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Abstract

Modeling Nested Copulas with GLMM Marginals for Longitudinal Data

A flexible approach for modeling longitudinal data is proposed. The model consists of nested

bivariate copulas with Generalized Linear Mixed Models (GLMM) marginals, which are tested

and validated by means of likelihood ratio tests and compared via their AICc and BIC values.

The copulas are joined together through a vine structure. Rank-based methods are used for

the estimation of the copula parameters, and appropriate model validation methods are used

such as the Cramér Von Mises goodness-of-fit test. This model allows flexibility in the choice

of the marginal distributions, provided by the family of the GLMM. Additionally, a wide vari-

ety of copula families can be fitted to the tree structure, allowing different nested dependence

structures. This methodology is tested by an application on real data in a biostatistics study.
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Introduction

Modeling the dependence structure for multivariate longitudinal data is an important challenge

in all fields. In the literature, it is usually assumed that the data, or a transformation of the

data, is generated from a multivariate normal distribution, with a variance-covariance matrix

that explains the dependence between the multiple response variables, and the serial dependence.

However, we often come across data that are not normally distributed, and hence, a generalized

methodology is needed to fit all distributions. Furthermore, assuming a common distribution for

all the responses might not be appropriate. Therefore, in this thesis, we propose a parametric

approach for a nested copula model for fitting multiple responses of longitudinal data, where each

response is initially modeled by a generalized linear mixed model. This allows for the possibility

of using a variety of continuous and discrete distributions. Under this approach, the marginal

distributions take into account the dependence between each response and its covariates, over

time, while the copula holds the general structure for the dependence between each response.

Instead of measuring the linear correlation, we examine a more general and appropriate concept

of dependence. The estimates for the marginal distributions are obtained by fitting each re-

sponse to multiple distributions that fit its characteristics, where afterwards variable and model

selection criteria are performed to choose the best fit model. Additionally, the estimates for

the dependence parameters of the copula is obtained by maximizing the pseudo log-likelihood

by using rank-based methods. An inadequate choice for the dependence parameter and copula

may result in unexpected deviations in the response variable, especially when one is provided

with a small data set. Therefore, goodness of fit tests are performed to ensure the accuracy of

the model. The model can be used for predictive modeling and conditional predictive modeling,

where the choice of the conditioning response variable is arbitrary and is chosen based on the

context of the data.

xi



Our methodology is applied to real data in biostatistics, provided by the research center of

Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC. This data set has been the mo-

tivation behind this research.

This thesis is structured as follows. In Chapter 1, we discuss different regression models to

fit data with only one outcome variable. The assumptions and properties of each model are

explained in details. Chapter 2 introduces multivariate distributions and their link with cop-

ulas. Several properties of different copula families are explored. We also explain measures of

dependence and how to use copulas for predictions. In Chapter 3, we explain different criteria

to choose the model and variables that provide the best fit for any data. A small number of

observations can be restrictive in modeling, and special criteria are mentioned to overcome this

problem. We propose a model that is appropriate for modeling multivariate longitudinal data

in Chapter 4. This model provides flexibility in modeling responses from various distributions,

with different pairwise dependence structure. Additionally, in Chapter 5, we provide a real life

application in biostatistics for the suggested model and we illustrate the procedure for predictive

modeling simulations.

xii



Chapter 1

Univariate Models

Linear regression is used to model the relationship between a response variable, also called the

dependent variable, outcome variable, predicted variable or regressand and denoted by y, and

a set of predictors, also called the independent variables, explanatory variables, covariates or

regressors and denoted by x1, x2, . . . , xp, by assuming a linear relationship between them. If

there is only one predictor x1, this is referred to as Simple Linear Regression, however if there

are two or more predictors, it is referred to as Multiple Linear Regression (MLR). The goal

of linear regression is to identify the strength of the linear relationship between the response

variable and each predictor, identify the predictors that have no effect on the response variable

and to predict values for the response variable using any values for the predictors. Given a

real data set, we do not know the parameters of the model, but we can explain the relationship

between the response variable and the predictors by estimating the model parameters and using

them to identify the conditional expectation of the response variable given the predictors. There

are several methods to fit linear models, some of which will be explained in this thesis where

the availability of more than one predictor (i.e. MLR) is assumed. The discussed methods are

Ordinary Least Squares (OLS), Generalized Linear Models (GLM) and Generalized Linear Mixed

Models (GLMM). There are also non-linear regression models that assume that the relationship

between the dependent variable and the independent variables is non-linear in terms of the

regression parameters, but they will not be explored further in this thesis due to their complexity.

Linear models are more commonly used as they can be easily modeled and explained.

1



1.1 Ordinary Least Squares

The earliest method for estimating the parameters of a linear model is the Ordinary Least

Squares (OLS) method, which was first used by Gauss and Legendre as explained in Stigler

(1981) who applied the model to astronomical data sets. The goal of OLS is to find the linear

model that minimizes the square of the prediction error.

1.1.1 The Model

Consider a data set that contains n observations. Each observation i consists of a scalar response

variable yi and a set of p predictors xij for j = 1, . . . , p. The relationship between the response

variable and the predictors for observation i are assumed to be linear in parameters, but not

necessarily linear in predictors. This means that, for example, the variables xij can be to any

power, but the parameters of the model have to maintain the linearity assumption. The general

form for OLS is

yi = β0 + β1xi1 + . . .+ βpxip + εi,

where β0 is called the model intercept, β1, . . . , βp are the regression coefficients and εi is the ran-

dom error, which is the difference between the actual observed value of the response variable,

and the predicted value from using the above model. Each regression coefficient represents an

additive change in the expected value of y resulting from a one unit increase in the predictor

associated with that regression coefficient. It is assumed that ε ∼ N(0, σ2), all εi’s are indepen-

dent and that the predictors are nearly linearly independent (no strong multi-collinearity). All

those assumptions will be discussed later in Section 1.1.3. The above model can be rewritten in

matrix notation as follows:

n×1︷︸︸︷
Y =

n×1︷ ︸︸ ︷
X︸︷︷︸

n×(p+1)

β︸︷︷︸
(p+1)×1

+

n×1︷︸︸︷
ε ,

where all entries in the first column of X are equal to 1. The goal of OLS is to find estimates

for the regression coefficients β̂0, β̂1, . . . , β̂p that minimize the squared differences between the

observed response variable yi, and the predicted values ŷi = β̂0 + β̂1xi1 + . . . + β̂pxip. The

difference yi − ŷi is called the regression residuals, and it is represented by the blue lines in

Figure 1.1.

2



Figure 1.1: Illustration of OLS regression. The straight line minimizes the squared differences

between the observed response and the predicted values, indicated by the blue vertical lines.

1.1.2 Estimation of Model Parameters

The regression coefficients of the OLS model can be obtained by solving(
β̂0, β̂1, . . . , β̂p

)
= arg min

(β0,β1,...,βp)

n∑
i=1

(yi − ŷi)2 ,

or its equivalent in matrix notation

β̂ = arg min
β∈R(p+1)

‖Y −Xβ‖2. (1.1.1)

Let f (β) be the objective function in the optimization of Eq. 1.1.1, then

f (β) = ‖Y −Xβ‖2

= Y TY − 2βTXTY + βTXTXβ,

and

∂f (β)

∂β
= −2XTY + 2XTXβ = 0.

This leads to the following regression coefficient estimates

β̂ =
(
XTX

)−1
XTY, (1.1.2)

provided that
(
XTX

)−1
exists.

3



1.1.3 Assumptions

It is important to validate the required assumptions for fitting OLS regression to the data,

otherwise, we can have incorrect and misleading results. Those assumptions are explained in

details in Allen (1997) and are summarized in the following points,

Assumption 1. The linear regression model is linear in parameters.

The relationship between the response variable Y and the predictors X’s is linear in parameters

β and not necessarily linear in X’s. Therefore, Eq. I and Eq. II are acceptable, but Eq. III is

not acceptable;

yi = β0 + β1xi1 + . . .+ βpxip + εi, (I)

yi = β0 + β1x
2
i1 + . . .+ βpx

p
ip + εi, (II)

yi = β0 + β2
1xi1 + . . .+ βppxip + εi. (III)

Assumption 2. The observations in the data set are independent and sampled randomly such

that the number of observations y1, . . . , yn is bigger than the number of parameters β.

Independence of the observations is one of the important assumptions because it assures that

we have a model with only fixed effects, and no random effects. Random effects can occur

when the observations can be grouped in different categories, such that each category varies

uniquely from the mean of the population. Section 1.3 further explains random effects and the

changes that occur in the modeling as a result of their presence. In addition, if the number of

observations n is equal to the number of parameters p, then we have equal number of equations

as unknowns, which can be solved algebraically without the need for OLS. If n < p, a unique

solution is impossible to find algebraically or by using OLS.

Assumption 3. Multi-collinearity should be minimized.

There should be almost no linear relationship between the predictors. If there is a strong linear

relationship (Pearson correlation coefficient ρp close to ±1) between the predictors, we should

drop some of them such that the chosen model has almost uncorrelated predictors.

Assumption 4. The predictors are non-random.

The predictors xi1, . . . , xip are assumed to have fixed values such that variation in the predictors

causes variation in the outcome yi. However, changes in the outcome should not imply changes

4



in the predictors. In other words, if we are modeling the amount of auto insurance losses, then

it is assumed that the amount of the loss depends on the car type, but the car type does not

depend on the amount of the loss.

Assumption 5. ε ∼ N(0, σ2).

The error terms should be independent and identically distributed (IID) with mean 0 and con-

stant variance σ2, and given the previous assumption, this makes the response variable random

as well. In addition, there should be no relationship between the predictors and ε.

If we consider the case where the response variable Y is Normally distributed such that Y ∼

N(Xβ, σ2In), then the maximum likelihood estimates of β results in the same estimates obtained

by OLS.

Proof. To obtain the estimates of the parameters β and σ2, we use the maximum likelihood

estimation method. The density function is

φ
(
Y ;Xβ, σ2In

)
= (2π)−n/2|σ−2In|1/2 exp

{
−1

2
(Y −Xβ)T σ−2In (Y −Xβ)

}
,

and its log-likelihood function is

l
(
β, σ2;Y,X

)
= −n

2
log(2π) +

1

2
log |σ−2In| −

1

2
(Y −Xβ)T σ−2In (Y −Xβ)

= −n
2

log(2π) +
n

2
log σ−2 − 1

2
σ−2 (Y −Xβ)T (Y −Xβ) .

Therefore, the maximum likelihood estimator is obtained by optimizing(
β̂, σ̂2

)
= arg min

(β,σ2)∈R(p+1)×R+

−l
(
β, σ2;Y,X

)
.

The partial derivatives of the objective function with respect to each parameter is equated to 0

as follows:

∂
[
−l
(
β, σ2;Y,X

)]
∂σ2

=
n

2σ2
− 1

2σ4
(Y −Xβ)T (Y −Xβ) = 0

σ2 =
1

n
(Y −Xβ)T (Y −Xβ) ,

and,

∂
[
−l
(
β, σ2;Y,X

)]
∂β,

=
1

2
σ−2

∂
[
(Y −Xβ)T (Y −Xβ)

]
∂β

5



=
1

2
σ−2∂

[
Y TY − 2βTXTY + βTXTXβ)

]
∂β

=
1

2
σ−2

(
−2XTY + 2XTXβ

)
= 0

β̂ =
(
XTX

)−1
XTY.

Therefore, when the outcome variable is normally distributed, the estimates of the regression

coefficients are identical to those obtained by OLS, as shown in Eq. 1.1.2, provided that XTX

is invertible.

1.1.4 Goodness of Fit Measures

The closer the predicted values obtained from the fitted model ŷ are to the observed values from

the data y, the better the fit of the model. There are several measures that can be used to

asses the accuracy of the fitted model and to compare different models together. They will be

discussed in Chapter 3.1.

1.2 Generalized Linear Models

Even though OLS provides a relatively simple method to fit data sets, it has some restrictions

that may prevent us from applying it. As explained by McCullagh (1984), Generalized Linear

Models (GLMs) are an extension of linear models where the mean of the response variable is

linearly related to the predictors via an arbitrary link function and the variance of the response

variable depends on the mean. This means that a function of E(Y ) is linearly related to the

predictors, rather than the response variable itself being linearly related to the predictors. GLMs

also allow us to drop the normality assumption of the error terms under the OLS (i.e. εi does

not have to be normally distributed with zero-mean and constant variance σ2). In addition,

by using GLM, we have the flexibility to model data where the response variable is bounded

or discrete. GLMs assumes independence of the observations, and hence there are only fixed

effects in the model. Section 1.3 will discuss the modeling performed when there is dependence

between the observations. Further assumptions of GLM are discussed in Section 1.2.5.
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1.2.1 The Model

Consider a model with response vector Y = (y1, . . . , yn), and p predictors arranged in a n × p

matrix X where n represents the number of observations. The responses y1, . . . , yn are assumed

to be independent and generated from the same exponential family, which is discussed in details

in Section 1.2.2. The mean of the response vector Y is assumed to be linearly related to the

predictors via an arbitrary link function g(·) as follows:

g (E [Y ]) = g(µ) = Xβ = η,

where β is the vector of regression coefficients, which is usually estimated using the maximum

likelihood method. η is called the linear predictor and its components can be defined by

ηi =

p∑
j=1

xijβj = XT
i β.

The true mean of the response variable can be calculated by taking the inverse of the link

function (i.e. E [Y ] = g−1 (Xβ) = g−1 (η)) and the variance V ar(Y ) is a function of the mean,

and it is generated from the exponential family chosen for the model.

1.2.2 The Exponential Family

Consider a response vector Y where responses y1, . . . , yn are assumed to independent and gen-

erated from the same distribution with probability density function

f(yi; θi, φ) = exp

{
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

}
, (1.2.1)

where ai(φ), b(θi) and c(yi, φ) are known functions that differ depending on the chosen distribu-

tion. This distribution is referred to as the Exponential Family distribution. The function ai(φ)

is usually of the form

ai(φ) = φ/ωi,

where φ is referred to as the dispersion parameter and is constant over all observations, and ωi

is a known prior weight that differs between observations, but usually equals to 1. The mean

and variance of Y are

E[Yi] = µi = b′(θi) (1.2.2)

V ar[Yi] = σ2
i = b′′(θi)ai(φ) (1.2.3)
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respectively, where

b′(θi) =
∂b(θi)

∂θi
, and b′′(θi) =

∂2b(θi)

∂θ2
i

.

Example: Poisson Distribution

Let Y ∼ Poisson(λ), where y ∈ 0, 1, 2, ... and λ > 0, then the probability mass function of Y is

fY (y) =
λye−λ

y!

= exp {y log λ− λ− log(y!)} .

If we let θ = log λ, ωi = 1 and φ = 1, then

fY (y) = exp

{
yθ − exp {θ}

1
− log(y!)

}
.

Therefore, the Poisson distribution is a member of the exponential family with b(θ) = exp {θ}

and a(φ) = 1. The mean and variance of Y are obtained by using Eq. 1.2.2 and Eq. 1.2.3

E[Y ] = µ = b′(θ) = exp {θ} = exp {log λ} = λ (1.2.4)

V ar[Y ] = σ2 = b′′(θ)a(φ) = exp {log λ} = λ.

Example: Gamma Distribution

Let Y ∼ Gamma(α, β), where 0 < α, β, y <∞, then the density function of Y is

fY (y) =
yα−1βαe−βy

Γ(α)

= exp {−βy + α log β + (α− 1) log y − log Γ(α)}

= exp

{
y(−β/α)− [− log β]

1/α
+ (α− 1) log y − log Γ(α)

}
.

If we let θ = −β/α, ωi = 1 and φ = 1/α, then

fY (y) = exp

{
yθ − [− log (−θα)]

φ
+ (1/φ− 1) log y − log Γ(1/φ)

}
= exp

{
yθ − [− log (−θ)]

φ
+

logα

φ
+ (1/φ− 1) log y − log Γ(1/φ)

}
.
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Therefore, the Gamma distribution is a member of the exponential family with b(θ) = − log (−θ)

and a(φ) = φ = 1/α. The mean and variance of Y are obtained by using Eq. 1.2.2 and Eq.

1.2.3 as follows:

E[Y ] = µ = b′(θ) = −1

θ
=
α

β
(1.2.5)

V ar[Y ] = σ2 = b′′(θ)a(φ) =
φ

θ2
=

α

β2
.

1.2.3 The Link Function

If the distribution from the exponential family is expressed in terms of its mean µi, such that

θi = g(µi) for a given function g(·), then g(·) is referred to as the canonical link function. The

canonical link function is the default link function used in GLMs, but it is not mandatory.

Although the canonical link function can provide desirable statistical properties, non-canonical

link functions can be used if they provide a better fit for the data or if they can better explain

the model and the coefficients. Table 1.1 provides a summary of the canonical link function for

some common distributions that are members of the exponential family. The link function is

linearly related to the predictors in the model such that

g (E [Y ]) = g(µ) = Xβ = η.

In order to obtain the mean of the model, one can invert the link function as follows:

E [Y ] = g−1 (Xβ) = g−1 (η) .

Note that with GLMs, one does not transform the response variable, but rather the mean of the

response variable. Therefore, a model where log Y is linearly related to the predictors (Eq. IV)

is not the same model where GLM is used with a log link function, where in the latter log E [Y ]

is linear on the predictors (Eq. V).

log yi = β0 + β1xi1 + . . .+ βpxip + εi (IV)

logE [yi] = β0 + β1xi1 + . . .+ βpxip + εi. (V)
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Table 1.1: Characteristics of some common exponential family members as shown by McCullagh

(1984).

Distribution Support g(µ) Canonical link name

Normal (−∞,∞) µ Identity

Poisson 0, 1, 2 . . . log µ Log

Binomial 0, 1, 2 . . . , N log µ
1−µ Logit

Gamma (0,∞) 1/µ Inverse

Inverse Gaussian (0,∞) 1/µ2 Inverse squared

Example: Poisson Distribution

The canonical link function for the Poisson distribution is obtained by finding g(·), where

θ = g(µ). By observing Eq. 1.2.4, we have that θ = log µ, therefore, the canonical link function

for the Poisson distribution is g(µ) = log µ.

Example: Gamma Distribution

The canonical link function for the Gamma distribution is obtained by finding g(·), where

θ = g(µ). By observing Eq. 1.2.5, we have that θ = −1/µ, therefore the canonical link function

for the Gamma distribution is g(µ) = −1/µ. This canonical link function is equivalent to the

inverse link function, which is shown as follows:

g(µi) = − 1

µ
=

p∑
j=1

xijβj .

Therefore,

1

µ
=

p∑
j=1

xij (−βj)

=

p∑
j=1

xijβ
∗
j ,
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where β∗j = −βj . However, this does not enforce positive means for the model. Thus, it is more

common to use the log link function g(µ) = log(µ) for data that requires positive values.

1.2.4 Estimation of Model Parameters

To obtain the model parameters, we can use the maximum likelihood estimation method, where

we differentiate the negative log-likelihood with respect to the parameter of interest β. The

likelihood function of a distribution that is a member of the exponential family and has a

density function as in Eq. 1.2.1 is defined as

L(θ, φ;Y ) =

n∏
i=1

exp

{
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

}
,

and its log-likelihood is

l(θ, φ;Y ) =
n∑
i=1

[
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

]
. (1.2.6)

The maximum likelihood estimate β̂ is obtained by solving the following system of equations

∂l(θ, φ;Y )

∂βj
=

∂l

∂βj
= 0.

However, our parameter of interest βj is not explicit in Eq. 1.2.6. But we know the following

µi = b′(θi), ηi =

p∑
j=1

xijβj , g(µi) = ηi.

By applying the chain rule, we have that

∂l

∂βj
=

n∑
i=1

∂l

∂θi
· ∂θi
∂µi
· ∂µi
∂ηi
· ∂ηi
∂βj

,

where

∂l

∂θi
= −yi − b

′(θi)

ai(φ)
= −yi − µi

ai(φ)

∂θi
∂µi

= 1/
∂µi
∂θi

= 1/
∂b′(θi)

∂θi
= 1/b′′(θi)

∂µi
∂ηi

= 1/
∂ηi
∂µi

= 1/
∂

∂µi
g(µi) = 1/g′(µi)
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∂ηi
∂βj

=
∂

∂βj

p∑
j=1

xijβj = xij .

Therefore, we obtain
∂l

∂βj
= −

n∑
i=1

(yi − µi)xij
ai(φ)b′′(θi)g′(µi)

.

By using Eq. 1.2.3, the above formula can be simplified into

∂l

∂βj
= −

n∑
i=1

(yi − µi)xij
V ar[Yi]g′(µi)

.

There are no closed form solutions for all GLM models. Therefore, numerical optimization is

performed using computer software. The most common technique is Iterative Weighted Least

Squares (IWLS), followed by Fisher scoring method and Newton Raphson method as explained

by McCullagh (1984).

The interpretation of model parameters for the GLM models is slightly different than that of

the OLS coefficients. Consider a GLM model with a log link function and only one covariate,

then it can be expressed as follows:

logE [Y |X] = β0 + β1X ⇔ E [Y |X] = exp (β0 + β1X) . (1.2.7)

Therefore, if we increase the value of the covariate by 1, the log of E [Y |X] increases by β1 as

follows:

logE [Y |X + 1] = β0 + β1(X + 1)

logE [Y |X + 1] = β0 + β1X + β1.

However, we are not interested in the change of the log of the mean of Y , but rather the change

of the mean of Y . Therefore, by applying Eq. 1.2.7, we have that

logE [Y |X + 1] = β0 + β1X + β1 ⇔ E [Y |X + 1] = exp (β0 + β1X + β1)

= exp (β0 + β1X) exp (β1)

= E [Y |X] exp (β1) . (1.2.8)

So exp(β1) is a multiplicative factor that represents the increase due to a 1 unit increase in X,

and we refer to it as the transformed parameter estimate.
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1.2.5 Assumptions

Similar to OLS, there are some assumptions that should hold in order to use GLMs, or to choose

the distribution used in the modeling. Breslow (1996) explained all the assumptions needed for

GLMs and they are summarized in this section.

Assumption 6. Correct choice for all components of the GLM.

The distribution used in the modeling should be well suited for the data. For example, if we

are observing an outcome variable that is positive, continuous and rightly skewed, the Gamma

distribution can be a good choice. However, if we are modeling an outcome variable that is

discrete and represents count of events, then the Poisson distribution can be a good choice.

Additionally, the link function should be chosen to well represent the data. For example, if we

are modeling positive outcomes, the link function should be chosen such that its inverse would

always result in positive mean values.

Assumption 7. The observations in the data set are independent and sampled randomly such

that the number of observations y1, . . . , yn are bigger than the number of parameters β.

Independence of the observations is one of the important assumptions because it assures that

we have a model with only fixed effects, and no random effects. We explore the changes in the

model for data that has random effects in Section 1.3. In addition, if the number of observations

n is equal to the number of parameters p, then we have equal number of equations as unknowns,

which can be solved algebraically. If n < p, then no unique solution is available.

Assumption 8. The predictors are non-random.

The predictors xi1, . . . , xip are assumed to have fixed values such that variation in the predictors

causes variation in the outcome yi. However, changes in the outcome should not imply changes

in the predictors. In other words, if we are modeling the amount of auto insurance losses, then

it is assumed that the amount of the loss depends on the car type, but the car type does not

depend on the amount of the loss.

Assumption 9. Multi-collinearity should be minimized.

There should be “almost” no linear relationship between the predictors. If there is a strong

linear relationship (Pearson correlation coefficient ρp close to ±1) between the predictors, we

should drop some of them such that the chosen model has “almost” uncorrelated predictors.
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1.2.6 Goodness of Fit Measures

By estimating the parameters of the GLM model, we can obtain the fitted values ŷ which are

generally not equivalent to the original data values y, with the goal to obtain small differences

between them. McCullagh (1984) mentioned that there are several measures used to calculate

that difference and they use the log-likelihood function illustrated in Eq. 1.2.6.

Consider the following:

• l(θ̂, φ;Y ) represents the maximized log-likelihood of the fitted model for a fixed value of

the dispersion parameter φ,

• l(θ̃, φ;Y ) represents the log-likelihood from the saturated model, a hypothetical model,

where each observation is perfectly fitted without errors, and

• l(θ0, φ;Y ) represents the log-likelihood from the null model, a hypothetical model, with

only an intercept value and no predictors such that every observation is estimated by the

mean.

The predictions from the saturated model, ỹi, exactly match the actual observations, yi. For this

model, each observation has its own parameters, i.e. there are n estimates for β̃, and therefore,

each estimate perfectly predicts the value of the outcome. The saturated model can be observed

as the upper bound of the log-likelihood function, because it theoretically provides the best fit,

while the null model is the lower bound of the log-likelihood function. The maximized model

has a log-likelihood value in between those bounds.

The discrepancy of the fit is measured by obtaining the difference between the saturated model

and the fitted model, which gives us a quantity named the scaled deviance, defined as follows:

D∗(θ̂, φ;Y ) = 2
[
l(θ̃, φ;Y )− l(θ̂, φ;Y )

]
.

By using Eq. 1.2.6, and ai(φ) = φ/ωi we can rewrite the scaled deviance of the model as

D∗(θ̂, φ;Y ) = 2

[
n∑
i=1

[
yiθ̃i − b(θ̃i)
ai(φ)

+ c(yi, φ)

]
−

n∑
i=1

[
yiθ̂i − b(θ̂i)
ai(φ)

+ c(yi, φ)

]]

= 2

[
n∑
i=1

[
yiθ̃i − b(θ̃i)

φ/ωi
+ c(yi, φ)− yiθ̂i − b(θ̂i)

φ/ωi
+ c(yi, φ)

]]
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=
2

φ

n∑
i=1

ωi

[
yi

(
θ̃i − θ̂i

)
−
(
b(θ̃i)− b(θ̂i)

)]
, (1.2.9)

where the deviance of the model is defined as

D(θ̂, φ;Y ) = 2
n∑
i=1

ωi

[
yi

(
θ̃i − θ̂i

)
−
(
b(θ̃i)− b(θ̂i)

)]
, (1.2.10)

and the quantity D∗(θ̂, φ;Y ) is simply the deviance scaled by the dispersion parameter φ. The

values of D(θ̂, φ;Y ) and D∗(θ̂, φ;Y ) are always positive since the saturated model has a higher

log-likelihood value than any fitted model, and their values will approach 0 when the fitted

parameters perfectly explain the model without errors.

Example: Poisson Distribution

The deviance for the Poisson distribution is obtained by using previous results that we obtained

in earlier examples. Since θ = log µ, and b(θ) = exp{θ} for the Poisson distribution and by

assuming equal priori weights ωi = 1, then the deviance from Eq. 1.2.10 becomes

D(θ̂, φ;Y ) = D(µ̂;Y ) = 2
n∑
i=1

ωi [yi (log yi − log µ̂i)− (yi − µ̂i)]

= 2
n∑
i=1

[
yi log

yi
µ̂i
− (yi − µ̂i)

]
.

The scaled deviance for the Poisson distribution is the same as the deviance because the disper-

sion parameter φ = 1.

Example: Gamma Distribution

Similar to the Poisson distribution, obtaining the deviance for the Gamma distribution relies on

previous results that we obtained in earlier examples. Since θ = −1/µ and b(θ) = − log(−θ) for

the Gamma distribution and by assuming equal priori weights ωi = 1, then the deviance from

Eq. 1.2.10 becomes

D(θ̂, φ;Y ) = D(µ̂;Y ) = 2

n∑
i=1

ωi

[
yi

(
−1

yi
− −1

µ̂i

)
− (log yi − log µ̂i)

]

= 2

n∑
i=1

[
yi − µ̂i
µ̂i

− log
yi
µ̂i

]
.

The scaled deviance for the Gamma distribution is obtained by scaling the deviance by the

dispersion parameter φ such that D∗(θ̂, φ;Y ) = D(θ̂,φ;Y )
φ .
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It is important to mention that when log-likelihoods or deviance is used to compare models,

this comparison is only valid when the compared models are done over the same data set with

the same number of observations. This is because the log-likelihood is obtained by summing

the log-likelihoods for each observation, and if a model has more observations than another

model, then it will have a higher log-likelihood value, which should not be attributed to having

a better fit to the data. It is also important to use deviance only in comparing models that have

the same distribution and the same dispersion parameter, i.e. everything in the model should

be identical except the coefficients. This is because the deviance measures the deviation from

the log-likelihood of the saturated model. Therefore changing any assumptions in the model

other than the coefficients would change the value of the log-likelihood of the saturated model,

not only the fitted model, which makes the comparison between models by using the deviance

obsolete. If the distribution of a model is a special case from another model, such as the Poisson

distribution being a special case of the Negative Binomial distribution, then it is appropriate to

use the deviance as a model selection criteria.

Additionally, a model M1 is said to be nested of another model M2 if it uses a subset of the

predictors of M2. If we want to compare the two nested models M1 and M2 with p1 and p2

number of predictors respectively, such that p2 > p1, and parameters θ̂1 and θ̂2 respectively, we

can use the scaled deviance (or deviance) of each model to obtain a likelihood ratio test statistic

as follows:

D∗(θ̂1, φ;Y )−D∗(θ̂2, φ;Y ) = 2
[
l(θ̂2, φ;Y )− l(θ̂1, φ;Y )

]
= 2 ln

l(θ̂2, φ;Y )

l(θ̂1, φ;Y )
.

This statistics asymptotically follows the Chi-Square distribution with degrees of freedom ν =

p2 − p1.

Frequently, we would like to compare models that are not nested, or from different exponential

families, and hence comparing their deviance is not an accurate goodness of fit test because of

reasons mentioned earlier. In that case, we will have to refer to other model selection criteria

which will be explored later in Chapter 3.1.
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1.3 Generalized Linear Mixed Models

Sometimes it occurs that the observations in the data are not independent, for example, longi-

tudinal data where repeated observations of the same variables are measured over time for the

same individual, or when the data is obtained from groups (countries, hospitals, schools, etc.).

This adds a random effect to the model, which makes GLM no longer applicable. Generalized

Linear Mixed Models (GLMMs) are an extension of GLMs where random effects are added to

the model, in addition to the usual fixed effects available in GLMs. The term “mixed model”

implies the use of both fixed and random effects in the modeling. Random effects are always

associated with categorical variables, which divides the data into several groups. For example,

assume we want to model and make statistical inference about the amount of auto insurance

losses in Canada, and the data is collected from several insurance companies. For each com-

pany, we will obtain the amount of the losses Y , and the predictors X which includes age and

profession of the insured, car model, etc. If the companies represent the entire population, (i.e.

we collected data from all companies in Canada), then we would want to focus our analysis on

the effect of each company and on its impact on the loss amount. Therefore, the parameters

for each company are considered model parameters, and not random variables, hence, the com-

pany is a fixed effect. However, if the companies represent a sample of the population (i.e. we

collected data from some companies in Canada), we will be interested in knowing the trend for

the entire population, not just those sampled companies. Therefore, the parameters of those

companies are no longer considered fixed model parameters; they are random variables and thus

have probability distributions. Hence, we will be interested in knowing the variance between

the companies, in order to make a general conclusion about the population. The distinction

between the companies being considered a population versus samples is what distinguishes a

model with fixed effects and random effects, respectively.

1.3.1 The Model

Consider a sample of N independent multivariate response Y i = (yi1, . . . , yin)T such that i =

1, . . . , N , where yij is the jth response for the ith group/subject. For simplicity of notation, it is

assumed that each group has the same number of observations n. We assume that each response

yij depends on a p × 1 vector of fixed predictors xij associated with a vector of fixed effects

coefficients β and on a q × 1 vector of fixed predictors zij associated with a vector of random
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effects coefficients bi = (b0i, b1i, . . . , bqi)
T . Given the random effect b, the mean of the response

vector Y is assumed to be related to the predictors via an arbitrary link function g(·) such that

g (E [Y |b]) = g(µ|b) = Xβ + Zb,= η,

where it is assumed that b ∼ N(0,G), where G is the variance-covariance matrix of the random

effects. Note that the random effects help in identifying the variation of each sample/group from

the population mean (or the fixed effects), so imposing a mean of zero makes the model unique,

and we are interested in estimating the variance. Similar to the GLMs, in order to obtain the

mean of the model, one can invert the link function g(·).

To help us explain the above model, we will assume an intercept, only 1 covariate Xij and 3

groups/subject. The expanded matrices become:

η11

...

η1n

η21

...

η2n

η31

...

η3n



=



1
...

1

1
...

1

1
...

1



β0 +



x11

...

x1n

x21

...

x2n

x3n

...

x3n



β1 +



1 0 0
...

...
...

1 0 0

0 1 0
...

...
...

0 1 0

0 0 1
...

...
...

0 0 1




b01

b02

b03

+



x11 0 0
...

...
...

x1n 0 0

0 x21 0
...

...
...

0 x2n 0

0 0 x3n

...
...

...

0 0 x3n




b11

b12

b13

 ,

or [
X0 X1

]β0

β1

+
[
Z0 Z1

]b0

b1

 ,
where X0 is a (n × N) × 1 vector of ones, X1 is a (n × N) × 1 vector with elements equal

to the covariate Xij for the corresponding observation, β0 and β1 are the regression coefficients

for X0 and X1, respectively. Z0 is an (n × N) × 3 matrix whose ij component is 1 if the

corresponding observation is in the ith group/subject, and 0 otherwise. Z1 is an (n × N) × 3

matrix whose elements are Xij if the corresponding observation is from the ith group/subject

and 0 otherwise. ηij is represented by

ηij = β0 + β1xij + b0i + b1ixij

18



= (β0 + b0i) + (β1 + b1i)xij ,

where b0i explains the deviation from the intercept, β0, for the ith group, and b1i is the deviation

from the slope of X1, β1 for the ith group. In addition,

b =

b0

b1

 ∼ N
0

0

 ,
 Iσ2

0 Iσ10

Iσ01 Iσ2
1

 .

Conditional on the random effects b, the responses Y are assumed to be mutually independent

and generated from the same exponential family as explained in Section 1.2.2.

1.3.2 Estimation of Model Parameters

Similar to GLMs, Maximum likelihood estimation is also used to estimate the fixed effects

coefficients β in GLMMs. In addition, it is also used to estimate the random effects coefficients

b and G, the variance of the random effects. Stroup (2012) provided detailed explanation on

obtaining the model parameters, and they also confirm on the difficulty of obtaining closed form

solutions for the estimates, and hence computer software are used for numerical optimization.

1.3.3 Goodness of Fit Measures

Please refer to Chapter 3.1 for details on assessing the goodness of fit of the model and compar-

ison between models.
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Chapter 2

Multivariate Models

The univariate models provide a variety of methods to model data sets that have only one

outcome variable Y . However, we often need to model several outcomes and to observe the

dependency between them. A multivariate distribution is a distribution that has more than one

random variable linked together through a dependence structure. This dependence structure

explains if they are independent or dependent on each other, and also the direction and strength

of the dependence. This chapter presents the properties of multivariate distribution functions

and their relationship with copulas. We also explore the fundamentals of copulas and their use

in statistical modeling.

Note that in this section, we work with the assumption that each random variable is a continuous

random variable, but some of the notations and properties can be translated to discrete variables

by using summands instead of integrands. However, some notations have complicated forms for

discrete distributions, especially in copulas.

2.1 Multivariate Distribution Functions

Consider the random vector X which contains n random variables X1, . . . , Xn linked together

through a joint density function f and joint distribution function F . The support of each

random variable Xi is RXi = [Li, Ui], which is the set of values that the random variable can

take. For the rest of this chapter, we will assume that the lower limit Li = −∞ and the upper

limit Ui = ∞, ∀i = 1, . . . , n. Consider a set of observations {x1, . . . , xn} ∈ Rn, then their joint
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distribution function F is defined by

F (x1, x2, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn) .

The relationship between the joint probability density function (pdf) and the joint cumulative

distribution function (cdf) is defined by

F (x1, . . . , xn) =

∫ x1

−∞
· · ·
∫ xn

−∞
f (x1, . . . , xn) dxn · · · dx1,

and

f (x1, . . . , xn) =
∂n

∂x1 · · · ∂xn
F (x1, . . . , xn). (2.1.1)

For a function to be defined as multivariate pdf f , it has to satisfy the following properties:

• f (x1, . . . , xn) ≥ 0,

•
∫∞
−∞ . . .

∫∞
−∞ f (x1, . . . , xn) dxn · · · dx1 = 1, and

• if A ⊂ Rn is a set of values for X, then

P [(X1, . . . , Xn) ∈ A] =

∫
· · ·
∫
A
f (x1, . . . , xn) dxn · · · dx1.

In addition, the multivariate cdf F has the following properties:

• F (x1, . . . , xn) is non-decreasing, i.e. if any of the xi increases, then F (x1, . . . , xn) also

increases,

• If all components approach their maximum attainable value, then the value of the cdf F

is equal to 1, i.e.

lim
x1,...,xn→∞

F (x1, . . . , xn) = 1,

• If one or more components approach their minimum attainable value, then the value of

the cdf F is equal to 0, i.e. , ∀i = 1, . . . , n,

lim
xi→−∞

F (x1, . . . , xn) = 0,

• and if ∀(a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n where ai ≤ bi, we have the rectangle inequality

2∑
i1=1

. . .
2∑

in=1

(−1)i1+...+idF (x1i1 , . . . , xnin) ≥ 0,

where xj1 = aj and xj2 = bj ∀j ∈ 1, . . . , n.
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a1 b1

a2

b2

X1

X2

Figure 2.1: Illustration of the rectangle inequality for a bivariate distribution

The last property might not be trivial for a n-dimensional X, but it ensures that P (a1 ≤ X1 ≤

b1, . . . , an ≤ Xn ≤ bn) is non-negative. A simple example of the rectangle property can be

explained by Figure 2.1 which assumes a bivariate cdf, then visualizing a rectangle with vertices

(a1, a2), (b1, a2), (a1, b2) and (b1, b2) where 0 ≤ a1 ≤ b1 ≤ 1 and 0 ≤ a2 ≤ b2 ≤ 1, then

F (b1, b2)− F (a1, b2)− F (a2, b1) + F (a1, a2) ≥ 0.

If one wishes to work with each random variable Xi separately, then we have the marginal pdf

and cdf, fXi(x) and FXi(x), respectively. They are obtained as follows:

fXi(x) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f (x1, . . . , xn) dx1 · · · dxi−1dxi+1 · · · dxn,

FXi(x) = lim
x1,...,xi−1,xi+1,...,xn→∞

F (x1, . . . , xn).

In addition, the random variables X1, . . . , Xn are independent if and only if

f(x1, . . . , xn) = fX1(x1) · · · fXn(xn),

F (x1, . . . , xn) = FX1(x1) · · ·FXn(xn). (2.1.2)

The conditional pdf and cdf of Xi given the other variables Xi− , where Xi− represents the

random vector X = {X1, . . . , Xn} without the random variable Xi, are given by

fXi|Xi−
(xi|xi−) =

f(x1, . . . , xn)

fXi(xi)
, (2.1.3)

FXi|Xi−
(xi|xi−) =

F (x1, . . . , xn)

FXi(xi)
. (2.1.4)
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Additionally, the multivariate survival function F̄ is defined by

F̄ (x1, x2, . . . , xn) = P (X1 > x1, . . . , Xn > xn) .

2.2 Copulas

Any multivariate distribution function for a vector of random variables can implicitly describe

the marginal distribution functions and their dependence structure. However, with the limited

availability of known multivariate distribution functions and the complexity of modeling real

data by using them, one is inclined to use copulas. In this section, we define copulas, explain

their properties and identify their link with multivariate cdfs. We also provide examples of spe-

cific families of copulas. Joe (1997, 2014) and McNeil et al. (2015) provided detailed explanation

for copulas and dependence modeling.

Copulas provide a mean to model the dependence relationship between two or more random

variables. The n-dimensional copula is a multivariate cdf on [0, 1]n with standard uniform

marginal distributions. Let X = (X1, . . . , Xn) be a random vector which contains n random

variables linked through the cdf F . Set Ui = Fi(Xi) ∼ U(0, 1), i = 1, . . . , n, where Fi(Xi) is

the marginal cdf of the random variable Xi. Hence, the copula C is a mapping of the form

C : [0, 1]d → [0, 1] and is defined by

C(u1, . . . , un) = P (U1 ≤ u1, . . . , Un ≤ un) , ui ∈ [0, 1], i = 1, . . . , n. (2.2.1)

The following properties must hold for any copula C:

• C(u1, . . . , un) is increasing in each of its components, i.e. if any of the ui increases, then

C also increases,

• C(1, . . . , 1, ui, 1, . . . , 1) = ui, ∀i ∈ 1, . . . , n. This property holds due to the uniform

marginals,

• C(1, . . . , 1) = 1, i.e. if all components reach their maximum attainable values, then the

value of the copula C is 1,

• C(u1, . . . , ui−1, 0, ui+1, . . . , un) = 0, i.e one or more components are at their minimum

attainable values, then the value of the copula C is 0, and
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• ∀(a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n where ai ≤ bi we have the rectangle inequality

2∑
i1=1

. . .
2∑

in=1

(−1)i1+...+idC(u1i1 , . . . , unin) ≥ 0,

where uj1 = aj and uj2 = bj ∀j ∈ 1, . . . , n.

The above properties, except the second one, are the same properties identified for any multi-

variate cdf as explained in Section 2.1.

Sklar (1959) defined the link between copulas and multivariate cdfs, but the following proposi-

tions must be defined first.

Proposition 2.2.1. Let F be a distribution function and F−1 denote its inverse, i.e. F−1(y) =

inf {x : F (x) ≥ y}, then

1. Quantile Transformation. If U ∼ U(0, 1), then P
(
F−1(U) ≤ x

)
= F (x),

2. Probability Transformation. If X ∼ F where F is continuous, then F (X) ∼ U(0, 1).

This leads us to Sklar’s Theorem, which proves that all multivariate cdfs can be written in terms

of copulas and that copulas can be used with the marginal cdfs to obtain a multivariate cdf.

Theorem 2.2.2. Sklar’s Theorem Let F be a n-dimensional distribution function with mar-

gins F1, . . . , Fn. Then there exists a coupla C : [0, 1]n → [0, 1] such that ∀x1, . . . , xn ∈ R

F (x1, . . . , xn) = C (F1(x1), . . . , Fn(xn)) ,

where Fi(xi) is the marginal distribution function of Xi, ∀i ∈ 1, . . . , n. Conversely, if C is a

copula and Fi(xi) are the marginal distribution function of Xi, ∀i ∈ 1, . . . , n, then

C (F1(x1), . . . , Fn(xn)) = F (x1, . . . , xn),

where F is a multivariate cdf with margins F1, . . . , Fn. Additionally, if the margins are contin-

uous, then C is unique; otherwise, if one or more of the marginals is discrete, then C is unique

only on Ran F1× . . .×Ran Fn, where Ran Fi denotes the range of Fi, and Ran F1× . . .×Ran Fn

represents the cartesian product of the ranges.
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Proof. We provide the proof for the continuous case. For the detailed proof, please refer to

Nelsen (1999).

Consider the continuous random vector X = (X1, . . . , Xn) with a multivariate cdf F , which can

be represented as

F (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)

= P (F1(X1) ≤ F1(x1), . . . , Fn(Xn) ≤ Fn(xn)) . (2.2.2)

By using the Probability Transformation defined in Proposition 2.2.1, we have that Fi(Xi) =

Ui ∼ U(0, 1). Then Eq. 2.2.2 corresponds to the cdf of (F1(X1), . . . , F1(X1)) = (U1, . . . , Un) .

We introduce a function C, called a copula, such that

P (F1(X1) ≤ F1(x1), . . . , Fn(Xn) ≤ Fn(xn)) = C(F (x1), . . . , F (xn))

If F is evaluated at the arguments xi = F−1
i (ui), 0 ≤ ui ≤ 1, ∀i = 1, . . . , n, then,

C(u1, . . . , un) = F
(
F−1

1 (u1), . . . , F−1
n (un)

)
. (2.2.3)

Since F is continuous, then Eq. 2.2.3 provides an explicit form for the copula in terms of the

cdf F and its margins Fi, which proves it is unique.

Contrarily, assume that C is a copula and that Fi, ∀i = 1, . . . , n are the univariate cdfs, where

Xi = F−1
i (Ui). Let U ∼ C, then

F (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)

= P
(
F−1

1 (U1) ≤ x1, . . . , F
−1
n (Un) ≤ xn

)
= P (U1 ≤ F1(x1), . . . , Un ≤ Fn(xn))

= C (F1(x1), . . . , Fn(xn)) = F (x1, . . . , xn).

The pdf of the copula C can be calculated by using 2.1.1 as follows:

c(u1, . . . , un) =
∂n

∂u1 . . . ∂un
C(u1, . . . , un).
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Hence, the pdf of the random vector X is

f(x1, . . . , xn) =
∂nF (x1, . . . , xn)

∂x1 · · · ∂xn

=
∂nC(F1(x1), . . . , Fn(xn))

∂x1 · · · ∂xn

=
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1) · · · ∂Fn(xn)

∂F1(x1)

∂x1
· · · ∂Fn(xn)

∂xn

= c(F1(x1), . . . , Fn(xn))f1(x1) · · · fn(xn). (2.2.4)

Even though the n-dimensional copula is the general case, to avoid cumbersome notation, we

will restrict our discussion to the bivariate random vector X = (X1, X2) with observations

x1, x2, and its associated copula C (F1(X1), F2(X2)). All the properties and discussions can be

generalized to the n-dimensional copula.

The survival copula is defined by C̄
(
F̄1(x1), F̄2(x2)

)
, where F̄i(xi) is the survival function of the

random variable Xi, ∀i ∈ 1, 2. C̄ is derived as follows:

C̄
(
F̄1(x1), F̄2(x2)

)
= F̄ (x1, x2)

= 1− F1(x1)− F2(x2) + F (x1, x2)

= 1− F1(x1)− F2(x2) + C(F1(x1), F2(x2))

= F̄1(x1) + F̄2(x2)− 1 + C(1− F̄1(x1), 1− F̄2(x2)).

Therefore,

C̄ (u1, u2) = C(1− u1, 1− u2) + u1 + u2 − 1. (2.2.5)

The conditional copula of U2 given U1 = u1 is defined by

CU2|U1
(u2|u1) = P (U2 ≤ u2 | U1 = u1)

= lim
h→0

P (U2 ≤ u2 | u1 ≤ U1 ≤ u1 + h)

= lim
h→0

C(u1 + h, u2)− C(u1, u2)

P (U1 ≤ u1 + h)− P (U1 ≤ u1)

= lim
h→0

C(u1 + h, u2)− C(u1, u2)

h

=
∂

∂u1
C(u1, u2). (2.2.6)

26



Similarly, CU1|U2
(u1|u2) = ∂

∂u2
C(u1, u2).

Example: FGM Copula

Assume a bivariate distribution F (X1, X2), where Xi ∼ Exp(βi) where βi > 0, ∀i = 1, 2, such

that

F (x1, x2) = (1− e−β1x1)(1− e−β2x2)

+ θ(1− e−β1x1)(1− e−β2x2)e−β1x1e−β2x2 ,

with dependence parameter −1 ≤ θ ≤ 1, to be discussed later in Section 2.3. The corresponding

copula C can be obtained by finding the inverse of Fi(xi) = 1− e−βixi = ui, which is F−1
i (ui) =

− 1
βi

ln(1 − ui) = xi. By replacing each xi with the inverse in the above bivariate distribution,

we obtain

C(u1, u2) = u1u2 + θu1u2(1− u1)(1− u2). (2.2.7)

The pdf of the copula C is

c(u1, u2) =
∂2

∂u1∂u2
C(u1, u2)

=
∂2

∂u1∂u2
u1u2 + θu1u2(1− u1)(1− u2)

= 1 + θ(1− 2u1)(1− 2u2). (2.2.8)

The joint density function is

f(x1, x2) = c(F1(x1), F2(x2))f1(x1)f2(x2)

= (1 + θ(1− 2F1(x1))(1− 2F2(x2)))β1e
−β1x1β2e

−β2x2

=
(

1 + θ(1− 2e−β1x1)(1− 2e−β2x2)
)
β1e
−β1x1β2e

−β2x2 .

The survival copula is

C̄ (u1, u2) = C(1− u1, 1− u2) + u1 + u2 − 1

= (1− u1)(1− u2) + θ(1− u1)(1− u2)u1u2 + u1 + u2 − 1

= u1u2 + θu1u2(1− u1)(1− u2). (2.2.9)

Note that for the FGM, the survival copula C̄ is equivalent to the copula C, which makes it a

symmetric copula.
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The conditional copula of U2 given U1 = u1 is

CU2|U1
(u2|u1) =

∂

∂u1
C(u1, u2)

=
∂

∂u1
[u1u2 + θu1u2(1− u1)(1− u2)]

= u2 + θu2(1− 2u2)(1− u2).

Furthermore, the copula C is bounded as per the following theorem:

Theorem 2.2.3. Fréchet-Hoeffding copula bounds For any bivariate copula C and u =

{u1, u2} ∈ [0, 1]2, we have the following bounds

W (u1, u2) ≤ C(u1, u2) ≤M(u1, u2), (2.2.10)

where W (u1, u2) = max(u1 + u2 − 1, 0) and M(u1, u2) = min(u1, u2).

Proof. Upper bound: If C is the cdf of (U1, U2), then C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2).

Given that

P (U1 ≤ u1, U2 ≤ u2) ≤ P (U1 ≤ u1) and P (U1 ≤ u1, U2 ≤ u2) ≤ P (U2 ≤ u2),

then

P (U1 ≤ u1, U2 ≤ u2) ≤ min(P (U1 ≤ u1), P (U2 ≤ u2))

≤ min(u1, u2).

Lower bound:

P (U1 > u1, U2 > u2) = 1− P (U1 ≤ u1)− P (U2 ≤ u2) + P (U1 ≤ u1, U2 ≤ u2)

= 1− u1 − u2 + C(u1, u2) ≥ 0.

Therefore, by rearranging the above inequality, C(u1, u2) ≥ u1 + u2 − 1.

Note that M(u1, . . . , un) is a copula for any value of n, however, W (u1, . . . , un) is only a copula

for n = 2. M and W are referred to as the comonotonic and countermonotonic copulas, respec-

tively. They will be discussed further in Section 2.2.1.
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The empirical estimator of a copula is defined as

Cn(u1, u2) =
1

n

n∑
i=1

1{Fn1(Xi1)≤u1,Fn2(Xi2)≤u2}, (2.2.11)

where Fnj is the empirical cdf of Xj = (x1j , . . . , xnj), such that

Fnj(t) =
1

n

n∑
i=1

1{xij≤t}.

2.2.1 Families of Copula

In this section, we explore different families of copulas and their properties. The most common

families of copulas are

• Perfect dependence and independence copulas,

• Elliptical copulas,

• Archimedean copulas, and

• Extreme-value copulas.

Perfect Dependence and Independence Copulas

Independence Copula

The random variables X1 and X2 are independent if and only if

C(u1, u2) = u1u2.

This is equivalent to Eq. 2.1.2. The independence copula has the following notation: Π(u1, u2).

Comonotonicity Copula

X1 = φ(X2) almost surely (a.s.) for an increasing function φ(·) if and only if

C(u1, u2) = min(u1, u2).

The comonotonicity copula is the upper Fréchet-Hoeffding copula presented in Theorem 2.2.3.

X1 and X2 are perfectly positively dependent because they are a.s. strictly increasing functions

of each other.
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Countermonotonicity Copula

X1 = ψ(X2) almost surely (a.s.) for a decreasing function ψ(·), if and only if

C(u1, u2) = max(u1 + u2 − 1, 0).

The countermonotonicity copula is the lower Fréchet-Hoeffding copula presented in Theorem

2.2.3. X1 and X2 are perfectly negatively dependent because they are a.s. strictly decreasing

functions of each other.

Figure 2.2 illustrates the perspective plots of the cdfs of the dependence copulas and the inde-

pendence copula. The Fréchet-Hoeffding bounds presented in Theorem 2.2.3 imply that the cdf

of all bivariate copulas lie between the surfaces of the Countermonotonicity and Comonotonicity

copulas.

Figure 2.2: Perspective plots of the cdf of the Countermonotonicity copula, Independence copula

and Comonotonicity copula.

Elliptical Copulas

An elliptical copula is a generalization of the multivariate Gaussian distribution. They do not

have a closed form expression, but they are extracted from the multivariate cdfs by using Sklar’s

Theorem 2.2.2.

30



Gauss Copula

If X = (X1, X2) follows a standardized bivariate Gaussian distribution, then

CGaussρ (u1, u2) = Φρ

(
Φ−1(u1),Φ−1(u2)

)
,

where Φ is the cdf of a standard univariate normal random variable and Φρ is the cdf of a

bivariate normal random variable with mean 0 and correlation ρ ∈ [−1, 1]. The Gauss copula

does not have an explicit form, but it can be represented as the integral over the pdf of X as

follows:

CGaussρ (u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− ρ2
exp

{
−x

2 + y2 − 2ρxy

2(1− ρ2)

}
dydx.

Student’s t-Copula

If X = (X1, X2) follows a bivariate Student’s t-distribution, then

Ctν,ρ(u1, u2) = tν,ρ
(
t−1
ν (u1), t−1

ν (u2)
)
,

where tν is the cdf of a standard univariate t-distribution with ν degrees of freedom, tν,ρ is the

cdf of a bivariate t-distribution with mean 0, correlation ρ ∈ [0, 1] and ν degrees of freedom.

ν determines the thickness of the tails of the t-distribution; the more the degrees of freedom,

the lighter the tails, and vice verse. The t-copula does not have an explicit form, but it can be

represented as the integral over the pdf of X as follows:

Ctν,ρ(u1, u2) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1

2π
√

1− ρ2

{
1 +

x2 + y2 − 2ρxy

ν(1− ρ2)

}
dydx.

We can observe from Figure 2.3 that the t-copula assigns more probability mass to the corners

of the unit square, which means they have heavier tails than the Gauss copula. This character-

istic for the t-copula can be altered by changing the degrees of freedom ν. Note that if we had

assumed no correlation, i.e. ρ = 0, then this would result in independence, and hence, there will

be no higher mass in the corners.
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Figure 2.3: Perspective plots of the densities of the bivariate Gauss copula with ρ = 0.9238795

and bivariate t-copula with ρ = 0.9238795 and ν = 2.

Figure 2.4: Top: One thousand simulated points from the Gaussian copula with ρ = 0.9238795

and bivariate t-copula with ρ = 0.9238795 and ν = 2.

Bottom: Realizations of X1 and X2 by assuming standard normal marginals for the copulas

presented on the top row.
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The top row of Figure 2.4 represents 1000 simulated points from the Gauss and t-copulas. For

the bottom row, we assume that (X1, X2) has standard normal marginals, so each simulated

point from the copula is transformed component-wise into standard normal. The parameters are

chosen such that both copulas have the same value of Kendall’s tau, to be discussed in Section

2.3. Other elliptical copulas include the Cauchy copula and the Pearson Type II copula.

Archimedean Copulas

Unlike the elliptical copulas defined in Section 2.2.1, Archimedean copulas have closed forms.

In this section, we define bivariate Archimedean copulas and provide examples for it. For mul-

tivariate Archimedean copulas, refer to McNeil and Nešlehová (2009) and McNeil et al. (2015).

A bivariate Archimedean copula has the form

Cθ(u1, u2) = φ−1 [φ(u1; θ) + φ(u2; θ) ; θ] , (u1, u2) ∈ [0, 1]2, θ ∈ Θ, (2.2.12)

where φ : [0, 1] × Θ → R+ is a strictly decreasing convex function with dependence parameter

θ. The function φ is called the generator function of the copula, and its inverse is represented

by φ−1. In addition, φ(0) =∞ and φ(1) = 0. Table 2.1 summarizes the generator functions and

other details for the most commonly used Archimedean copulas.

Bivariate Clayton Copula

Consider the generator φ(t; θ) = 1
θ

(
t−θ − 1

)
, where θ ≥ −1 and t ∈ [0, 1]. The inverse of

the generator is represented by φ−1(t; θ) = (1 + θt)−1/θ. By using the general form of the

Archimedean copula represented in Eq. 2.2.12, we obtain the bivariate Clayton copula

CClθ =
(
u−θ1 + u−θ2 − 1

)−1/θ
, θ ≥ −1.

The bivariate Clayton copula is characterized by the following limiting cases:

• Countermonotonicity copula when θ = −1 (only in the bivariate case),

• Independence copula when θ → 0, and

• Comonotonicity copula when θ →∞.
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Bivariate Frank Copula

Consider the generator φ(t; θ) = − ln
(

e−θt−1
e−θ−1

)
, where θ ∈ R and t ∈ [0, 1]. The inverse of the

generator is represented by φ−1(t; θ) = −1
θ ln

[
1 + e−t

(
e−θ − 1

)]
. By using the general form

of the Archimedean copula represented in Eq. 2.2.12, we obtain the bivariate Frank copula as

follows:

CFrθ = −1

θ
ln

[
1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

]
.

The bivariate Frank copula is characterized by the following limiting cases

• Countermonotonicity copula when θ → −∞ (only in the bivariate case),

• Independence copula when θ → 0, and

• Comonotonicity copula when θ →∞.

Bivariate Gumbel Copula

Consider the generator φ(t; θ) = (− ln t)θ, where θ ≥ 1 and t ∈ [0, 1]. The inverse of the

generator is represented by φ−1(t; θ) = e−t
1/θ

. By using the general form of the Archimedean

copula represented in Eq. 2.2.12, we obtain the bivariate Gumbel copula as follows:

CGuθ = exp

{
−
[
(− lnu1)θ + (− lnu2)θ

]1/θ
}
.

The bivariate Gumbel copula is characterized by the following limiting cases

• Independence copula when θ = 1, and

• Comonotonicity copula when θ →∞.

Figures 2.5 and 2.6 provides an example of each of the Archimdean copulas discussed previously.

We can observe that the Clayton copula and the Gumbel copula provide strong lower and upper

tail dependence, respectively. However, the Frank copula provides symmetry along both tails.
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Figure 2.5: Perspective plots of the densities of the bivariate Clayton copula, bivariate

Frank copula, and bivariate Gumbel copula. The dependence parameter for each copula is

θ = 6, 14.1385 and 4, respectively.

Figure 2.6: Top: One thousand simulated points from the Clayton, Frank and Gumbel copulas

with dependence parameter for each copula is θ = 6, 14.1385 and 4, respectively.

Bottom: Realizations of X1 and X2 by assuming standard normal marginals for the copulas

presented on the top row.
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The Archimedean family offers a great deal of flexibility, however they have some limitations

that prevent them from modeling asymmetric dependence relationships. Those limitations are

• C is symmetric, i.e. C(u1, u2) = C(u2, u1), ∀(u1, u2) ∈ [0, 1]2, and

• C is associative, i.e. C(C(u1, u2), u3) = C(u1, C(u2, u3)), ∀(u1, u2, u3) ∈ [0, 1]3.

Table 2.1: Summary of the generators φ(t), where t ∈ [0, 1], the possible values for the depen-

dence parameter θ, and the limiting cases for some bivariate Archimedean copulas.

Copula φ(t) θ Lower Limit Upper Limit

CClθ =
(
u−θ1 + u−θ2 − 1

)−1/θ
1
θ

(
t−θ − 1

)
θ ≥ −1 W (u1, u2) M(u1, u2)

CFrθ = −1
θ ln

[
1 +

(e−θu1−1)(e−θu2−1)
e−θ−1

]
− ln

(
e−θt−1
e−θ−1

)
θ ∈ R W (u1, u2) M(u1, u2)

CGuθ = e−[(− lnu1)θ+(− lnu2)θ]
1/θ

(− ln t)θ θ ≥ 1 Π(u1, u2) M(u1, u2)

Extreme-value Copulas

Rare events need careful modeling because they might have a serious impact on the dependence

structure of the distribution. This gives importance to extreme-value copulas. Gudendorf and

Segers (2010) provided detailed explanation on the origin and properties of those copulas. Note

that extreme-value copulas have complicated forms for dimensions > 2.

Bivariate extreme-value copulas have the form

CA(u1, u2) = exp

{
ln(u1u2)A

[
ln(u2)

ln(u1u2)

]}
,

where A : [0, 1]→ [1/2, 1] is a convex mapping such that

max(t, 1− t) ≤ A(t) ≤ 1, t ∈ [0, 1].

Gumbel’s First Asymmetric Model

This is a generalization of the Gumbel Copula from the Archimedean family presented in Section

2.2.1. For this copula, A(t) is given by

A(t) = (1− α)t+ (1− β)(1− t) +
[
(αt)θ + (β(1− t))θ

]1/θ
, θ ≥ 1, α, β ∈ [0, 1].
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This copula is defined as

Cθ(u1, u2) = u1−β
1 u1−α

2 exp

{
−
[
(−β lnu1)θ + (−α lnu2)θ

]1/θ
}
.

Note that if α = β = 1, we obtain the Gumbel Copula.

Gumbel’s Second Model

For this copula, A(t) is given by

A(t) = θt2 − θt+ 1, θ ∈ [0, 1].

This copula is defined as

Cθ(u1, u2) = u1u2 exp

{
ln(u1) ln(u2)

ln(u1) + ln(u2)

}
.

Galambos Asymmetric Copula

For this copula, A(t) is given by

A(t) = 1−
[
(αt)−θ + (β(1− t))−θ

]−1/θ
, θ ∈ [0,∞)α, β ∈ [0, 1].

This copula is defined as

Cθ(u1, u2) = u1u2 exp

{
−
[
(−β lnu1)−θ + (−α lnu2)−θ

]−1/θ
}
.

2.2.2 Vine Copula

Vines were originally introduced by Bedford and Cooke (2002) as a graphical model for high di-

mensional distributions that have conditional dependence. Assuming we have 3 random variables

(X1, X2, X3), Figure 2.7 illustrates that f(x1|x2) and f(x3|x2) are dependent with a conditional

correlation coefficient that depends on the value of x2.
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x2

x1 x3

Figure 2.7: A basic vine structure.

Aas et al. (2009) utilized vines and copulas to model high dimensional data using pair-copula

by working on two variables at a time. Constructing a vine copula starts with decomposing the

joint multivariate distribution function into simple bivariate building blocks, and then combining

them together appropriately. This method is a recursive method called pair-copula construction.

Each bivariate building block is a two-dimensional copula. In this section, we will go through

the process of constructing pair-copulas.

Assume we have a vector of n random variables X = (X1, . . . , Xn) with a joint distribution

function f(x1, . . . , xn). By using 2.1.3 iteratively, f(x1, . . . , xn) can be represented as

f(x1, . . . , xn) = f1(x1) · f(x2|x1) · · · f(xn|x1, . . . , xn−1). (2.2.13)

Let c1,...,n(·) be a copula density for n random variables, and recall from Eq. 2.2.4 that a copula

density is represented by

f(x1, . . . , xn) = c1,...,n(F1(x1), . . . , Fn(xn))f1(x1) · · · fn(xn).

Example: Bivariate Distribution

If we assume we only have 2 random variables X = (X1, X2), then Eq. 2.2.4 can be simplified

to

f(x1, x2) = c1,2 {F1(x1), F2(x2)} f1(x1)f2(x2),

where c1,2(·, ·) is the pair-copula density for the pair of transformed random variables F1(X1)

and F2(X2). The conditional density can be represented by using 2.1.3 as follows:

f2|1(x2|x1) =
f(x1, x2)

f1(x1)

=
c1,2 {F1(x1), F2(x2)} f1(x1)f2(x2)

f1(x1)

= c1,2 {F1(x1), F2(x2)} f2(x2).
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Therefore, for any two random variables Xi and Xj , where i 6= j and i, j = 1, . . . , n,

f(xj |xi) = ci,j {Fi(xi), Fj(xj)} fj(xj). (2.2.14)

Now we will build the 3-dimensional density function.

Example: Trivariate Distribution

By assuming 3 random variables, i.e. X = (X1, X2, X3), the conditional distribution of one

variable given the other two can be represented as follows:

f(x3|x1, x2) =
f(x3, x2, x1)

f(x2, x1)

=
f(x3, x2, x1)/f1(x1)

f(x2, x1)/f1(x1)

=
f(x3, x2|x1)

f(x2|x1)

=
c(3,2)|1(F (x3|x1), F (x2|x1))f(x3|x1)f(x2|x1)

f(x2|x1)

= c(3,2)|1(F (x3|x1), F (x2|x1))f(x3|x1), (2.2.15)

where c(3,2)|1(·, ·) is the pair-copula density for the pair of transformed random variables F (X3|X1)

and F (X2|X1). Alternatively, f(x3|x1, x2) can also be represented as follows:

f(x3|x1, x2) = c(3,1)|2(F (x3|x2), F (x1|x2))f(x3|x2), (2.2.16)

where c(3,1)|2(·, ·) is the pair-copula density for the pair of transformed random variables F (X3|X2)

and F (X1|X2), and it is different from c(3,2)|1(·, ·) in 2.2.15. By using 2.2.14, we can rewrite Eq.

2.2.15 and Eq. 2.2.16 as follows:

f(x3|x1, x2) = c(3,2)|1(F (x3|x1), F (x2|x1))c1,3 {F1(x1), F3(x3)} f3(x3)

f(x3|x1, x2) = c(3,1)|2(F (x3|x2), F (x1|x2))c2,3 {F2(x2), F3(x3)} f3(x3),

respectively.

By generalizing, each term in Eq. 2.2.13 can be represented in terms of a pair-copula and a

marginal density function as follows:
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f(x|v) = c(x,vj)|v−j {F (x|v−j), F (vj |v−j)} f(x|v−j), ∀j = 1, . . . , d, (2.2.17)

where v is a d-dimensional vector of random variables, vj is one variable chosen from v and v−j

is v excluding vj . Joe (1996) showed that marginal conditional distributions of the copulas can

be generalized as follows:

F (x|vj) =
∂C(x,vj)|v−j {F (x|v−j), F (vj |v−j)}

∂F (vj |v−j)
, ∀j = 1, . . . , d. (2.2.18)

For the special case where v is univariate, we have that

F (x|v) =
∂C(x,v) {F (x), F (v)}

∂F (v)
,

which is the bivariate conditional cdf derived in 2.2.6.

Example: Trivariate Distribution continued

By returning to the trivariate distribution example, we have that

f(x1, x2, x3) = [f1(x1)] [f(x2|x1)] [f(x3|x1, x2)]

= [f1(x1)] [c1,2 {F1(x1), F2(x2)} f2(x2)]
[
c(3,2)|1(F (x3|x1), F (x2|x1))f(x3|x1)

]
= [f1(x1)] [c1,2 {F1(x1), F2(x2)} f2(x2)]

×
[
c(3,2)|1(F (x3|x1), F (x2|x1))c1,3 {F1(x1), F3(x3)} f3(x3)

]
=f1(x1)f2(x2)f3(x3)

× c1,2 {F1(x1), F2(x2)} c1,3 {F1(x1), F3(x3)}

× c(3,2)|1 {F (x3|x1), F (x2|x1)} . (2.2.19)

If we assume conditional independence, we will be able to reduce the levels in the pair-copula

decomposition. For example, if we assume that X3 and X2 are independent, given X1, then

c(3,2)|1 {F (x3|x1), F (x2|x1)} = 1, which simplifies Eq. 2.2.19 into

f(x1, x2, x3) =f1(x1)f2(x2)f3(x3)

× c1,2 {F1(x1), F2(x2)} c1,3 {F1(x1), F3(x3)} .

Hence, a multivariate pdf can be iteratively expressed in terms of pair-copulas and conditional

probability distributions, by using Eq. 2.2.17 and Eq. 2.2.18. This can lead to a significant
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number of possible pair-copulas decompositions for high dimensional distributions. Bedford and

Cooke (2001, 2002) have introduced the regular vine and the most commonly used from that

class are the canonical vine and the D-vine. A vine copula is the multivariate distribution, and

its component bivariate copulas are pair-copulas.

Smith et al. (2010) used vine copulas to model the dependence structure for longitudinal data,

where one or more variable of interest is collected over a given period of time. Assuming a

univariate longitudinal data X = (X1, . . . , Xt) of a continuously distributed data observed at

different time points. Therefore, the density function of xt given all the previous data points

can be represented using Eq. 2.2.17 as follows:

f(xt|x1, . . . , xt−1) = c(t,1)|2,...,(t−1) {F (xt|x2, . . . , xt−1), F (x1|x2, . . . , xt−1)} f(xt|x2, . . . , xt−1)

By repeatedly applying Eq. 2.2.17, we obtain the following

f(xt|x1, . . . , xt−1) =

t−2∏
j=1

c(t,j)|(j+1),...,(t−1) {F (xt|xj+1, . . . , xt−1), F (xj |xj+1, . . . , xt−1)} f(xt|xt−1)

=
t−2∏
j=1

c(t,j)|(j+1),...,(t−1) {F (xt|xj+1, . . . , xt−1), F (xj |xj+1, . . . , xt−1)}

× ct,(t−1) {Ft(xt), Ft−1(xt−1)} ft(xt).

2.2.3 Nested Archimedean Copulas

The methodology of nested copulas has been suggested by Joe (1997), and also used in insurance

for reserving purposes by Abdallah et al. (2015) and Côté et al. (2016), but not in the field of

biostatistics, as far as our knowledge. As shown in Section 2.2.1, the Archimedean copulas have

closed forms, and hence Hofert et al. (2011) and Hofert and Pham (2013) showed theoretical

properties of the nested Archimedean copula.

As shown in Eq. 2.2.12, a bivariate Archimedean copula with generator φ1 is given by

C(1)(u1, u2) = φ−1
1 [φ1(u1) + φ1(u2)] , (u1, u2) ∈ [0, 1]2.
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A n-dimensional copula C(n−1) is called fully nested Archimedean copula with generators φ1, . . . , φn−1

if it is defined recursively ∀(u1, . . . , un) ∈ [0, 1]n as follows:

C(2)(u1, u2, u3) = φ−1
2

[
φ2

{
C(1)(u1, u2)

}
+ φ2(u3)

]
... =

...

C(n−1)(u1, . . . , un) = φ−1
n−1

[
φn−1

{
C(n−2)(u1, . . . , un−1)

}
+ φn−1(un)

]
.

McNeil (2008) showed that this a copula if only if all the generators φ1, . . . , φn are completely

monotonic, and the derivative of the composite function φk ◦ φ−1
k−1 are completely monotonic

∀k = 2, . . . , (n− 1). The copulas can be from different families in the Archimedean family, and

they have different dependence parameters. The estimates of the parameters of each copula

are obtained sequentially, starting from C(1). The order of which the variables are chosen into

the nested structure depends on the strength of the dependence. Let V1 and V2 represent the

couple of variables that have the strongest dependence. Then they are chosen for C(1) and we

define a new pseudo variable C(1) {v1, v2;φ1}. We then proceed by considering the remaining

variables and the new pseudo variable and choose the couple with the strongest dependence.

This process is iterated (n− 1) times. Note that the fitting procedure does not require the use

of Archimedean copulas, and it can be generalized to any copula family.

2.2.4 Copula Regression

In the concept of regression, each marginal distribution can be a conditional distribution on

a vector of covariates. Assume outcome variables Y1 and Y2, such that they depend on the

random vector of covariates X1 and X2, respectively. The marginal distributions of the copula

are F1(Y1|X1;β1) and F2(Y2|X2;β2), where βi, i = 1, 2, represents the vector of fixed regression

coefficients. Note that the set of covariates X1 and X2 can be the same or subsets of each other,

and it is assumed that Yi is independent of Xj , ∀i, j = 1, 2, i 6= j. Let Cθ(·, ·) be a copula with

parameter θ that captures the degree of dependence between the marginals as follows:

F (Y1, Y2|X1,X2;β1, β2) = Cθ {F1(Y1|X1;β1), F2(Y2|X2;β2)} .
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By using Eq. 2.2.4, we can write the joint density function as follows:

f(Y1, Y2|X1,X2;β1, β2) =Cθ {F1(Y1|X1;β1), F2(Y2|X2;β2)}

× f1(Y1|X1;β1)f1(Y2|X2;β2).

Using copulas to model GLM marginals has been proposed in the literature by Meester and

Mackay (1994) and performed on biostatistics studies by Lambert (1996); Lambert and Van-

denhende (2002). Frees and Wang (2005, 2006) were the first to perform similar modeling for

insurance claims by using GLMs and copulas. The main advantage of using copulas is that there

are no restrictions on the probability distributions or dependence structure used in the model.

2.3 Measures of Dependence

Assume that the random variables X1 and X2 are not independent, i.e. Eq. 2.1.2 is not satisfied;

F (x1, x2) 6= FX1(x1)FX2(x2),

then there are several ways to measure the degree of dependence between the two random

variables. In this section, we will explain three methods for measuring dependence, which are:

• Linear correlation: Pearson’s correlation coefficient ρp,

• Rank correlation: Spearman’s rho ρS , and

• Rank correlation: Kendall’s tau τ .

Each of those measures provide a scalar value for the dependence between X1 and X2, however,

they differ in their properties and interpretation. The last two are copula-based measures, which

are used in the parametrization of copula models. Linear correlation depends on the marginal

distributions and the joint distribution, however, rank correlations are based on the copula.

They are called rank correlation because the empirical estimators are calculated by using the

ordering of the data (ranks) for each variable.

Before we explain the above mentioned measures of dependence, we should first define two im-

portant terms; comonotonicity and countermonotonicity. The random variables X1 and X2 are
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said to be comonotonic if and only if Xi = F−1
Xi

(U) where U ∼ U(0, 1) and i = 1, 2. However,

the random variables X1 and X2 are said to be countermonotonic if and only if ∃U ∼ U(0, 1)

such that X1 = F−1
X1

(U) and X2 = F−1
X2

(1−U). Comonotonicity corresponds to perfect positive

dependence, while countermonotonicity corresponds to perfect negative dependence.

Scarsini (1984) mentioned several properties that are desirable for a dependence measure, which

are summarized in the below axiom.

Axiom 2.3.1. Let X1 and X2 be two dependent random variables from a copula C and π(X1, X2)

be the dependence measure between them, then π(X1, X2) is a concordance measure if it satisfies

the following properties:

I Symmetry: π(X1, X2) = π(X2, X1),

II Normalization: −1 ≤ π(X1, X2) ≤ 1,

III Comonotonicity: π(X1, X2) = 1 if and only if X1 and X2 are comonotonic,

IV Countermonotonicity: π(X1, X2) = −1 if and only if X1 and X2 are countermonotonic,

V Independence: π(X1, X2) = 0 if and only if X1 and X2 are independent, and

VI Invariance: for every strictly monotone function φ : R→ R, we have

π(φ(X1), X2) =


π(X1, X2) if φ is increasing,

−π(X1, X2) if φ is decreasing.

2.3.1 Pearson’s Correlation Coefficient ρp

The correlation ρp between X1 and X2 is defined by

ρp(X1, X2) =
Cov(X1, X2)√

Var(X1)Var(X2)
, (2.3.1)

where Var(Xi) is the variance of Xi, i = 1, 2, and Cov(X1, X2) is the covariance between the

two random variables defined by Cov(X1, X2) = E(X1X2)−E(X1)E(X2). Pearson’s correlation

coefficient is characterized by the following properties:
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• It is a measure of linear dependence,

• −1 ≤ ρp(X1, X2) ≤ 1, where |ρp(X1, X2)| = 1 implies perfect linear dependence such that

X2 = α+ βX1 almost surely for some α ∈ R, and β > 0 for positive linear dependence or

β < 0 for negative linear dependence, and

• Independence implies ρp(X1, X2) = 0, however, ρp(X1, X2) = 0 does not imply indepen-

dence.

On the other hand, Pearson’s correlation coefficient has some disadvantages that makes it a

weak measure for dependence. Those disadvantages are:

• ρp(X1, X2) depends on the choice of the marginal distributions of X1 and X2,

• ρp(X1, X2) requires finite variances for X1 and X2. This can present problems when we

deal with heavy-tailed distributions that have infinite second moments, and

• ρp(X1, X2) only measures linear dependence, i.e. ρp(X1, X2) can be very close to or equal

to 0, however, there might be a strong non-linear relationship.

Example: Non-linear dependence

Let X1 ∼ U(−1, 1) and X2 = X2
1 , then

E(X1) = 0, and E(X1X2) = E(X3
1 ) = 0.

Therefore,

Cov(X1, X2) = E(X1X2)− E(X1)E(X2) = 0, and ρp(X1, X2) = 0,

however, it is clear that X2 is a function of X1.

Note that the value of ρp(X1, X2) is bounded depending on the marginal distributions of X1 and

X2, as illustrated in Figure 2.8. Those bounds are explained in details in McNeil et al. (2015)

and summarized in the below theorem.

Theorem 2.3.1. Attainable correlations Let X1 and X2 be two random variables with finite

variances and Var(Xi) > 0, i = 1, 2, then the following statements hold:

1. The attainable correlations belong to the following interval[
ρmin
p , ρmax

p

]
⊆ [−1, 1],
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where ρmin
p < 0 < ρmax

p ,

2. ρmin
p is attained if and only if X1 and X2 are countermonotonic, and ρmax

p is attained if

and only if X1 and X2 are comonotonic, and

3. ρmin
p = −1 if and only if X2 = α + βX1 where α ∈ R, and β < 0, while ρmin

p = 1 if and

only if X2 = α+ βX1, where α ∈ R, and β > 0.

Figure 2.8: The attainable correlations ρmin
p and ρmax

p for X1 ∼ LogNormal(0, 1) and X2 ∼

LogNormal(0, σ2), as proved in McNeil et al. (2015).

Therefore, only properties I and II from Axiom 2.3.1 are satisfied for Pearson’s correlation

coefficient. Note that the invariance property is only satisfied for linear transformations.

2.3.2 Spearman’s rho ρS

Introduced by Spearman (1904), Spearman’s rho is defined as the linear correlation between the

marginal cdfs of X1 and X2, i.e.

ρS(X1, X2) = ρp (FX1(X1), FX2(X2)) .

Recall that Ui = FXi(Xi) ∼ U(0, 1) where i = 1, 2. Then, E(Ui) = 1
2 , Var(Ui) = 1

12 , then by

using Eq. 2.3.1, we have

ρS(X1, X2) =
E(FX1(X1)FX2(X2))− E(FX1(X1))E(FX2(X2))√

Var(FX1(X1))Var(FX2(X2))
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=
E(U1U2)− E(U1)E(U2)√

Var(U1)Var(U2)

=
E(U1U2)− 1

2 ×
1
2√

1
12 ×

1
12

= 12E(U1U2)− 3

= −3 + 12

∫ 1

0

∫ 1

0
u1u2c(u1, u2)du1du2, (2.3.2)

or equivalently

= −3 + 12

∫ ∞
−∞

∫ ∞
−∞

FX1(x1)FX2(x2)f(x1, x2)dx1dx2.

Quesada-Molina (1992) generalized an inequality by Hoeffding (1940) and proved that by double

partial integrations, Eq. 2.3.2 can be rewritten as follows:

ρS(X1, X2) = −3 + 12

∫ 1

0

∫ 1

0
C(u1, u2)du1du2.

Therefore, the value of Spearman’s rho does not depend on the marginal distribution, but it only

depends on the Copula. Ghoudi et al. (1998) proved that for Extreme-Value Copulas, defined

in Section 2.2.1, Spearman’s rho is defined as

ρS(X1, X2) = −3 + 12

∫ 1

0

1

(A(t) + 1)2
dt.

We have the following limiting cases for Spearman’s rho;

• If X1 and X2 are comonotonic, then U1 = U2. Therefore E(U1U2) = E(U2
1 ) = 1

3 , and

ρS(X1, X2) = −3 + 12

(
1

3

)
= 1.

• If X1 and X2 are independent, then E(U1U2) = E(U1)E(U2). Therefore,

ρS(X1, X2) = −3 + 12

(
1

2
× 1

2

)
= 0.

• If X1 and X2 are countermonotonic, then U1 = 1−U2. Therefore, E(U1U2) = E(U1−U2
1 ) =

1
2 −

1
3 = 1

6 , and

ρS(X1, X2) = −3 + 12

(
1

6

)
= −1.
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Example: FGM Copula

Let the pair X1 and X2 follow the FGM Copula with the copula density derived in Eq. 2.2.8,

then Spearman’s rho can be calculated by using Eq. 2.3.2 as follows:

ρS(X1, X2) = −3 + 12

∫ 1

0

∫ 1

0
u1u2 [1 + θ(1− 2u1)(1− 2u2)] du1du2

=
θ

3
.

Therefore, for any marginal distributions for X1 and X2, ρS(X1, X2) = θ
3 . Note that ρS(X1, X2)

is an increasing function of θ, which is the case for most models. In addition, given that for the

FGM Copula, we have −1 ≤ θ ≤ 1, then −1
3 ≤ ρS(X1, X2) ≤ 1

3 .

Figure 2.9 represents the relationship between ρS and ρp for the Gauss Copula. Spearman’s

rho for the Gauss Copula is given by ρS = (6/π) arcsin (ρp/2) . We notice that the relationship

between them is almost linear. Table 2.2 represents Spearman’s rho for some copula families.

Figure 2.9: Relationship between Spearman’s rho ρS , Kendall’s Tau τ and Pearson’s correlation

coefficient ρp for Gauss Copula.
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Note that all the properties in Axiom 2.3.1 are satisfied by Spearman’s rho.

2.3.3 Kendall’s Tau τ

Kendall (1938) introduced a new measure for rank correlation that measures the concordance

between two random variables, X1 and X2. Let (x1, x2) and (x̃1, x̃2) be two points in R2. Then

those points are concordant if (x1−x̃1)(x2−x̃2) > 0 and discordant if (x1−x̃1)(x2−x̃2) < 0. This

means that for concordance, we expect X1 and X2 to move in the same direction, i.e. increase

together, or decrease together. Conversely, we expect the variables to have opposite direction

of movement for discordance. Figure 2.10 visually explains the difference between concordance

and discordance.

Figure 2.10: On the left, a pair of concordant points, and on the right, a pair of discordant

points.

Kendall’s τ is defined as follows:

τ(X1, X2) = P (Concordance)− P (Discordance)

= P
{

(X1 − X̃1)(X2 − X̃2) > 0
}
− P

{
(X1 − X̃1)(X2 − X̃2) < 0

}
, (2.3.3)

where (X1, X2) and (X̃1, X̃2) are two independent random vectors that have the same distribu-

tion. We expect that if X2 increases as X1 increases, then the probability of concordance will

49



be high. Conversely, if X2 decreases as X1 increases, then the probability of discordance will be

high.

Theorem 2.3.2. Kendall’s τ in terms of Copulas Let (X1, X2) and (X̃1, X̃2) be two contin-

uous independent random vectors that have the same joint distribution function F , and marginals

F1 and F2. Let C be a copula such that F (x1, x2) = C (F1(x1), F2(x2)), Then Kendall’s tau is

given by

τ(X1, X2) = −1 + 4

∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2). (2.3.4)

Proof. Note that

P (Concordance) + P (Discordance) = 1,

and

P
{

(X1 − X̃1)(X2 − X̃2) > 0
}

= P (X1 > X̃1, X2 > X̃2) + P (X1 ≤ X̃1, X2 ≤ X̃2).

Then, Eq. 2.3.3 can be rewritten as

τ(X1, X2) = P
{

(X1 − X̃1)(X2 − X̃2) > 0
}
−
[
1− P

{
(X1 − X̃1)(X2 − X̃2) > 0

}]
= 2P

{
(X1 − X̃1)(X2 − X̃2) > 0

}
− 1.

In addition, since the random vectors are continuous, then

P (X1 > X̃1, X2 > X̃2) = P (U1 > Ũ1, U2 > Ũ2),

P (X1 ≤ X̃1, X2 ≤ X̃2) = P (U1 ≤ Ũ1, U2 ≤ Ũ2).

Therefore,

P (U1 > Ũ1, U2 > Ũ2) = P (Ũ1 ≤ U1, Ũ2 ≤ U2)

=

∫ 1

0

∫ 1

0
P (Ũ1 ≤ U1, Ũ2 ≤ U2|U1 = u1, U2 = u2)dC(u1, u2)

=

∫ 1

0

∫ 1

0
P (Ũ1 ≤ u1, Ũ2 ≤ u2)dC(u1, u2)

=

∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2).

Equivalently, P (U1 ≤ Ũ1, U2 ≤ Ũ2) =
∫ 1

0

∫ 1
0 C(u1, u2)dC(u1, u2). Therefore,

τ(X1, X2) = −1 + 2P
{

(X1 − X̃1)(X2 − X̃2) > 0
}
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= −1 + 2

[∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2) +

∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)

]
= −1 + 4

∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2).

Example: FGM Copula

Let the pair X1 and X2 follow the FGM Copula derived in Eq. 2.2.7 with copula density defined

in Eq. 2.2.8, then Kendall’s tau can be calculated by using Eq. 2.3.4 as follows:

τ(X1, X2) = −1 + 4

∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)

= −1 + 4

∫ 1

0

∫ 1

0
C(u1, u2)c(u1, u2)du1du2

= −1 + 4

∫ 1

0

∫ 1

0
[u1u2 + θu1u2(1− u1)(1− u2)] [1 + θ(1− 2u1)(1− 2u2)] du1du2

=
2θ

9
.

Therefore, for any marginal distributions for X1 and X2, τ(X1, X2) = 2θ
9 . In addition, given

that for the FGM Copula, we have −1 ≤ θ ≤ 1, then −2
9 ≤ τ(X1, X2) ≤ 2

9 .

As shown in Theorem 2.3.2, the value of Kendall’s tau depends solely on the Copula. In fact,

Genest and Mackay (1986) proved that for any Archimedean Copula (defined in Section 2.2.1),

Kendall’s tau is

τ(X1, X2) = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt,

where φ′(t) is the first derivative of the generator φ(t). In addition, Ghoudi et al. (1998) proved

that for Extreme-Value Copulas (defined in Section 2.2.1, Kendall’s tau is

τ(X1, X2) =

∫ 1

0

t(1− t)
A(t)

dA′(t),

where A′(t) is the first derivative of the generator A(t). Table 2.2 represents Kendall’s tau for

some copula families.

Note that all the copulas represented in Figures 2.4 and 2.6 have Kendall’s τ = 0.75. In those

figures, if we choose other marginal distributions, the plots in the bottom row will be different,

however, the plots in the first row will remain unchanged. Figure 2.9 represents the relation-

ship between τ and ρp for the Gauss Copula. Kendall’s tau for the Gauss Copula is given by
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τ = (2/π) arcsin (ρp) . Unlike Spearman’s rho, the relationship is not linear.

Note that all the properties in Axiom 2.3.1 are satisfied by Kendall’s tau.

Table 2.2: Spearman’s rho ρS and Kendall’s tau τ for the copula families discussed in 2.2.1.

Family Copula ρS τ

Elliptical
Gauss

(6/π) arcsin (ρp/2) (2/π) arcsin (ρp)

t

Archimedean

Clayton Complicated θ/(θ + 2)

Frank 1 + 12
θ [D2(θ)−D1(θ)] 1− 4

θ [1−D1(θ)]

Gumbel No closed form 1− 1/θ

Extreme Value

Gumbel’s First Asymmetric Model No closed form 1− 1/θ

Gumbel’s Second Model Complicated
8 arctan

√
θ

4−θ√
θ(4−θ)

− 2

Galambos Asymmetric Copula No closed form No closed form

where Dk(x) is the Debye function for any positive integer k and it is given by

Dk(x) =
k

xk

∫ k

0

tk

et − 1
dt.
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Chapter 3

Model and Variable Selection

Criteria

3.1 Model Selection Criteria

As stated by Box (1976), “All models are wrong, but some are useful”. A “true model” does not

exist, but some models can be informative and our aim is to find the most accurate approximation

of reality. Given several fitted models, we need to identify the model(s) that best explains our

data and minimizes the loss of information that occur during modeling. There are several

statistics used in model selecting, however, we will only focus on the ones commonly used:

• Coefficient of Determination R2,

• Adjusted Coefficient of Determination R2
a,

• Akaike Information Criteria (AIC), and

• Bayesian Information Criteria (BIC).

A general principle is the “law of parsimony”, which is originated from Occam’s razor principle.

This law encourages statisticians to use a simple model to explain their data rather than a com-

plex model, given a certain level of accuracy. This means that the best model to use in fitting

the data is the one which provides us with the highest information gain and less complexity.

For this reason, several of the model selection criteria discussed below includes a penalty for
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inclusion of more parameters or variables.

We will assume a simple model in order to explain the model selection criteria. Note that more

complicated models can be used, however, we used a simple model to have simplified and easily

interpretable results. Consider a data set that contains n observations. Each observation i

consists of a scalar response variable yi and a set of p predictors xij , for j = 1, . . . , p. We assume

a linear relationship between the predictors and the response variable as follows:

yi = β0 + β1xi1 + . . .+ βpxip + εi,

where β0 is called the model intercept, β1, . . . , βp are the regression coefficients and εi is the

random error. The predicted value ŷi of the model is calculated by using the estimated regression

coefficients β̂0, . . . , β̂p, such that ŷi = β̂0 + β̂1xi1 + . . .+ β̂pxip. In addition, let ȳ be the mean of

the n observations of the response variable. We define the following terms:

• Total sum of squares quantifies the variation between the data points yi and the sample

mean ȳ. It is calculated as follows: SST =
∑n

i=1 (yi − ȳ)2,

• Regression sum of squares quantifies the variation between the regression line (i.e. pre-

dicted values ŷi) and the sample mean ȳ. It is calculated as follows: SSR =
∑n

i=1 (ŷi − ȳ)2,

and

• Error sum of squares quantifies the variation between the data points yi and the predicted

values ŷi. It is calculated as follows: SSE =
∑n

i=1 (yi − ŷi)2,

where SST = SSR+ SSE, if and only if
∑n

i=1 (yi − ŷi) = 0.

In addition, we define the likelihood function of a given model M , with parameters θ and data

X as L := L(θ;X) = P (X|θ,M), and the maximized value is L̂ = P (X|θ̂,M) where θ̂ are the

parameters that maximize the function.

3.1.1 The Coefficient of Determination R2

The R2 measures the proportion of the total variation in the response variable that is accounted

for by the predictors in the regression model. This makes it a measure of the success of the
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predictors in predicting the response variable. In OLS models, it is calculated by

R2 =
SSR

SST
= 1− SSE

SST
.

R2 is defined over [0, 1], where

• R2 = 0 means that the response variable cannot be predicted from the predictors,

• R2 = 1 means that the response variable can be predicted without errors from the predic-

tors, and

• 0 < R2 < 1 is the percentage by which the variation in the response variable is explained

by the variation in the predictors.

In a simple linear regression model (only 1 predictor X), R2 = [r(Y,X)]2, where [r(Y,X)]2 =

ρp(Y,X). However, in multiple linear regression, R2 = [r(Y, Ŷ )]2.

One disadvantage of R2 is that it is a non-decreasing function of the number of predictors. This

means that the more predictors are added to the model, the higher the value of R2 tend to

be, even if the additional variables barely contribute to the prediction of the response variable.

This makes it extremely difficult to compare models with different sizes, which led researchers

to consider the adjusted R2.

3.1.2 The Adjusted Coefficient of Determination R2
a

To manage the disadvantage of the R2, the adjusted R2, referred to as R2
a penalizes the R2 value

based on the number of predictors in the model as follows:

R2
a = 1−

(
1−R2

)( n− 1

n− p− 1

)
.

R2
a allows us to compare models of different numbers of predictors, and its value will always be

less than or equal to R2. R2
a can sometimes hold a negative value if we have a small number

of observations and too many predictors. While the value of R2 can be interpreted, R2
a has no

interpretation, but it is a statistic used to compare models.

A common disadvantage for the R2 and the R2
a is that it is not defined over all linear models,

specifically GLMs, where a pseudo R2 is calculated using several methodologies as explained
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in Mittlbock and Heinzl (2004). There are several proposed measures for the pseudo R2 and

pseudo R2
a and they are all mostly based on the likelihood value for the fitted model and the

null model (a model with only an intercept and no predictors). Given that there are multiple

measures for the pseudo R2 and pseudo R2
a, this makes them hold a different interpretation than

the ones produced from the OLS models, and hence they cannot be directly compared to them.

However, the pseudo R2 and pseudo R2
a can be used to compare similar models.

If we wish to compare OLS, GLMs and GLMMs, then the coefficient of determination and the

adjusted coefficient of determination are inappropriate statistics to compare our models.

3.1.3 Likelihood Ratio Tests

As discussed earlier in Section 1.2.6, if a model is a special case of another model (i.e. nested

models), then using the Likelihood Ratio Test (LRT) becomes appropriate. A model M1 is said

to be nested of another model M2, if it uses a subset of the predictors of M2. If we want to

compare the two nested models M1 and M2 with p1 and p2 number of variables respectively,

such that p2 > p1, and parameters θ̂1 and θ̂2, the likelihood ratio test is a conditional test, such

that given that model M2 fits the data, it tests whether the simpler model M1 also fits the data.

Let L̂1 and L̂2 be the likelihood functions for models M1 and M2, respectively. The null and

alternative hypothesis are defined as follows:

H0 : θ = θ̂1,

H1 : θ = θ̂2.

Therefore, obtaining a small p-value makes us reject the simplified model M1, and a big p-value

does not reject that the simplified model is not significantly different from M2.

The likelihood ratio statistic is defined as

D = −2
[
log(L̂1)− log(L̂2)

]
= −2 log

(
L̂1

L̂2

)
.

This test statistic asymptotically follows the Chi-Square distribution with degrees of freedom

ν = p2 − p1.
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However, frequently we would like to compare models that are not nested. They can be compared

by using the Akaike Information Criteria and Bayesian Information Criteria.

3.1.4 Akaike Information Criteria (AIC)

Introduced by Akaike (1973, 1974), Akaike Information Criteria (AIC) is one of the most com-

monly used methods in model selection. It is used to provide a relative estimate of the lost

information by a given model. It is calculated as follows:

AIC = −2 log(L̂) + 2k,

where k is the number of estimated parameters or coefficients in the model. Since AIC repre-

sents the amount of lost information, the best model is the one with the smallest possible AIC

value. If we increase the number of variables in the model, we get a better fit to the data, and

hence the value of L̂ increases. However, this results in an increase in the penalty term (the

second term in the formula). Therefore, this penalty is used to restrict overfitting in our model.

However, when the sample size n is small compared to the number of parameters in the model,

approximately n/k < 40, Hurvich and Tsai (1989) created a corrected measure of AIC which is

AICc = AIC +
2k(k + 1)

n− k − 1
,

that is used to prevent overfitting for small data sets. Burnham and Anderson (2004) suggested

that since AICc converges to AIC as n gets large, it is always better to use AICc for model

selection.

The value of AIC (orAICc) in itself has no meaning, therefore to have some useful interpretation,

it is advisable to calculate

∆AICi = AICi −AICmin,

where AICmin is the smallest AIC (or AICc) and ∆AICi represents the difference between the

AIC value of the ith model and AICmin. This results in having ∆AICi = 0 for the best model,

and the other models have a positive value. ∆AICi represents the information loss if we choose

model Mi over the best model Mmin.
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As per Burnham and Anderson (2003, chap. 2.11), there are certain conditions under which it

is allowed to use AIC to compare a set of models, which are:

• The models should be for the same data set with the same number of observations,

• The order of calculating AIC over the set of models is insignificant in the comparison,

which means that if we are comparing models A and B, it doesn’t make a difference if

AIC is calculated first for model A and then for model B, or vice versa,

• The models should all have the same response variable. In other words, if a transformation

is made on the response variable, the same transformation should be applied over all the

other models, and

• AIC is not a hypothesis test. It does not tell the validity or quality of the model.

3.1.5 Bayesian Information Criteria (BIC)

The Bayesian Information Criteria is also a widely used method for model selection, and it is

closely related to AIC. Schwarz et al. (1978) provided a Bayesian argument for using BIC and

he defined it as

BIC = −2 log(L̂) + k log n.

The goal of using BIC is to find a model that maximizes the posterior probability of the model,

thus it attempts to find the “true” model, or the one where the posterior probability approaches

1. One of the main assumptions behind BIC is that the “true” model actually exists, and it

is included in the set of models being tested, and BIC will converge in probability to the true

model as n→∞.

Following the same methodology as AIC, the BIC is calculated for all models and the model

with the smallest value of BIC which is BICmin is chosen. The lower the value of BIC, the

higher the probability that this model is the “true” model. For easier interpretation, ∆BICi is

calculated to be the difference between the BIC value of the ith model and BICmin. In addition,

the same conditions mentioned earlier by Burnham and Anderson (2003) apply to BIC.

We can observe that the penalty term (second term) in the BIC formula is larger and more

severe than that of the AIC, which makes it choose more parsimonious models.
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3.2 Variable Selection Criteria

For every model we attempt to fit, we should identify the set of predictors from all possible

predictors X, such that we obtain a good fit for the data and maintain a parsimonious model.

Our goal is to be able to explain the model in the simplest way. There are several methods that

can help us eliminate the redundant predictors that do not add significant information to the

model. We will explore the following methods:

• Backward Elimination,

• Forward Selection, and

• Stepwise Selection.

Those methods require calculations of the AIC or AICc. Note that for every mention of AIC,

it can be replaced by AICc. Other criterion can be used instead of AIC, but we use it because

it is the most commonly used measure.

3.2.1 Backward Elimination

This method is the simplest of all variable selection procedures. It is usually used when we have

a modest number of predictors and we wish to eliminate a few of them. The required steps to

perform this method are:

1. Start with a model that includes all predictors X,

2. Calculate the AIC of the model,

3. For all predictors included in the model, calculate the AIC if they are individually removed

from the model,

4. Remove the predictor that if removed, will provide us with a model with the lowest AIC,

and

5. Repeat steps 2, 3 and 4 as long as there is a possibility of having a model with a lower

AIC value.
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3.2.2 Forward Selection

This is the opposite of backward selection. It is usually used when we have a large number of

predictors. The required steps to perform this method are:

1. Start with a model that has no predictors,

2. Calculate the AIC of the model,

3. For all predictors not included in the model, calculate the AIC if they are individually

added to the model,

4. Add the variable that if added, will provide us with a model with the lowest AIC, and

5. Repeat steps 2, 3 and 4 as long as there is a possibility of having a model with a lower

AIC value.

3.2.3 Stepwise Selection

This is the mixture of backward elimination and forward selection methods. It sometimes

provides a more accurate method than the other two measures because sometimes predictors

are removed (or added) early in the process, but they prove their importance (or lack of it) later.

This way, we can reevaluate removing/adding the predictors at each step. The required steps

to perform this method are:

1. Start with a model that includes all predictors X,

2. Calculate the AIC of the model,

3. For all predictors included in the model, calculate the AIC if they are individually removed

from the model,

4. For all predictors not included in the model, calculate the AIC if they are added to the

model,

5. Remove/add the variable that if removed/added, we will have a model with the lowest

AIC, and

6. Repeat steps 2, 3, 4 and 5 as long as there is a possibility of having a model with a lower

AIC value.
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Chapter 4

Modeling GLMMs with Nested

Copulas

In this chapter, we will explain the proposed model. Consider a longitudinal data for N partici-

pants. Let tj : j = 1, . . . , J be the J measurement times and i be the index of the N participants

in the study, where i = 1, . . . , N . For each subject i and time tj , the data has R responses,

denoted y
(r)
ij , where r = 1, . . . , R.

We will start by considering each response separately, and then consider the multivariate dis-

tribution later. The observations for each participant will be grouped by the participant’s ID

such that we obtain random effects for the intercept of the model and the time covariate. Each

response will be modeled by a GLMM, such that the equation for the jth observation of the ith

group/subject for the rth response is

η
(r)
ij = (β0 + b0i) + β1x

(1)
ij + . . .+ βpx

(p)
ij + (βt + bti)tij .

Note that more/less random effects can be incorporated to the model, based on the context

of the analysis. An expert’s judgment is needed to justify the choice. In our analysis, we

use only those two random effects because we assume that the variation between the groups

can result from variation in the overall mean for the base scenario (each numerical predictor

x(k) = 0, ∀k = 1, . . . , p, and the base case for the categorical predictors), and/or variation at

different time points.
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Now, we explore the dependence structure between the responses, which is represented by the

following joint cdf

P
(
Y

(1)
ij ≤ y

(1)
ij , . . . , Y

(R)
ij ≤ y(R)

ij

)
= C

(
F1(y

(1)
ij ), . . . , FR(y

(R)
ij )

)
. (4.0.1)

We propose a nested copula structure to model the dependence between the responses. The

model is obtained recursively as follows:

C(1)(u1, u2) = C
(θ1)
1 (u1, u2),

C(2)(u1, u2, u3) = C
(θ2)
2

(
C

(θ1)
1 (u1, u2), u3

)
,

... =
...

C(R−1)(u1, . . . , uR) = C
(θR−1)
R−1

(
C

(θR−2)
R−2 (u1, u2, . . . , uR−1), uR

)
,

for R ≥ 2, and C
(θ0)
0 (u1) := u1, where the parameters of the copulas are estimated sequentially,

rather than jointly. We will explain below how to obtain values for ui, ∀i = 1, . . . , R.

Figure 4.1 represents the suggested structure of the model, assuming 4 responses. It can be

extended to a higher number or responses, if needed. The model requires estimation of R − 1

bivariate copulas.

C(3)

C(2)

C(1)

Y (1) Y (2)

Y (3)

Y (4)

Figure 4.1: The tree structure used for modeling longitudinal data with 4 responses.

This proposed method provides flexibility by allowing different choices for the copulas C(1), C(2),

and C(3), independently. This becomes very relevant in situations where pairs of variables behave

significantly different from other pairs. For example, if we observe strong upper tail dependence
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between responses Y (1) and Y (2), while this dependence structure is not present in the other

responses. In this situation, it is reasonable to choose different copulas for the pairs, instead of

being restricted to modeling the four responses with one copula.

Shi and Frees (2011) suggested to model the standardized residuals from each regression model

in order to remove the effects of the covariates. The standardized residuals are not obtained by

the common way of subtracting the mean and dividing by the standard deviation, but rather by

a specific formula for each distribution used. The goal is to form a sample that is independent

and identically distributed, therefore, each vector of residuals can be standardized by using some

of the estimated parameters of the distribution from the GLMM model, namely the location and

scale parameters. Assume that Y (1) was fitted by using a GLMM with a normal distribution and

identity link function, such that y
(1)
ij ∼ N(µ

(1)
ij , σ

(1)) and η
(1)
ij = µ

(1)
ij . Therefore, the standardized

residual vector for Y (1), namely ε̂(1), is defined as

ε̂
(1)
ij =

y
(1)
ij − µ̂

(1)
ij

σ̂(1)
, (4.0.2)

such that ε̂
(1)
ij ∼ N(0, 1).

Similarly, if we assume that Y (2) was fitted by using a GLMM with a Poisson distribution and

log link function, such that y
(2)
ij ∼ Poisson(λ

(2)
ij ) and η

(2)
ij = log µ

(2)
ij . Therefore, the standardized

residual vector for Y (2), namely ε̂(2), is defined as

ε̂
(2)
ij =

y
(2)
ij

λ̂
(2)
ij

, (4.0.3)

such that ε̂
(2)
ij ∼ Poisson(1). Additionally, assume that the response Y (3) was modeled by a

GLMM with a gamma family and log link function, such that y
(3)
ij ∼ Gamma(α(3), β

(3)
ij ) and

η
(3)
ij = log µ

(3)
ij . Therefore, the standardized residual vector for Y (3), namely ε̂(3), is defined as

ε̂
(3)
ij =

y
(3)
ij

β̂
(3)
ij

, (4.0.4)

such that ε̂
(3)
ij ∼ Gamma(α(3), 1). Note that for the Gamma distribution, the shape parameter α

is the inverse of the dispersion parameter φ, that is used in the GLMM model. Refer to Section

1.2.2 for further details on the parameters of the Exponential family.
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In this situation, the pair
(
ε̂
(1)
ij , ε̂

(2)
ij , ε̂

(3)
ij

)
are a pseudo-random sample from a copula C with

marginals that are approximately N(0, 1), Poisson(1) and Gamma(α(3), 1), respectively.

Let Û
(r)
ij represent the standardized ranks of ε̂(r), represented by

Û
(r)
ij =

R
(r)
ij

n+ 1
,

where R(r) is the ranks of ε̂
(r)
ij , ∀r = 1, . . . , R, and we divide by (n + 1) to ensure that all stan-

dardized ranks lie strictly between 0 and 1.

The estimate of the dependence parameter θ̂1 of C
(θ1)
1 is obtained by maximizing the pseudo

log-likelihood of the copula density function from Eq. 2.2.4 as follows:

l(θ1) =
N∑
i=1

J∑
j=1

log c
(θ1)
1

(
Û

(1)
ij , Û

(2)
ij

)
+

N∑
i=1

J∑
j=1

log f1

(
ε
(1)
ij

)
+

N∑
i=1

J∑
j=1

log f2

(
ε
(2)
ij

)
, (4.0.5)

where c
(θ1)
1 is the density of Cθ11 , and f1 and f2 are the density functions of ε̂(1) and ε̂(2), respec-

tively.

Note that only the first term in Eq. 4.0.5 has θ1, therefore, the pseudo log-likelihood function

of ε̂(1) and ε̂(2) is reduced to

l(θ1) =
N∑
i=1

J∑
j=1

log c
(θ1)
1

(
Û

(1)
ij , Û

(2)
ij

)
.

Similarly, the estimate of the dependence parameter θ̂2 of C
(θ2)
2 is obtained by maximizing the

pseudo log-likelihood

l(θ2) =

N∑
i=1

J∑
j=1

log c
(θ2)
2

{
C

(θ1)
n1

(
Û

(1)
ij , Û

(2)
ij

)
, Û

(3)
ij

}
,

where c
(θ2)
2 is the density of C

(θ2)
2 and C

(θ1)
n1 represents the empirical copula of C

(θ1)
1 . This pro-

cedure is iterated for as many response variables as needed, namely R− 1 times.

The adequacy of the fit of a copula C is tested by 1000 bootstrap iterations for the Cramér Von

Mises statistic, defined as

Sn =

∫ 1

0

∫ 1

0
{Cn(u1, u2)− Cθn(u1, u2)}2 du1du2,
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where Cn represents the empirical copula and Cθn represent the fitted copula with the rank-

estimate of the dependence parameter. The null hypothesis of the test is defined as H0 : C ∈ Cθn ,

and it is compared to the significance level α. Therefore, for a p-value > α, we do not reject the

null hypothesis, and a p-value < α results into rejection of H0. Further details on the goodness-

of-fit procedure is explained in Genest et al. (2009).

Note that fitting the linear models is done by using the stats and lme4 R package. Stepwise

variable selection for the GLM were done by using a function that we have built, because R’s

function performs it based on the AIC criteria, so we amended the function to do the procedure

based on the AICc criteria. Note that the copula fitting procedure and goodness of fit tests are

done by using the copula R package.
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Chapter 5

Application

This chapter provides details about the study that motivated the work performed in this thesis.

Two randomized, placebo-controlled, double-blinded studies, referred to as pilot and bridge,

have been performed on children aged between 1 and 6 years who have been previously diag-

nosed with recurrent, moderate or severe asthma. The main goal of the studies was to observe if

supplementation of vitamin D can decrease the number of asthma exacerbations that require the

use of rescue oral corticosteroids (OCS). The patients of the pilot study were recruited between

November 2013 to February 2014. They received either a single oral dose of 100,000 Interna-

tional Unit (IU) of vitamin D, or a placebo. In addition, all participants took a daily dose 400

IU of vitamin D for the duration of the study. Further details of the study and its outcome

are explained in Jensen et al. (2016). However, the patients for the bridge study received either

2 oral doses of 100,000 IU of vitamin D, or placebo. The doses were taken 3.5 months apart,

beginning in Fall of 2016. Unlike the pilot study, the participants in the bridge study did not

take an additional daily dose of vitamin D. Under both studies, the participants attended 3

clinical visits; at baseline, i.e. t = 0, at 3 months (or 3.5 for bridge) and at 6 months (or 7

for bridge). In our analysis, we assume that the visits were at time t-months, where t = 0, 3, 6.

Blood samples from the patients were collected at each visit, in addition to demographic and

medical characteristics.

The goal of our analysis is to identify the dependence structure between the change in the

amount of vitamin D in the blood, Y (1), and the number of asthma attacks that require the

use of rescue OCS, Y (2). This is done by initially modeling the marginal distribution of each
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outcome, and then finding their joint distribution by using copulas. Note that we have 3 time

points, namely t = 0, 3, 6, however, we only have two intervals, namely [0, 3], [3, 6], for the change

in vitamin D and the number of asthma attacks.

5.1 Data Analysis

In our analysis, we combine patients from the pilot and the bridge study together. Table 5.2

provides the baseline patients’ characteristics that we used in our analysis. The following data

manipulations were performed:

• At each time point t, we removed the observations that belong to patients that dropped out

of the study prior to time t. At baseline, i.e. t = 0, 1 patient from the bridge study dropped

out prior to taking the required blood sample, and hence, he was removed. Similarly, a

total of 6 patients are removed at t = 3 and 11 patients are removed at t = 6,

• Missing values were imputed by using the mean for numerical variables and the median

for categorical variables,

• The Z-score of the BMI per patient was calculated as per the World Health Organization

(WHO) standards that are presented in Who et al. (2006),

• 1 outlier in the Z-score of the BMI was replaced by the data for the same patient at the

following visit. The outlier was due to a typo in the patient’s weight,

• The Fitzpatrick scale of skin color is grouped such that each group has at least 5 observa-

tions to maintain good credibility in the results,

• The daily 400 IU of vitamin D for the pilot participants is added to the Daily Dietary

vitamin D intake. Additionally, the variable is categorized into 4 quartiles, namely Q1 -

Q4. The split of the quartiles is based on the data of daily dietary and supplementary

vitamin D at baseline,

• The minutes spent in the sun variable is split into two categories, namely ≤ or > the

median (60 minutes per day),

• Body coverage of SPF variable is removed due to its high correlation with SPF usage, and
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• Since none of the patients took a sunny vacation at t = 6, the corresponding variable is

removed from the analysis only at this time point. Similarly, since the blood samples at

baseline were taken before randomization, the placebo/treatment and pilot/bridge vari-

ables are not included in the analysis at baseline.

Initially, we start with modeling the amount of vitamin D in the blood at each visit to have a

better understanding of the data. Note that this is different from Y (1), as Y (1) represents the

change in vitamin D between visits. This is a preliminary analysis and the estimates obtained

from the model will not be used in further steps. Since our outcome is a continuous variable

that is strictly positive, we fit GLM models with Gamma and Inverse Gaussian families and with

log link functions. Stepwise variable selection by using the AICc values is performed in order

to obtain parsimonious models that explain our data well. In addition, LRTs are performed

such that the original model with all variables is compared to its nested model that is obtained

from the stepwise process. The p-values in Table 5.1 show that the parsimonious models are not

significantly different from the original models (with all predictors) at the level of α = 0.01, and

hence, they are not rejected. In addition, we compare the Gamma and the Inverse Gaussian

models by comparing their AICc values. As shown in Table 5.3, the Gamma models outperform

the Inverse Gaussian models. Note that the BIC values of the models confirmed the selection

of the Gamma over the Inverse Gaussian models.

Table 5.1: p-value of the LRTs on the GLM models for the amount of vitamin D at each visit.

The LRTs compare the model with all predictors and the parsimonious model obtained from

the stepwise variable selection.

GLM model t = 0 t = 3 t = 6

Gamma 0.63 0.89 0.83

Inverse Gaussian 0.56 0.87 0.67
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Table 5.2: Patients Characteristics at each visit. Numerical variables are associated with the

mean and the 95% confidence interval.

Variable Categories
t = 0 t = 3 t = 6

(n = 68) (n = 63) (n = 58)

Study
Pilot 22 21 18

Bridge 46 42 40

Group
Placebo 35 34 32

Treatment 33 29 26

Vit. D in blood - 71 (37, 105) 77 (44, 110) 80 (46, 114)

Age - 2.9 (0.8, 4.9) 3.1 (1.1, 5.2) 3.4 (1.3, 5.4)

Gender
Male 36 32 30

Female 32 31 28

Z-score of BMI - 0.6 (−0.4, 2.7) 0.6 (−1.4, 2.5) 0.5 (−1.5, 2.6)

Fitzpatrick Scale

[1, 2] 41 37 35

[3, 4] 22 21 18

[5, 6] 5 5 5

Season

Fall 54 - -

Winter 14 48 -

Spring - 15 37

Summer - - 21

Asthma Severity
Persistent 46 42 31

Episodic 22 21 27

Q1: [0− 165] 18 12 11

Daily Dietary and Q2: (165− 215] 16 8 14

Supplementary Vit. D Q3: (215− 356] 17 17 11

Q4: (356−∞) 17 26 22

Daily inhaled corticosteroids No 21 11 10

(ICS) intake Yes 47 52 48

Minutes spent in the sun ≤ median (60 mins) 24 50 23

per day in past 3 months > median (60 mins) 44 13 35

SPF usage < 30 18 55 10

in past 3 months ≥ 30 50 8 48

SPF coverage
Minimal coverage 29 57 14

Good coverage 39 6 44

Sunny Vacation No 57 56 58

in past 3 months Yes 11 7 0
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Table 5.3: AICc of the optimal GLM models for the amount of vitamin D at each visit, obtained

by stepwise variable selection.

GLM model t = 0 t = 3 t = 6

Gamma 572.89 530.41 488.46

Inverse Gaussian 590.60 532.56 490.52

Additionally, we explore the possibility of including interaction between the variables, but LRTs

confirm that the model with interaction terms does not add significant value to the model,

and hence they are rejected. Furthermore, the models are fitted without imputing the missing

values. We observe that we obtain the same variables by using stepwise variable selection and

that the coefficients of the variables are very close to those of the imputed models. Therefore,

we accept that the imputation of the data was robust and did not result in significant inaccuracy.

The estimates of the parameters are transformed by using the inverse of the link function, as

explained in Eq. 1.2.7. Table 5.4 provides the transformed parameters estimates of the chosen

models (GLM with Gamma family and log link function) for each time point t = 0, 3, 6, along

with their 95% confidence intervals. As explained in Eq. 1.2.8, the transformed coefficients

provide a multiplicative factor for the change in the mean of Y due to a 1 unit increase in the

corresponding variable.

We can observe that the variables obtained by stepwise variable selection for the three models

are somehow consistent, i.e. same direction for the coefficients and common variables across

the models. As expected, the patients in the treatment group attain higher levels of vitamin

D in their blood. In addition, baseline patients tend to have lower vitamin D in their blood

as they grow older, which is explained by the fact that nursing mothers are recommended to

take supplementary vitamin D, hence, when the child stops breastfeeding, his dietary intake of

vitamin D reduces. However, we believe that this is not significant in later months due to the

supplementary vitamin D intake for all patients. Moreover, dark skinned patients tend to have

lower vitamin D in their body, which can be explained by slower creation of vitamin D by their

skin from sun exposure. We also observe lower vitamin D levels in winter and higher levels in the
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summer, this is due to the less exposure to the sun in winter than summer. As expected, patients

in the higher quartiles of dietary and supplementary vitamin D intake have higher amounts of

vitamin D in their blood. Finally, we noticed that the daily use of the medication ICS tends to

increase the amount of vitamin D.

Table 5.4: Transformed parameter estimates and their 95% confidence intervals for the Gamma

GLM models for the amount of vitamin D at each visit.

Variable Categories t = 0 t = 3 t = 6

Intercept - 92.40 (78.42, 108.97) 61.04 (51.20, 73.08) 66.48 (57.73, 77.39)

Group
Placebo - reference reference

Treatment - 1.17 (1.05, 1.30) 1.12 (1.01, 1.24)

Age - 0.93 (0.89, 0.98) - -

Fitzpatrick
[1,2] reference reference reference

Scale
[3,4] 0.87 (0.77, 0.97) 0.89 (0.79, 0.99) 0.85 (0.76, 0.94)

[5,6] 0.91 (0.74, 1.12) 0.89 (0.74, 1.08) 0.85 (0.71 - 1.02)

Season

Fall reference - -

Winter 0.87 (0.77, 1.00) - -

Spring - - reference

Summer - - 1.07 (0.96, 1.21)

Q1: [0− 165] - reference reference

Daily Dietary and Q2: (165− 215] - 0.97 (0.81, 1.17) 0.98 (0.84, 1.13)

Supplementary Vit. D Q3: (215− 356] - 1.02 (0.88, 1.18) 1.05 (0.89, 1.24

Q4: (356−∞) - 1.18 (1.03, 1.34) 1.14 (0.99, 1.32)

Daily ICS No - reference reference

Intake Yes - 1.18 (1.03, 1.35) 1.14 (1.00, 1.29)

5.2 Fitting the Univariate Distributions

In this section, we provide details on the fitting of the univariate distributions needed for our

proposed model. Our data consists of repeated measurements taken at different points in time

for each participant in the pilot and bridge studies. We are interested in identifying the trend

over time for each participant and also the variation between the participants. We have two

response variables; the change in vitamin D between successive visits, Y (1), and the number of
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asthma attacks that occurred between successive visits and require the use of OCS, Y (2). In

addition to the covariates discussed in Section 5.1, we also have a time covariate, t, and an

indicator for each participant, ID. Table 5.5 provides details on the variables. Since we are

considering data that happened between two time points, namely [0, 3] and [3, 6], we have to

perform some data manipulation as explained below:

• Include only the participants that continued the study until the end,

• Use the average values between the two time points for Age and Z-score of BMI, and

• Use the midpoint of the dates between the visits, and accordingly specify the season

Note that most of the variables were regarding information over the past 3 months (Asthma

Severity, SPF usage, Dietary and Supplementary vitamin D, Daily intake of ICS, minutes spent

in the sun, and Sunny vacation), and hence for the intervals [0, 3] and [3, 6], we used the data

from the second and third visits, respectively.

Table 5.5: Patients Characteristics for the longitudinal study. Numerical variables are associated

with the mean and the 95% confidence interval.

Variable Categories
t = [0− 3] t = [3− 6]

(n = 58) (n = 58)

Study
Pilot 18 18

Bridge 40 40

Group
Placebo 32 32

Treatment 26 26

∆ Vit. D in blood - 7.04 (−28.6, 42.7) 1.73 (−18.5, 22.0)

# of Asthma Attacks - 0.5 (−0.93, 1.93) 0.41 (−0.81, 1.63)

Age - 2.96 (0.88, 5.0) 3.23 (1.18, 5.28)

Gender
Male 30 30

Female 28 28

Z-score of BMI - 0.56 (−1.25, 2.36) 0.54 (−1.35, 2.43)

Fitzpatrick Scale

[1, 2] 35 35

[3, 4] 18 18
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[5, 6] 5 5

Season

Fall 9 -

Winter 44 51

Spring 4 3

Summer 1 4

Asthma Severity
Persistent 37 31

Episodic 21 27

Q1 11 11

Daily Dietary and Q2 8 14

Supplementary Vit. D Q3 17 11

Q4 22 22

Daily inhaled corticosteroids No 9 10

(ICS) intake Yes 49 48

Minutes spent in the sun ≤ median (60 mins) 46 23

per day in past 3 months > median (60 mins) 12 35

SPF usage < 30 49 10

in past 3 months ≥ 30 9 48

Sunny Vacation No 50 58

in past 3 months Yes 8 0

5.2.1 Fitting the Change in Vitamin D

Since we are working with 58 participants, observing the individual plot for each of them would

be cumbersome, and hence we plot the trend of the mean of Y (1) across studies and groups

over time, as shown in Figure 5.1. For the pilot participants, we can observe that the change in

vitamin D is higher in the interval [0, 3] than the interval [3, 6], which is because at baseline, the

vitamin D in the blood is tested prior to any bolus or daily vitamin D intake, however at t = 3

and t = 6, the participants have been exposed to daily vitamin D supplementary intake and the

bolus that was taken at the prior visit. In addition, the participants from the treatment group

have a significantly higher increase, as expected. On the other hand, for the bridge study, we

observe that the participants from the placebo group start with a slightly negative change (or
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almost no change in the average amount of vitamin D), which can be attributed to less exposure

to the sun in the winter season. It is then followed by a slightly positive change (or almost

no change) for the second interval. Regarding the treatment group of the bridge study, they

experience a positive change in vitamin D, due to the bolus intake, followed by no change.

Figure 5.1: The mean of Y (1) over time split by treatment type and study.

We are interested in identifying the trend of the change in vitamin D in the blood, namely

Y (1) over time within each participant and to compare this trend with other participants. This

requires the use of a mixed-effects model. Since Y (1) is continuous and not strictly positive,

we fit a GLMM model with Normal family. In our fitted model, we start with all the avail-

able covariates, in addition to two random effects for each participant. The random effects for

a certain participant represent the deviation from the population values for the intercept and

the slope of that participant’s time trend. In other words, the model calculates the value of

the intercept and slope of the time variable for the population and then each participant has

two additional parameters that explain how he deviates from that population. The additional

parameters per participant are one for the intercept, and another for the slope. Further details
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on random effects are available in Section 1.3.

We then perform variable selection procedures to obtain a parsimonious model. We confirm

that the new model, obtained from stepwise variable selection, is not significantly different from

the original model, with all predictors, by LRTs, where we obtain a p-value of 0.95. In addition,

we obtain an estimate of 0 for the variance of the random effects. This does not imply a lack

of variation between the participants, but rather that level of variability between participants

is not sufficient to require adding random effects to the model. In other words, fitting a model

with only fixed effects through OLS is equivalent to this model. This is confirmed by performing

LRTs, in which we obtain a p-value of 1 when we drop the random effects terms from the model.

Table 5.7 provides the coefficients of the fixed effects for the final model. Note that since we

used a Normal distribution to model the data, the link function used is the identity link, which

results in additive coefficients. The overall average decrease in vitamin D levels that we visually

observed in Figure 5.3 is confirmed by the negative intercept value. Additionally, the treatment

participants have a higher change in their vitamin D levels, as expected. We also notice that older

patients have a positive increase in the change in their vitamin D levels and that participants

who are diagnosed with episodic asthma condition experience lower changes in their vitamin D.

Additionally, higher amounts of dietary and supplementary vitamin D results in higher positive

change in the amount of vitamin D in the blood. Finally, over time, the change in vitamin

D becomes smaller, which was already deduced from the visual representation. In addition,

we observe the Q-Q plot of the residuals and we obtain a visual confirmation that our model

provides a good fit of the data, except for 2 observations.
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Figure 5.2: Q-Q plot of the residuals of the model with the parameters specified in 5.7

Table 5.7: Parameter estimates and their 95% confidence intervals for the OLS model for the

change in the amount of vitamin D between visits.

Variable Categories Fixed Effects Coefficients

Intercept - −2.78 (−15.92, 10.35)

Group
Placebo reference

Treatment 7.09 (1.84, 12.33)

Age 2.92 (0.34, 5.50)

Asthma Severity
Persistent reference

Episodic −4.59 (−9.79, 0.60)

Q1 reference

Daily Dietary and Q2 −1.64 (−9.76, 6.49)

Supplementary Vit. D Q3 1.87 (−6.13, 9.88)

Q4 12.12 (4.96, 19.28)

Time - −1.75 (−3.44,−0.06)
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5.2.2 Fitting the Number of Asthma Attacks requiring the use of OCS

We start by visually observing the available data and calculate the mean of Y (2) across the

studies and groups, which is shown in Figure 5.3. We observe that in general, there is a slight

decrease in the mean of Y (2) over time.

Our variable of interest is a discrete variable that represents the count of events that occur per

participant, which means that a Poisson Distribution is an appropriate modeling choice. We

are interested in identifying the behavior of Y (2) over time for the population, and identify any

variation among patients. Therefore, we fit a GLMM model with Poisson family. Similar to

the initial model used to fit Y (1), this model includes two random effects per participant; one

for the variation in the intercept from the population values, and the other for the slope of the

time trend. We include all the covariates in the model, and then perform methods of variable

selection to exclude the variables that do not add significant value to the predictions of the

model. This was confirmed by doing LRTs and obtaining a p-value of 0.98.

Figure 5.3: The mean of Y (2) over time split by treatment type and study.
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Unlike the model for Y (1), we observe variation in the intercept among participants, with a small

standard deviation of 0.34. However, the estimate for the random effect for the time variable

is 0, which implies that the level of variability over time across the participants is not sufficient

to require adding random effects for the slope of the time variable to the model. Therefore,

a model with only random effects for the intercept will produce the same results. Figure 5.4

represents the estimates of the random effects for the intercept of each participant in the model

versus quantiles of the standard normal distribution. As observed, on average, the variation

of the participants lies between [−0.2, 0.3] away from the mean of the population. The 95%

confidence interval for each participant is provided in the figure.

Additionally, we perform LRT to compare the model with the random effect, to a model with

only fixed effect. A p-value of 0.54 confirms that the fixed effects only model (GLM) does not

lose significance value compared to the mixed effects model (GLMM), therefore, the parsimo-

nious model is the GLM model.

Table 5.8 provides the transformed coefficients of the fixed effects for model. Note that those

coefficients are multiplicative, as explained in Eq. 1.2.8. We notice that the participants in the

bridge group have significantly lower number of attacks, compared to the pilot group, and that

females also experience less number of asthma attacks. In addition, as expected, participants

who were diagnosed with episodic asthma severity have lower number of attacks compared to

patients with persistent asthma severity.
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Figure 5.4: 95% confidence intervals of the estimates of random effects for the intercept in the

mode of Y (2) versus quantiles of the standard normal distribution.

Table 5.8: Parameters estimates, transformed parameters estimates and their 95% confidence

intervals for the GLM model for the number of asthma attacks that require the use of OCS

between visits.

Variable Categories Fixed Effects Coefficients Transformed Fixed Effects Coefficients

Intercept - 0.26 (−0.39 - 0.86) 1.30 (0.68 - 2.36)

Study
Pilot reference reference

Bridge −0.79 (−1.39 - − 0.17) 0.45 (0.25 - 0.85)

Gender
Male reference reference

Female −0.76 (−1.38 - − 0.16) 0.47 (0.25 - 0.85)

Asthma Severity
Persistent reference reference

Episodic −0.62 (−1.26 - − 0.04) 0.54 (0.28 - 0.96)

79



5.3 Fitting the Joint Distribution

Prior to fitting the joint distribution, we would like to mention that having only two obser-

vations per patient may result in inaccurate estimations for the dependence structure. From

the initial graphs and the modeling of the marginal distributions, we observe smaller number

of asthma attacks over time, which can confirm the positive effect of vitamin D. However, we

also observe that the change in vitamin D becomes smaller over time, which is attributed to

the big positive change from baseline, and then followed by a smaller change in vitamin D.

Therefore, the combined effect shows that bigger amount of change in vitamin D corresponds

to more asthma attacks. This counterintuitive result is due to having only 2 observations per

patient and a longer study with more time points will produce more accurate measures and

confirm the original hypothesis. However, we will proceed with the modeling of the dependence

between Y (1) and Y (2), even though the results may be inaccurate due to the shortcomings of the

data. Note that the proposed model can have more than 2 responses, however, our application

is constrained by the availability of the data, and hence we only need to fit 1 copula, namely C
(θ1)
1 .

We have fitted the models for Y (1) and Y (2), which are an OLS and GLM with Poisson distri-

bution and log link function, respectively. Accordingly, we calculate the vectors ε̂(1) and ε̂(2),

as per the formulas indicated in Eq. 4.0.2 and 4.0.3, respectively. Let Û
(1)
ij = Fn1(ε

(1)
ij ) and

Û
(2)
ij = Fn2(ε

(2)
ij ) represent the empirical marginal cdf of the standardized residuals for the jth

time point of the ith participant. Note that Fn1(ε
(1)
ij ) =

Rij
n+1 and Fn2(ε

(2)
ij ) =

Sij
n+1 , where Rij and

Sij represent the rank of the observation and we divide by (n + 1) to ensure that all ranks lie

strictly between 0 and 1.

Table 5.9 provides the estimates for the dependence coefficients. Additionally, the null hypothesis

of independence is tested by checking if the empirical estimates of the dependence coefficients

are significantly different from 0. We notice that independence is rejected under the rank-based

tests of independence.
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Table 5.9: Estimates for dependence measures between ε̂
(1)
ij and ε̂

(2)
ij .

Measure ρp(ε̂
(1)
ij , ε̂

(2)
ij ) ρS(ε̂

(1)
ij , ε̂

(2)
ij ) τ(ε̂

(1)
ij , ε̂

(2)
ij )

Estimate 0.137 0.158 0.126

p-value 0.143 0.089 0.088

Table 5.10 provides the estimates of the dependence parameter and its standard deviation for

six copula families fitted to the pair ε̂
(1)
ij and ε̂

(2)
ij . Red p-values indicate rejected copulas at

significance level α = 10% and bold text indicates the best fit copula. Note that the degrees of

freedom for the t-copula have been estimated along with the dependence parameter. The Cramér

Von Mises goodness of fit test rejects only the Clayton copula at a significance level α = 10%.

However, by observing their AICc and BIC values, we notice that out of the accepted models,

the Gumbel copula provides the best fit for the data. This has also been confirmed by using

the BiCopSelect function from the VineCopula R package, which tests a wide variety of possible

copulas.

Table 5.10: Estimates of copula parameters, p-values of goodness of fit test, AICc and BIC

values.

Copula Dependence Parameter Standard Deviation p-value AICc BIC

Gauss 0.193 0.107 0.253 -0.213 2.505

t6 0.187 0.123 0.347 0.874 6.275

Clayton 0.283 0.184 0.087 0.306 3.025

Frank 1.087 0.648 0.177 -0.490 2.228

Gumbel 1.125 0.080 0.441 -0.539 2.179

Galambos 0.353 0.096 0.242 -0.143 2.575

Therefore, the dependence structure between Y (1) and Y (2) is presented by a Gumbel copula

with dependence parameter θ̂ = 1.125, which corresponds to τ̂ = 0.11.
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5.4 Predictive Modeling

As a preventative strategy, one must be able to forecast the expected number of asthma attacks

and its standard deviation, given a certain value for the change in vitamin D. The fitted marginals

obtained in Sections 5.2.1 and 5.2.2 are represented in terms of the predictors X(1) and X(2)

and the regression parameters β̂
(1)

and β̂
(2)

as follows:

ŷ
(1)
ij = −2.78 + 7.09

(
1(

x
(1)
ij =Treatment

))+ 2.92x
(2)
ij +−4.59

(
1(

x
(3)
ij =Episodic

))
− 1.64

(
1(

x
(4)
ij =Q2

))+ 1.87

(
1(

x
(4)
ij =Q3

))+ 12.12

(
1(

x
(4)
ij =Q4

))− 1.75t,

and

ŷ
(2)
ij = exp

{
0.26− 0.62

(
1(

x
(3)
ij =Episodic

))− 0.79

(
1(

x
(5)
ij =Bridge

))− 0.76

(
1(

x
(6)
ij =Female

))}
where x

(p)
ij represents the jth observation of the ith participant for the pth predictor, where

p = 1, . . . , 6 represents the group, age, asthma severity, daily dietary and supplementary intake

of vitamin D, study and gender, respectively.

In addition,

ε̂
(1)
ij =

y
(1)
ij − ŷ

(1)
ij

σ̂(1)
, and ε̂

(2)
ij =

y
(1)
ij

λ̂
(2)
ij

, (5.4.1)

where σ̂(1) = 13.32.

As shown in Section 5.3, the dependence structure between ε̂(1) and ε̂(2) is represented by

a Gumbel copula with dependence parameter θ̂1 = 1.125. Therefore, the proposed model is

reduced to

F
(
ε(1), ε(2)|X(1),X(2), β̂

(1)
, β̂

(2)
, µ̂(1), σ̂(1), λ̂(2)

)
= C

(θ̂1)
1 (U (1), U (2))

= exp

{
−
[
(− lnU (1))θ1 + (− lnU (2))θ1

]1/θ1
}
,

where

U (1) = F1

(
ε(1)|X(1), β̂

(1)
, µ̂(1), σ̂(1)

)
, and U (2) = F2

(
ε(2)|X(2), β̂

(2)
, λ̂(2)

)
,

represent the marginal cdf for ε̂(1) and ε̂(2), respectively, which are approximately

ε(1)|X(1), β̂
(1)
, µ̂(1), σ̂(1) ∼ N(0, 1)
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and

ε(2)|X(2), β̂
(2)
, λ̂(2) ∼ Poisson(1).

The pdf for this copula is given by

f
(
ε(1), ε(2)|X(1),X(2), β̂

(1)
, β̂

(2)
, µ̂(1), σ̂(1), λ̂(2)

)
=C

(θ̂1)
1 (U (1), U (2))

× f1

(
ε(1)|X(1), β̂

(1)
, µ̂(1), σ̂(1)

)
× f2

(
ε(2)|X(2), β̂

(2)
, λ̂(2)

)
,

where f1 and f2 represent the marginal pdf for ε̂(1) and ε̂(2), respectively.

The conditional cdf for the number of asthma attacks given a fixed value of change in vitamin

D is defined as

CU(2)|U(1)(u(2)|u(1)) =
∂

∂u(1)
C

(θ1)
1 (u(1), u(2))

= C
(θ1)
1 (u(1), u(2))

(− lnu(1))θ1−1

u(1)

[
(− lnu(1))θ1 + (− lnu(2))θ1

] 1
θ1
−1
.

Steps 1-5 in the following simulation procedure are performed to obtain 1 value of the expected

number of asthma attacks, for a given value of the change in vitamin D. It is then repeated for

several values of the change in vitamin D, as explained below.

1. Specify a given value of u(1) ∼ U(0, 1) and simulate 5000 observations for V (2), where

V (2) ∼ U(0, 1),

2. Let U (1) = (u(1), . . . , u(1)) and solve for U (2), such that CU(2)|U(1)(u(2)|u(1)
j ) = v

(2)
j , ∀j =

1, . . . , 5000. This requires numerical optimization methods,

3. Transform U (1) and U (2) into realizations for the residual values ε̂(1) and ε̂(2) by using the

appropriate quantile transformation,

4. Transform the simulated residual values into realizations of Y (1) and Y (2) by using the

inverse of Eq. 5.4.1,

5. Calculate the expected value of each variable, where Y (1) will remain constant for each

iteration, and

6. Repeat the procedure for a sequence of 100 values of ui ∈]0, 1[.
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Conclusion

In this thesis, we introduced a methodology to estimate the association between responses of lon-

gitudinal data. The suggested model incorporates nested copulas in a vine structure, as shown

in Figure 4.1. The approach was illustrated by using data from two medical studies performed

on preschoolers diagnosed with recurrent, moderate or severe asthma. GLMM models were fit

to two responses and covariates, where we consider a random effect for the intercept and the

slope of the time component for each participant. Variable and model selection criteria were

used to eliminate the variables and models that poorly explained the data, and to choose the

best fit model without losing model predictability. LRTs were used to test the significance of

the random effects to the models, where the optimal models excluded the random effects, i.e.

the optimal models include only fixed effects.

The chosen models were used as the marginals of the copula. The residuals from each model

were used to isolate it from the effect of the covariates on the data. The pairwise dependence

between the change responses were investigated and modeled by using rank-based procedures.

Standard tools for bivariate copula selection, estimation and validation were used. The copula

fitting procedure can be repeated iteratively for as many variables as needed such that if we have

r responses, we will fit r − 1 bivariate copulas. Additionally, the dependence model is critical

in the estimation of the expected value of a response variable given a fixed value of the other

response variable. The most significant limitation of this methodology is that it requires the

use of identically distribution responses (or residuals), which might not be the standard case.

Additionally, to ensure the accuracy of the model, we need a significant number of repeated

observations in the longitudinal data.
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Overall, we have established in this thesis that the suggested modeling technique provides great

flexibility to model longitudinal data with multiple responses. First, the marginals can be fit

by different regression models for each response. Second, bootstrap iterations can be easily

performed to minimize uncertainty in the estimation of the parameters. Finally, in addition

to predictions for each marginal, predictions can be made for the joint distribution, and more

importantly, the conditional distribution of a marginal given the others.
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Alexander J McNeil, Rüdiger Frey, and Paul Embrechts. Quantitative risk management: Con-

cepts, techniques and tools. Princeton university press, 2015.

Steven G Meester and Jock Mackay. A parametric model for cluster correlated categorical data.

Biometrics, pages 954–963, 1994.

88



M Mittlbock and Harald Heinzl. Pseudo r-squared measures for generalized linear models. In

Proceedings of the 1st European Workshop on the Assessment of Diagnostic Performance,

Milan, Italy, pages 71–80, 2004.

Roger B Nelsen. An introduction to copulas, volume 139 of lecture notes in statistics, 1999.

Jose Juan Quesada-Molina. A generalization of an identity of hoeffding and some applications.

Statistical Methods & Applications, 1(3):405–411, 1992.

Marco Scarsini. On measures of concordance. Stochastica, 8(3):201–218, 1984.

Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6(2):

461–464, 1978.

Peng Shi and Edward W Frees. Dependent loss reserving using copulas. ASTIN Bulletin: The

Journal of the IAA, 41(2):449–486, 2011.

M Sklar. Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ. Paris,

8:229–231, 1959.

Michael Smith, Aleksey Min, Carlos Almeida, and Claudia Czado. Modeling longitudinal data

using a pair-copula decomposition of serial dependence. Journal of the American Statistical

Association, 105(492):1467–1479, 2010.

Charles Spearman. The proof and measurement of association between two things. The American

journal of psychology, 15(1):72–101, 1904.

Stephen M Stigler. Gauss and the invention of least squares. The Annals of Statistics, pages

465–474, 1981.

Walter W Stroup. Generalized linear mixed models: modern concepts, methods and applications.

CRC press, 2012.

Who et al. Who multicentre growth reference study group: Who child growth standards:

length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass

index-for-age: Methods and development. Geneva: WHO, 2007, 2006.

89


	List of Figures
	List of Tables
	Univariate Models
	Ordinary Least Squares
	The Model
	Estimation of Model Parameters
	Assumptions
	Goodness of Fit Measures

	Generalized Linear Models
	The Model
	The Exponential Family
	The Link Function
	Estimation of Model Parameters
	Assumptions
	Goodness of Fit Measures

	Generalized Linear Mixed Models
	The Model
	Estimation of Model Parameters
	Goodness of Fit Measures


	Multivariate Models
	Multivariate Distribution Functions
	Copulas
	Families of Copula
	Vine Copula
	Nested Archimedean Copulas
	Copula Regression

	Measures of Dependence
	Pearson's Correlation Coefficient p
	Spearman's rho S
	Kendall's Tau 


	Model and Variable Selection Criteria
	Model Selection Criteria
	The Coefficient of Determination R2
	The Adjusted Coefficient of Determination Ra2
	Likelihood Ratio Tests
	Akaike Information Criteria (AIC)
	Bayesian Information Criteria (BIC)

	Variable Selection Criteria
	Backward Elimination
	Forward Selection
	Stepwise Selection


	Modeling GLMMs with Nested Copulas
	Application
	Data Analysis
	Fitting the Univariate Distributions
	Fitting the Change in Vitamin D
	Fitting the Number of Asthma Attacks requiring the use of OCS

	Fitting the Joint Distribution
	Predictive Modeling

	Bibliography

