling a multi-
provider multi-cloud environment wherein clouds have uneven business capabilities. Prac-
tically, in the real markets, the services that are deployed in strong cloud centers are likely
to enjoy high reputation and market share, which makes them refuse to be treated in the
same manner as the other services that are deployed in less strong cloud centers. Thus,
our second research question (RQ2) is:

• RQ2: How can we design the community formation model in such a way to mo-
tivate the participation of services belonging to different clouds having uneven
business capabilities?

From the security perspective, the existing community formation models rely on a hon-
est or semi-honest adversary model wherein services and/or the community master are
assumed to be trustworthy. However, in a multilateral multi-cloud environment whereby
multiple clouds and providers are involved, malicious services are likely to exist. Practically,
some services might misbehave by unilaterally deviating from the agreements made with
the other services upon community formation (e.g., refuse to lend computing resources
such as Central Processing Unit (CPU) and memory). Such malicious services are re-
ferred to as passive malicious services [151] since their objective is to illegally maximize
their own benefits but they do not have a direct intention to attack and harm the communi-
ties/other services [150]. Therefore, our third research question (RQ3) is:

• RQ3: How can we ensure the formation of trustworthy multi-cloud services’
communities that minimize the number of passive malicious members?

On the other hand, active malicious services, that launch active attacks (e.g., Denial
of Service), find the multilateral nature of the community-based architecture an appealing

3

platform to carry out their malicious attacks. Worse, the severity and consequences of such
attacks become more catastrophic when services are deployed in a cloud environment be-
cause of the virtual and elastic nature of cloud systems. Practically, in a cloud environment,
multiple clients’ services (concretized as Virtual Machines (VMs)) are allowed to share a
single computing infrastructure. This exposes both the VMs and infrastructure to addi-
tional security threats, besides those that exist in the traditional computing systems [45].
Moreover, the elastic nature of cloud systems that offers users the ability to freely scale
resources, constitutes a serious vulnerability from which attackers can execute painful at-
tacks (e.g., Economic Denial of Sustainability (EDoS)). For example, some attackers might
compromise VMs and manipulate them to send a large number of fake resources scaling
requests; thus leading to drain the resources of the cloud system and make it unavailable to
support further VMs. Unfortunately, the existing cloud-dedicated Intrusion Detection Sys-
tems (IDSs) consider the detection problem from the IDS’s perspective solely and overlook
the strategies of the attacker, which results in high false alarms and resources wastage
during detection. Furthermore, the current IDSs do not explain how to deal with the cloud
system’s limited security resources problem in the detection process, thus assuming (di-
rectly or indirectly) that the cloud system is able to provide permanent and full detection
coverage on all of its nodes. However, it is no secret that the magnitude of resources
that can be devoted to detection is bounded by a certain budget that is determined in
such a way that does not affect the portion of resources dedicated to serving clients. This
necessitates thinking of resource-aware selective detection strategies that distribute the
cloud system’s detection load among the different VMs so that it respects the limited secu-
rity resources’ budget and maintains at the same time an optimal detection effectiveness.
Knowing all these facts, our fourth research question (RQ4) is:

• RQ4: How can we maximize the detection of active attacks using a limited
budget of resources and knowing that attackers exploit the cloud’s features to
minimize this maximization?

1.3 Research Objectives and Contributions

The ultimate goal of our research work is to form trusted multi-cloud communities
among services having uneven business capabilities in the presence of active and pas-
sive malicious services. This goal can be divided into the following sub-objectives:

• Objective 1: Develop a distributed community formation model that motivates the
participation of services belonging to different clouds having uneven business capa-
bilities.

4

• Objective 2: Design a trust-based coalition formation model that allows services
deployed in one or different cloud data centers to distributively group themselves into
trusted communities, while avoiding the passive malicious services that renege on
their agreements and seek to illegally maximize their profits.

• Objective 3: Elaborate a resource-aware intrusion detection strategy for the ac-
tive malicious services in the multi-cloud community-based architecture that maxi-
mizes the detection of active intelligent multi-type attacks using a limited budget of
resources.

The research methodology and objectives are highlighted in Figure 1.2 w.r.t the iden-
tified research questions (Section 1.2). In order to attain those objectives, the following
contributions are offered by this thesis:

• Contribution 1: We conducted a systematic literature review on the concepts of
trust and reputation in the SOA, discussed the main challenges of designing and
implementing trust and reputation models in this area, identified the main research
gaps, and highlighted some interesting research ideas for possible consideration in
the future (This contribution is discussed in Chapter 3).

• Contribution 2: We developed a Stackelberg game theoretical model that enables
services of different business capabilities to distributively structure themselves into
communities (This contribution is discussed in Chapter 4).

• Contribution 3: We designed a comprehensive trust framework at the services’ level
followed by a trust-based hedonic game theoretical model that allows services be-
longing to one or multiple cloud centers to form up trustworthy communities wherein
the number of passive malicious services is minimal (This contribution is dis-
cussed in Chapter 5).

• Contribution 4: We introduced a comprehensive trust framework between the cloud
system and its guest VMs followed by a trust-based maxmin game theoretical model
that allows the cloud system to optimally distribute the detection load among its guest
VMs in such a way that maximizes the detection of DDoS attacks and maintains
at the same time a reasonable budget of security resources (This contribution is
discussed in Chapter 6).

• Contribution 5: We elaborated a repeated Bayesian Stackelberg game theoretical
model which enables the cloud system to detect multi-type intelligent attacks and
provides a defense mechanism to minimize the number of attacked services (This
contribution is discussed in Chapter 7).

5

��������� 	
��������� ���������

�� !"#$%& '()*+ ,-./0 12345678

9:;<=>?@ AB CDEFGHIJK LMNOP QRSTUVW

XYZ[\] ^_`abc defghijk lmnopqrstuvw

xyz{|}~��� � � ������� ��

���������� � �������� ¡¢£¤¥

¦§¨©ª«¬® ¯°±²³ ´µ¶· ¸¹º»¼½¾¿À

ÁÂÃ ÄÅÆÇÈÉÊËÌ ÍÎ ÏÐÑÒÓÔÕÖ×Ø

ÙÚÛÜÝÞ ßàáâãäåæç èéêëìíîï ðñòóô õ

ö÷øùúûü ýþÿ��
 �� ��������

��	������� � � ������ ! " #$% &'

()*+,-./012 3 456789:;<=> ?@ABCD

EFGHI JKLMNOPQR STUVWXYZ[\]^_`

abcd efghij klm nopqrst uvwxyz{|}

~������� �� ��� ����������� ���������

� ¡¢£¤¥¦§¨© ª«¬®¯°±²³´µ

¶·¸¹º»¼½¾¿ À Á ÂÃÄÅÆÇÈ ÉÊ

ËÌÍÎÏÐÑÒÓÔÕ Ö×ØÙÚÛÜÝÞ ßàáâãäåæçèé

êëìíîïðñ òóôõö÷øùúûü

ýþÿ����# ���������	

$%� ��

������ ���

&���� !"'()*+

,-./0123456

789:;<=>?

@ABCDEFGHI

JKLMNOPQRST

UVWXYZ[\]^_`

abcdefgh

ijklmnopqr

Figure 1.2: Research methodology and objectives w.r.t the identified research questions

It is worth noting that the content of this thesis has been published in [141, 144, 152,
142, 143, 146, 145].

1.4 Thesis Structure

We present in Chapter 2 the background needed to understand the different concepts
of our research work. In particular, we give an overview of the main concepts of the SOA,
namely those of Web service, cloud computing, cloud federation, community of services,
trust, and reputation. Then, we give a detailed tutorial on the concept of game theory
and explain its main categories using plain text, mathematical foundations, and illustrative
examples. Afterwards, we provide literature reviews on the cooperation models proposed
for SOA applications, the main approaches that used Stackelberg game theory to solve
business and security problems, and the major intrusion detection systems proposed in

6

the domain of cloud computing.

In Chapter 3, we advance a systematic survey on the concepts of trust and reputa-
tion in the SOA by proposing a classification scheme for the services according to their
architecture and offering a collection of criteria that are important to guarantee the effec-
tiveness of any trust and reputation model for each particular services’ architecture. Based
on this classification scheme, we compare the existing trust and reputation models with re-
gards to the proposed criteria and highlight some potential research gaps that need further
investigation.

In Chapter 4, we discuss the business-oriented community formation model and high-
light its industrial impact by means of a practical example that shows how this model can
be effectively applied in practical markets applications.

In Chapter 5, we tackle the problem of forming trustworthy multi-cloud services’ com-
munities in the presence of passive malicious services. In particular, we put forward a
comprehensive trust framework among services deployed in disparate cloud centers and
propose a trust-based game theoretical model that allows these services to form trusted
multi-cloud communities.

In Chapter 6, we address the problem of active malicious services and propose a
resource-aware detection strategy that aids the cloud system to optimally distribute the
available detection load among its guest VMs so as to maximize the detection of DDoS
attacks.

In Chapter 7, we discuss a comprehensive detection and prevention mechanism for
multi-type active malicious services that is able to cope with advanced simultaneous attack
scenarios. Illustrative examples and experimental results are advanced in the different
chapters to validate the effectiveness and efficiency of our solutions.

Finally, in Chapter 8, we summarize the thesis contributions and shed light on some
research gaps that need further consideration by the research community.

7

Chapter 2

Background and Literature Review

In this chapter, we explain the main concepts that are needed to understand the core of
the thesis and present profound and systematic literature reviews on the different aspects
that our thesis aims to address. In Section 2.1, we explain the main concepts related to the
SOA, namely those of cloud computing (Section 2.1.1) and Web services (Section 2.1.2).
We define as well the notions of cloud federation (Section 2.1.3), community of services
(Section 2.1.4), and trust and reputation (Section 2.1.5). In Section 2.2, we give a detailed
tutorial on the concept of game theory, propose a classification scheme for the game theo-
retical models on the basis of the situation that they are designed to model, and explain the
main types of game theory by means of theoretical foundations and numerical examples.
In Section 2.3, we begin the detailed literature reviews on the main concepts addressed
in our thesis. In particular, Section 2.3.1 is dedicated to discussing the main coopera-
tion models proposed for SOA applications; particularly those of services’ communities
and cloud federations. Section 2.3.2 surveys the main approaches that used Stackelberg
game theory for solving business and security problems in the literature. Finally, in Sec-
tion 2.3.3, we classify the existing intrusion detection systems proposed for cloud-based
applications into three major categories and discuss each category in detail in terms of
advantages and limitations.

2.1 Service-Oriented Architecture (SOA)

In this section, we explain the main concepts related to the SOA, namely those of cloud
computing, Web service, cloud federation, services community, and trust and reputation.

8

Hypervisor 1 Hypervisor 2

Hardware Hardware

OS

App App

OS

App App

OS

App App

OS

App App

VM1 VM2 VM1

App App

OS

VM3 VM2

Figure 2.1: Virtualized cloud system: Hypervisors manage a set of hardware resources
and host a set of VMs

2.1.1 Cloud Computing

Cloud computing can be regarded as a new paradigm of computing in which dynam-
ically scalable (often virtualized) resources are being offered as services via the Internet
[17]. These services are presented as a layered cloud computing architecture that con-
sists of three main layers: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),
and Infrastructure-as-a-Service (IaaS) [42]. SaaS provides on-demand running of soft-
ware applications remotely from the cloud. PaaS consists of computing platforms offered
as a service such as operating systems, Web servers, databases, and programming lan-
guages’ execution environments. IaaS provides users with computing resources such as
virtualized computers whose processing power, bandwidth, and Internet access are guar-
anteed. Based on the foregoing definitions, one can easily observe the advantages of
cloud computing, which are mostly related to the high availability of services, cost effi-
ciency, and scalability in accommodating larger workloads.

Cloud systems capitalize on the concept of virtualization that helps pool infrastructure
resources and achieve better agility and flexibility. As depicted in Fig. 2.1, a virtualized
cloud system consists of a set of hardware resources I = {I1, I2, . . . , Ik} managed by a set
of hypervisors H = {h1,h2, . . . ,hn}; each of which is hosting a set of virtual machines Vi =

{v1,v2, . . . ,vl} owned by a set of clients C = {c1,c2, . . . ,cm}, where each client ci ∈C owns
one or more virtual machines . A virtual machine vi is a pair 〈O,A〉, where O represents the
operating system and A is the corresponding applications running inside vi. A hypervisor
hi ∈H is a software agent residing between the cloud system’s hardware and the guest VMs
and whose goal is to allow the concurrent running of multiple operating systems abstracted
as VMs on a shared hardware. Thus, the role of the hypervisor consists of emulating the
hardware system and scheduling the access of the VMs to it.

9

Definition 1 (Virtualized Cloud System). A virtualized cloud system consists of a set of
hardware resources I = (I1, ..., In) managed by a set hypervisors H = (h1, ...,hn) hosting a
set of virtual machines V = (v1, ...,vl) owned by a set of clients C = (c1, ...,cm) to provide
each v∈V a view that its operating system and applications are operating directly on some
physical hardware.

2.1.2 Web Service

A Web service is a software application that can be integrated into other Web-based ap-
plications over the Internet using open standards such as XML, UDDI, SOAP, and WSDL.
From a technical perspective, Web services might be implemented through different ways.
The most two common ways of implementing and delivering Web services are those of
Simple Object Access Protocol (SOAP) Web Services and Representational State Trans-
fer (RESTful) Web Services [110]. SOAP Web services employ Extensible Markup Lan-
guage (XML) messages for communication and consist of machine-readable characteri-
zation of the functionalities and operations brought by the services written using the Web
Services Description Language (WSDL), an XML language for syntactical definition of in-
terfaces. On the other hand, in RESTful web services, data and operations are treated
as resources that are accessed and retrieved using Uniform Resource Identifiers (URIs).
This type of Web services is based on a client/server architecture and is engineered to
use a stateless communication protocol, namely the Hypertext Transfer Protocol (HTTP).
The decision to use SOAP or RESTful Web services depends heavily on the requirements
of the application at hand, where SOAP Web services are well-suited for enterprise ap-
plications integration scenarios that demand high Quality of Service (QoS)1 requirements
whereas RESTful Web services are often used for integrating applications over the Web.
The emergence of agent-based software engineering [161, 53] is changing the notion of
Web services from passive components to autonomous service agents. These agents are
able to interact with one another in order to adapt to the real-time challenges (e.g., com-
position). This has the advantage of moving the micro-level management responsibilities
from the user’s side to the service’s side. In this way, the user has only to specify the high-
level goals (i.e., the “what”), leaving the details of executions (i.e., the “when” and “how”) to
the service agents [81]. Specifically, a service agent is a computer program that is encap-
sulated in the services to provide them with flexible and autonomous actions/reactions in
response to the environment within which they operates and helps them hence meet their
design objectives [53].

1The term “QoS” describes the overall performance delivered by the service as a result of a certain invoke.

10

2.1.3 Cloud Federation

A cloud federation [118] is a practical platform for joining together cloud computing
environments of two or more providers with the aim of scaling up their capacity of han-
dling a larger pool of users’ requests. A federated cloud’s scenario involves conducting an
agreement among a set of cloud providers by which one or more commit to sell or rent
out computing resources to other providers in order to expand the latter ones’ capacity.
Two major benefits are brought to providers by the cloud federation architecture. First,
providers are given the chance to earn increased revenue through selling/renting their ad-
ditional computing resources which might end up being under-utilized if not well-exploited.
Second, by being part of a certain federation, providers have the opportunity of enlarging
their geographical presence in new areas and countries without having to establish new
points-of-presence. We provide in Section 2.3.1 of this chapter a detailed literature review
on the main approaches that contributed in solving problems related to cloud federations.

2.1.4 Community of Services

A community of services is a virtual cluster grouping services sharing the same func-
tionality but having different non-functional (i.e., QoS) properties. Communities allow ser-
vices to interact and cooperate in order to deliver higher-levels of quality, performance, and
interoperability. For example, services within a community may replace each other in case
of execution problems. Such an architecture is beneficial for both providers and users. On
the one hand, services residing in a community will have more chances to receive a bigger
task pool from users and to be exposed to a greater number of services compositions.
Moreover, by joining communities enjoying good reputation, market share, and capacity,
providers will increase their chances of receiving more requests and increasing hence their
total revenue. On the other hand, the users would be more satisfied with such an architec-
ture since their requests are processed with better quality, availability, responsiveness, and
performance. The main difference between cloud federations and services communities
is that the former architecture operates at the provider’s level whereas the latter one oper-
ates at the service’s level. This expands the benefits provided by the services community
architecture to cover, in addition to the resources scaling and geographical expansion, the
optimization of the services composition processes, the facilitation of the services discov-
ery, and the ease of security and privacy preservation. We present in Section 2.3.1 of
this chapter a detailed literature review on the main approaches that contributed in solving
problems related to services communities.

11

2.1.5 Trust and Reputation in the SOA

According to the Concise Oxford Dictionary, “Reputation is what is generally said or
believed about a person’s or thing’s character or standing” [55]. Informally, reputation rep-
resents the combined measure of reliability inferred by feedback or ratings gathered from
members in a certain community. Trust can be defined as “a subjective probability an agent
has about another’s future behavior” [43]. That is, the degree of trustworthiness one agent
assigns to another agent/group of agents in performing a certain action [55]. The main dif-
ference between these two concepts is that trust is mainly a personal and subjective notion
in contrary to the reputation which is public and combined. In other words, one agent A may
still trust another agent B despite B’s bad reputation if A has a close relation to B or even
has some private information about B that surpass B’s public reputation. Numerous trust
and reputation models have been proposed for many open systems [78, 151, 150, 72, 131].
In the SOA, a trust and reputation model is a method that enables decision makers to dis-
tinguish good services from bad ones based on users’ feedback. The importance of trust
and reputation models stems from their ability to enable users and service providers to
differentiate among the services that offer similar functionalities on the basis of how well
these services behaved in the past history. This helps them make thoughtful selections and
avoid the bad choices since making random choices in such an open system may expose
users/providers to quality, cost, and even security problems. Practically, any provider has
the freedom to publish bad-quality, expensive, and even harmful services, which makes
wise selections of great importance. In the next chapter, we offer a detailed and system-
atic review on the main trust and reputation models proposed in the SOA, highlight the
main challenges of building a trust and reputation model, and provide future insights that
help researchers investigate novel trust and reputation models based on the literature’s
persisting research gaps.

2.2 Game Theory

Game theory is a formal study of conflict and cooperation in a multi-agent interactive
environment [104]. It provides mathematical tools for modeling and delineating automated
decision-making frameworks for rational agents in strategic scenarios. Such agents may
represent individuals, machines, firms, software, or any grouping or combination of them.
By rational agents we mean those agents whose ultimate goal is to maximize their own
benefits. For this purpose, each agent is characterized by a utility function which quantifies
its profit/loss resulting from any strategy adopted during the game. That is, each agent
has clear preferences, is aware of the set of choices and alternatives, builds expectations
about unknowns and uncertainties, and performs some optimization process before taking

12

Table 2.1: Game theory components

Symbol Meaning

Agent :⇔ A party that is entitled to act for or on behalf of another principal in order to get
this principal into contractual relationships with other parties.

Game :⇔ A formal characterization of a strategic situation between conflicting and/or co-
operating self-interested rational agents.

Player :⇔ An agent who is supposed to make decisions in the game.
Rational :⇔ Profit maximizer.
Action :⇔ A single move or step made by a player in the game.
Strategy :⇔ In strategic-form non-cooperative games, a strategy is equivalent to an action. In

extensive-form non-cooperative games, a strategy is a complete plan of actions
available to a certain player during the different stages of the game.

Payoff/Utility :⇔ A positive or negative value assigned to a player as a reward or punishment in
response to a certain action during the game.

Solution Concept :⇔ Methodical characterization of the manner according to which the game will be
played by the players based on the best possible strategies and their associated
outcomes.

Best Response :⇔ The strategy (or strategies) that yield the largest payoff for a certain player given
what the other players are doing.

Nash Equilibrium :⇔ A solution concept for non-cooperative games in which each player uses the
strategy that is the best response to the strategies of the other players such that
no player has incentives to deviate unilaterally from its current strategy and adopt
another strategy.

Dominant Strategy :⇔ The strategy that generates the largest payoff value for its player no matter what
strategies will be played by the opponents.

Coalition :⇔ Group of players.
Grand Coalition :⇔ The coalition of all players.
Worth of a Coalition :⇔ The total payoff of a coalition in Transferrable Utility coalitional games.
N :⇔ The set of all players.
S\{i} :⇔ Coalition S without player i.
Coalition Structure/Partition :⇔ A set that partitions the players into disjoint coalitions.

actions. A strategic scenario is an interactive scenario in which the actions/benefits of
one agent are influenced by the actions of one or more other agents. The basic idea is
that individual decisions have influence on each other’s welfare. Binmore [25] considers
that whenever an interaction between two entities takes place, a game (in the context of
game theory) is being played. For example, when a student and his supervisor discuss
about next year’s scholarship, they are playing a game! When small and big companies
negotiate about forming up a joint alliance to increase their power in handling customers’
requests, it also a game! The main advantages that distinguish game theory from the
other optimization tools lie in the high level of abstractness that characterizes its tools and
representations as well as its consideration of the different agents’ actions/reactions during
the optimization process. These appealing features have caused game theoretical models
to be widely used in numerous critical domains such as: economics, security, networks,
and social sciences [105]. Before pursuing our discussions, it is worth noting that the
different notations related to game theory that will be used throughout this chapter are
explained in Table 2.1.

As depicted in Fig. 2.2, the main classification that is still adopted till today is that of
Von Neumann and Morgenstern [95] who classified game theoretical models into two main

13

Transferable

Utility

Hedonic

Non-

Transferable

Utility

Non-

cooperative
Cooperative

Game

Theory

Non-

Hedonic

Strategic-

form

One-Shot Repeated

Extensive-

form

Perfect-

Info
Imperfect

-Info
Cohesive

Non-

Cohesive

Stackelberg

Game

Figure 2.2: Classification scheme: Game theoretical models are classified based on the
underlying situations

branches: cooperative game theory, and non-cooperative game theory. In contrary to what
is suggested by the names, the difference between these two branches is not measured
by the degree of cooperation that each model allows among agents. More specifically,
the competition may be as extreme in cooperative game theory as in non-cooperative
games. In fact, cooperative game theory models situations in which agents believe that
forming coalitions will create an added-value that is in the benefit of all of them. Therefore,
cooperative games are often referred to as coalitional games2. Nonetheless, this does not
mean that the agents in such a kind of games are in a pure cooperative mood. Indeed, each
player in the coalition is in a continuous competition with his/her colleagues to maximize
his/her own share of profit produced by the coalition. Moreover, each coalition is often in
an extreme competition with the other coalitions (e.g., political parties). On the other hand,
non-cooperative game theory analyzes situations wherein each agent acts individually and
tries to maximize his/her own payoff by choosing the best response to the actions of the
other agents.

Each of these branches may be also divided into several sub-classes based on the
underlying situations. Cooperative game theory can be classified into two subclasses:
Transferable Utility (TU) games, and Non-Transferable Utility (NTU) games. In TU games,
the payoff (i.e., profit) of the coalition is worth the same for all the players who, as a result,

2In the rest of this thesis, the terms cooperative game theory and coalitional game theory are used inter-
changeably.

14

can compare, distribute, and transfer this payoff (e.g., money). TU games may be either
cohesive or non-cohesive. Cohesive TU games rely on the super-additivity property, which
assumes that the larger the coalition is, the more its payoff will be. Thus, the goal of cohe-
sive games is to group all the players into one single coalition referred to as grand coalition.
Non-cohesive games, on the other hand, assume that the super-additivity property does
not always hold and aim hence at generating disjoint coalitions. For the NTU games, the
payoff of the coalition is non-comparable, non-distributable, and non-transferrable (e.g.,
happiness). NTU games can be classified into hedonic and non-hedonic games. In he-
donic games, players have preferences over the coalitions and the preference assigned
by each player to a certain coalition depends solely on the members of that coalition re-
gardless of the structure of the other coalitions. In non-hedonic games, all the coalitions’
partitions are considered by the players when building their preferences.

Non-cooperative games can be classified into strategic-form games and extensive-form
games. Strategic-form games are those that are played simultaneously among agents.
These games may be either one-shot (i.e., played once) or repeated (i.e., played over
multiple runs). Extensive-form games are played sequentially, i.e., some player(s) play
first and then play the other(s). Extensive-form games may be either of perfect information
or imperfect information. In perfect-information extensive-form games, each player is per-
fectly informed about the actions that have been previously played by the other player(s)
(e.g., chess games). On the contrary, imperfect-information extensive-form games model
situations in which the actions played by some players are not always known by the other
players (e.g., poker games). Additionally, imperfect-information extensive-form games can
model situations in which the player does not remember his/her own actions that have
already been played.

2.2.1 Coalitional Game Theory

A coalitional game is a model that is oriented to analyze the interactions among the
decision makers when they gather into groups. Unlike non-cooperative games, a set of
actions and payoffs are associated with every group of players and not only with individual
players. The output of the coalitional game is a partition of the players’ set into coalitions
along with an action associated with each coalition in the partition. The following subsec-
tions are dedicated to explaining the two main classes of coalitional games: Transferable
Utility (TU) games, and Non-transferable utility (NTU) games, respectively.

15

2.2.1.1 Transferable Utility (TU) Games:

In transferable utility games, the choice of actions of each coalitional group of players
specifies the payoff of the whole coalition, which can be transferred and distributed among
the coalition members. In other words, agents form coalitions and perform some common
actions and obtain, as a group, a real-valued payoff that can be divided among them.

Definition 2. A TU coalitional consists of the pair (N,ν), such that:

• N : is a finite set of players; and,

• ν : 2N 7−→ R is a characteristic function that assigns a real-valued payoff v(S) called
“worth” to every coalition S⊆ N, where this worth is distributable among the coalition
members i ∈ S.

In order to illustrate well the idea behind TU coalitional games, we give in what follows
an example in which three software engineering companies are willing to collaborate and
form coalitions in order to perform a joint project.

Example 1. Assume that the three software engineering companies, SAP, IBM, and Eric-
sson are negotiating about developing a new joint project. It is anticipated that the project
will yield a profit of $4M if these three companies collaborate altogether. However, if each
of these companies decides to undertake the project by its own, then the profit is expected
to be $0.5M for SAP alone, $0.6M for IBM alone, and $0.5M for Ericsson alone. Obviously,
the example falls under the category of TU coalitional games due to the following reason.
In this example, the payoff of the group is the maximum amount of money that they can
achieve by collaborating together. Since this amount is expressed in a universal currency
(i.e., USD), then players can distribute this amount and each player will have the chance
to compare its own payoff when being in different coalitions and select the coalition that
maximizes this payoff. Thus, the TU coalitional game of the example is the pair (N,ν),
where:

• N = {SAP, IBM,Ericsson}

• V (N) = 4, V ({SAP}) = 0.5, V ({IBM}) = 0.6, and V ({Ericsson}) = 0.5.

Most of the theory in TU coalitional games is dedicated to studying cohesive games in
which the motivation for coalescing is extreme [104]. That is, the formation of the single
coalition that includes all the players referred to as the grand coalition is in the best of all
the players. In such situations, the grand coalition can yield outcomes that are at least
as attractive for every player as those realizable by any partition of the players into sub-
coalitions. The main research directions in this context aim to study the stability of the

16

grand coalition and the fairness of the payoff distribution mechanisms among the members
of that coalition [125]. In order to better explain what is meant by stability and fairness, let’s
complete the story of Example 1. In this example, each pair of companies can also still
coalesce and exclude one company from that collaboration even though the profit will be
reduced. For example, if SAP and IBM collaborate together without Ericsson, their profit
is expected to be $3.1M. Similarly, SAP and Ericsson may decide to collaborate together
without IBM and yield a profit of $3M. If IBM and Ericsson decide to collaborate together
without SAP, their anticipated profit is $3.3M. Now, a new problem of how to distribute
the gain among coalition members in such a way to guarantee the formation of the grand
coalition arises. If the equal fair allocation model is adopted, then both SAP and IBM will get
a payoff of $1.43M (i.e., 4

3) in the grand coalition and $1.5M (i.e., 3.1
2) by excluding Ericsson.

Thus, the grand coalition is not stable in this case as SAP and IBM have incentives to
deviate and form their own sub-coalition without Ericsson. Therefore, guaranteeing the
stability is essential for the formation of the grand coalition. Nevertheless, a stable payoff
distribution may not be fair. Practically, for guaranteeing stability, companies are not being
rewarded based on their contributions to the coalition’s payoff, but merely in such a way that
makes each of them satisfied. Thus, a new question of how to distribute the payoff of the
coalition in such a way to guarantee the fairness and reflect each company’s contribution
to the coalition arises.

These problems can be summarized by the two following questions: (1) which coali-
tion(s) will compose? and (2) after coalitions are composed and the worth value is pro-
duced, how should this value be divided among coalition members? The key idea in an-
swering the first question is to guarantee the stability of the coalitions in the sense that no
members should be better off deviating from their current coalitions to other more profitable
coalitions. The most famous concept that is used to analyze this property is the core [121].
For the second question, the key idea is to guarantee the fairness among players when
distributing the worth of the coalition. The well-known solution concept of Shapley value
is widely used to foster this property due to its ability to provide a unique means for worth
distribution in a fair manner [123].

Core. The core is a stability solution concept whose goal is to guarantee that all the play-
ers have incentives to cooperate and form the grand coalition. In other words, the core is a
payoff distribution mechanism that aims to ensure that all the members are satisfied within
the grand coalition and having no incentive to leave it. A payoff distribution mechanism is
said to be in the core if it satisfies the following axioms [11]:

• Efficiency: a payoff distribution is efficient if it allocates the whole worth of the grand
coalition to all the players so that no utility is lost at the level of the population.

17

• Individual rationality: a payoff distribution is said to be individually rational if it
makes each agent prefer to join a coalition rather than acting alone.

• Group rationality: a payoff distribution is said to be group rational if the sum of
payoffs given to the players in the grand coalition is at least the value of any other
coalition that may form.

Definition 3. A payoff distribution x ∈ Rn is said to be in the core of the game (N,ν) if it is
efficient, individually rational, and group rational, i.e., Core(N,ν) = {x ∈ Rn|∑i∈N x(i) = x(N)

and ∀ coalition C ⊆ N,x(N)≥ ν(C)}.

Intuitively, a payoff distribution lies in the core if it assigns the whole gain of the grand
coalition to its members in such a way that demotivates any member from deviating and
acting alone and any subset of members from deviating and forming their own sub-coalition.
Thus, the formation of the grand coalition is guaranteed if the core exists and is non-empty.
It is worth mentioning that the condition of individual rationality is not clearly expressed in
Definition 3 since group rationality directly implies individual rationality.

In Example 1, a payoff distribution for the three software engineering companies [x(SAP),
x(IBM), x(Ericsson)] lies in Core(N,ν) if it satisfies the conditions presented in Equation (1)

x(SAP)+ x(IBM)+ x(Ericsson) = 4 (E f f iciency);

x(SAP)≥ 0.5 (Individual Rationality);

x(IBM)≥ 0.6 (Individual Rationality);

x(Ericsson)≥ 0.5 (Individual Rationality);

x(SAP)+ x(IBM)≥ 3.1 (Group Rationality);

x(SAP)+ x(Ericsson)≥ 3 (Group Rationality);and

x(IBM)+ x(Ericsson)≥ 3.3 (Group Rationality)

(1)

Shapley Value. Shapley value takes its name from Lloyd S. Shapley who introduced
this fairness solution concept in 1953 [122]. Shapley suggests that each player i in the
coalition S should receive an amount that reflects its contribution to that coalition, i.e.,
ν(S ∪ {i})− ν(S). In order to implement this vision, Shapley states that the fair payoff
distribution mechanism should satisfy the following axioms [98]:

• Efficiency: As described in the context of the core, efficiency means that the total
worth of the grand coalition should be distributed among its members.

• Dummy player: This property labels the players who do not make any contribution
to the coalition as dummy and emphasizes hence that they should receive nothing.

18

• Symmetry: This property states that the players who make the same contribution to
the coalition should be assigned the same amount of payoff.

• Additivity: This is mostly a technical property saying that the payoff value should be
additive over the set of all games, i.e., for any two TU games (N,ν) and (N,ω) and
corresponding payoff profiles x1 ∈ Rn and x2 ∈ Rn, the payoff profile should be x1 + x2

for the TU game (N,ν +ω).

However, Shapley observed that this is not enough to guarantee the fairness. Practically,
the formation process of the grand coalition may itself be unfair as the payoff of the players
is dependent on the joining order. For example, if the set of players is N = {A,B,C}, then
there are six possibilities on how the grand coalition may form, namely: A-B-C, A-C-B,
B-A-C, B-C-A, C-A-B, or C-B-A. Therefore, Shapley suggested to allocate each player the
average contribution made by him/her to the set of players that preceded him/her, over
each possible ordering of these players, i.e., the Shapley value of player i in the TU game
(N,ν) is given by Equation (2).

φi(N,ν) = ∑
S⊆N\{i}

|S|!(|N|− |S|−1)!
|N|!

× (ν(S∪{i})−ν(S)). (2)

Let’s go back to Example 1 and see what payoff should be assigned to SAP according to
Shapley value in order to ensure the fairness in the grand coalition. The worth produced
by the different possible coalitions in Example 1 is given by Equation (3).

ν(S) =

0.5, if S={SAP}

0.6, if S={IBM}

0.5, if S={Ericsson}

3.1, if S={SAP, IBM}

3, if S={SAP, Ericsson}

3.3, if S={IBM, Ericsson}

4, if S={SAP, IBM, Ericsson}

(3)

The first step in computing the Shapley value for SAP is to calculate its marginal contribu-
tion over all the possible orderings of the grand coalition formation process. This is done
as follows:

• If S = /0, the marginal contribution of SAP is ν({SAP})−ν(/0) = 0.5−0 = 0.5

• If S = {IBM}, the marginal contribution of SAP is ν({SAP, IBM})−ν({IBM}) = 3.1−
0.6 = 2.5

19

• If S= {Ericsson}, the marginal contribution of SAP is ν({SAP,Ericsson})−ν({Ericsson})=
3−0.5 = 2.5

• If S = {IBM,Ericsson}, the marginal contribution of SAP is ν({SAP, IBM,Ericsson})−
ν({IBM,Ericsson}) = 4−3.3 = 0.7

Given the marginal contribution of SAP over each possible ordering of the players in the
grand coalition, its Shapley value is computed by averaging this contribution to the set
of players that preceded it. Using Equation (2), the Shapley value of SAP is given by:
x(SAP) = 2

6 ×0.5+ 1
6 ×2.5+ 1

6 ×2.5+ 1
6 ×0.7 = 1.233.

2.2.1.2 Non-Transferable Utility (NTU) games:

In non-transferable utility coalitional games [160], the choice of actions of each coali-
tional group of players specifies each player’s payoff (not the payoff of the coalition as is the
case in TU games), which is neither transferrable nor distributable. To clarify this definition
and highlight the difference between TU and NTU games, we give the following example.

Example 2. Four researchers, three professors and one Ph.D. student, in four different
Canadian universities are willing to collaborate together and form a group (i.e., coalition)
in order to produce and publish a research paper. The composition of the coalition in
this case determines the quality of the paper that will be achieved. The payoff of the
researchers represents a possible promotion or teaching load mitigation for the professors,
and a further step toward obtaining the degree for the Ph.D. student, which are obviously
non-transferable and non-dividable gains.

The main type of NTU games is that of hedonic games [26], which has been widely
used in numerous application domains. In this type of games, agents have preferences
over coalitions. As its name hints, each agent is aware whether he/she will be “happier” if
he/she joins the members of coalition x or the members of coalition y. The hedonic aspect
stems from the fact that the preference assigned by a certain agent to a particular coalition
depends only on the members of that coalition, irrespective of the existence/inexistence
and structure of other coalitions.

Definition 4. A Hedonic game is a pair (N,(≥i)i∈N) where:

• N: is the set of players

• ≥i⊆ 2N
i × 2N

i : is a complete, reflexive and transitive preference relation for player i,
where C1 ≥i C2 means that player i prefers to be in coalition C2 at most as much as
coalition C1, and C1 ∼i C2 means that player i is indifferent between coalitions C1 and
C2.

20

Now, let’s modify the settings of Example 2 slightly to reflect the hedonic aspect of the
game.

Example 3. Three researchers are asked (e.g., by some granting agencies) to produce
and publish two research papers within 3 months. To accelerate the process and meet
the deadline constraint, these researchers decide to collaborate with one another as coali-
tions. The first step in achieving the hedonism is to assign names and affiliations for these
researchers:

• Professor Alice from Concordia University;

• Professor Alex from University of Toronto; and

• Professor Guillaume from Université de Montréal

These hedonic researchers have the following preferences over the possible coalitions:

• All researchers favor coalitions of size two to coalitions of size one (less productivity)
or three (a lot of names to add on the paper!).

• All agents are indifferent between coalitions of size one and coalitions of size three.

• Alice prefers to be with Alex than to be with Guillaume (since she considers that
University of Toronto is more prestigious than Université de Montréal).

• Alex prefers to be with Guillaume than to be with Alice (since Guillaume has a higher
record of publications).

• Guillaume prefers to be with Alice than to be with Alex (since both Guillaume and
Alice are in Montréal and they can meet and exchange expertise either between
each other or between their students, if necessary).

Thus, the NTU hedonic coalitional game of this example is the pair (N,≥i), where:

• N = {Alice,Alex,Guillaume}

• ∀S⊆ N, |S|= 2 >N |S|= 1 and |S|= 2 >N |S|= 3

• ∀S⊆ N, |S|= 1 ∼N |S|= 3

• ∀S⊆ N,S\{Alice}∪{Alex} >Alice S\{Alice}∪{Guillaume}

• ∀S⊆ N,S\{Alex}∪{Guillaume} >Alex S\{Alex}∪{Alice}

• ∀S⊆ N,S\{Guillaume}∪{Alice} >Guillaume S\{Guillaume}∪{Alex}

21

Unlike cohesive TU games whose main goal is to form the single grand coalition, hedo-
nic games are more interested in generating a coalition structure that partitions the players
into disjoint coalitions [37]. Similar to TU games, hedonic games aim at guaranteeing the
stability of the formed coalitions. For this purpose, the concept of core used in TU games
can be extended to hedonic games in addition to other stability solution concepts [11]. In
the following, we present the main stability concepts that are commonly used in hedonic
games [26]:

• Perfection: A partition is called perfect if it is the most desirable for each player.

• Pareto Optimality: A partition is said to be Pareto optimal if there does not exist
another partition that is strictly better for at least one player without being strictly
worse for some others.

• Nash Stability: A partition is Nash-stable if none of its players has incentive to move
from his/her current coalition to another (possibly empty) coalition.

• Core Stability: A coalition S ⊆ N is said to block a coalition structure if every player
prefers to be in S at least as much as to be in his/her current coalition. A partition that
admits no blocking coalition is deemed to fall in the core (i.e., core stable).

• Individual Stability: A partition is individually stable if no player is better off mov-
ing from his/her current coalition to another existing coalition x without making the
members of x worse off.

• Individual Rationality: A partition is individually rational if none of its players is
better off acting alone.

• Contractual Individual Stability: A partition is contractually individually stable if
there does not exist a player who may benefit by moving from his/her coalition to
another existing coalition while making no member of either coalitions unhappy.

These stability concepts are characterized by inclusion relationships among each other in
the sense that satisfying one of these stability concepts may directly imply the satisfaction
of one or more other concepts [19]. In particular:

• Perfection ⊂ Core Stability ⊂ Individual Rationality.

• Perfection ⊂ Nash Stability ⊂ Individual Stability.

• Perfection ⊂ Pareto Optimality ⊂ Contractual Individual Stability.

• Individual Stability ⊂ Individual Rationality.

22

Individual

Rationality

Contractual

Individual

Stability

Individual

Stability

Pareto

Optimality
Nash

Stability
Core

Stability

Perfection

Figure 2.3: Inclusion relationships among stability concepts in hedonic games

• Individual Stability ⊂ Contractual Individual Stability.

These inclusion relationships are summarized in Figure 2.3.

2.2.2 Non-Cooperative Game Theory

Non-cooperative games model situations in which each player acts individually and
tries to maximize its own utility by choosing the best response(s) to the other players’
strategies. In order to better explain non-cooperative games and clarify why they are im-
portant, we give in the following an illustrative example based on the well-known problem of
Prisoners’ Dilemma [64]. The presented game falls under the umbrella of non-cooperative
games in strategic form (Fig. 2.2).

Example 4. The Prisoner’s Dilemma describes a crime investigation scenario wherein
two suspected persons, say John and Bob, are arrested by the police for having probably
committed a crime. The story starts when the policeman isolates these suspects and
suggests each one of them the same following deal:

1. If you both confess, both of you will spend 3 years in jail (payoff: −3).

2. If one of you confesses against the other, the confessor will be jailed for 1 year (payoff:
−1) and the offender will spend 10 years in prison (payoff: −10).

3. If both of you decline to confess, you will both be jailed for 2 years (payoff: −2) instead
of 3 (lack of evidence).

23

The players of this game are the two suspected persons. The actions available for them to
choose from are either to confess or not. The payoff of each player represents the years
of jailing this player will undergo, where the larger negative value represents more years
to spend in jail. The objective of the game is to help each suspect make the optimal
decision on whether to confess or not in such a way to minimize his jailing years (i.e.,
maximize his payoff), while taking into account the actions that may be chosen by
the other suspect (i.e., confess or not) and that influence his own welfare (i.e., jailing
years). The bimatrix presented in Table 2.2 summarizes the foregoing deal, where the
rows correspond to the actions available for John, the columns correspond to the actions
available for Bob, and the cells correspond to the utility/payoff values for each player (the
leftmost value in each cell refers to John’s utility and the rightmost value refers to Bob’s
utility).

John
Bob

Confess Don’t Confess

Confess (-3, -3) (-1, -10)
Don’t Confess (-10, -1) (-2, -2)

Table 2.2: Payoff matrix of the players in the Prisoner’s Dilemma game

The question that arises in each suspect’s mind is: how should I behave in such a
scenario? Each suspect will have the following rational thinking that is inspired by the
well-known concept of Nash equilibrium [97]:

• If the other guy confesses, I have to confess and get jailed for 3 years instead of
being jailed for 10 years if I do not.

• If the other guy refuses to confess, I have also to confess since in that case I will get
jailed for 1 year instead of being jailed for 2 years if I do not.

Therefore, the solution of this game based on the Nash equilibrium concept is to confess
for both players and spend 3 years in prison. Intuitively, this can justified by the fact that
each player is escaping from the worst-case payoff (10 years in jail) he may get in case he
refrains from confessing.

2.3 Literature Review and Discussions

In this section, we conduct detailed literature reviews on the different aspects ad-
dressed in this thesis. We start with the architectural and business perspectives and give a

24

Cooperation Models

in SOA

Cloud Federations
Services

Communities

Figure 2.4: Classification scheme of the cooperation models in the SOA

review on the main cooperation approaches proposed for SOA applications, namely those
of services communities and cloud federations. We offer as well an overview of Stackelberg
game theory and its main applications, which is used in the formulation of our business and
security-oriented solutions. Finally, we move to the security perspective and discuss the
main intrusion detection approaches proposed for cloud-based applications.

2.3.1 Cooperation Models in SOA

As depicted in Fig. 2.4, the cooperation models proposed for SOA applications can be
classified into two major categories: services’ communities and cloud federations. In the
following, we provide an overview of the main contributions related to these two concepts.

2.3.1.1 Services Communities

In [20], the authors proposed the concept of service containers as community gather-
ing substitutable Web services that share a common functionality. These containers are no
more than services created, advertised, discovered, and invoked just as elementary and
composite Web services are. The purpose is to facilitate the composition process when
the set of services is large and dynamic. This is done by allowing the invocation of the
service container operations instead of invoking elementary or composite service opera-
tions. Maamar et al. [82] defined a similar concept for the communities of Web services.
They considered the community as a group of services sharing the same functionality but
differing in their QoS parameters. This approach differentiates between the master Web
service that is charged with managing the operations of the community and the slave Web
services that are simply all the other community members.

25

In [21], Benslimane et al. proposed a multi-layer approach for Web services compo-
sition made up of three constituents: component, community, and composite. The com-
ponent layer comprises the Web services themselves, the composite layer illuminates the
requirement of composing several services, while the community layer resides between the
component and composite layers and has the role of organizing the Web services having
common functionalities. The community is composed of abstract Web services describing
the common functionality of the community and concrete services implementing this func-
tionality. The composite layer is fed by the community layer with the needed components.

In [91], the authors proposed a framework for ontological organization of Web services
using communities. The community serves as a cluster grouping the Web services based
on their domain of interest. The community is created by the service providers who identify
the community of interest and register their services in it. Communities provide a set of
generic functions that may be customized by the underlying services. In a close work, Zeng
et al. [166] addressed the problem of enhancing the runtime of the process of selecting
the Web services to participate in large compositions. As the number of services offering
the same functionality tends to be very high, they suggested grouping these services into
communities that provide descriptors to a certain functionality.

All of the aforementioned approaches focus either on user’s satisfaction or on perfor-
mance optimization; thus ignoring the intelligent services’ satisfaction. This would discour-
age services from participating in the community formation process due to the lack of any
incentive for doing so. More recently, several approaches have been proposed to study
and analyze the objectives of the Web services as rational agents in the process of creat-
ing communities. In [70], the authors proposed a 3-way satisfaction approach to help the
master of the community select the services that will participate in fulfilling users’ requests
in an efficient manner. They considered the satisfaction of the three parties involved in
this scenario; namely, Web services, users, and master. To this end, they formulated a
satisfaction function for each party. For the user, the satisfaction is related mainly to the
QoS provided to his/her requests. For services, the satisfaction is expressed in terms of
participation level in the community’s activity. The satisfaction of the master is expressed
in terms of the revenue it earns. Then, a score function is formulated as a weighted sum
of those satisfaction functions. The master uses this function to compare one selection
against another during the selection process.

Liu et al. [73] have introduced a coalitional game theoretical model to create a coop-
erative scheme among autonomous Web services in a community-based context. Their
approach allows Web services to reach an individually stable coalition partition wherein
each Web service can maximize its utility through cooperation without reducing other Web
services’ utilities. In a close work, a coalitional game model has been introduced in [63]

26

with the aim of finding efficient ways for forming services’ coalitions within communities.
The key idea is to guarantee the fairness while distributing the gain among coalition mem-
bers in order to maintain the stability of the coalitions. A coalition is deemed to be stable if
no subset of its Web services can find significant gain by deviating from that coalition. Upon
receiving a new membership request, the community coordinator first verifies whether the
new coalition, taking into consideration that new member, will remain stable. If so, the
request is accepted; otherwise, the coordinator rejects the membership request.

Concluding Remarks Overall, the problem of the existing community formation models
is their ineffectiveness in a multi-cloud environment. On the one hand, they rely on a cen-
tralized architecture in which a central entity (i.e., the master) coordinates the operations
of the community, which contradicts with the distributed nature of cloud-based services.
On the other hand, they overlook both the business potential of the services involved in
the community formation process and the problem of malicious services whose presence
is likely in the multi-cloud environment.

2.3.1.2 Cloud Federations

In [118], Rochwerger et al. paved the way for the notion of cloud federations by intro-
ducing the concept of RESERVOIR whose main goal is to explore the technologies needed
to handle the scalability problem faced by the single provider model. They discussed the
notion of cloud federations wherein providers characterized by a large capacity of comput-
ing infrastructure may lease some of their resources to other providers who lack temporar-
ily for such resources. Goiri et al. [44] addressed the problem of cloud federations from
the perspective of increasing providers’ profits. They proposed several equations to help
providers decide when to outsource resources to other providers, when to insource free
resources to other providers, and when to shutdown unused nodes to save power. In [135],
Van den Bossche et al. formulated a Linear Programming model to assist providers with
deciding which workloads to outsource and to which providers in such a way to maximize
the utilization of internal data centers, minimize the cost of running outsourced tasks, and
keep up high QoS constraints. Recently, game theory has been widely used to address
the problem of forming cloud federations. In [102], Niyato et al. proposed a coalitional
game among cloud providers. First, a stochastic linear programming game model that
takes into account the random internal demand of cloud providers is formulated to analyze
the resource and revenue sharing for a certain group of providers. Thereafter, a coalitional
game that enables cloud providers to form cooperative groups for resource and revenue
sharing is presented. The objective is to exploit the under-utilized resources when the
internal demand in cloud data centers is less than the capacity of the providers. In [88],

27

Mashayekhy et al. investigated a hedonic coalitional game that focuses on the cooperation
among IaaS services to improve resource scaling capabilities. The resources considered
are provisioned as VM instances of different types (e.g., small, large, etc.). The objective
is to form the federations that yield the highest profit in terms of cost and price of the un-
derlying VMs. In [51], Hassan et al. proposed a coalitional game that takes into account
the QoS of providers during coalitions formation. They assume the existence of a central
entity that regulates the formation process by monitoring providers’ QoS values.

Concluding Remarks In summary, cloud federations focus exclusively on improving the
resource scaling capabilities among IaaS providers. On the other hand, the community is
a more general architecture that supports, in addition to resource scaling, discovery, mar-
keting and services composition facilitation. Thus, a cloud federation might be considered
to be a subset of a services’ community. Besides, the existing cloud federations formation
models overlook both the business potential of the cloud providers involved in the federa-
tion process and the problem of having malicious services/providers, which constitutes a
serious challenge for the success and applicability of such an idea.

2.3.2 Stackelberg Games

Stackelberg game theory is an extensive-form non-cooperative game of perfect infor-
mation that has been widely used to model the situations that are characterized by a hierar-
chical structure. It was developed in 1934 by Heinrich von Stackelberg in his book “Market
Structure and Equilibrium” [138]3 to model the imperfect competition in the market study.
It represented a turning point in the study of market structure, particularly the analysis of
duopolies (i.e., the cases when two firms have full control over the market). The basic idea
of Stackelberg is that one player (leader), thanks to its historical precedence, size, reputa-
tion, innovation, information, and so forth, has the right to make the first move. Then, the
other player (denoted as follower), that is less strong, observes the leader’s strategy and
decides about its own accordingly. Stackelberg games enjoy several characteristics that
make them appealing to model the situations that are characterized by a hierarchical struc-
ture such as: (1) it is a sequential game (non-simultaneous), where one player plays first
and then plays the other one; (2) the leader knows ex ante that the follower observes his
action; (3) the leader’s action is irreversible; and (4) it is characterized by the first mover’s
advantage property, which states that the player who plays first yields a payoff that is higher
than that of the second player.

3This book has been translated to English in [139] by Damien Bazin et al.

28

In the following, we highlight some application domains wherein the Stackelberg game
has shown to be successful. In [167], the authors used a Stackelberg game to model the
spectrum allocation problem in Cognitive Radio Networks. The idea is to allow primary
(licensed) network users to use secondary (unlicensed) users as cooperative relays to im-
prove the performance of primary transmission. This situation has been modeled as a
two-stage Stackelberg game where primary users, denoted as leaders, decide about the
slot of bandwidth to be used for direct transmission as well as the set of secondary users
that they are willing to cooperate with. The secondary users, acting as followers, decide
about the payment to make under the pre-decided bandwidth slot with the target of maxi-
mizing the transmission rate without having to make large payments. A Stackelberg game
approach has been used also to model the problem of efficient bandwidth allocation in
cloud-based wireless networks [96], where desktop users watching the same live program
may be willing to share their live-streaming with the nearby mobile users. This situation
is modeled as a Stackelberg game that involves two-stages: (1) a non-cooperative game
among desktop users to decide about the bandwidth size to be shared with the mobile
users along with the price of sharing, and (2) an evolutionary game among mobile users
to decide about the desktop users to connect with under the offered size and price.

Stackelberg games have been widely used in the security domain to characterize the
attacker-defender models [115, 94, 132, 31]. In [115], the authors used a Bayesian Stack-
elberg game to help Los Angeles International Airport (LAX) police officers protect the
airport against adversaries. The challenges that led to the use of a Bayesian Stackelberg
game are related to (1) the impossibility to provide full security coverage at all times; (2) the
ability of the adversaries to observe the security arrangements over time and adjust their
malicious strategies accordingly, and (3) the uncertainty the police agents face over the
type of adversaries (e.g., thieves, terrorists). In the proposed game, police officers play the
role of the leader and adversaries are the followers. The goal is to find the optimal strategy
the police should commit to, given that followers may be aware of the leader’s strategy
when choosing their own strategies and that the police is not able to learn the follower’s
type a priori. In [94], a Stackelberg game has been used to model the adversial learning in
which the adversary tries to manipulate the data miner’s data to reduce the accuracy of the
classifier. A Stackelberg game is employed, where the adversary is the leader, the data
miner is the follower, and the objective is to help the data miner decide whether to retrain
the classifier or maintain the Status Quo given the action of the adversary.

29

IDSs in cloud

computing

Hypervisor-based Network-based Host-based

Figure 2.5: Classification scheme of the intrusion detection systems in cloud computing

2.3.3 Intrusion Detection Systems in Cloud Computing

As depicted in Fig. 2.5, the current Intrusion Detection Systems (IDSs) proposed for
cloud-based applications can be classified into three main branches: host-based, network-
based, and hypervisor-based systems. Network-based systems put the monitoring agents
at the network’s level to monitor the circulating traffic and recognize any malicious behavior.
The fact that these systems operate at the network’s layer only makes them unable to catch
insider attacks that sneak into the internal virtualized system. To remedy this shortcoming,
host-based IDSs deploy the monitoring agents at the VMs’ layer to monitor their activities
and report any abnormal behavior. The main limitation of this approach lies in the burdens
it puts on the users who are required to spend their own resources and efforts to maintain
the health of the monitoring agents. To alleviate these burdens, hypervisor-based systems
place the monitoring agents at the cloud system’s layer and assign to the host hypervisors
the role of observing the VMs’ system metrics and identifying malicious activities. In the
following, we explain the main contributions in each of these branches and highlight the
main advantages and limitations of each branch of IDSs.

2.3.3.1 Network-based Detection Systems

In [66], the authors discuss an intrusion detection framework that monitors network traf-
fic using a cluster-based architecture to support multiple security domains. The basic idea
is to export the intra-VM network traffic to be processed by a physical IDS. Moreover, a traf-
fic deduplication technique is advanced to remove redundant network traffic and minimize
the overhead.

In [15], a customer-controllable on-demand IDS is introduced. The network interactions
among VMs within a pre-defined virtual network are monitored and suspicious activities are

30

registered and analyzed. The performance of the framework is adaptable based on the
volume of traffic load in the network, where, for example, the number of IDS components
can be adjusted on the basis of the amount of traffic circulating inside the network.

In [75], the authors propose a cooperative IDS for Denial of Service (DoS) attacks.
They assume that an IDS is deployed in each cloud computing region to collect network
packets and analyze them. If the type of the analyzed packet matches any type defined
in the block table (storing the bad packet to be blocked), then this packet is immediately
dropped. If no match exists but the packet is categorized as anomalous, then the degree of
severity of that suspicious packet is checked. If the packet is classified as serious, then the
IDS drops it and notifies the other IDSs accordingly. If the packet is classified as moderate,
the IDS performs data clustering and threshold check to find outliers and updates the alert
level accordingly. Finally, if the packet is identified as slight, then the system ignores the
alert.

In [71], the authors address the DoS attacks in cloud environments by proposing a
scheme for tracing back the botmaster (i.e., the malicious user that administrates the
botnet). In the proposed scheme, the local network administrator of the victim machine
collects information, files them to a traceback server, and asks the latter for a traceback
service. The traceback server then embeds Pebbleware, a piece of code that reveals its
host machine’s information, on the communication packets from the victim node to the bot-
master. Once the Prebbleware reaches the botmaster, the latter’s machine is obliged to
send its IP address to the traceback server.

In [83], the authors investigated the problem of collaboration among providers in a fed-
erated cloud to provide a holistic security defense mechanism. The idea is that providers
in a certain federation exchange with each other the attack features logged in their clouds,
which allows for continuous update of the vulnerability database and incremental improve-
ment in the security defense system. In order to detect attacks, a virtual router is deployed
on the VMs in each cloud provider’s domain to monitor the incoming and ongoing traffic.

In summary, the basic idea of network-based IDSs is to monitor the incoming and out-
going network traffic in order to detect intrusions. The main limitation of these approaches
lies in their ineffectiveness in capturing the internal attacks wherein attackers penetrate
into the internal cloud system.

2.3.3.2 Host-based Detection Systems

In [77], the authors propose a distributed detection mechanism for detecting Distributed
Denial of Service (DDoS) attacks in cloud environments. The basic idea is to deploy and
configure an IDS within each VM whose responsibility is to collect alerts. The alerts from

31

the different VMs are then sent and stored into a Mysql database hosted in the front-
end server. Thereafter, the alerts are converted into basic probabilities assignments and
analyzed using the Dempster-Shafer’s combination rule [151].

In [156], the authors propose Varanus, a multi-tier detection model for large-scale IaaS
cloud services. In Varanus, VMs are partitioned into a set of groups based on the similarity
between their software configuration features (e.g., web servers, database servers, etc.)
using the k-nearest neighbor clustering algorithm [49]. Each VM participates in a gossip-
based monitoring scheme by propagating and receiving information (e.g., CPU usage, disk
capacity, etc.) to/from the other VM agents in the same group. In each group, the under-
utilized VMs are then nominated to perform the data analysis. Finally, the aggregate value
for each group is communicated among the different groups of the same cloud domain.

In [34], the authors discuss a host-based intrusion detection technique that selectively
monitors (only) the failed system call traces of the VMs. These traces are then ana-
lyzed and classified either normal or malicious using k-nearest neighbor. Finally, users
are alerted of any malicious activity in their system.

Summarizing, the basic idea of host-based IDSs is to deploy a monitoring agent on
each VM to monitor its states and behavior and identify any malicious behavior. Although
these systems are more effective than network-based IDSs in identifying both internal and
external attacks, such systems entail additional management responsibilities for the users
and can be impeded by masterful attackers who violate the VM instances.

2.3.3.3 Hypervisor-based Detection Systems

In [158], the authors propose an online anomaly detection technique that operates at
the hypervisor’s layer. The system architecture consists of four main components, namely
the Cloud Resilience Manager (CRM), System Resilience Engine (SRE), Network Analysis
Engine (NAE), and System Analysis Engine (SAE). At the first stage, the CRM deployed
on each cloud node collects features from the VMs and their local networks and sends
this data to the NAE and SRE components. These two latter components employ the one-
class SVM to carry out a local anomaly detection. Based on the output generated by the
classifier, the SRE takes the responsibility of recovering actions.

The authors of [23] advanced Collabra, a distributed IDS that is integrated into Xen
hypevisors to preserve the security of the cloud system. Collabra scans each hyper-call
made by every application of the VMs to guarantee the integrity of the cloud infrastructure
and ensure fail-safe transaction processes. Collabra performs in a collaborative fashion to
enhance the results of the real-time detection.

32

In [76], the authors propose a virtualization-supported security architecture for cloud
resources whose basic idea is to monitor the integrity of guest VMs and hosting infras-
tructure components, while being invisible to the end users. To detect attacks, system-call
invocations performed by VMs are continuously monitored by an Interceptor entity that is
located into the kernel space of the hosting platform. Suspicious activities are then logged
by a Warning Recorder entity into the Warning Pool that prioritizes the order of evaluation
of these activities. The Warning Recorder asynchronously computes checksums for crit-
ical host infrastructure and guest kernel code, data, and files. This information is passed
then to the Evaluator entity to decide on whether the system’s security has been breached
or not.

In [101], the authors propose a hypervisor-based IDS for malicious activities on VMs.
Every second, endpoint agents installed on hypervisors retrieve the performance metrics
of the guest VMs such as CPU utilization, block device read/write data, and network data
transmitted/received. This data is transmitted to the controller node, a service residing
within the cloud environment, which is responsible for analyzing the received data against
stored signatures and confirming the existence/inexistence of attacks.

In summary, hypervisor-based IDSs put the monitoring responsibilities on the hypervi-
sor’s site by allowing it to inspect and gather information from the guest VMs. The main
limitation of this approach is that, in real systems, such a mechanism requires monitoring
and analyzing a huge number of events from each single VM.

Concluding Remarks The existing IDSs stop at the borders of monitoring and analyzing
events to identify intrusions. Thus, these systems consider the detection problem from the
perspective of the IDS only without accounting for the strategies of the attacker who seeks
to minimize the probability of detecting his/her attacks. This results in high false alarms
and large levels of resources wastage in the detection process.

33

Chapter 3

Trust and Reputation Models in the
Service-Oriented Architecture:
Classification, Challenges, and
Future Directions

Services selection constitutes nowadays a major challenge that is still attracting the re-
search community to work on and investigate. The problem arises since decision makers
(1) cannot blindly trust the service or its provider, and (2) ignore the environment within
which the service is operating. The fact that no security mechanism is applicable in such
a completely open environment, where identities can be easily generated and discarded
makes social approaches such as trust and reputation models appealing to adopt and
apply. In this chapter, we classify and compare the main findings that contributed in solv-
ing problems related to trust and reputation in the SOA. First, a high-level classification
scheme partitions services into three main architectures: single, composite, and commu-
nities. Thereafter, a low-level classification within each architecture categorizes the trust
and reputation models according to the technique used to compute the trust value. Based
on this classification, a detailed analysis describing the advantages and shortcomings of
each class of models is presented, leading to uncovering possible topics that need further
study and investigation. In particular, we discuss the challenging problem of having ma-
licious services in the composite and community-based architectures by means of deep
analysis and simulation experiments. These findings can be used by future researchers
as a roadmap to explore new trust and reputation models in the SOA, while taking into
account the shortcomings of the existing models1.

1The content of this chapter is published in [141]

34

3.1 Motivations of the Survey

Several reviews [155, 87, 114, 35] targeting trust and reputation in the SOA have been
advanced. The motivation for this survey stems from two main reasons. First, the exist-
ing survey papers lack a comprehensive view of services’ architectures. To the best of
our knowledge, this is the first review work that classifies services according to their ar-
chitecture and provides a collection of criteria that are important for the success of the
trust and reputation models in each architecture. The second motivation is the lack of a
profound and systematic review of trust and reputation in the SOA. This survey presents a
high-level classification scheme for the services according to their architectures and a sub-
classification in each architecture based on the underlying technique used to construct the
trust/reputation value. Moreover, we define for each architecture a set of criteria that are
necessary for the success and effectiveness of the trust and reputation models targeting
this particular architecture. The classification scheme aims to help (1) providers improve
the quality and performance of their services, (2) customers enhance the quality and cred-
ibility of their ratings, and (3) the research community to study and investigate some open
challenges that are not yet solved in this domain.

3.2 Existing Surveys

Several surveys can be found in the literature about trust and reputation in the SOA
[155, 87, 114, 35]. Wang et al. proposed in [155] a classification scheme for trust and rep-
utation systems in Web services based on three criteria: (1) centralized or decentralized,
i.e., there exists a central party charged of managing the reputation for all the members
or not; (2) person or resource, i.e., they target persons or resources such as Amzon and
eBay; and (3) global or personalized, i.e., collected based on opinions from general popu-
lation that is visible to all members or based on opinions from a group of members.

In [87], the authors focused on the trust management models and issues related to se-
mantic Web services. They classified the trust models based on the method used to com-
pute the trust value, resulting in three categories: (1) Trust Computation Related to Ser-
vices, where services establish trust for each other; (2) Trust Computation on Consumer
View, where consumers provide feedback on the services based on their interactions; and
(3) Trust Computation for Content and Context, which uses meta-data information to ana-
lyze the semantic data published on the Web.

In [114], the authors present a comparison summary between the reputation-based
approaches proposed in the Service-Oriented Computing domain based on four criteria:
maturity, majority, cost, and infrastructure. The maturity stresses the need for users’ ratings

35

when building trust. Majority points out that a certain trust mechanism should be indepen-
dent from the credibility of the majority of ratings that may be dishonest. Cost refers to
the complexity and extensibility of the trust mechanism, while infrastructure refers to the
ability to support distributed infrastructure such as Web services. In our work, maturity and
majority are expressed in criteria C2 and C7 (Table 3.1) respectively.

Dragoni proposed in [35] a classification scheme for the trust-based services selection
approaches based on their rationale; resulting in three classes: (1) Direct experience-
based approaches in which consumers use the direct past experience with a certain ser-
vice to build the trust for that service; (2) Trusted Third-Party (TTP) approaches in which
consumers consult a trusted third party to build a trust for a certain service; and (3) Hy-
brid approaches that combine techniques from the two aforementioned classes to build
integrated frameworks.

More generally than Web services, the topic of trust and reputation in online systems
has been tackled in many review papers [56, 137, 74]. In [56], the authors presented a
broad discussion about the notions of trust and reputation and proposed a classification
for the trust and reputation models based on the reputation computation engines; resulting
in six classes: Simple Summation or Average of Ratings, Bayesian Systems, Discrete Trust
Models, Belief Models, Fuzzy Models, Flow Models. The focus of this survey is to discuss
the trust and reputation in the deployed systems such as security and commerce rather
than systematically reviewing the research literature.

In [137], the authors proposed a reference model for building reputation systems for e-
services. They introduced a collection of criteria whose main objective is to ensure that the
assessed reputation values reflect the actual trustworthiness of users. Several criteria may
be inferred by combining criteria C3, C4, and C7 (Table 3.1) in our work. Examples of these
criteria include: reputation should be assessed using a sufficient amount of information,
and reputation system should be able to discriminate incorrect ratings.

In [74], the authors target the centralized online reputation systems by proposing a
structure and providing a set of criteria for each component in this structure. Some of
these criteria, related to the quality of the ratings, are reflected in C3, C4, and C7 (Table
3.1) in our work. Other criteria focus on the efficiency of the reputation systems as well as
the aggregation algorithms by highlighting some relevant requirements such as complexity
and robustness.

Similar to the aforementioned surveys, we do not claim to cover all the criteria needed
for the trust and reputation models; however, our criteria are proposed to answer the re-
search questions raised in Section 3.4. Numerous criteria proposed in other surveys,
even not explicitly expressed in our work, can be inferred by combining some of our pro-
posed criteria. Other criteria such as those related to the efficiency and complexity of the

36

reputation systems and aggregation algorithms are out of the scope of this study as the
approaches selected for comparison do not consider these aspects. Overall, the unique
features of our survey are (1) defining services’ architectures and describing their points
of convergence and difference; (2) providing a sub-classification within each architecture
on the basis of the technique used to compute the trust/reputation value; (3) proposing a
taxonomy of criteria for each architecture and comparing the class models and approaches
in each architecture based on these criteria; and finally (4) discussing the limitations and
future directions specific to each of these architectures.

3.3 Research methodology

The proposed criteria are selected to answer a collection of research questions we
raise for each services’ architecture. These questions target the major challenges that
each architecture may face in the context of trust and reputation. The challenges have
been identified as those ones that received most of the attention in the papers used for
the survey. Many of these challenges are also explicitly identified as major issues in the
surveyed papers. In the single architecture, most of the research is oriented to tackle the
issues of bootstrapping, credibility of ratings, trust dynamism, and representativeness of
the trust and reputation sources [90, 84, 85, 100, 126, 130]. For the composite architec-
ture, the identified major challenges are determining the contribution of each component
(i.e., service) in the composition process and the problem of task allocation among com-
ponents [93, 50, 107, 163, 164] with the aim of determining the trust value of each single
component. In the community-based architecture, joining communities and the influence
of that joining on the performance and reputation of the community have been the key
challenges [61, 62, 60, 22, 59]. Moreover, we have noticed that the topic of malicious at-
tackers, that have major impacts on the trust and reputation of services and that has been
a major challenge in many important domains such as networks [57, 162, 149], has been
disregarded in the context of services. To this end, we raise this topic and highlight its im-
portance by means of detailed analysis and discussion. In summary, the main challenges
in the single architecture are related to the quality and credibility of the procedure used
to build the trust/reputation values. For the composite architecture, the challenges are
expanded to cover the issues of estimating the contribution and performance of the ser-
vice constituents in the composition process as well as the task allocation problem among
these constituents and the security concerns that may be engendered by the malicious
constituents. As for the community-based architecture, the issues of making thoughtful
joining strategies for the communities and protecting them against malicious attacks are
additional concerns. Numerous criteria exist in other surveys, where each survey focuses

37

on certain aspect(s) related to trust and reputation. Similar to these surveys, we do not
claim to cover all the criteria needed for the trust/reputation models; but our criteria are
defined to answer the proposed research questions. It is worth mentioning as well that
numerous criteria proposed in other surveys, even not explicitly expressed in our work,
can be inferred by combining some of our proposed criteria. Other criteria such as those
related to the efficiency and complexity of the reputation systems and aggregation algo-
rithms are out of the scope of this study as the approaches selected for comparison do not
consider these aspects.

The approaches chosen for comparison in each services’ architecture are selected
from papers published as of 2009 in refereed journals and international conferences. More-
over, we included papers that are major (based on the number of citations) in the domain of
trust and reputation in the SOA published before 2009 and that are important to understand
the core of the topic such as [90, 126]. The objective is not to gather and compare all the
approaches that tackled trust and reputation in the SOA. The reason is that we advance
a two-phase classification (based on the services’ architecture and the technique used to
compute the final trust value) of the current approaches and compare each class of models
based on the proposed criteria, where approaches in the same class share the same basic
idea but differ in some minor and technical details.

3.4 Problem Statement and Research Questions

In this section, we illustrate the need for a trust and reputation model in the scope of
services by describing a real-life scenario and raise the research questions that our survey
aims to address. Consider the case of a flight booking application. A customer makes
a request containing the flight dates, origin and destination, type of tickets (one way or
return), and number of guests to the Flight Booking service and asks for the information
related to such a flight (i.e., companies, timing, prices). To gather such information, the
Flight Booking service has to make a series of invocations. Practically, it would inquire the
name of the companies, ticket prices, and timing on the specified route from the Airline
Reservation service. Moreover, it will contact the Hotel Reservation service to get the
prices and availabilities of hotel accommodations in the given destination. It will also invoke
the Car Rental to get the options and prices of cars.

In this scenario, two types of interactions take place: (1) customer-to-service explicit
interaction, and (2) service-to-service transparent interaction. The first type of interactions
refers to the single architecture of services, while the second describes the composite ar-
chitecture. Although the second type of interactions does not impact the customer directly,

38

it will affect the quality of the whole transaction. In fact, the overall quality of a compos-
ite service is affected by the quality perceived by each single service in this composition.
Suppose that the Hotel Reservation service is overloaded by a huge number of requests.
This would increase the response time of the overall transaction. Therefore, as much as
the customer is interested in the selection of the appropriate service to obtain the “best”
possible quality, the Flight Booking service is interested in selecting the appropriate ser-
vices to be part of the composition in a way that allows it to maintain a good record among
other Flight Booking services. Thus, both the customer and Flight Booking service have to
make appropriate decisions in this context. Such a decision cannot be made randomly due
to the fact that in such an open environment, anyone can offer services that may be of low
quality, time consuming, expensive or even harmful. This raises the need for mechanisms
that enable decision makers to distinguish good from bad services. Applying the usual se-
curity mechanisms such as authentication and access control cannot help us make optimal
decision in such a case. In fact, learning the credentials of services is not enough to predict
how well these services will perform, but having an idea about their past interactions would
signal their trustworthiness. Without a reputation-based selection, it would be difficult for
both customers and providers to select the appropriate services to deal with.

By using a reputation-based mechanism, the customer is increasing his/her chance
to get higher QoS values. The provider, in his/her turn, is decreasing the risk of get-
ting harmed because of non-reputable external components (i.e., services owned by other
providers). While achieving these goals, several challenges arise. Some of these chal-
lenges are generic for all the services, while others are specific for each architecture. For
the single services’ architecture, the main challenges can be summarized by the following
research questions:

• Q1: How and based on which parameters to evaluate the reputation of the services?

• Q2: How to assign initial trust values for the new services?

• Q3: How to adapt the trust values to the dynamic change in the services’ perfor-
mance?

• Q4: How to protect the trust/reputation values against collusion and deception prob-
lems?

These challenges apply as well in the composite architecture in addition to supplementary
challenges imposed by the composite architecture such as:

• Q5: How to evaluate the performance of the individual constituents in the overall
composite service?

39

• Q6: How to assess the trust of the constituents when their performance cannot be
fully observable?

• Q7: How to manage the collaboration and task allocation issues among the con-
stituents?

• Q8: How do malicious constituents affect the reputation and performance of the com-
posite service?

In the community-based architecture, several services offering the same functionality are
grouped into clusters to ease their discovery process and increase the overall performance.
Thus, if a Hotel Reservation service, say H1, does not have enough QoS requirements
to fulfill the request coming from the Flight Booking service, it can cooperate with the
other community members offering the same functionality (e.g., H2 and H3) or delegate the
request for them to perform it with better performance. In such an architecture, dealing with
trust and reputation becomes more challenging with more issues to consider, in addition to
those of the single and composite architectures, arise such as:

• Q9: How to evaluate the reputation of a community in such a dynamic environment
where services continuously join and leave?

• Q10: Would the community members cooperate with each other and why? How does
this affect their reputations and the reputation of the whole community?

• Q11: How and based on which parameters should services be selected to be part of
the community?

• Q12: How do malicious services influence the reputation and performance of the
community?

Several approaches were proposed trying to answer some of these questions, while
other questions still need further study and investigation. In what follows, we present and
classify the main contributions to date that addressed issues related to trust and reputation
in these three architectures, derive a collection of criteria for the trust and reputation models
in each architecture from the aforementioned questions, compare the class models, and
identify gaps from which researchers can find important topics to work on and explore.

3.5 Trust and Reputation in SOA

In this section, we present a high-level classification for the trust and reputation mod-
els according to the architecture of services they target and a low-level classification in

40

Web Services

Community Composite Single

Architecture

Trust Computation Technique

Inherits Inherits

Direct

Feedback

Fuzzy

Logic

Data

Mining

Statistical

Models

Game

Theory

Analytical

Models

Figure 3.1: Classification scheme: Trust and reputation models are classified based on the
architecture of services they target (high-level classification), and the technique they use
to build the trust within each architecture (low-level classification)

each architecture based on the technique used to build the trust value. The classification
scheme is depicted in Figure 3.1. We define as well a set of criteria for trust and reputation
models in each architecture; based on this we conduct a high-level comparison among
the classes of models and a low-level comparison among the major approaches in each
architecture.

3.5.1 Single Services

Single services are referred to as those services working in a standalone manner to
achieve users’ requests (e.g., a weather forecasting service displaying the weather status
in a certain city). Trust and reputation models proposed for this architecture aim mainly to
help users select the appropriate service that best achieves their requests. The following
criteria are important for the trust and reputation models while achieving this goal [100, 86,
164, 137, 114, 90, 74]:

• Criterion #1: Cover multiple QoS metrics (e.g., response time, throughput, availabil-
ity, etc.) to enable users to distinguish well among functionally-similar services.

• Criterion #2: Consider the user preferences since users may be interested in dif-
ferent quality metrics (i.e., one user may be interested in the response time while
another user may look for lower cost).

• Criterion #3: Account for both subjective (feedback from users) and objective (QoS
monitoring) perspectives while evaluating the trust and reputation of services.

41

Table 3.1: Criteria for the trust and reputation models in the single services’ architecture

ID Criterion References

C1 Cover multiple Quality of Service (QoS) metrics such as response time, throughput,
and availability. [90, 100]

C2 Consider the user preferences. [114, 100]
C3 Account for both subjective and objective perspectives. [100, 137, 74]
C4 Assess the credibility of raters. [100, 137, 74]
C5 Have a bootstrapping mechanism. [86, 164]
C6 Consider the trust dynamism. [90, 164]
C7 Be independent from the credibility of the majority of ratings. [114, 137, 74]

• Criterion #4: Assess the credibility of raters (giving feedback on the behavior of the
services based on direct interactions) to avoid collusion and deception.

• Criterion #5: Have a bootstrapping mechanism to assign initial trust values for the
newcomer services (i.e., newly deployed services).

• Criterion #6: Consider the trust dynamism issue since the performance of services
is subject to change over the time (ameliorate or deteriorate).

• Criterion #7: Avoid the dependency between the recommendation given to a certain
service and the credibility of the majority of ratings.

These criteria are summarized in Table 3.1. Most of the trust and reputation models
proposed for the single architecture of services use direct feedback collected from users
to compute the trust value for the services. Few statistics-based, fuzzy-logic-based, and
data-mining-based models were proposed for this purpose. More details on these models
and their associated approaches are given in what follows. Thereafter, Table 3.2 compares
the discussed approaches according to the criteria presented in Table 3.1.

3.5.1.1 Feedback-based models

Feedback-based models [90, 84, 10, 89] rely on the idea of collecting reviews concern-
ing a certain service. These reviews are used then to build a trust value for the service
in question. The source of reviews is either the provider or the consumer [67]. Provider-
generated information includes the descriptions of the service recorded in the service reg-
istry. Consumer-generated information are, on the other hand, online reviews provided by
the users who had dealt with the service during past interactions. For example, Maximilien
and Singh [90] proposed a multi-agent framework based on an ontology of QoS metrics
allowing providers to proclaim their services, users to state their preferences, and ratings
about services to be built and shared. The ratings are based on the QoS metrics, which
include well-known computing parameters such as latency and throughout but may involve

42

also application-specific parameters such as shipping delay. The proposed framework re-
lies on three main concepts: provider quality advertisement, customer quality preference,
and service reputation. Using the provider quality advertisement, providers advertise their
services by specifying the minimum and maximum possible quality values for the offered
service as well as the promised value for this service. Consumers, in their turn, describe
their preferences by specifying the minimum and maximum acceptable quality thresholds
as well as the preferred quality value. Thereafter, a trust function is formulated based on
the reputation function, the consumer’s preferences, and the provider’s advertisements.
The aim of this function is to rank the services based on how well they satisfy users’ re-
quirements in order to help make selections. The framework also provides a mechanism
to periodically monitor the services in order to allow users to replace the poorly-performing
services by other well-performing ones.

Although feedback-based models have the advantage of considering the opinions of the
users, which tends to be the most rational and meaningful metric for building the reputation
of any service, these models suffer from major problems. First, feedback-based models
provide no bootstrapping mechanism for computing initial trust for services. Second, the
quality and credibility of the ratings is a main problem that encounters feedback-based
models. More precisely, providers tend to hide the bad characteristics of their services and
stress the good aspects for marketing and commercial purposes. On the other hand, the
feedback provided by the consumers tend to be more realistic due to two main reasons.
Firstly, the feedback presented by the consumers are usually user-oriented in the sense
that they focus on the aspects that concern the user such as QoS and cost in contrast to the
providers that tend to proclaim the service-oriented information. The second reason is that
consumers have higher probability than providers of mentioning the weaknesses along
with the strengths of the services as they are assumed to be neutral parties who have
no direct interest in the promotion/demotion of certain services. However, this does not
mean that the reviews presented by the consumers are always truthful. In fact, consumer-
based reviews are usually not organized in a standard manner in the sense that each
user has his own style in writing the reviews that is different from other users (e.g.,{0,
1, 2} vs. {excellent, good, bad}). Besides, users usually tend to refrain from submitting
reviews as they have no incentives for doing so, which leads to biased computation of
the aggregated trust value. Most importantly, consumers are rational agents who may
be tempted to provide dishonest feedback resulting in benefit for them as a result of a
certain collusion scenario. For example, some consumers may collude with the providers
to submit positive feedback on their services and/or negative feedback on the services of
their competitors versus obtaining reduced service fees.

This problem was tackled by several approaches [10, 84, 120], where the authors con-
sider the existence of malicious raters that may provide untrustworthy ratings. The main

43

limitation of these approaches is that they are based on the idea that the majority of raters
are credible in the sense that the rating of a certain consumer is assumed trusted if it
agrees with the majority of ratings and untrusted otherwise. In this way, malicious raters
can still impose their opinions and get high reputations by merely submitting a large num-
ber of fake feedback in such a way that allows them to form the majority.

3.5.1.2 Statistics-based models

In general, statistical models [157] are used to describe the relationship among a set
of variables by means of mathematical equations. In the context of single services, a few
statistical models [100, 18] are used to compute trust values for the services. These mod-
els attempt to overcome the problems of the feedback-based models, which rely solely on
the reviews provided by providers and/or users and that may be incredible, by considering
multiple sources of trust and using statistical methods to combine them.

For example, Nguyen et al. [100] proposed a trust model based on a Bayesian Network
(BN) that integrates both subjective and objective trust sources such as: direct opinion
(ratings from users), recommendation (combination of public and personalized metrics),
and conformance (between promised and actual QoS values). Based on these sources,
the final trust value is calculated as the weighted sum of the three metrics.

In RATEWeb [85], the authors proposed a set of metrics inspired by the social net-
works methodologies with the aim of enhancing the accuracy of ratings and dynamically
assessing the changing conditions. These metrics involve the credibility of the raters (to
target malicious ratings), personalized preferences (weighted preferences over the QoS
metrics), temporal sensitivity (to assign more weight to the most recent ratings), and first-
hand knowledge (to cope with services’ performance dynamism). Finally, a statistical tech-
nique is used to combine these metrics and compute the trust value.

Although statistics-based models provide powerful mechanisms for building the trust
value by collecting and combining multiple sources of trust, these models still cannot com-
pute initial trust values for the newcomer services as they provide no bootstrapping mech-
anism that tackles this problem.

3.5.1.3 Fuzzy-logic-based models

Fuzzy logic [27] is a reasoning approach that supports approximate rather than exact
values. In the context of trust and reputation in SOA, fuzzy models [126, 99] are used to an-
alyze the semantics and rationale behind the feedback left by the users. The motivations
behind this are to (1) facilitate the construction of recommendations by aggregating the

44

feedback left by users having the same preferences together, i.e., a user interested in the
response time will be more interested in knowing the feedback related to the response time
than those related to the price; (2) detect the bogus ratings provided by malicious users,
e.g., users who are always submitting positive feedbacks on a certain service although
the performance of this service was bad in multiple invocations. In [126], the authors pro-
posed a fuzzy-logic-based reasoning model that combines both the subjective perspective
represented by users’ ratings and the objective perspective referred to as the compliance
between promised and actual performance. To this end, they propose to assign a rating
for each service based on its compliance value and compare it with users’ ratings. This
rating is computed in way that makes it biased towards a certain parameter (e.g., response
time). Thereafter, the rating given by the user is compared against all the estimated ratings
and the rating that best matches the user’s rating is deemed to be equivalent to the user’s
rating.

Although fuzzy-logic-based models try to understand the semantic behind the ratings
provided by the users, which constitutes an important topic in the context of trust and
reputation, these models offer only a set of rules and comparisons as ultimate output
(e.g., if the compliance of response time and availability is poor but the compliance of
performance is good, then the rating is considered to be poor) but provide no mechanism
for computing the final trust value and are not able hence to help users and/or services
make selections. They cannot compute initial trust values for the new services as well.
Moreover, they do not take into account the dynamism of the trust.

3.5.1.4 Data-mining-based models

Data mining is an interdisciplinary subject that describes the process of extracting hid-
den patterns from huge datasets [54]. Data mining is becoming increasingly adopted in
many domains such as medicine, engineering, science, business, etc. Despite its impor-
tance, this emergent discipline has not been well-exploited to address the problems related
to trust and reputation for services. A data-mining-based approach was presented in [130],
which uses the text mining to analyze the reviews provided by the users in order to evaluate
the services and facilitate thus their selection. However, this approach is based on the sim-
plistic assumption that the reviews presented by the users are always credible. Moreover,
the authors didn’t provide an in-depth methodology of how the text mining will be effec-
tively performed. Additionally, the bootstrapping and trust dynamism issues are ignored in
this approach. Further steps are required to take advantage of the promising techniques
offered by data mining (e.g., clustering, classification, frequent patterns, association rule,
etc) [147], that seem to be useful to solve problems related to trust and reputation.

45

Table 3.2: Comparison summary between the main trust and reputation approaches in the
single architecture

Approach Model C1 C2 C3 C4 C5 C6 C7
Maximilien and Singh [90] Feedback-based X X X X X

Malik and Bouguettaya [84] Feedback-based X X X X
Malik and Bouguettaya [85] Statistical X X X X

Nguyen et al. [100] Statistical X X X X X
Sherchan et al. [126] Fuzzy logic X X X X X
Thurow et al. [130] Data mining X X X

3.5.2 Composite Services

Services’ composition involves integrating and organizing a set of services to achieve
certain complex functional and/or non-functional requirements that cannot be accomplished
by a single service [109]. In this architecture, trust and reputation models aim to help
composition designers select the appropriate services to be part of the composition pro-
cess resulting in benefit for both designers (better reputation) and users (better quality).
To achieve this goal, several criteria have to be taken into consideration. As composite
services are no more than a set of single services working together to achieve a cer-
tain objective, the requirements proposed for the single architecture (Table 3.1) apply as
well for the composite architecture in addition to other important requirements such as
[50, 93, 168, 127, 164, 163, 57, 162]:

• Criterion #8: Capture the responsibility of each constituent in the overall quality of
the composite service in order to improve current compositions and facilitate future
selections.

• Criterion #9: Consider that the responsibility of each constituent cannot be fully
observed since users usually deal with the composite service as a monolithic entity.

• Criterion #10: Take into account the dynamism in the behavior of the constituents
even when this change does not affect the overall quality of the composite service.
For instance, consider the case of a service composed of two constituents X and Y .
Initially, X is good and Y is bad. If X changes to bad and Y changes to good, the
model should be able to capture this change although the overall performance of the
composite service is not affected.

• Criterion #11: Monitor the variations in the QoS parameters of the constituents since
predicting the performance based on the previous behavior cannot always yield reli-
able results as the performance can change in irregular manner (e.g., on demand).

• Criterion #12: Study the collaboration and task allocation problems among the con-
stituents of the composite service to guarantee building reliable and well-performing

46

Table 3.3: Criteria for the trust and reputation models in the composite services’ architec-
ture

ID Criterion References
C8 Capture the responsibility of each constituent. [93, 50, 127]
C9 Consider that the responsibility of each constituent cannot be fully observed. [93, 50, 127]

C10 Take into account the dynamism of the behavior of the constituents even when this
change does not affect the overall quality of the composite service. [50]

C11 Monitor the variations in the QoS parameters of the constituent. [168]
C12 Study the collaboration and task allocation among composite service’s constituents. [163, 164]
C13 Account for the active malicious constituents. [57, 162]

compositions.

• Criterion #13: Consider the existence of active malicious constituents whose objec-
tive is to join some compositions and launch attacks against the composite service
or some partner constituents.

These criteria are summarized in Table 3.3. Numerous trust and reputation models have
been advanced for the composite architecture. The dominant trend of these models use
statistical techniques to compute the trust for the constituents, while others employ game
theory to model the collaboration and task allocation issues. More details about these
models and their associated approaches are discussed in what follows. Thereafter, the
discussed approaches are compared in Table 3.4 w.r.t the criteria presented in Table 3.1
and Table 3.3.

3.5.2.1 Statistics-based models

In the context of composite services, statistical models [107, 93, 92, 50, 68] have been
widely used to model the relationships among the individual constituents and learn the
responsibility of each constituent in the overall composite service. The objective is to help
providers improve the quality of their existent compositions and make wise future selec-
tions. The challenges that led to the adoption of statistical models are the dynamic nature
of the composite architecture and the difficulty of observing each constituent’s quality. In
fact, the dynamic aspect of the composition process makes it difficult to learn the order
of the constituents, which is important to learn the performance of each individual ser-
vice(through mapping its order in the composite service with the performance obtained at
a certain time moment). Moreover, the quality of each constituent cannot be always ob-
served. For instance, when dealing with a hotel reservation service, the user may observe
sometimes that a certain constituent always responds before the others. However, such
information may not be always observable. Thus, statistical techniques are used to predict
the quality of the constituents from the overall composite service’s quality.

47

In [93], the authors employed Bayesian Network to assess the trustworthiness of the
constituents through a reputation-based trust mechanism. For this purpose, a probabilistic
approach that is able to learn the composition structure (i.e., the order of the constituents
in the composition process) of the composite services and compute the trust scores for the
constituents is advanced.

Another statistical method, the Beta Mixture [80], was employed in [50] to assign trust
for the components of the composite services. Trust is assigned for components based on
their responsibilities, while taking into consideration the dynamism in the QoS and the fact
that not all the observations can be noticed.

Although statistics-based models account for the dynamic characteristics of the QoS
parameters, they cannot provide decisive solutions for this problem. In fact, these models
suggest tracking the most recent behavior of the services to predict their current perfor-
mance. Nonetheless, the QoS of the services may change on demand (not in a regular
manner) [168], which makes tracking the most recent behavior less likely to make reliable
predictions. For instance, an online car rental service may face important degradation in its
performance during the promotion time due to the pointedly increased number of orders.
In this case, the current performance is unlikely to be predicted from the recent perfor-
mance since the change in the QoS does not happen in a regular manner. Therefore, a
monitoring mechanism that can capture the variations in the performance is recommended
[168]. Moreover, these models ignore the collusion scenarios that may occur among the
constituents of the composite service and that may lead to false estimations of these con-
stituents’ trust values. For instance, constituents may collude according to different scenar-
ios to mislead the predictions. For instance, those constituents might collude to promote
each other in order to obtain high reputation scores. Additionally, statistics-based models
do not study the collaboration and task allocation issues among the constituents. Fur-
thermore, the topic of malicious constituents that join compositions to perform malicious
objectives was not addressed yet.

3.5.2.2 Game-theoretic-based models

Game theory is a formal study of conflict and cooperation that applies whenever the ac-
tions of several agents are interdependent. A few game-theoretic-based models [164, 163]
were proposed to address the topic of trust and reputation in the composite architecture.
The objective of these models is to model the competition among constituents seeking to
be allocated tasks in the compositions and select hence the appropriate candidate with the
aim of maximizing the probability of performing the allocated tasks successfully.

As an example, Yahyaoui [164] proposed a trust-based game whose objective is to

48

Table 3.4: Comparison summary between the main trust and reputation approaches in the
composite architecture

Approach Model C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
Mehdi et al. [93] Statistical X X X X X X
Hang et al. [50] Statistical X X X X X X X X

Paradesi et al. [107] Statistical X X X X X X
Yahyaoui [163] Game theory X X X X X X
Yahyaoui [164] Game theory X X X X X X X

model the competition among services seeking to get allocated with tasks and to select
the appropriate candidate. To achieve this, services use a Bayesian model to compute a
trust value for every other service willing to collaborate with and play a game to select the
appropriate candidates.

Game-theoretic-based models address an important topic in the context of compos-
ite services, which is the task allocation regulation. This issue is important since it helps
increase the probability of the composite service for achieving the allocated task with bet-
ter performance. However, these models did not capture the whole picture of the task
allocation problem. More precisely, they ignore the collusion scenarios that may occur
among services. Practically, some services may collude to promote/demote each other or
some other services, which may lead to inappropriate selection and create unreliable com-
positions. As with the statistics-based models, game-theoretic-based models ignore as
well the topic of malicious constituents that join compositions to perform malicious attacks.
Different from statistics-based models, game-theoretic-based models do not evaluate the
responsibility of constituents in the composition process.

3.5.3 Communities of Services

Communities of services can be viewed as groups of services sharing the same func-
tionality but differing in their non-functional properties [82] (e.g., a community of car rental
services). Creating communities has a two-fold objective resulting in benefit for both ser-
vices and users. Services will be exposed to wider groups of users and will have chances
to contribute in a greater number of compositions. Users, in their turn, will get their re-
quests fulfilled with better quality as a result of the cooperation that takes place among the
services within communities [82]. The topic of trust and reputation has been extensively
addressed in the communities of services, where the objective is to enable services to
work and cooperate within a truthful environment. To attain this objective, a collection of
requirements have to be satisfied. As communities are composed of single services and
can involve some kinds of functionally-similar compositions among community members,
the requirements proposed for both the single and composite architectures (Table 3.1 and

49

Table 3.3 respectively) apply as well for the community-based architecture in addition to
other important requirements such as [38, 62, 22, 59, 140, 57, 162, 36]:

• Criterion #14: Investigate the community joining strategies in a thoughtful manner,
i.e., in a way that enhances/maintains the community’s performance and reputation.

• Criterion #15: Adapt the trust values to the highly dynamic environment of the com-
munities wherein services are continuously joining and leaving.

• Criterion #16: Consider the existence of selfish or passive malicious services in the
communities whose objective is to manipulate the reputation values by means of
malicious actions.

• Criterion #17: Consider the existence of active malicious services whose objective is
to join communities to lunch some attacks leading to disrupt the functioning of these
communities.

• Criterion #18: Study a fully malicious model that mimics the reality, where all the par-
ties that are intelligent agents are assumed to behave maliciously, seeking foremost
their own objectives.

These criteria are summarized in Table 3.5. The topic of trust and reputation in the ser-
vices communities was first addressed in [38], where the authors tried to adapt the ser-
vices community architecture to support trust and reputation models. This was achieved
by proposing an architecture of four components: user-agent; provider-agent; extended
Universal Description, Discovery and Integration (UDDI)2; and reputation system. They
defined as well some metrics to evaluate the reputation of the community from the per-
spectives of both users and providers. Most of the existing trust and reputation models
proposed for the community-based architecture build on and extend this reputation model.
These models fall into two major classes: analytical models, and game-theoretic-based
models. More details about these models and their associated approaches are discussed
in the following subsections. Thereafter, the discussed approaches are compared in Table
3.6 w.r.t the criteria presented in Table 3.1, Table 3.3, and Table 3.5.

3.5.3.1 Analytical Models

Analytical models are mathematical models that use equations to analyze the relation-
ships among a set of variables. These models have been used for the services communi-
ties to analyze the relationships among the reputation parameters of the services in order
to help them decide whether to join communities or to work alone.

2UDDI is a platform-independent XML-based mechanism to register and find Web service applications

50

Table 3.5: Criteria for the trust and reputation models in the community-based architecture

ID Criterion References
C14 Investigate the joining strategies in a thoughtful manner. [38, 62, 59]
C15 Consider the highly dynamic environment of the communities. [62, 59]
C16 Consider the existence of selfish services. [62, 22, 140]
C17 Account for the active malicious services. [57, 162]
C18 Study a fully malicious model. [36]

In [61], the authors perform an analysis on the incentives that would motivate a com-
munity (containing one or more elements) of services to join another community or to stay
alone. For this purpose, they formulate a performance function composed of two factors:
use of allocated services, and simultaneous obtained feedback (on the services’ perfor-
mance). Based on the proposed function, the authors stated that a community will be en-
couraged to join another community if: (1) it is overloaded by a huge number of requests,
or (2) it is unable to attract enough services.

In [60], the authors analyze the impacts that reputation parameters have on each other
in order to help services decide whether to join a community or to stay alone. Two cases
are considered: The service is overloaded or the service is idle. In the first case, the anal-
ysis results show that (1) the large increase in the number of requests would result in a
decrease in the service’s reputation (since the service might need to drop some incoming
requests in this case), and (2) the change in the reputation in the current time either posi-
tively or negatively leads to a negative change in the reputation in the next time unit. In the
second case, the analysis revealed that a positive rate of reputation change at a certain
time results in a positive rate of change in the next time slot.

In [62], the authors developed an analytical model that analyzes the incentives that
would demotivate the community master from behaving maliciously by either increasing its
reputation level or decreasing other communities’ reputation levels illegally. To tackle this
issue, a third-party called the agent controller is assigned the role of recognizing the mis-
behavior by comparing the community’s reputation change (improvement or degradation)
between two slots of time and matching this change with a predefined threshold.

Although analytical models tend to provide strong solutions since they are based on
mathematical proofs, these models fail to provide solid decision making frameworks for the
services since they restrict the analysis to a few parameters. For example, [61] restricts
the reputation assessment to three metrics; thus ignoring some important factors such as
capacity of handling requests. Similarly, the analysis presented in [60] is limited to two
reputation parameters computed by services, thus eliminating the reputation parameters
related to the users. Likewise, the authors in [62] limit the analysis to three reputation met-
rics. Moreover, analytical models provide no bootstrapping mechanism to compute initial
trust values for the new services and communities. Furthermore, they do not account for

51

Table 3.6: Comparison summary between the main trust and reputation approaches in the
community-based architecture

Approach Model C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18
Khosravifar et al. [61] Analytical X X X X X X X
Khosravifar et al. [62] Analytical X X X X X X X X X X X X
Khosravifar et al. [60] Analytical X X X X X X
Bentahar et al. [22] Game theory X X X X X X X X X X X X X

Khosravifar et al. [59] Game theory X X X X X X X X

the malicious services that join communities to launch attacks deteriorating communities’
QoS and reputations.

3.5.3.2 Game-theoretic-based Models

Game theoretical models have been widely investigated in the community-based archi-
tecture, where they are mainly used to address the shortcomings of the analytical models
and tackle the concept of joining communities in a more systematic manner.

A one-stage game theoretical model has been developed in [59] to provide services
with a decision making framework that helps them adopt strategies inside and outside
communities. Using the proposed game, the authors derive a threshold to be compared
with the expected performance. If the expected performance exceeds the threshold, then
the strategy will be joining for the single service and accepting the invitation to join for the
community. Another threshold is derived to control the strategies of the services inside
the communities. If the expected performance exceeds this threshold, the strategy of the
single service would be leaving the community; otherwise it would prefer to remain.

Game theoretical models were used as well to model the collusion scenarios that occur
among services acting as intelligent agents. The objective is to guarantee a truthful envi-
ronment where the involved entities act honestly. In this context, a repeated game model
was derived in [22] in order to maintain sound reputation mechanism in the presence of
malicious services seeking to enhance their reputations by means of fake feedback. To this
end, the authors discussed four scenarios the controller of the community (charged with
monitoring the feedback file against manipulations) may face such as: malicious act not
penalized, truthful act penalized, truthful act not penalized, and malicious act penalized.
Thereafter, a repeated game of two players (service and controller) is analyzed to derive
the best strategy for both players. This analysis revealed that if the service is made aware
of the penalties that it may undergo as well as of the controller’s detection accuracy, then
the system will fulfill a sound and secure state.

Game-theoretic-based models introduced an in-depth reasoning about the behavior
and actions of the different agents involved in the community-based architecture and are
hence able to provide effective and powerful decision making frameworks for these agents.

52

Table 3.7: Comparison summary among the class models in each architecture

Architecture Model Purpose Limitations
Single Feedback-based Build trust value from users’ reviews Unfair ratings.

Dependency on the credibility of the majority of raters.
Provide no bootstrapping mechanism.

Statistics-based Combine different sources of trust Cannot compute trust values for the new services.

Fuzzy-logic-based Infer the rationale behind users’ reviews Provide no mechanism to compute the final trust value.
Provide no bootstrapping mechanism.
Do not consider the trust dynamism.

Data-mining-based Analyze users’ reviews Lack of in-depth methodology.
Unfair ratings.
Provide no bootstrapping mechanism.
Do not consider the trust dynamism.
Ignore the objective sources of trust.

Composite Statistics-based Learn the responsibility of the composite service’s con-
stituents

Cannot obtain reliable predictions on the variations in the
QoS parameters.
Ignore the collusion scenarios among the composite ser-
vice’s constituents.
Do not consider the malicious constituents that join compo-
sitions to perform malicious attacks.
Do not study the collaboration and task allocation issues
among constituents.

Game-theoretic-based Regulate the task allocation among composite service’s
constituents

Ignore the collusion scenarios among the composite ser-
vice’s constituents.
Do not consider the malicious constituents that join compo-
sitions to perform malicious attacks.
Do not evaluate the responsibility of constituents in the com-
position process.

Community Analytical Analyze the relationships among the reputation parameters Provide no bootstrapping mechanism.
Limited to a few reputation parameters.
Do not account for the malicious services that join commu-
nities to launch attacks.

Game-theoretic-based Provide decision making frameworks for services and com-
munities

Rely on fully-honest or semi-honest adversary models.

Provide no bootstrapping mechanism.

Nonetheless, the main problem of the game-theoretic-based models in this architecture is
that they rely on fully-honest or semi-honest adversary models that assume the existence
of one or more trusted parties. For example, the work presented in [59] does not con-
sider the possible malicious nature of the services joining the communities. It assumes
hence that all the parties involved in the game (master, single services, and users) are
trusted. Moreover, the controller agent in [22] is responsible for supervising the feedback
file against false feedbacks without considering the case where the controller agent may
be itself involved in the collusion between services and consumers. In addition, game-
theoretic-based models provide no bootstrapping mechanism to compute initial trust values
for the new services and communities.

3.5.4 Summary of Findings

Table 3.7 provides a comparison summary among the classes of models defined in
each architecture. The Table illustrates the purpose behind using each class of the archi-
tecture in question and highlights its main limitations. Moreover, we summarize in Table 3.8
the discussed trust and reputation approaches to help readers visualize and understand
them.

53

Table 3.8: Summary of the main trust and reputation approaches proposed for services

Approach Addressed Problem Contribution
Maximilien and Singh [90] Trust-based selection for services Ontology-based framework that considers user prefer-

ences, providers advertisements, and QoS monitoring.
Malik and Bouguettaya [85] Assessing the reputation of service providers Reputation assessment framework that considers

raters credibility, personalized preferences, temporal
sensitivity, and first-hand knowledge.

Nguyen et al. [100] Combining different sources of trust Trust and reputation model that integrates different
kinds of trust sources and evaluates the credibility of
raters.

Sherchan et al. [126] Infer the rationale behind users’s reviews Investigate the relationship between the objective di-
mension and the subjective dimension using fuzzy ap-
proach.

Thurow and Delano [130] Analyze users’ reviews Text mining technique that extracts information about
services’ QoS parameters from the users’ reviews.

Mehdi et al. [93] Assessing the trustworthiness of composite services’ components Probabilistic approach that learns the composition
structure and computes trust.

Hang et al. [50] Assigning trust for composite service components Trust-based approach that dynamically learns the re-
sponsibilities of components and computes trust.

Yahyaoui [164] Collaboration among services Trust-based game that models the competition among
services for tasks allocation.

Elnaffar et al. [38] Assessing services communities using reputation-based approach Extension of the Web services architecture to support
communities and reputation model design.

Khosravifar et al. [61] Analyzing incentives that encourage services to join communities Performance function formulation to help communities
adjust their joining strategies.

Khosravifar et al. [62] Evaluate the reputation of communities in the presence of malicious coordinators Sound logging mechanism that motivates the well-
behavior of community coordinators.

Khosravifar et al. [60] Analyzing the impacts that reputation parameters have on each others Theoretical analysis that helps services decide whether
to work alone or to join communities.

Bentahar et al. [22] Maintaining sound reputation in the presence of malicious services Game theoretical model that investigates the incentives
that would encourage services to act truthfully.

Khosravifar et al. [59] Help services adopt strategies inside and outside communities Game model between services and coordinator to an-
alyze the payoffs for both parties based on different
strategies.

3.6 Discussions and Research Directions

A collection of trust and reputation models has been introduced in the SOA. These
models differ in the topics they address, which are imposed mainly by the architecture of
services in question. They differ as well in the manner they use to construct the trust value
for the services. Therefore, we base our classification of the existing trust and reputation
models on these two perspectives. In fact, we present a two-level classification scheme
that classifies the trust and reputation models based on the (1) architecture they are tar-
geting as a high-level classification; and (2) technique they use to construct the trust value
as a low-level classification. Detailed analyses and comparisons are derived from these
classifications; uncovering prospective topics for future study and investigation. In the fol-
lowing, we discuss the results obtained from these comparisons, highlight some possible
research topics in each architecture, and illustrate the future perspectives that are entailed
by this work.

3.6.1 Single Architecture

Trust and reputation mechanisms have been widely used and investigated in the single
architecture of services. Different approaches were proposed targeting numerous top-
ics. Since each approach focuses on a specific perspective, some important criteria are
missed. Practically, some approaches focus on the subjective perspectives and ignore the

54

objective perspectives. Some approaches do not account for the dynamism of the trust.
Additionally, some approaches disregard the bootstrapping issue, which constitutes an im-
portant challenge for any trust and reputation mechanism. Some proposals don’t assess
the credibility of the ratings used to build the trust and reputation model, which may trigger
collusion and deception problems. Besides, some approaches are based on the assump-
tion that the majority of the ratings are truthful, which is not always realistic. Therefore, a
more comprehensive trust and reputation model considering all the mentioned criteria is
needed.

3.6.2 Composite Architecture

Numerous approaches were proposed to tackle trust and reputation in the composite
architecture. These approaches are either statistics-based or game-theoretic-based. The
goal of the statistics-based models is to learn the responsibility of the composite service’s
constituents in order to enhance the current compositions and facilitate future selections.
The main problem of these models is that they predict the change in performance of the
services based on the most recent performance, which cannot yield accurate predictions.
It would be recommended to investigate a monitoring mechanism that is able to capture
the variations in the QoS parameters of the constituents. Moreover, statistics-based mod-
els do not address the task allocation among composite services’ constituents and do not
consider as well the collusion scenarios that may take place among these constituents
and that may influence the predictions. It would be interesting to develop a more compre-
hensive approach that is able to learn the responsibilities of the constituents based on a
monitoring mechanism that captures the dynamism in the performance and under a col-
luding scenario. On the other hand, game-theoretic-based models focus on the topics of
collaboration and task allocation among the constituents of the composite service. Similar
to the statistics-based models, game-theoretic-based models ignore the collusion scenar-
ios that may be initiated by the services. More specifically, services may collude to promote
each other and get higher chances to get allocated with tasks and/or promote/demote other
services. Thus, it is important to consider the collusion scenarios to obtain fair and reliable
task allocations. Furthermore, the topic of active malicious constituents that join composi-
tions to perform malicious objectives is not addressed yet. These malicious constituents
might take advantage of several vulnerabilities that exist in the composite architecture to
perform their goals such as: long-term partnerships and services’ resource constraints.
The main attacks that can be launched against the composite architecture are merged
and presented with those of community-based architecture in Section 3.6.3 as the same
attacks apply for both architectures since communities can be viewed as long-term com-
positions among services sharing the same functionality. The studied attacks are limited

55

to those that have major impacts on the reputation and QoS of the composite services,
associated with the main metrics that influence the trust value assigned by users towards
composite services. Moreover, the simulation results that show the impact of malicious
services that launch these attacks on the composite services can be found in Section 3.7.

3.6.3 Community-based Architecture

Trust and reputation models in the community-based architecture fall into two main
classes: analytical and game-theoretic-based. The aim of the analytical models is to an-
alyze the relationships among the reputation parameters of the services in order to help
them choose strategies either to join communities or to stay alone. The problem of these
models is that they are limited to a few reputation parameters. More thorough analysis
involving a wider set of important parameters is required to provide effective decision mak-
ing frameworks. On the other hand, game-theoretic-based models provide more thoughtful
decision making frameworks for the services and have the advantage of considering the
existence of malicious agents that constitute a serious challenge to the community-based
architecture. These malicious services may, individually or as a result of collusion scenario
with some customers or communities, join the communities for the purpose of launching
attacks leading to harm or deteriorate some other community members or the community
as a whole. In addition to the vulnerabilities of the composite architecture mentioned in
Section 3.6.2 which are applicable also in the community-based architecture, malicious
services can exploit additional vulnerabilities specific to the community-based architecture
such as: dynamic topology (freedom to join and leave communities), scalability (no restric-
tion on the number of community members).

Some existing game-theoretic-based models [62, 22] tackled the existence of passive
malicious services whose objective is to increase their reputations compared to other mem-
bers. These approaches fail to provide strong protection against such a misbehavior since
they rely on the existence of a central party such as controller agent that will monitor and
take decisions. These parties are intelligent agents that may be tempted to get involved
in the collusion scenarios, which may lead to false decisions. A more nested scenario
wherein all the parties are assumed to potentially behave maliciously is recommended. In
addition, the topic of active malicious services whose objective is to harm or destroy other
members and/or communities by launching active attacks was ignored. In the following, we
highlight the main attacks that are applicable for both the composite and community-based
architecture. Recall that the studied attacks are restricted to those that significantly affect
the trust, reputation, and QoS of the services compositions/communities.

1. Request Drop Attack: Composite services and communities are usually based on

56

the assumption that single services are willing to cooperate in order to respond to the
complex requests with better performance. However, some malicious services may
join a certain composition/community and refuse to cooperate and fulfill the requests.
The simplest form of this attack is when a certain component/member refuses all the
requests it receives. However, this malicious component/member faces the risk of be-
ing easily detected and fired by the composition designer or community coordinator.
A more intelligent derivation of this attack is when malicious components/members
perform the requests dropping in a selective manner. In such a way, these compo-
nents/members will drop the requests coming from certain clients or services, every
t slots of time, or every r requests. This kind of attacks is called Selective Request
Drop (SRD) attack [148].

2. Denial of Service (DoS) Attack: This attack aims at deteriorating or reducing the
service’s availability. In this attack, a malicious component/member working within a
composition/community may send a request to its partners to exhaust their resources
(e.g, memory capacity) in such a way that makes them unavailable for responding to
further requests. The most two important DoS attacks on XML-based services such
as Web services are Coercive Parsing and Oversize Payload [46]. In the Coercive
Parsing attack, a pointedly nested XML document is used to consume the service’s
memory. In the Oversize Payload attack, an extremely large XML document is em-
ployed for this purpose.

3. Sybil Attack: This attack takes place when malicious components/members create
illegitimately a large number of fake identities (fabricated identities) or impersonate
other legitimate services in the composition/community (stolen identities). The goal
of the attacker in this case is to appear and operate as multiple distinct services in
such a way that enables it to take control over the whole composition/community.
This attack may occur only in case of communities and long-term compositions and
might be exploited by the attackers to achieve several malicious objectives in different
aspects.

4. Outage Attack: This attack occurs when malicious components/members commit-
ted to performing a certain task within a whole process suddenly stop their function-
ing, which leads to interrupt the functioning of the whole process.

5. Sinkhole Attack: In this attack, malicious components/members seek to lure nearly
all the requests (from clients/or from other services). This attack is done by making
a compromised component/member look attractive to clients/services by claiming
bogus high reputation score.

6. Eavesdropping Attack: This attack happens when malicious components/members

57

collect information from the composition/community (e.g., application-specific mes-
sages content) they belong to in favor of other competitor compositions/communities.
Thereafter, these malicious components/members may decrease their performance
in a way that ends them up being fired from the current composition/community. This
allows them to join other compositions/communities and use the collected information
for malicious purposes.

7. Composition Exclusion (CompEx) and Community Exclusion (CommEx) At-
tacks: In such attacks, malicious components/members deteriorate the reputation
of the composition/community they belong to in such a way that makes this composi-
tion/community appear undesirable to deal with by any client or service. This attack
can be performed by applying the request drop, DoS, outage, or sybil attacks in such
a way that makes the composition/community look unable or unwilling to fulfill the
incoming requests.

8. Component Exclusion (CptEx) and Member Exclusion (MembEx) Attack: Such
attacks happen when malicious components/members start launching attacks (e.g.,
DoS) leading to exclude a specific victim from the composition/community by de-
creasing its reputation in a drastic manner.

We present and discuss in Section 3.7 the simulation results that show the impact of
active malicious services launching each of these attacks against the community-based
architecture.

3.6.4 Future Perspectives

In this chapter, we classified and compared the trust and reputation models proposed
in the SOA on the basis of a set of defined criteria. The results of the work may be used
in the benefit of services’ providers, consumers, and research community. By develop-
ing a classification scheme and proposing a set of criteria for each class, we aim to help
providers enhance the quality of their services by letting them learn the factors that affect
the user’s judgement on the services and consider hence those factors designing their ser-
vices. From criteria C1, C2, and C6 (Table 3.1), providers will learn that users care about a
wide variety of QoS metrics when building their reputation towards services and that they
should keep up the quality of services at a good level since the trust is subject to change
over the time. Criteria C8−C13 (Table 3.3) help providers enhance the quality of their
compositions by stressing the importance of the issues of learning the performance of the
composite service’s constituents and managing the task allocation in a thoughtful manner.
Criteria C14−C18 (Table 3.5) help providers design high-quality and secure communities of

58

services. As a result, consumers will enjoy services with better quality and performance.
They will be motivated as well to provide truthful feedback by learning from criteria C3,
C4, and C7 (Table 3.1) that the reputation system should be able to discard untrustworthy
ratings. Moreover, our analysis reveals some topics that are worth studying and investigat-
ing. More specifically, we raise the topic of active malicious services in the composite and
community-based architectures by defining such malicious services, clarifying their objec-
tives, highlighting some vulnerabilities that they might exploit, and elucidating their negative
impacts by means of simulation experiments conducted on a real-life dataset. Thus, our
work can be used by the security research community as a starting point to study and
explore security-based models targeting these malicious services.

3.7 Impact of malicious services on the composite and community-
based architectures

To study the impact of the active malicious services, Figures 3.2, 3.3, and 3.4 describe
their effects on the composite architecture while Figures 3.5, 3.6, and 3.7 depict their im-
pacts on the community-based architecture. It is well-predictable that the existence of
malicious services leads to negative implications on the QoS and reputation parameters.
However, by advancing simulations on various types of attacks, we are providing readers
with the ability to visualize and compare the implications of these attacks. This helps them
infer the security plans that should be designed to prevent and/or detect such attacks. For
example, one may notice from Figure 3.4a that the availability of the composite service
begins to drop in a severe manner starting from 10% of Sinkhole attackers. This is due
to the fact that although the number of attackers is relatively small, malicious services in
this type of attacks work on attracting nearly all the requests incoming to the composition
by claiming bogus reputation, which allows them to perform the drop in an extremely se-
vere manner. Similarly, it is worth observing as well that the availability in the Sinkhole
attack drops more severely than that of both the Selective Request Drop (Figure 3.2a) and
DoS (Figure 3.3a) attacks. The same intuition applies as well for the community-based
architecture. As a result, the reader may conclude that targeting the Sinkhole attack is
extremely urgent and that the existence of even a small number of such attackers should
not be tolerated.

Several metrics are used throughout simulations such as: composition/community rep-
utation (a value from the interval [0,1]), availability (time period in which a service is ready
for use), response time (time between the submission of the request and the receipt of the
response), and throughput (number of requests that can be processed per time unit). The
simulation application is written in C# using Visual Studio and the domain of flight booking

59

�

��

��

��

��

���

� �� �� �� �� �� �� 	� ��
� ���

��������� �� �������� ��������� ���

��� !�" ! #$ %&'

(a) SRD decreases availability

��

���

����

�����

������

� �� �� �� �� �� �� �� 	�
� ���

��������� �� �������� ��������� ���

��� !"�� #$%� &%��'(

(b) SRD increases response time

�
��
���
���
���
���
���
���
���

� �� �� �� �� �� �� �� 	�
� ���

��������� �� �������� ��������� ���

��� !"�#!$ %&'()

(c) SRD decreases throughput

Figure 3.2: Impact of selective request drop attack on the composite architecture

�

��

��

��

��

���

� �� �� �� �� �� �� 	� ��
� ���

��������� �� �������� ��������� ���

��� !�" ! #$ %&'

(a) DoS decreases availability

���

�����

�����

������

������

� �� �� �� �� �� �� 	� ��
� ���

��������� �� �������� ��������� ���

��� !"�� #$%� &%��'(

(b) Outage increases response time

�

��

���

���

���

���

� �� �� �� �� �� �� �� 	�
� ���

��������� �� �������� ��������� ���

��� !"�#!$ %&'()

(c) Sybil decreases throughput

Figure 3.3: Impact of DoS, Outage, and Sybil attacks on the composite architecture

is addressed. The information related to services is populated from the Quality of Web
Service (QWS) real dataset [12] that includes 2507 real services functioning on the Web
and containing the QoS values of 9 parameters [63]. Each user’s request contains the
flight dates, the origin and destination, type of tickets (one way or return), and number of
guests. The response contains different flights pertaining to different companies, prices,
timing, etc.

Selective Request Drop (SRD) attackers decrease the availability in both the composite
and community-based architectures as shown in Figures 3.2a and 3.5a respectively. They
increase as well the response time in both architectures as shown in Figures 3.2b and 3.5b
respectively and decrease the throughput as shown in Figures 3.2c and 3.5c respectively.
DoS attackers reduce the availability of the composite and community-based architectures
as shown in Figures 3.3a and 3.6a respectively. Outage attackers cause an increase in the
response time in the composite and community-based architectures as shown in Figures
3.3b and 3.6b respectively. Figures 3.3c and 3.6c show that sybil attackers decrease the
throughput of the composite and community-based architectures respectively. Sinkhole
attackers considerably decrease the availability of the composite and community-based
architectures as shown in Figures 3.4a and 3.7a respectively. As for the composition ex-
clusion attack, it causes a significant drop in the composite services’ reputation as shown
in Figure 3.4b. Similarly does the community exclusion attack for the community-based

60

�

��

��

��

��

���

� �� �� �� �� �� �� 	� ��
� ���

��������� �� �������� ��������� ���

��� !�" ! #$ %&'

(a) Sinkhole decreases availability

�

���

���

���

���

�

� �� �� �� �� 	� ��
� �� �� ���

��������� �� ��������� ���������� ���

�� !"#"$%&

(b) CompEx deceases reputation

�

���

���

���

���

�

� �� �� �� �� 	� ��
� �� �� ���

��������� �� ��������� ���������� ���

�� !"#"$%&

(c) CptEx deceases reputation

Figure 3.4: Impact of Sinkhole, Composition Exclusion, and Component Exclusion attacks
on the composite architecture

�

��

��

��

��

���

� �� �� �� �� �� �� 	� ��
� ���

��������� �� �������� ������� ���

��� !�" ! #$ %&'

(a) SRD decreases availability

���

����

�����

������

�������

��������

�
��
�

��
��

��
��

��
��

� �
��

��
��

��
��

��
��

� �
��

��
��

�	
�� �� ������ ��	����

�������� ���� ����

(b) SRD increases response time

�

�

��

��

��

��

��

��

����	
 ��
���	
	��	���

���������� �����

(c) SRD decreases throughput

Figure 3.5: Impact of selective request drop attack on the community-based architecture

architecture as depicted in Figure 3.7b. Component exclusion attackers cause as well a
considerable drop in the composite services’ reputation as described in Figure 3.4c. Simi-
larly, member exclusion attackers lead to a significant drop in the communities’ reputation
as shown in Figure 3.7c.

3.8 Conclusion

In this chapter, we proposed a two-level classification scheme for the trust and rep-
utation models in the SOA according to the architecture of services they target, and the
technique they use to compute the trust value. A collection of criteria were defined for
each architecture based on which the class models as well as the major approaches in
each architecture were compared. This comparison revealed some important issues that
need further study and investigation. One of the important challenges is the existence
of active malicious services in the composite and community-based architectures whose
objective is to harm the compositions/communities by decreasing their performance and
reputation. In this context, we described eight possible attacks that have major impacts

61

�

��

��

��

��

���

� �� �� �� �� �� �� 	� ��
� ���

��������� �� �������� ������� ���

��� !�" ! #$ %&'

(a) DoS decreases availability

���

�����

������

������

������

� �� �� �� �� �� �� �� 	�
� ���

��������� �� �������� ������� ���

��� !"�� #$%� &%��'(

(b) Outage increases response time

�

��

��

��

��

���

� �� �� �� �� �� �� 	� ��
� ���

��������� �� �������� ������� ���

��� !�" ! #$ %&'

(c) Sybil decreases throughput

Figure 3.6: Impact of DoS, Outage, and Sybil attacks on the community-based architecture

�

��

��

��

��

���

� �� �� �� �� �� �� 	� ��
� ���

��������� �� �������� ������� ���

��� !�" ! #$ %&'

(a) Sinkhole decreases availability

�

���

���

���

���

�

� �� �� �� �� 	� ��
� �� �� ���

��������� �� ��������� ������ ���

�� !"#"$%&

(b) CommEx deceases reputation

�

���

���

��	

��

� �� �� �� �� �� �� �� �� � !"#

$%&'()*+,- ./ 012345678 9:;<=>? @AB

CDEFGHIJKL

(c) MembEx deceases reputation

Figure 3.7: Impact of Sinkhole, Community Exclusion, and Member Exclusion attacks on
the community-based architecture

on compositions/communities’ performance and reputation. We conducted as well a se-
ries of simulation experiments on a real-life services dataset to show the negative impacts
of such malicious services using several QoS metrics. Simulation results reveal that the
existence of malicious services has the potential to considerably increase the response
time and decreases the reputation, availability, and throughput. This opens the door for
future researchers to investigate security-based models for the purpose of protecting the
composite and community-based architectures from such potential attacks.

The results of this chapter are used in Chapter 5 and Chapter 6 for the purpose of
building effective trust models to be used toward the accomplishments of the security-
oriented research objectives (i.e., Objective 2 and Objective 3 discussed in Chapter 1),
which aim, respectively, to minimize the number of passive malicious services in the multi-
cloud services community architecture and build effective intrusion detection solutions for
the active malicious services within a limited budget of resources.

62

Chapter 4

Forming Communities Among
Services Deployed in Clouds Having
Uneven Business Capabilities

With the advent of cloud computing and the rapid increase in the number of deployed
services, the competition between functionally-similar services is increasingly governing
the markets of services. For example, Amazon and Google are in an intense compe-
tition to dominate the market of cloud-based Web services. Such a highly competitive
environment motivates and sometimes obliges services to abandon their pure competitive
strategies and adopt a cooperative behavior in order to increase their business opportuni-
ties and survive in the market. Several approaches have been advanced in the literature
[82, 58, 70, 73, 63] to model the cooperation among services in a community-based envi-
ronment. However, the existing approaches suffer from two main drawbacks that limit their
effectiveness in the real-world services market. First, they rely on a centralized architec-
ture wherein a master entity is responsible for regulating the community formation process,
which creates a single point of failure. Second, they ignore the business potential of the
services and treat all of those services in the same way, which demotivates the participation
of the well-positioned ones in such communities. In this chapter, we propose a Stackelberg
game theoretical model [139] for building communities among services belonging to differ-
ent clouds having uneven business capabilities. We define two types of services: leaders
and followers. Leaders are those services that are deployed in cloud centers enjoying
high business capabilities in terms of reputation, market share, and capacity of handling
requests, whereas followers are those services that reside at cloud centers having less
strong business capabilities. Thereafter, we model the community formation problem as a

63

virtual trading market between these two types of services1.

4.1 Proposed Community Formation Model

4.1.1 Solution Overview

As is the case in the real-world business markets, two types of services can be distin-
guished: leaders and followers. Leaders refer to those services that are deployed in strong
cloud centers, which allows them to enjoy high levels of reputation, market share, and ca-
pacity of handling simultaneous requests2. Practically, being deployed in a strong cloud
center means that services have an abundance of software and hardware infrastructure
components (e.g., CPU, memory, servers, storage, networking, etc.), which thus increases
their ability to handle a larger pool of simultaneous requests, enlarges their market shares,
and allows them consequently to have high reputation scores. On the other hand, follow-
ers are those services that are deployed in cloud centers having less business capabilities,
which makes their parameters less impactful compared to those of the leaders. The pro-
posed community formation model can be summarized as follows. Due to its superiority in
the market (in terms of parameters), the leader has the right to pre-select a set of followers
it is interested in confederating3 with (e.g., top 10 hotel reservation services). It decides
also about the quota of followers that will be considered for final selections (e.g., 5 services
out of 10). The leader publishes its offer consisting of its own reputation, market share, and
capacity to the set of pre-selected followers. Followers compete then with each other to
decide about the payment to be given to the leader under the offered parameters with the
purpose of convincing the leader to consider them when selecting the final quota without
having to make too much payment. For the leader, the objective is to select the quota
of followers that allows it to reach the optimal utility in terms of reputation, market share,
capacity, and revenue. This forms a typical two-stage Stackelberg game wherein leaders
optimize their strategies (i.e., quota) after having learned the effects of their decisions on
the behavior of the followers who play their best responses to the leader’s offer. To solve
the game, backward induction reasoning [16] is used for computing the equilibrium points
for both parties. This is done by finding the optimal payment that followers tend to make
as a best response to the leader’s offer and substituting this information into the leader’s
utility function.

1The content of this chapter is published in [144]
2In the rest of this chapter, the term “parameters” is used to represent the reputation, market share, and

capacity of handling requests of the service.
3The term “confederation” is used to describe the act when services join each other to form a joint commu-

nity.

64

4.1.2 Aggregation Functions

The decisions made by the services (both leaders and followers) are influenced by
four main metrics: reputation, market share, capacity, and payment/revenue. As rational
agents, services tend to increase their reputation scores to gain more reliability vis-à-vis
users, which helps them receive a bigger task pool. Thus, a key factor in forming com-
munities is to ensure that the reputation of the group is at an acceptable level. Therefore,
an aggregation function is needed for the services to help them calculate their expected
reputation score after confederation and to compute the effects of this score on their utility
functions. It is worth mentioning that we assume that the reputation score is bounded by
0 and 1. We propose a heuristic function each leader L and follower F uses to compute
its expected aggregate reputation ER(L,F) after confederating with one another based on
their current reputation scores RL and RF respectively. This function is given by Equation
(4):

ER(L,F) = f (RL,RF) (4)

The function f should satisfy the following properties:
Property 1. RL is always greater than RF .
Property 2. f is monotonically increasing for the leader if the gap between RL and RF is
small.
Property 3. f is strictly decreasing for the leader when the gap between RL and RF is big.
Property 4. f is strictly increasing for the followers if the gap between RL and RF is small.
Property 5. f is monotonically increasing for the followers if the gap between RL and RF is
big.
Property 1 is a common property of Stackelberg games and represents a natural conse-
quence of being a leader. Property 2 and Property 3 are important to motivate the leader
to select followers having acceptable reputation scores and restrict hence the selection
space of the leader to a certain number of well-reputable followers. Property 4 and Prop-
erty 5 will motivate the services having low reputation values to improve their performance
and get their reputation scores increased in such a way that gives them the opportunity of
being selected by the leader to be part of future communities.

A possible definition of f is given by Equation (5).

ER(L,F) = min(RL,RF)
|RL−RF | (5)

To illustrate how the aforementioned properties are important for maintaining healthy com-
munities in terms of reputation, we give two examples that explain the aggregation process
according to Equation (5).

65

Example 5. Consider a leader service deployed in a strong cloud center C1 and having

a reputation score of 0.8. This leader decides to confederate with a follower deployed

in a less strong cloud center C2 and having a reputation value of 0.7. The aggregate

reputation value resulting from the confederation between these two services according to

Equation (5) will be: ER = 0.70.1 = 0.96. In this example, the gap between the two reputation

values is 0.1, which is relatively small. Thus, the reputation of the leader got increased in a

monotonic (i.e., small) manner (i.e., 16%), while the reputation of the follower got increased

in a strict (i.e., grand) manner (i.e., 26%). Consequently, both the leader and follower are

encouraged to confederate with each other in this example scenario.

Example 6. Suppose now that a leader having a reputation score of 0.8 decides to con-

federate with a follower having a reputation value of 0.2. In this example, the gap between

the two reputation values is 0.6, which is obviously large. The aggregate reputation value

according to Equation (5) will be: ER = 0.20.6 = 0.38. Thus, the reputation of the leader

is decreased in a strict manner (from 0.8 to 0.38), while the reputation of the follower is

increased in a monotonic manner (from 0.2 to 0.38). Consequently, the leader will not be

motivated to confederate according this example scenario.

As for the market share, this metric constitutes an important factor for the services
deciding whether to confederate or not. It is an indicator of the competitiveness of a certain
community amongst the other communities. Thus, ensuring an acceptable level of this
metric is critical for the services. As is the case for reputation, an aggregation function
is needed for the leaders and followers to help them calculate their expected aggregate
market share and compute the effects of this metric on their utilities. For this purpose, a
heuristic function is proposed to allow each leader L and follower F to compute its expected
aggregate market share EMS(L,F) after confederating with one another based on their
current market shares MSL and MSF respectively. This function is given by Equation (6):

EMS(L,F) = g(MSL,MSF) (6)

We assume that reputation and market share are similar in terms of value (i.e., both are
in the interval [0,1]), thus the aggregation function proposed for the market share should
also satisfy the properties proposed for the reputation aggregation function (i.e., Properties
1-5). However, the aggregation function for the market share should account for one addi-
tional constraint, namely the fact that the market share of a certain service is considered
proportionally to the market shares of the other existing services. Therefore, the aggre-
gation function of the market share should be divided by 2 (representing one leader and
one follower) in order to reflect the fact that this aggregate market share will be partitioned

66

between the leader and follower. Thus, a possible definition of g is given by (7):

EMS(L,F) =
min(MSL,MSF)

|MSL−MSF |

2
(7)

The capacity of handling requests has an important effect on the confederation de-
cision since it indicates the extent to which the possible community will be able to handle
simultaneous users’ requests. Getting services together should increase the group’s ability
to deal with an increased number of simultaneous requests. Thus, the expected aggregate
capacity EC(L,F) for the leader L and follower F after confederating with one another is
calculated according to Equation (8) based on their current capacities CL and CF respec-
tively.

EC(L,F) = h(CL,CF) =CL +CF (8)

4.1.3 Utility Functions

The utility function of the follower services is defined to be the sum of the variations
in the follower’s reputation, market share, and capacity after confederating with the leader
multiplied by its proportional payment (that should be given to the leader) w.r.t the pay-
ments made by all other followers in the set pre-selected by the leader for possible confed-
eration, minus its own payment given to the leader. The reasons behind considering the
proportional payment are that (1) the payments made by the group of followers will affect
the decision of the leader while making its final decision about the final quota and will in-
fluence thus each follower’s utility, and (2) the payments made by the other followers are
used by each follower to adjust its own payment. Thus, the utility function of each follower
F is given by Equation (9).

UF =
PF

∑i∈S Pi
[∆(RL)+∆(ML)+∆(CL)]−PF , (9)

where ∆(RL) is the percentage of variation (e.g., +15%) in the follower’s reputation after
confederating with the leader L, ∆(ML) is the percentage of variation in the follower’s market
share after confederating with the leader L, and ∆(CL) is the percentage of variation in the
follower’s capacity after confederating with the leader L. PF represents the payment given
by the follower F to the leader, S is the set of followers pre-selected by the leader for
possible confederation, and ∑i∈S Pi is the sum of payments given to the leader by each pre-
selected follower i ∈ S. The variation percentages in the follower’s reputation ∆(RL), market
share ∆(ML), and capacity ∆(CL) are given by Equations (10), (11), and (12) respectively:

∆(RL) = (ER(L,F)−RF)∗100 (10)

67

∆(ML) = (EMS(L,F)−MSF)∗100 (11)

∆(CL) = (EC(L,F)−CF) (12)

The utility function of the leader is defined to be the sum of variations in the leader’s
reputation, market share, and capacity after confederating with the followers set, along with
the total payments collected from those followers.

UL = ∑
F∈S

[∆(R′F)+∆(M′F)+∆(C′F)+PF], (13)

where ∆(R′F) denotes the percentage of variation in the leader’s reputation (e.g., +5%) after
confederating with the follower F , ∆(M′F) denotes the variation percentage in the leader’s
market share after confederating with the follower F , ∆(C′F) denotes the variation percent-
age in the leader’s capacity after confederating with the follower F , and PF denotes the
payment earned from each follower F ∈ S. The variation percentages in the leader’s rep-
utation ∆(RF), market share ∆(MF), and capacity ∆(CF) are given by Equations (14), (15),
and (16) respectively:

∆(RF) = (ER(L,F)−RL)∗100 (14)

∆(MF) = (EMS(L,F)−MSL)∗100 (15)

∆(CF) = (EC(L,F)−CL) (16)

4.1.4 Followers Payment Selection Game

Based on the utility functions illustrated in the previous section, backward induction
reasoning [16] is used to analyze the equilibrium of the game. Given the reputation, market
share, and capacity parameters decided by the leader along with the set S of pre-selected
followers, each follower F in S decides an initial payment to make to the leader. This
payment represents the variation percentage per unit in the follower’s parameters. This
value is computed according to Equation (17):

InitialPayment(F) = [∆(RL)+∆(ML)+∆(CL)]/3, (17)

Then, the followers in the same set share their initial payments and compete with one an-
other in a noncooperative game model G to select the optimal payment to be given to the
leader in such a way to maximize their own utilities. This forms a non-cooperative payment
selection game G = 〈S,{PF},{UF(.)}〉.

Definition 5. A Payment Selection Game is

68

G = 〈S,{PF},{UF(.)}〉, where:

• S denotes the set of followers pre-selected by the leader (i.e., the players of the
game).

• PF is the strategy set available for each follower F (i.e., the payment).

• UF(.) represents the utility function of the follower F .

Informally, each follower F ∈ S selects its strategy from the strategy set PF with the aim
of maximizing its utility function UF(PF ,P−F), where P−F represent the strategies selected
by all other players in S except for F .

Definition 6. A Payment vector p=(p1, ..., pk) is a Nash equilibrium of G= 〈S,{PF},{UF(.)}〉
if, for every F ∈ S, UF(pF , p−F)≥UF(p′F , p−F) for all p′F available for F , where:

• p−F = (p1, ..., pF−1, pF+1, ..., pn), i.e., the payment vector profile P without follower F ’s

payment,

• (p′F , p−F) = (p1, ..., pF−1, p′F , pF+1, ..., pn),

• UF(pF , p−F) is the resulting payment for the follower F given the other followers’ pay-

ment selection result p−F .

The strategy space is defined to be P = [PF]F∈S : 0≤ pF ≤ p̄, where p̄ denotes the max-
imal value of payment that might be made. Obviously, the utility function of the followers
defined in (9) is continuous in pF . Thus, derivatives is the suitable technique to find the
best responses of the followers. Thus, the problem can be turned into a problem of proving
that the utility function given by (9) is concave down in PF and then computing PF when
∂UF
∂PF

= 0

Theorem 1. UF = PF
∑i∈S Pi

[∆(RL)+∆(ML)+∆(CL)]−PF is concave down in PF

Proof.
∂UF

∂PF
=

[∆(RL)+∆(ML)+∆(CL)]∑i∈S,i6=F Pi

(∑i∈S Pi)2 −1 (18)

∂ 2UF

∂ 2PF
=
−2[∆(RL)+∆(ML)+∆(CL)]∑i∈S,i6=F Pi

(∑i∈S Pi)3 < 0 (19)

According to Equation (19), the second order derivative of UF with respect to PF is always

less than 0, which means that UF is concave down in PF . Hence, we get that PF is optimal

for UF when ∂UF
∂PF

= 0.

69

Theorem 2. The equilibrium of the game G is given by

P∗F =
√

[∆(RL)+∆(ML)+∆(CL)] ∑
i∈S,i6=F

Pi− ∑
i∈S,i6=F

Pi (20)

Proof.

∂UF

∂PF
= 0⇒

[∆(RL)+∆(ML)+∆(CL)]∑i∈S,i6=F Pi

(∑i∈S Pi)2 −1 = 0

⇒
[∆(RL)+∆(ML)+∆(CL)]∑i∈S,i6=F Pi

(∑i∈S Pi)2 = 1

⇒ (∑
i∈S

Pi)
2 = [∆(RL)+∆(ML)+∆(CL)] ∑

i∈S,i6=F
Pi

⇒∑
i∈S

Pi =
√
[∆(RL)+∆(ML)+∆(CL)] ∑

i∈S,i6=F
Pi

⇒ PF + ∑
i∈S,i6=F

Pi =
√
[∆(RL)+∆(ML)+∆(CL)] ∑

i∈S,i6=F
Pi

⇒ P∗F =
√
[∆(RL)+∆(ML)+∆(CL)] ∑

i∈S,i6=F
Pi− ∑

i∈S,i6=F
Pi

Taking into account the boundary constraints [0, p̄] of the payment value, the equilibrium
of the followers’ payment game G can be rewritten as in Equation (21).

P∗F =

0, if

√
[∆(R)+∆(M)+∆(C)]∑i∈S,i6=F Pi ≤ ∑i∈S,i6=F Pi.√

[∆(R)+∆(M)+∆(C)]∑i∈S,i6=F Pi−∑i∈S,i6=F Pi, if
√
[∆(R)+∆(M)+∆(C)]∑i∈S,i6=F Pi ≥ ∑i∈S,i6=F Pi.

p̄, if
√
[∆(R)+∆(M)+∆(C)]∑i∈S,i6=F Pi−∑i∈S,i6=F Pi > p̄

(21)

The algorithm that describes the followers payment selection game is presented in
Algorithm 1. Clearly, the algorithm has a linear complexity in the number of preselected
set of followers (i.e., O(|S|)).

70

Algorithm 1: Followers Payment Selection Game
1: Input: Pre-selected set of followers S
2: Input: Leader’s reputation RL
3: Input: Leader’s market share ML
4: Input: Leader’s capacity CL
5: Output: Optimal payment for followers P∗F
1: procedure FOLLOWERSPHASE
2: for each follower F ∈ S do
3: Compute ∆(RL) according to Equation (10)
4: Compute ∆(ML) according to Equation (11)
5: Compute ∆(CL) according to Equation (12)
6: Compute initial payment according to Equation (17)
7: Get information about the payments of all other followers in S
8: Compute P∗F according to Equation (20)
9: end for

10: end procedure

4.1.5 Leader’s Utility Maximization Game

Algorithm 2: Leader’s Utility Maximization Game
1: Input: Quota size |Q|
2: Input: Optimal payment for followers P∗F
3: Output: Optimal quota of followers S∗

1: procedure LEADERPHASE
2: Pre-select a set of followers S
3: Publish reputation, market share, and capacity to S
4: Repeat
5: Enumerate all possible combinations C in S so that |C|= |Q|
6: Compute ∆(RF) according to Equation (14)
7: Compute ∆(MF) according to Equation (15)
8: Compute ∆(CF) according to Equation (16)
9: Compute utility UL(C) based on P∗F according to Equation (13)

10: Until C = argmaxC UL(C)
11: S∗ =C
12: end procedure

Based on the analytical results of the followers’ payment selection game G, the leader
optimizes its strategy by selecting the optimal quota S∗ amongst S that maximizes its rev-
enue according to (13). Substituting (20) into (13), the utility function of the leader be-
comes:

UL = ∑
i∈S

(∆(R′i)+∆(M′i)+∆(C′i)+ [
√
(∆(R)+∆(M)+∆(C)) ∑

i∈S,i6=F
Pi− ∑

i∈S,i6=F
Pi]) (22)

It is worth mentioning that the size of the pre-selected set of followers tends to be limited
to those services that are deemed to be first-class services (in terms of reputation, market
share, and capacity). This is due to the aggregation functions proposed in Section 4.1.2
that are designed in such a way that demotivates leaders from selecting followers having

71

dramatically bad parameters. Moreover, the final quota of followers tends also to be small
since the leader is aware that the gain and resources will be distributed among all the
community members. Consequently, as the community size increases, the share of each
member, including the leader, will be decreased. This may motivate some community
members to leave the community if they consider that their shares are below expectations.
This fact pushes leaders to consider the minimal quota of followers that maximizes their
utilities in order to increase their own gains and maintain the stability of their communities.
The algorithm of the leader’s utility maximization game is given by Algorithm 2.

As for the complexity of Algorithm 2, it is clear that steps (1) and (2) can be performed
in polynomial time (i.e., O(|S|)). The main complexity lies in step (5), where the leader
has to enumerate all the possible combinations of the followers’ preselected set based on
the quota size. Thus, step (5) is bounded by O(|S||Q|). Steps (6)-(9) can be executed in
polynomial time and take O(|Q|) at most. Thus, the performance of the algorithm depends
mainly on the quota size |Q|. As explained earlier, we argue that leaders tend to minimize
the size of the followers’ preselected set as a result of the design of the aggregation func-
tions (Equations (4), (6), and (8)) that restrict the choice of the leaders to those followers
enjoying high parameters’ values. Consequently, the quota size tends also to be small, i.e.,
|Q| ≤ |S|. These claims are supported in Section 4.3 by means of simulation experiments.

4.2 Industrial Impact: A Complete Scenario

In this section, we answer the “why” and “how” questions regarding our model by il-
lustrating why it is useful and how it can be practically implemented in real applications of
services. Consider a flight booking market consisting of five airline Web services S1, S2,
S3, S4, S5, and S6. In this market, S1 and S6 are strong enough to take the lead, thanks
to their high reputation, market share, and capacity. The fact that these services offer
the same functionality (i.e., flight booking) and thus target the same customer community
makes them in a continuous competition. However, the providers of these services have
another strategic choice, which may be more beneficial for them rather than adopting pure
competitive strategies. More specifically, the high reputation of the leaders S1 and S6 cre-
ates high demands for their services, especially during promotions and peak times, in such
a way that might make their available resources (e.g., bandwidth, storage space) insuffi-
cient enough to cope with such demands. In this situation, these leaders have to choose
between (1) dropping or delaying some of the incoming requests and (2) cooperating with
other services to increase their power in responding to the requests. Obviously, the first
choice is quite costly for such services since it may lead to harming their reputation and
market share. For example, if S1 chooses to delay some of its requests, it may end up

72

losing a part of its customers and reputation for the benefit of S6 and vice versa.

On the other hand, follower services (S2, S3, S4, and S5) are likely to suffer, from time to
time, from a lack of the incoming requests, which entails the problem of unused resources.
In the same context, these latter services have poor chances to be selected to participate in
composition sequences in the presence of stronger services (i.e., the leaders). Therefore,
follower services have motivations to cooperate with the other stronger services in order
to increase their market share and hence efficiently exploit their unused resources. Thus,
both leader and follower services are better off collaborating together in a community-
based environment using our proposed model. Customers, in their turn, will benefit from
such a collaboration by enjoying high-quality and possibly cheaper services.

Suppose now that S1 decides to confederate with some other less strong airline ser-
vices (i.e., S2, S3, S4, and S5) to form a strong community and gain advantage over the
other market leader S6. The parameters associated with S1, S2, S3, S4, and S5 are given
in Table 4.1. As a first step, S1 sets minimum requirements for the services it is willing

Table 4.1: Airline Web services’ parameters

Service ID S1 S2 S3 S4 S5

Reputation 0.85 0.68 0.66 0.60 0.2
Market Share 0.35 0.25 0.2 0.18 0.02

Capacity 20 16 14 12 5

to confederate with. Assume for example that these requirements are given respectively
for the reputation, market share, and capacity as follows: minRep = 0.6, minMS = 0.15, and
minCap = 10. According to Table 4.1, only the services S2, S3, and S4 satisfy these require-
ments. Thus, the pre-selection space of S1 is restricted to only those three services, i.e.,
S = {S2,S3,S4}. S1 sets also a quota of 2 for the services to be selected during the final
phase. Now, S1 publishes its offer consisting of its own reputation, market share, and
capacity, i.e., O:{Rep=0.85, MS=0.35, Cap=20}, to the services in S. Each service in S

computes the variations in its parameters under the published offer and computes an initial
payment to be given to the leader. To do so, it has to determine first the aggregate param-
eters that would result from the possible confederation with the leader S1. The aggregate
reputation score after the confederation with S1 is calculated according to Equation (5) as
follows:

• f (RS1 ,RS2) = 0.680.17 = 0.94

• f (RS1 ,RS3) = 0.660.19 = 0.92

• f (RS1 ,RS4) = 0.60.25 = 0.882

73

Similarly, the followers compute their new aggregate market shares according to Equation
(7):

• g(MSS1 ,MSS2) = (0.250.1)/2 = 0.43

• g(MSS1 ,MSS3) = (0.20.15)/2 = 0.39

• g(MSS1 ,MSS4) = (0.180.17)/2 = 0.37

The aggregate capacities are calculated according to Equation (8) and are given as follows:

• h(CS1 ,CS2) = 20+16 = 36

• h(CS1 ,CS3) = 20+14 = 34

• h(CS1 ,CS4) = 20+12 = 32

Thereafter, followers compute the variations in their parameters based on the obtained
aggregate functions. For the reputation (Equation (10)):

• ∆(RS2) = 0.94−0.68 = 0.26 = 26%

• ∆(RS3) = 0.92−0.66 = 0.26 = 26%

• ∆(RS4) = 0.88−0.6 = 0.28 = 28%

For the market share (Equation (11)):

• ∆(MSS2) = 0.43−0.25 = 0.18 = 18%

• ∆(MSS3) = 0.39−0.2 = 0.19 = 19%

• ∆(MSS4) = 0.37−0.18 = 0.19 = 19%

For the capacity (Equation (12)):

• ∆(CS2) = 36−16 = 20%

• ∆(CS3) = 34−14 = 18%

• ∆(CS4) = 32−12 = 20%

Based on the computed variations, each follower service decides about an initial payment
for the leader consisting of the unitary variation percentage in the former’s parameters
according to Equation (17). The calculations are described in the following:

74

• InitialPayment(S2) = (26+18+20)/3 = 21.33

• InitialPayment(S3) = (26+19+18)/3 = 21

• InitialPayment(S4) = (28+19+20)/3 = 32.33

Thereafter, the services in S exchange their initial payments and each follower computes its
optimal payment. The optimal payment is calculated according to Equation (21) as follows:

• P∗S2
=
√
(26+18+20)×53.33−53.33 = 5.09

• P∗S3
=
√

(26+19+18)×53.66−53.66 = 4.48

• P∗S4
=
√

(28+19+20)×42.33−42.33 = 10.92

The followers compute now their utilities according to Equation (9) as follows:

• US2 = 5.09/20.49× (26+18+20)−5.09 = 10.81

• US3 = 4.48/16.01× (26+19+18)−4.48 = 13.15

• US4 = 10.92/9.57× (28+19+20)−10.92 = 65.53

Moving to the leader’s side, S1 computes its new aggregate parameters after a possible
confederation with each of the services in S. For the reputation (Equation (14)):

• After confederating with S2, ∆(RS1) = 0.94−0.85 = 0.09 = 9%

• After confederating with S3, ∆(RS1) = 0.92−0.85 = 0.07 = 7%

• After confederating with S4, ∆(RS1) = 0.88−0.85 = 0.03 = 3%

For the market share (Equation (15)):

• After confederating with S2, ∆(MSS1) = 0.43−0.35 = 0.08 = 8%

• After confederating with S3, ∆(MSS1) = 0.39−0.35 = 0.04 = 4%

• After confederating with S4, ∆(MSS1) = 0.37−0.35 = 0.02 = 2%

For the capacity (Equation (16)):

• After confederating with S2, ∆(CS1) = 36−20 = 16%

• After confederating with S3, ∆(CS1) = 34−20 = 14%

75

• After confederating with S4, ∆(CS1) = 32−20 = 12%

Next, the leader computes its utility for each possible combination C of two (quota size)
among the three pre-selected services according to Equation (13). The calculations go as
follows:

• C = {S2,S3}, UL = (9+8+16+5.09+7+4+14+4.48) = 67.57

• C = {S2,S4}, UL = (9+8+16+5.09+3+2+12+10.92) = 66.01

• C = {S3,S4}, UL = (7+4+14+4.48+3+2+12+10.92) = 57.4

Thus, the set s∗ = {S2,S3} is chosen by the leader S1 since it gives the maximal utility value
compared to the other combinations. To show that increasing the size of the community is
not always the best choice for the leader, we calculate the utility of the leader S1 if it decides
to add S5 to the selected set, knowing that S5 has dramatically low parameters. Following
the principles of calculations described above, the optimal payment of S5 to be given to the
leader S1 will be P∗5 = 0 (according to the first constraint of Equation (21)). Consequently, the
utility of the leader after adding S5 will decrease considerably from UL = 67.57 to UL = 14.57

(as its reputation, market share, and capacity are significantly decreasing without receiving
any payment). It is worth mentioning as well that our approach satisfies the first mover’s
advantage property of the Stackelberg game [139], which states that the utility of the leader
tends to be greater than that of the followers since laders have the advantage of making the
first move. In our example, the utility of the leader US1 = 67.57 is greater than all followers’
utilities (US2 = 10.81, US3 = 13.15, and US4 = 65.53).

4.3 Experimentations and Empirical Analysis

4.3.1 Experimental Setup

In this section, we provide empirical results to validate the theoretical proofs discussed
in the previous section. The objective is to study the satisfaction of the intelligent service
agents in terms of utility and reputation as well as the satisfaction of the users in terms of
QoS provided to their requests. The simulation application is written in C# using Visual Stu-
dio. The information related to services is populated from a real-life dataset that includes
2507 real services operating on the Web [13]. The topic of flight booking has been used
for the simulations. The dataset is based on a scenario in which users send XML-based
requests containing the flight dates, origin and destination, number of seats, and type of
tickets (i.e., one-way or return) and receive an XML-based response consisting of different

76

flights hosted by different companies along with the related information such as prices,
timing, and so on. 200,000 flights are collected and stored in the dataset that records the
values of nine QoS metrics, namely throughput, availability, reliability, response time, suc-
cessability, compliance, latency, accessibility, and cost [13]. The reputation is computed by
aggregating the different QoS metrics using the concept of Web Service Relevancy Func-
tion (WsRF) presented in [12] to rank Web services based on their QoS metrics. The basic
idea is to represent the QoS parameters of Web services as a matrix called WsRF matrix
in which each row represents a single Web service and each column represents a sin-
gle QoS parameter. Based on this matrix, QoS parameters are normalized by comparing
each element in the WsRF matrix against the maximum QoS value in the corresponding
column. Having normalized the QoS parameters, the WsRF value for each service can
now be computed by summing up all the normalized QoS parameters for that service. The
reputation score is then obtained by normalizing the WsRF value to a number between 0

and 1. Web services are divided into leaders and followers in the simulations based on
their reputation score, market share, and capacity of fulfilling requests.

To verify the effectiveness of our model, we compare it against two other models used
as a benchmark, which we call “expected performance model” and “QoS-based model”. In
the QoS-based model, the leader accounts only for the QoS values of the followers while
making selections of the community members. For the expected performance model, the
approach presented in [59] is used and updated slightly to fit our scenario. In fact, this
approach uses a one-stage non-cooperative game theoretical model to derive a threshold
according to which the master (or leader) of the community decides whether to accept a
service to be part of its community or not. The master compares the expected performance
of the community after the joining of a certain service with the actual performance while
considering a risk factor and decides to accept this service only in case the expected
performance exceeds the actual performance. The risk factor indicates how flexible the
master is in loosing some performance. For example, if the risk factor associated with a
certain master is 20%, then it would consider any situation in its strategy analysis where
estimated performance is more than 80% of the community’s current performance. Thus,
a master m will accept the joining if Em > (1− Sm)Em, where Em denotes the expected
performance of m, Em denotes its actual performance, and Sm is the associated risk factor.
The performance of a certain Web service x is calculated based on its reputation Rx, market
share Mx, capacity Cx, and number of received requests Rqx according to Equation (23).

Ex =
Rx×Mx

|Rqx−Cx|+1
(23)

This approach has been slightly modified to fit our community formation scenario since
it originally tackles the problem of Web services joining preexisting communities (not a

77

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

Iterations

L
e

a
d
e

rs
 U

ti
lit

y

Our Model

Expected Performance Model

QoS-based Model

(a) Leaders’ Utility

5 10 15 20 25 30 35 40 45 50

200

400

600

800

1000

1200

1400

Iterations

F
o
llo

w
e

rs
 U

ti
lit

y

Our Model

Expected Performance Model

QoS-based Model

(b) Followers’ Utility

5 10 15 20 25 30 35 40 45 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

A
v
e
ra

g
e
 Q

o
S

 o
f

T
a

s
k
s
 P

e
rf

o
rm

e
d

Our Model

Expected Performance based

QoS-based

Without Community

(c) QoS provided to users’ tasks

Figure 4.1: Satisfaction of leaders, followers, and users respectively

distributed formation model). In the modified scenario, the leader compares its expected
performance after confederating with each service in the pre-selected set and considers
this service in the final selection if the expected performance exceeds the actual perfor-
mance. The risk factor considered in the simulations is 50% [59].

4.3.2 Experimental Results

We begin by measuring the satisfaction of the Web service agents. The simulations
run for 50 iterations. At each iteration, the set of leaders and followers is changed and the
average utility for both leaders and followers is computed. The final selection of followers
(i.e., quota) considered by the leaders represents 35% of the pre-selected followers set.
Figures 4.1a and 4.1b describe the average gain of leaders and followers respectively
according to our model and the two aforementioned models. As shown in the Figures,
both leaders and followers can achieve higher utilities by using our model. This is due
to the fact that the game in our model is played sequentially at two stages, which makes
both leaders and followers aware of each other’s strategies and enables them hence to
play their best responses that maximize their utility. In the expected performance model,
the game is played one-shot so that players are playing simultaneously, which limits their
learning space and introduces some uncertainty in their decisions. For the QoS-based
model, the decision is done according to one particular metric, which makes the selection
biased towards one exclusive parameter without considering other important metrics. For
example, leaders may choose to confederate with followers enjoying low response time but
having poor market shares and/or capacities, which negatively affects their utility.

We move now to measuring the satisfaction of users by studying the average QoS
provided to their requests. After communities are formed, we generated 2500 random
requests initiated by 1000 consumer agents to investigate how efficient are the formed

78

10 20 30 40 50 60 70 80
800

900

1000

1100

1200

1300

1400

1500

1600

Percentage of Preselected Followers (%)

L
e
a
d
e
rs

 U
ti
lit

y

Our Model

(a) Impact of preselection size

20 30 40 50 60 70 80
1400

1410

1420

1430

1440

1450

1460

1470

1480

Percentage of Finally Selected Quota (%)

L
e
a
d
e
rs

 U
ti
lit

y

Our Model

(b) Impact of quota size

Figure 4.2: Impact of the preselection set size and quota size on the leaders utility

communities in fulfilling users’ requests. Each request is modeled as a class that is char-
acterized by the QoS value needed to perform this task and the QoS actually provided to
the task. First, we evaluate the average QoS provided to the users’ tasks according to the
different aforementioned models while considering an additional scenario, called “Without
Community”. This latter scenario represents the case where Web services respond to the
requests individually without being organized into communities. Figure 4.1c shows that
the community-based models (our model, expected performance, and QoS-based mod-
els) are able to increase and stabilize the QoS provided to users’ requests. This is justified
by the fact that the community guarantees higher performance (i.e., availability, response
time, and so on) as a result of the cooperation and interoperability that takes place among
community members. Moreover, Figure 4.1c reveals that our model outperforms the ex-
pected performance and QoS-based models in terms of QoS. This is due to the fact that
our model enables services to maximize their utilities upon forming communities, which
makes the community stable and allows it hence to respond to the users’ requests with
better performance. In contrast, although the QoS-based model selects the Web services
based on their QoS values, the services in this model may be encouraged to leave their
communities and join other communities if they find better utility, which makes the commu-
nity unstable and affects hence its performance in fulfilling requests. The same intuition
applies for the expected performance model, where the services may be encouraged to
leave their communities.

In order to study the impact of quota size and preselected followers’ set size on the
leader’s satisfaction, we vary these sizes and show how such variations influence the util-
ity of the leaders. For example, a 10% percentage of preselected followers means that 10%
of the follower services are preselected by the leader for possible confederation. Similarly,
a quota percentage of 20% means that 20% of the preselected followers are considered

79

for final confederation by the leader. As depicted in Figure 4.2a, the utility of the lead-
ers increases initially with the increase in the size of preselected followers and begins to
decrease at a certain point. This is due to the fact that as the size of preselected set con-
tinues to increase, the possibility of selecting services having drastically bad parameters
increases also, which decreases the leader’s utility as a result of the aggregation functions
described in Section 5.3. Therefore, leaders tend to restrict this set as much as possible
to the top Web services in terms of reputation, market share, and capacity. Thus, we can
conclude that Algorithm 2 is computationally tractable. Moreover, Figure 4.2b reveals that
increasing the quota size results in a continuous increase in the utility of leaders since
the leader is selecting from the preselected set, which is already filtered based on the Web
services parameters. However, this does not mean that increasing the quota size is always
the rational choice for leaders. In fact, the leader is aware that increasing the community
size will have some negative side effects on the satisfaction of its community members as
well as on its satisfaction since the gain and resources are distributed per member and
thus increasing the community size would reduce the share of the community members,
including the leader itself.

4.4 Conclusion

In this chapter, we investigated the problem of forming communities among services
deployed in cloud centers having uneven business capabilities by proposing a Stackel-
berg game theoretical model whose players are leader and follower market services. Our
solution enjoys three main advantages over the state-of-the art: (1) it considers a fully dis-
tributed environment, where all the services are completely autonomous in their decisions;
(2) the community formation scenario is inspired by the real-world business context and the
business-related objectives of the service forming communities are clearly defined; and (3)
a two-stage sequential Stackelberg game model is used to ensure the formation of opti-
mal and stable communities in the long-term. As confirmed by the simulation results, the
proposed model is able to increase the utility and hence the satisfaction of both leader and
follower services up to ≈ 20% compared to the “expected performance” and “QoS-based”
models, which increases the stability of the formed communities. Moreover, our solution
allows communities to achieve high levels of QoS while performing users’ requests, which
increases the satisfaction of the users as well. Thus, we have achieved our first research
objective (Objective 1) discussed in Chapter 1, which aimed at enabling the formation of
communities comprising services belonging to clouds having uneven business capabilities.

A major challenge against this model is the existence of malicious services; particularly
those that cheat about their actual business parameters to guarantee being structured in

80

strong communities and/or those that renege on their agreements with the other services
after communities are formed. Such services are often called passive malicious services
[150] since their objective is to illegally maximize their own profits rather than harming
other services. To tackle this challenge, we propose in the next chapter a trust-based
multi-cloud community formation model whose goal is to minimize the number of passive
malicious services in the formed communities.

81

Chapter 5

Towards Trustworthy Multi-Cloud
Services Communities

The prominence of cloud computing has led to unprecedented proliferation in the num-
ber of services deployed in cloud data centers. In parallel, service communities have
gained recently increasing interest due to their ability to facilitate discovery, composition,
and resource scaling in large-scale services’ markets. The problem is that the traditional
community formation models may work well when all services reside in a single cloud but
cannot support a multi-cloud environment. Particularly, these models overlook the prob-
lem of encountering malicious services that misbehave to illegally maximize their benefits,
which arises from grouping together services owned by different providers. Besides, they
rely on a centralized architecture whereby a central entity regulates the community forma-
tion, which contradicts with the distributed nature of cloud-based services. In this chapter,
we aim to address those shortcomings by putting forward a trust-based multi-cloud ser-
vices community formation model. We start by describing our proposed trust framework
called DEBT (Discovery, Establishment, and Bootstrapping Trust) that allows services to
establish credible trust relationships in the presence of collusion attacks. Thereafter, we
model the problem of forming trusted multi-cloud communities as a hedonic coalitional
game [26], propose the appropriate preference function and coalition formation algorithm,
and analyse the properties of the game1.

1The content of this chapter is published in [152]

82

5.1 System Model and Assumptions

5.1.1 System Model

Let S = {S1, ...,Sn} be a finite set of services, where each service Si ∈ S is characterized
by a set of available resources R = {R1, ...,Rn} (e.g., amount of memory, number of cores,
etc.). Let G = (S,E,J) be a directed social network graph representing the relationships
between these services, where each edge (Si,S j) ∈ E indicates an interaction (e.g., par-
ticipation in the same composition sequence) between service Si and service S j. Thus, if
(Si,S j) /∈E then services Si and S j had no interaction in common. Each edge (Si,S j) is asso-
ciated with a judgement J(Si,S j) 6= J(S j,Si) ∈ {T,M} that denotes each service’s judgment
on any other service based on their previous interactions. For example, the judgment pair
(S1→ S2 : T,S2→ S1 : M) between services S1 and S2 in Fig. 5.1 indicates that S1 rates S2 as
trustworthy, whereas S2 rates S1 as (passive) malicious (i.e., J(S1,S2) = T and J(S2,S1) =M).
To decide about this judgement, services use the following well-known satisfaction metric
[86]:

J(Si,S j) =
Sat(Si,S j)

Tot(Si,S j)
, (24)

where Sat(Si,S j) denotes the number of interactions between Si and S j that Si considers as
satisfactory and Tot(Si,S j) denotes the total number of interactions between Si and S j.

This metric allows us to express the satisfaction between services from both perfor-
mance and security perspectives. In particular, the transactions that Si would consider
satisfactory with S j are those in which S j performed well in terms of QoS metrics and be-
haved well from the security perspective. Based on Equation (24), if J(Si,S j) > β then Si

rates S j as trustworthy, where β is a threshold that is set by each service depending on
the type of the other service(s) being evaluated. For example, the interactions with an
online payment service would be weighted higher than those of a weather forecasting ser-
vice. Otherwise, S j would be rated as malicious. As mentioned earlier, the objective is to
form trusted multi-cloud services communities between services geographically distributed
across multiple cloud data centers using a distributed trust model. The trust towards a cer-
tain service S j is built by collecting judgments on this service from its direct neighbors N(S j)

in G (i.e., the services that had interacted with S j). To this end, each service Si holds a fixed
number of inquiries it is allowed to make and denoted by Inq(Si). The motivation behind
this assumption is to motivate the participation of the services in the trust establishment
process through linking the number of inquiries that they are allowed to make with the de-
gree of their participation in the trust framework. Such an assumption is realistic since we
are considering selfish services in the sense that a service will respond to a certain in-
quiry coming from another service only if the latter has previously responded the former’s

83

S1

S2

S3

S6

S5

S4

(S3->S4: M, S4->S3: T)
(S4->S6: T, S6->S4: M)

(S6->S5: T, S5->S6: T)

Cr(S3->S4): 0.34, Cr(S4->S3): 0.2 Cr(S4->S6): 0.5, Cr(S6->S4): 0.2

Cr(S5->S6): 0.23, Cr(S6->S5): 0.8

S7

Figure 5.1: Social network graph: Vertices represent services and edges represent the
interactions among services

inquiries. Initially, all services have an equal amount of this metric, which is updated later
during the trust establishment process (See Section 5.2). Since services may be either
truthful or collusive in judging the other services [120], each pair of services (Si,S j)∈ S has
a belief in credibility (Cr(Si→ S j) = n,Cr(S j→ Si) = m) that represents each service’s accu-
racy level in judging the other services, where n and m are two decimal numbers. Based
on the collected judgments, each service Si builds a belief in trustworthiness denoted by
belie f S j

Si
(T) and a belief in maliciousness denoted by belie f S j

Si
(M) for any other service S j it

is interested in forming community with. It’s worth noting that such a mechanism does not
entail any privacy breach as only the value of J(Si,S j) is shared between services without
revealing any sensitive information such as the volume or type of interactions.

The community formation is modeled as a hedonic coalition formation game [26], where
each coalition C ⊆ S represents a given community2. Let Π denote the set that partitions
services S into non-empty coalitions and that is referred to as a coalition structure [26].

Definition 7 (Coalition Structure). A coalition structure or partition is a set of coalitions

Π = {C1, ...,CS} that splits the set of services S into disjoint coalitions such that ∀ l 6= l′,Cl ∩
C′l = /0 and

⋃l
k=1Ck = S. The coalition to which service Si belongs is denoted by CSi

l .

Let USi(Ck) denote the utility of service Si in a certain coalition Ck ∈Π. USi(Ck) is obtained
by summing up Si’s beliefs in trustworthiness in Ck’s members. Thus, USi(Ck) is computed

2In the rest of this chapter, the terms coalition and community are used interchangeably.

84

� �

�������������	

���

����������	�������

����	������	���

���������	�����

�������������������

�����������	���������	�������������

��������
���������������

�

��	 �����������������!�����	 ����

�	��������∀�� ��	�����

�

���	�����������������

#�����������������
������	�

���	���������	����

∃��������������%������

��������������	�����	��	������%

 	��������������	������	��	���

�����������������	�����&�

Figure 5.2: Methodology of the trust-based multi-cloud services communities model

as follows:
USi(Ck) = ∑

S j∈Ck

belie f
S j
Si
(T) (25)

The methodology followed in the rest of this chapter is depicted in Fig. 5.2.

5.1.2 Attack Model and Assumptions

Attacks may occur in our model either (1) during trust establishment and/or (2) during
and after communities formation. During trust establishment, collusion attacks may take
place between services to mislead the results. During and after communities formation,
passive malicious services might misbehave to save their resources and gain illegal ad-
vantage over the other services. At this stage, we consider only passive attacks in the
sense that the malicious services considered during and after communities formation are
assumed to misbehave in order to increase their own benefits without having a direct in-
tention to harm the other services and/or communities. Therefore, active attacks such as
Sinkhole and Denial of Service (DoS) are beyond the scope of this chapter. In particular,
we consider the two following types of attacks:

• Collusion Attacks: Such attacks occur when several malicious services collabo-
rate together to give misleading judgments either to increase the trust score of some

85

services (i.e., a promoting attack) or to decrease the trust score of some other ser-
vices (i.e., a slandering attack). Note that these types of attacks cannot occur in a
non-collusive way in the sense that a single malicious service cannot submit multiple
misleading judgements to conduct a promoting attack and/or slandering attack as
judgments are given upon request in our trust framework.

• Passive Attacks: Such attacks occur when passive malicious services cheat about
their available resources and/or QoS potential during communities’ formation in order
to increase their chances of being grouped into powerful communities. After com-
munities are formed, these malicious services would renege on their agreements
with both services and clients by benefiting from the other services’ resources (e.g.,
physical computing infrastructure) and refraining from sharing their own resources to
dedicate them for their own workload.

5.2 The DEBT Trust Framework

In this section, we present the details of our proposed trust framework.

5.2.1 Service Discovery

In order to establish trust between services in the social network (Fig. 5.1), judgments
should be collected first. Therefore, we propose a discovery algorithm that allows services
to inquire about each other from their direct neighbors (i.e., the services that had dealt
with). The proposed algorithm capitalizes on the concept of tagging in online social net-
works (e.g., Facebook, LinkedIn) to explore the direct neighbors of a certain service. The
basic idea is to keep tagging or nominating intermediate services until identifying all the
reachable direct neighbors of the intended service. Let us consider the case of service s

that asks service x about its judgment on service d. If x has a direct interaction (i.e., edge)
with d, it reports its judgment directly to s. Otherwise, it tags its neighbors that had such
an interaction (if any) or those that may introduce s to some other services that had such
an interaction with d. The details are explained in Algorithm 3. The inputs of the algo-
rithm are a source node src (inquiring service) and a destination node d (inquired about
service) in a social network graph (lines 1-2). The output is the set of all reachable direct
neighbors of d (line 3). The algorithm creates an empty tag instance (line 6) and loops over
the direct neighbors of the source node one by one and marks them as explored (lines
7− 8). This has the advantage of avoiding the revisit of any already visited node. Each
explored neighbor gets appended to the tag instance (lines 9-12). If the neighbor has a

86

Algorithm 3: Services Discovery Algorithm
1: Input: Source node src
2: Input: Destination node d
3: Output: Set of direct neighbors of d, N(d).
4: procedure SERVICEDISCOVERY

5: s = src
6: Create an empty tag instance t = 〈〉
7: for each not explored node y ∈ N(s) do
8: Mark y as explored
9: if s /∈ t

10: Append s to t
11: end if
12: Append y to t
13: if (y,d) ∈ E then
14: send t to src
15: empty the tag instance
16: else
17: s = y
18: end if
19: if all y ∈ N(S) are explored then
20: s = src
21: end if
22: end for
23: Append the last element of the tag instance to N(d)
24: return N(d)
25: end procedure

direct edge with the destination service d, then the tag instance is directly returned to the
source node and the tag instance is emptied to start a new tagging process (lines 13-15).
Otherwise, the algorithm loops recursively over the “neighbors of the neighbors” and adds
them to the tag instance in case they have a direct edge with d. This is done by recursively
assigning each neighbor with the role of the source node (line 17). This process stops at
the level of a node that reports either a judgement to the source node or reports neither a
judgement nor a tag instance. Thus, each tag instance can be considered as a sequence
of services 〈Si,Si+1, ...,Sn〉 starting from a direct neighbor Si of a certain requestor service
S0 and leading to one or more neighbor(s) (i.e., Si+1,..., Sn) of a destination service Sn+1.

As for the complexity of Algorithm 3, the algorithm is a variation of the Breadth-First
Search (BFS) strategy [169] in graph theory. Therefore, the computational complexity of
Algorithm 3 is O(|S|+ |E|) since the worst case would be when all the vertices and edges
have to be visited exactly once, where |S| is the number of services in the social network
graph and |E| denotes the number of interactions between them. The storage overhead of
the algorithm is O(|S|) since the worst case occurs when all the services would need to be

87

stored in the tag instance.

5.2.2 Trust Establishment

Having discussed the discovery algorithm, the next step is to establish the trust relation-
ships between services. As mentioned earlier, trust is constructed by collecting judgments
about services based on their previous interactions. The power of such a mechanism
stems from its ability to produce meaningful judgements by considering multiple parties’
opinions. Nonetheless, several challenges are encountered by such a mechanism in real-
world scenarios [141]. Practically, services may be tempted to engage in some collusion
scenarios and provide dishonest judgments, which leads to misleading trust results. More-
over, these services usually tend to refrain from revealing their opinions since they do not
have incentives for doing so, which leads to meaningless or biased computations of the
aggregate trust value. To tackle these problems, we propose (1) an aggregation model for
the collected judgments that is able to overcome the collusion attacks even when attack-
ers are the majority, and (2) an incentive model to motivate services to participate in the
trust establishment process. That is, the aggregation technique should take into account
the existence of colluding services. Therefore, simplistic combination techniques such as
averaging and majority voting are unsuitable for the considered problem. To address this
challenge, we propose an aggregation technique based on the Dempster-Shafer theory of
evidence. Dempster-Shafer [150] is a mathematical theory that combines evidences from
independent sources to come up with a degree of belief regarding a certain hypothesis.
Dempster-Shafer is well-suited for the considered problem for two main reasons [29]: (1)
Dempster-Shafer can represent uncertainty or lack of complete knowledge, and (2) it pro-
vides a powerful rule for combining observations from multiple (possibly unreliable) parties.
The first property is important to guarantee the fairness in the trust aggregation process as
some services may misbehave due to some out of control circumstances (e.g., problems
in the physical infrastructure they are hosted on) and not as a result of some malicious
behavior. For example, in Dempster-Shafer, if a service A confirms that service B is trust-
worthy with probability p, it does not follow that B is malicious with probability 1− p as is
the case in the Bayesian inference [48]. Hence, A would have p degree of belief in the
trustworthiness of B and 0 degree of belief in B’s maliciousness. The second property is
important to prevent colluding services from misleading the final aggregate trust value. It is
worth noting that Dempster-Shafer has been already used for trust establishment in multi-
agent systems [165, 55]. The difference between these approaches and our approach is
that the latter requires no threshold for deciding whether to trust another agent or not. Be-
sides, we propose in our model a credibility update function and link the credibility scores
of the services with the number of inquiries that they are allowed to make with the aim of

88

encouraging services to participate in the trust establishment process and provide truthful
judgments. Moreover, in the referred approaches if no information about the newcomer
agents may be obtained then these agents are deemed to have no reputation at all, which
may end up overlooking these agents in future community formation processes in the pres-
ence of other well-reputable agents. To handle this issue, we propose in the next section a
bootstrapping mechanism to assign initial trust values for such services.

The proposed aggregation technique works as follows. Let Ω = {T,M,U} denote a
set consisting of three hypotheses. T denotes that a certain service x is trustworthy; M

denotes that x is malicious; and U denotes that x is either trustworthy or untrustworthy to
express the uncertainty or partial knowledge in the decisions. The basic probability assign-
ment (bpa) of a service S in judging another service S′, denoted by mS′

S , defines a mapping
function of the set Ω to a real-valued interval bounded by 0 and 1, i.e., mS′

S : Ω 7−→ [0,1]. In
our framework, the bpa for a certain hypothesis is equal to the credibility score believed
on the service giving the judgement. In other words, suppose that service S is asked by
service q to judge another service S′, where q has a belief in S’s credibility that is equal to
α. Assume that S claims that S′ is trustworthy, then the bpa’s of S would be: mS′

S (T) = α,
mS′

S (M) = 0, and mS′
S (U) = 1−α. On the other hand, if S reports that S′ is malicious, then

the bpa’s of S would be: mS′
S (T) = 0, mS′

S (M) = α, and mS′
S (U) = 1−α. It is worth noting that,

throughout this chapter, when S′ is unique or understood from the context, we simplify by
writing mS and when both S and S′ are understood from the context, we simply write m. To
aggregate the different evidences (i.e., bpa’s), a belief function is used. The belief function
represents the total bpa’s supporting a given hypothesis H and maps H to a real-valued
number between 0 and 1. The belief function of service S in service S′ regarding a certain
hypothesis H (where H = T,M, and U respectively) after inquiring two other services 1 and
2 is given as follows:

belS′
S (T) = m1(T)⊕m2(T) =

1
K
[m1(T)m2(T)+m1(T)m2(U)+m1(U)m2(T)] (26)

belS′
S (M) = m1(M)⊕m2(M) =

1
K
[m1(M)m2(M)+m1(M)m2(U)+m1(U)m2(M)] (27)

belS′
S (U) = m1(U)⊕m2(U) =

1
K
[m1(U)m2(U)] (28)

where:
K = ∑

h∩h′= /0
m1(h)m2(h′) (29)

Thus, the problem is turned into computing the beliefs in trustworthiness belS′
S (T) and

maliciousness belS′
S (M) of service S in service S′.

Theorem 3. The proposed aggregation technique overcomes collusion attacks even when

89

attackers are the majority, if the credibility scores of truthful raters are higher than those of

colluding raters.

Proof. For simplicity and without loss of generality, suppose that three services A, B, and

C are asked by service S to judge another service D. Assume that D is trustworthy and

that services A and C collude together to demote D by claiming the contrary, whereas B is

truthful and reports that D is trustworthy. Assume as well that the credibility scores of A,

B, and C believed by S are Cr(S→ A) = α

2 , Cr(S→ B) = α, and Cr(S→C) = α

3 respectively

such that Cr(S→ B)>Cr(S→ A)>Cr(S→C). As mentioned earlier, A and C claim unjustly

that D is malicious whereas A reports that D is trustworthy. Thus, the bpa’s of the three

services are given as follows:

• Service A: mA(T) = 0, mA(M) = α

2 , and mA(U) = 1− α

2 .

• Service B: mB(T) = α, mB(M) = 0, and mB(U) = 1−α.

• Service C: mC(T) = 0, mC(M) = α

3 , and mC(U) = 1− α

3 .

The theorem may be proved by contradiction. Thus, assuming that the theorem does

not hold, we should get that S’s belief in D’s maliciousness is higher than its belief in D’s

trustworthiness based on the judgments of the colluding services A and C that form the

majority, i.e.,

belD
S (M)> belD

S (T) (*)

Let’s start by combining the bpa’s of A and B as per Table 5.1.

Table 5.1: Combination of the bpa’s of services A and B

A
B

mB(T) = α mB(M) = 0 mB(U) = 1−α

mA(T) = 0 0 0 0
mA(M) = α

2
α2

2 0 α−α2

2
mA(U) = 1− α

2
2α−α2

2 0 α2−3α+2
2

Note that the cell values in Table 5.1 are obtained by multiplying the corresponding

rows and columns. Now, let’s compute the combined beliefs of services A and B.

• K = mA(T)mB(T)+mA(T)mB(U)+mA(U)mB(T)+mA(M)mB(M)+mA(M)mB(U)+

mA(U)mB(M)+mA(U)mB(U) = −α2+2
2 .

We abuse the notation of the function m and define mAB(T), mAB(M), and mAB(U)

as follows:

90

• mAB(T) = mA(T)⊕mB(T) = 1/K[mA(T)mB(T)+mA(T)mB(U)+mA(U)mB(T)] = −2α2+4α

−2α2+4 .

• mAB(M)=mA(M)⊕mB(M)= 1/K[mA(M)mB(M)+mA(M)mB(U)+mA(U)mB(M)]= −2α2+2α

−2α2+4 .

• mAB(U) = mA(U)⊕mB(U) = 1/K[mA(U)mB(U)] = 2α2−6α+4
−2α2+4 .

Table 5.2: Combination of services A and B’s belief with the bpa of C

AB
C

mC(T) = 0 mC(M) = α

3 mC(U) = 1− α

3

mAB(T) = −2α2+4α

−2α2+4 0 −2α3+4α2

−6α2+12
2α3−10α2+12α

−6α2+12

mAB(M) = −2α2+2α

−2α2+4 0 −2α3+2α2

−6α2+12
2α3−8α2+6α

−6α2+12

mAB(U) = 2α2−6α+4
−2α2+4 0 2α3−6α2+4α

−6α2+12
−2α3+12α2−22α+12

−6α2+12

Then, we combine in Table 5.2 the combined belief of services A and B with the bpa of

service C. By computing the combined beliefs of services A, B, and C, we get:

• K = 2α3−10α2+12
−6α2+12 ,

• mAB(T)⊕mC(T) = −12α5+60α4−48α3−120α2+144α

−12α5+60α4+24α3−192α2+144 .

• mAB(M)⊕mC(M) = −12α5+72α4−36α3−144α2+120α

−12α5+60α4+24α3−192α2+144 ,

• mAB(U)⊕mC(U) = 12α5−72α4+108α3+72α2−264α+144
−12α5+60α4+24α3−192α2+144 .

We have that ∑x∈{T,M,U}mAB(x)⊕mC(x) = 1 and mAB(T)⊕mC(T) > mAB(M)⊕mC(M) for

every 0 < α ≤ 1; meaning that belD
S (T)> belD

S (M) for every 0 < α ≤ 1, which contradicts with

(*). Thus, S’s belief in D’s trustworthiness exceeds its belief in D’s maliciousness although

the majority of raters (i.e., A and C) colluded to state the contrary. Generally speaking,

the proposed aggregation technique overcomes the collusion attacks even when attackers

are the majority if and only if (1) the credibility values are between 0 and 1, and (2) the

credibility scores of the trustworthy raters are higher ones. Formally, let:

• VT : denote the set of truthful services participating in the judgement process.

• VC: denote the set of colluding services participating in the judgement process.

• V : denote the set of services participating in the judgement process, i.e., V =VT ∪VC.

The proposed aggregation technique overcomes the collusion attacks even when attackers

are the majority, i.e., |VC |≥|VT | if and only if:

∀v ∈V, 0 <Cr(v)≤ 1 (30)

91

∀ t ∈ VT and c ∈ VC, Cr(t) > Cr(c) (31)

Obviously, the performance of the aggregation technique depends heavily on the cred-
ibility scores assigned to the services. Thus, maintaining healthy values of this metric is
a building block for achieving truthful decisions. Therefore, the credibility metric should be
updated continuously to ensure that truthful services always hold higher credibility scores
than those of the colluding ones. Equation (32) depicts the credibility update function for
each service x after having participated in judging service y in favor of service s.

Cr(s→ x) =

min(1,Cr(s→ x)+ |Z−Cr(s→ x)|), if C 1∣∣Cr(s→ x)−min(belie f y
s (T),belie f y

s (M))
∣∣ , if C 2

(32)

where Z = max(belie f y
s (T),belie f y

s (M)) and C1 and C2 are two conditions such that:

C 1. J(x,y) ∈ {T} & belie f y
s (T)> belie f y

s (M) or J(x,y) ∈ {M} & belie f y
s (T)< belie f y

s (M)

C 2. J(x,y) ∈ {T} & belie f y
s (T)< belie f y

s (M) or J(x,y) ∈ {M} & belie f y
s (T)> belie f y

s (M)

The intuition behind Equation (32) is that truthful services whose judgments agree with
the winner belief receive a reward that is equal to the difference between their current
credibility scores and the value of that belief. For the untruthful services whose judgments
disagree with the winner belief, they undergo a decrease in their credibility scores that is
equal to the value of the loser belief. Finally, services should receive rewards for their
participation in the services discovery and trust aggregation processes. This reward is
important to motivate further participation from these services. To this end, we link the
number of inquiries that a service is allowed to make about other services with its credibility
score and the number of tags it has made. The reward function is given by Equation (33),
where x is a given service being rewarded by service s for which it has provided judgement,
Inq(x→ s) denotes the total number of inquiry requests that x is allowed to make from s,
|Tags(x→ s)| denotes the number of neighbors tagged by x in favor of s, and 1 represents
a fixed reward for x for providing its own judgment.

Inq(x→ s) = Inq(x→ s)+(|Tags(x→ s)|+ d|Tags(x→ s)|×Cr(s→ x)e+1) (33)

In this way, services would tend to contribute in the trust framework in order to increase
their total number of inquiry requests that they can make and be able hence to participate
in the coalition formation process. Moreover, by linking the number of possible inquiries
with the credibility scores of the services, we are encouraging services to provide truthful

92

judgments in order to increase their credibility scores and increase hence their share of
inquiry requests.

5.2.3 Trust Bootstrapping

Trust bootstrapping, i.e., assessing trust for newly deployed services, is a major is-
sue that encounters our trust framework as no historical information about newcomers is
available. For example, when a service is initially registered in a cloud center, no service
has interacted with it and hence there is no record of its former behavior. As a result,
its initial trust cannot be evaluated, which may lead to overlook this service in the future
coalition formation processes. Therefore, a mechanism to allocate initial trust values for
newly deployed services in the absence of historical information about their past behavior
is needed.

The existing bootstrapping mechanisms in the Services-Oriented Computing (SOC) do-
main can be classified into three main categories: (1) Default-value-based, (2) punishment-
based, and (3) adaptive mechanisms. The first approach assigns a default trust value for
all of the new services. A self-evident drawback that encounters this approach is that it can
arbitrarily favor either the already existing services or the newly deployed ones. Specifi-
cally, if the assigned default trust value is low, newly deployed services will be overlooked
in the future coalition formation processes. On the other hand, if the assigned default
trust value is high, newcomer services are favored over existing services that may have
interacted and strived to achieve their trust values. This motivates malicious providers to
continuously publish new identities to clear the past bad trust history of their services and
gain high trust scores (a.k.a white-washing). As a remedy to white-washing, the punish-
ment strategy proposes to assign low initial trust values for the newcomer services. In this
way, however, the new services are disadvantaged since they will have no chance to make
interactions and gain trust. In the adaptive strategy, the newcomer service is bootstrapped
based on the rate of maliciousness in the community in which it registers. More specifi-
cally, this strategy assumes a community-based architecture in which a community groups
a number of services sharing the same functionality to simplify the bootstrapping process.
When a new service is registered in a certain community, it gets a trust value based on the
rate of maliciousness in that community. However, the problem with this strategy is that
it still allows malicious services to benefit from a low rate of maliciousness by leaving the
network and rejoining again to obtain higher trust scores.

In this section, we propose a bootstrapping mechanism, based on the concept of en-
dorsement in online social networks [113], that is resilient to white-washing. As mentioned
earlier, each service maintains a dataset that records its previous interactions with several

93

services having different functional and non-functional specifications. Whenever a request
from service i to bootstrap a new service j is received, the services that are interested
in the request train a decision tree classifier on their datasets to predict an initial trust
value for j. A decision tree [54] is a classification technique that recursively and repeatedly
partitions the training set into subsets based on an attribute value test until all the sam-
ples at a given node belong to the same class or until splitting adds no more value to the
classifications. Test attributes are selected based on some heuristic or statistical measure
(e.g., information gain) that determines their relative importance in discriminating between
classes being learned. Unlike some other classification techniques such as support vec-
tor machines and neural networks that entail high time and space complexity, the main
advantages that make decision tree suitable for our bootstrapping problem are mainly its
intuitive simplicity and computational time and space efficiency [41], which is important for
resource-constrained nodes such as Web services.

The decision tree classifier analyzes the training dataset that contains properties and
specifications for some existing services (e.g., provider’s name, deployment country, etc.)
and learns the patterns of the data by pairing each set of inputs with the expected output
(e.g., the judgment on the services). To create the training and test sets, bootstrappers
use the k-fold cross-validation with k = γ, where γ represents the number of folds. In this
method, the dataset is split into k subsets, each of which is used each time as test set and
the other k−1 subsets are merged together to compose the training set. The accuracy is
then computed by averaging the error across all the k trials. This method has the advantage
of reducing the bias of the classification results on the way based on which data is being
divided due to the fact that each data point will be part of the test set exactly once and
part of the training set k−1 times. Obviously, the computational complexity of this method
grows as the size of k increases. Thus, the choice of γ would vary from one service to
another depending on the available resources that each bootstrapper decides to dedicate
to the bootstrapping process.

Bootstrappers use the learned classifier to predict an initial judgment for the services
being bootstrapped. Based on the classification results, each service may endorse the
underlying services either positively or negatively. Nonetheless, this does not constitute
the final judgement. In fact, judgements from all bootstrappers are aggregated again by
the bootstrapping requestor using Dempster-Shafer as described in the previous section to
come up with a combined belief that is resilient to unreliable endorsements from colluding
bootstrappers. Note that the results of the aggregation are not influenced by the number
of bootstrappers even when this number is minimal since Dempster-Shafer is independent
from the number of incoming observations. The extremely worst cases in this regard would
be when only one service participates in the bootstrapping process or even no service
is able to participate. In the former case, the requestor may rely on the opinion of the

94

bootstrapper without having to use Dempster-Shafer for aggregation. In the latter case, the
requestor may bow to reality and use random guessing or default-value-based techniques.
It’s worth noting that the bootstrapping process is voluntary for bootstrappers in the sense
that each service has the right to decide whether to train its classifier or not after each
inquiry request received based on its available resources and whether to endorse services
or not based on the underlying accuracy. This aspect is important to guarantee the fairness
for both bootstrapper and bootstrapped services. In fact, after training the classifier and
computing classifications’ accuracy, some services may notice that they have no sufficient
accuracy to make judgments due to the lack of similarity between the properties of the
services that they had dealt with and the services being bootstrapped. Therefore, these
services are better off refraining from submitting inaccurate endorsements.

Finally, the credibility scores of the bootstrappers are updated by the bootstrapping
requestor according to Equation (32). The credibility update has two main advantages.
On the one hand, it motivates the services having high levels of classification accuracy to
participate in the bootstrapping mechanism to get their credibility scores increased. On
the other hand, it demotivates the malicious services from submitting false endorsements
to illegally promote some services or demote some other services and exclude them from
future competitions.

5.2.4 Illustrative Example

In this section, we present an illustrative example to show how our proposed trust
framework practically works. Consider the social network graph in Fig. 5.1 and assume
that service S1 wants to establish a trust relationship toward service S5. To do so, it has
first to discover all of S5’s reachable direct neighbors using Algorithm 3. Thus, it creates
an empty tag instance t (Algorithm 3 - line 6), contacts its one-edge away neighbors S2

and S3 one by one, and marks them as explored for the current tag instance (Algorithm 3 -
line 8). Starting with S2, this latter gets appended directly to the tag instance (i.e., t = 〈S2〉)
(Algorithm 3 - line 12) and checks whether it does have a direct edge with S5 (Algorithm
3 - line 13). Since this is not the case, the algorithm recursively assigns the role of the
source node to S2 in lieu of S1 (Algorithm 3 - line 17) to start inquiring its direct neighbor S7

about S5. S7 gets marked as explored, gets appended to the tag instance (i.e., t = 〈S2,S7〉),
and checks whether it does have a direct edge with S5. As this is the case, then the tag
instance t = 〈S2,S7〉 is returned to S1 through the path S7→ S2→ S1 (Algorithm 3 - line 14)
and set to empty to restart the tagging process (Algorithm 3 - line 15). Since all of S2’s
direct neighbors have been explored (Algorithm 3 - lines 19-21), the algorithm moves to
S1’s second neighbor S3. S3 gets appended to the empty tag instance (i.e., t = 〈S3〉) and
starts inquiring its direct neighbors S4 and S6 one by one. Starting with S4, the node gets

95

appended to t (i.e., t = 〈S3,S4〉) and gets marked as explored. It checks then whether it
does have a direct edge with S5. Since such an edge exists, the tag instance t = 〈S3,S4〉 is
returned to S1 through the path S4→ S3→ S1 and the tag instance is emptied again. Since
not all of S3’s direct neighbors have been explored yet, the algorithm moves to S3’s second
direct neighbor S6 and repeats the same process that took place with S4, where the tag
instance t = 〈S3,S6〉 gets returned to S1 through the path S6 → S3 → S1. Since all of S3’s
direct neighbors have been explored now, the algorithm moves to checks for any additional
neighbor of S1 and stops after noticing that all the neighbors of S1 have been explored. In
this example, only 5 services (i.e., S2, S3, S4, S6, S7) out of 7 and 8 edges (i.e., S1 ↔ S2,
S1↔ S3, S2↔ S7, S7↔ S5, S3↔ S4, S3↔ S6, S4↔ S5, S6↔ S5) out of 9 have been explored.
Therefore, the time complexity of the tagging process is linear in the number of services
and edges in the social network graph due to the fact that each service and edge will be
visited once in the worst case. In the example as well, 3 paths having each a size of 2 are
returned in tagging instances; so in total 2×3 = 6 services are stored. This confirms that
the space complexity of our services discovery algorithm, in its turn, is linear in the number
of services.

As a second step, S1 has to aggregate the judgments of S5’s direct neighbors, namely
S4, S6, and S7. Ostensibly, all of these three services would report that S5 is trustworthy
as depicted in Fig. 5.1. However, assume that S4 and S6 decide to collude and perform
a slandering attack against S5 by claiming both that this latter is malicious. As explained
before, the judgement of each service is weighted based on its credibility score. Thus, the
beliefs of the three services would be:

• Service S4: mS4(T) = 0, mS4(M) = 0.34, and mS4(U) = 0.66.

• Service S6: mS6(T) = 0, mS6(M) = 0.23, and mS6(U) = 0.77.

• Service S7: mS7(T) = 0.9, mS7(M) = 0, and mS7(U) = 0.1.

First, let’s combine the beliefs of the services S4 and S7. The details are explained in
Table 5.3.

Table 5.3: Combination of S4 and S7’s beliefs

S4

S7 mS7(T) = 0.9 mS7(M) = 0 mS7(U) = 0.1

mS4(T) = 0 0 0 0
mS4(M) = 0.34 0.306 0 0.034
mS4(U) = 0.66 0.594 0 0.066

• K = mS4(T)mS7(T)+mS4(T)mS7(U)+mS4(U)mS7(T)+mS4(M)mS7(M)+mS4(M)mS7(U)+

mS4(U)mS7(M)+mS4(U)mS7(U) = 0.694.

96

• mS4(T)⊕mS7(T) = 1/K[mS4(T)mS7(T)+mS4(T)mS7(U)+mS4(U)mS7(T)] =
0.594
0.694 = 0.856.

• mS4(M)⊕mS7(M)= 1/K[mS4(M)mS7(M)+mS4(M)mS7(U)+mS4(U)mS7(M)]= 0.034
0.694 = 0.049.

• mS4(U)⊕mS4(U) = 1/K[mS4(U)mS7(U)] = 0.066
0.694 = 0.095.

Then, we combine in Table 5.4 the combined beliefs of S4 and S7 with the beliefs of S6.

Table 5.4: Combining S4 and S7’s combined beliefs with the beliefs of S6

S6

S4S7 mS4S7(T) = 0.856 mS4S7(M) = 0.049 mS4S7(T) = 0.856 = 0.095

mS6(T) = 0 0 0 0
mS6(M) = 0.23 0.19688 0.01127 0.02185
mS6(T) = 0.77 0.65912 0.03773 0.07315

• K = 0.8031277.

• belS5
S1
(T) = mS4S7(T)⊕mS6(T) = 0.821.

• belS5
S1
(M) = mS4S7(M)⊕mS6(M) = 0.088.

• belS5
S1
(U) = mS4S7(U)⊕mS6(U) = 0.091.

Thus, S1’s belief in S5’s trustworthiness is still high (i.e., 0.821) although the majority of
services colluded to claim the contrary.

Having computed the beliefs in S5, S1 should now update its credibility beliefs towards
the services that have participated in the trust establishment process. Based on Equa-
tion (32), S1’s credibility belief towards S4 would decrease to become: Cr(S1 → S4) =

|0.34−0.088| = 0.252 as its judgment does not agree with the computed belief. Similarly,
S1’s credibility belief towards S6 would decrease down to: Cr(S1 → S6) = |0.23−0.088| =
0.142. On the other hand, the credibility towards the truthtelling service S7 would increase
up to: Cr(S1→ S7) = 0.9+ |0.821−0.9| = 0.979. As a reward for tagging neighbors, S2 (as-
suming that it was able to make one inquiry from S1 before the tagging), that has tagged
one of its neighbors to S1, gets the number of inquiries it is able to make from S1 increased
up to Inq(S2 → S1) = 1+ (1+ d1 ∗ 0.6e) + 1 = 4 as per Equation (33). S3 (assuming that
it was able to make one inquiry from S1 before the tagging), that has tagged two of its
neighbors to S1, gets the number of inquiries it is able to make from S1 increased up to
Inq(S3→ S1) = 1+(2+ d2∗0.7e)+1 = 6.

97

5.3 Trust-based Hedonic Coalitional Game

In this section, we model the problem of forming trusted multi-cloud communities as a
hedonic coalitional game with non-transferable utility, propose the appropriate preference
function, and analyse the properties of the game.

5.3.1 Game Formulation

A coalitional game is a game-theoretical model that analyzes the interactions among
players when they gather into groups. The output of the coalitional game is a partition of the
players’ set into coalitions. For the proposed game, the players are the services that seek
to form multi-cloud communities. The objective is to form trusted communities wherein the
number of malicious members is minimal. Coalitional games may be either cohesive or
non-cohesive games. In cohesive games, the motivation for coalescing is extreme [104].
That is, the formation of the single coalition that includes all the players referred to as grand
coalition is the best option for all the players. In contrast, non-cohesive games are inter-
ested in studying situations wherein forming the grand coalition is costly for the players.
Thus, the objective of non-cohesive games is to generate a set of disjoint coalitions. This
type of games is often referred to as coalition formation game.

Property 1. The proposed game is a coalition formation game.

As mentioned earlier, the objective is to form trusted multi-cloud coalitions in which
the number of malicious members is minimal. Obviously, the probability of encountering
malicious services increases as the size of the coalitions increases. In other words, the
grand coalition entails grouping all the trustworthy and malicious services together into a
single coalition. Therefore, our objective of is to produce a set of disjoint coalitions instead
of forming the grand coalition. Thus, the proposed game is a coalition formation game.

Coalitional games may be differentiated as well based on the utility that they assign
to each coalition. Specifically, coalitional games may be either of Transferable Utility (TU)
or Non-Transferable Utility (NTU). In TU games, the utility associated with each coalition
of players worth the same for all the players who, as a result, can distribute and transfer
this utility (e.g., money). In contrary, NTU games assume that the utility of the coalitions is
non-distributable nor transferrable (e.g., happiness).

Property 2. The proposed coalitional game is an NTU game.

98

The utility of each service in a certain coalition is obtained by summing up the service’s
beliefs in trustworthiness in each of the coalition’s members (Equation (25)). Apparently,
the belief in trustworthiness is a social relationship in which an agent assigns a probability
about another agent’s future behavior [141]. That is, trust cannot be neither distributed nor
transferred among services. Therefore, the proposed game is an NTU game.

A hedonic game is a special case of NTU games in which players have preferences
over the coalitions that they may join and the utility of any player in a certain coalition
depends exclusively on the identity of the members in that coalition regardless of how
other services are structured. In simple words, the term hedonic comes from the idea
that players seek to enjoy each other’s partnership, apart from numeric considerations.
Therefore, we believe that hedonic games are the best type of coalitional games that can
model the trust relationships among services. More specifically, a hedonic game is a
subclass of coalitional games that satisfies the two following requirements [26]:

1. The utility of any player in a given coalition depends only on the members of that
coalition.

2. The players have preferences over the set of possible coalitions and coalitions form
based on these preference relationships.

Property 3. The proposed coalitional game is hedonic.

In our game, the utility of the services in a certain coalition is obtained by summing up
the service’s beliefs in trustworthiness in each of the coalition’s members (Equation (25)).
Thus, the utility of services in a given coalition is solely dependent on the members of that
coalition, which satisfies the first condition. For the second condition, we will formally define
in the rest of this section the preference function that enables services to build preference
relations between coalitions and compare them during the coalition formation process. Be-
fore discussing the preference function, let’s define first the concept of preference relation
[26].

Definition 8 (Preference Relation). For every service Si ∈N, a preference relation (≥Si

)Si∈S⊆N is a complete, reflexive, and transitive binary relation over the set of all possible

coalitions that Si may join. Cl ≥Si C′l means that service Si prefers to be a member of coali-

tion Cl over being a member of C′l or at least Si prefers to be a member of both coalitions

equally. Cl >Si C′l denotes that Si strictly prefers to be part of Cl over being part of C′l .

Based on this definition, the preference function of the services can be defined as
follows:

99

Cl ≥si C′l ⇔ PSi(Cl)≥ PSi(C
′
l), (34)

where Cl ⊆N and C′l ⊆N are any two coalitions that service Si is member of and PSi : 2N 7−→
R is a preference function for any service Si such that:

PSi(C) =

−∞, if a ∈C & belie f a

Si
(T)< belie f a

Si
(M)

0, if C ∈ hSi(t)

USi(C), otherwise,

(35)

where hSi(t) represents the history set of service Si at time t. The history set hSi(t) con-
tains the coalitions that service Si has already joined and left at any time t ′ < t before the
formation of the current coalition structure Π(t). The main intuition behind the preference
function PSi defined in Equation (35) is to allow each service Si to choose the coalition
that maximizes its belief in trustworthiness, while avoiding the coalitions that Si believes
contain malicious members. Particularly, the service Si assigns a minimum preference
(i.e., −∞) to any coalition that contains a member that Si believes is malicious (i.e., a ∈C

& belie f a
Si
(T) < belie f a

Si
(U)). This condition is important to avoid being grouped with any

malicious service in the same coalition. Moreover, the service avoids rejoining any previ-
ously visited coalition as long as the structure of the coalitions does not change. This may
be considered as a basic learning process and is important to reduce the complexity of
the coalition formation process since the already visited coalitions are excluded from the
choice set of the services [119]. Otherwise, the service prefers the coalition that maximizes
its utility that represents its belief in trustworthiness in the coalition’s members (Equation
(25)).

5.3.2 Hedonic Coalition Formation Algorithm

To achieve the solution of the game, we propose in this section a distributed hedonic
coalition formation algorithm that enables services to make decisions about which coali-
tions to join in such a way to minimize the number of malicious services in the final coalition
structure. The algorithm is depicted in Algorithm 4. The algorithm takes as input an ini-
tial partition of services at a certain time t (line 1) and outputs the final coalition structure
obtained after applying the trust-based hedonic coalition formation algorithm (line 2). First,
the time t is initialized along with the initial partition of services at that time Π(t) and the
history set of each service Si belonging to that partition (line 4). The algorithm repeats the
following steps. Each service Si in the initial partition selects a given coalition Cl (line 8).
For each member of Cl, if the member is newly deployed and having no past interactions,

100

Algorithm 4: Hedonic Coalition Formation Algorithm
1: Input: Initial partition of services Π(t) at time t
2: Output: Final coalition structure Π∗(t f) at time t f

3: procedure COALITIONFORMATION

4: Initialize t = 0, Π(t) = {C1(t), ...,CS(t)}, hSi(t) =CSi
k (t)

5: repeat
6: repeat
7: for each service Si ∈Π(t) do
8: Select a coalition Cl ∈Π(t)\CSi

k (t)∪{ /0}
9: for each service S j ∈Cl do

10: if S j has no previous interactions then
11: Request bootstrapping for S j

12: else
13: Run Algorithm 3 to get N(S j)

14: Compute belie f S j
Si
(T)

15: end if
16: end for
17: Compute belie f Cl

Si
(T) and belie f Cl

Si
(M)

18: Compare PSi(Cl(t)∪{Si}) and PSi(C
Si
k (t))

19: if Cl(t)∪{Si}>Si CSi
k (t)

20: Leave Ck, i.e, Ck(t) =Ck(t)\{Si}
21: Join Cl, i.e., Cl(t) =Cl(t)∪{Si}
22: Update history, i.e., hSi(t) = hSi(t)∪{Cl}
23: else
24: Π(t +1) = Π(t)
25: end if
26: end for
27: t = t +1
28: until no change in the partition happens.
29: until ε elapses
30: Π∗(t f) = Π(t)
31: return Π∗(t f)
32: end procedure

Si makes a request to bootstrap it (line 11); otherwise it runs the discovery algorithm de-
scribed in Algorithm 3 to discover the member’s direct neighbors (line 13). Thereafter, it
computes the beliefs in trustworthiness and maliciousness for that member using Equation
(26) and Equation (27) respectively (line 17). Si uses then the preference function defined
in Equation (35) to determine the preference order between its current coalition and the
selected coalition (line 18). If the utility of Si in the new coalition Cl(t)∪{Si} exceeds its util-
ity in the current coalition CSi

k (t) (line 19), then it leaves the current coalition (line 20), joins
the new coalition (line 21), and updates its history set by adding the newly joined coalition

101

to it (line 22). Otherwise, the partition of services remains unchanged (line 24). This pro-
cess continues until converging to a Nash-stable coalition structure, i.e., the case where
no service prefers to leave its current coalition and join another one (line 28). Note that the
whole process is repeated periodically after a certain fixed period of time ε (line 29) to cap-
ture the changes that may occur in the partition; especially the dynamism in the services’
trust values, arrival of new services, and leaving of existing services. For the computa-
tional complexity of Algorithm 4, the main complexity lies in the switch operations, i.e., the
process of finding the next coalition to join (lines 7-18). The computational complexity of
performing a switch operation is O(Π), where Π is the coalition partition consisting of the
disjoint coalitions of services. The worst case would be when each service acts alone in
a singleton coalition as it implies that the number of coalitions in the coalition structure is
exactly the number of services, i.e., |Π|= |S|.

5.3.3 Analysis of the Trust-based Hedonic Game

In this section, we analyze the properties of the proposed hedonic game. In particular,
we analyze the convergence of the proposed coalition formation algorithm to a final solu-
tion and some stability concepts of the generated coalitions. Before starting the analysis,
let’s highlight some useful definitions and properties [26].

Definition 9 (Nash Stability). A partition Π is Nash-stable if no player in Π has incentive

to leave its current coalition and move to any other coalition (possibly empty) in such a

way that makes the coalition structure change, assuming that the other coalitions remain

unchanged, i.e., ∀i ∈ N,CSi
k ≥i Cl ∪{i} for all Cl ∈Π.

In other words, a coalition structure Π is Nash-stable if (1) there exists no service Si that
prefers to leave its current coalition CSi

k ∈Π and act alone by forming its singleton coalition
{Si}, and (2) there exists no service Si that has incentive leave its current coalition CSi

k ∈Π

and join any other coalition Cl ∈Π in such a way that makes the coalition structure change.

Definition 10 (Individual Stability). A partition Π is individually stable if no player in Π

can benefit by moving from its current coalition to another coalition without making the

members of the latter coalition worse off, i.e., @i∈N and Cl ∈Π∪{ /0} such that Cl∪{i}>i CSi
k

and Cl ∪{i} ≥ j Cl, ∀ j ∈Cl.

In simple words, a coalitional structure Π is individually stable if there exists no coalition
Cl ∈Π that a service Si prefers over its current coalition CSi

k ∈Π without making its members

102

worse off.

Property 4. The number of coalition structures for N services is finite and given by DN ,

where DN represents the Nth Bell number and is computed as follows:

DN =
N−1

∑
i=0

(
N−1

i

)
·Di for N ≥ 1 and D0 = 1 (36)

Now, let’s move to the analysis of the proposed coalition formation algorithm’s proper-
ties; particularly the three common properties of hedonic games: convergence to a final
coalition structure, Nash-stability, and individual stability. It’s worth noting that the method-
ology followed in the analysis is inspired by that presented in [119].

Theorem 4. Algorithm 4 converges to a final coalition structure Π∗(t f) consisting of a

number of disjoint coalitions.

Proof. The proof involves showing that the algorithm leads to distinct coalitions from time

t to time t + 1 and that the number of coalition structures is finite. Given any initial parti-

tion Π(t) of services at time t, Algorithm 4 switches the partition at hand Π(t) into another

partition Π(t +1) at time t +1 > t and so on until reaching the final partition Π∗(t f). More-

over, the preference function defined in Equation (35) states that services will not revisit

any coalition that has been already visited and left. Thus, any switch operation done in

Algorithm 4 leads to a new partition that has not been visited yet. Given this property and

the fact that the number of coalition structures is finite as per Property 4, we can conclude

that the number of switch operations is finite and that the switch operation always leads to

a final partition Π∗(t f). Hence, Algorithm 4 always converges to a final coalition structure

comprising a number of disjoint services coalitions.

Theorem 5. Algorithm 4 converges to a Nash-stable coalition structure Π∗(t f).

Proof. The theorem may be proved by contradiction. Assume that the final coalition struc-

ture Π∗(t f) is not Nash-stable. Then, there exists a service Si that prefers to leave its cur-

rent coalition CSi
k (t f) and join another coalition Cl(t f) at time t f (i.e., Cl(t f)∪{Si}>Si CSi

k (t f)).

Consequently, the coalition structure Π∗(t f) changes to a new coalition structure Π∗∗(t f)

such that Π∗∗(t f) 6= Π∗(t f), which contradicts with Theorem 4. Hence, we can conclude

that Algorithm 4 always converges to a Nash-stable coalition structure Π∗(t f).

103

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Percentage of Malicious Services (%)

%
 o

f
M

a
lic

io
u
s
 S

e
rv

ic
e
s
 i
n
 t

h
e
 F

in
a
l
P

a
rt

it
io

n

Availability-based Coalition Formation

QoS-based Coalition Formation

Trust-based Hedonic Coalition Formation

(a) Trust-based vs. Availability and QoS
models

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Percentage of Malicious Services (%)

%
 o

f
M

a
lic

o
u
s
 S

e
rv

ic
e
s
 i
n
 t

h
e
 F

in
a
l
P

a
rt

it
io

n

Hedonic Cloud Federations

Trust-based Hedonic Coalition Formation

(b) Trust-based vs. Hedonic cloud feder-
ations models

Figure 5.3: Percentage of malicious services: Our trust-based model minimizes the num-
ber of malicious services

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Percentage of Malicious Services (%)

A
v
a
ila

b
ili

ty
 (

%
)

Availability-based Coalition Formation

QoS-based Coalition Formation

Trust-based Hedonic Coalition Formation

(a) Availability

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Percentage of Malicious Services (%)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Availability-based Coalition Formation

QoS-based Coalition Formation

Trust-based Hedonic Coalition Formation

(b) Response time

0 5 10 15 20 25 30 35 40 45 50
50

100

150

200

Percentage of Malicious Services (%)

T
h
ro

u
g
h
p
u
t

(s
e
c
)

Availability-based Coalition Formation

QoS-based Coalition Formation

Trust-based Hedonic Coalition Formation

(c) Throughput

Figure 5.4: Performance metrics: Our model improves availability, response time, and
throughput compared to the Availability and QoS models

Theorem 6. Algorithm 4 converges to an individually stable coalition structure Π∗(t f).

Proof. It has been proven that every Nash-stable coalition structure is also individually sta-

ble [26]. Since Algorithm 4 converges to a Nash-stable coalition structure as per Theorem

5, Algorithm 4 converges also to an individually stable coalition structure.

5.4 Experimental Results and Analysis

5.4.1 Experimental Setup

We implement our solution in a 64-bit Windows 7 environment on a machine equipped
with an Intel Core i7-4790 CPU 3.60 GHz Processor and 16 GB RAM. Throughout simu-
lations, we vary the percentage of malicious services from 0% to 50% and compare our

104

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Percentage of Malicious Services (%)

A
v
a
ila

b
ili

ty
 (

%
)

Hedonic Cloud Federations

Trust-based Hedonic Coalition Formation

(a) Availability

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Percentage of Malicious Services (%)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Hedonic Cloud Federations

Trust-based Hedonic Coalition Formation

(b) Response time

0 5 10 15 20 25 30 35 40 45 50
50

100

150

200

Percentage of Malicious Services (%)

T
h
ro

u
g
h
p
u
t

(S
e
c
)

Hedonic Cloud Federations

Trust-based Hedonic Coalition Formation

(c) Throughput

Figure 5.5: Performance metrics: Our model improves availability, response time, and
throughput compared to the Hedonic Federations model

model with three other models: (1) Availability-based Coalition Formation [73], (2) QoS-
based Coalition Formation [63], and (3) Hedonic Cloud Federations [88]. The Availability-
based Coalition Formation considers the availability of the services as a building block
in the community formation process. The QoS-based Coalition Formation considers, in
addition to availability, several QoS metrics such as throughput and response time in the
community formation process. The Hedonic Cloud Federations considers the prices and
costs of the services (i.e., VMs) to formulate the utility function. The comparison is pos-
sible since all these approaches are based on a coalition formation algorithm. MATLAB
has been used as a simulation tool to implement the different algorithms, where service
instances have been modeled as objects; each of which having a set of QoS parame-
ters. The QoS values such as promised and monitored availability are obtained from the
CloudHarmony dataset3, which contains information about services owned by well-known
providers such as Amazon Web Services and Agile Cloud. The dataset comprises 53 dif-
ferent services operating in different parts of the world and 187 different activities for these
services. The availability of the services has been studied during a period of a whole month
and the average availability is recorded. During coalitions formation, the malicious services
are considered as those that deviate from the SLA clauses. In particular, the initial deci-
sion on whether a certain service is trustworthy or not (i.e., before applying the proposed
trust aggregation technique) is obtained by comparing the promised availability with the
monitored availability. After coalitions are formed, the malicious services are considered
those that refuse to share their needed resources with the coalition colleagues. To make
our experiments fair with the Hedonic Cloud Federations model [88], which uses different
parameters from ours (i.e., price and cost of VMs) and a small number of providers (i.e.,
eight providers), we have selected a subset of eight AmazonEC2 services (the same type
of services used in [88]) from the used dataset, assigned them the same prices and costs

3http://cloudharmony.com/

105

used in [88] which are publicly available4, and run independent simulations from the ones
used to compare with the other Availability-based and QoS-based models.

5.4.2 Experimental Results

First, we study in Fig. 5.3 the percentage of malicious services that exist in the fi-
nal coalition structure w.r.t the percentage of malicious services that existed in the initial
partition of services. In other words, the aim is to study how effective is each of the com-
pared models in avoiding the malicious services during communities formation. Fig. 5.3a
shows that the percentage of malicious services in the final partition keeps increasing in
the availability-based, QoS-based, and our trust-based hedonic coalition formation models
with the increase in their percentage in the initial partition. However, the trust-based coali-
tion formation model is more resilient to that increase and is able to reduce the percentage
of malicious services up to 30% compared to the other models. The reason is that our
model takes into account the trust relationships among services in the preference function
(Equation (34)) of the hedonic game used during the coalition formation process and is
able as well to overcome the collusion attacks that may affect the trust establishment re-
sults as per Theorem 3. On the other hand, the percentage of malicious services in the
two other models turns out to be high. The reason is that although these models take into
account some QoS metrics in the community formation, the declared metrics may not be
consistent with the actual metrics in case of passive malicious misbehavior. Moreover, Fig.
5.3b reveals that our trust-based model outperforms the hedonic cloud federations model
in terms of minimizing the percentage of malicious members. It is worth noticing that the
hedonic cloud federations model entails a higher percentage of malicious members than
both the availability-based and QoS-based models. The reason is that the former, contrary
to the other two models, focuses solely on the prices and costs of services and disre-
gards totally both the performance and security perspectives. Overall, we can conclude
that if we allow services to rationally select their coalitions without considering their trust
relationships, these services may have incentives to structure themselves into coalitions
consisting of a large number of malicious services.

Next, we test the performance of the generated communities for a period spanning over
more than 3 days (i.e., 260,000 iterations) and compute the average availability, response
time, and throughput; where each single iteration represents a second. At each iteration,
we assign 1000 requests for every community; meaning that each community receives
1000 requests per second, which is realistic to a large degree. The malicious services at
this stage are those that benefit from the resources of the other community colleagues but

4http://aws.amazon.com/ec2/pricing/

106

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Percentage of Malicious Services (%)

A
v
e
ra

g
e
 C

o
a
lit

io
n
 S

iz
e

Availability-based Coalition Formation

QoS-based Coalition Formation

Trust-based Hedonic Coalition Formation

(a) Trust-based vs. Availability and QoS
models

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Percentage of Malicious Services (%)

A
v
e
ra

g
e
 C

o
a
lit

io
n
 S

iz
e

Hedonic Cloud Federations

Trust-based Hedonic Coalition Formation

(b) Trust-based vs. Hedonic cloud fed-
erations models

Figure 5.6: Average coalition size: Our trust-based model generates coalitions of smaller
size

refuse to share their needed resources with them. Figs. 5.4 and 5.5 study how effective
are the formed coalitions in terms of availability, response time, and throughput. Availability
depicts the time period in which a community of services is ready for use. Fig. 5.4a
shows that in the absence of malicious services in the initial partition, the availability-based
coalition formation model outperforms the other two model by achieving an availability
percentage of ≈ 100%. This result is expected since this model takes the availability as a
sole factor for forming communities. However, starting from≈ 5% of malicious services, our
model outperforms both the availability-based and QoS-based models whose performance
begins to decrease drastically. This is due to the fact that our trust-based model minimizes
the percentage of malicious services in the final partition as per Fig. 5.3a. Practically, the
increase in the number of malicious services that refrain from sharing their resources when
these resources are needed leads to an increase in the number of unfulfilled requests.
Similarly, Fig. 5.5a reveals that our model outperforms the hedonic cloud federations in
terms of availability for the same above-discussed arguments.

Figs. 5.4b and 5.5b studies how effective are the formed coalitions in terms of re-
sponse time. Response time represents the time between the submission of the request
and the receipt of the response, which incudes both service time and wait time. Fig. 5.4b
reveals that our trust-based model yields a much lower response time compared to the
availability-based and QoS-based models in the presence of malicious services. Similarly,
Fig. 5.5b shows that our model outperforms the hedonic cloud federations model in terms
of response time. This is also due to the fact that our trust-based model minimizes the
percentage of malicious services in the final partition as per Fig. 5.3. Practically, the in-
crease in the number of malicious services that refuse to share their needed resources
entails additional wait time to find alternative non-malicious services and offering the same
type of resources, which augments consequently the whole response time. Figs. 5.4c and
5.5c study the performance of the produced coalitions in terms of throughput. Throughput

107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUC = 0.972

1-Specificity

S
e
n

s
it

iv
it

y

ROC curves of decision tree, TARGET group: 0

(a) Malicious services classification

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUC = 0.972

1-Specificity

S
e
n
s
it
iv

it
y

ROC curves of decision tree, TARGET group: 1

(b) Trusted services classification

Figure 5.7: Bootstrapping accuracy: Our bootstrapping mechanism achieves high accu-
racy rate

describes the number of requests that coalitions can handle in a given time. For our sim-
ulations, we measure the throughput per second. Fig. 5.4c reveals that our trust-based
model yields much higher throughput compared to the other two models in the presence
of malicious services. Similarly, Fig. 5.5c shows that our model outperforms the hedonic
cloud federations model in terms of throughput. Obviously, the improvement of throughput
is a natural result of the improvement in terms of response time.

Fig. 5.6 measures the average coalitions size w.r.t. the increase in the percentage
of malicious services in the initial partition. Fig. 5.6a reveals that our trust-based model
generates coalitions of smaller size than those generated by the availability-based and
QoS-based models. Moreover, Fig. 5.6b shows that the size of the coalitions produced
by our trust-based model is smaller than that of the coalitions produced by the hedonic
cloud federations model. The intuition behind this result is that coalitions of smaller sizes
are able to reduce the number of malicious services. In other words, the size difference
between our model and the other models may be thought of as the malicious services that
our model excludes from the coalition structure. Thus, we can conclude that our model
produces a network of large number of small disjoint coalitions.

Finally, we study the effectiveness of our trust bootstrapping technique in providing ac-
curate initial trust values. To this end, we train a decision tree classifier on our dataset using
the 10-fold cross-validation technique. The dataset consists of four attributes: Service Provider,
Operation Country, Promised Availability, and Status. The first attribute denotes the ser-
vice provider’s name, the second attribute denotes the country in which the service was
used, Promised Availability denotes the availability promised for this service in the SLA
contract, and Status denotes the status of the service which can be either trusted or not
(based on the compliance of the promised QoS metrics with the actual ones). Note that
we have excluded the Monitored Availability attribute from the dataset since this metric
cannot be known a priori for the services being bootstrapped. The relative importance of

108

the Promised Availability attribute in the decision tree classifier is reported to be 0% since
usually all providers tend to promise optimal availability (i.e., 100%), compared to 100% for
the Service Provider attribute and 64.1% for the Operation Country attribute. Fig. 5.7a and
Fig. 5.7b represent the Receiver Operating Characteristic (ROC) curves [39] generated by
the classifier, where sensitivity measures the proportion of positives that are correctly clas-
sified as such (a.k.a true positive rate) and specificity measures the proportion of negatives
that are correctly classified as such (a.k.a true negative rate). Thus, 1− specificity means
the proportion of positives that are misclassified as negatives (i.e., false positive rate). Fig.
5.7a measures the accuracy of the bootstrapping mechanism in classifying the malicious
services as such. Thus, sensitivity means in this figure the percentage of malicious ser-
vices that are correctly classified as malicious and 1−specificity means the percentage of
malicious services that are misclassified as trustworthy. On the contrary, Fig. 5.7b mea-
sures the accuracy of the bootstrapping mechanism in classifying the trustworthy services
as such. Thus, sensitivity means in this figure the percentage of trustworthy services cor-
rectly classified as trustworthy, whereas 1−specificity means the percentage of trustworthy
services that are misclassified as malicious. The best possible classification model would
yield 100% sensitivity (no false negatives) and 100% specificity (no false positives); thus a
point whose coordinates are (0, 1). The dashed diagonal line represents a fully random
guess (Fig. 5.7). By carefully inspecting both Fig. 5.7a and Fig. 5.7b, we can notice that
the sensitivity and specificity measures are nearly optimal in our bootstrapping mechanism.
The overall classifier’s accuracy is quantified in terms of Area Under the Curve (AUC) [39],
where a value of 1 represents a perfect test and a value of 0.5 represents a worthless test.
Figs. 5.7a and 5.7b reveal that our bootstrapping mechanism yields high AUC values up
to 0.972 in both Figs.

5.5 Conclusion

In this chapter, we discussed a comprehensive trust framework that allows services to
establish credible trust relationships in the presence of collusion attacks in which attackers
collude to mislead the trust results. We introduced as well a trust bootstrapping mecha-
nism that capitalizes on the concept of endorsement in online social networks to assign
initial trust values for the newly deployed services. Thereafter, we designed a trust-based
hedonic coalitional game that is able to form trusted multi-cloud services’ communities
and proposed a relevant algorithm that converges to a stable coalition structure. Exper-
iments conducted on a real cloud services dataset revealed that our proposed solution
minimizes the number of malicious services in the final coalition structure up to 30% com-
pared to three state-of-the-art cloud federation and service communities formation models.

109

Moreover, our solution improves the performance of the formed communities in terms of
availability, response time, and throughput. Besides, the proposed bootstrapping mecha-
nism yields high accuracy levels up to 97.2%. Thus, we have achieved our second research
objective (Objective 2) discussed in Chapter 1, which aimed at enabling the formation of
trustworthy communities of multi-cloud services wherein the number of passive malicious
services is minimal.

Despite the effectiveness of the proposed security-oriented community formation model
in minimizing the number of malicious members, some services can still change their
behavior after joining communities or even get compromised to perform some malicious
activities. To cope with such a challenge, the next chapter is dedicated to tackling the
problem of detecting the malicious services that launch active attacks against the formed
communities and/or other services, with focus on DDoS attacks as a case study. To ex-
pand the applicability of our solution, the proposed detection approach discussed in the
next chapter is presented in a generalized manner so as to fit both community-based and
non-community-based applications.

110

Chapter 6

Optimal Load Distribution for the
Detection of VM-based DDoS
Attacks in the Cloud

Distributed Denial of Service (DDoS) constitutes a major threat against cloud systems
owing to the large financial losses it incurs. This motivated the security research com-
munity to investigate numerous detection techniques [76, 134, 101, 156, 71, 77] to limit
such attack’s effects. Yet, the existing solutions are still not mature enough to satisfy a
cloud-dedicated detection system’s requirements since they overlook the attacker’s wily
strategies that exploit the cloud’s elastic and multi-tenant properties, and ignore the cloud
system’s resource constraints. Motivated by this fact, the objective of this chapter is to
develop an offline detection load distribution strategy that enables the hypervisor, based
on the trust relationships it builds toward VMs, to learn about the optimal detection load
percentage that should be allocated to each of its guest VMs in real-time. The purpose is
to maximize the detection of distributed active attacks under a limited amount of resources
(e.g., CPU, memory, and network bandwidth), with focus on DDoS attacks. To attain this
objective, we propose first a trust framework that enables the hypervisor to construct trust
relationships toward guest VMs. To ensure building credible relationships, we combine
both subjective and objective sources of trust and aggregate them using the Bayesian in-
ference theory [48]. On top of the proposed trust framework, we design a resource-aware
trust-based maxmin game between the hypervisor and DDoS attackers whose solution
guides the hypervisor to determine the optimal detection load distribution among VMs in
real-time that maximizes DDoS attacks’ detection1.

1The content of this chapter is published in [146]

111

6.1 System Model and Assumptions

We formulate in this section the studied problem formally and then explain the attack
model considered in this chapter.

6.1.1 System Model and Strategies

Let H = {h1,h2, . . . ,hn} be a finite set of hypervisors, where each hypervisor hi ∈H hosts
a set of virtual machines Vi = {v1,v2, . . . ,vl}. Note that when i is not important or can be
induced from the context, we simply use V instead of Vi. Each virtual machine v j ∈ V

residing on hi is owned by a client from the set C = {c1,c2, . . . ,cm}. A hypervisor hi ∈ H is a
software agent that stays between the cloud system’s hardware and the VMs and whose
role is to emulate a set of hardware resources I = {I1, I2, ..., In} and to schedule the access
of the VMs to it in order to enable the synchronous running of multiple VMs on a shared
cloud infrastructure. A virtual machine v ∈ V (to simplify the notation, we omit the index
whenever possible) is a pair 〈O;A〉, where O represents the underlying operating system
(OS) and A denotes the set of applications running inside v.

As a first stage, the hypervisor seeks to establish trust relationships toward its guest
VMs. To do so, it first monitors and analyzes the CPU, memory, and network bandwidth
utilization of each v ∈ V to determine any abnormal consumption of those resources (i.e.,
over-utilization). This allows the hypervisor h to build an initial belief in each v’s trustworthi-
ness denoted as InitialBelie f v

h . The hypervisor then collects recommendations from other
VMs/hypervisors on the behavior of the underlying VMs. In the rest of this section, we
abstract away the identity of recommenders and refer to both VMs and hypervisors as
source. Each recommendation Rv

s ∈ [0,1] denotes a certain source s’s recommendation on
the behavior of a VM v based on their previous interactions (e.g., compositions, hosting).
Note that each source s enjoys a fixed number of inquiries it is allowed to make from every
(other) hypervisor h′ and is denoted by Inq(s→ h′). The motivation behind this assumption
is to encourage services to participate in the trust establishment process through linking
the number of inquiries that they are allowed to make with the degree of their participa-
tion in the trust framework. This assumption is realistic since we are considering a selfish
environment in which a service will respond to a certain inquiry coming from another ser-
vice only if the latter has previously responded the former’s inquiries. Initially, all sources
enjoy an equal amount of inquiries, where this amount is updated later during the trust
establishment process (See Section 6.2). Now, the hypervisor h aggregates the results of
the monitoring phase with the results of the recommendations phase using the Bayesian
inference technique to come up with a final belief Belie f v

h in each v’s trustworthiness (See
Section 6.2.3).

112

�

��������	�
�
 ��������	�
�
 ��������	�

���� �������

��

��������������������
����

��������
 ��������
��������

��������
�
 ��������

��������
�

��
 ��
 ��

��

�

�

���
 ��
 ��
 �
 ��
 ��
��
��

Figure 6.1: Attack scenario: Attackers distribute their attacks over a set of VMs to minimize
the detection probability, while hypervisors distribute the detection load over the set of
guest VMs to maximize this minimization

Having computed the final trust scores for the VMs, the hypervisor integrates these
scores into its utility function (see Section 6.3). The objective is to benefit from the com-
puted trust scores to find the optimal distribution of the detection load among its set of
guest VMs that maximizes the attacks detection probability, knowing that DDoS attackers
are distributing their attacks over a set of VMs to minimize this maximization.

6.1.2 Attacker Strategy

In order to complicate the detection process and rip off the hypervisor, attackers can
use a mixed strategy by distributing a single DoS attack over multiple VMs running on top
of the same hypervisor. To this end, the attacker splits its attack code into several malicious
fragments and assigns a set of fragments to each VM. Each malicious VM aims at sending
k malicious fragments to the hypervisor at different time intervals. Let QV = (q(v1), ...,q(vl))

denote the probability distribution vector of the attacks over the set V deployed on hyper-
visor h such that ∑v∈V q(v) = 1. The attack succeeds if one or many malicious fragments
attain the hypervisor without being detected.

Definition 11 (Distributed Attack). A distributed attack is a set of k malicious fragments

{ f1, ..., fk} distributed over V with a probability of q(v) for each v∈V such that ∑v∈V q(v) = 1.

113

Objective Trust

(VMs’ Monitoring)

Subjective Trust

(Recommendations Collection)

Trusting Newly Deployed VMs

Trust Aggregation

Monitor the VMs’ consumption and identify

any abnormal behavior statistically

Collect recommendations on the VMs’

behavior from other VMs /hypervisors

Aggregate the results of the monitoring and

recommendations using Bayesian inference

Assign initial trust scores for the newly

deployed VMs

Trust-based Maximin

Game

Determine the optimal detection load

distribution among the set of guest VMs

Trust Model

Figure 6.2: Solution methodology of the optimal detection load distribution model

6.1.3 Hypervisor Strategy

Knowing this fact, the hypervisor, having a limited amount of resources to be dedicated
for detection, has to choose a mixed strategy consisting of the optimal detection load prob-
ability distribution vector PV = (p(v1), ..., p(vl)) over the set V such that ∑v∈V p(v) = 1.

For the readers’ convenience, a graphical formulation of the above-mentioned problem
is given in Fig. 6.1 and the methodology followed to perform our solution is schematized in
Fig. 6.2. Moreover, Table 6.1 defines and summarizes the different notations that are used
throughout this chapter.

6.1.4 Attack Model

We consider in this work a DDoS attack scenario wherein attackers are a group of VMs
targeting a particular cloud system. Although DDoS attacks in a cloud environment may
take many forms and can be seen in different contexts (e.g., application, web services,
network, etc.), we focus in this work on the DDoS attacks that occur at the virtualization
layer between the hypervisor and its guest VMs (i.e., VM-based DDoS). Particularly, we
study the case in which attacking VMs try to flood the victim cloud system in such a way
that makes it unavailable to support further VMs. These attacking VMs may be either

114

Table 6.1: Notations

Symbol Significance

H : Set of hypervisors.
Vi (or simply V) : Set of virtual machines hosted on top of hypervisor h.
InitialBelie f v

h : Initial belief of hypervisor h in virtual machine v’s trustworthiness.
Belie f v

h : Final belief of hypervisor h in virtual machine v’s trustworthiness.
Rv

s : Recommendation given by a certain source s on the behavior of a virtual machine
v.

Inq(s→ h′) : Number of inquiries that a source s is allowed to make from hypervisor h′.
QV : The attack probability distribution vector over the set of virtual machines Vh de-

ployed on hypervisor h.
q(v) : Attack distribution probability on virtual machine v.
qx(v) : Attack distribution probability on virtual machine v at time x.
PVh : The detection load probability distribution vector over the set of virtual machines

Vh deployed on hypervisor h.
p(v) : Probability of detection load allocated to virtual machine v.
px(v) : Probability of detection load allocated to virtual machine v at time x.
W (v) : Worth of virtual machine v.
[t1, t2] : Window of time starting at time t1 and ending at time t2.
t2 +1 : Current system time.
β[t1,t2] : Average detection rate of the IDS agent running on hypervisor h during the win-

dow of time [t1, t2].
Ut2+1(h) : Utility function of hypervisor h at time t2 +1.
Ut2+1(a) : Utility function of attacker a at time t2 +1.

malicious or compromised by a malicious attacker to serve as bots in the DDoS attack pro-
cess2. To perform their attacks, DDoS attackers benefit particularly from the auto-scaling
(a.k.a elasticity) property that is provided by the virtualization technology as an appealing
added-value feature to the cloud computing systems. Specifically, auto-scaling enables
the cloud to keep assigning extra resources to the VMs that are in need of additional re-
sources. Fortunately, such a property leads to enhance the cloud system’s performance
due to the fact that a VM will never undergo resource outages as long as the VM’s owner
agrees to keep paying bills versus receiving additional resources. Unfortunately, this prop-
erty is being appealingly manipulated by DDoS attackers who compromise VMs and keep
sending, through these compromised VMs, fake resources scaling requests. This allows
the attacker to achieve the two following malicious objectives: (1) draining the resources
of the cloud system to make it unable to support further VMs; and (2) increasing the bill
of the VMs’ real owners by obliging them to pay for (supposedly) unrequested resources
(a.k.a Economic Denial of Sustainability (EDoS)) [128].

2In the rest of this chapter, we abstract on the type of attacking VMs and refer to them as attackers.

115

6.2 Building Trust on Virtual Machines

We describe in this section the details of the proposed trust model consisting of four
main phases: virtual machines monitoring, recommendations collection, trust aggregation,
and trusting newly deployed VMs.

6.2.1 Objective Trust: Virtual Machines Monitoring

In this phase, the hypervisor monitors the VMs’ CPU, memory, and network bandwidth
consumption directly from the hosting infrastructure and applies the Interquartile Range
(IQR) statistical measure [32] to identify any abnormal usage. This constitutes the objective
source of trust which is of prime importance in the field of trust and reputation to avoid
biased and/or subjective judgements [141]. The IQR is a measure of variability whose
basic idea is to split a given set of data into disjoint quartiles (i.e., Q1, Q2, and Q3).

The first quartile Q1 corresponds to the value in the data set that 25% of the values
are smaller than it. The second quartile Q2 stands for the data set’s median value. The
third quartile Q3 represents the value in the data set that 25% of the values are higher than
it. The IQR is obtained then by subtracting the first quartile from the third quartile. The
reasons for choosing the IQR measure for the considered problem lie in its (1) robustness
to messy data and outliers, and (2) simple and lightweight nature that imposes no heavy
computation efforts on the hypervisor [32].

The algorithm of this phase that is executed by the hypervisor is depicted in Algorithm
5. Having monitored and recorded the CPU, memory, and network bandwidth consumption
of the VM in question at time t (i.e., for the time window [t−µ, t]), the hypervisor computes,
for each of these metrics (e.g., CPU), the median usage of the VM (step 20). It finds then,
based on the computed median, the first and third quartiles Q1 and Q3 for each metric
respectively (steps 21-22). Using these quartiles, the IQR is computed by subtracting Q3

from Q1 and multiplying the obtained value by 1.5 (step 23). Intuitively, this means that
any value lying more than one and a half times beyond the upper quartile is considered
to be an outlier according to Tukey analysis [133]. By adding the IQR to the third quar-
tile, the hypervisor computes the upper consumption limit for each underlying metric (step
24). Intuitively, this limit represents the pattern of maximal habitual utilization of the VM
at a certain time period; where any future utilization above this limit would be considered
unusual. The hypervisor checks then for any future consumption of the VM at time t + µ

whether there exists any consumption that exceeds the computed upper limit (lines 25-26).
If so, this event is appended to a table that stores the VM’s unusual consumption (line 27)

116

Algorithm 5: Virtual Machines’ Monitoring
1: Initialization:
2: µ: size of time window after which the algorithm is to be repeated
3: v: a VM being monitored by the hypervisor
4: U = {CPU, memory, and bandwidth}: the set of v’s metrics to be

analyzed by the hypervisor
5: Ux

v (t): a table recording the amount of each metric x ∈U
consumed by v during the time interval [t−µ, t]

6: Mx
v(t): the median consumption of x ∈U by v during the time

interval [t−µ, t]
7: Q1x

v(t): the 1st quartile consumption of x ∈U during the time
interval [t−µ, t]

8: Q3x
v(t): the 3rd quartile consumption of x ∈U during the time

interval [t−µ, t]
9: IQRx

v(t): the IQR consumption of x ∈U by v during the time interval [t−µ, t]
10: Lx(t): the upper consumption limit of x ∈U during the time interval [t−µ, t]
11: OverUsex

v: sum of v’s unusual consumption of x ∈U (initialized to 0)
12: CountOverUsex

v: a counter enumerating the occurrence of unusual consumption of
x ∈U by v (initialized to 0)

13: AvgOverUsex
v: v’s average unusual consumption of x ∈U

14: PropOverUsex
v: v’s unusual consumption of x ∈U proportionally to

the upper consumption limit of this x
15: |OverusedMetrics|: the number of metrics that v overconsumed such

that |OverusedMetrics| ≤ |U |
16: InitialBelie f v

h : the initial belief of hypervisor h in v’s trustworthiness

17: procedure VMMONITORING

18: repeat
19: for each metric x ∈U do
20: Compute the median Mx

v(t) of Ux
v (t)

21: Find Q1x
v(t) as the median of Ux

v (t)’s lower half
22: Find Q3x

v(t) as the median of Ux
v (t)’s upper half

23: Compute IQRx
v(t) = (Q3x

v(t)−Q1x
v(t))×1.5

24: Compute Lx
v(t) = IQRx

v(t)+Q3x
v(t)

25: for each data point y ∈Ux
v (t +µ) do

26: if y > Lx
v(t) then

27: OverUsex
v = OverUsex

v + y
28: CountOverUsex

v =CountOverUsex
v +1

29: end if
30: end for
31: if CountOverUsex

v > 0 then
32: AvgOverUsex

v = OverUsex
v/CountOverUsex

v
33: PropOverUsex

v = Lx
v(t)/AvgOverUsex

v
34: |OverusedMetrics|= |OverusedMetrics|+1
35: end
36: end for
37: if |OverusedMetrics|= 0 then
38: InitialBelie f v

h = 1
39: else
40: InitialBelie f v

h = ∑x∈U PropOverUsex
v

|OverusedMetrics|
41: end
42: until µ elapses
43: end procedure

117

and the average of unusual consumption for each metric is computed (line 32). The hy-
pervisor computes finally its initial belief in the VM’s trustworthiness by dividing the sum of
average unusual consumptions over all the metrics by the number of metrics that the VM
has overconsumed, if any (line 40). If no metric has been overconsumed, the initial belief
in the VM’s trustworthiness would be set to 1 (line 38), which represents a full initial trust in
the VM. Note finally that the whole process is repeated periodically after a certain period
of time µ to continuously capture the dynamism in the VMs’ performance and behavior.

For example, suppose that the CPU, memory, and bandwidth upper consumption lim-
its for a VM v were 60%, 70%, and 50% respectively. Suppose as well that v has been
overconsuming the CPU with an average of 73%, the memory with an average of 73%,
but has not been overconsuming the bandwidth metric. Then, the proportional overuse
of CPU and memory would be calculated respectively as follows (Algorithm 5 - line 33):
PropOverUseCPU

v = 60/73 = 0.822 and PropOverUseMemory
v = 70/73 = 0.959. The initial hy-

pervisor’s belief in v’s trustworthiness would then amount to: InitialBelie f v
h = 0.822+0.959

2 =

0.8905. Note that we have divided by 2 since only two metrics, namely the CPU and mem-
ory have been overconsumed by v. Consider now another case wherein v was overcon-
suming the CPU with an average of 95% and the memory with an average of 98%. Then,
the proportional overuse of CPU and memory would be calculated respectively as follows:
PropOverUseCPU

v = 60/95 = 0.631 and PropOverUseMemory
v = 70/98 = 0.714. The initial hy-

pervisor’s belief in v’s trustworthiness would then amount to: InitialBelie f v
h = 0.631+0.714

2 =

0.6725. We notice from the two examples that as the overconsumption keeps going far from
the upper consumption limit, the initial trust score keeps decreasing (i.e., 0.6725 < 0.8905).

6.2.2 Subjective Trust: Recommendations Collection

In order to enhance the quality of the trust scores, the hypervisor collects recommenda-
tions Rv

s1
, . . . ,Rv

sn
(where Rv

si
∈ [0,1]) on the former behavior of the VMs. This constitutes the

subjective source of trust and is widely used in the context of trust and reputation due to
the fact that it consults different parties’ opinions to improve the quality of the judgements
[141]. The source of the recommendations may be either VM(s) having dealt with the
VM in question or other hypervisor(s) having previously hosted that VM. The recommen-
dations obtained from the former source (i.e., VMs) are important in order to learn about
the performance of the VMs in the cases of services cooperation or composition in the
cloud. The recommendations obtained from the latter source (i.e., hypervisors) allow us to
capture the dynamism in the VMs’ performance on different cloud infrastructures, which al-
leviates the risk of misjudging VMs because of bad performance of the host cloud system.
This contributes in enhancing the detection accuracy under a changing cloud infrastruc-
ture environment. The recommendations are derived based on the overall behavior of the

118

VMs, not only based on the metrics related to DDoS attacks. For example, if a certain VM
is not launching a DDoS attack but launching a side-channel attack [117], then it should
receive low recommendation scores. We argue that obtaining such recommendations is
becoming easier with the emerging cooperation architectures that are being proposed and
adopted for cloud-based services such as services’ communities and cloud federations
[152, 144]. Practically, such architectures allow services, coming either from one cloud
or deployed even in different cloud centers, to cooperate with one another in order to im-
prove the performance and security of the underlying system. In this way, services (in the
form of VMs) are allowed to easily migrate from one cloud infrastructure to another as a
result of the community/federation agreement contract. In the same context, the VMs that
are grouped in the same community/federation are likely to cooperate with one another to
better respond to customers’ requests. Therefore, obtaining recommendations from both
hypervisors and VMs is becoming simpler and more realistic.

6.2.3 Trust Aggregation

Having obtained both the objective and subjective sources of trust, the next step is to
aggregate these sources and come up with final aggregate trust scores for the VMs. For
this purpose, we employ the Bayesian inference from the subjective probability theory [48],
which has shown to be effective in aggregating trust sources in many application domains
[69, 153]. Bayesian inference is a theory that describes uncertainty using a probability dis-
tribution. In simple words, assume that a person has an uncertainty about an issue. This
uncertainty may be depicted using a probability distribution known as that person’s prior
distribution. Assume now that this person has been able to gain some information pertinent
to that issue. The information evolves his uncertainty, which may be then represented as a
new probability distribution called posterior distribution. This posterior distribution reflects
the knowledge obtained from both the prior distribution and new information. The main
function of Bayesian inference lies in the process of moving from prior to posterior distri-
bution. In our case, the prior distribution represents the hypervisor’s initial beliefs about
VMs obtained from the monitoring process described in Algorithm 5 prior to collecting rec-
ommendations. This allows us to overcome a substantial problem of Bayesian inference
caused by the arbitrary choices of the initial prior beliefs, where such uninformative prior
beliefs have a great negative impact on the precision of the posterior final beliefs [129].
Once the recommendations are gathered, the prior distribution is converted into a poste-
rior distribution that reflects the updated hypervisor’s beliefs after analyzing the received
recommendations. This is done by employing the conditional probability laws often referred
to as Bayes theorem [136].

By applying the Bayes theorem for aggregating the objective and subjective trust sources,

119

we get that the Bayesian estimation of the trust belief in a VM v with n recommendations
Rv

s1
, . . . ,Rv

sn
(where Rv

si
∈ [0,1]) is given by:

Belie f v
h =

n

∑
i=1

Rv
si
+nγ

2n
, (37)

where γ = InitialBelie f v
h represents the hypervisor h’s prior belief in v’s trustworthiness, Rv

si

denotes a recommendation given on v by a source si, and n is the total number of collected
recommendations. Note that a similar aggregation function has been used in [69, 153] to
compute trust values for Web services willing to participate in composition processes.

As a reward for submitting recommendations, the VMs and hypervisors should receive
some payment. The payment is given in the form of inquiry requests that they can make
from (other) hypervisors on the behavior of (other) VMs. Specifically, a source s receives
an increase in the number of inquiries Inq(s→ h′) it can make from hypervisor h′ for which
it has recommended a VM v′ proportionally to the difference between the trust recommen-
dation Rv′

s submitted by s and the final hypervisor h′’s belief in v′’s trustworthiness. Formally,
let di f f =

∣∣∣Rv′
s −Belie f v′

h′

∣∣∣, the source s would receive the following payment:

Inq(s→ h′) =

d
Inq(s→h′)
di f f×α

e, if Inq(s→ h′)> 0

d 1
di f f×α

e, otherwise
(38)

The purpose of this payment mechanism is two-fold. On the one hand, it stimulates the
participation of both VMs and hypervisors in the trust establishment process. Practically,
the hypervisors and VMs that refuse to participate would end up being unable to make fur-
ther inquiries about the behavior of (other) VMs since the number of inquiries that they are
able to make would be drained over the time without receiving any additional reward, which
deprives them from constructing further trust beliefs. On the other hand, the proposed pay-
ment mechanism motivates these VMs and hypervisors to give honest recommendations
through making the amount of payment proportional to the difference between the given
recommendations and the final hypervisor’s belief. In this way, hypervisors/VMs whose
recommendations diverge from the final belief will get their payment decreased; whereas
those whose submitted recommendations which are convergent to the final belief would
receive a larger amount of payment. Note finally that α is a smoothing factor chosen by
the designer and whose main role is to avoid the saturation of VMs/hypervisors in terms of
number of inquiries and motivate thus their further participation in the trust establishment
process. In this way, the larger α is, the lower the number of additional inquiries rewarded
to VMs/hypervisors would be.

120

6.2.4 Trusting Newly Deployed VMs

Building trust relationships toward the VMs that are newly deployed in cloud centers
constitutes evidently a serious obstacle against our proposed trust mechanism. Indeed,
the absence of any historical and actual information that corroborates the performance of
such VMs makes it quite difficult to compute trust scores for them. This raises the need for a
mechanism enabling the hypervisor to assign initial trust values for the newly deployed VMs
in the absence of any historical and current data. Such a problem is referred to as a trust
bootstrapping problem [152]. To handle this issue, we capitalize on the trust bootstrapping
mechanism proposed in Chapter 5 (Section 5.2.3) to form trustworthy multi-cloud services
communities and that combines the concept of endorsement in online social networks
(e.g., LinkedIn) with the decision tree classification technique to solve the problem. We
borrow the overall logic used in that mechanism, while performing some technical updates
to adapt it to our studied problem. The idea is explained in the following.

Whenever a hypervisor is willing to build trust toward a certain VM that is newly cre-
ated, it sends a bootstrapping requests to other VMs and hypervisor asking to endorse
the VM in question. Interested VMs/hypervisors (e.g., those having enough resources to
participate in such a process) train a decision tree classifier on the dataset containing the
details of their interactions (e.g. provider’s name, operation country, etc.) with several VMs
having various functional and non-functional properties. The classifier learns the patterns
of the data by pairing each set of inputs (e.g, provider’s name, operation country) with the
corresponding output (i.e., trust score). For this sake, boostrappers use the k-fold cross-
validation technique to create training and testing sets. In this way, the dataset gets split
into k subsets, each used everytime as test set and the other k−1 subsets are combined
altogether to form up the training set. The accuracy of the training process is then as-
sessed by bootstrappers to decide on wether to submit endorsements or not. Particularly,
if the underlying accuracy is high, this means that there exists a worthy similarity between
the VM being bootstrapped and (some of) the VMs that bootstrappers have dealt with. In
this case, bootstrappers are better off submitting their endorsements to the requesting hy-
pervisor. On the other hand, if the accuracy is low, bootstrappers are better off refraining
from submitting false endorsements (thanks to the payment mechanism described in the
following). This voluntary aspect of the bootstrapping process is necessary to guarantee
the fairness for both bootstrappers (in terms of payments and/or resource availabilities)
and bootstrapped (in terms of endorsements’ precision) parties.

The endorsements from the different bootstrappers are then aggregated using the
Bayesian inference equation (Equation (37)) in order to avoid biased endorsements. In
this case, the prior beliefs in all the newly deployed VMs would be all set to 1

2 (i.e., γ = 1
2),

121

where this expresses a neutral belief between trust and distrust. Finally, bootstrappers re-
ceive payments from the boostrapping requestor for having helped it construct trust beliefs.
The payment for bootstrappers is given again in terms of additional inquiry requests they
can make from the bootstrapping requestor as per Equation (38). This payment mecha-
nism is important to (1) stimulate the hypervisors/VMs that enjoy high classification accu-
racy rates to get involved in the bootsrapping process so as to receive payments; and (2)
discourage the malicious hypervisors/VMs from offering bogus endorsements to illegally
promote/demote some VMs.

6.3 Determining the Optimal Detection Load Distribution Strat-

egy: Trust-based Maxmin Game

Having computed the trust scores, we can now proceed with designing the utility func-
tions of both the hypervisor and DDoS attackers and modelling the trust-based maxmin
game. The utility of a hypervisor h quantifies its success in protecting the monitored virtual
machines V , of worth W (v) each, inversely proportional to h’s belief in each v’s trustworthi-
ness. The utility function of h at time t2 +1 that comes after the considered window of time
[t1, t2] is computed as follows:

Ut2+1(h) = ∑
v∈V

W (v)×β[t1,t2]

Belie f v
h

, (39)

where W (v) represents the worth of each virtual machine v (e.g., price, criticality of the
applications running inside it), Belie f v

h denotes the belief of h in v’s trustworthiness, and
β[t1,t2] is the average detection rate of the IDS agent running on h during the time window
[t1, t2] and is computed as per Equation (40).

β[t1,t2] = 1−
t2

∑
x=t1

∑
v∈V

(qx(v)− px(v))
t2− t1

for each qx(v)> px(v), (40)

where px(v) (respectively qx(v)) is the value of p(v) (q(v)) at time x.

The idea behind dividing by the trustworthiness belief in the utility function is to make
the utility of the hypervisor increase when the belief in a certain VM’s trustworthiness de-
creases and vice versa. In this way, the hypervisor would pay more attention to those VMs
that it believes are less trusted when deciding about the optimal detection load distribution
strategy. This adds a learning component to the game and aids the hypervisor hence to op-
timize its detection load distribution strategy. It is worth mentioning that all the calculations
in the rest of this chapter are done at time t2 + 1 (i.e., the current time for the hypervisor).

122

Thus, we simplify the notation and use U(h) instead of Ut2+1(h) when referring to hypervi-
sor’s h utility at time t2 +1. The payoff of the attacker a represents the loss incurred to the
hypervisor as a result of a successful attack. Therefore, the payoff of the attacker is the
negation of the hypervisor’s payoff, i.e.,

U(a) =−U(h) (41)

This forms a hypervisor-attacker (two-player) zero-sum game wherein one player’s gain
is equivalent to the other player’s loss.

Definition 12 (Hypervisor-attacker Zero-sum Game). A hypervisor-attacker zero-sum

game is a tuple G = 〈h,a,PV ,QV ,U(h)〉, where:

• h: denotes the hypervisor (i.e., the first player).

• a: denotes the attacker (i.e., the second player).

• PV : denotes the probability distribution vector of the detection load over the set V of

VMs hosted on top of h (i.e., the mixed strategy of h).

• QV : denotes the probability distribution vector of the attack over the set V of VMs

hosted on top of h (i.e., the mixed strategy of a).

• U(h): the utility function of the hypervisor h.

The objective of the attacker is to choose its probability distribution QV for distributing
the DoS attack over the VMs’ set with the aim of minimizing the hypervisor’s detection
probability and hence minimizing the latter’s payoff, i.e.,

argmin
QV

U(h) (42)

Knowing this fact, the hypervisor would choose a probability distribution PV over the set
of VMs in such a way to maximize the attacker’s minimization, i.e.,

argmax
PV

min
QV

U(h) (43)

This forms a maxmin game wherein the attacker tries to minimize the hypervisor’s prob-
ability of detecting his attacks by distributing each attack over multiple VMs, whereas the

123

hypervisor tries to maximize this minimization by choosing the optimal distribution of de-
tection load over the VMs.

Definition 13 (Hypervisor’s Maxmin Strategy). The maxmin strategy for the hypervisor

h is argmaxPV
minQV U(h) and the maxmin value for h is maxPV minQV U(h).

The solution of the game can be devised using Linear Programming (LP), referred to
as the problem of determining the values of some real variables for the purpose of mini-
mizing or maximizing a linear function (the objective function) subject to linear constraints
on these variables. To this end, let us consider the problem first from the point of view of
the hypervisor trying to maximize the minimum of the attacker and let us rewrite Equation
(43) as follows:

maximize min
QV

∑
v∈V

p(v)×U(h)

subject to ∑
v∈V

p(v) = 1,

p(v) ≥ 0, f or all v ∈V.

(44)

By inspecting Equation (44), we can notice that the objective function is not linear
in the p’s owing to the presence of the min operator. Therefore, the problem in its cur-
rent form cannot be solved using LP. To linearize it, we define a variable f such that
f ≤ min

QV
∑v∈V p(v)×U(h) and try to make f as large as possible subject to this new con-

straint. Thus, the problem is turned into choosing f and ∑v∈V p(v) to:

maximize f

subject to f ≤ ∑
v∈V

p(v)×U(h),

p(v1)+ · · ·+ p(vl) = 1,

p(v) ≥ 0, f or all v ∈V.

(45)

Intuitively, this means that the hypervisor, by choosing its mixed strategy p(v) ∈ PV , is
trying to make as large as possible the minimum that the attacker is attempting to inflict
by playing his mixed strategy q(v) ∈ QV . To ease the computations, we transform the LP
presented in Equation (45) into a simpler form. Assume that f > 0 and let x(v) = p(v)

f . The
constraint p(v1)+ · · ·+ p(vl) = 1 becomes then x(v1)+ · · ·+x(vl) = 1/ f . Since maximizing f

is equivalent to minimizing f ’s reciprocal 1/ f , we can get rid of f in our problem by rather
minimizing x(v1)+ ...+ x(vl). Thus, the problem becomes: choose x(v1)+ · · ·+ x(vl) to:

124

minimize x(v1)+ · · ·+ x(vl)

subject to 1≤ ∑
v∈V

x(v)×U(h),

x(v) ≥ 0, f or all v ∈V.

(46)

The above problem may be solved in polynomial time using the simplex method for
solving Linear Programming, which is known for its fast performance [40]. Having solved
the problem, the hypervisor’s optimal strategy would be p(v) = f × x(v) for each v ∈V .

If we consider the problem from the attacker’s point of view, the latter’s objective is to
minimize the hypervisor’s maximal probability of detection.

Definition 14 (Attacker’s Minimax Strategy). The minimax strategy for the attacker a is

argminQV
maxPV U(h) and the minimax value for a is minQV maxPV U(h).

The problem can be written as follows:

minimize max
PV

∑
v∈V

q(v)×U(h)

subject to ∑
v∈V

q(v) = 1,

q(v) ≥ 0, f or all v ∈V.

(47)

Using the same logic of transformation followed for the hypervisor’s maximization prob-
lem, the problem in Equation (47) can be rewritten as:

minimize g

subject to g≥ ∑
v∈V

q(v)×U(h),

q(v1)+ ...+q(vl) = 1,

q(v) ≥ 0, f or all v ∈V.

(48)

By carefully examining Equation (45) and Equation (48), we notice that the two pro-
grams are dual. Following the duality theorem [79], the maximum that the hypervisor can
realize in Equation (48) is equivalent to the minimum that the attacker can achieve in Equa-
tion (45).

125

6.4 Numerical Example

Consider a hypervisor h hosting, at time t, three VMs v1, v2, and v3. The prices of
these VMs are $5.33, $5.24, and $6.86 respectively. Suppose as well that the hypervisor’s
detection probability at time t is 0.85, which means that the hypervisor was able to detect
up to 85% of the attacks that targeted the cloud system during the time interval [t1, t]. The
first step would be to build trust relationships between the hypervisor and its three guest
VMs. Assume that the hypervisor performs a monitoring process for the VMs’ performance
using Algorithm 5 and that the monitoring process results in the following initial trust be-
liefs: InitialBelie f v1

h = 0.66, InitialBelie f v2
h = 0.32, and InitialBelie f v3

h = 0.68. Note that v2

is (largely) suspected initially to be launching DDoS attacks. To alleviate the uncertainty
and come up with final beliefs, the hypervisor asks three other sources (i.e., VMs and
hypervisors), say s1, s2, and s3, about each VM’s past behavior.

For v1, suppose that the trust recommendations from the three sources are: Rv1
s1
= 0.66,

Rv1
s2
= 0.43, and Rv1

s3
= 0.78. By applying Equation (37) to compute the final belief in v1’s

trustworthiness, we get: Belie f v1
h = 1.87+3×0.66

2×3 = 0.642. For v2, suppose that v2 is actually
malicious and that s1 and s2 colluded to give v2 high (good) recommendation scores, while
s3 gives a honest recommendation. Let the trust recommendations from the three sources
regarding v2 be: Rv2

s1
= 0.77, Rv2

s2
= 0.61, and Rv2

s3
= 0.40. By applying Equation (37) to compute

the final belief in v2’s trustworthiness, we get: Belie f v2
h = 1.78+3×0.32

2×3 = 0.456. Note that
although both s1 and s3 colluded to give v2 high recommendation scores, the final belief of
h in v2’s trustworthiness is still low (i.e., 0.456), which reveals that our trust model is quite
resilient to the collusion attacks even when attackers form the majority. This is the case
because our model combines objective and subjective sources to maximize the accuracy
of the final trust results. For v3, suppose that the trust recommendations from the three
sources are: Rv3

s1
= 0.66, Rv3

s2
= 0.59, and Rv3

s3
= 0.63. By applying Equation (37) to compute

the final belief in v3’s trustworthiness, we get: Belie f v3
h = 1.88+3×0.68

2×3 = 0.653. Suppose now
that the saturation factor α is set to 1.5 and that all of s1, s2 and s3 were allowed initially
to make 2 inquiries from h (i.e., Inq(s1→ h) = 2, Inq(s2→ h) = 2, and Inq(s3→ h) = 2). As
rewards for recommending VMs to h, these three sources receive payments in the form of
additional inquiries that they can make from h. For recommending v1 and as per Equation
(38), the number of additional inquiries s1 can make from h increases up to 2

|0.66−0.642|×1.5 =

74, the number of additional inquiries s2 can make from h increases up to 2
|0.43−0.642|×1.5 = 6,

and the number of additional inquiries s3 can make from h increases up to 2
|0.78−0.642|×1.5 =

10. The same logic of payment calculation applies also as to recommending v2 and v3. It
is worth noticing that s1 whose recommendation score nearly agrees with h’s final belief
receives a large amount of inquiries compared to s2 and s3 whose recommendation scores
diverge somewhat from that belief.

126

By employing Equation (39) and Equation (41) for deriving the utility values of the hy-
pervisor and attacker respectively, we obtain the following game matrix:

U =

v1 v2 v3

v1 7.06 −9.77 −8.929

v2 −7.06 9.77 −8.929

v3 −7.06 −9.77 8.929

In this matrix, the row represents the hypervisor and the column represents the at-

tacker. Given that we consider a zero-sum game wherein the attacker’s gain is equal to
the hypervisor’s loss and vice versa, we present only the hypervisor’s utility in order to
simplify notations. Thus, U(i, j) would denote the hypervisor’s utility when it is monitoring
vi while the attacker is launching its attack through v j, whereas −U(i, j) would denote the
attacker’s utility in that case. For instance, when the hypervisor monitors v1 while the at-
tacker is attacking through v1, the hypervisor would gain U(1,1) = 5.33×0.85

0.642 = 7.06 for having
been successful in protecting v1 and the attacker would lose 7.06 for its unsuccessful at-
tack. Contrariwise, when the hypervisor monitors v1 while the attacker is attacking through
v2, then the former would lose U(1,2) = 5.24×0.85

0.456 = 9.77 for being unsuccessful in protecting
v2, while the latter gains 9.77 for having his attack successful.

Having represented the problem, the next step is to determine the optimal detection
load distribution using the simplex technique. This is done by following the subsequent
steps:

Step 1: Add a constant to all the matrix’s entries, if necessary, to make sure that all the
entries are non-negative.

In order to make all U ’s elements non-negative, we need to add 9.77 to each entry. This
makes the game matrix become:

U ′ =

v1 v2 v3

v1 16.8300 0 0.8410

v2 2.7100 19.5400 0.8410

v3 2.7100 0 18.6990

Step 2: Create a tableau T by (1) extending the matrix with a border of +1′s along the

right edge, −1′s along the lower edge, and zero in the lower right corner and (2) labelling
the hypervisor’s strategies on the left from x1 to xm and those of the attacker on the top
from y1 to yn.

After applying step 2, we obtain:

127

y1 y2 y3

x1 16.8300 0 0.8410 1
x2 2.7100 19.5400 0.8410 1
x3 2.7100 0 18.6990 1

−1 −1 −1 0

Step 3: Select the pivot (an element in the Simplex Tableau that is central in the pivot

operation which is performed to change the basic solution) belonging to row “a” and column

“b” subject to the following properties:

1. The border number in the lower edge of the pivot’s column “b” must be negative.

2. The pivot T (a,b) must be positive.

3. The pivot should belong to the row giving the smallest ratio (of the border number in

right edge to the pivot) among all the positive entries in the pivot column.

Since there exists negative elements in all of T ’s three columns, we can choose any of
these columns to be the pivot column. Let’s select column 1. Given that the pivot has to
be positive, then the selection space is restricted to the first three rows. To determine the
pivot, we compute the ratio (of the border number in right edge to the pivot) for the elements
in the first three rows to learn about the element that gives the smallest ratio. The ratios for
the three elements are 0.0594, 0.3690, 0.3690 respectively. Since 0.0594 < 0.3690, then the
first element is selected to be the pivot, i.e., T (1,1) = 16.8300.

Step 4: Perform the pivoting steps as follows:

1. Substitute the pivot value with its reciprocal.

2. Substitute each element in the pivot row, except for the pivot, with its value divided

by the value of the pivot.

3. Substitute each element in the pivot column, except for the pivot, with the negative of

its value divided by the value of the pivot.

4. Substitute each element T (i, j) not belonging neither to the pivot row nor to the pivot

column with T (i, j)−T (a, j)×T (i,b)/T (a,b).

Step 5: Substitute the label of the pivot row with that of the pivot column and vice versa.

After applying steps 4 and 5, the tableau would become:

Step 6: Check whether there exists any negative number remaining in the lower border
row. If so, return to step 3; otherwise, jump to step 7.

128

x1 y2 y3

y1 0.0594 0 0.05 0.0594
x2 −0.1610 19.54 0.7056 0.8390
x3 0.1610 0 18.5636 0.839

0.0594 −1 −0.95 0.0594

Since the lower border row still contains two negative entries, we return back to step
3 and execute the pivoting process again. This process gets repeated until having all the
elements in the lower border row non-negative. Once this condition is fulfilled, the tableau
becomes:

x1 x2 x3

y1 0.0599 0 −0.0027 0.0572
y2 −0.0079 0.0512 −0.0019 0.0413
y3 −0.008 0 0.0539 0.0452

0.0432 0.0512 0.0492 0.1437

We can now go forward with step 7 since all the entries in the lower border row are at
this stage non-negative.

Step 7: The solution is determined as follows:

1. The optimal strategy of the hypervisor is (1) zero for the hypervisor’s variables that

end up on the left side, and (2) the value of the bottom edge in the same column

divided by the lower right corner for those that end up on the top.

2. The attacker’s optimal strategy is (1) zero for the attacker’s variables that end up on

the top, and (2) the value of the right edge in the same row divided by the lower right

corner for those that end up on the left.

In our case, the optimal detection load probability distribution of the hypervisor over its
guest VMs would be:

• p(v1) = 0.0432/0.1437 = 0.3011,

• p(v2) = 0.0512/0.1437 = 0.3562, and

• p(v3) = 0.0492/0.1437 = 0.3427.

On the other hand, the optimal attack probability distribution of the attacker over the VMs
would be:

• q(v1) = 0.0572/0.1437 = 0.3979,

129

• q(v2) = 0.0413/0.1437 = 0.2875, and

• q(v3) = 0.0452/0.1437 = 0.3146.

Following these calculations, the hypervisor’s optimal strategy is to assign (in real-time)
30.11% of the detection load to v1, 35.62% to v2, and 34.27% to v3. On the other hand, the
attacker’s optimal strategy is to distribute the DoS attacks over VMs as follows: 39.79% for
v1, 28.75% for v2, and 31.46% for v3.

6.5 Experimental Results and Analysis

In this section, we describe the experimental setup and present experimental results
by comparing our solution with a benchmark consisting of the price-based maxmin [143]
and the fair allocation [154, 159] detection load distribution strategies.

6.5.1 Experimental Setup

We provide experimental results to test the performance of our model and validate
the theoretical and numerical results obtained in the previous sections. The objective of
these experiments is three-fold. First, we aim to study how effective the proposed model
is in terms of augmenting the attack detection and minimizing both the false positives and
negatives. Second, we verify that applying our solution under DDoS attack environments
contributes in minimizing the CPU, memory, and network bandwidth wastage. Third, we
aim to test the efficiency of our solution in terms of execution time. To these ends, we con-
duct our experiments using CloudSim [28] in a 64-bit Windows 7 environment on a machine
equipped with an Intel Core i7-4790 CPU 3.60 GHz Processor and 16 GB RAM. CloudSim
is a cloud simulation tool that has witnessed in the past few years a growing recogni-
tion among both academic and industrial milieux. It provides several features that help
mimic realistic cloud environments by enabling the simulation of (1) large-scale cloud envi-
ronments including co-hosted virtualized services; (2) service provisioning and resources
allocation policies; (3) network connections among the different cloud components; and
(4) federated cloud environments that inter-network resources from both private and public
domains [28]. We decided to simulate our own cloud instead of using rented resources
from one of the existing cloud providers for the two following main reasons. First, most
of the cloud providers such as Amazon EC2 have restriction rules regarding any security
testing on their resources and systems, where all the large cloud providers list DoS testing
as a non-permissible activity [124]. Second, no cloud provider offers its users direct access

130

to the VMs’ host, which makes inspecting performance information at the host level quite
difficult to perform [124].

To build our cloud, we create a datacenter whose VMs’ configuration is inspired by
Amazon EC2 X-large instances3. Practically, the created datacenter hosts five physical
machines each of which is assigned with a number of VMs varying from 10 to 50 of image
size amounting to 10000 MB each. Every VM is equipped with 5-core CPU of 1000 Millions
of Instructions Per Second (MIPS) each. Each VM has a memory RAM capacity of 16 GB,
hard drive storage of 976.5625 GB, and network bandwidth share of 50000 Kbit/s. In the
created datacenter, x86 has been used as a system architecture, Linux as an operating
system, and Xen as a Virtual Machine Monitor (VMM). The properties of the datacenter
and VMs are summarized in Table 6.2. The VMs are given a set of CPU-intensive tasks
(i.e., cryptographic operations and scientific computations). The properties of the tasks
have been populated from SPECjvm2008 [9], a standard benchmark suite for Java virtual
machines.

Table 6.2: Datacenter properties

Parameter Value
Number of physical hosts 5
System architecture x86
Operating system Linux
Virtual Machine Monitor Xen
Number of VMs 10, 20, 30, 40, and 50
Number of CPU cores per VM 5
CPU speed per VM 1000 MIPS
RAM memory per VM 16 GB
Hard drive storage per VM 976.5625 GB
Network bandwidth share per VM 50000 Kbit/s

To populate the trust recommendations regarding VMs, we resort to the use of the
Epinions data set4 that has been long used in cloud computing and many other domains
for representing trust [103, 33]. The data set comprises 664,824 ratings given by 49,290

agents on 139,738 items. The prices of the VMs that are used along with the trust scores
to compute the utility functions of both the hypervisor and attackers have been populated
from the Amazon EC2 pricing dataset5. We compare our model against a benchmark
consisting of two other models, namely the Price-based Maxmin [143] and Fair Allocation
[154, 159]. Similar to our model, the Price-based Maxmin employs a maxmin game to
derive the optimal detection load distribution. However, unlike our solution, this model

3https://aws.amazon.com/ec2/details/
4https://snap.stanford.edu/data/soc-Epinions1.html
5http://aws.amazon.com/ec2/pricing/

131

10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

80

90

100

Number of Virtual Machines

A
tt

a
c
k
 D

e
te

c
ti

o
n

 R
a
te

 (
%

)

Trust-based Maxmin

Price-based Maxmin

Fair Allocation

(a) Attack Detection

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Number of Virtual Machines

F
a

ls
e

 N
e

g
a

ti
v

e
 (

%
)

Trust-based Maxmin

Price-based Maxmin

Fair Allocation

(b) False Negative

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Number of Virtual Machines

F
a
ls

e
 P

o
s
it

iv
e
 (

%
)

Trust-based Maxmin

Price-based Maxmin

Fair Allocation

(c) False Positive

Figure 6.3: Detection performance: Our model increases the percentage of detected at-
tacks and decreases the percentages of false negatives and resources wastage compared
to the price-based maxmin and the fair allocation strategy

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Number of Virtual Machines

C
P

U
 U

s
a
g

e
 u

n
d

e
r

D
D

o
S

 A
tt

a
c
k
 (

%
)

Trust-based Maxmin

Price-based Maxmin

Fair Allocation

(a) CPU Usage

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

Number of Virtual Machines

M
e
m

o
ry

 U
s
a
g

e
 u

n
d

e
r

D
D

o
S

 A
tt

a
c
k
 (

%
)

Trust-based Maxmin

Price-based Maxmin

Fair Allocation

(b) Memory Usage

10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

Number of Virtual Machines

B
a
n

d
w

id
th

 U
s
a
g

e
 u

n
d

e
r

D
D

o
S

 A
tt

a
c
k
 (

%
)

Trust-based Maxmin

Price-based Maxmin

Fair Allocation

(c) Bandwidth Usage

Figure 6.4: Resources usage: Our model minimizes the CPU, memory, and network band-
width usage under DDoS attack compared to the price-based maxmin and the fair alloca-
tion strategy

considers the worth of the VMs (concretized as the VMs’ prices) solely in the formulation
of the problem. Our model considers, in addition to the worth, the trust scores of the VMs
believed by the hypervisor. The fair allocation model, on the other hand, distributes the
detection load in an equal fair manner among all VMs. Note that we have selected the fair
allocation model to compare with since it is the commonly used allocation strategy for cloud
resources in the domain of cloud computing [154, 159]. We have adapted the resources
fair allocation model to the detection load distribution problem as we were not able to
find, through our extensive literature review investigation, any detection load distribution
strategy in the domain of cloud computing other than our previous Price-based Maxmin
strategy [143].

132

6.5.2 Experimental Results

In Fig. 6.3, we study how effective the proposed model is in improving the detection
performance metrics, namely attack detection, false positive and false negative percent-
ages compared to the price-based maxmin and fair allocation models. Fig. 6.3a reveals
that our solution along with the price-based maxmin outperforms the fair allocation model
in terms of attack detection (this is the case as well for the rest of the parameters as will
be shown later). The reason is that the two former models consider the attacker’s strategy
when deciding about the detection load distribution strategy among VMs contrary to the
fair allocation model wherein the distribution is done by considering the IDS’s perspective
only. Moreover, Fig. 6.3a shows that the trust-based maxmin performs better than the
price-based maxmin model in increasing the detection of the attacks. This is because our
trust-based solution allows the hypervisor to learn about the behavior of the VMs over the
time, which enables it to adjust the detection load distribution in such a way that assigns
more load to the VMs that have a large number of misbehavior during their past history.
Besides the incremental learning property that our solution offers to the hypervisor, the
fact that trust is a private relationship between the hypervisor and VMs reduces the pos-
sibility of the attacker to predict the potential detection load distribution strategy that will
be adopted by the hypervisor (i.e., the attacker is unable to know which VMs are the most
trusted by the hypervisor to attack through). Per contra, in the price-based model, the at-
tacker may anticipate, for example, that the hypervisor would dedicate more detection load
to the more valuable VMs (knowing that the VMs’ prices are publicly available for users)
and adjust hence its attack distribution strategy accordingly.

In Fig. 6.3b, we measure the false negative percentage that quantifies the percentage
of attacks that the system was not able to capture during the detection process. This
percentage is computed by subtracting the probability distributions of the attacker from
those of the hypervisor when the values of the former are greater. The average false
negative rate α[t1,t2] during the time window [t1, t2] is computed as follows:

α[t1,t2] =
t2

∑
x=t1

∑
v∈V

(qx(v)− px(v))
t2− t1

for each qx(v)> px(v). (49)

The false negative rate in the example given in Section 6.4 would be: α = [(0.3979−
0.3011)] = 0.0968. Thus, the percentage of false negatives entailed by our model in the
given example is: 0.0968× 100 = 9.68%. Fig. 6.3b shows that our model diminishes the
false negative of the IDS for the same arguments explained in the context of attack de-
tection. Intuitively, decreasing false negatives is an automatic result of increasing attacks
detection.

133

In Fig. 6.3c, we measure the percentage of false positive incurred by the studied de-
tection models. This metric is of prime importance in our case since it can tell us the
percentage of resources wasted by the system during the detection process. Intuitively,
false positive measures in our case the percentage of resources spent by the hypervisor in
monitoring the VMs while these VMs are not sending any attack fragment. It is obtained by
subtracting the probability distributions of the hypervisor from those of the attacker when
the values of the former are greater. The average rate of resources wasted γ[t1,t2] during
the time window [t1, t2] is computed as follows:

γ[t1,t2] =
t2

∑
x=t1

∑
v∈V

(px(v)−qx(v))
t2− t1

for each px(v)> qx(v), (50)

The false positive rate in the example given in Section 6.4 would be: γ = [(0.3562−
0.2875)+(0.3427−0.3146)] = 0.0968. Thus, the percentage of false positives entailed by our
model in the given example is: 0.0968×100= 9.68%. Fig. 6.3c shows that our model is able
to considerably reduce the percentage of false positives compared to the other two models.
This is justified by the fact that our model guides the hypervisor on the optimal distribution
of detection load that best synchronises with the attacker’s probability distributions of the
DDoS attacks.

Fig. 6.4 is introduced to study the effectiveness of the proposed model in minimizing
the cloud system’s resources consumption when this system faces DDoS attack scenar-
ios. Fig. 6.4a measures the CPU consumption of the cloud system under DDoS attacks.
Practically, we measure the percentage of CPU that is being consumed by the VMs in the
presence of both legitimate requests coming from well-behaving VMs and fake (malicious)
requests coming from malicious or compromised VMs. Fig. 6.4a reveals that using our
proposed model minimizes the cloud system’s CPU consumption under DDoS. Indeed,
the fact that our model augments the attack detection and decreases the false positive and
negative percentages enables the hypervisor to optimize its resources allocation strategy
by limiting the CPU portion assigned to the VMs that are detected to be generating ma-
licious requests, which helps thus save the system’s resources and restrict the wastage.
Similarly, Fig. 6.4b demonstrates that applying our solution minimizes the cloud system’s
memory consumption compared to the price-based maxmin and the fair allocation models.
In fact, by enhancing the hypervisor’s ability to recognize the malicious requests, our model
mitigates the load put on the system’s memory by these requests. Fig. 6.4c shows that our
solution reduces the network bandwidth’s consumption compared to the other two models.
This is due to the effectiveness of our model in identifying attacks, which reduces the flux
of the malicious traffic on the datacenter’s network.

Moreover, it is worth noticing from Fig. 6.3 and Fig. 6.4 that the performance of the
different models either in terms of detection performance metrics (attack detection, false

134

10 15 20 25 30 35 40 45 50
800

1000

1200

1400

1600

1800

2000

2200

2400

Number of Virtual Machines

T
a
s
k
s
'
S

e
rv

ic
in

g
 T

im
e
 (

S
e
c
o

n
d

s
)

Trust-based Maxmin

Price-based Maxmin

Fair Allocation

(a) Tasks’ Servicing Time

10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Virtual Machines

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
o

n
d

s
)

Trust-based Maxmin

Price-based Maxmin

Fair Allocation

(b) Execution Time

Figure 6.5: Servicing and execution times: Our model reduces the tasks’ servicing time
compared to the price-based maxmin and the fair allocation strategy and is efficient in
terms of execution time

positive, and false negative) or in terms of resources consumption (CPU, memory, and
bandwidth) decreases with the increase in the number of VMs. This fact is expected since
the more the VMs deployed in a cloud infrastructure, the higher is the freedom given to the
attacker to divide its attacks over a greater number of VMs and the less is the detection
load that the hypervisor might be able to dedicate for each single VM. Though, our model is
still far more resilient to a larger number of deployed VMs due to the advantages explained
earlier that our solution brings, which supports the scalability of our model.

We study in Fig. 6.5a the average time taken by the VMs to respond to the assigned
tasks. This metric is obtained by subtracting the tasks’ end time from the tasks’ start
time for each VM and averaging these times over all the cloud system’s VMs. The re-
sults demonstrate that our model aids in reducing the servicing time compared to the
price-based maxmin and fair allocation models. The reason is that our model is able to
maximize the detection of the DDoS attacks, which helps reduce the congestion on the
cloud system’s resources and assists hence the legitimate tasks in being accomplished in
a more efficient fashion.

Finally, Fig. 6.5b measures the efficiency of the three studied models in terms of their
execution time with the variation in the number of VMs. The results reveal that the fair
allocation model performs faster than both our model and the price-based model. This
result is expected since the fair allocation model divides simply the detection load equally
among VMs, which alleviates the time spent on computing the optimal detection load dis-
tribution. Moreover, the price-based model performs a bit faster than our model. This time
difference may be thought of as the time needed by our model to collect and compute the
trust scores for the VMs and adding these scores to the utility functions. In addition, we
can notice from the results that our model takes around 4.4 seconds to compute the opti-
mal detection load distribution for a cloud system consisting of 50 VMs, which boosts the

135

efficiency of our solution. Moreover, by inspecting Fig. 6.5b, we can notice that the time
complexity of the model grows polynomially with the increase in the number of VMs, which
upholds the feasibility of our model in large-scale cloud datacenters.

6.6 Conclusion

In this chapter, we tackled the problem of maximizing the detection of VM-based DDoS
attacks in cloud systems. For this purpose, we proposed first a trust model that combines
objective (monitoring) and subjective (recommendations) trust sources and employs the
Bayesian inference to aggregate them so as to build credible trust relationships between
the hypervisor and guest VMs. On top of this model, we introduced and solved a trust-
based hypervisor-attacker maxmin game wherein the hypervisor seeks to maximize the
detection probability under a limited budget of resources, knowing that the attacker is trying
to minimize this maximization by intelligently distributing the DoS attacks over several VMs.
By solving the game, the hypervisor learns about the optimal distribution strategy of detec-
tion load among VMs that maximizes the detection of DDoS attacks. Promisingly, a series
of experimental comparisons with a benchmark consisting of the price-based maxmin and
fair allocation detection load distribution strategies reveal that our solution maximizes the
detection of DDoS attacks up to ≈ 26% and minimizes the false positives and negatives
by ≈ 20%. Moreover, our solution proves to be able to minimize the cloud system’s CPU
consumption by≈ 15%, memory consumption by≈ 11%, and network bandwidth consump-
tion by ≈ 5% under DDoS scenarios. Lastly, the proposed solution performs efficiently in
large-scale data centers, where it takes ≈ 4.4s to run in a cloud system consisting of 50

co-hosted VMs. Thus, we have partially achieved our third research objective (Objective
3) discussed in Chapter 1, which aimed at maximizing the detection of active malicious
attacks using a limited budget of resources.

In the next chapter, we complement this work by putting forward an intelligent detection
approach that is able to detect not only DDoS attacks but also multi-type simultaneous
attacks targeting the cloud system. The proposed approach copes as well with the chal-
lenge of encountering smart attackers that continuously monitor the detection strategies of
the cloud system to adjust their attack plans accordingly. Moreover, an attack prevention
mechanism that is able to protect cloud-based services from being successful targets for
attackers is also discussed in the next chapter.

136

Chapter 7

Resource-Aware Detection and
Defense System Against Multi-Type
Attacks in the Cloud

Cloud-based systems are subject to various attack types launched by Virtual Machines
(VMs) manipulated by attackers having different goals and skills. The existing detection
and defense mechanisms might be suitable for simple attack environments but become in-
effective when the system faces advanced attack scenarios wherein simultaneous attacks
of different types are involved. This is because these mechanisms overlook the attack-
ers’ strategies in the detection system’s design, ignore the cloud system’s resource con-
straints, and lack sufficient knowledge about the attackers’ types and abilities. To address
these shortcomings, the goal of this chapter is to develop a comprehensive detection and
defense mechanism against multi-type attacks in the cloud. The proposed solution is pre-
sented in the form of a repeated Bayesian Stackelberg game that consists of four phases
executed repeatedly to provide the cloud system with incremental and continuous learning
about the attackers’ strategies and objectives and the VMs’ actual security status 1.

7.1 Problem Formulation

We illustrate in this section the problem formulation and explain the attack model con-
sidered in this chapter.

1The content of this chapter is submitted to the IEEE Transactions on Cloud Computing journal (Under
Second Round of Reviews)

137

7.1.1 System Model

The system model consists of a set of virtual machines V = {v1,v2, ...,vk} hosted on a
shared hypervisor. Note that when i ∈ {1, . . . ,k} can be understood from the context, we
simply use v instead of vi. These VMs might be either well-behaving or attacking. Well-
behaving VMs are those that aim at doing their jobs smoothly without having the intention
to harm neither the cloud system nor other VMs. On the other hand, attacking VMs seek
to harm the cloud system and/or other co-hosted VMs by continuously and collaboratively
sending malicious code fragments to form distributed malicious attacks. Such VMs might
be either (1) malicious in case their real owners create the attacks or (2) compromised in
case the source of attacks is a third party that manipulates VMs and injects its malicious
code through them2. Each attacking VM is of type y ∈ Y , where Y denotes the set of all
attackers’ types (e.g., privilege escalation attackers, DoS attackers, etc). Knowing this fact,
the cloud system has to find the optimal detection strategy that maximizes the detection
of such attacks. To do so, the hypervisor, acting on behalf of the cloud system, has a
specific amount of resources R that comprises both the amount Rc of resources to be
dedicated to serving clients and the amount Rd of resources to be dedicated for intrusion
detection such that R = Rc +Rd . Thus, the objective of the hypervisor becomes finding
the optimal detection load distribution strategy that maximizes the detection of distributed
attacks, while respecting the budget Rd of resources. We model this situation as a repeated
Bayesian Stackelberg security game of two players, i.e., hypervisor and attackers. The
game is played sequentially in the sense that the hypervisor representing the leader of
the game commits first to a certain detection load distribution strategy and then attackers
(followers of the game) choose their attack distribution strategy after having observed the
hypervisor’s move.

Formally, the hypervisor’s set of pure strategies consists of a (sub)set of VMs to put the
detection load on. To rip off and confuse attackers, the hypervisor would select a mixed
strategy (i.e., probability distributions) at each time moment x belonging to the fixed interval
of discrete time [t1, t2]. The mixed strategy consists of the vector Hx(V) = (hx(v1), . . . ,hx(vk))

over the set V of VMs hosted on top of the hypervisor such that ∑vi∈V hx(vi) = 1. In this
way, the hypervisor would assign a different detection load probability to each of its VMs.
The attackers observe the hypervisor’s detection load distribution strategy and then decide
about their own strategies consisting also of a (sub)set of VMs through which the attack
is to be launched. In their turn, attackers might choose a mixed strategy at time moment
x ∈ [t1, t2] consisting of the vector Ax(V) = (ax(v1), . . . ,ax(vk)) over the set V of VMs to attack
through such that ∑vi∈V ax(vi) = 1. In this way, each attacker would pick a VM v∈V at time x

with a probability of ax(v)∈ Ax(V) to attack through so as to confuse the cloud system [106].

2In the rest of this chapter, the term attacker is used to refer to both cases.

138

Note that attackers may decide not to attack through any VM at a certain time moment.

Based on the strategies adopted by both the hypervisor and attackers, a payoff is as-
signed to each of these parties. Particularly, when the hypervisor selects the strategy i and
the attacker selects the strategy j, the hypervisor receives a payoff of Ui j and the attacker
receives a payoff of Qi j. The utility of the hypervisor for each VM v facing an attack of type
y at time t2 +1 (current system time based on the interval [t1, t2]) is given by Equation (51).

Uv,y
i j (t2 +1) =

β ([t1, t2])×w(v)−mon(v)
κy(v)

(51)

This payoff represents the success of the hypervisor in protecting its virtual machine v of
worth w(v) (the worth of a VM depends mainly on its price as well as its hardware, network,
and storage configuration) minus the cost mon(v) of monitoring v; inversely proportional to
the degree of damage κy(v) caused by an attacker of type y assaulting through v. Since
the success of detection depends heavily on the IDS’s detection probability, the utility of
the hypervisor at time t2+1 is weighed based on its average detection rate β ([t1, t2]) during
the time window [t1, t2], which is computed as per Equation (52).

β ([t1, t2]) = 1−
t2

∑
x=t1

∑
v∈V

λ

t2− t1
, (52)

λ =

{
ax(v)−hx(v), if ax(v)> hx(v)

0, otherwise

In Equation (52), ∑
t2
x=t1 ∑v∈V ax(v) represent the attack distribution probabilities adopted by

attackers on every v∈V at each time moment x < t2+1, which are known by the hypervisor
using the backward induction reasoning (See Section 7.2). Similarly, ∑

t2
x=t1 ∑v∈V hx(v) rep-

resent the detection load probability distributions adopted by the hypervisor on every v ∈V

at each time moment x < t2 + 1. Note that all the calculations in the rest of this chapter
are done at time t2 + 1 (i.e., the current time for the hypervisor and attackers). Thus, we
simplify the notation and use Uv,y

i j (respectively Qv,y
i j) instead of Uv,y

i j (t2+1) (Qv,y
i j (t2+1)) when

referring to hypervisor’s (attacker) utility at time t2 +1.

On the other hand, the attacker’s payoff would be:

Qv,y
i j = w(v)×κ

y(v)−att(v) (53)

This payoff quantifies the gain of the attacker from exploiting the VM of worth w(v)

proportionally to the damage κy(v) caused by the attacker of type y assaulting through v

139

Table 7.1: List of attacks w.r.t the associated vulnerabilities

Attacks Vulnerabilities
Hypervisor’s Memory Content Disclosure Virtual CPUs
Co-hosted VMs’ Memory Modification Soft Memory Management Unit (MMU)
Denial of Service I/O and networking

Interrupt and timer
Paravirtualized I/O
VM exits

Virtual Machine Destruction VM Management
Virtual Machine Crash Hypercalls
Privileges Escalation Symmetric Multiprocessing (SMP)

Remote Management Software
Hypervisor Add-ons

minus the cost att(v) incurred by attacking v.

7.1.2 Attack Model

We consider in this work the attacks that occur at the cloud system’s virtualization sur-
face which offers attackers with a new appealing security attack vector. Roughly speaking,
each functionality provided by the hypervisor (e.g., CPU virtualization, VM management,
etc.) can include some vulnerabilities that attackers might exploit to carry out their ma-
licious activities. We discuss in the following some of the attacks that might be exerted
against the cloud system w.r.t the corresponding vulnerabilities that might be exploited to
carry out such attacks. These attacks have been utilized when performing our experi-
ments as will be explained in Section 7.4. The list of attacks along with their correspond-
ing vulnerabilities are summarized in Table 7.1. These attacks have been inspired by
the list of cloud-specific vulnerabilities identified in [112] as a recapitulation of some real
vulnerabilities collected from the National Institute of Standards and Technology (NIST)’s
National Vulnerability Database (NVD) [5], SecurityFocus [8], Red Hat’s Bugzilla [7] and
Code Vulnerabilities and Exposures (CVEs) [4]. The attacks include hypervisor’s memory
content disclosure, co-hosted VMs’ memory modification, DoS, virtual machine destruc-
tion, virtual machine crash, and privilege escalation. The hypervisor’s memory content
disclosure attackers might exploit vulnerabilities emerging from the virtualization of the
CPU and memory operations to reveal some data contained in the hypervisor’s physical
memory. Co-hosted VMs’ memory modification attackers take advantage of the memory
virtualization process to gain access to the physical host and be able hence to alter the
memory kernel-space of some co-resident VMs. In their turn, DoS attackers benefit from
some vulnerabilities present in the Input/output (I/O) and networking, Interrupt and timer,
Paravirtualized I/O, and VM exits to inject some malicious instructions that lead to huge
increase in the resources allocated to some VMs. Virtual machine destruction attackers

140

exploit the VMs’ management operations (i.e., starting, stopping, and pausing VMs) to in-
ject some malicious code into the management domain leading to destroy some co-hosted
VMs. As for the virtual machine crash attackers, such attackers strive to manipulate VMs
and start embedding random memory physical addresses into their memory management
(hyper)calls, which leads to crash the VMs in question. Finally, privilege escalation attack-
ers take advantage of some of the vulnerabilities that may be present in the Symmetric
Multiprocessing (SMP), Remote Management Software (RMS), and Hypervisor Add-ons
to get some unprivileged (Ring 3) malicious processes executed. More details about these
attacks are given in the following:

• Hypervisor’s Memory Content Disclosure: Each guest VM is assigned with a set
of virtual CPUs (vCPUs) whose role is to mirror the physical CPU’s actions. Poor
initialization of the vCPU’s data structures might result in very dangerous threats
including the disclosure of the hypervisor’s memory content. As a real-world attack,
a padding field that has not been zeroed-out ended up carrying some information
from data structures formerly used by the hypervisor. This enabled attackers to learn
about some data contained in the hypervisor’s memory.

• Co-hosted VMs’ Memory Modification: Since guest VMs are not permitted to get
direct access to the host’s Memory Management Unit (MMU) [112], the hypervisor
has to run a soft version of the MMU in order to maintain a shadow page table (data
structure used to store mappings of virtual addresses to physical addresses) for each
guest VM. In this way, such a soft MMU will intercept each page mapping (from the
virtual address provided by the VM to the physical address of the actual memory
where needed data is stored) issued by the VM with the aim of adapting shadow
page tables appropriately. Unfortunately, vulnerabilities in the underlying soft MMU
can be maliciously and dangerously exploited by attackers to unveil and modify data
contained in co-hosted VMs’ memory segments. As a real-world attack example, the
fact that Kernel-based Virtual Machine (KVM)’s emulator used to run in Ring 0 (most
privileged) mode when accessing a guest VM’s memory, allowed unprivileged (Ring
3) application running inside a VM to gain access to a Memory Mapped I/O (MMIO)
region through emulated MMIO instructions. This was exploited to force KVM to
execute a malicious instruction that alters the memory kernel-space of the VM in
question.

• Denial-of-Service (DoS): To carry out DoS attacks, attackers might take advantage
of some vulnerabilities present in the Input/output (I/O) and networking, Interrupt and
timer, Paravirtualized I/O, and VM exits. We explain in the following how I/O and
networking vulnerabilities can be practically exploited to perform DoS attacks. In

141

virtualized environments, the hypervisor takes the role of emulating networking and
I/O operations. This is usually done through a separation of roles, where emulated
drivers are either front-end or back-end. While front-end drivers stay in the guest VMs
and have no immediate access to the physical hardware, back-end drivers reside in
the hypervisor and have direct access to the host’s resources. Thus, a communi-
cation between front-end and back-end drivers is required to accomplish the desired
operations. The fact that such a process is usually coded in high-level expressive pro-
gramming languages such as C and C++ [112] makes it prone to elaborate attacks
such as DoS. As a real-world example, a vulnerability that existed in Xen hypervi-
sors gave paravirtualized front-end drivers the chance to forward a malicious shared
framebuffer descriptor that deceived Xen into assigning them large internal buffer
inside Dom0, which resulted in a DoS situation.

• Virtual Machine Destruction: The hypervisor is responsible for performing the guest
VMs’ management responsibilities that include starting, stopping, and pausing these
VMs. When starting a VM, at each boot up operation, the VM’s kernel images have
to be decompressed into memory and interpreted by the hypervisor’s management
domain. This can be exploited by attackers to inject some malicious code into the
management domain leading to break down some co-hosted VMs. As a real-world
attack example, some attackers took advantage of the fact that Xen’s bootloader
employed Python’s exec() statements to handle kernel’s configuration files and were
able to change the configuration file inside Dom0 in such a way that destroys another
co-hosted VM using the xm destroy command.

• Virtual Machine Crash: Hypercalls, in their turn, can be manipulated to execute
malicious attacks. In fact, hypercalls offer guest VMs with the ability to demand
privileged actions from the hypervisor such as CPU and Hard Disk partitions man-
agements. Thus, attackers who take control of some guest VMs can manipulate
hypercalls to obtain premium privileges over the host’s resources. As a real-world
example, KVM used to allow unprivileged (Ring 3) guest VMs to make memory man-
agement hypercalls, which was exploited by attackers to inject random memory phys-
ical addresses into the memory management hypercall which resulted in crashing the
underlying VM.

• Privilege Escalation: Privilege escalation attacks might be executed by exploiting
some vulnerabilities that may be present in the Symmetric Multiprocessing (SMP),
Remote Management Software (e.g., Web applications providing user interfaces for
virtualization management), and Hypervisor Add-ons. We illustrate in what follows
how vulnerabilities in the SMP property can be practically exploited to launch privi-
leges escalation attacks. Specifically, the SMP property that comes with some guest

142

VMs allows two or more vCPUs pertaining to one single VM to be scheduled simul-
taneously to the physical CPU. The vulnerabilities in such a case would emerge from
a hypervisor’s code making presumptions that are only valid on single-threaded pro-
cesses but do not hold any more in multi-threaded environments. As a real-world
attack example, a bug in the KVM hypervisor allowed malicious unprivileged (Ring
3) processes to exploit a race condition scenario to execute privileged instructions.
Particularly, attackers have invoked a legitimate I/O instruction on one thread and
tried to replace it with a privileged instruction from another thread right after KVM did
the validity check of the first one but before it was executed. This means that the
(second) privileged instruction is the one that has been actually executed although
(only) the first instruction underwent the validity check.

7.2 Adaptive Detection Load Distribution Strategy: Bayesian

Stackelberg Game

We formulate in this section the intrusion detection problem as a Stackelberg security
game between the cloud system and attackers. Practically, the hypervisor (acting on be-
half of the cloud system) plays the role of the game leader and makes the first move by
choosing its detection load distribution strategy over VMs, whereas attackers are the fol-
lowers that observe the leader’s strategy and choose their best responses to it in terms of
attack distribution strategies. The game is modeled first as a Mixed-Integer Quadratic Pro-
gram (MIQP) and then converted into a Mixed-Integer Linear Program (MILP) to be solved
using a linear programming solver tool. The backward induction reasoning is employed to
determine the optimal strategies of both the cloud system and attackers. This is done by
first deriving the best response of the attackers to a (fixed) observed strategy of the cloud
system and then integrating this best response to the cloud system’s optimization problem
to help it select the optimal detection load distribution strategies. Intuitively, this means that
the cloud system anticipates that attackers will play their best responses to its (observed)
detection load distribution strategy and embeds this knowledge into its optimization prob-
lem to select the optimal detection load distribution strategy using this information.

Let L and F denote the index sets of the hypervisor (leader) and attacker’s (follower)
pure strategies, respectively. Let l represent a vector of the hypervisor’s pure strategies
(a.k.a hypevisor’s policy) and f represent a vector of the attacker’s pure strategies (a.k.a
attacker’s policy). Thus, the value li would represent the proportion of times in which the
hypervisor plays the pure strategy i from its policy set. Similarly, the value f j represents the
proportion of times in which the attacker plays the pure strategy j from its policy set. Based
on the strategies chosen by the hypervisor and attacker and as explained in Section 7.1,

143

U and Q represent the payoff matrices such that Ui j is the gain of the hypervisor and Qi j

is the gain of the attacker when the hypervisor selects the pure strategy i and the attacker
selects the pure strategy j.

Let us fix first the hypervisor’s policy to a certain policy l. After observing l, the attacker
needs to solve the following linear programming optimization problem in order to determine
its optimal response to l:

maximize ∑
j∈F

∑
i∈L

Qi j× f j× li

subject to ∑
j∈F

f j = 1,

f j ∈ [0,1], ∀ j ∈ F

(54)

Knowing the fixed strategy l of the leader, the best response f j(l) of the attacker should
yield a non-negative utility to the attacker, which means that Problem (54) has to satisfy
the following constraint:

f j×∑
i∈L

Qi j× li ≥ 0, ∀ j ∈ F (55)

Moreover, given that f j(l) is the attacker’s best response strategy, any deviation from
this strategy (i.e., 1− f j) would lead the attacker to undergo a loss in terms of utility. Thus,
Problem (54) has to satisfy the following constraint as well:

(1− f j)×∑
i∈L

Qi j× li ≤ 0, ∀ j ∈ F (56)

Let’s move now to the cloud system’s side. The hypervisor, knowing that the attacker
will play its best response f j(l) to every hypervisor’s strategy l, incorporates this knowledge
into its optimization problem to determine the solution l that maximizes its own payoff.
Thus, the hypervisor has to solve the following problem:

maximize ∑
i∈L

∑
j∈F

Ui j× f j(l)× li

subject to ∑
i∈L

li = 1,

li ∈ [0,1], ∀i ∈ L

(57)

Problem (57) can be completed by incorporating the characterization of f j(l) depicted
in Problem (54) and Equations. (55) and (56). Taking into account the fact that given any
optimal mixed strategy f j(l), then all the pure strategies in its support are also optimal
[108], we can consider only the optimal pure strategies of the attacker (which exist always)

144

and symbolize the optimal pure strategies using binary variables. Thus, the hypervisor’s
problem becomes:

maximize
l, f

∑
i∈L

∑
j∈F

Ui j× li× f j

subject to ∑
i∈L

li = 1,

∑
j∈F

f j = 1,

(1− f j)×∑
i∈L

Qi j× li ≤ 0, ∀ j ∈ F

f j×∑
i∈L

Qi j× li ≥ 0, ∀ j ∈ F

li ∈ [0,1], ∀i ∈ L

f j ∈ {0,1}, ∀ j ∈ F

(58)

In order to enhance the decisions of the hypervisor, we incorporate the probability dis-
tribution py of facing each type y∈Y of attackers into the hypervisor’s optimization problem.
For example, if the hypervisor learns that the majority of attackers targeting the cloud sys-
tem at a certain time moment are DoS attackers, then it would adjust its detection load
strategy towards assigning more load to the VMs that are suspected to be vulnerable
to such attacks. Section 7.3.3 explains how the hypervisor would be able to practically
compute py. Having embedded the probability distribution py, the hypervisor’s problem
becomes:

maximize
l, f

∑
y∈Y

∑
i∈L

∑
j∈F

py×Uy
i j× li× f y

j

subject to ∑
i∈L

li = 1,

∑
j∈F

f y
j = 1, ∀y ∈ Y

(1− f y
j)×∑

i∈L
Qi j× li ≤ 0, ∀ j ∈ F, y ∈ Y

f y
j ×∑

i∈L
Qi j× li ≥ 0, ∀ j ∈ F, y ∈ Y

li ∈ [0,1], ∀i ∈ L

f y
j ∈ {0,1}, ∀ j ∈ F, y ∈ Y

(59)

In Problem (59), the first and fifth constraints compel a feasible mixed policy for the
hypervisor, whereas the second and sixth constraints compel a feasible pure strategy for
the attacker. The sixth constraint restricts as well the actions’ vector of the attacker to be a
pure distribution over F . The third and fourth constraints force the best response f j(l) to be

145

optimal for the attacker in terms of gained utility. Problem (59) is an integer program with a
non-convex quadratic objective [108]. Thus, the final step would be converting the Mixed-
Integer Quadratic Programming (MIQP) at hand into a Mixed-Integer Linear Programming
(MILP) by removing the non-linearity of the objective function. This can be achieved by
assigning the value of li× f y

j to a new variable zy
i j. Thus, the problem becomes:

maximize
l, f

∑
y∈Y

∑
i∈L

∑
j∈F

py×Uy
i j× zy

i j

subject to ∑
i∈L

∑
j∈F

zy
i j = 1, ∀y ∈ Y

f y
j ≤∑

i∈L
zy

i j ≤ 1, ∀ j ∈ F, y ∈ Y

∑
j∈F

f y
j = 1, ∀y ∈ Y

(1− f y
j)×∑

i∈L
Qi j× zy

i j ≤ 0 ∀ j ∈ F, y ∈ Y

f y
j ×∑

i∈L
Qi j× zy

i j ≥ 0 ∀ j ∈ F, y ∈ Y

zy
i j ∈ [0,1], ∀i ∈ L, j ∈ F, y ∈ Y

f y
j ∈ {0,1}, ∀ j ∈ F, y ∈ Y

(60)

Having linearized the problem, the MILP in Problem (60) can be now solved using a
linear programming solver tool to derive the optimal mixed strategies of the cloud system
and attackers [40]. For example, a possible optimal mixed strategy for the cloud system
over the set V = {v1,v2,v3} of VMs could be to assign 35% of the detection load to v1, 25%

to v2, and 40% to v3, when attackers are attacking 30% of times over v1, 30% of times over
v2, and 40% over v3.

7.3 Learning-based Detection and Defense System: Repeated

Bayesian Stackelberg Game

As depicted in Fig. 7.1, the repeated Stackelberg game consists of four main phases:
Bayesian Stackelberg game, virtual machines’ risk assessment, services deployments and
defense mechanism, and attackers’ types recognition technique. These phases run re-
peatedly at each time unit x of the discrete time window [t1, t2]. The Bayesian Stackelberg
game (described in Section 7.2) computes the optimal probability distributions of the hy-
pervisor’s detection load over the guest VMs. To evaluate the effectiveness of the detection
strategy, the risk assessment phase enables the hypervisor to conduct an in-depth study
on the vulnerabilities and threats that might be present on VMs and to analyze the past

146

�������� 	
��������

����

��������� !"#$%&

'()*+,-./

0123 456789:;<=

>?@ABCDEFGHIJK LMNOPQRSTU

VWXYZ [\]^_`abcde

fghijkl mnopqrstu vwxy

z{|}~������ �������������

���� ����� �� ��� ¡¢£¤¥¦§

¨©ª«¬®

¯°±² ³´µ¶·¸¹º» ¼½ ¾¿ÀÁÂÃÄÅ

ÆÇÈÉÊËÌ ÍÎÏÐÑÒ ÓÔÕÖ× ØÙÚ

ÛÜÝÞßàáâãä åæçèé

êëìíîïðñòóô õö÷øùúûüýþÿ��

��������	� �
�������� � ����������

!"

#$%&'()*+,

-./01234 56789:;<=>?@ABCD

EFG HIJKLMNO
PQRSTUVWX YZ[\]^_`ab cdefghij

klmnop
qrstuv

wxyz{|}~����������������������������

�� �� � ¡¢
£¤

¥¦§¨©ª«¬®

¯°±² ³´µ¶·¸¹º»
¼½¾¿ ÀÁÂÃÄÅÆÇÈ

ÉÊËÌÍÎÏÐÑ

ÒÓÔ
ÕÖ×ØÙÚÛÜÝ

Þßà

Figure 7.1: Repeated Bayesian Stackelberg Game: The repeated Bayesian Stackelberg
game is composed of four main phases: Bayesian Stackelberg game, Risk Assessment,
Services Deployment, and Honeypots Deployment

attack history of those VMs to derive the appropriate risk level of each guest VM. Having
identified the risky VMs, the goal of the services deployment phase is to advance a de-
fense mechanism that protects services from being successful target for attackers. This
is done by offering a live-migration-based [30] decision making framework that allows the
hypervisor to migrate services hosted on VMs classified as risky to other safer VMs. Fi-
nally, the honeypots deployment phase exploits the idle VMs (running no active services)
by deploying honeypots inside them to collect malicious data with the aim of studying and
learning the behavior and objectives of the attackers. The collected data is analyzed using
a one-class SVM classifier to predict the types of attackers and learn about their probability
distributions. This information is used finally to feed the Bayesian Stackelberg game of the
next time moment x+1 with the probability distributions over the attackers’ types to adjust
and optimize the hypervisor’s detection load distribution strategies. Note that only the first
two phases (Bayesian Stackelberg game and risk assessment) have to be continuously
repeated (i.e., every time unit of the discrete time window). Specifically, the execution of
the rest of the phases is dependent on the output of the risk assessment phase. In other
words, if no VMs are suspected to be risky at a certain time unit, there will be no need to
proceed with the other subsequent steps at that time moment. In what follows, we explain
each phase of the repeated Stackelberg game in detail and provide numerical examples to
illustrate how our solutions can be practically applied.

7.3.1 Virtual Machines Risk Assessment

Having computed the optimal detection load distribution strategy using the one-stage
Bayesian Stackelberg game described in Section 7.2, the hypervisor assesses in this

147

phase the risk level of each VM. The methodology used for risk assessment is inspired
mainly by that of the NIST [47], which provides a comprehensive guide on how to evaluate
the security risk levels of Information Technology (IT) resources. Specifically, the risk level
of a VM v is estimated in terms of the likelihood of exploiting a specific vulnerability that
is present on v to exert some attack along with the consequent impact of that malicious
act on v. Formally, the risk level assessment function of VM v at the time moment x ∈ [t1, t2]

is calculated as follows:
Riskx(v) = wx(v)×υ

x(v)×ϑ
x(v) (61)

where wx(v) is the worth of v at time moment x, υx(v) is the magnitude of impact resulting
from the exploit of the vulnerabilities present on v at time moment x, and ϑ x(v) is the threat
likelihood on v at time moment x. Thus, the first step in assessing the risk levels would be
estimating the worth of each virtual machine. The worth is an indicator of the degree of
damage that could be entailed by the exercise of a certain attack on the VM. Obviously,
the worth of a certain VM is decided on the basis of its current hardware, storage, and
networking capabilities (e.g., memory, CPU, bandwidth, etc.). Table 7.2 shows a list of
possible worth levels, values, and descriptions that can be used to assess the worths of
the VMs.

Table 7.2: Virtual machine worth scale and description

Worth Level Value Description

Important 6 The VM has sophisticated hardware, networking, and storage

capabilities.

Medium 3 The VM has intermediate hardware, networking, and storage

capabilities.

Moderate 1 The VM has simple hardware, networking, and storage capabilities.

The second step in the risk assessment process involves identifying and listing the VM’s
potential vulnerabilities that attackers might take advantage of to carry out their malicious
attacks. In our case, we use the list of vulnerabilities identified in Table 7.1 and that consists
of: vCPUs, soft MMU, I/O and networking, interrupt and timer, paravirtualized I/O, VM
exits, VM management, hypercalls, SMP, remote management software, and hypervisor
add-ons. Table 7.3 shows a list of possible vulnerability levels, values, and descriptions
that can be used to assess the impacts of vulnerability exploitations on the VMs. Note that
this list can be updated regularly at each time moment x to cover new types of discovered
vulnerabilities, where security administrators/experts can periodically feed the hypervisor
with an updated list of potential vulnerabilities for each corresponding VM.

148

Table 7.3: Vulnerability scale and description

Vulnerability Level Value Description

High 6 The exploit of the vulnerability results in extremely painful losses

for the VM and cloud system as a whole. Such vulnerabilities can

include vCPUs, VM management, SMP, paravirtualized I/O and

remote management software.

Medium 3 The exploit of the vulnerability results in painful losses for the

VM and cloud system. Such vulnerabilities can include soft MMU.

Low 1 The exploit of the vulnerability results in manageable losses

for the VM. Such vulnerabilities can include hypercalls.

Having characterized the potential vulnerability exploitation impacts, the third step is
to determine the corresponding threats that exploit the identified vulnerabilities to launch
attacks against VMs. For our risk assessment process, we restrict the analysis to the
list of attacks identified in Table 7.1 and that consists of: hypervisor’s memory content
disclosure, co-hosted VMs’ memory modification, DoS, virtual machine destruction, virtual
machine crash, and privilege escalation. Table 7.4 shows a list of some possible threats
levels, values, and descriptions that can be used to assess the threat likelihood on the
VMs.

Table 7.4: Threat scale and description

Threat Level Value Description

High 6 The threat is extremely strong and performed by an expert attacker.

Such threats can include hypervisor’s memory disclosure, DoS, and

privilege escalation.

Medium 3 The threat is strong and performed by a motivated attacker. Such threats

can include co-hosted VMs’ memory modification and VM destruction.

Low 1 The threat is weak and performed by a non-professional attacker. Such

threats can include virtual machines crash.

Now that we have defined the worth, vulnerability, and threat levels, we need to proceed
with identifying the risk levels scale to be used as a reference when deciding about the
VMs’ risk levels. The risk levels scales and descriptions are presented in Table 7.5.

149

Table 7.5: Risk Scale and description

Risk Level Risk Scale Description

High 5-6 There is an urgent need to implement corrective measures

(e.g., live migration) to resume the normal operation of the

cloud system.

Medium 3-4 There is a need to implement corrective measures within a

reasonable period of time to resume the normal operation of the

cloud system.

Low 1-2 The risk does not constitute an obstacle to the normal operation of

the cloud system.

We are now well-equipped to move forward with the risk levels determination step,
where the risk level of each VM is computed using Equation (61) after normalization. We
give in Table 7.6 a numerical example that clarifies how to compute and determine the risk
levels of three VMs based on the worth, vulnerability, threat, and risk scales defined in
Tables 7.2, 7.3, 7.4, and 7.5 respectively.

Table 7.6: Risk levels determination example

VM Worth Vulnerability Impact Threat Likelihood Risk

v1 6 1 1 6×1×1
216 ×6 = 0.17

v2 6 3 6 6×3×6
216 ×6 = 3

v3 6 6 6 6×6×6
216 ×6 = 6

In Table 7.6, v1 has to be classified as being low risk (according to Table 7.5), v2 as
moderately risky, and v3 as highly risky. Note that we multiply by 6 and divide by 216 (i.e.,
6×6×6) in Table 7.6 to normalize the computed risk level values [47].

Nonetheless, our risk assessment process is not yet complete. In fact, despite its
importance and effectiveness, the above presented risk assessment is generic for all VMs
and does not take into account the past history of each VM. Practically, to make the risk
analysis more realistic and thorough, we have to consider the past attack history of the
VMs in our analysis. Therefore, we propose to integrate the attack growth/decay (growth
in case the number of attacks is increasing and decay otherwise) factor ex.k(v) of each VM
v at time moment x into our risk level determination formula. Thus, the risk assessment
formula presented initially in Equation (61) becomes:

Riskx(v) = wx(v)×υ
x(v)×ϑ

x(v)× e[(x−1)−(x−2)].kx(v), (62)

kx(v) =
ln(Nx−2(v)

Nx−1(v))

[(x−2)− (x−1)]
(63)

150

where kx(v) is the attack growth/decay rate on v and Nx(v) is the number of times v has
been attacked at time moment x. As depicted in Equation (63), the attack growth/decay
rate kx(v) is computed based on the difference between the number of attacks that existed
at the two past consecutive time moments x−1 and x−2. Assume that the risk calculations
presented in Table 7.6 were derived at time moment x = 3 and that v1 got attacked three
times at time moment x = 1 and five times at time moment x = 2. We explain in the following
how Equation (63) has been derived and how to practically compute the attack growth
factor k3(v1) of v1 at time moment x = 3. Specifically, we have: 5 = 3× e(2−1).k3(v1)⇒ 5/3 =

ek3(v1) ⇒ ln(5/3) = ln(ek3(v1))⇒ ln(5/3) = k3(v1)⇒ k3(v1) = ln(5/3) = 0.511. Thus, the risk
level of v1 would be updated to become R3(v1) = 0.17× e0.511×1 = 0.283, where v1 remains
a lowly risky VM.

7.3.2 Services Deployment and Defense Mechanism

In the light of the results obtained from the risk assessment phase, we discuss in this
section a Moving Target Defense (MTD)-based [111] services’ deployment strategy whose
goal is to provide a defense mechanism to protect the services hosted in the cloud system
from being successful targets for attackers. Practically, we propose a security-oriented
live migration strategy that allows the hypervisor to migrate the services running inside
VMs classified as risky to be hosted in other more secure VMs. To do so, the hypervisor
has to identify first the set of VMs that might serve as replacements for the risky ones.
Apart from security considerations, determining such a set of VMs involves some technical
constraints, where the migration process should maintain some technical compatibilities
between the migration source and destination VMs. For example, the Operating systems
(OSs) of the source and destination VMs have to be consistent since migration between
distinct OSs (e.g., Windows and Linux) might entail some technical complications and
unanticipated technological roadblocks. Moving to the security perspective, the set of VMs
that are eligible to serve as replacements should be evidently selected to be non-risky
based on the risk assessment’s results.

Formally, let Ex(vi) denote the set of VMs that are eligible to replace a VM vi at time
moment x. These VMs satisfy thus aforementioned technical constraints and are classified
as low risk in the risk assessment phase. Also, let px(vi −→ v j) denote the percentage of
worth increase between vi and v j, which is calculated as per Equation (64).

px(vi −→ v j) =

wx(v j)−wx(vi)

wx(vi)
, if wx(v j)−wx(vi)

wx(vi)
≥ 0

+∞, otherwise
(64)

Let v∗j be the VM that gives the minimum worth increase percentage w.r.t vi, i.e., px(vi −→

151

v∗j) = min(px(vi −→ vm)), ∀vm ∈ Ex(vi). The decision of the hypervisor to migrate a service
running inside vi to another VM v j ∈ Ex(vi) is taken as follows:

• if Ex(vi) 6= /0 and px(vi −→ v∗j) 6= +∞, the hypervisor selects the VM v∗j that gives the
least percentage increase in the worth value px(vi −→ v∗j) compared to vi.

• if Ex(vi) = /0 or px(vi −→ v∗j) = +∞, then the hypervisor creates a new VM vz to be the
migration destination for the services running in vi.

The idea behind selecting the VM giving the least worth increase percentage to serve
as a replacement is to guarantee that the migrated service will be running in a new en-
vironment that is very similar to that it was running inside (before migration) in terms of
VM’s storage, hardware, and networking configuration. This is because the worth is an
indicator of the current hardware, storage, and networking capabilities of the VM. Such
a migration decision would help maintain the performance of the service after the mi-
gration process. Along the same lines, we exclude the VMs that give a negative worth
percentage increase (by assigning them +∞ in Equation (64) so that they will never be
selected as minimum) because we do not want the migrated service to run in an envi-
ronment that does not satisfy its actual performance needs. On the other hand, if no
VMs satisfying the technical and security constraints of the migration source vi are avail-
able (i.e., Ex(vi) = /0) or no VMs having non-negative worth increase percentage com-
pared to vi exist (i.e., px(vi −→ v∗j) = +∞), then the hypervisor creates a new VM and
migrates the services running inside the risky VM to it. In the following, we give an illus-
trative example that shows how the migration decision would be practically taken. Assume
that we have two VMs v1 and v2 that are classified as highly risky and whose worth is
of 6 for v1 and 2 for v2. The set of possible replacements for v1 and v2 that are tech-
nically compatible and classified as low risk are v3, v4, and v5. The worths of v3, v4,
and v5 are 6, 3, and 1 respectively. The worth increase percentage from v1 to v3 is of
px(v1 −→ v3) =

6−6
6 = 0%, from v1 to v4 is of px(v1 −→ v4) = +∞ (since 3−6

6 = −0.5% < 0),
and from v1 to v5 is of px(v1 −→ v5) = +∞ (since 1−6

6 = −0.83% < 0). Thus, v3 that gives
the minimum worth increase percentage w.r.t v1 will be selected as the best candidate
to replace v1. On the other hand, the worth increase percentage from v2 to v3 is of
px(v2 −→ v3) =

6−2
2 = 2%, from v2 to v4 is of px(v2 −→ v4) =

3−2
2 = 0.5%, and from v2 to

v5 is of px(v2 −→ v5) = +∞ (since 1−2
2 = −0.5% < 0). Again, v4 that gives the minimum

worth increase percentage w.r.t v2 is selected as the best candidate to host v2’s migrated
services.

After applying this migration strategy, we will have two types of VMs present in the
cloud system: working VMs and idle VMs. Working VMs are those containing real services
running inside them, whereas idle VMs are those VMs either running no services or running

152

fake services not pertaining to any user. Note finally that we adopt the snapshot-and-
restore migration approach [30] in which a snapshot of the service to be migrated is taken
and kept in the VM. Consequently, if the service is migrated back to the same VM, the
snapshot is restored and the service resumes from that point. Thus, unlike the refreshing
migration approach [30] which destroys the execution context of the migrated service, the
snapshot-and-restore model maintains the service’s execution context in the VMs, which
minimizes the time and overhead of migrating back the services across VMs.

7.3.3 Honeypot Deployment and Attackers’ Types Recognition

In order to learn the probability distributions over the attackers’ types and inspect their
objectives, the hypervisor can exploit the idle VMs by deploying honeypots inside them to
serve as traps for attackers. A honeypot in our case is a deception VM that is configured by
the hypervisor to serve as a purposed target for attacks. The objective is to give attackers
the impression that they are interacting with a real system and encourage them hence
to freely launch their attacks in order to gather massive and valuable information. In this
way, any connection with the honeypot would be deemed to be an attack and all the traffic
circulating to the honeypot is roughly entirely unauthorized. Honeypot systems can be
either of low-interaction or high-interaction [116]. Low-interaction honeypots (e.g., Honeyd)
function by emulating services designed to catch some specific malicious activities (e.g.,
FTP login), which makes them limited to a confined level of interaction with attackers. The
main advantages of low-interaction honeypots lie in their simplicity to deploy and maintain,
and in the minimal risk that they entail to the system. Practically, low-interaction honeypots
do not allow attackers to have access to the OS, which protects the cloud system and co-
hosted VMs from potential attacks. Nonetheless, the main disadvantages of low-interaction
honeypots are the limited amount of information that they can capture and their simple
configuration that increases the capability of skillful attackers to detect their presence.

On the other hand, high-interaction honeypots (e.g., Honeynets) consist of real ap-
plications and OSs that are designed for advanced research purposes. Simply speaking,
high-interaction honeypots involve providing a real execution environment (e.g., a real Win-
dows honeypot system running a real FTP server) in which nothing is being emulated. The
main advantage of such honeypots is the ability to gather large amounts of information
that enable analyzing and understanding the complete extent of the attackers’ malicious
behavior. Moreover, the fact that high-interaction honeypots rely on real systems makes
them appealing to attackers and hard to be recognized as being traps. However, the main
self-evident disadvantage of such a type of honeypots lies in the risks that they might
impose on the real system. Therefore, a thoughtful implementation and configuration of
high-interaction honeypots is required to block attackers from exploiting these honeypots

153

to hurt other non-honeypot systems. Such a thoughtful implementation might include, for
example, isolating the CPU assigned to honeypots from that assigned to non-honeypot
VMs to prevent scheduling tasks coming from honeypots on the same physical CPU as
other non-honeypot VMs.

Because the aim of our honeypots deployment process is to study the behavior of the
attackers to be able to determine the probability distributions over their types, we choose
to employ high-interaction honeypots for our problem [14]. The fact that high-level interac-
tion honeypots make no predefined assumptions on how attackers shall misbehave makes
them able to capture all types of malicious activities including unexpected misbehavior.
Thus, they are suitable to study and analyze different types of attacks including unknown
ones. Furthermore, in order to make honeypots even more appealing for attackers, our
honeypot deployment approach consists of keeping a copy of the (migrated) services run-
ning inside honeypot VMs, while using fake data to populate them. For example, a banking
system that migrates to another safer VM will keep running inside the honeypot VM, while
using dummy accounts numbers, clients’ names, etc. Along the same line, the services
running inside honeypot VMs are changed and updated on a regular basis to minimize the
chances of being discovered by attackers as traps.

The use of honeypots helps us achieve many benefits regarding the data set’s size,
false negatives and positives, resources consumption, and detection effectiveness. Specif-
ically, since the data collected by honeypots is restricted to attack and unauthorized events,
the size of the data to be stored and analyzed tends to be greatly reduced compared to
the data generated by the traditional IDSs. This is because the use of honeypots removes
the load of the normal activity data whose size is usually much larger than the one of
attack events. This will allow the attackers’ types classification system to function with a
minimal amount of resources compared to other intrusion detection techniques. Moreover,
the employment of honeypots aids in diminishing the false negatives and positives of the
classifier. This is realised by characterizing new attacks for which traditional IDSs do not
have existing signatures. Besides, honeypots are effective in catching advanced attacks
including encrypted ones because they run in kernel mode and are able hence to see all
data prior to encryption.

Having collected the necessary data from honeypots, we need a classification tech-
nique to analyze this data and learn the probability distributions over the attackers’ types.
To this end, we choose to employ the one-class Support Vector Machine (SVM) [158] which
has been proposed as an extension of the traditional SVM binary classifier. One-class
SVMs try to find the decision boundary (i.e., hyperplane) which separates the majority of
the data points from the origin. In this way, the data points that lie on the other side of
the decision boundary will be deemed to be outliers or abnormal activity. This enables the

154

decision function to classify any new data as being analogous or different from a certain
pattern of data fed in the training phase (i.e., novelty detection). The selection of one-class
SVM to be used in our problem stems from three main observations. First, one-class SVM
is an unsupervised classification technique which requires no extensive prior information
nor predefined class labels for the analyzed data. Second, one-class SVM supports multi-
class data classification, which makes it appropriate for our problem in which we deal with
attackers of multiple types. Third, the fact that one-class SVM is dedicated to novelty de-
tection makes it well-suited to identify new types of (yet) undetected attacks. This might be
achieved by considering each type of already identified attacks as a normal activity and
determining the degree of similarity/dissimilarity of each set of new data w.r.t that normal
activity data. Suppose, for example, that the classification system has already identified
DoS and privilege escalation attacks. If new features that do not match neither DoS nor
privileges escalation attacks’ features are found on the honeypot system, then this would
be considered as a new attack type targeting the cloud system.

Formally, let x = (x1,x2, . . . ,xn) denote the feature vector which contains all the attack
features (e.g., source and destination IP addresses, host names, protocol used, geograph-
ical information of the attack sources, etc.) collected by the honeypot system. The one-
class SVM classification problem is mapped into solving the following objective function’s
minimization problem:

min
ω,ξi,ρ

1
2‖w‖

2 + 1
υn ∑

n
i=1 ξn−ρ

subject to:

(w.φ(xi))≥ ρ−ξi ∀i = 1, . . . ,n

ξi ≥ 0 ∀i = 1, . . . ,n

(65)

where n is the size of the training set, w represents the normal vector to the hyperplane,
and ρ is the bias term. Moreover, φ(.) denotes a transformation function concretized by
the kernel function to project the data into a higher dimensional space and ξi ∈ ξn are slack
variables used to allow some data points to lie within the margin so as to prevent the SVM
classifier from over-fitting with noisy data. Yet more importantly, υ is the regularisation
parameter that determines the shape of the solution by specifying (1) an upper bound on
the fraction of outliers; and (2) a lower bound on the number of training tuples employed as
support vectors. Thus, an increased value of υ widens the soft margin and augments the
probability that the training data will fall outside the normal borders. Problem (65) can be
solved using the Lagrange multipliers method so that the decision function f (x) becomes:

f (x) = sgn((w.φ(xi))−ρ) = sgn(
N

∑
i=1

αik(x,xi)−ρ) (66)

155

where k(x,xi) is the kernel function, which might be either linear, polynomial, gaussian, or
sigmoid, i.e.,

K(x j,xi) =

xi.x j, linear

(γ.xi.x j + c)d , polynomial

exp(−γ.| xi− x j |2),gaussian radial basis

tanh(γ.xi.x j + c),sigmoid

(67)

Based on the results obtained from the classification process, the hypervisor computes
the probability py for each attacker’s type y ∈ Y using Equation (68).

py =
Number of observations classified as “y”

Total number of observations
(68)

Finally, this information is used back to feed the Bayesian Stackelberg game (Section 7.2)
with the attackers’ types probability distributions to help it continuously adjust and optimize
the detection load probability distributions over the set of guest VMs.

7.4 Experimental Results and Analysis

We explain in this section the environment employed to perform our experiments and
present and analyze the experimental results.

7.4.1 Experimental Setup

To carry out the experiments, we build our own cloud datacenter using CloudSim [28],
a cloud simulator that provides realistic cloud features such as co-hosted VMs, network
connections among cloud components, resource allocation policies, and services migration
and cloud federation support. The decision to create our own cloud rather than using
rented resources from existing providers stems from two observations [146]. In the first
place, most of the cloud providers (e.g., Amazon EC2) have strict restrictions concerning
any security testing on their resources and infrastructure [124]. In the second place, cloud
providers forbid any direct access of the users to the VMs’ host system, thus making the
acquisition of performance data and the implementation of new algorithms at the host’s
level far difficult to achieve. The characteristics of the created cloud are populated from
the Amazon EC2 X-large instances [1] in terms of VMs configurations and pricing scheme.
Specifically, the cloud datacenter is equipped with 100 physical machines, each hosting
a number of VMs varying from 10 to 50. The image size of the VMs is of 10000 MB, the
memory RAM capacity is of 16 GB, and the hard drive storage is of 976.5625 GB. Each VM

156

is supplied with a 5-core CPU of 1000 Millions of Instructions Per Second (MIPS) each. The
network bandwidth share of each VM is 50000 Kbit/s. Moreover, Linux has been adopted
as an OS in the datacenter, x86 as a system architecture, and Xen as a Virtual Machine
Monitor (VMM). The prices of the VMs, used to compute the utility functions, have been
selected according to Amazon EC2 pricing scheme [2].

To analyze the performance of the attackers’ types recognition phase, we use a dataset
[3] from the Data Driven Security (DDS) datasets collection. The dataset is collected from
Amazon Web Services (AWS) honeypots deployed on several instances across the world
for a period covering March to September 2013 [52]. The dataset records attack data in-
cluding source and destination IP addresses, host names, protocol used (e.g., TCP, UDP,
etc.), source and destination ports, and geographical information of the attack sources
(i.e., country, postal code, longitude, and latitude). To create the training and test sets, we
use the k-fold cross-validation technique (with k = 10) whereby the dataset is split into k

subsets, each used every time as test set and the remaining k− 1 subsets are combined
together to form the training set. The principal advantage of the k-fold cross-validation lies
in its ability to diminish the bias of the classification results on the way based on which data
is being divided since each data tuple will be part of the test set exactly once and part of
the training set k− 1 times. As for the defense mechanism, in addition to implementing it
in CloudSim as part of the repeated Stackelberg game, we were able to study the perfor-
mance of our live-migration-based defense strategy independently in a real environment
using OpenStack [6], an open-source software platform for cloud computing that is based
on interrelated components controlling diverse, multi-vendor hardware pools of process-
ing, storage, and networking resources. We used OpenStack to create VMs and assign
real jobs to them including on-line gaming server and Hadoop MapReduce tasks. The pur-
pose is to assess the time needed to perform the live migration of services having different
sizes and complexities. Finally, to populate the probability distributions over the attackers’
types (used to achieve the Bayesian property of the Stackelberg game), we capitalize on
the findings presented in [112], which surveys the attacks/vulnerabilities distributions on
Xen hypervisors (used in our simulations) based on real data collected from NVD [5], Se-
curityFocus [8], Red Hat’s Bugzilla [7] and CVEs [4]. These probability distributions are
summarized in Table 7.7. Note that all the experiments have been conducted in a 64-bit
Windows 7 environment on a machine equipped with an Intel Core i7-4790 CPU 3.60 GHz
Processor and 16 GB RAM.

To show the improvements brought by our solution compared to the state-of-the-art,
we compare our work experimentally with three other load distribution strategies, namely
the one-stage Stackelberg [145], maxmin [146, 143], and fair allocation [154]. In the fair
allocation model, the detection load is distributed in an equal manner among VMs so as
to guarantee the fairness of the detection process. On the other hand, the maxmin-based

157

Table 7.7: Attacks occurrence distributions on Xen hypervisors

Attack Percentage of Occurrence on Xen Hypervisors
Hypervisor’s Memory Content Disclosure 8.5%
Co-hosted VMs’ Memory Modification 6.8%
Denial of Service 44.1%
Virtual Machine Destruction 11.9%
Virtual Machine Crash 3.4%
Privileges Escalation 25.3%

detection load distribution strategy leverages a maxmin game whose utility functions are
mainly fed by the trust scores computed by the hypervisor toward its guest VMs. Although
the maxmin-based strategy accounts for the attackers’ strategies and resources constraints
in the design of the problem (as is the case in our solution), it does not account, however,
for the fact that attackers have the ability to monitor the cloud system’s strategies and adjust
their own strategies. Similar to our solution, the one-stage Stackelberg accounts for this
challenge by computing the best responses of the attackers to the hypervisor’s detection
load distribution strategies and incorporating this knowledge into the hypervisor’s optimiza-
tion problem. Different from our solution, the one-stage Stackelberg model abstracts on the
types of attackers and is hence not able to provide the hypervisor with real-time learning
about the actual types and objectives of the attackers. Our work overcomes this limitation
by collecting and analyzing malicious data to learn the probability distributions over the
types of attackers targeting the cloud system and incorporating this knowledge into the
hypervisor’s optimization problem to optimize its decisions. Moreover, our solution offers a
proactive defense mechanism (Section 7.3.2) that protects services from being successful
targets for attackers and works in a repeated fashion to provide incremental and continuous
learning for the cloud system.

7.4.2 Experimental Results

Fig. 7.2 illustrates the detection performance metrics (attack detection, false negative,
and false positive percentages) of the four studied solutions. Attack detection represents
the percentage of attacks that the IDS was able to identify as such and is calculated as
per Equation (52). On the other hand, false negative depicts the percentage of attacks
identified by the IDS to be non-attacks. This percentage is computed by subtracting the
detection load probability distributions of the cloud system from the attack probability dis-
tributions of the attacker when the values of the former are smaller. Equation (69) shows
how to compute the false negative rate α([t1, t2]) during the time window [t1, t2]:

158

10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100

Number of Co-Hosted Virtual Machines

A
tt

a
c

k
 D

e
te

c
tio

n
 (

%
)

Repeated Stackelberg Game

Stackelberg Game

Maxmin Game

Fair Allocation

(a) Attack Detection

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Number of Co-Hosted Virtual Machines

F
a

ls
e

 N
e

g
a

tiv
e

 (
%

)

Repeated Stackelberg Game

Stackelberg Game

Maxmin Game

Fair Allocation

(b) False Negative

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Number of Co-Hosted Virtual Machines

F
a

ls
e

 P
o

s
iti

v
e

 (
%

)

Repeated Stackelberg Game

Stackelberg Game

Maxmin Game

Fair Allocation

(c) False Positive

Figure 7.2: Detection performance: Our solution improves the detection performance and
is scalable to the increase in the number of co-hosted VMs compared to the one-stage
Stackelberg, maxmin, and fair allocation strategies

10 20 30 40 50 60 70 80
50

55

60

65

70

75

80

85

90

95

100

Percentage of Co-Resident Malicious Virtual Machines (%)

A
tt

a
c

k
 D

e
te

c
tio

n
 (

%
)

Repeated Stackelberg Game

Stackelberg Game

Maxmin Game

Fair Allocation

(a) Attack Detection

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

Percentage of Co-Resident Malicious Virtual Machines (%)

F
a

ls
e

 N
e

g
a

tiv
e

 (
%

)

Repeated Stackelberg Game

Stackelberg Game

Maxmin Game

Fair Allocation

(b) False Negative

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

Percentage of Co-Resident Malicious Virtual Machines (%)

F
a

ls
e

 P
o

s
iti

v
e

 (
%

)

Repeated Stackelberg Game

Stackelberg Game

Maxmin Game

Fair Allocation

(c) False Positive

Figure 7.3: Detection performance: Our solution improves the detection performance and
is scalable to the increase in the percentage of co-resident malicious VMs compared to the
one-stage Stackelberg, maxmin, and fair allocation strategies

α([t1, t2]) =
t2

∑
x=t1

∑
v∈V

µ

t2− t1
,where (69)

µ =

ax(v)−hx(v), if ax(v)> hx(v)

0, otherwise

False positive describes the percentage of non-attack activities identified by the IDS as
attacks. This metric is of special importance since it gives a hint on the amount of security
resources wasted during the detection process. Simply speaking, false positive tells us
the percentage of resources spent by the hypervisor in monitoring some VMs, while these
VMs were not selected by attackers to launch attacks. As explained in Equation (70),
the false positive rate γ([t1, t2]) during the time window [t1, t2] is computed by subtracting

159

the detection load probability distributions of the cloud system from the attack probability
distributions of the attacker when the values of the former are larger.

γ([t1, t2]) =
t2

∑
x=t1

∑
v∈V

χ

t2− t1
,where (70)

χ =

hx(v)−ax(v), if hx(v)> ax(v)

0, otherwise

By examining Fig. 7.2, we can notice that the performance of all the studied solutions
begins to decrease with the increase in the number of co-hosted VMs. The reason is that
increasing the number of VMs on a single physical machine increases the attack space
for attackers by giving them an increased number of VMs to distribute their attacks over.
Moreover, the increase in the number of co-hosted VMs would lead to reduce the effective-
ness of the security budget, since the same budget would need to be distributed across
a larger number of VMs. Thus, the share of security resources for each single VM is nat-
urally reduced as the number of VMs grows up. However, we can notice from Fig. 7.2
that our solution remains far more resilient to an increased number of co-hosted VMs than
the other solutions. The second observation that can be made from Fig. 7.2 is that our
repeated Bayesian Stackelberg, the maxmin, and one-stage Stackelberg models achieve
better detection performance (in terms of attack detection, false negative, and false pos-
itive) compared to the fair allocation strategy. The reason is that the repeated Bayesian
Stackelberg, one-stage Stackelberg, and maxmin models consider the attackers’ strate-
gies in the formulation of the game, which enables them to compute the optimal detection
load distributions that best synchronize with the attackers’ strategies. On the other hand,
the fair allocation model seeks to achieve the fairness in the detection process by distribut-
ing the detection load in an equal manner among VMs, thus overlooking how attackers’
are distributing their attacks. For example, a fair allocation model which distributes the
detection load amongst three VMs v1, v2, and v3 so that each one receives 33.33% might
end up assigning a big part of the security resources (i.e., 33%) monitoring a VM that will
not be selected by attackers to contribute in the attacks. Moreover, the Stackelberg-based
solutions (i.e., our solution and the one-stage Stackelberg) outperform the maxmin-based
solution since the former models account for the fact that attackers have the ability to mon-
itor the hypervisor’s detection load distribution strategies and they integrate this knowledge
into the hypervisor’s optimization problem to optimize its detection strategies. Finally, our
repeated Bayesian Stackelberg solution performs better than the one-stage Stackelberg

160

Repeated Stackelberg Stackelberg Maxmin Fair Allocation
0

10

20

30

40

50

60

70

80

90

100

Solution

P
e

rc
e

n
ta

g
e

 o
f
S

u
rv

iv
e

d
 S

e
rv

ic
e

s
 (

%
)

Repeated Stackelberg Game

Stackelberg Game

Maxmin Game

Fair Allocation

(a) Percentage of Survived Services

Quake 3 (VM1) Word Count (VM2) Electricity Consumption (VM3)
0

20

40

60

80

100

120

140

Virtual Machines Job Type

T
o

ta
l M

ig
ra

tio
n

 T
im

e
 (

m
s

)

Snapshot Time

Restore Time

(b) Total Live Migration Time

Figure 7.4: Defense mechanism: Our defense mechanism maximizes the percentage of
survived services and takes less than one second to run

because it includes a learning component that learns the types and objectives of the at-
tackers and incorporates this knowledge into the hypervisor’s optimization problem. This
increases the awareness of the hypervisor about the nature and gravity of the attacks that
are expected to be launched on every VM and aids it hence to adjust the detection load
distributions accordingly.

In Fig. 7.3, we study the scalability of our solution with respect to the variation in the
percentage of co-resident malicious VMs. To do so, we vary the percentage of attack-
ing VMs co-residing on a single cloud system from 10% up to 80% to explore the effects
of this variation on the performance of the studied solutions. As shown in Fig. 7.3, the
performance of all the solutions begins to decrease with the increase in the percentage of
attacking VMs. This unsurprising result is due to the fact that the bigger the number of VMs
attacking the system, the less is the ability of the cloud system to capture attacks under
the limited budget of security resources. Thus, a possible choice for the cloud system’s
administrators would be to increase the security budget to face an increased number of
attacks. Specifically, our attackers’ types recognition phase can aid the cloud’s administra-
tors in deciding whether there is a need to increase the security resources budget or not
by giving them detailed information about the volume and nature of attacks targeting the
cloud system. Fortunately, our solution shows a better scalability to an increased percent-
age of attacking VMs compared to the other models even in extreme cases (i.e., 80% of
co-resident malicious VMs) thanks to the previously discussed advantages brought by our
solution.

In Fig. 7.4, we study the effectiveness and efficiency of our MTD-based defense mech-
anism by measuring the percentage of survived services and the total live migration time.
The percentage of survived services represents the percentage of services that remained
unattacked during their whole lifetime. We can notice from Fig. 7.4a that our solution is
able to increase the number of survived services compared to the other solutions. This is

161

thanks to the proactive defense mechanism that our solution advances and that migrates
the services running inside risky VMs to other more secure VMs to protect them from being
successful targets for attacks. The absence of such a mechanism in the other solutions
limits their effectiveness to some reactive measures (i.e., detection) and leads hence to an
increased number of attacked services.

Moving to the efficiency evaluation, Fig. 7.4b illustrates the average time taken to
migrate services of different complexities. To run this experiment, we use OpenStack to
create three VM instances connected using an internal network and accessible through
the internet (using a public IP address). Each VM instance is assigned a different job type
with the aim of studying the live migration performance on VMs having varying loads. For
each VM, we execute the migration process ten times and compute the average time of all
experiments. Note that the snapshot-and-restore migration approach described in Section
7.3.2 has been applied during the experiments. The first VM (i.e., VM1) is given Quake
3, a multiplayer on-line game server, which is considered as a low-overhead application.
The migration occurred at the point where four players joined the game and began to
play. We can observe from Fig. 7.4b that the total migration time of such an application
amounts to 60ms (Fig. 7.4b), which is negligible. The second VM (i.e., VM2) is given a
Hadoop MapReduce task (written in Java using Apache Maven) of average complexity.
The task consists of counting the words occurrences in a medium-sized text file. The total
migration time in this case recorded 77ms (Fig. 7.4b). The third VM (i.e., VM3) is given
a complex Hadoop MapReduce task which consists of computing the average electricity
consumption for all the cities in the United States per a given year in a large-sized text file.
The migration in both the second and third VMs happened at the point where the mapping
task was executing, i.e., at the point where mappers were distributively grouping data prior
to passing it to the reducers. The total migration time for this third job recorded 126ms (Fig.
7.4b).

Overall, we can conclude that the live migration time is almost negligible (i.e., < 1

second) in all the studied scenarios and does not entail any significant impact on the cloud
system’s performance. If we observe Fig. 7.4b more carefully, we can notice that the
migration time is influenced by two main factors, namely the snapshot time and the restore
time. As names hint, the snapshot time represents the time needed to take a snapshot
of the service being migrated, which is affected practically by the amount of data being
transferred and the network bandwidth being used to transfer this data to the destination.
Given that the bandwidth rate is nearly the same for all the VMs in our experiments, the
amount of data is the main factor that affects the total migration time of the VMs, where for
example, the migration in a VM running a heavy Hadoop MapReduce task (i.e., electricity
consumption) would take longer than the migration in a VM running a simple word count
task on a smaller dataset. On the other hand, the restore time consists of the time needed

162

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

x 10
4

0

50

100

150

200

250

300

350

400

450

500

Dataset Size (Number of Rows)

T
ra

in
in

g
 T

im
e

 (
S

e
c
o

n
d

s
)

(a) Training Time

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Dataset Size (Number of Rows)

C
la

s
s
ifi

c
a

tio
n

 T
im

e
 (

S
e

c
o

n
d

s
)

(b) Classification Time

Figure 7.5: Training and classification times: The training and classification times entailed
by our attackers’ types recognition technique are acceptable

to start back the migrated data on a new VM from the point at which migration took place.
We can notice from Fig. 7.4b that the restore time is, ipso facto, less affected by the amount
of data than the snapshot time.

We study in Fig. 7.5 the efficiency of our attackers’ types recognition phase in terms
of execution time. Fig. 7.5a shows the time required to train the one-class SVM on vari-
ous training datasets sizes. To do so, we employ the DDS honeypot data collected from
AWSs and whose original size amounts to 65,0000 rows. To study the impact of the train-
ing dataset’s size on the training time, we vary the size of the data from 10,000 to 65,0000.
Unsurprisingly, Fig. 7.5a reveals that the training time increases with the increase in the
size of the training dataset and reaches at the extreme case (i.e., 65,0000 rows) 330s. The
main time complexity lies in the process of constructing an SVM model for each class la-
bel. Practically, since we have 6 types of attackers (Table 7.1) serving as class labels for
the training dataset, we have to build one SVM model for each single class and train it to
differentiate the samples of that class from the samples of all remaining classes (i.e., nov-
elty detection). We argue that the obtained time is insignificant, especially since this phase
is executed offline and not required to be repeated at each time moment as discussed in
Section 7.3. Having completed the training process, the next step is to execute the actual
classification part, which consists of assigning an attack type for each particular sample.
Since the classification time is also dependent on the dataset’s size as is the case for the
training time, we test the classification’s time on different dataset sizes. It can be noticed
from Fig. 7.5b that the classification time is negligible in all the considered cases, where it
does take 0.4s to classify samples in a dataset consisting of 65,0000 rows.

Finally, we study in Fig. 7.6 the execution times of the four considered solutions. At this
stage, we exclude the live migration and one-class SVM execution times from the repeated
Bayesian Stackelberg model for the two following reasons. First, the execution times of
these two phases vary based on external factors, i.e., the job type in case of live migration
(Fig. 7.4b) and the dataset’s size in case of one-class SVM (Fig 7.5a). Thus, it would be

163

10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

Number of Co-Hosted Virtual Machines

E
x

e
c

u
ti
o

n
 T

im
e

 (
S

e
c

o
n

d
s

)

Repeated Stackelberg Game

Stackelberg Game

Maxmin Game

Fair Allocation

Figure 7.6: Execution time: Our solution is efficient in terms of execution time and grows
polynomially with the increase in the number of co-hosted VMs

unfair to rely on one particular choice when comparing with the other approaches. Sec-
ond, these two phases are not required to be repeatedly executed as explained in Section
7.3. Therefore, we tested their performance independently since including them in the
comparisons with the other approaches would not be informative. By examining Fig. 7.6,
we can notice that the fair allocation approach yields the fastest performance. This is
because the detection load is to be distributed equally across VMs, which removes the
time complexity of finding the optimal detection load probability distributions. Moreover,
the one-Stackelberg performs faster than the maxmin-based and our repeated Bayesian
Stackelberg game. The time difference between the one-stage Stackelberg and maxmin
models may be thought of as the time needed by the latter to gather objective and sub-
jective sources of trust and compute the final trust values prior to executing the maxmin
game. On the other hand, the time difference between our repeated Stackelberg model
and the one-stage Stackelberg and maxmin-based models lies in the time taken by our
solution to perform the VMs’ risk assessment as well as the computational time entailed
by the integration of the attackers’ type into the optimization problem. Though, our solution
still performs in an efficient manner, where it takes ≈ 5.6s to run in a cloud system con-
sisting of 50 co-hosted VMs. We can also notice that the time complexity of our solution
grows polynomially with the increase in the number of VMs, which boosts its scalability in
large-scale datacenters.

7.5 Conclusion

In this chapter, we introduced a comprehensive detection and defense mechanism for
cloud-based systems that consists of the following phases: (1) risk assessment framework
that evaluates the risk level of each guest VM; (2) MTD-based defense mechanism that

164

intelligently migrates services running inside risky VMs to other more secure VMs; (3) ma-
chine learning technique that recognizes the types of attackers using honeypot data; and
(4) resource-aware Bayesian Stackelberg game that aids the hypervisor in determining the
optimal detection load distribution strategy among VMs. To the best of our knowledge,
this work is the first that advances such a host-level comprehensive detection and defense
strategy against multiple types of attacks in the domain of cloud computing. Experiments
conducted using OpenStack, Amazon’s public datacenter, and AWSs honeypot data reveal
that our solution is able to improve the detection performance up to ≈ 7% and minimize the
percentage of attacked services by ≈ 15% compared to the state-of-the-art intelligent de-
tection strategies, namely the maxmin, one-stage Stackelberg, and fair allocation. As for
the efficiency, the experimental results show that our live-migration-based defense mech-
anism needs less than one second to execute irrespective of the complexity of the jobs
running inside VMs and that our machine learning technique needs ≈ 330s to train in a
dataset comprising 65,000 rows and consisting of six types of attackers. Finally, our detec-
tion load distribution strategy takes ≈ 5.6s to run in a cloud system of 50 co-hosted VMs
and grows polynomially with the increase in the number of co-hosted VMs. Thus, we have
achieved our third research objective (Objective 3) discussed in Chapter 1, which aimed
at maximizing the detection of multi-type intelligent active malicious attacks using a limited
budget of resources.

165

Chapter 8

Conclusion and Future Directions

In this thesis, we proposed a new architecture for boosting the performance and secu-
rity of cloud-based applications called multi-cloud services communities and addressed the
design, business, and security challenges of adopting and implementing such an architec-
ture. For each of these aspects, we conducted an in-depth literature review to guarantee
the originality of our solutions and their effectiveness in filling the state-of-the-art research
gaps. In particular, we developed, for the first time in the domain of cloud computing, a
community formation model that accounts for the business potential of the involved ser-
vices and gives privileges to the market’s leader services by allowing them to select the
set of (follower) services that they are willing to form community with and deciding about
the appropriate offer to make. Experiments conducted on a real services dataset show
that this solution maximizes the satisfaction of both leader and follower market’s services
up to 20% compared to the state-of-the-art community formation models, which motivates
hence the participation of services of varying business capabilities in the community for-
mation process. Secondly, we elaborated the first cooperation model in the domain of
cloud computing that is able to form communities among services deployed in multiple
cloud centers, while accounting for the problem of encountering passive malicious ser-
vices that seek to illegally maximize their profits. Promisingly, experiments conducted using
the CloudHarmony dataset reveal that this solution minimizes the percentage of passive
malicious services by 30% compared to the state-of-the-art cloud federation and services
community formation models. Third, we advanced the first detection load distribution strat-
egy aids the cloud system in determining the optimal way of distributing the detection load
among the guest VMs so as to maximize the detection of DDoS attacks, while respect-
ing a limited budget of security resources. Experiments conducted using Amazon EC2’s
public cloud reveal that this solution can maximize the detection of DDoS attacks up to
26% compared to the state-of-the-art cloud-dedicated resources distribution techniques.

166

Finally, we put forward the first host-level cloud-dedicated comprehensive detection and
defense mechanism that maximizes the detection of multi-type intelligent simultaneous at-
tacks and protects cloud services from being successful targets for attackers. Experiments
conducted using OpenStack and Amazon EC2’s public cloud demonstrate that this solution
ameliorates the detection performance up to 7% and minimizes the percentage of attacked
services by 15% compared to the state-of-the-art intelligent detection strategies.

The following points summarize the main contributions of this thesis:

1. We proposed a business-oriented community formation model that allows services of
uneven business capabilities to distributively group themselves into joint communities
so as to optimize their reputation, market share, and capacity of handling simultane-
ous requests. The proposed model fits the real-world services market and motivates
the leading cloud services (e.g., Amazon and Google) to get structured into commu-
nities.

2. We put forward a comprehensive inter-cloud trust framework that allows services
deployed in different cloud data centers to build credible trust relationships toward
each other. The proposed trust framework is able to generate credible trust results
that are resilient to the collusion attacks even when attackers form the majority.

3. We designed a polynomial-time services discovery algorithm that enables services to
inquire about each other’s behavior based on the concept of tagging in online social
networks.

4. We proposed a trust bootstrapping mechanism that combines the concept of en-
dorsement in online social networks with the decision tree classification technique
to assign initial trust values for the newly deployed services for which no evidence
about their former behavior can be found.

5. We introduced a security-oriented community formation model among cloud services
deployed in one or multiple cloud centers. The solution is modeled as a trust-based
hedonic coalition formation game, where a relevant algorithm that converges to a
final stable coalition partition of services is advanced.

6. We developed an intra-cloud trust framework that allows the hypervisor (acting on
behalf of the cloud system) to build credible trust relationships toward its guest VMs.
The proposed framework uses objective (i.e., monitoring) and subjective (i.e., recom-
mendations) sources of trust to optimize the credibility of the trust values.

7. We designed and solved a trust-based maxmin game between the hypervisor and
DDoS attackers. The solution of the game provides the hypervisor with the optimal

167

detection load distribution strategy over VMs that maximizes the detection of DDoS
attacks under a limited budget of security resources.

8. We proposed a risk assessment framework that assists the cloud system with eval-
uating the risk level of each guest VM and identifying the risky ones that are likely
to be targets for attacks. For this purpose, we formulated a risk level determination
model that capitalizes on the VMs’ potential vulnerabilities, expected threats, and
past attack history to make thoughtful decisions.

9. We developed an MTD-based defense mechanism that protects cloud services from
being successful targets for attackers. This is done by putting forward an intelligent
security-oriented live migration strategy that allows the hypervisor to migrate the ser-
vices running inside risky VMs to other more secure ones.

10. We elaborated a machine learning technique that provides the hypervisor with a de-
tailed view of the types and objectives of the attackers targeting the cloud system.
This is achieved by developing a honeypots’ deployment strategy inside risky VMs
to collect malicious data and discussing a one-class SVM learning classifier which
analyzes this data and predicts the actual types of the attackers.

11. We designed and solved a Bayesian Stackelberg game that guides the cloud system
to determine the optimal detection load distribution strategy among VMs that max-
imizes the detection of multi-type intelligent attackers that are able to continuously
observe the detection strategies of the cloud system and update their own attack
strategies accordingly.

The first contribution is proposed to answer our first research objective (Objective 1),
which sought to enable the formation of communities consisting of services belonging to
clouds having uneven business capabilities. The second, third, fourth, and fifth contri-
butions are proposed to answer our second research objective (Objective 2), which was
about enabling the formation of trustworthy communities of multi-cloud services wherein
the number of passive malicious services is minimal. The sixth and seventh contributions
are proposed to partially answer our third research objective (Objective 3), which targeted
the maximization of the detection of multi-type intelligent active malicious attacks using a
limited budget of resources. Finally, the eighth, ninth, and tenth contributions are proposed
to fully answer this third research objective (Objective 3).

The above-discussed thesis contributions are effective in solving some interesting re-
search gaps in the literature. However, some points still need further study and investiga-
tion. We summarize in the following list the main persisting gaps that we believe, based on
our literature reviews, are worth investigating in the future:

168

• There is a significant gap between the existing federation/community formation mod-
els and the real needs of the industrial society, where most of the proposed models,
despite their theoretical importance, fail to provide effective cooperation strategies for
the cloud providers. In this thesis, we made a first attempt toward bridging this gap by
formulating a community formation model that is inspired by the real industrial reality
and that considers the practical needs of the providers in the formation process. Yet,
further investigations and extensions are needed to come up with additional practical
solutions that fit the market’s needs.

• The current community and federation formation models disregard the resources al-
location problem in the formation process. This raises the need to develop some
resource-aware formation solutions that guide each cloud provider to decide about
how much resources should be dedicated to the federation/community and how much
resources should be kept to serve the provider’s own clientele.

• The existing trust models in the domain of cloud computing are focusing only on the
trust relationships between customers and cloud providers/services but disregard the
trust relationships among the cloud’s internal components. In this thesis, we made a
first step toward investigating the intra-cloud trust relationships by exploring the trust
connections between the hypervisor and its guest VMs. However, further efforts are
needed to investigate the relationships among the other components of the cloud
centers (e.g., servers, databases, etc.).

• There is a need to develop intelligent detection techniques that go beyond the mon-
itoring of the system and the identification of some traditional attacks to capture and
recognize advanced attack patterns such as networks of attacks, key members in at-
tackers’ networks, and selective attacks. For this purpose, machine and deep learn-
ing techniques could be the best candidate to replace or complement the existing
detection approaches.

• There is a scarcity of cloud-specific security datasets available online, which makes
it difficult for security researchers to test their work using real parameters. Therefore,
it would be of prime importance to develop real attack experiments under cloud en-
vironments and gather some meaningful data that can serve as a reference for the
future cloud-dedicated security research studies.

169

Bibliography

[1] Amazon EC2 instances. https://aws.amazon.com/ec2/details/. Ac-
cessed: 2017-05-16.

[2] Amazon EC2 pricing scheme. http://aws.amazon.com/ec2/pricing/. Ac-
cessed: 2017-05-16.

[3] Amazon Web Services honeypot data. http://datadrivensecurity.info/

blog/pages/dds-dataset-collection.html. Accessed: 2017-05-16.

[4] CVE Security Vulnerability Database. http://www.cvedetails.com/. Ac-
cessed: 2017-05-16.

[5] National Vulnerability Database. http://web.nvd.nist.gov/view/vuln/

search. Accessed: 2017-05-16.

[6] OpenStack. https://www.openstack.org/. Accessed: 2017-05-16.

[7] Red Hat Bugzilla. https://bugzilla.redhat.com/. Accessed: 2017-05-16.

[8] Securityfocus. http://www.securityfocus.com/. Accessed: 2017-05-16.

[9] SPEC Java Virtual Machine Benchmark 2008. http://www.spec.org/

jvm2008/. Accessed: 2016-08-30.

[10] J. H. Abawajy and A. M. Goscinski. Computational Science - ICCS 2006, volume
3994 of Lecture Notes in Computer Science, chapter A Reputation-Based Grid In-
formation Service, pages 1015–1022. Springer Berlin Heidelberg, May 2006.

[11] Stephane Airiau. Cooperative Games and Multiagent Systems. The Knowledge
Engineering Review, 28(04):381–424, 2013.

[12] Eyhab Al-Masri and Qusay H Mahmoud. Qos-based discovery and ranking of web
services. In Proceedings of 16th International Conference on Computer Communi-
cations and Networks (ICCCN), pages 529–534. IEEE, 2007.

170

[13] Eyhab Al-Masri and Qusay H. Mahmoud. Discovering the best web service: A neu-
ral network-based solution. In Proceedings of the 2009 IEEE International Confer-
ence on Systems, Man, and Cybernetics, pages 4250–4255, San Antonio, TX, USA,
2009. IEEE.

[14] Eric Alata, Vincent Nicomette, Mohamed Kaâniche, Marc Dacier, and Matthieu
Herrb. Lessons learned from the deployment of a high-interaction honeypot. In De-
pendable Computing Conference, 2006. EDCC’06. Sixth European, pages 39–46.
IEEE, 2006.

[15] Turki Alharkan and Patrick Martin. IDSaaS: Intrusion detection system as a service
in public clouds. In CCGrid 2012, pages 686–687.

[16] Rabah Amir and Isabel Grilo. Stackelberg versus cournot equilibrium. Games and
Economic Behavior, 26(1):1–21, 1999.

[17] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A View
of Cloud Computing. Communications of the ACM, 53(4):50–58, 2010.

[18] Pradeep K. Atrey, M. Anwar Hossain, and Abdulmotaleb El Saddik. Association-
based dynamic computation of reputation in web services. International Journal of
Web and Grid Services, 4(2):169–188, June 2008.

[19] Haris Aziz, Felix Brandt, and Hans Georg Seedig. Computing Desirable Partitions in
Additively Separable Hedonic Games. Artificial intelligence, 195:316–334, 2013.

[20] Boualem Benatallah, Quan Sheng, and Marlon Dumas. The self-serv environment
for web services composition. IEEE Internet Computing, 7(1):40–48, 2003.

[21] Djamal Benslimane, Zakaria Maamar, Yehia Taher, Mohammed Lahkim,
Marie Christine Fauvet, and Michael Mrissa. A Multi-Layer and Multi-Perspective
Approach to Compose Web Services. In AINA ’07: Proceedings of the 21st Inter-
national Conference on Advanced Networking and Applications, pages 31–37. IEEE
Computer Society, 2007.

[22] Jamal Bentahar, Babak Khosravifar, Mohamed Adel Serhani, and Mahsa Alishahia.
On the analysis of reputation for agent-based web services. Expert Systems with
Applications, 39(16):12438–12450, November 2012.

[23] Saketh Bharadwaja, Weiqing Sun, Mohammed Niamat, and Fangyang Shen. Col-
labra: a Xen hypervisor based collaborative intrusion detection system. In ITNG
2011, pages 695–700.

171

[24] Philip Bianco, Grace Lewis, and Paulo Merson. Service level agreements in service-
oriented architecture environments. Technical report, Software Engineering Institute,
2008.

[25] Ken Binmore and Bruce Linster. Fun and Games: A Text on Game Theory, vol-
ume 21. DC Heath Lexington, Mass, 1992.

[26] Anna Bogomolnaia and Matthew O Jackson. The stability of hedonic coalition struc-
tures. Games and Economic Behavior, 38.

[27] George Bojadziev and Maria Bojadziev. Fuzzy Sets, Fuzzy Logic, Applications, vol-
ume 5. January 1996.

[28] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Ra-
jkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Software: Practice
and Experience, 41(1):23–50, 2011.

[29] Thomas M Chen and Varadharajan Venkataramanan. Dempster-shafer theory for
intrusion detection in ad hoc networks. Internet Computing, IEEE, 9(6):35–41, 2005.

[30] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In
NSDI, pages 273–286. USENIX Association, 2005.

[31] Julio B. Clempner and Alexander S. Poznyak. Stackelberg Security Games: Comput-
ing The Shortest-Path Equilibrium. Expert Systems with Applications, 42(8):3967–
3979, 2015.

[32] F. Groebner David. Business Statistics: a decision-making approach. Pearson,
2014.

[33] Shuiguang Deng, Longtao Huang, and Guandong Xu. Social network-based ser-
vice recommendation with trust enhancement. Expert Systems with Applications,
41(18):8075–8084, 2014.

[34] Prachi Deshpande, SC Sharma, SK Peddoju, and S Junaid. HIDS: A host based
intrusion detection system for cloud computing environment. International Journal of
System Assurance Engineering and Management, pages 1–10, 2014.

[35] Nicola Dragoni. A survey on trust-based web service provision approaches. In Third
International Conference on Dependability (DEPEND), pages 83–91, Venice, 2010.
IEEE.

172

[36] Nicola Dragoni. A survey on trust-based web service provision approaches. In Third
International Conference on Dependability (DEPEND), pages 83–91. IEEE, 2010.

[37] Jacques H. Dreze and Joseph Greenberg. Hedonic Coalitions: Optimality and Sta-
bility. Econometrica: Journal of the Econometric Society, pages 987–1003, 1980.

[38] Said Elnaffar, Zakaria Maamar, Hamdi Yahyaoui, Jamal Bentahar, and Philippe Thi-
ran. Reputation of communities of web services - preliminary investigation. In 22nd
International Conference on Advanced Information Networking and Applications -
Workshops, 2008.

[39] Tom Fawcett. An introduction to ROC analysis. Pattern recognition letters,
27(8):861–874, 2006.

[40] Thomas S Ferguson. Game theory. Mathematics Department, UCLA, 2008.

[41] Mark A Friedl and Carla E Brodley. Decision tree classification of land cover from
remotely sensed data. Remote Sensing of Environment, 61(3):399–409, 1997.

[42] Borivoje Furht and Armando Escalante. Handbook of cloud computing, volume 3.
Springer, 2010.

[43] Diego Gambetta. Trust: making and breaking cooperative relations. Oxford Basil
Blackwell, 1988.

[44] Inigo Goiri, Jordi Guitart, and Jordi Torres. Characterizing cloud federation for en-
hancing providers’ profit. In Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 123–130. IEEE, 2010.

[45] Nils Gruschka and Meiko Jensen. Attack surfaces: A taxonomy for attacks on cloud
services. In 3rd international conference on Cloud Computing, pages 276–279.
IEEE, 2010.

[46] Nils Gruschka and Norbert Luttenberger. Security and Privacy in Dynamic Envi-
ronments, volume 201 of IFIP International Federation for Information Processing.
Springer US, 2006.

[47] Barbara Guttman and Edward A Roback. An introduction to computer security: the
NIST handbook. DIANE Publishing, 1995.

[48] Michael S Hamada, Alyson Wilson, C Shane Reese, and Harry Martz. Bayesian
reliability. Springer Science & Business Media, 2008.

[49] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: Concepts and techniques.
Elsevier, 2011.

173

[50] Chung-Wei Hang, Anup K. Kalia, and Munindar P. Singh. Behind the curtain: Service
selection via trust in composite services. In 2012 IEEE 19th International Conference
on Web Services, pages 9–16. IEEE, 2012.

[51] Mohammad Mehedi Hassan, Mohammad Abdullah-Al-Wadud, Ahmad Almogren,
SK Rahman, Abdulhameed Alelaiwi, Atif Alamri, Md Hamid, et al. Qos and trust-
aware coalition formation game in data-intensive cloud federations. Concurrency
and Computation: Practice and Experience, 2015.

[52] Jay Jacobs and Bob Rudis. Data-Driven Security: Analysis, Visualization and Dash-
boards. John Wiley & Sons, 2014.

[53] Nicholas R Jennings. On agent-based software engineering. Artificial intelligence,
117(2):277–296, 2000.

[54] Finn Verner Jensen and Thomas Dyhre Nielsen. Data Mining: Concepts and tech-
niques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kauf-
mann, 3rd edition, July 2011.

[55] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision. Decision support systems, 43(2):618–644,
2007.

[56] Audun JÃ¸sang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision. Decision Support Systems, 43(2):618–644,
2007.

[57] Chris Karlof and David Wagner. Secure Routing in Wireless Sensor Networks: At-
tacks and Countermeasures. Ad Hoc Networks, 1(2):293–315, 2003.

[58] Babak Khosravifar, Mahsa Alishahi, Jamal Bentahar, and Philippe Thiran. A game
theoretic approach for analyzing the efficiency of web services in collaborative net-
works. In 2011 IEEE International Conference on Services Computing, pages 168–
175, 2011.

[59] Babak Khosravifar, Jamal Bentahar, Rabeb Mizouni, Hadi Otrok, Mahsa Alishahi,
and Philippe Thiran. Agent-based game-theoretic model for collaborative web ser-
vices: Decision making analysis. Expert Systems with Applications, 40(8):3207–
3219, June 2013.

[60] Babak Khosravifar, Jamal Bentahar, and Ahmad Moazin. Analyzing the relationships
between some parameters of web services reputation. In 2010 IEEE 19th Interna-
tional Conference on Web Services, pages 329–336, Miami, FL, 2010. IEEE.

174

[61] Babak Khosravifar, Jamal Bentahar, Ahmad Moazin, Zakaria Maamar, and Philippe
Thiran. Analyzing communities vs. single agent-based web services: Trust perspec-
tives. In 2010 IEEE International Conference on Services Computing (SCC), pages
194–201, Miami, FL, 2010. IEEE.

[62] Babak Khosravifar, Jamal Bentahar, Ahmad Moazin, and Philippe Thiran. Analyzing
communities of web services using incentives. International Journal of Web Services
Research, 7(3):30–51, 2010.

[63] Ehsan Khosrowshahi-Asl, Jamal Bentahar, Hadi Otrok, and Rabeb Mizouni. Efficient
Community Formation for Web Services. IEEE Transactions on Services Computing,
in press, 2014.

[64] David M. Kreps, Paul Milgrom, John Roberts, and Robert Wilson. Rational Coop-
eration in the Finitely Repeated Prisoners’ Dilemma. Journal of Economic theory,
27(2):245–252, 1982.

[65] Tobias Kurze, Markus Klems, David Bermbach, Alexander Lenk, Stefan Tai, and
Marcel Kunze. Cloud federation. In Proceedings of the 2nd International Conference
on Cloud Computing, GRIDs, and Virtualization, 2011.

[66] Bo Li, Peng Liu, and Li Lin. A cluster-based intrusion detection framework for moni-
toring the traffic of cloud environments. In CSCloud 2016, pages 42–45.

[67] Hai-Hua Li, Xiao-Yong Du, and Xuan Tian. A review-based reputation evaluation ap-
proach for web services. Journal of Computer Science and Technology, 24(5):893–
900, 2009.

[68] Lei Li and Yan Wang. A subjective probability based deductive approach to global
trust evaluation in composite services. In IEEE International Conference on Web
Services, pages 604–611, Washington, DC, 2011. IEEE.

[69] Lei Li, Yan Wang, and Ee-Peng Lim. Trust-oriented composite service selection and
discovery. In Service-Oriented Computing, pages 50–67. Springer, 2009.

[70] Erbin Lim, Philippe Thiran, Zakaria Maamar, and Jamal Bentahar. On the analysis of
satisfaction for web services selection. In 2012 IEEE Ninth International Conference
on Services Computing, pages 122–129, 2012.

[71] Wenjie Lin and David Lee. Traceback Attacks in Cloud–Pebbletrace Botnet. In 32nd
International Conference on Distributed Computing Systems Workshops (ICDCSW),
pages 417–426. IEEE, 2012.

175

[72] Zhangxi Lin, Dahui Li, Balaji Janamanchi, and Wayne Huang. Reputation distribution
and consumer-to-consumer online auction market structure: an exploratory study.
Decision Support Systems, 41(2):435–448, January 2009.

[73] An Liu, Qing Li, Liusheng Huang, Shi Ying, and Mingjun Xiao. Coalitional game
for community-based autonomous web services cooperation. IEEE Transactions on
Services Computing, 99(3):387–399, 2012.

[74] Ling Liu and Malcolm Munro. Systematic analysis of centralized online reputation
systems. Decision Support Systems, 52(2):438–449, January 2012.

[75] Chi-Chun Lo, Chun-Chieh Huang, and Joy Ku. A cooperative intrusion detection
system framework for cloud computing networks. In 39th international conference
on Parallel Processing Workshops (ICPPW), pages 280–284. IEEE, 2010.

[76] Flavio Lombardi and Roberto Di Pietro. Secure virtualization for cloud computing.
Journal of Network and Computer Applications, 34(4):1113–1122, 2011.

[77] Alina Madalina Lonea, Daniela Elena Popescu, and Huanglory Tianfield. Detecting
DDoS attacks in cloud computing environment. International Journal of Computers
Communications & Control, 8(1):70–78, 2013.

[78] Gehao Lu, Joan Lu, Shaowen Yao, and Yau Jim Yip. A review on computational trust
models for multi-agent systems. The Open Information Science Journal, 2(2):18–25,
2009.

[79] David G Luenberger. Introduction to linear and nonlinear programming, volume 28.
Addison-Wesley Reading, MA, 1973.

[80] Zhanyu Ma and Arne Leijon. Bayesian estimation of beta mixture models with varia-
tional inference. IEEE Transactions on Pattern Analysis and Machine Intellelligence,
33(11):2160–2173, November 2011.

[81] Zakaria Maamar, Soraya Kouadri Mostefaoui, and Hamdi Yahyaoui. Toward an
agent-based and context-oriented approach for web services composition. IEEE
Transactions on Knowledge and Data Engineering, 17(5):686–697, 2005.

[82] Zakaria Maamar, Sattanathan Subramanian, Jamal Bentahar, Philippe Thiran, and
Djamal Bensilamane. An approach to engineer communities of web services: Con-
cepts, architecture, operation, and deployment. International Journal of E-Business
Research (IJEBR), 5(4):1–21, 2009.

[83] Áine MacDermott, Qi Shi, Madjid Merabti, and Kashif Kifayat. Security as a ser-
vice for a cloud federation. In 15th Post Graduate Symposium on the Convergence

176

of Telecommunications, Networking and Broadcasting (PGNet2014), pages 77–82,
2014.

[84] Zaki Malik and Athman Bouguettaya. Rater credibility assessment in web services
interactions. World Wide Web, 12(1):3–25, March 2009.

[85] Zaki Malik and Athman Bouguettaya. Rateweb: Reputation assessment for trust
establishment among web services. The VLDB Journal, 18(4):885–911, 2009.

[86] Zaki Malik and Athman Bouguettaya. Reputation bootstrapping for trust establish-
ment among web services. IEEE Internet Computing, 13(1):40–47, 2009.

[87] V. Mareeswari and Dr. E. Sathiyamoorthy. A survey on trust in semantic web ser-
vices. International Journal of Scientific & Engineering Research, 3(2):1–5, February
2012.

[88] Lena Mashayekhy, Mahyar Movahed Nejad, and Daniel Grosu. Cloud federations in
the sky: Formation game and mechanism. IEEE Transactions on Cloud Computing,
3(1):14–27, 2015.

[89] E. Michael Maximilien and Munindar P. Singh. Conceptual model of web service
reputation. SIGMOD Record, 31(4):36–41, December 2002.

[90] E. Michael Maximilien and Munindar P. Singh. Multiagent system for dynamic web
services selection. In Proceedings of 1st Workshop on Service-Oriented Computing
and Agent-Based Engineering (SOCABE at AAMAS), pages 25–29, Utrecht, The
Netherlands, 2005.

[91] Brahim Medjahed and Athman Bouguettaya. A dynamic foundational architecture
for semantic web services. Distributed and Parallel Databases, 17:179–206, 2005.

[92] Mohamad Mehdi, Nizar Bouguila, and Jamal Bentahar. Trustworthy web service
selection using probabilistic models. In Proceedings of the 2012 IEEE 19th Inter-
national Conference on Web Services, ICWS ’12, pages 17–24, Washington, DC,
USA, 2012. IEEE Computer Society.

[93] Mohamad Mehdi, Nizar Bouguila, and Jamal Bentahar. A qos-based trust approach
for service selection and composition via bayesian networks. In 2013 IEEE 20th In-
ternational Conference on Web Services, pages 211–218, Santa Clara, CAL, 2013.
IEEE.

[94] Bruckner Michael and Tobias Scheffer. Stackelberg Games for Adversarial Predic-
tion Problems. In Proceedings of the 17th ACM SIGKDD International Conference

177

on Knowledge Discovery and Data Mining, pages 547–555, San Diego, California,
USA, 2011. ACM.

[95] Oskar Morgenstern and John Von Neumann. Theory of Games and Economic Be-
havior. Princeton University Press, 1953.

[96] Guofang Nan, Zhifei Mao, Mei Yu, Minqiang Li, Honggang Wang, and Yan Zhang.
Stackelberg Game for Bandwidth Allocation in Cloud-based Wireless Live-streaming
Social Networks. IEEE Systems Journal, 8(1):256–267, 2014.

[97] John F. Nash. Equilibrium Points in n-person Games. Proceedings of the national
academy of sciences, 36(1):48–49, 1950.

[98] John F. Nash. Cooperative Game Theory: Basic Concepts and Computational Chal-
lenges. IEEE Intelligent Systems, 27(3):86–90, 2012.

[99] Surya Nepal, Wanita Sherchan, Jonathon Hunklinger, and Athman Bouguettaya. A
fuzzy trust management framework for service web. In IEEE International Confer-
ence on Web Services, pages 321–328, Miami, FL, 2010. IEEE Computer Society.

[100] Hien Trang Nguyen, Weiliang Zhao, and Jian Yang. A trust and reputation model
based on bayesian network for web services. In 2010 IEEE International Conference
on Web Services, pages 251–258, Miami, FL, 2010. IEEE.

[101] Jason Nikolai and Yong Wang. Hypervisor-based cloud intrusion detection sys-
tem. In International Conference on Computing, Networking and Communications
(ICNC), pages 989–993. IEEE, 2014.

[102] Dusit Niyato, Athanasios V Vasilakos, and Zhu Kun. Resource and revenue sharing
with coalition formation of cloud providers: Game theoretic approach. In Proceedings
of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pages 215–224. IEEE Computer Society, 2011.

[103] Talal H Noor and Quan Z Sheng. Trust as a service: a framework for trust manage-
ment in cloud environments. In WISE, pages 314–321. Springer, 2011.

[104] Martin Osborne. An Introduction to Game Theory. Oxford University Press, 1st
edition, 2003.

[105] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT press,
1994.

[106] Hadi Otrok, Mona Mehrandish, Chadi Assi, Mourad Debbabi, and Prabir Bhat-
tacharya. Game theoretic models for detecting network intrusions. Computer Com-
munications, 31(10):1934–1944, 2008.

178

[107] Sharon Paradesi, Prashant Doshi, and Sonu Swaika. Integrating behavioral trust in
web service compositions. In IEEE 19th International Conference on Web Services,
pages 453–460, Los Angeles, CA, 2009. IEEE.

[108] Praveen Paruchuri, Jonathan P Pearce, Janusz Marecki, Milind Tambe, Fernando
Ordonez, and Sarit Kraus. Playing games for security: an efficient exact algorithm
for solving bayesian stackelberg games. In AAMAS 2008, pages 895–902.

[109] Jyotishman Pathak, Samik Basu, and Vasant Honavar. Assembling composite web
services from autonomous components. In Proceedings of the 2007 Conference on
Emerging Artificial Intelligence Applications in Computer Engineering: Real Word
AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive
Technologies, pages 394–405, Amsterdam, The Netherlands, 2007. IOS Press.

[110] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs.
big’web services: making the right architectural decision. In Proceedings of the 17th
international conference on World Wide Web, pages 805–814. ACM, 2008.

[111] Wei Peng, Feng Li, Chin-Tser Huang, and Xukai Zou. A moving-target defense
strategy for cloud-based services with heterogeneous and dynamic attack surfaces.
In IEEE ICC, pages 804–809, 2014.

[112] Diego Perez-Botero, Jakub Szefer, and Ruby B Lee. Characterizing hypervisor vul-
nerabilities in cloud computing servers. In Proceedings of the 2013 international
workshop on Security in cloud computing, pages 3–10. ACM, 2013.

[113] Hebert Pérez-Rosés, Francesc Sebé, and Josep Maria Ribó. Endorsement deduc-
tion and ranking in social networks. Computer Communications, 73:200–210, 2016.

[114] Suronapee Phoomvuthisarn. A survey study on reputation-based trust mechanisms
in service-oriented computing. Journal of Information Science and Technoogy,
2(2):1–12, 2011.

[115] James Pita, Manish Jain, Fernando Ordóñez, Christopher Portway, Milind Tambe,
Craig Western, Praveen Paruchuri, and Sarit Kraus. Using Game Theory for Los
Angeles Airport Security. AI MAGAZINE, 30(1):43–57, 2009.

[116] Niels Provos. A virtual honeypot framework. In USENIX Security Symposium, vol-
ume 173, pages 1–14, 2004.

[117] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you,
get off of my cloud: Exploring information leakage in third-party compute clouds. In
Proceedings of the 16th ACM conference on Computer and Communications Secu-
rity, pages 199–212, 2009.

179

[118] Benny Rochwerger, David Breitgand, Eliezer Levy, Alex Galis, Kenneth Nagin, Igna-
cio M Llorente, Ruben Montero, Yaron Wolfsthal, Erik Elmroth, Juan Caceres, et al.
The reservoir model and architecture for open federated cloud computing. IBM Jour-
nal of Research and Development, 53(4):4–1, 2009.

[119] Walid Saad, Zhu Han, Tamer Başar, Mérouane Debbah, and Are Hjorungnes. He-
donic coalition formation for distributed task allocation among wireless agents. IEEE
Transactions on Mobile Computing, 10(9):1327–1344, 2011.

[120] Noel Sardana and Robin Cohen. Modeling agent trustworthiness with credibility
for message recommendation in social networks. In AAMAS, pages 1423–1424.
International Foundation for Autonomous Agents and Multiagent Systems, 2014.

[121] Lloyd Shapley and Herbert Scarf. On Cores and Indivisibility. Journal of mathemati-
cal economics, 1(1):23–37, 1974.

[122] Lloyd S. Shapley. A Value for n-person Games. In Contributions to the Theory of
Games, volume 28, pages 307–317. Princeton University Press, 1953.

[123] Lloyd S. Shapley. Cores of Convex Games. International journal of game theory,
1(1):11–26, 1971.

[124] Ryan Shea and Jiangchuan Liu. Understanding the impact of denial of service at-
tacks on virtual machines. In Proceedings of the 2012 IEEE 20th International Work-
shop on Quality of Service, pages 1–27. IEEE Press, 2012.

[125] Onn M. Shehory, Katia Sycara, and Somesh Jha. Multi-agent Coordination through
Coalition Formation. In Intelligent Agents IV Agent Theories, Architectures, and
Languages, volume 1365, pages 143–154. Springer, 1998.

[126] Wanita Sherchan, Seng W. Loke, and Shonali Krishnaswamy. A fuzzy model for
reasoning about reputation in web services. In Proceedings of the ACM Symposium
on Applied Computing, SAC ’06, pages 1886–1892, New York, NY, USA, 2006. ACM.

[127] Florian Skopik, Daniel Schall, and Schahram Dustdar. Modeling and mining of dy-
namic trust in complex service-oriented systems. Information Systems, (7):735–757,
November.

[128] Gaurav Somani, Manoj Singh Gaur, Dheeraj Sanghi, Mauro Conti, and Rajkumar
Buyya. DDoS Attacks in Cloud Computing: Issues, Taxonomy, and Future Direc-
tions. ACM Computing Surveys, 2015.

[129] Anne Randi Syversveen. Noninformative bayesian priors. interpretation and prob-
lems with construction and applications. Preprint Statistics, 3, 1998.

180

[130] Nicholas A. Thurow and John D. Delano. Selection of web services based on opinion
mining of free-text user reviews. In Proceedings of the International Conference
on Information Systems, page 42, St. Louis, MO, 2010. Association for Information
Systems.

[131] Thomas T. Tran, Robin Cohen, and Eric Langlois. Establishing trust in multia-
gent environments: Realizing the comprehensive trust management dream. In
TRUST@AAMAS, volume 1740 of CEUR Workshop Proceedings, pages 35–43,
2014.

[132] Kristal K. Trejo, Julio B. Clempner, and Alexander S. Poznyak. A Stackelberg se-
curity game with random strategies based on the extraproximal theoretic approach.
Engineering Applications of Artificial Intelligence, 37:145–153, 2015.

[133] John W Tukey. Exploratory data analysis. 1977.

[134] Udaya Tupakula, Vijay Varadharajan, and Naveen Akku. Intrusion detection tech-
niques for infrastructure as a service cloud. In EEE Ninth International Conference
on Dependable, Autonomic and Secure Computing (DASC), pages 744–751. IEEE,
2011.

[135] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Cost-optimal
scheduling in hybrid iaas clouds for deadline constrained workloads. In Cloud Com-
puting (CLOUD), 2010 IEEE 3rd International Conference on, pages 228–235. IEEE,
2010.

[136] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learning theory, vol-
ume 1. Wiley New York, 1998.

[137] Sokratis Vavilis, Milan Petkovic, and Nicola Zannone. A reference model for reputa-
tion systems. Decision Support Systems, 61:147–154, May 2014.

[138] Heinrich von Stackelberg. Marktform und Gleichgewicht. Springer-Verlag Wien New
York, 1934.

[139] Heinrich von Stackelberg. Market Structure and Equilibrium. Springer Berlin Heidel-
berg, translation edition, 2011.

[140] Omar Abdel Wahab. Cooperative clustering models for Vehicular Ad Hoc Networks.
Master’s thesis, Lebanese American University, 2013.

[141] Omar Abdel Wahab, Jamal Bentahar, Hadi Otrok, and Azzam Mourad. A survey on
trust and reputation models for Web services: Single, composite, and communities.
Decision Support Systems, 74:121–134, 2015.

181

[142] Omar Abdel Wahab, Jamal Bentahar, Hadi Otrok, and Azzam Mourad. Misbehavior
detection framework for community-based cloud computing. In FiCloud, pages 181–
188. IEEE, 2015.

[143] Omar Abdel Wahab, Jamal Bentahar, Hadi Otrok, and Azzam Mourad. How to dis-
tribute the detection load among virtual machines to maximize the detection of dis-
tributed attacks in the cloud? In 2016 IEEE International Conference on Services
Computing (SCC), pages 316–323. IEEE, 2016.

[144] Omar Abdel Wahab, Jamal Bentahar, Hadi Otrok, and Azzam Mourad. A stackel-
berg game for distributed formation of business-driven services communities. Expert
Systems with Applications, 45:359–372, 2016.

[145] Omar Abdel Wahab, Jamal Bentahar, Hadi Otrok, and Azzam Mourad. I know you
are watching me: Stackelberg-based adaptive intrusion detection strategy for insider
attacks in the cloud. In IEEE ICWS, pages 728–735. IEEE, 2017.

[146] Omar Abdel Wahab, Jamal Bentahar, Hadi Otrok, and Azzam Mourad. Optimal
load distribution for the detection of VM-based DDoS attacks in the cloud. IEEE
Transactions on Services Computing, 2017.

[147] Omar Abdel Wahab, Moulay Omar Hachami, Arslan Zaffari, Mery Vivas, and
Gaby G. Dagher. DARM: a privacy-preserving approach for distributed association
rules mining on horizontally-partitioned data. In Proceedings of the 18th International
Database Engineering & Applications Symposium, pages 1–8. ACM, 2014.

[148] Omar Abdel Wahab, Azzam Mourad, Hadi Otrok, and Jamal Bentahar. CEAP: SVM-
based intelligent detection model for clustered vehicular ad hoc networks. Expert
Systems with Applications, 50:40–54, 2016.

[149] Omar Abdel Wahab, Hadi Otrok, and Azzam Mourad. VANET QoS-OLSR: QoS-
based clustering protocol for Vehicular Ad hoc Networks. Computer Communica-
tions, 36(13):1422–1435, 2013.

[150] Omar Abdel Wahab, Hadi Otrok, and Azzam Mourad. A cooperative watchdog model
based on Dempster-Shafer for detecting misbehaving vehicles. Computer Commu-
nications, 41:43–54, 2014.

[151] Omar Abdel Wahab, Hadi Otrok, and Azzam Mourad. A Dempster-Shafer Based Tit-
for-Tat Strategy to Regulate the Cooperation in VANET Using QoS-OLSR Protocol.
Wireless Personal Communications, 75(3):1635–1667, 2014.

182

[152] Omar Abdul Wahab, Jamal Bentahar, Hadi Otrok, and Azzam Mourad. Towards
trustworthy multi-cloud services communities: A trust-based hedonic coalitional
game. IEEE Transactions on Services Computing, 2016.

[153] Hongbing Wang, Bin Zou, Guibing Guo, Jie Zhang, and Danrong Yang. Integrating
trust with user preference for effective web service composition. IEEE Transactions
on Services Computing, 10(4):574–588, 2015.

[154] Wei Wang, Ben Liang, and Baochun Li. Multi-resource fair allocation in hetero-
geneous cloud computing systems. IEEE Transactions on Parallel and Distributed
Systems, 26(10):2822–2835, 2015.

[155] Yao Wang and Julita Vassileva. Toward trust and reputation based web service
selection: A survey. International Transactions on Systems Science and Applications
(ITSSA) Journal, 3(2), 2007.

[156] J Scott Ward and Adam Barker. Varanus: In situ monitoring for large scale cloud sys-
tems. In 5th International Conference on Cloud Computing Technology and Science
(CloudCom), volume 2, pages 341–344. IEEE, 2013.

[157] Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference.
Springer Publishing Company, Incorporated, 2010.

[158] Michael R Watson, Angelos K Marnerides, Andreas Mauthe, David Hutchison, et al.
Malware detection in cloud computing infrastructures. IEEE Transactions on De-
pendable and Secure Computing, 13(2):192–205, 2016.

[159] Guiyi Wei, Athanasios V Vasilakos, Yao Zheng, and Naixue Xiong. A game-theoretic
method of fair resource allocation for cloud computing services. The journal of su-
percomputing, 54(2):252–269, 2010.

[160] Eyal Winter. On Non-Transferable Utility Games with Coalition Structure. Interna-
tional Journal of Game Theory, 20(1):53–63, 1991.

[161] Michael Wooldridge. Agent-based software engineering. IEE Proceedings-software,
144(1):26–37, 1997.

[162] Bing Wu, Jianmin Chen, Jie Wu, and Mihaela Cardei. A survey of attacks and coun-
termeasures in mobile ad hoc networks. In Wireless Network Security, pages 103–
135. Springer, 2007.

[163] Hamdi Yahyaoui. Trust assessment for web services collaboration. In IEEE Interna-
tional Conference on Web Services, pages 315–320, Miami, FL, 2010. IEEE.

183

[164] Hamdi Yahyaoui. A trust-based game theoretical model for web services collabora-
tion. Knowledge-Based Systems, 27:162–169, 2012.

[165] Bin Yu and Munindar P Singh. An evidential model of distributed reputation man-
agement. In Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 1, pages 294–301. ACM, 2002.

[166] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and
Quan Z. Sheng. Quality driven web services composition. In Proceedings of the
12th international conference on World Wide Web, ser. WWW ’03, pages 411–421,
2003.

[167] Jin Zhang and Qian Zhang. Stackelberg Game for Utility-Based Cooperative Cog-
nitive Radio Networks. In USA New Orleans, LA, editor, Proceedings of the Tenth
ACM International Symposium on Mobile Ad Hoc Networking and Computing, pages
23–32. ACM, 2009.

[168] Tao Zhang, Jianfeng Ma, Cong Sun, Qi Li, and Ning Xi. Service composition in
multi-domain environment under time constraint. In IEEE International Conference
on Web Services, pages 227–234, Santa Clara, CA, 2013. IEEE.

[169] Rong Zhou and Eric A Hansen. Breadth-first heuristic search. Artificial Intelligence,
170(4):385–408, 2006.

184

