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ABSTRACT

Algorithm Based Fault Tolerance: A Perspective from Algorithmic and

Communication Characteristics of Parallel Algorithms

Upama Kabir, Ph.D.

Concordia University, 2017

Checkpoint and recovery cost imposed by checkpoint/restart (CP/R) is a crucial

performance issue for high-performance computing (HPC) applications. In compari-

son, Algorithm-Based Fault Tolerance (ABFT) is a promising fault tolerance method

with low recovery overhead, but it suffers from the inadequacy of universal applicabil-

ity, i.e., tied to a specific application or algorithm. Till date, providing fault tolerance

for matrix-based algorithms for linear systems has been the research focus of ABFT

schemes. As a consequence, it necessitates a comprehensive exploration of ABFT

research to widen its scope to other types of parallel algorithms and applications. In

this thesis, we go beyond traditional ABFT and focus on other types of parallel ap-

plications not covered by traditional ABFT. In that regard, rather than an emphasis

on a single application at a time, we consider the algorithmic and communication

characteristics of a class of parallel applications to design efficient fault tolerance and

recovery strategies for that class of parallel applications. The communication charac-

teristics determine how to distributively replicate the fault recovery data (we call it

the critical data) of a process, and the algorithmic characteristics determine what the

application-specific data is to be replicated to minimize fault tolerance and recovery

cost. Based on communication characteristics, parallel algorithms can be broadly

classified as (i) embarrassingly parallel algorithms, where processes have infrequent

or rare interactions, and (ii) communication-intensive parallel algorithms, where pro-

cesses have significant interactions. In this thesis, through different case studies, we

design ABFT for these two categories of algorithms by considering their algorithmic

and communication characteristics. Analysis of these parallel algorithms reveals that

a process contains sufficient information that can help to rebuild a computational

state if any failure occurs during the computation. We define this information as

critical data, the minimal application-level data required to be saved (securely) so
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that a failed process can be fully recovered from a most recent consistent state us-

ing this fault recovery data. How the communication dependencies among processes

are utilized to replicate fault recovery data is directly related to the system’s fault

tolerance performance. We propose ABFT for parallel search algorithms, which be-

long to the class of embarrassingly parallel algorithms. Parallel search algorithms

are the well-known solution techniques for discrete optimization problems (DOP).

DOP covers a broad class of (parallel) applications from search problems in AI to

computer games, e.g., Chess and various games, traveling salesman problem, vari-

ous AI search problems. As a case study, we choose the parallel iterative deepening

A* (PIDA*) algorithm and integrate application-level fault tolerance with the algo-

rithm by replicating critical data periodically to make it resilient. In the category of

communication-intensive algorithms, we choose Dynamic programming (DP) which

is a widely used algorithm paradigm for optimization problems. We choose parallel

DP algorithm as a case study and propose ABFT for such applications. We present

a detailed analysis of the characteristics of parallel DP algorithms and show that the

algorithmic features reduce the cardinality of critical data into a single data in case

of n-data dependent task. We demonstrate the idea with two popular DP class of

applications: (i) the traveling salesman problem (TSP), and (ii) the longest common

subsequence (LCS) problem. Minimal storage and recovery overhead are the prime

concern in FT design. On that regard, we demonstrate that further optimization in

critical data is possible for particular DP class of problems, where the degree of de-

pendency for a subproblem is small and fixed at each iteration. We discuss it with the

0/1 knapsack problem as a case study and propose an ABFT scheme where, instead

of replicating the critical data, we replicate a bit-vector flag in peer process’s memory

which is later used to rebuild the lost data of a failed process. Theoretical and exper-

imental results demonstrate that our proposed methods perform significantly better

than the conventional CP/R in terms of fault tolerance and recovery overheads, and

also in storage overhead in the presence of single and multiple simultaneous failures.
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FT Fault Tolerance

FTPIDA* Fault Tolerant PIDA*

HPC High Performance Computing

ILP Integer Linear Programming

LANL Los Alamos National Laboratory

LANL Los Alamos National Laboratory

LCS Graphics Processing Unit

LCS Longest Common Susequence

xiii



LLNL Laurence Livermore National Laboratory

LLNL Laurence Livermore National Laboratory

MCM Matrix Chain Multiplication

MPI Message Passing Interface

MPMD Multiple Program Multiple Data

MPP Massive Parallel Processor

MTTF Mean Time to Failure

NCSA National Contre for Supercomputing Application

NERSC National Energy Research Scientific Computing Center

NERSC National Energy Research Scientific Computing Center

PBFS Parallel Best First Search

PDFBB Parallel Depth First Branch and Bound

PDFS Parallel Depth First Search

PIDA* Parallel Iterative Deepening A*

PNNL Pacific Northwest National Laboratory

SLC System Level Checkpointing

SNL Sandia National Laboratory

SNL Sandia National Laboratory

SPMD Single Program Multiple Data

TSP Travelling Salesman Problem

xiv



Chapter 1

Introduction

1.1 Overview and Objectives

Failure becomes a reality rather than a rarity with the growing scale of high-performance

computing (HPC) systems. HPC systems refer to the system that consists of thou-

sands of processors and millions of cores, used to solve scientific, engineering and

research problems which are computationally complex and data-intensive. As with

time, the HPC generation moves from terascale to petascale and ready to enter into

the exascale era (expected by 2021); it incorporates more complexity by the increas-

ing number of cores or sockets per processor. The TOP500 list [41] provides the list

of today’s top 500 most powerful computing systems used for high-performance scien-

tific applications. Systems are ranked according to their performance of the Linpack

benchmark, which solves a dense system of linear equations. Initially, HPC systems

were marked by vector processors, but later massive parallel processors (MPP) be-

came the major contributors but from early 2000’s clusters built with off-the-shelf

components have gained attention as a computing platforms for end-users of HPC

computing systems (Figure 1.1: advancement in HPC systems performance since

1993, figure 1.2: architectural trend in HPC systems and table 1.1 presents the list
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Rank Name Total Cores Rmax [PFlop/s]
1 Sunway TaihuLight 10649600 93.0
2 Tianhe-2 3120000 33.8
3 Piz Daint 361760 19.6
4 Titan 560640 17.6
5 Sequoia 1572864 17.2

Table 1.1: Top 5 HPC systems by TOP500

of the first five powerful supercomputers, published on June, 2017 by TOP500 [41])

Figure 1.1: High performance Computing System Performance over time by Top500
[41]

Research has shown that the failure rate of HPC systems increases with the in-

creasing number of sockets which according to top500 is doubling every year in the

best supercomputers [21, 54]. These systems are highly complex in architecture and

are prone to failure because of their complex and dense architecture. While the growth

in system scale enhances the performance, meanwhile it also significantly hampers re-

liability of the system. As the systems move from petascale to exascale, the number

of system components will be increasing faster than component reliability. Therefore,
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Figure 1.2: Major Architectural Categories for HPC Systems by Top500 [41]

failure is inevitable and frequent. Notably, system reliability decreases proportionally

with the increasing scale. Research finds that current petascale system faces multiple

failures each day [22]. For example, a detailed study on Blue Waters, a petascale

supercomputer (with a total of 724,480 cores and 26 PBytes storage and with 13.1

petaflops speed) at the National Center for Supercomputing Applications (NCSA), at

the University of Illinois at Urbana-Champaign for a period of 261 days showed that

a failure occurs (across all categories) every 4.2 h, while the system suffered system-

wide outages approximately every 160 hours [71]. It is predicted that with the current

growth rate in system size, the mean time to failure (MTTF) of such HPC systems

might drop to a few hours [21, 69]. As a consequence, long-running HPC applications

executing for several days or even months can face frequent interruptions, which in

turn decrease the overall performance and increase their overall execution times. Pro-

jection from current large petascale systems predicts that an exascale system will face

multiple failures per day and the MTTF is between 35 to 39 minutes [10]. Another
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study assumed the MTTF for an exascale system become 20 minutes [46]. Adding

to these sources of failure, recent trends in HPC systems also represent off-the shelf

clusters which are an appealing and cost-effective solution to run computationally

intensive scientific applications but far less reliable. The concept of supercomputing

is redefined by these off-the shelf clusters because of their excellent price-performance

ratios, which accelerates failure probability with increasing growth rate of such com-

modity HPC systems. It is evident that long running scientific applications execute

for several days or even months may face frequent interruptions as MTTF can even

be much shorter than the total execution time of such an application, which in turn

decreases the overall performance and increase their overall execution times.

The HPC applications typically encounter fail-stop failures where the whole sys-

tem stops functioning even with a single process or processor failure [80]. Fault

tolerance (FT) becomes a necessity for long running applications to avoid computa-

tional wastage. Traditional CP/R is the commonly used fault tolerant method for

HPC applications to tolerate fail-stop failures. In this case, every process periodi-

cally saves its state on a stable storage at a globally coordinated or uncoordinated

manner. If a failure occurs, all the processes use the last checkpoints to resume their

execution from a globally consistent state, instead of restarting the computation from

scratch. Checkpointing provides fault tolerance to HPC applications transparently

without modifying the applications. Though conceptually checkpoint is very straight-

forward and applicable to wide range of applications, it is not scalable to large scale

as it introduces enormous overhead. A major source of overhead is the time taken to

store massive checkpoint data in the disk by a large number of processes periodically

[92, 98]. To resume the execution of such an application after failure, all the processes

have to roll back to the previous consistent state, even with the failure of one process.

4



Variants of conventional CP/R like incremental checkpointing, diskless checkpoint-

ing, etc. were introduced, but still, they suffer from the checkpoint overhead. An

alternative to CP/R is Algorithm based Fault Tolerance (ABFT) proposed by Huang

and Abraham [63], which is found to be an effective solution for failure recovery in

large scale systems. Unlike traditional CP/R, which checkpoints system state, ABFT

only saves application state and, as a result, it has reduced overhead. A more detailed

review of these different approaches is presented in the next chapter.

1.2 Motivation and Problem Statements

Checkpointing provides fault tolerance to HPC applications transparently without

modifying the applications. Though conceptually checkpoint is very simple, still it is

not scalable to exascale systems because of its several limitations. The main limitation

is the enormous checkpoint and restart-time which may exceed the MTTF. Another

significant limitation is the time wasted in rolling back all the running processes to a

previous (consistent) checkpoint state for the failure of a single process to resume the

execution of a failed application. For instance, with a single process failure, restarting

the failed application causes to kill 999999 running processes just for 1 process failure

in a 1M processes application, which ultimately hinders the system’s progress and

overall performance. Moreover, the checkpoint size of large applications where tens

of thousands of processes are involved is in the order of several tens of TeraBytes

[7]. It is observable that the average time for the checkpoint is in between 25 to 30

minutes depends on the system scale [21, 23]. Research shows that if the system has

to restart with the full memory snapshot of all the processes from stable storage, it

may cost 20 to 30 minutes to resume the execution and can cost 40 minutes to 1

hour to accomplish the entire checkpoint recovery methodology [21]. For the exascale

system, it is catastrophic: an exascale system which may contain more than 200,000
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socket [10] may face system failures several times per hour as the MTTF reduces

proportionally with the number of CPU sockets in the system. Additionally, as the

checkpoint and restart time of an exascale machine is close to MTTF, the system

either spends most of the time in checkpointing or stuck in a state where the system

is being constantly restarted with a new fault, with negligible progress in execution.

HPC systems with increasing scale face failure more frequently and traditional

CP/R techniques will be inefficient to handle such failures for exascale systems[21, 98,

97, 54, 22]. Fault tolerance method for HPC applications with low recovery overhead

is an active research problem. These concerns have persuaded the exploration of new

fault tolerance techniques rather than conventional CP/R. The lack of appropriate

fault tolerance solutions is expected to be a major problem at exascale. To make

efficient utilization of such systems, measures should be taken so that applications

can bear partial failures and continue execution rather than stop operation and restart

from the last consistent state. This concern motivates to design for alternative and

efficient fault tolerant techniques that do not employ checkpoint and rollback recovery

as their premise.

Algorithm Based Fault Tolerant (ABFT) is a promising fault tolerance method for

a class of HPC applications and can tolerate partial failures with very low overheads.

ABFT approaches promise unparalleled scalability and performance in failure-prone

environments. This is in sharp contrast with CP/R, which suffers from increasing

overhead with system size. ABFT is found to be more scalable [92], and there have

been several explorations for large scale systems[21, 69, 7, 51, 98, 97]. With an

increasing failure rate with the growing number of processors, ABFT is found to be an

appropriate fault-tolerance technique that outperforms conventional CP/R for current

petascale and future exascale systems for certain parallel applications[14, 12, 40, 98].

In spite of its promise, ABFT still has limited applicability because of its present
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scope: since it was proposed by Huang and Abraham to detect and correct permanent

and transient errors in certain matrix operations on systolic arrays, till date, the

ABFT schemes have been primarily focused on different matrix based computations

for the linear system to handle the bit-flip error in memory, soft-error or hard-error

(process crash). Consequently, it requires an extensive research on ABFT to broaden

its scope to other types of parallel applications, apart from the linear systems, which

are quite widely used and cover a vast majority of parallel applications.

In this thesis, we go beyond traditional ABFT and focus on other types of par-

allel applications not covered by traditional ABFT. More specifically, we focus on

communication and algorithmic characteristics of classes of parallel applications to

determine how to replicate fault recovery data and what data to replicate to minimize

cost. The approach facilitates designing efficient fault tolerance and recovery strate-

gies for a class of parallel applications, rather than for a single application at a time.

Our focus is on tolerating fail-stop failures where the failed process stops working and

all data associated with the failed process is lost. This type of failures is common in

today’s large computing systems such as high-end clusters with thousands of nodes.

The research contributions are discussed in the following and are elaborated in the

following chapters.

1.3 Contribution

Two of the most crucial parts of a fault tolerance and recovery protocol are: (i) how to

checkpoint and store the fault recovery data with minimum cost, and (ii) in the case

of a failure, how to recover the lost data of a failed process with minimum possible

overhead. With that notion, we utilize the algorithmic and communication character-

istics of parallel algorithms to design their fault tolerance and recovery strategies with

minimum possible overhead. Parallel applications can be broadly classified as follows
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based on their communication characteristics: (i) embarrassingly parallel applica-

tions, where processes have infrequent or rare interactions, and (ii) communication-

intensive parallel applications, where processes have significant interactions. How the

communication dependencies among processes are utilized to replicate fault recovery

data is directly related to the system’s fault tolerance performance. Furthermore,

analysis of these parallel algorithms reveals that the algorithm itself contains some

implicit information that can help to rebuild a computational state with the help

of others if any failure occurs during the computation. Conventional CP/R cannot

address these issues because it is unaware of the characteristics of the application;

whereas considering these features in designing fault tolerance and recovery schemes

can eliminate the bottlenecks in large scale HPC system.

The main contributions of the thesis are summarized as follows:

• Traditional approaches to ABFTmainly focus on matrix-based algorithms where

data lost in some matrix cell(s) due to failures can be recovered with the help

of data in the other cell(s). However, these types of applications cover only a

limited spectrum of a vast range of parallel applications. In this research, we

broaden the scope of ABFT to other types of parallel applications that may

not involve matrix based computations. More specifically, we investigate a gen-

eral and methodical approach to ABFT for parallel applications which can be

classified based on their algorithmic and communication characteristics. In-

stead of designing ABFT for one application at a time, we demonstrate that

a standard ABFT scheme can be developed for a class of parallel applications

with similar algorithmic and communication characteristics. In our approach,

the communication characteristic of an application determines how to replicate

the ”fault recovery” data (we call it critical data), and the algorithmic charac-

teristics of an application determine what the application-specific critical data
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is. We perform the theoretical and empirical evaluations for two important

classes of parallel applications, which are significantly different from the focus

of traditional ABFT. This is further elaborated in the following.

• We show that extraction of algorithmic features and identification of critical

data for the parallel algorithm are pivotal in the design of algorithm based

fault tolerance. We demonstrate the ideas by developing a fault tolerance and

recovery scheme for parallel search algorithms, which belong to the class of em-

barrassingly parallel algorithms where the subtasks have infrequent interaction

with each other. Parallel search algorithms are used to solve discrete optimiza-

tion problems (DOP). We choose parallel iterative deepening A* (PIDA*) as a

case study, which is an exhaustive search algorithm to find the best solution.

We augment the algorithm by inserting application level fault tolerance that

uses periodic replication of critical data; we call it the fault-tolerant PIDA*

(FTPIDA*). Subsequently, we prove the correctness of FTPIDA* and show

that FTPIDA* performs better than CP/R.

• Next, we demonstrate that communication dependency among the subtasks

plays a significant role in designing algorithm based fault tolerance. With that

notion, we propose a fault tolerance and recovery scheme for communication

intensive parallel applications which utilize the communication dependencies of

processes to replicate the checkpointed application-data of a process to its peer

process’s memory. The algorithmic characteristics determine which application

data to checkpoint on neighbor process’s memory. We illustrate our ideas using

parallel dynamic programming (DP) algorithm(s) as a case study. We present

a detailed analysis of the characteristics of parallel DP algorithms and show

that the algorithmic features reduce the cardinality of critical data into a single

data in case of a n data dependent task. We demonstrate the idea with two
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well-known DP class of problems: (i) traveling salesman problem (TSP), and

(ii) longest common subsequence (LCS) problem. We show that for all the cases

the proposed fault tolerance method is exceeding conventional CP/R regarding

recovery and memory overhead.

• Optimal size of critical data is a prime concern to minimize the overhead in fault

tolerance. With that notion, we show that further optimization in critical data

is possible when a task has limited and lower degree of dependency cardinality

with other subtasks in the case of a DP type of problem. We evaluate the

approach by applying it to a popular DP application: the solution to the 0/1

knapsack problem. Experimental results demonstrate that the proposed method

performs better than CP/R.

1.4 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 presents the related

work and background concepts of the techniques used to develop the fault tolerance

solutions. An efficient algorithmic fault tolerance strategy for embarrassingly parallel

applications is provided in Chapter 3. Chapter 4 presents the fault tolerance solution

for the communication intensive parallel applications. Optimization in the critical

data in case of communication intensive parallel applications is presented in chapter

5. Chapter 6 concludes the thesis with a discussion of the future research directions.
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Chapter 2

Literature Review and

Preliminaries

High-performance computing (HPC) systems are highly complex systems consisting

of thousands of processors and millions of cores to solve computationally complex

applications in science, engineering, and large-scale data analytics. They cover a

broad range of systems, from supercomputers to cluster to cloud to the grid. In this

chapter, firstly, we will discuss the notion of the message passing paradigm which is

considered the de-facto standard for designing parallel applications on HPC systems.

Failure probability of HPC systems increases with increasing scale; consequently,

long-running HPC applications encounter frequent failures which ultimately decrease

overall performance and increase total execution time. Fault tolerance becomes a

necessity for these applications to avoid computational wastage. In this context, we

will discuss checkpoint/restart and algorithm based fault tolerance which are com-

monly used fault tolerance techniques for current HPC systems and which we apply

to this research work. Finally, we will cite contemporary and relevant research works

related to our finding. This chapter summarizes the state of the art in fault tolerance

techniques for HPC systems and thus is the foundation for the subsequent chapters.
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2.1 Message Passing Parallel Program

The message passing programming paradigm is the most widely used platform for the

parallel computer with a distributed address space where each processor has a local

memory to which it has exclusive access. There exists no concept of global memory.

Figure 2.1 illustrates the logical view of the system that supports the message passing

paradigm. This paradigm presumes the system with distributed memory architecture

i.e. each process has its address space and process to process communication occurs

through message passing. Processes perform a task in collaboration with each other

by exchanging messages. The message passing approach is naturally well adapted for

the distributed memory cluster. However, it can be used on shared memory multi-

processors, networks of workstations or even uni-processor systems. Conceptually, in

Figure 2.1: Message Passing System

message passing paradigm, each of the processes could execute a different program

(MPMD, multiple program multiple data), but for the convenience of the program de-

sign, it is usually written with the notion of a single program, multiple data (SPMD)

approach. In SPMD approach, most processes deal with the same code. This code
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can be designed in a completely asynchronous or loosely synchronous manner. In-

terestingly, the programmer is solely responsible for incorporating parallelism inside

the code by explicitly distributing the data and computational load among the pro-

cesses. The programmer accomplishes this by analyzing the serial algorithm and

consecutively by finding the concurrency point inside it.

Send (send()) and receive (receive()) are the primitives for interaction among the

processes in message passing. Send/Receive operations can be blocking and non-

blocking. In the blocking scenario, send() cannot complete until it gets an acknowl-

edgment of the corresponding receive() from the receiver end. On the other hand,

in non-blocking send() returns the control to the sender process, and the sender

can perform any other computation without waiting for any acknowledgement from

the receiver. Later the sender can check the status of the non-blocking operation.

Moreover, the user must take precautions not to modify the message/data until the

exchange is fully completed. Both the protocols have buffered and non-buffered ver-

sions. In the case of the buffered version, a designated buffer is used between sender

and receiver for data exchange. In the non-buffered approach, the communication

happens through a 3-way handshake between the peer processors. Figure 2.2 displays

the working principle of both blocking and non-blocking send/receive operations with

a non-buffered approach.

The communication mode among the processes belongs to two broad categories: (i)

point-to-point communication, (ii) collective communication. Examples of point-to-

point are blocking and non-blocking send and receive operations. Collective commu-

nication includes broadcast, gather, and all-to-all operations. This communication

is accomplished through a standard message passing communication library. Com-

munication libraries often provide a broad set of communication functions to sup-

port different point-to-point transfers and global communication operations. The
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(a) Blocking Version (b) Non-blocking Version

Figure 2.2: Send/ Receive Operation of message passing Paradigm

most popular portable communication library for message passing paradigm is MPI

(Message-Passing Interface) [57]. We are using MPI to implement all the proposed

message passing applications of this thesis work.

Checkpoint/Restart (CP/R) is the most common fault tolerance technology for

message-passing high-performance parallel and distributed computing systems. A

message passing system is as a system that is composed of a set of application pro-

cesses which communicate through messages. Each process has a set of totally ordered

local events including message sending and receiving. Moreover, the messages among

different processes also maintain a partial ordering, and they are represented by Lam-

port’s happened-before relation (usually denoted as →) [68]. The processes achieve

fault tolerance by saving recovery information periodically during failure-free execu-

tion in stable storage. The recovery information is the state of the process, which is

called the checkpoint of the process. Processes are prone to failures, in which case

they lose all of their state information. Recovery can happen when the process’s
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computational state can be restored to a fault-free state by rolling back all processes

to the most recent checkpoint state.

A system state of a message passing system is the global state of the system

which is a collection of local states of all the participating processes and states of

the message channels within the system. The local checkpoint is the local state of a

process which is necessary for that process to resume its operation after the failure.

Similarly, the global checkpoint is considered as the global state of the system. A

system’s state is said to be consistent if there exists no such message in the set of

checkpoints, which reflects a receiving but no corresponding sending of that message

[68]. This message is known as an ”orphan message.” Figure 2.3 demonstrates a sam-

ple execution of a message-passing distributed system consisting of 4 processes with

(i) the consistent global state and (ii) the inconsistent global state. Figure 2.3(a)

represents the consistent global state as message m23 has been sent by process P2

but not yet received. On the other hand, figure 2.3(b) displays the inconsistent state,

as the local state of process P4 shows a message reception m34 from process P3 but

the local state of P3 reflects m34 is not sent yet. Here, m34 is an orphan message.

In the global state of a system, a situation may arise when it shows messages that

have been sent but not yet received, known as the in-transit message. In such cases,

these messages should be recorded for the purpose of rebuilding the message chan-

nel after failure. In figure 2.3(a), m23 is an example of an in-transit message. A

correct recovery protocol is required to eventually recover the system to a consistent

global state with all the recorded information. Checkpoint-based recovery system has

three broad categories: (i) uncoordinated checkpointing, (ii) coordinated checkpoint-

ing and (iii) communication-induced checkpointing. Here, we describe the basic idea

of checkpointing with the help of a suitable example of coordinated checkpointing

using the concept of distributed snapshot [68]. In figure 2.4, initially the initiator (in
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(a) (b)

Figure 2.3: Consistent and Inconsistent Global State of Message Passing Distributed
System

this case, process P3) takes a checkpoint and broadcasts a marker message (check-

point request message) to all other active processes P1, P2 and P4 . Each process

then takes its checkpoint after receiving the first marker message and rebroadcasts

the marker message to all other processes before sending any application messages.

Usually we denote a checkpoint as ci,n, where it represents the checkpoint of process

Pi with sequence number n. Moreover, this index can serve to trigger a process to

take a checkpoint if the receiver’s local checkpoint index is lower than the piggybacked

checkpoint index from the marker message. Failure recovery ensures that upon fail-

ure, the system will be recovered in a former consistent global state, not necessarily

the one that has occurred just before the failure. Figure 2.5 illustrates the failure

recovery for a system with 4 processes, where P1 has failed, and it rollbacks itself

to its most recent checkpoint c1,2 and all other processes rollback themselves to the

checkpoint that gives the most recent recoverable global consistent state. Here, the

recovered global consistent state becomes {c1,2, c2,2, c3,1, c4,1}.
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Figure 2.4: An Example of Checkpointing

Figure 2.5: An Example of Failure and Recovery

2.2 Algorithm Based Fault Tolerance

Algorithm-based fault tolerance (ABFT) was first proposed by Huang and Abraham

for detecting and correcting permanent or transient hardware failures on systolic ar-

ray [63]. Here, fault tolerance is attained by integrating the fault tolerance scheme
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with the existing algorithm. The detection and correction of errors which occur dur-

ing computation with multiple processors is accomplished after the completion of the

computation with little overhead. The general idea of ABFT is to introduce infor-

mation redundancy in the data and maintain this redundancy during the calculation.

The operation applied to the input matrix can then be extended to apply over the

input matrix and its extended columns at the same time, maintaining the check-

sum relation between data in a row and the corresponding checksum column(s). If

a failure hits processes during the computation, the data hosted by these processes

is lost. However, in theory, the checksum relation being preserved, if enough infor-

mation survived the failure between the initial data held by the surviving processes

and the checksum columns, a simple inversion of the checksum function is sufficient

to reconstruct the missing data and pursue the operation.

The basic steps of ABFT to compute the matrix multiplication of two matrix,

C = X ∗Y are: (1) encode the original matrix before the computation which is known

as checksum matrix (2) design the algorithms in such a way that it can work with

encoded matrix and (3) distribute the computation steps of the redesigned algorithm

among multiple processors in such a way that failure of any processor will affect

as little data as possible. ABFT algorithm takes the checksum matrix as an input

operand and produces an encoded output matrix. The encoded output matrix helps to

detect, locate and correct the error after the completion of the computation if it occurs

during computation, illustrated in figure 2.6. Encoding of the matrix is composed of

two checksum vectors: one for the rows of the matrix and one for the columns. A

checksum matrix is constructed from the original matrix with an additional row or

column that contains a checksum vector [63].

• Column checksum matrix Xc is a (n + 1)-by-m matrix containing n rows of

matrix X in its first n rows and a column summation vector in (n + 1)st row.
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Figure 2.6: Basic Working Principle of ABFT

Each element of the column summation vector is represented as:

xn+1,j =
n

∑

i=1

xi,j for 1 ≤ j ≤ m (2.1)

which gives the encoded matrix

Xc =

























x11 x12 . . . x1m

x21 x22 . . . x2m
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. . .
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xn1 xn2 . . . xnm
∑n

i=1 xi1
∑n

i=1 xi2 . . .
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i=1 xim

























• Row checksum matrix Yr is a n-by-(m + 1) matrix containing m columns of

matrix Y in its first m rows and a row summation vector in (m + 1)st row.

Each element of the row summation vector is represented as:

yi,m+1 =
m
∑

j=1

yi,j for 1 ≤ i ≤ n (2.2)
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Yr =
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• Full checksum matrix Mfc is a (n + 1)-by-(m + 1) matrix which is the row

checksum matrix of the column checksum matrix Xc or the column checksum

matrix of the row checksum matrix Yr .

Mfc =
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Figure 2.7 presents the organization of checksum matrices for the matrix product

operation of two matrices X and Y . An error is detected by computing the sum

Figure 2.7: Checksum Matrix Multiplication [63]

(src) of information in each row or column and comparing it with the corresponding

checksum (mrc) in the summation vector. An inequality in the comparison is the

identifier of an inconsistent row or column. The location of the error is determined
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from the intersection of the inconsistent row and column of Mfc, shown in figure 2.8.

The identified error is fixed by adding the difference between src and mrc with the

erroneous element of the information.

Figure 2.8: Error in Full Checksum Matrix [63]

2.3 Types of Failure in HPC Systems

There exist many types of errors, faults, and failures for HPC systems, which vary in

nature and action. Some of the faults cause a fatal interruption in execution; others

are corrupting the data in a silent way which is unrecognized by the system. Based

on the impact of the failures, faults or errors in HPC system is mainly categorized as

the hard fault and soft fault. The hard error causes the program to abort. On the

other hand, soft errors corrupt the state of a computing system but not its overall

functionality. Soft errors pose a serious issue when they lead to Silent Data Corrup-

tion (SDC) in user applications. If undetected by the application, a single SDC can

corrupt data causing applications to output incorrect results, malfunction or hang.

Both types of faults errors introduce different failure modes in HPC systems. Mainly

there are two failure modes exist in literature: (i) fail-stop, and (ii) fail-continue. In
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the fail-stop mode, the failed process completely stops working, and all data associ-

ated with the failed process are lost. On the contrary, in fail-continue failures, the

program execution continues, but the computation results from the computing cannot

be trusted anymore.

2.4 Discrete Optimization Problem

Discrete optimization problem (DOP) is an optimization problem over discrete values

[65]. It has enormous research and practical impact as several application domains

belong to DOP. Scheduling problems, network design problems, inventory manage-

ment, transportation problems, optimal layout of VLSI chips, robot motion planning,

game playing, and computer vision are common application areas which fall into DOP

[49, 3]. A discrete optimization problem consists of a set of candidate solutions S and

the cost function f . The objective of DOP is to find the feasible or optimal solution

among a set of candidate solutions considering all the constraints of the problem.

Formally a DOP can be denoted as (S, f,Σ), where S = {S1, S2, ...., Sn} is the set of

all candidate solutions and f(Si) is the cost function for each candidate solution and

Σ is the set of constraints that must be satisfied by the candidate solutions of the

problem. The goal is to find an optimal solution such that

f(Sopt) ≤ f(Si) s.t Σ (2.3)

for all Si ǫ S.

Integer linear programming (ILP), branch-and-bound, heuristics, dynamic pro-

gramming (DP), and approximation algorithms are the methods used to solve DOP.

As DOP problems belong to NP-hard problems, parallel processing is a way to ob-

tain reasonable performances for those problems where there is a need for real-time
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solutions or optimal solutions are required. For a more detailed explanation, see [3].

2.5 Parallel Search Algorithms

Many of the discrete optimization problems have a natural characterization in terms

of a graph. The set of all solutions S = {S1, S2, ...., Sn} represents vertices of the

graph, and each edge contains the cost to reach a designated vertex. As it can be

portrayed as a graph search or tree search problem, solution of this problem is to find

a path from a node to a goal node or to find a minimum cost path from a node to

one of the multiple goal nodes. Different branch and bound search algorithms are

common means to solve DOP [3, 56].

Technically, DOP belongs to the class of NP-hard problems [3, 53].It is not possible

to get a polynomial time solution for such problems except using an exponential

number of processors, but for several problems there exists some heuristic search

algorithms that solve subproblems in polynomial time. Parallel search techniques

can be employed to solve discrete optimization problems illustrated as graph search

problems in polynomial time using parallel machines. Followings are different parallel

search algorithms.

• Parallel Depth First Search (PDFS)

Parallel depth first search is accomplished by dividing the search space among

a multiple number of processors. Each processor executes the sequential depth-

first search (DFS) on its disjoint part of the search space in parallel. When a

processor has completed its search, it requests for unexplored search space from

other processors. All the processors quit when one of them found the goal node

or all the processors finish searching the search space without finding any target

node [75, 67, 78].
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• Parallel Iterative Deepening A* (PIDA*)

Iterative deepening A* (IDA*) executes incrementally deepening cost bound

depth first search with respect to heuristic function. IDA* carries out cost bound

DFS on every iteration until the cost to expand a node n, [f(n) = g(n)+h(n)]>

t(n) where t(n) is a threshold value. In the beginning, the heuristic value of

the root is the initial cost bound, and it increments to the minimum value that

excels the previous one till the solution of the problem is found [34].

In parallel IDA*, all the processors use the same cost bound, and each processor

executes parallel DFS on its search space using the same cost bound in each

iteration. After completion of each iteration, one designated processor defines

cost bound for the next iteration. All the processors resume parallel DFS with

this new cost bound, and this process continues until the goal node is found

[3, 75, 76, 31].

• Parallel Depth First Branch and Bound (PDFBB)

Parallel DFBB works in the same manner of PDFS but with some extra in-

formation. Here, all processors have to keep information about current best

solution along with the information needed for PDFS. The current best solu-

tion information can be held either in shared memory or in distributed memory

which helps to prune the search space by identifying the worst solution path as

compared to the current best [3, 75, 67].

• Parallel Best First Search (PBFS)

In best first search algorithm, heuristic value gives direction to which part of

the search space likely contains the solution of the problem. The well-known

BFS technique is A* algorithm. A* defines a heuristic function for any node n

which express the optimal cost path through node n.
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The heuristic function f(n) = g(n) + h(n) where g(n) represents the cost from

an initial node to node n and h(n) represents the heuristic estimation to reach

from node n to goal node [3, 56, 66].

It keeps two lists named ”open” and ”closed.” ”Open list” contains the unex-

panded node, sorted according to the lower heuristic value and ”closed list”

contains the nodes those are expanded and the successors of the expanded node

are kept in the open list. The node with lower heuristic value is picked from the

open list, expanded, successors are stored in the open list with respect to heuris-

tic value and the expanded node is kept in closed list. This process continues

until goal node is found.

In parallel BFS, the simplest method is to allow different processors to expand

different current best nodes on the open list, stored in a global space [3, 66].

This idea is known as the centralized strategy where global open list introduces

contention. The alternative is the distributed approach where each processor

has its local open list. At first, the search space (by expanding some initial

nodes) is statically divided and distributed to different nodes. Now each node

works on its local list with the similar fashion that described above [3, 56, 66].

2.6 Related Work

2.6.1 Recent Trends and Failures Scenario in High-performance

Computing

Today’s high-performance computing (HPC) systems consist of thousands of proces-

sors and millions of cores. These systems are highly complex in architecture and

are highly parallel with millions of processing units, tera or petabytes of memory
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and networking elements. The TOP500 provides statistics on the 500 most powerful

commercially available computer systems known to us today[41]. As with time, the

HPC system moves from terascale to petascale to exascale (expected by 2021); it

incorporates more complexity by the increasing number of cores or sockets per pro-

cessor. Recent trends in HPC systems also represent off-the-shelf clusters which are

an appealing and cost-effective solution to run computationally intensive scientific

applications. Clusters of general purpose, inexpensive machines interconnected by

high-speed communication networks are currently widely used for parallel computa-

tion and as backend processing servers for a growing number of commercial appli-

cations. The concept of supercomputing is redefined by these off-the-shelf clusters

because of their excellent price-performance ratios.

More incorporation increases failure rate, and a corresponding decrease in mean

time to failure (MTTF). MTTF is decreasing further than disk checkpoint time and

also than recovery time with this increasing scale[85]. More incorporation increases

failure rate, which can be between 20 to 1100 per year, introducing more fault tol-

erance overhead to the system [83, 81]. Research has shown that the failure rate of

HPC increases with the increasing number of sockets which according to top500 [54]

is doubling every year in the best supercomputers [21]. The introduction of multicore

machines also accelerates the failure frequency [21]. Bluewaters came to market in

2011 with 300,000 CPU cores with eight cores per CPU, so almost 40,000 sockets in

total. Sequoia, which came out in 2012, has 1,000,000 CPU where each CPU has 8

cores, giving a total of 125,000 sockets [21]. There is speculation that if the num-

ber of sockets increases in this fashion, then the MTTF of the machine can become

minutes for top parallel machines [21]. Resilience is the biggest challenge with these

large-scale computers as the systems grow more complex day by day and the failure

becomes a frequent event instead of an exceptional event [95, 83, 81, 55, 21, 82, 54].
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Researchers have analyzed the data collected from LANL(from 1996 to 2005) com-

posed of 22 different systems and have presented statistics for the causes of failures,

the failure rate of the system and individual node, the time between failures and also

the time that was taken to repair them [81]. These statistics show that the failure

rate varies from system to system: from 17 to 1159 failures per year per system.

The data shows that the average failure rate of an individual node has a maximum

value of 3 per year and irrespective of any failure type, the average repair time of a

system is nearly 6 hours. The prediction is that if a system has expanded at a rate

of doubling the number of cores/chips in every 30 months, then the overall system

utilization drops drastically almost to zero by 2013 as the system is spending more

time for a checkpoint or recovering from failures [83, 81]. Research data has shown

that less than 4% of the total nodes were responsible for 70% of the overall failures

of the system [79, 59].

2.6.2 Causes of Failures

The computer failure data repository (CFDR) aims at accelerating research on system

reliability by filling the nearly empty collection of public data with detailed failure

data from a variety of large production systems.

The computer failure data repository (CFDR) provided by Usenix shows the fail-

ure scenario of some well-known existing HPC systems from 1996 to 2009 [5]. Los

Alamos National Laboratory (LANL), National Energy Research Scientific Comput-

ing Center (NERSC), Pacific Northwest National Laboratory, Sandia National Lab-

oratory (SNL) and Laurence Livermore National Laboratory (LLNL) in the USA are

the contributors of this data. All of the systems as mentioned earlier are massively

parallel.

Analysis of the statistical data released by Usenix [5] has identified that the causes
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of failure in supercomputers are mainly hardware failures, software failures, network

failure, human, environmental and some unknown reasons [83, 81, 55, 41]. Research

on data from LLNL and SNL is comprised of 5 supercomputers’ data: Blue Gene/L

(with 131072 processors), Red Storm (with 10880 processors), Thunderbird (with

9024 processors), Spirit (with 1028 processors), and Liberty (with 512 processors).

This research has concluded that most of the failure is due to software (64%), hard-

ware(19%) [72]. The wider job is the job which needs more nodes may notably

influence the failure rate [100].Among all the causes identified, hardware failure is

the most significant one with more than 50% of the overall failures, and the next one

is software failure with 20% of the overall failures [81, 21, 55]. As the analysis took

place on a different set of systems, different result were obtainedd, regarding the main

reason for failures [22].

2.6.3 Fault Tolerance in Cluster

Fault tolerance is an important design objective in the HPC community. The primary

purpose of fault-tolerance is to produce correct results in the presence of errors. The

right measure of fault tolerance will help highly extensive computation, and long-

running applications to continue their execution. A full review on fault tolerance in

HPC systems is out of the scope of this thesis. In this thesis, we will mainly discuss

the research contribution in fault tolerance for parallel and distributed systems in

two major classes: (i) checkpoint and restart (CP/R) and (ii) algorithm-based fault

tolerance (ABFT).

Despite its over-all benefits, as CP/R introduces huge recovery overhead, research

has shown interest in an alternative to CP/R for high-performance computing(HPC).

One of the promising alternatives is the algorithm-based fault tolerance (ABFT)

technique which is still being explored. ABFT was first introduced by Huang and
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Abraham [63], and the aim was to detect and correct the failures (which appear

during execution) after the completion of the computation. Some research has been

going on this arena.

2.6.3.1 Checkpoint and Restart

The most commonly used fault tolerant technique for the high-performance parallel

computer is checkpoint/restart (CP/R), which periodically stores the system state or

process’s state in a stable storage in a failure-free execution, and the application can

then recover itself after failure by using this saved information. A detailed survey on

checkpoint rollback-recovery protocol for distributed systems can be found in [45, 44],

which also highlights the three subcategories of checkpointing: (i) coordinated, (ii)

uncoordinated and (ii) communication-induced checkpointing. Checkpointing has two

fundamental approaches: (i) system-level checkpointing (SLC) and (ii) application-

level checkpointing (ALC). System level checkpointing is done in the operating system

level; like BLCR [61, 62], it provides an entirely transparent checkpoint of the whole

process. System-level checkpointing requires saving the entire memory, and thus

the cost of checkpointing is directly proportional to the memory footprint of the

process. The most significant advantage of this scheme is its transparency. Still,

it has some limitations: it is system-dependent, not portable and there is a huge

checkpoint and recovery overhead. For instance, complete system-level checkpointing

of a parallel system with thousands of cores can be impractical and expensive as the

total checkpoint size of the thousands of nodes is in the order of terabytes [91].

In application-level checkpointing(ALC), an application developer has full free-

dom as to where to take a checkpoint. The application programmer inserts the

checkpoint directive and calls in a position in the program where he wants to take

the checkpoint and also selects what data needs to be saved to recover the process
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state. ALC helps to reduce the checkpoint size overhead but it puts the full respon-

sibility on the programmer, and moreover, it complicates the application program

coding [60, 89]. A non-blocking, coordinated application level checkpointing for an

MPI program is described in [18], where application states of the MPI processes are

saved by inserting a checkpoint directive inside the MPI program, and this shows

that the overhead is minimal. As checkpoint and recovery cost is a major concern in

system-level checkpointing for large scale systems, different solutions to reduce the

size of the checkpoints at the application level can be found in [86, 32, 33]. In spite

of its advantages, the fact that ALC suffers from the lack of user transparency, is a

large drawback.

Diskless-checkpointing is a desirable alternative to the traditional checkpointing

[73]. In this model, checkpointing happens in two steps: firstly, the application pro-

cessor saves its state (address space, registers, etc.) on its memory rather than on the

stable disk and, secondly, the checkpoint processor encodes the in-memory checkpoint

and stores this encoding checkpoint in the memory, which is later used to recover the

failed processors. When a failure occurs, the nonfailed application processor roll-

back with its stored in-memory checkpoint and the checkpoint processors with the

encoding checkpoint help to recover the failed application processors. Though this

addresses the overhead performance of disk-based checkpointing, it still suffers from

memory overhead which makes it an inefficient technique with the increasing scale of

modern large-scale parallel and distributed systems. The group-based checkpointing

idea introduced in [52, 93, 90] has widespread synchronous and asynchronous parallel

applications. Fault tolerance support for MPI programs by incorporating fault tol-

erance semantics with the existing standard MPI library has been found in several

research papers [47, 35, 87, 16].
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2.6.3.2 Algorithm based Fault Tolerance

Algorithm-based fault tolerance (ABFT) was first proposed by Huang and Abraham

for detecting and correcting permanent or transient hardware failures on systolic

array [63]. The detection and correction of errors which occur during computation

with multiple processors is accomplished with a low overhead after the completion of

the computation. The ABFT algorithm takes checksum vector or matrix as an input

operand and produces an encoded output matrix. The encoded output matrix helps

to detect, locate and correct errors that can occur during a computation after the

completion of the calculation. Researchers broadened ABFT research considering the

above checksum concept with the same fail continue model [4, 6, 11, 70]. An algorithm

based error detection mechanism to detect a faulty processor in the hypercube is

proposed in [6]. Lanczos methods are used to optimize the total amount of work

in error detection and correction levels in ABFT [11]. To identify and to locate

transient errors in systolic array computation, a unified checksum method for LU

decomposition, Gaussian elimination and the QR decomposition is proposed in [70],

and also some error analysis helps to find out the effects of round-off errors on the

checksum.

Research on ABFT extended for the fail-stop environment where the system will

stop the execution of the failed component while the other remaining units continue

their work [27, 28, 30, 38, 98, 42, 43, 92, 69, 39, 26, 14, 1, 2]. An encoded global

checksum relationship is defined with the help of application data and is maintained

throughout the operation in case of parallel linear algebra [28].

The ABFT method proposed by Huang and Abraham [63] cannot correct the effect

of failures during execution; rather, it can detect, locate and recover from an error af-

ter the completion of the operation. ABFT needs to be familiarized with the recovery
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of the error during execution and maintain the global checksum relationship through-

out the computation, known as the ”online” approach [29, 26]. Researchers enhanced

the ABFT method of Huang and Abraham [63] by introducing the failure free envi-

ronment just after the failure during the execution, instead of detecting, locating and

recovering after the completion of the computation for linear algebra. Researchers

also claimed that the computational cost is very low with an increasing number of

processors with a constant problem size [14] for a single failure. To be competitive

for high-performance computation in large systems, ABFT needs to preserve the ”

online” feature. Research shows that the Cannon algorithm and Fox algorithm for

matrix multiplication do not conserve the checksum relationship during the computa-

tion. Only the outer product strategy of matrix multiplication preserves the ”online”

features for a single failure in the fail-stop model [26]. In his research paper, Chen has

shown that certain iterative methods (especially parallel sparse matrix-vector multi-

plication) with parallel data partition satisfying certain conditions contain essential

redundant information. With the help of this redundant information, the recovery of

lost data can be possible, and as well the recovery cost is much less than the existing

checkpoint with a single process failure [27].

ABFT for High-Performance Linpack Benchmark has advised that it can recover

from the fail-stop without checkpoint, with the help of right look LU factorization

algorithm and proves that it maintains checksum relationship throughout the com-

putation [39, 38].

Considering the complexity and scaling of future exascale systems, an ABFT for

HPC applications is proposed. Here, the application can continue its execution with

redundant data in the presence of multiple failures through an accelerated recovery

method which helps to reconstruct redundancy in the presence of multiple failures

[30].
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Data dependency and communication dependency are a general phenomenon in

message passing parallel applications. Considering these features, an ABFT is de-

veloped for future exascale computing. Data of a failed processor can be recovered

by keeping the redundant copy of dependent data and messages in other processors.

This has been demonstrated with Newton’s method, a well-known technique to solve

a nonlinear system [69].

A hybrid of ABFT checksum and checkpoint: checksum for right factor and check-

point algorithm for the left factor of dense matrix factorization like LU, Cholesky and

QR has been proposed to survive single fail-stop failure. The research also claims

false tolerance overhead decreases with an increasing amount of computing entity

and problem size [42, 43].

An enhanced ABFT to existing ABFT scheme has been proposed for future ex-

ascale systems considering multiple failures in succession. It is proved theoretically

that the proposed scheme incorporates little overhead as compared to the existing

ABFT for exascale [98].

A new approach to distributing the redundant parity data (fault recovery data) of

the original matrix to different processors to tolerate multiple simultaneous correlated

failures in future exascale machines has been presented in [1, 2]. Moreover, methods to

keep fault recovery data (parity data) and computation data together in one processor

instead of keeping them separate have also been demonstrated here. Recently, [85]

an ABFT technique for two-sided matrix factorization in the presence of soft errors,

has been developed.

A resilient framework for local dependency dynamic programming in unreliable

memory like DRAM is proposed in [19], where the research mainly concentrated with

memory fault. The researcher further address the issue that unreliability of DRAM
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memory causes bit-error which introduces corrupted data in the memory which ul-

timately changes the logical state of the memory bit. A combination of majority

techniques and Karp-Rabin fingerprints were used to identify the bit errors and later

on semi-resilient data from unreliable memory were used to prove the correctness of

the DP table. Researchers further extended the idea by proposing a general frame-

work with other types of dynamic programming, and their results theoretically showed

that with a limited number of memory faults at any level of memory hierarchy, there

was low overhead in runtime and a small number of cache misses [20].

ABFT and checkpointing have been combined to provide a generic hybrid ABFT

for one-sided dense matrix factorization to survive multiple fail-stop failures, where,

the upper right triangle of the matrix is protected with ABFT, and the lower left

triangle is preserved with Q-parallel checkpoint [17]. A recent publication discussed

ABFT schemes for two-sided matrix factorizations (Hessenberg, tridiagonalization,

bidiagonalization) in the presence of soft-errors is presented [96]. An assessment of

a unified approach of ABFT and checkpointing has been shown in [15, 13]. In re-

cent works, a unified approach of ABFT and checkpointing has been employed for

conventional iterative HPC applications to recover from failures where the computa-

tion of the application alternates between ABFT protected, and checkpoint protected

phases. ABFT is used to protect the library calls and traditional periodic checkpoint-

ing is used when the application enters the library calls and also, if needed, between

these calls [15, 13]. The research believes that fault tolerance at exascale needs the

combination of checkpointing and algorithm-based recovery techniques, as is most

appropriate for different phases within a single application.
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2.6.3.3 Other Fault Tolerance and Recovery Methods

• Replication

Replication is well-exercised fault tolerance technique. This technique replicates

the data on different other systems. In the replication techniques, a request can

be sent to one replica system in the midst of the other replica system. In this

way, if a particular or more than one node fails to function, it will not cause

the whole system to stop functioning. Though replication adds redundancy in

a system, it can alleviate the scalability issue of CP/R in large-scale systems. A

Replication approach to provide resilience in exascale systems is proposed with

two replication techniques : (i) group replication: entire application instances

are replicated and (ii) process replication: a single instance of each application

process is replicated [24]. State machine replication has been proposed as an

alternative to CP/R for upcoming exascale systems [50].

• Task Resubmission

It is one of the widely used fault tolerance technique in the current large-scale

system, especially in cloud computing for MapReduce algorithms. Here, during

run-time, a manager splits the work into tasks, and the tasks are executed by

worker nodes. Whenever a failed task is detected, it is resubmitted either to the

same or a different resource at runtime. Hadoop an Apache open source frame-

work based on Java, which is commonly used for MapReduce [94]. Hadoop has

two main components: (i) MapReduce and (ii) HDFS (Hadoop Distributed File

System). Both of these components provide fault tolerance. HDFS provides

fault tolerance through replication of data and MapReduce provides fault tol-

erance by resubmitting the task to other nodes in case of task failures and by

rescheduling the tasks to other nodes in case of the node failures [84]. However,

this method can be vulnerable to the failure of the manager node responsible
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for scheduling. Moreover, failure of a single machine incorporates 50% increase

in total execution time in case of a Hadoop job. A a new model, named ”Spark”

has been introduced to address the scalability issue of Hadoop in case of iterative

machine learning algorithms [99].
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Chapter 3

ABFT for Embarrassingly Parallel

Algorithms

In this chapter, we present an efficient algorithm based fault tolerance strategy for a

group of applications that exhibit similar structural and behavioral features. Parallel

search algorithms are viewed as a collection of independent tasks which can execute

concurrently and which barely communicate with each other during the lifetime of

the algorithm. Depth-first search (DFS), depth-first branch and bound (DFBB),

iterative deepening A* (IDA*), and best first search (BFS) are some of the standard

search algorithms. Parallelization strategies of these search algorithms have been

well researched [56]. These algorithms are widely used to solve discrete optimization

problems (DOP) in parallel systems. Fundamentally, DOP problems belong to the

class of NP-hard problem, which are computation-intensive applications. Parallel

search algorithms are major solution strategy to give a real-time solution of many

DOP problems with acceptable performance. In that regard, here, we develop a

fault tolerance scheme for parallel search algorithms. We demonstrate our idea with

parallel iterative deepening A* (PIDA*) which is a variant of parallel DFS to find

the best solution. This similar strategy is also applicable to other parallel depth-first
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search techniques. We show that our fault tolerance method has notable performance

compare to the existing CP/R solutions.

3.1 Motivation

In section 2.6.3, we present two major methods of fault tolerance in HPC systems.

The most common technique is checkpointing. Although conceptually checkpoint is

very simple, it is not scalable to large systems as it introduces enormous overheads.

Checkpoint and recovery cost imposed by checkpoint/restart (CP/R) is a crucial per-

formance issue for HPC applications. In comparison, Algorithm-based fault tolerance

(ABFT) is a promising alternative with low overheads, but it suffers from the inad-

equacy of universal applicability. Till today, ABFT implementation is confined to

a particular class of parallel applications which mainly involve matrix-based compu-

tations. We widen the span of ABFT to other types of parallel applications rather

than those that engage matrix based computation. Regarding applicability, here we

demonstrate ABFT with parallel search algorithms, which belong to the class of em-

barrassingly parallel algorithms. The proposed solution is a general fault tolerance

strategy for a group of parallel algorithms that exhibit similar algorithmic character-

istics.

3.2 Algorithmic Characteristics of PIDA*

PIDA* is depth-first search (DFS) algorithm used to solve discrete optimization prob-

lems (DOP) where the search space unfolds as a tree at runtime[77]. The unexplored

nodes in the tree-based algorithm can be represented as a stack (we call it a DFS

stack to distinguish it from a process’ system-level stack), and the parallel algorithm
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involves distributing the local DFS stacks among processes at run-time and then dy-

namically balance loads among processes based on a work-request protocol, i.e., a

process that runs out of work requests work from other processes. Figure 3.1 illus-

trates the snapshot of the search tree and the local DFS stack of a process while

solving an 8-puzzle problem.

Figure 3.1: A sample search tree and local DFS stack of a process Pi at time ti for
the 8-puzzle problem

Algorithm 3.1 presents the parallel iterative deepening A* algorithm. It is evident

from algorithm 3.1 that (i) B DFS and (ii) GETWORK are the basic functions in

PIDA*. Following is a description of these two functions:

• B DFS does a cost bound depth first search (DFS) starting at the top node of

the DFS stack. V ISIT expands an unexplored child ”nextson” at the top of

a process’s local DFS stack and signals termination to other processes if a goal

node is found; otherwise, ADDCHILDREN adds the children of nextson to
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Algorithm 3.1 PIDA* based on [77]

1: function PIDA*() ⊲ Parallel IDA* on Processor Pi

2: while (not solutionfound) do

3: if (stack[i]=empty) then ⊲ There is no work
4: GETWORK();
5: continue;
6: end if

7: if ( stack[i] 6= empty) then

8: B DFS(stack[i]);
9: end if

10: if (TERMINATION TEST()=TRUE) then
11: cb = MIN{nextcb[k], 1 ≤ k ≤ N}; ⊲ Cost bound, cb, for next iteration;
12: Initialize stack depth, cb and nextcb for the next iteration;
13: end if

14: end while

15: end function

16: function B DFS(Stack[i]) ⊲ Bounded DFS
17: while ((not solutionfound) and (depth > 0)) do

18: if (stack[i]=empty) then
19: depth[i] = depth[i]− 1; ⊲ Backtrack
20: Continue;
21: end if

22: VISIT(Stack[i]); ⊲ Visit best child ”nextson” from top of stack
23: if (not solutionfound) then
24: ADDCHILDREN(nextson);
25: depth[i] = depth[i] + 1; ⊲ Advance to the next depth
26: end if

27: nextcb[i] = MIN(nextcb[i], nextson.cost);
28: end while

29: end function
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the top of the DFS stack and the computation repeats.

• GETWORK is for balancing loads among processes. It contains two functions:

WORK REQUEST andWORK SEND. UsingWORK REQUEST , when-

ever a process runs out of work, it requests work from another process; the other

process can be selected at random or in a round-robin fashion based on the ap-

plication’s criterion. With WORK SEND, a requested process sends part of

its work (local DFS stack) to a requesting process.

One important characteristic of PIDA* and other depth first search algorithms is

that each V ISIT is independent of visits to other nodes in the search tree and can be

performed in parallel without any inter-dependency. This characteristic defines the

critical data, i.e., the minimal application data to be saved to withstand n-process

failure for some n. It also defines the fault-tolerance strategy for this class of applica-

tions based on the following observations: (i) fault of one process will not hinder other

processes from proceeding with their searches because each search is independent; (ii)

if the faulty process’ search would have led to a solution then, upon its recovery from

a previous consistent state, the solution will be eventually reached; hence only the

performance and not the correctness of the search is affected by the failure; (iii) if the

faulty process’ search would not have led to a solution, then the failure would have

little, if any, impact on the overall search outcome and performance.

3.3 Fault Tolerance for Parallel Iterative Deepen-

ing A* (PIDA*) Search Algorithm

Here, we present a generic fault tolerance strategy for parallel search algorithms.

We illustrate it with parallel iterative deepening A* (PIDA*) algorithm, which is a

variant of parallel DFS.
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3.3.1 Critical data

We define critical data as the minimal application data required to be saved (securely)

so that a failed process can be fully recovered from a most recent consistent state using

this and any previously saved data. We discuss consistent state in subsection 3.3.4.

Obviously, the size of critical data and the fault-tolerance strategy determine the

overhead in ABFT.

As an example, in sequential DFS the unexplored children of the already expanded

nodes, together with the currently visited node, constitute the critical data. If this

critical data is (securely) saved at a snapshot i then the critical data of the process

at a subsequent snapshot i+1 will constitute any additional data that is to be saved,

i.e., critical data is progressive. These unexplored children are usually represented as

a DFS stack, with the top of the stack containing the next child to be visited (figure

3.1). So the critical data at first snapshot constitute the current DFS stack together

with the currently visited node (if any), i.e., the DFS stack right before the visit of

the current node. In the case of parallel DFS, the DFS stack is distributed among

processes, and each process independently operates on its local DFS stack. So the

critical data at snapshot 0 to withstand a process Pi’s failure is the process’ local

stack right prior to its visit to the current node (if any).

Figure 3.1 and fig.3.2 show the stack contents of a process at two different snap-

shots. Figure 3.3 shows the critical data as the difference in the stack contents between

the two snapshots. These are further elaborated in the next subsection.

Lemma 3.1. The size of critical data in DFS is (i) linear in depth and (ii) non-

monotonic in time.

Proof The critical data in DFS constitutes the unexplored nodes in the current path

of the dynamically generated DFS tree. This data is usually represented as a DFS

stack, where each level of the stack contains the parent and its unexplored children
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(figure 3.1) on the current path being explored. The already explored paths, which

did not lead to a solution, are pruned. The average number of children, also known

as the branching factor, b is a constant for a particular application. If d is the current

depth, then the size of the stack is O(db) which is O(d) as b is constant, i.e., it is

linear in depth. Moreover, a path can change due to backtracking and so is the depth,

which either increases on progress or decreases on backtracking, and hence the size

of the stack is non-monotonic in time.

Lemma 3.2. The critical data of a process in a parallel DFS at the instant of visiting

a node v is a subset of the critical data in sequential DFS at the instant of visiting

the same node.
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Figure 3.3: Critical data (B \A of Lemma 3) of Pi at time tj (refer to figure 3.1 and
figure 3.2)

Proof In a parallel DFS, there is no guarantee that a node v visited by the se-

quential search will ever be visited in the parallel search (because the solution might

have already been reached by another process in another path), and vice verse. The

following applies if the node is visited by both sequential and parallel search. For

each node in the DFS tree, there is a unique path from the root based on the basic

assumption that visit of a node is deterministic, i.e., it will always produce the same

result deterministically. The DFS stack contains all the explored nodes in the path

(i.e., the parents) and their unexplored children. So, in a parallel search, for the

process P which has visited the node v, part of the path can be with another process

from which P borrowed work, and part(s) of the path can be with another process(es)

which borrowed work from P directly or indirectly. So the local stack contents of P,

i.e., its critical data, is a subset of the stack contents of the sequential search at the

instant of visiting v.
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3.3.2 Fault Tolerant PIDA*

We present the fault tolerant PIDA* (FTPIDA*), which embeds fault-tolerance sup-

port to PIDA* without altering the original algorithm. As discussed in the previous

subsection, the crucial information that is needed to re-execute a process from a pre-

vious consistent state is its critical data. The basic idea is to replicate the processes’

critical data distributively at periodic intervals (e.g., determined by the Mean Time

To Failures (MTTF) for the particular system) so that certain number of simultaneous

failures can be tolerated, and the failed process(es) can be restarted from a previous

consistent state(s) using the saved critical data. We discuss about consistent state in

subsection 3.3.4.

Following are the basic assumptions in the design of FTPIDA*:

• There is a one-to-one mapping between the set of processes and the set of pro-

cessors. A process is comprised of multiple threads running PIDA*, FTPIDA*,

and the recovery kernel respectively

• crash-stop (aka fail-stop) failure of the processor is considered. It should be

noted that process failure, with the underlying processor still healthy, is a softer

failure situation and a subset of the following techniques can be applied for

failure recovery

• failures are independent, i.e., a failure in one processor does not induce failure

in another processor

• a processor failure does not cause the application to abort automatically

• no failure occurs during recovery

• processors that share the same system resources will be the least choices to keep

the backup of each other
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• communication is reliable

Empirical data has shown that a process could face at most one failure in its lifetime

[51]. In that regard, even though two simultaneous failures are rare, we consider this

possibility. However, the algorithm is flexible enough and can easily be extended to

keep more redundant copies to sustain more simultaneous failures.

Algorithm 3.2 FTPIDA*

1: function Initialize()
2: Arrange all N processes in a logical ring.
3: Each process executes PIDA* (algorithm 1)
4: set A← ∅ ⊲ Initialize set A to empty
5: Execute FTPIDA* at each c interval or after sending work to another process ⊲

FTPIDA* is event driven ⊲ Let us call FTPIDA* executed on process Pi as FTPIDA*(Pi)
6: end function

7: function FTPIDA*(Pi)
8: Lock stack ⊲ Mutex lock to read DFS stack consistently
9: set B ← {contents of currentstack} ∪ {visited node} ⊲ Critical data
10: Unlock stack
11: Left neighbour = P(i+N−1)%N

12: Right neighbour = P(i+1)%N

13: C ← B \A ⊲ Content of Fault recovery message (FRM)
14: send C to both Left neighbour and Right neighbour
15: A = C
16: if (work received) then ⊲ receive work from a sender process
17: set working stack
18: send FRM to Left neighbour and Right neighbour ⊲ Backup point
19: send workACK to the sender process after backupACK received
20: end if

21: if (workACK received) then ⊲ receive acknowledgement from a receiver process
22: commit DFS stack update ⊲ Stack update is confirmed
23: send update FRM to Left neighbour and Right neighbour ⊲ Backup point
24: end if

25: if (backupACK received) then ⊲ receive acknowledgement from neighbours
26: commit backup point ⊲ Update FRI of the process for any future recovery from this

point
27: end if

28: if (FRM received) then ⊲ receive FRM, which contains critical data, from a neighbour
process

29: update Fault Recovery Information (FRI)
30: send backupACK to the sender process
31: end if

32: end function

Algorithm 3.2 represents the fault tolerance algorithm FTPIDA*. The following

describes the working principles of the algorithm.
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• At the beginning, all the N process involved in PIDA* (and FTPIDA*) initialize

a logical ring among themselves (line 2 in Algorithm 3.2), using either a cen-

tralized or a distributed consensus scheme, by defining process P(i+1)%N as the

right neighbour and process P(N+i−1)%N as the left neighbour for an arbitrary

process Pi.

• Each process periodically exchanges Fault Recovery Message (FRM), which

contains incremental critical data, with its neighbours at every periodic inter-

val c, where c < MTTF , or after each work distribution (refer to lines 9-15

and 18-24 in Algorithm 3.2, and figure 3.3). The status of a process can be

either ”active” or ”passive.” A process is active when it has left neighbour and

right neighbour, and it is executing. ”Passive” means the process does not have

its stack for execution instead it just keeps backup data for other processes, but

it is ready to become ”active.”

Following is a formal description of the contents of FRI and FRM:

• FRI (Fault Recovery Information): FRI = (S,LeftID, LeftS , RightID, RightS , LLeftID,

RRightID)

• FRM (Fault Recovery Message): FRM = (S,LeftID, RightID)

where, S stands for the local DFS stack of a process; LeftID and LeftS are re-

spectively the id and the critical data of the left neighbour; RightID and RightS

are respectively the id and the critical data of the right neighbour; LLeftID is the

left neighbour id of its left neighbour and RRightID is the right neighbour id of its

right neighbour. Note that FRM ⊂ FRI.

For failure detection, we consider the existing distributed fault detection technique

in a parallel and distributed system that uses the push model by exchanging ”heart-

beat” messages among the neighboring processes [48]. Note that a false positive does
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not alter the correctness of the algorithm; it only increases the unnecessary overhead

of replicating the work of a healthy process which is falsely identified as failed.

Lemma 3.3. The size of critical data in FTPIDA* at each interval is O(f), where f

is the corresponding cost bound.

Proof IDA* uses the cost function f(n) = g(n) + h(n) where g(n) is the sum of the

edge costs from the initial node, i.e., root, to the current node n, and h(n) is the

heuristic estimate for reaching the goal node from the current node n [77]. Assuming

that each edge cost is 1, then g(n) = d(n), the depth of the node n in the DFS tree.

This gives d(n) = f(n)−h(n). Consequently, for a given cost bound f , the maximum

attainable depth dMax = f , when h = 0.

According to Lemma 1, the maximum size of critical data at depth dMax isO(dMax)

which is O(f). Now, according to algorithm 2, the following two cases arise: (i) at

first interval, process P sends its entire critical data, i.e., contents of the local stack

and currently visited node, to the two neighbours. This is set B in line 10, Algorithm

2. Accordingly, size of this message is O(f) where f is the current cost bound. (ii) if

at interval i process P sends set A to its adjacent neighbors and if at interval (i+ 1)

B is its critical data set, then process P sends C = B \A to its adjacent processes at

interval (i+1) (line 14, Algorithm 2). Now, size of the set C is |B \A|= |B|−|B ∩A|

and |B \ A|Max= |B| which is O(f). So, in either case, the critical data size at each

interval is O(f) (Figures 3.1, 3.2 and 3.3).

3.3.3 Failure Recovery

When a process (i.e., the recovery kernel thread of the process) detects its neighbor’s

failure, the detecting process is responsible for restarting the failed process and bring-

ing it back to the previous consistent state. During recovery, the fault recovery kernel

executes one of the following steps:
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• If a free processor is available then it sends the fault recovery information (FRI)

of the failed process to the newly created process on the available processor and

rebuilds the distribution ring by making this new process as its left neighbour

/right neighbour

• If no free processor is available then it adds the work (DFS stack) of the failed

process to its own and rebuilds the logical ring by defining the left neighbour

/right neighbour of the failed process’ left neighbour /right neighbour as its

own left neighbour /right neighbour, modifies its own FRI, and sends FRM

to its new left neighbour /right neighbour (lines 9-14, Algorithm 3.3)

Algorithm 3.3 represents the fault recovery algorithm for PIDA*.

Algorithm 3.3 FTPIDA* Recovery module

1: if (can be recovered) then ⊲ Refer to Lemma 4 below
2: Recover() ⊲ Recover() is defined below
3: else

4: Initialize() ⊲ Restart Algorithm 2 from beginning
5: end if

6: function Recover()
7: if (free processor is available) then
8: Send FRI of the failed process to the free processor
9: Reconstruct the logical ring
10: Start the failed process from the last committed backup point ⊲ Recover using its

critical data
11: else

12: Merge the critical data of the failed process with its DFS stack
13: Reconstruct the logical ring
14: send FRM to Left neighbour and Right neighbour ⊲ Backup point
15: end if

16: end function

Lemma 3.4. FTPIDA* can tolerate simultaneous failures of at the most ⌊N
3
⌋ × 2 +

⌊N mod 3
2
⌋ processes in a N process ring.

Proof This follows from the fact that a process’ critical data is replicated with two

of its neighbours in the logical ring. In the worst case scenario, a process P’s both

neighbours have failed, and so all its saved critical data is lost. Whenever either of
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P’s two neighbours is recovered by the recovery kernel, the recovered process restarts

from a previous consistent state based on the fault recovery information (FRI) saved

in process P (refer to Algorithm 3), which also contains the critical data of P (note

that FRM ⊂ FRI). The system is unrecoverable if and only if P also fails, i.e.,

when 3 consecutive processes in the logical ring fail. Consequently, no consecutive

3 or more processes in the ring can fail simultaneously. Thus, we can divide the N

processes into G = ⌊N
3
⌋ distinct consecutive groups of 3 processes each. In each of

these G groups, maximum 2 processes can fail simultaneously; accordingly at the

most G× 2 processes can fail simultaneously out of the G groups. Of the remaining

Rem = (N mod 3) processes, if Rem = 2 then at the most 1 of these 2 processes can

fail simultaneously with the others in the G groups so that there are no 3 consecutive

failures in the logical ring. This gives the second term ⌊Rem
2
⌋ of the above formula.

3.3.4 Consistent state

Abstractly, each process in PIDA* performs the following steps in the main thread

of computation:

• Step 1: Lock stack {Mutex lock for consistency with FTPIDA* thread}

• Step 2: Pick up next node from stack. If node is goal node then go to step 7

else go to step 3

• Step 3: Expand node

• Step 4: Add children to stack (ordered by heuristic estimates)

• Step 5: Unlock stack

• Step 6: Repeat from Step 1

• Step 7: unlock stack, notify others, and end
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In FTPIDA*, contents of the local DFS stack prior to each Step 1 constitutes the

critical data of a process. This is backed up periodically with the two neighbours in

every c interval, where c < MTTF , and also during work distribution to a requesting

process (Algorithm 3.2). Let us call it a backup point at the instant the critical data

of a process is backed up with the neighbours.

Upon failure, a process can be restarted from a previous Step 1, as long as the

DFS stack contents can be restored to the backup point just prior to the restarted

Step 1. From the perspective of the FTPIDA*, we call the process state at a backup

point provided the backup is committed (i.e., acknowledgment is received from both

neighbours, and local Fault Recovery Information (FRI) is updated) as a local con-

sistent state. In other words, a failed process is recovered by restarting it from the

most recent local consistent state using the backed up critical data.

Two types of application messages are involved: (i) in PIDA*, the sending and

receiving of works (i.e. DFS stack contents) among processes (via GETWORK() in

Algorithm 3.1) and (ii) in FTPIDA*, periodic exchange of fault recovery message

(FRM) among the adjacent neighbours in the logical ring (Algorithm 3.2). A failed

process can be independently recovered from its most recent local consistent state

as long as any message dependency is resolved without affecting the other processes.

This is elaborated in the following proof.

Lemma 3.5. FTPIDA* is correct.

Proof (a) Any message dependency of a process recovered from its most recent local

consistent state is resolved without affecting the other processes. This is achieved as

follows: (i) any work received from another process is first backed up (committed)

and then an acknowledgment is sent to the sender (lines 18-20, Algorithm 3.2). So

this committed backup point becomes the new local consistent state; (ii) if the process

fails before receiving the work, then the message containing work can be discarded
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without affecting the correctness because the sender does not update its local DFS

stack until receiving an acknowledgement from the receiver (lines 23-24, Algorithm

3.2); (iii) if the process receives an FRM from neighbour, it first updates its local FRI

and then only sends acknowledgement to neighbour. Note that neighbour does not

commit its backup point until receiving acknowledgements from both the neighbours

(lines 27, 30-31 in Algorithm 3.2); (iv) if the process fails before receiving FRM from

neighbour, then upon recovery that FRM is resent by the recovery kernel (which

is a subset of FRI. Refer to line 9 of Algorithm 3.3). (b) Execution of a process

between any two local consistent states is deterministic based on the following: (i)

by assumption, visit of a node is deterministic, i.e., each visit of the node produces

the same result deterministically; (ii) the only nondeterminism arises in execution

is when the DFS stack changes due to random work request and subsequent work

transfer. This is handled by the sender by taking a backup with neighbours after the

receipt of work is confirmed, which becomes a new local consistent state of the sender

(lines 23-24, Algorithm 3.2). Based on (i) and (ii), execution of a process between

any two local consistent states is deterministic. As consequences of (a) and (b),

a failed process can always be restarted from its most recent local consistent state

independent of other processes, and the restarted process will ultimately reach the

point where it failed and continue execution as if the failure has never occurred. So

FTPIDA* is correct, i.e., it will produce the same result as a failure-free execution.

3.3.5 Example of FTPIDA* Protocol

Here we illustrate an example to describe the working principle of FTPIDA* protocol.

We assume that the system is a homogeneous cluster of 6 processors, i.e.,{P1,P2,P3,P4,

P5,P6}. Also, each processor keeps two redundant copies of fault recovery data with

two of its neighbours. Table 3.1 and figure 3.4 display the FRI and the distribution
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ring with every following scenario respectively.

Figure 3.4: Example of FTPIDA* algorithm

• A: All the processes initialize a logical distribution ring among themselves.

Initially, P1 has the whole search space. The current stack of P1 is S. Status of

P1 is ”active”.

• B: Before MTTF, P1 exchanges FRM with P6 and P2, who are the left neighbour
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and right neighbour of P1 respectively. The status of P6 and P2 become ”pas-

sive”.

• C: P1 receives work request from P2 and P6 and it splits it working stack and

distributes work accordingly. The status of P2 and P6 is now ”active”. P1

updates the FRM and exchanges with P2 and P6.

• D: Before MTTF, P2 and P6 exchange their FRM with their left neighbour and

right neighbour respectively.

• E: Failure scenario: P1 detects its right neighbour P2 has failed.

• F: P1 finds the right neighbour P3 of the failed P2 is free and in ”passive” state.

P1 define P3 as its right neighbour and assign the work of P2 by sending FRI.

• G: P3 detects its right neighbour P4 and P6 detects it’s left neighbour P5 have

failed.

• H: No free processes are available at that moment, so both the processes add

the work of their failed neighbour processes to itself respectively.

FRI of all the processes are updated accordingly, shown in table 3.1.

Table 3.1: Fault Recovery Information (FRI) of Processes During Execution of FT-
PIDA*

Scenario FRI Tuple FRI Tuple FRI Tuple
(A) P1: (S1, [ : ], [ : ], , )
(B) P1: (S1, [P6 : ], [P2 : ], , ) P6 : ( , [ : ], [P1 : S1], , P2) P2: ( , [P1 : S1], [ : ], P6, )
(C) P1: (S1, [P6 : S6], [P2 : S2], , ) P6: (S6, [ : ], [P1 : S1], , P2) P2: (S2, [P1 : S1], [ : ], P6, )

(D)
P1: (S1, [P6 : S6], [P2 : S2], P5, P3) P6: (S6, [P5 : ], [P1 : S1], , P2) P2: (S2, [P1 : S1], [P3 : ], P6, )
P5: ( , [ : ], [P6 : S6], , P1) P3: ( , [P2 : S2], [ : ], P1, )

(E)
P1: (S1, [P6 : S6], [P2 : S2], P5, P3) P6: (S6, [P5 : ], [P1 : S1], , P2)
P5: ( , [ : ], [P6 : S6], , P1) P3: ( , [P2 : S2], [ : ], P1, )

(F)
P1: (S1, [P6 : S6], [P3 : S3], P5, ) P6: (S6, [P5 : ], [P1 : S1], , P3) P3: (S3, [P1 : S1], [ : ], P6, )
P5: ( , [ : ], [P6 : S6], , P1)

(G) P1: (S1, [P6 : S6], [P3 : S3], P5, P4) P6: (S6, [P5 : S5], [P1 : S1], P4, P3) P3: (S3, [P1 : S1], [P4 : S4], P6, P5)
(H) P1: (S1, [P6 : S6], [P3 : S3], P3, P6) P6: (S6, [P3 : S3], [P1 : S1], P1, P3) P3: (S3, [P1 : S1], [P6 : S6], P6, P1)
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3.4 Performance analysis

We present an approximate theoretical analysis of FTPIDA*. We borrow some of

the arguments in the analysis from [25, 64]. We compare the completion times of a

PIDA* application running the traditional blocking coordinated checkpoint/restart

(CP/R) protocol versus FTPIDA*. In the following analysis, we assume that there

are maximum N number of parallel processes executing at a particular time.

3.4.1 Timing Overhead of FTPIDA*

Let the mean time to failure (MTTF) be m time units. Also, assume that the coor-

dination occurs every c time units and d is the checkpoint time of a process. Let the

total execution time of the application without any fault tolerance support be To.

In the case of blocking CP/R, the coordination time is proportional to the number

of explicit coordination messages, which is in turn proportional to the number of

coordinated processes. Thus the maximum coordination time = αN , where α is a

constant. The worst case execution time of the application running the protocol

without encountering any faults is Tc = To+(To/c)(αN +d). If there occur n failures

altogether, then the worst case execution time in the presence of faults becomes Tcf =

Tc+n(c+βN). Here βN is the overhead associated with restarting all the N processes,

which is the requirement in CP/R, and β is a constant. By noting that n = Tcf/m,

after substitutions and simple algebraic manipulations we get Tcf = To
1+(αN+d)/c
1−(c+βN)/m

.

In the case of FTPIDA*, for the convenience of comparison with CP/R, let assume

that the critical data is saved with the two neighbours in every c time units. The

worst-case execution time of FTPIDA* without encountering any failure is Tp =

To+(To/c)γ, where γ is the overhead to construct the fault recovery message (FRM)

from local DFS stack and send the message; details are in Algorithm 3.2. According

to Lemma 3, γ is O(f) where f is the corresponding cost bound, assuming that
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point-to-point communication cost is proportional to message size. If n be the total

number of failures altogether, each of which is a single process failure, then there are

two extreme possibilities on the execution time of the application in the presence of

failures:

1. The best case scenario is when each of the faulty processes’ DFS stack contents

does not contribute to a goal node. In that case, unlike CP/R where all processes

irrespective of healthy or not have to recover together, the failure of the process

has no effect on the overall execution time of the application, and hence total

execution time with failures is Tpf ≈ Tp = To + (To/c)γ. It can be noted here

that γ can be ignored considering that the overhead to construct FRM from

the local stack is insignificant, and message send/receive are asynchronous, i.e.,

sender and receiver are not blocked. Hence we get: Tpf ≈ Tp ≈ To.

2. The worst case scenario occurs when each of the faulty processes’ DFS stack

contents contributes to the goal node in that specific run. In such case the

execution time in the presence of n failures is Tpf = Tp + n(c + δ), where δ is

the overhead of restarting the failed process. By noting that n = Tpf/m, after

substitutions and simple algebraic manipulations, we get Tpf = To
1+γ/c

1−(c+δ)/m
.

Similar to the previous case, γ can be ignored, and we get: Tpf ≈ To
1

1−(c+δ)/m
.

Apparently, when c gets much smaller than m, the denominator gets much

closer to 1 and hence Tpf approaches To.

The following is a comparison of performance between FTPIDA* and blocking CP/R:

in the case of blocking CP/R, as MTTFm→ (c+βN) then Tcf →∞. In comparison,

in FTPIDA*, as m→ (c+δ) then Tpf →∞, which may only happen under the worst

case scenario of FTPIDA* when there occur n single process failures, each of which

contributes to the goal node. Based on empirical data [7], the restarting overhead β

in the case of CP/R can be huge; in fact, this overhead is multiplied to restart all
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the N processes (i.e., βN). On the contrary, in FTPIDA*, the restarting overhead

δ for the faulty process is proportional to critical data size of that process, which is

O(f) (Lemma 3), and is a fraction of βN considering that β might involve the entire

memory snapshot of a process. Moreover, in the best case scenario, fault has little

impact on the total execution time of FTPIDA*. So, in conclusion, FTPIDA* can

support much smaller m and hence can tolerant more frequent failures.

3.5 Numerical results

In this section, we evaluate our proposed fault tolerance FTPIDA* and compare its

performance with the CP/R technique. All the experiments were performed on the

supercomputer Guillimin from McGill University managed by Calcul Québec and

Compute Canada1. Guillimin has 1200 nodes, 7200 cores and connected by 4TB/s

InfiniBand. All nodes are running CentOS 6.3 operating systems. Both FTPIDA*

and CP/R implement with OpenMpi 1.8.6.

For our experiment, we implement FTPIDA* and CP/R and use 24 puzzle prob-

lem as the case to compare the performance of both the fault tolerance methods.

Here, we acknowledge the simultaneous failure of at most 50% of the processes for

each test case. For the multiple process failures to occur, we randomly choose the

process to be failed with the condition that at most two consecutive neighbours can

fail simultaneously. In our implementation, we consider MTTF = 400 seconds, and

with CP/R, the checkpoint is taken just before every 400 second.

Figure 3.5 shows the overhead of fault tolerance in a failure-free execution for both

FTPIDA* and CP/R with the existing application. The result indicates that backup

1The operation of this supercomputer is funded by the Canada Foundation for Innovation (CFI),
NanoQuébec, RMGA and the Fonds de recherche du Québec - Nature et technologies (FRQ-NT)
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Figure 3.5: Fault Tolerance Overhead (without fault): FTPIDA* vs. CP/R

time for FTPIDA* is subtle and apparently constant with increasing number of pro-

cesses. On the contrary, for CP/R, checkpoint overhead increases almost linearly at

a much higher rate with the increasing scale as compared to our scheme. The reason

behind is more checkpoints have to perform with more processes which include more

coordination and checkpoint message time with the execution time.

Figure 3.6 represents the comparison of fault recovery overhead between FTPIDA*

and CP/R with the different number of the processes. CP/R always spends more

time to recover the system from faults, and this recovery time increases with increas-

ing scale. On the other hand, the recovery time of FTPIDA* is almost constant and

always smaller than that of CP/R, irrespective of the number of the processes. This

is because CP/R resumes all the processes to a globally consistent state even with a

single process failure. Whereas, FTPIDA* only resumes the execution of the failed

process to its last consistent state (independently) with the critical data from one

of its two neighbors. FTPIDA* takes a nearly constant time to recover from one

or more processes failure as all the recovery happens independently in parallel. The
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Figure 3.6: Failure Recovery Overhead: FTPIDA* vs. CP/R

result shows that our proposed method has a distinct advantage over CP/R. It can be

seen that FTPIDA* method reduces the overhead of fault recovery by 90% at most,

as compared to CP/R.

Figure 3.7 shows the performance improvement of FTPIDA* over CP/R with

multiple process failures. It is found that the performance of FTPIDA* over CP/R

increases linearly with the increasing number of processes. The results show that in a

failure scenario, our proposed fault tolerant method has performed well and decreased

(improve performance) the overhead nearly 30% to 67% for the number of processes

from 20 to 80. The reason behind, the more the number of processes incorporates, the

more the time required for CP/R for checkpointing and recovery with more failures.

Table 3.2 shows the total backup data size produced by FTPIDA* and CP/R . The

sizes are given in megabytes and column labeled ”Reduction” represents the total

amount by which the backup data size is lessened by FTPIDA* as compared to CP/R.

In all the cases, the results show that the checkpoint data produced by FTPIDA* are

much lower than that of CP/R. This is primarily because the FTPIDA* system only
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Figure 3.7: Performance Gain: FTPIDA* vs. CP/R

replicates the critical data of its own to two of its neighbor processes. On the other

hand, CP/R method freezes the whole systems for a substantial amount of time to

collect the backup data from all the processes and create a consistent global backup

to recover the system from failure. Therefore, the size of the critical or backup data

of FTPIDA* which is needed to recover a system from failure is always smaller than

the size of the recovery data of CP/R method.

Table 3.2: Backup data size for FTPIDA* and CP/R

No. of
Processes

Checkpoint Data
Backup Data in

FTPIDA*(per process)
Total Backup Data

in FTPIDA*
Reduction

20 238.04 MByte 0.86 MByte 17.2 MByte 92.77%

40 358.51 MByte 0.88 MByte 35.2 MByte 90.18%
60 514 MByte 0.90 MByte 54 MByte 89.49%

80 895.12 MByte 0.84 MByte 67.2 MByte 92.49%
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3.6 Conclusion

In this chapter, we have presented an algorithm based fault tolerance for parallel

search algorithms. It introduces the notion of critical data and also using algorithmic

features to design fault-tolerance solution strategy for a class of problems with similar

characteristics. Fault-tolerant PIDA* (FTPIDA*) is theoretically analyzed for its

performance over CP/R. The simulation results have shown that the proposed fault

tolerance strategy has better performance over CP/R regarding fault tolerance and

recovery overhead. Also, we have observed from the simulation results that the total

memory requirements for backup are significantly less for the proposed FT method

as compared to CP/R.
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Chapter 4

ABFT for Communication

Intensive Parallel Algorithm

In this chapter, we present an algorithm based fault tolerance scheme for parallel

dynamic programming algorithms. Dynamic programming algorithms are seen as a

collection of interdependent tasks with significant interaction among themselves dur-

ing the lifetime of the algorithm to solve a given problem. DP can be considered

as a multistage problem composed of many sub-problems where subproblems at one

level have communication dependency with the subproblems of the previous levels

for the computation of tasks. Moreover, all the subproblems belonging to the same

level can execute concurrently. The cardinality of data-dependence among subprob-

lems may vary from 1 to n depending on the type of DP problem. We present a

detailed analysis of algorithmic and communication characteristics of different paral-

lel DP algorithms: (i) serial monadic, (ii) serial polyadic, (iii) nonserial monadic, and

(iv) nonserial polyadic. Further, we show that the algorithmic characteristics of the

application determine application data for the checkpoint, and the communication

characteristics determine where to replicate those data. With that notion, we pro-

pose a generic fault tolerance and recovery protocol for parallel DP which utilizes the
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communication dependencies of processes to replicate the checkpointed application-

data of a process, in a diskless manner with minimum extra message overhead. We

validate our approach with two popular classes of DP problems (i) Longest Com-

mon Subsequence (nonserial monadic) and (ii) Traveling Salesman problem (serial

monadic) and demonstrate that our proposed method performs better than CP/R

for both the cases. Experimental results confirm low fault tolerance overhead over a

non-fault tolerant application in a failure-free execution and low recovery cost in the

case of single and multiple process failures.

4.1 Motivation

In previous chapters, we have already mentioned that ABFT seems to be an alterna-

tive to the existing CP/R for next-generation exascale systems. However, ABFT still

has limited applicability in parallel applications because of its non-universality, i.e.,

it is tied to a particular application or algorithm. In that regard, in this chapter, we

present an ABFT scheme for a large class of applications, known as the dynamic pro-

gramming (DP) class of problems. These problems belong to the class of optimization

problems or min/max type of problems where the goal is to find the best solution

among all the feasible solutions by maximizing or minimizing an objective function

concerning some given constraints. These applications are by nature communication-

intensive applications. The communication aspects of an application determine how

to distributively save the fault recovery data (we call it the critical data) of a process

so as to minimize any extra message overhead, and the algorithmic characteristics of

an application determine which data is to be saved in order to reduce fault tolerance,

and recovery cost as minimizing the FT overhead is a major concern in fault tolerance

for HPC systems.

Parallel DP algorithms are used to solve these applications in HPC systems.
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Though different parallel DP formulations exist in literature, in a nutshell, all of them

exhibit similar characteristics: (i) the computation progresses in successive iterations

or stages, and (ii) in each stage, the algorithm computes an optimization function

with a set of n different parameters, where each parameter corresponds to the solu-

tion of a subproblem, calculated in a previous stage. The optimization function is a

pure (mathematical) function with n passing parameters, which does not modify any

global state of the application, and updates the local state only when the function

completes and commits its update. This optimization function (min/max function)

ultimately presents a reduction in information where only one out of n parameters is

solely responsible for returning an optimal result for that function. This is the only

information that is needed to replicate with peer processes so that the failed process

can resume its operation at the failure point with this stored information or data

after the failure occurs. This significant feature has a major impact in designing fault

tolerance (FT) as minimizing checkpoint data is a major challenge in FT schemes.

4.2 Characteristics of Parallel Dynamic Program-

ming

Dynamic programming (DP) is a well-known algorithmic paradigm to solve optimiza-

tion problems, which aims to find an optimal solution among several potential ones.

DP algorithm solves a complicated problem by breaking it down into simpler sub-

problems in a recursive manner. DP algorithms proceed by recursively solving a series

of subproblems, usually represented as cells in a table. The solution to a subproblem

is constructed from solutions to an appropriate set of subproblems.
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4.2.1 DP Algorithmic Characteristics

A DP problem is an optimization problem where the solution of a problem is de-

termined based on the solutions of its subproblems. The DP problem can naturally

be represented as a multistage graph where each node denotes a subproblem, and a

directed edge between two nodes presents the precedence of data dependence among

the subproblems. When it depicts as a multistage graph problem, then the nodes can

be organized into levels, such that sub-problems at a particular level depend only on

sub-problems at previous levels. The solutions to subproblems are maintained in a

table, and so DP is a table-driven approach. In the parallel solution to a DP problem,

each process solves a set of subproblems and maintains a part of the DP table.

Let f(x) be the solution of any dynamic programming problem x. Here f(x) is the

optimal cost or profit associated with the solution, and it can be written as:

f(x) = Φ(r1, r2, · · · , rn) (4.1)

Here Φ is an optimization function (e.g. min or max) and each of the ri is a solution

composed of solutions to sub-problems {x1, x2, · · · , xk}, which can be written as:

ri = g(f(x1), f(x2), · · · , f(xk)) (4.2)

In the above, g is called the composition function. Equations 4.1 and 4.2 are part of

the generic algorithmic characteristics of all DP problems.

4.2.2 Data Dependency on Different DP Formulation

DP algorithms represent a hierarchy of interdependent sub-problems, where the al-

gorithm advances by recursively solving a series of sub-problems, stored as cells in a
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DP table. This recurrence realizes dependence among the sub-problems. Moreover,

the dependency defines the stage or level as a set of subproblems whose solutions

are independent. Stages introduce a successor-predecessor relationship amongst the

sub-problems where the solution of a successor depends on the solution of its prede-

cessors.

Equation 4.1 represents the DP formulation which is a recursive function, where

the left-hand side is a function name, and the right-hand side involves optimization

of values of a specified cost function. DP formulation is classified into four different

categories based on the form of the functional equation and the nature of the recursion:

(i) serial monadic (TSP problem, 0/1 knapsack problem), (ii) serial polyadic (Floyds

all pair shortest path), (iii) nonserial monadic (LCS problem) and (iv) nonserial

polyadic (Matrix chain multiplication) [88]. A DP formulation is called monadic if

its cost function implicates only one recursive term; otherwise, it is called polyadic.

Furthermore, a DP formulation is known as serial if any subproblem in a level can

be solved with the subproblems of the immediate preceding levels; otherwise, it is

nonserial.

In the following, we show the DP recurrence expression for well-known serial and

nonserial DP problems which illustrate their dependency pattern successively.

• Travelling Salesman Problem (TSP): TSP is an example of serial monadic dy-

namic programming. Formally, TSP is defined as: given a set of n cities

{1, 2, · · · , n}; and the distances between the cities di,j : i, j ∈ Z
+, the goal

is to find the shortest tour which originates and terminates at the same city,

subject to the constraint that each of the remaining cities must be visited once,

and only once. It is an immense computational complex problem which is at

the core of many routing and scheduling problems.
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DP formulation for the travelling salesman problem (TSP) becomes:

c[S, j] =











d1,j S = 2

min{c[S − {j}, i] + di,j)} j∈ S ∧ j 6= i ∧ j 6= 1
(4.3)

Here, c[S, j] be the cost of an optimal tour starting at city 1, visiting each of n

cities of S = {1, 2, · · · , n} exactly once and ending up in city j.

• Longest Common Subsequence Problem (LCS): LCS is an example of nonserial

monadic dynamic programming problem. LCS is defined as: given two strings

X =< x1, x2, · · · , xn > and Y =< y1, y2, · · · , ym > over alphabet Σ, the goal is

to find the common subsequence Z of maximum length, which means Z is the

common subsequence of X and Y and there is no other common subsequence

whose length is larger than Z. The objective is to determine t[n,m]. LCS is a

classic computer science problem which is used often in bioinformatics.

DP formulation of the LCS problem is:

t[i, j] =



































0 i = 0 ∨ j = 0

t[i− 1, j − 1] + 1 i, j > 0 ∧ xi = yj

max{t[i, j − 1],

(t[i− 1, j} i, j > 0 ∧ xi = yj

(4.4)

t[i, j] represents the length of the longest common subsequence of the first i

elements of X and the first j elements of Y . Ultimately, the LCS length of the

two strings can be found at t[n,m].

• 0/1 Knapsack Problem: This classical optimisation problem belongs to the serial

monadic dynamic programming class of problems. The 0/1 knapsack problem

is described as follows: Given n distinct elements, each ith element associated
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with unique weight wi and profit vi respectively and the knapsack with capacity

C, where wi, vi, C ∈ Z
+; and the goal is to find the set of elements to maximize

the total profit of the knapsack within the capacity limit of the knapsack. The 0-

1 Knapsack Problem restricts the number of elements each item can be selected

to zero or one. More formally, let X = [X1, X2, · · · , Xn] be a solution set of

the elements in which Xi = 1 if the ith element is included in the knapsack,

otherwise it becomes 0.

DP formulation for this problem is :

f [i,m] =



























0 m ≥ 0, i = 0

∞ m < 0, i = 0

max{f [i− 1,m],

(f [i− 1,m− wi] + pi)} 1≤ i ≤ n

(4.5)

where, f [i,m] is the maximum profit for a knapsack with a capacity of m using

only items {1, 2, 3, · · · , i}. Then, let f [n,C] be the maximum profit for a knap-

sack with a capacity of C using only items {1, 2, 3, · · · , n},which represents the

solution.

• Matrix Chain Multiplication Problem (MCM): MCM is a typical example of

nonserial polyadic dynamic programming problem. This problem is also known

as optimal matrix parenthesization problem. The MCM problem is defined as:

given a chain of n matrices, the goal is to determine the optimal sequence of

matrix multiplications with the minimum number of scalar multiplications.

The DP formulation for MCM becomes:

m[i, j] =















0 j = i, 0 < i ≤ n

min{m[i, k] +m[k + 1, j],

ri−1rk, rj} 1 ≤ i < j ≤ n, i ≤ k < j

(4.6)
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where, m[i,j] represents the optimal multiplication cost of multiplying the ma-

trices Ai, · · · , Aj means the minimum number of operations for this chain of

multiplication. This chain of matrices can be expressed as a product of two

smaller chains, Ai, Ai+1, · · · , Ak and Ak+1, · · · , Aj. The chain Ai, Ai+1, · · · , Ak

results in a matrix of dimensions ri−1 ∗ rk , and the chain Ak+1, · · · , Aj results

in a matrix of dimensions rk ∗ rj. The cost of multiplying these two matrices is

ri−1rkrj.

Different DP problems have different dependency patterns. In figure 4.1, we show

the dependency and flow of computation for serial and nonserial DP problems re-

spectively. Here, we also portray the cardinality of data-dependence among the sub-

problems of different stages. In the case of TSP problem, the parallel computation

proceeds vertically row-wise, where the amount of computation per subproblem in-

creases monotonically as the computation proceeds to the next level, shown in figure

4.1a. Formally, we can state that TSP is a serial monadic DP class of problem with

a monotonically increasing data-dependence with stages and which is O(n) for an

n-stage problem.

On the other hand, for LCS, illustrated in figure 4.1b, computation proceeds diago-

nally and the amount of computation per subproblem is fixed, i.e. the cardinality of

the data-dependence remains constant with each stage, and it becomes Θ(3). Sim-

ilarly, figure 4.1c shows that the computation advances row-wise using a vertical

approach for 0/1 knapsack problem and the cardinality of the data-dependence is

fixed with stages, and it becomes Θ(2).

In MCM, elements are computed in parallel using a diagonal approach, portrayed in

figure 4.1d, where computation per subproblem increases with each next stage.
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(a) Serial DP: TSP (b) Nonserial DP: LCS

(c) Serial DP: 0/1 knapsack (d) Nonserial DP: MCM

Figure 4.1: Computation Dependency in Different DP Problems

4.2.3 Parallelism in DP

We have already mentioned that in DP algorithms, the computation proceeds by

filling the cells of the DP table through iterate over the consecutive series of stages.

Once, a stage is computed, it satisfies the dependency for the subsequent stages. For,

0/1 knapsack and TSP problems, cells of each stage are calculated row-wise in the

vertical fashion, and for LCS and MCM, this happens in an anti-diagonal manner.

Earlier, we mentioned that all the subproblems belonging to a particular stage are

independent of each other and can execute concurrently.
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For parallel formulation, the DP table is evenly split among the processes such

that each process is assigned a single column or multiple columns. All the subprob-

lems belonging to a particular stage are divided and distributed among the processes

either in fine-grain or coarse-grain manner, wherein all the processes execute the sub-

problems, assigned to themselves, in parallel. We illustrate this with two well-known

classes of DP problems: (i) TSP, and (ii) LCS.

Figures 4.2a, 4.2b and 4.2c, 4.2d show the coarse-grain and fine-grain distribution

for a TSP and LCS problem successively. For a fine-grain distribution, cells marked

with the same number compute at the same time by different processes concurrently.

On the other hand, for coarse-grain allocation, each cell is represented as a format

of x.y.z where x serves the level or stage, y presents the process number, and finally,

z expresses the subproblem number, respectively. The subproblems with the same

level number x and same subproblem number z can be calculated in parallel.

We have seen from figure 4.1 that the computation of each cell or subproblem needs

help from its neighbors from previous stages. So, neighboring processes assist each

other in computing for the current iteration with data from previous iterations. Fig-

ure 4.3 shows the DP table for the LCS problem for the strings X = BACBAD and

Y = ABAZDC for both sequential and parallel formulation. Figure 4.1b and figure

4.3b illustrate that computing a cell t[i, j] indexed by row i and column j process

Pj depends on (i) t[i− 1, j] handled by Pj itself and (ii) t[i− 1, j − 1] and t[i, j − 1]

handled by processor Pj−1 respectively, from the previous stages.

Figure.4.4 represents a DP solution for a TSP problem for a set of four cities. A

distance matrix for the graph is given in fig. 4.4b, wherein each entry expresses the

direct communication cost between cities, which is global problem-specific informa-

tion, available to all the participating processes of the system. Figure 4.4d depicts the

computation of each cell in the DP table. Figure 4.4e and figure 4.1a portray that for
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(a) Fine-grain TSP (b) Coarse-grain TSP

(c) Fine-grain LCS (d) Coarse-grain LCS

Figure 4.2: Fine-grain and Coarse-grain Parallel Distribution. Cells marked with the
same number execute in a parallel manner

the solution of the TSP problem, process Pj during iteration i for the computation

of c[S, j] depends on at most a total of n number of data from the previous iteration

i− 1 from all other Px processes, where j ∈ S ∧ j 6= x and S = {1, 2, ..., n} represents

the total number of cities.
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(a) DP Table for LCS Problem (b) Parallel Formulation of DP Table for LCS
Problem

Figure 4.3: Dynamic Programming (DP) Table for LCS of strings X = BACBAD
and Y = ABAZDC

4.2.4 Parallel DP Communication Characteristics

The communication pattern among the processes during each iteration for the parallel

DP solution to the LCS problem is shown in figure 4.5a, based on the assumption

that each column of the DP table is mapped to one process. It is assumed that

the communication model for this particular solution is based on the request-reply

protocol. It is evident from the figure that for process Pj, it becomes process Pj−1

which remains its dependent peer for the computation throughout the lifetime of the

application.

In comparison, figure 4.5b shows the communication characteristics of a fine-grained

parallel DP solution to the 0/1 knapsack problem, where process Pm depends on

process Pm−wi
on iteration i to compute f [i,m]. But, for the next iteration i + 1, it

becomes a different process Pm−wi+1
. Unlike, LCS, the identity of the dependent peer

varies with iteration. Though these two are entirely distinct parallel DP formulations,

it can be seen that their communication characteristics are quite similar.
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(a) Graph of Cities (b) Distance Matrix Table

(c) DP Algorithm for TSP [37]

(d) DP Table (e) Parallelism in DP Table Computation

Figure 4.4: DP Solution of a Sample TSP Problem
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(a) LCS (b) 0/1 knapsack

(c) TSP (d) MCM

Figure 4.5: Communication characteristics of parallel DP

For the parallel DP solution to the TSP problem, process Pi can have a maximum

communication dependency with n − 1 processes at iteration n, where 2 ≤ n ≤ N

and, N is the total number of cities, illustrated in figure 4.5c. In comparison to

figures 4.5b and 4.5a, the communication model here is synchronous, involving all-to-

all broadcast at each iteration. Figure 4.5d shows the communication characteristics

of a fine-grained parallel DP solution to the MCM problem, which has a similar

communication dependency pattern to the TSP problem.
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4.2.5 General Computation and Communication Character-

istics

In general, all serial/nonserial monadic/polyadic DP formulations exhibit similar com-

putational and communication characteristics, as illustrated in figure 4.6. The fol-

lowing are the common characteristics: (1) the computation progresses in successive

iterations; (2) in each iteration, a process computes an optimization function Φ with

m parameters par1, ..., parm. Each parameter pari corresponds to the solution of a

subproblem, and is computed either locally in a previous iteration or is received from

a different process in the same or a previous iteration. Thus, at the start of each iter-

ation i before the computation of Φ, every process receives solutions to subproblems

of iteration (i− 1) as parameters to Φ from a set of processes PR(i) and also sends its

locally computed solution(s) to subproblem(s) of iteration (i−1) to a set of processes

PS(i). We name PR(i) and PS(i) as Receiver Set and Sender Set respectively for

process P . The function Φ is a pure (mathematical) function, i.e., it is side-effect free

in a sense that it does not modify any global state of the application, and updates

the local state only when the function completes and commits its update. Moreover,

function Φ is by nature deterministic; i.e., it always returns the same output with the

same set of input parameters. Or in other ways, it always returns the same output

state with the same input state at any time of the execution. (3) As well, it is as-

sumed that the Sender Set and Receiver Set of each process P are known globally

to every other process. This is an assumption and not a mandatory requirement; the

assumption holds for the dynamic programming class of applications mentioned here

and will be used in their fault recovery scheme discussed in section 4.3.4.
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Figure 4.6: General Algorithmic and Communication Characteristics

4.3 Fault Tolerance for Parallel Dynamic Program-

ming

We have developed a general fault-tolerance principle for the parallel dynamic pro-

gramming class of applications for recovering from fail-stop failures with a goal of

minimum fault tolerance and recovery overhead. The goal is accomplished by repli-

cating the minimum application-level fault-recovery data with peers, using the natural

dependency pattern of the original algorithm. In that regard, we have shown that

among a maximum of n-dependency, only one single entity is solely responsible for

generating an optimized result for a particular problem, and this is the only infor-

mation that is needed to replicate with peer processes, so that the failed process can

resume its operation at the failure point with this stored information or data, after

failure occurs. We define this information as ”critical data.”
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Figure 4.7: General Algorithmic Characteristics of DP with n : 1 Cardinality

4.3.1 Critical Data

The functional equation for DP is based on Bellman’s principle of optimality [58]. This

states that in an optimal policy, whatever the initial state and initial decisions are, the

remaining must constitute an optimal policy concerning the state resulting from the

first decision [9, 8]. This asserts that for an n-stage process, to find the optimal policy,

for each state, we must find the optimal decision that optimizes the cost function.

Additionally, it characterizes that the next state at any stage depends only on the

current state and the current decision, no other information from the previous states

are needed. Furthermore, the optimal cost of any state is only possible when we

consider the optimal cost of the previous state. Thus, we can formally express that

among the n number of different options, a particular decision led to the optimal

value of f(x) in a stage.

Figure 4.7 shows a directed graph with indegree of n and outdegree of 1 that describes

the graphical representation of the functional characteristics of any DP problem where

one out of n different inputs is solely responsible for generating the optimized
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output.

We define critical data (CD) as the minimal application data that is required to

recover a failed process from a previous consistent state. Referring to equation 4.1, the

critical data for a process executing the optimization function Φ is a particular value

of ri among its parameter set {r1, r2, · · · , rn} in order to recover the failed process

from the start-execution point of Φ. This is based on the assumption that Φ is a

side-effect free function (section 4.2.5).

In general, referring to figure 4.6, the critical data of a process P in order to

recover it from the start-execution point of Φ at iteration i is one of the members

of its parameter set {par1, · · · , parm}. Some of these parameters may be computed

locally in P during previous iteration(s) while the others are received in messages from

the processors that belong to Receiver Set, PR =
⋃

i PR(i). We call these two parts of

the critical data : (i) the locally computed part as CDLocal(P, i) and (ii) the remotely

received part from PR as CDRemote(P, i). Let us additionally define, PS =
⋃

i PS(i) ,

CDLocal(P ) =
⋃

iCDLocal(P, i), and CDRemote(P ) =
⋃

iCDRemote(P, i).

It can be seen from the previous discussion that f(xi−1) ⊆ CDLocal(P, i), where

f(xi−1) is a solution to a subproblem at iteration i− 1. Moreover, CD(P, i) =

{CDLocal(P, i) or CDRemote(P, i)}. As an example, for the TSP problem with n cities

(equation (4.3) and figure 4.5c), the critical data for any failed process Pi to recover it

at cs[S, j] during iteration s is one particular value cs−1[S− j, i] among n alternatives

from the previous stage s− 1.

Similarly, for the LCS problem (eqn. (4.4) and figure 4.5a), the critical data for the

failed process Pj to recover it at t[i, j] at a stage s becomes one of the following three

dependent entities:

CD(Pj, t[i, j]) = {(t[i, j − 1]) or (t[i− 1, j]) or (t[i− 1, j − 1] + 1)} (4.7)
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Axiom 1. For every process P ′ ∈ PS(i) : (i)P ∈ P
′
R(i) and (ii) f(xi−1) ⊆ CDRemote(P

′).

Since CD(P, i) = {CDLocal(P, i) or CDRemote(P, i)}, based on Axiom 1 it can

be seen that the critical data of process P during iteration i is replicated among

the processes in PS(i) alongside the inherent communication of the original non-FT

algorithm. This property will be useful in designing the FT protocol discussed in the

next subsection.

4.3.2 Consistent State

We define a locally consistent state for a process P as the start-execution point of Φ

in an iteration i. Referring to figure 4.6, this is point A. A globally consistent state

(or consistent state) for the parallel program is the state of a global cut comprising

of one locally consistent state from each process so that the cut is consistent [45].

In the fault-tolerance strategy discussed in the following subsection, local critical

data, CDLocal(P, i) of each process P is replicated with the other processes in the

Sender Set and Receiver Set (Figure 4.6).

Upon failure, a failed process is recovered independently from a previous locally

consistent state without rolling back the other processes and is discussed in sec-

tion 4.3.4. This is somewhat analogous to the recovery of a failed process in the case

of independent checkpointing with logging where any inter-process dependencies are

resolved via message logging. In our case, there is no explicit logging of messages.

However, the required data for the recovery of a process is available in the Sender Set

and Receiver Set of a process and is recovered upon the failure of a process without

needing to roll back any other healthy processes.
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4.3.3 Fault Tolerance Protocol

The basic idea of the generic fault-tolerance (FT) protocol is to replicate the locally

computed critical data, CDLocal(P ), of a process P among the processes in PR and

PS, which P is naturally dependent on as part of the original non-FT algorithm.

The goal is to implement an FT strategy based on the original application’s inherent

communication dependencies to minimize any extra message overhead.

The protocol dictates ”how to replicate” the critical data for the class of applica-

tions characterized in section 4.2.5 and illustrated in figure 4.6. The specifics of ”what

to replicate,” i.e., what the content of the critical data is, depends on the algorithmic

characteristics of the particular application, which is already mentioned in section

4.3.2 with a serial-monadic DP problem TSP and a nonserial-monadic DP problem

LCS.

Protocol 1: Fault Tolerance Protocol

Assumptions: (1) We assume that the communication model is asynchronous, based

on the request-reply protocol. This assumption facilitates distributed fault detection

used in our approach. Thus, referring to figure 4.6, every message from PR to process

P is preceded by a request message from P . Similarly, every message from process P

to PS is preceded by a request message from PS. The request messages are shown in

the figure 4.5. (2) All communications are reliable. (3) Let U = the set of all processes,

where |U| = N . Let |PR(i)| = m and |PS(i)| = n, where 1 ≤ m, n ≤ N . Moreover, let

|PR(i) ∩ PS(i)| = c ≥ 0, which implies that the Sender Set and Receiver Set may

not be disjoint.

The protocol: At the beginning of each iteration i, prior to computing Φ, each process

P makes k-way replication of its local solution to the subproblems or CDLocal at

iteration (i − 1) among the processes in the set Pk(i) , where k ≤ N − 1. Since

process P sends f(xi−1) to each process in PS(i) as part of the original non-FT
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algorithm (section 4.2.5 and axiom 1), this implies that PS(i) ⊆ Pk(i).

One of the following three cases arises:

Case 1: Pk(i) = PS(i): implies process P already sends CD(P, i) to each process in

PS as part of the original non-FT algorithm (section 4.2.5 and axiom 1), and hence

no additional fault-tolerance specific message needs to be sent.

Case 2: Pk(i) ⊃ PS(i)∧ |Pk(i)−PS(i)|≤ |PR(i)−PS(i)|: implies (1) Pk(i)−PS(i) ⊆

PR(i)−PS(i), and (2) at the start of an iteration i, process P sends CD(P, i) to each

of the k − n processes in PR(i)− PS(i) by piggybacking it with the request message,

which is part of the original non-FT algorithm.

Case 3: Pk(i) ⊃ PS(i)∧ |Pk(i)−PS(i)|> |PR(i)−PS(i)|: implies (1) Pk(i)−PS(i) =

(PR(i) − PS(i)) ∪ PE(i) where PE(i) ⊆ U − (PR(i) ∪ PS(i)), and (2) at the start of

an iteration i, process P sends CD(P, i) to each of the processes in PR(i)− PS(i) by

piggybacking it with the request message, and to each of the processes in PE(i) in an

explicit message.

End of protocol 1

The following two lemmas are the consequences of the above protocol.

Lemma 4.2. Let Pk =
⋃

i Pk(i) . Then, when using protocol 1, the processes in

Pk ∪ PR collectively have all the information required to recover P from an iteration

≤ i.

Proof This immediately follows from the following: (i) by definition, processes in PR

collectively contain CDRemote(P ). (ii) Following axiom 1, each member of CDLocal(P )

is replicated with processes in PS as part of the original non-FT algorithm. (iii) As

a result of protocol 1, each member of CDLocal(P ) is replicated with processes in

Pk − PS, either in a piggyback or in an explicit message. Thus, at start-execution

point A (figure 3) in iteration i, processes in Pk ∪ PR collectively have CD(P ) =
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CDLocal(P )∪CDRemote(P ), which is all the information required to restart process P

from point A in the same iteration or an earlier iteration. This concludes the proof.

Lemma 4.3. Protocol 1 results in minimum extra message overhead while satisfying

Lemma 4.2.

Proof Explicit protocol messages are required for replicating CD(P, i) = {CDLocal(P )

or CDRemote(P )} only in case 3 of protocol 1. This concludes the proof.

As an example of protocol 4.3.3, algorithm 4.2 describes the fault tolerant algorithm

for parallel DP solution of LCS problem. Moreover, the parallel dynamic program-

ming algorithm for the LCS problem is given in algorithm 4.1.

Algorithm 4.1 Parallel Dynamic Programming Algorithm for LCS Problem

1: Initialize the DP table t by t[i, 0] = t[0, j] = 0 where i = 0, 1, ..., N and j = 0, 1, ..., (C − 1) ⊲

Initialization Phase
2: Partition t into C columns and assign to p processors where p = C ⊲ Partition Phase
3: For each processor pj , in each iteration l, during computation of t[i, j]
4: if entries of both the strings are not identical thendifferent
5: Send data request for t[i− 1, j] to Pj−1

6: Receive data from Pj−1

7: Compute t[i, j] = max{t[i, j − 1], (t[i− 1, j]}
8: else

9: Send data request for t[i− 1, j − 1] to Pj−1

10: Compute t[i, j] = t[i− 1, j − 1] + 1
11: end if

4.3.4 Fault Recovery Protocol

Failure of a process causes the loss of all data that belongs to the failed process. The

recovery protocol dictates how the critical data of the failed process that is distributed

amongst the other processes (in other processors) can be used to reconstruct the lost

data of the failed process and bring back the failed process to its most recent start-

execution point of Φ. For the dynamic programming (DP) class of problems, failure

recovery is composed of two components: (i) recover the failed process from the most
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Algorithm 4.2 Fault Tolerant Parallel Dynamic Programming Algorithm for LCS
Problem
1: Initialize the DP table t by t[i, 0] = t[0, j] = 0 where i = 0, 1, ..., N and j = 0, 1, ..., (C − 1)
2: Partition t into C columns and assign to p processors where p = C

3: For any processor pj , in an iteration i, during computation of t[i, j]
4: if entries of both the strings are not identical then
5: Send data request for t[i, j − 1] and critical data to immediate neighbor processor, to Pj−1

6: Send reply of the request to the neighbor processor Pj+1 with (i) requesting data , (ii) critical
data

7: else

8: Send data request for t[i − 1, j − 1] and critical data to immediate neighbour processor, to
Pj−1

9: Send reply of the request that it gets from neighbour processor Pj+1 with (i) requesting data
, (ii) critical data

10: end if

11: Receive data request and critical data from neighbour processor, Pj+1 and keep backup of critical
data of neighbour processor Pj+1

12: Receive reply from the neighbour Pj−1 with (i) requesting data , (ii) critical data and keep
backup of critical data of neighbour processor Pj−1

recent recoverable point and (ii) recover the DP table and any other global data that

belonged to the failed process.

Referring to the traveling salesman problem, failure recovery becomes the recovery

of the computation of the failed process, the column(s) of the DP table that belongs

to the failed process (figure 4.2 and figure 4.4e ) and global data that is the given

distance matrix, which contains the distances between the cities. Similarly, for the

nonserial DP problem LCS, failure recovery becomes the column(s) of the DP table

of the failed process (Figure 4.2 and figure 4.3b ) and the global information that is

the given strings.

We assume distributed failure detection: when a process fails, its failure is detected

by its alive peer(s). More specifically, in this case, failure of a process P is identified by

a peer (or peers) in its Sender Set, PS while it sends a data request to P . Distributed

failure detection [58] is a well-known technique for failure detection in asynchronous

message-passing systems.

The protocol:

At the beginning of iteration i, process Pk detects failure of its neighbour Px,
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where Pk ∈ PxS(i). Pk takes the help from the Receiver Set, PxR(i − 1), which is

known to the processes in PxS(i) (section 4.2.5), to recover the lost critical data of

Px from iteration i − 1 and lost data from previous iterations (e.g. portions of the

DP table and any global data). Let Θ(Px, i) be the lost data of Px at the start of

iteration i and let it be represented by the following formula:

Θ(Px, i) =
⋃

Pz

Θ(Pz, i− 1) + ψ (4.8)

In the above, referring to Protocol 1, Θ(Pz, i− 1) ∈ CD(Px, i − 1), Pz ⊆ Pxk(i − 1),

and ψ represents any problem-specific global data from iterations prior to i− 1 that

is lost due the failure of Px.

1. The case with the travelling salesman problem: For a fine grained DP solution

to the TSP problem, wherein each process is assigned the computation of a single

column of the DP table, the recovery equation from equation 4.3 becomes:

cs[S, j] = cs−1[S − {j}, i] + di,j (4.9)

here, cs[S, j] becomes the lost data of the failed process at iteration s, that is

recovered with the help of the critical data cs−1[S − {j}, i] from the previous

iteration s− 1 and resumes the execution of the failed process at iteration s.

2. The case with the longest common subsequence problem: Refereeing to parallel

DP formulation (figure 4.3) and communication characteristics (figure 4.5a) of

the LCS problem, it is observed that for every cell computation of the DP table,

process Pj always has a dependency with process Pj−1 for all the iterations.

From equation 4.7, it can be seen that the critical data for a failed process

Pj to resume its computation t[i, j] at iteration l after failure is one of the
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following three values :(i) the left element t[i, j − 1] from process Pj−1, (ii) the

upper element t[i − 1, j] from itself, and (iii) the upper-left element plus one

(t[i− 1, j − 1] + 1) from process Pj−1. So, the recovery equation becomes:

tl[i, j] = CD(Pj, t[i, j]) (4.10)

where, tl[i, j] becomes the lost data of the failed process Pj at iteration l. It is

evident from equation 4.10 that the Pj’s computation is resumed with the help

of critical data from its peer processes (process Pj−1 and process Pj+1) with

which the critical data was replicated as a part of fault tolerance protocol.

DP Table Recovery: Recovery of the DP table that belongs to the failed process can

happen after resuming the operation of that process. Suppose the process fails at

iteration i, then the lost entries of the DP table are recovered in the following way:

suppose recovered process resumes operation from iteration i − j onward. Then the

lost entries of the DP table from iterations (i−j−1) till iteration 1 can be recovered in

the same way as in Case 1.1 or Case 1.2 above using the recovery equation (4.8). Since

the process can resume its normal operation even if its DP table is not completely

recovered, this operation can be overlapped with the normal execution of the resumed

process.

Thus it can be seen that the recovery of the failed data and resumption of the

failed process are the hot spots of the recovery operation. However, the recovery of

the DP table can be carried out in the background and thus the cost of DP table

recovery can be masked by the normal execution of the application. How much of

the lost DP table needs to be recovered depends on how much backtracking is to be

allowed for the recovery of another failed process, since the DP table holds the remote

critical data of other processes; and this determines the pruning decision.
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4.4 Performance Analysis

In this section, we present an analysis of the algorithmic fault tolerance for paral-

lel dynamic programming algorithms. We describe it using examples of serial and

nonserial DP problems, like the TSP and the LCS problems.

4.4.1 An analysis of message optimization during fault tol-

erance

We have already explained the critical data for any DP problem in section 4.3.1. In

the case of the TSP problem, dependency with the number of subproblems increases

monotonically as the computation proceeds to the next stage or iteration. On the

other hand, for the LCS problem, it remains constant with the stage. For such

application, storing only one among n dependant data will save a significant amount

of storage which in turn reduce memory and recovery overhead of fault tolerance and

recovery scheme. Here, we show how much gain is achieved in the checkpoint data

when we save the critical data.

• TSP problem: Suppose there are N cities, where the tour starting at city 1,

visiting each of n ( n = N − 1 ∧ n 6= 1) cities exactly once, and finally ends

up in city 1. The algorithm iterates through the increasing value of s, where

1 < s ≤ n and also s represents the subset size of cities (see figure 4.4c).

Let,

1. Xs = ncs , : be the total number of subsets generated with each s. It also

represents the total number of rows with each s in the DP table (see figure

4.4e).

2. P = n− s, : be the total number of cells in each row generated during s.

Each cell represents the solution of a subproblem.
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3. Xp = P ∗Xs, : be the total number of subproblems generated with each s.

During iteration s, each subproblem of a row depends on an exactly s num-

ber of subproblems from previous rows generated in iteration (s− 1), meaning

each subproblem has a dependency cardinality of O(s). As only one out of s

subproblems is responsible for the optimal return of the current subproblem,

instead of replicating all the dependent s entities, replication of a single entity

provides the following gain:

Let ROB, be the total optimized backup size, while we replicate a single sub-

problem solution, becomes:

ROB = Xs ∗ P = ncs ∗ (n− s)

RUB, the total un-optimized backup size, while we replicate all the dependent

subproblem solutions:

RUB = Xs ∗ P ∗ s = ncs ∗ (n− s) ∗ s

So, overall gain G = RUB−ROB

RUB
∗ 100% = ncs (n−s)(s−1)

ncs (n−s)∗s
∗ 100% = s−1

s
∗ 100%.

As an example, to solve a TSP problem with a set of N = 20 cities, start from

the city 1, traverse all other 19 cities and end in the city 1. For a certain value

of s = 5, the overall gain becomes: G = 4
5
∗ 100% ≈ 80%. For another scenario,

while s = 13, the overall gain becomes: G = 12
13
∗ 100% ≈ 92.30%. This shows

that when s << N , the total number of subproblems generated with s is more,

and more backup has to be done. On the contrary, as s ≈ N , fewer subproblems

are generated, and we have less backup. This shows that the higher the value

of s, the more the gain G is.

• LCS problem: For the LCS problem, where the dependency of a subproblem

always remains same and which becomes Θ(3) in every iteration. Among, these

three subproblems, only one is responsible for the optimal return of the current

subproblem. Therefore, in such a case, the gain becomes: G = 3−1
3
∗ 100% ≈
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66.6%.

4.4.2 An analysis of extra message overhead during fault tol-

erance

As a specific case of Lemma 4.3, in the following, we present an analysis of the extra

message overhead for protocol 1 with the help of [37]. Suppose there are N processes

P1, P2, ..., PN in the system. Moreover, we consider here fine grain distribution of DP

table, where each column is assigned to each process.

• TSP problem: First, we calculate the total number of messages in the original

(non-FT) parallel solution. At iteration s, each process sends requests to other

s processes and receive replies from them. So, a total number of such request-

reply messages at iteration s = 2∗XP ∗ s = 2∗ncs ∗ s. Considering that s could

be any value between 1 and n, the total number of messages for all iteration s

becomes

n
∑

s=1

2 ∗ s ∗ ncs = (n− 1)2n (4.11)

Now, at each s, every subproblem comminicates with s number of subproblems,

which clearly indicates a mesage exchange of O(n). So, all together the total

number of mesages is O(n22n). For the fault tolerance, we use the existing mes-

saging of the non-FT algorithm to exchange FT information among processes,

so in such case no other extra messages are required for fault tolernce.

• LCS problem: Referring to figure 4.5a, at every iteration s the dependency

distance for a process Pi is fixed and it is always with the immediate previous

neighbour Pi−1, where 1 ≤ i ≤ N . It is shown in the figure that, at every

iteration s, the leftmost border process does not send any request message to
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any other processes (i.e., for such process, Prcv(s) = ∅). The other N − 1

processes send requests and receive replies.

So, a total number of such request-reply messages at iteration s = 1 ∗ 0+ (N −

1) ∗ 2 = 2(N − 1).

Similarly, the rightmost border process does not receive any request message

from any other processes (i.e., for such process, Psnd(s) = ∅). On the other

hand, the other N − 1 processes receive requests and send replies. So, a total

number of such request-reply messages at iteration s = 2(N − 1).

Therefore, the total number of message becomes:

{2(N − 1) + 2(N − 1)}/2 = 2(N − 1) (4.12)

A process might send an explicit message to replicate its critical data when

either of Prcv(s) or Psnd(s) is empty (Steps 1 and 2 in protocol 1). In such case,

the total number of explicit messages in the FT application = 2 and the total

number of messages in the FT application becomes

2(N − 1) + 2 = 2N (4.13)

Comparing equations (4.12) and (4.13), it can be seen that the FT protocol

results in extra 2 messages over the original non-FT application to withstand 2

consecutive process failures.
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4.4.3 An analysis of timing overhead during fault tolerance

and recovery

Here, we present a theoretical comparison of the completion time of our proposed

ABFT over CP/R for parallel DP . We borrow some of the arguments in the analysis

from [25, 64]. In the following analysis, we assume that there are a maximum N

number of parallel processes executing at a particular time. Let the mean time to

failure (MTTF) be m time units. Also, assume that coordination occurs every c time

units and tc is the checkpoint time of a process. Let the total execution time of the

application without any fault tolerance support be To.

In the case of CP/R, the coordination time is proportional to the number of

explicit coordination messages, which is, in turn, proportional to the number of co-

ordinated processes. Thus the maximum coordination time Tcord = αN , where α is

a constant. The worst case execution time of the application running the protocol

without encountering any faults is:

Tc = To + (To/c)(αN + tc) (4.14)

Assume there occur n failures altogether, then the worst case execution time in the

presence of faults becomes:

Tcf = Tc + n(c+ βN) (4.15)

where, βN is the overhead associated with restarting all the N processes, which is

the requirement in CP/R, and β is a constant. As, n = Tcf/m, we have

Tcf = To
1 + (αN + tc)/c

1− (c+ βN)/m
(4.16)
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In the case of fault tolerant DP, during each iteration the critical data is saved with

the neighbours. Let us assume that ti time units represents one iteration time. The

execution time without encountering any failure is

Tp = To + (To/ti) (4.17)

where, To/ti is the overhead for the critical data which basically is in parallel with

the execution time of the original algorithm, giving Tp ≈ To.

If n be the total number of failures altogether, each of which is a single process failure,

then the total execution time becomes:

Tpf = Tp + n(ti + δ) (4.18)

as n =
Tpf

m
and Tp ≈ To, it becomes

Tpf = To +
Tpf
m

(ti + δ)

Tpf [1−
1

m
(ti + δ)] = To

Tpf = To[1−
m

m− (ti + δ)
]

= To
1

1− ti+δ
m

(4.19)

as ti << m and δ, the overhead for critical data, is apparently insignificant, we have

Tpf ≈ To.

Based on empirical data [7], the restarting overhead β in the case of diskless CP/R

is significant; in fact, this overhead is multiplied to restart all the N processes (i.e.,

βN). On the contrary, in a fault tolerant DP, the restarting overhead δ for the faulty

process is insignificant and is proportional to the critical data size of that process,

which is in the order of few bytes and is a fraction of βN . So, we have Tpf << Tcf .
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4.5 Experimental Evaluation

In this section, we evaluate our proposed FT technique and compare the result with

diskless CP/R for two well-known DP types of problem: TSP and LCS. All exper-

iments were conducted on HPC clusters, Colosse, Briarée and Guillimin of Calcul

Québec and Compute Canada 1. Following are the properties of the systems used

here:

Table 4.1: Configuration of the Clusters [74]

Name of the
Cluster

Number
of Nodes

Core per
Node

Memory
per Node

Network
Operat-

ing
System

MPI version

Colosse 960 8 24/48 GB
InfiniBand

QDR
CentOS 6.6 OpenMPI 1.8.4

Briarée 672 12
24/48/96

GB
InfiniBand

QDR
Scientific
Linux 6.3

OpenMPI
1.8.3-gcc

Guillimin 1200 12
24/36/72

GB
InfiniBand

QDR
CentOS 6.6

OpenMPI
1.8.3-gcc

For our experiment, first we consider a 29 nodes symmetric TSP problem (bays29.tsp,

provided by TSPLIB [101]). Next, for LCS problem, we use the publicly available

data of gene index database form the computational biology and functional genomics

laboratory at the DANA-Faber Cancer Institute and Harvard School of Public Health

[36]. In performance comparison with CP/R, checkpoint is taken after execution of

every 50 rows of the DP table.

4.5.1 Experimental results of TSP

Figure 4.8 shows the recovery overhead (%) for our scheme to recover from a single

process failure. The recovery overhead is calculated as the ratio of the total recovery

time to the total execution time of the recovered application that uses our scheme.

It is found that the recovery overhead varies from .005% to .018% with increasing

number of processes. The result displays that the recovery cost of a single process

1The operation of this supercomputer is funded by the Canada Foundation for Innovation (CFI),
NanoQuébec, RMGA and the Fonds de recherche du Québec - Nature et technologies (FQRNT)

93



failure is meager as the lost data on the failed process is recovered with the help of

the peer process where the backup data of the failed process is replicated in peer

process’s memory. This cost accounts for a small portion of the total execution time

of the TSP problem.
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Figure 4.8: Recovery Overhead of Proposed ABFT with a Single Failure

Figure 4.9 reports the overhead of fault tolerance for both ABFT (our proposed

scheme) and checkpointing when no failure happens during the execution of TSP

algorithm. The result demonstrates that our design introduces very insignificant

fault tolerance overhead. The reason is that our proposed ABFT uses the existing

messaging of the non-FT implementation to exchange fault recovery data with peer

processes, which, in turn, do not add extra fault tolerance time over the execution

time of the algorithm. On the other hand, with checkpointing, the overhead in-

creases at a much higher rate with increasing scale as compared to our scheme. This

can be attributed to the fact that checkpointing involve coordination cost and explicit

messages, and these overheads do not scale well with increasing number of processes.
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Figure 4.10: Fault Tolerance and Recovery Overhead With Multiple Simultaneous
Failure (ABFT vs. CP/R)

Figure 4.10 shows that our scheme has less fault tolerance and recovery overhead
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as compared to CP/R in the presence of 60% simultaneous process failure. The over-

head in our scheme is almost uniform irrespective of the number of processes and is

less than 1% for each case. On the other hand, checkpointing introduces significant

overhead which increases with increasing scale and it is from 9% to 23% for a range

of 4 to 12 processes. The reason behind is the recovery procedure of CP/R forces

all the active and failed processes to roll back and restart from a previous consistent

state with failures. Whereas, in our scheme, recovery of all the failed processes from a

previous recoverable point happens concurrently without rolling back the other active

processes.
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Figure 4.11: Performance Improvement (Our proposed ABFT vs. CP/R)

Figure 4.11 shows the performance improvement of our scheme over diskless check-

pointing in the case of single process failure. It is found that the performance gain

of our scheme over CP/R is approximate 70%. The reason is our proposed ABFT

method is free from coordination and explicit message cost that is central design point

of CP/R.

The total gain in critical data is given in table 4.2. It indicates a significant gain in
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critical data, which is estimated 47% irrespective of the number of processes, which

supports our theoretical finding. Replication of critical data rather than all the de-

pendent data for a subproblem justifies the result.

Table 4.2: Gain in Critical data

No. of Processes
Total Backup Size

(nonCritical)
Total critical data size Gain(%)

4 227595 119598 47.45%

8 196557 104514 46.82%
12 243114 125472 48.39%

16 171028 93431 45.37%

4.5.2 Experimental results of LCS
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Figure 4.12: Extra Message Overhead for ABFT

One might think it reasonable to speculate that the total number of backup mes-

sages exchanged among the process during fault tolerance increases with the number

of processes, but practically it remains unchanged. We present this in figure 4.12,

where it shows that the extra backup message overhead decreases with increasing
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number of processes. The reason behind: the more the processes involved in the

computation, the more the messages exchanged among themselves in a non-FT im-

plementation. The overhead declines from 42% to 18% for a total number of processes

from 4 to 24.

Table 4.3: Gain in Critical Data Size for LCS problem

No. of Processes Checkpoint Data
Critical Data in

ABFT
Gain(%)

4 16248576 2902800 82.13%

8 5923584 1161120 80.39%
12 8885376 1915848 78.44%

16 11847168 2322240 80.39%

12 14808960 2801050 81.09%
16 17770752 3309192 81.38%

Table 4.3 evaluates the total gain in size of the critical data as compared to check-

point data. We have already explained in 4.3.1, what will be the critical data for an

LCS problem and in our ABFT implementation, we replicate this data with neighbor

processes. In the case of CP/R implementation, it backups all the data of the DP

table blindly without considering any algorithmic feature of the algorithm, whereas,

in ABFT implementation, algorithmic characteristics are acknowledged to select crit-

ical data, as describes in 4.3. Here to mention, in our ABFT implementation, each

process backup only those data which are modified from the previous iteration. It is

evident from table 4.3 that a substantial amount of gain is achieved in critical data

size.

Figure 4.13 presents the fault tolerance overhead for both CP/R and our proposed

ABFT for LCS problem. We explain it with three different scenarios: 30%, 50%,

and 60% process failures. We experience an enormous amount of checkpoint over-

head with increasing number of processes in case of CP/R implementation, whereas

our proposed ABFT introduces an insignificant amount of overhead as compared to

CP/R. The fact is the coordination cost, and the explicit message cost of CP/R causes

this huge overhead and which in turn supports the claim that CP/R does not scale
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well with growing number of processes.
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Figure 4.14: Recovery Overhead with Multiple Simultaneous Failures

Figure 4.14 shows the recovery overhead of our proposed ABFT with different num-

bers of multiple simultaneous process failures. We consider here three failure scenario:
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30%, 50%, and 60% simultaneous process failures. The recovery overhead is approxi-

mately within a range of 0.021% to 0.012% for 30% process failure, 0.025% to 0.01%

for 50% failures and 0.037% to 0.009% for 60% failures. We have found here that

for all the failure scenario, the recovery overhead is nominal, which is negligible in

practice. The reason behind is all the recovery occurs in parallel. Figure 4.14 shows

that, even with the recovery cost included, the total overhead of our proposed ABFT

is still very low, and it decreases as the number of processes increases.

4.6 Conclusion

In this chapter, we developed an algorithm based fault tolerance and recovery pro-

tocol for parallel dynamic programming algorithms by analyzing the algorithmic and

communication characteristics. The algorithmic characteristics determine what ap-

plication data need to be saved to recover from the fault(s), and the communication

characteristics determine how this data should be saved to minimize the cost. Fur-

thermore, we show that for such parallel applications, communication dependency

among the processes plays a significant role in the design of fault tolerance strategies

with minimum extra message overhead. We evaluated our protocol with two well-

known DP application: (i) longest common subsequence (LCS) problem, which is a

non-serial DP problem with a fixed data-dependence with every stage and which is

O(3) and, (ii) travelling salesman problem (TSP), which is a serial DP problem with

a monotonically increasing data-dependence with stage and which is O(n). Exper-

imental results demonstrate that for both the cases the proposed method performs

better than checkpointing regarding fault-tolerance and fault-recovery overhead.
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Chapter 5

Optimization in Fault Tolerance

In any fault tolerance strategy, optimizations are possible in both time and space

regarding how often to replicate, what data to replicate, and when to prune the repli-

cated data. Regarding how often to replicate, it depends on what is the Mean Time

to Failure (MTTF). Pruning depends on how much and how long the information

is to be saved to tolerate failures; it depends on how many maximum iterations to

roll back in a worse case recovery scenario. Optimizations in “what data to repli-

cate” depends on the algorithmic characteristics of an application. In that regard, in

this chapter, we discuss it below for the DP solution to the 0/1 knapsack problem.

Numerical results demonstrate that our proposed FT scheme is highly efficient.

5.1 Motivation

Minimal storage and recovery cost are the crucial aspect in fault tolerance and recov-

ery design. The optimal size of critical data is one of the main concern to minimize

the overhead as mentioned above. In that regard, we demonstrate that for certain

DP class of problems, additional optimization in critical data is possible. This is only

feasible when each subproblem has a constant lower degree of dependency cardinality
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with other subproblems. 0/1 knapsack is a unique example of such problem where

each subproblem has a dependency cardinality of 2 which remains unchanged with

increasing number of iteration. This feature motivates that instead of replicating the

critical data of a process with its neighbour, replication of a bit-vector flag is sufficient

for recovery. This flag is used to rebuild the lost data of the failed process with the

help of the information available in the other processes.

5.2 0/1 Knapsack Problem

The 0/1 knapsack problem is described as follows: Given a set of n distinct elements

and a knapsack with maximum capacity C. Each ith element has some unique weight

wi and profit vi respectively, where wi, vi, C ∈ Z
+. The goal is to choose a subset of the

n elements to fill the knapsack in such a way that the total profit is maximized without

having the total weight sum to exceed the capacity C. Let, X = [X1, X2, ...., Xn] be

a solution set of the elements in which Xi = 0 if the element is not in the knapsack

and otherwise it is 1. Mathematically, the problem can be formulated as follows:

max
N
∑

i=1

viXi (5.1)
subject to

N
∑

i=1

wiXi ≤ C (5.2)

DP formulation for this problem is :

f [i,m] =



























0 m ≥ 0, i = 0

∞ m < 0, i = 0

max{f [i− 1,m],

(f [i− 1,m− wi] + vi)} 1≤ i ≤ n

(5.3)
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where, f [i,m] is the maximum profit for a knapsack with a capacity of m using only

items {1, 2, 3, · · · , i}. f [n,C] be the maximum profit for a knapsack with a capacity

of C using only items {1, 2, 3, · · · , n}.

Let us illustrate the optimization and composition functions from the DP formu-

lation of the 0/1 knapsack problem. Here the function f represents the overall profit

of including an item i of weight wi and profit vi into the knapsack of current capacity

m and is given by the formula:

f(i,m) = max(f(i− 1,m), f(i− 1,m− wi) + vi), 1 ≤ i ≤ N (5.4)

As compared with the general formulation of dynamic programming (equations

4.1 and 4.2 from chapter 4), max becomes the optimization function Φ and {f(i −

1,m − wi) + vi} becomes the composition function in equation (5.4). The goal is

to maximize the profit f(N,C) where N is the total number of items and C is the

maximum capacity of the knapsack.

Figure 5.1: Data dependency and the DP table in a parallel solution to the 0/1
Knapsack problem
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In a fine-grain parallel solution to the 0/1 knapsack problem, each column is mapped

to a single process. So for a knapsack with maximum capacity of C, there are alto-

gether C processes, P1, P2, .., PC in a fine-grain distribution. During each iteration i,

to calculate equation (5.4), process Pm depends on a value from itself and also the

value from another process Pm−wi
provided m−wi ≥ 1 from previous iteration (i−1).

As shown in figure 5.1, each process owns a column of the DP table. The profit pi

and the weight wi are parts of the global knowledge, available to all the processes.

On the other hand, in a coarse-grained solution, multiple columns are assigned to

each process. The fine-grain parallel DP algorithm to solve 0/1 knapsack problem is

given in algorithm 5.1.

Algorithm 5.1 Parallel Dynamic Programming Algorithm for 0/1 Knapsack Prob-
lem
1: Initialize the DP table f by f [i, 0] = f [0,m] = 0 where i = 0, 1, ..., N and m =

0, 1, ..., (C − 1) ⊲ Initialization Phase
2: Partition f into C columns and assign to p processors where p = C ⊲ Partition Phase
3: For each processor pm, at each iteration i, during computation of f [i,m]
4: if (m− wi ≥ 1) && (m+ wi ≤ C) then
5: Send data request to Pm−wi

6: Receive data from Pm−wi

7: Receive data request from Pm+wi

8: Send data to Pm+wi

9: Compute f [i,m] = max{f [i− 1,m], (f [i− 1,m− wi] + vi)}
10: else

11: Compute f [i,m] = f [i− 1,m]
12: end if

5.3 Optimization in Fault Tolerance

From the DP example of 0/1 knapsack problem (equation 5.4 and figure 5.1), the

critical data for a failed process Pm to recover it from the start-execution point of

f(i,m) during iteration i is either (i) {f(i− 1,m) or (ii) f(i− 1,m−wi)}. The first

component comes from its own local state and the second component comes from the
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local state of process Pm−wi
at the end of the (i− 1)th iteration.

Low storage and recovery overhead are the critical issues in designing fault toler-

ance. In that regard, instead of replicating CDLocal with the processes in PR and PS,

we can replicate a bit-vector flag for recovery purpose. This flag is used to rebuild the

lost data of the failed process with the help of the information available in the other

processes. The width of the bit vector depends on the granularity of the solution: if

one column of the DP table is mapped per process as in a fine-grained solution then

it is a single bit flag; if multiple columns are mapped then the bit vector comprises

of one bit per column (figure 5.1).

Let us discuss the fine-grained solution where each process keeps the single-bit

flag as part of its local state. Let us call this flag bit for process Pm as fm. Referring

to equation 5.4, at the end of iteration i, if f(i,m) is the same as f(i−1,m), then the

flag bit fm for process Pm is set to 0, otherwise it is 1. For the 0/1 knapsack problem,

the flag bit being 0 at the end of iteration i implies that only CDLocal contributed

to computing f(i,m) and CDRemote had no contribution and vice verse. The single

flag bit can be extended to the multiple flag bits (in a bit-vector) in a coarse-grained

solution.

The benefits of using the flag bit(s) are not only in reducing message overhead

but also in facilitating the recovery of lost data (e.g., a column of the DP table) of a

failed process during recovery. This is discussed in the following for the specific case

of the 0/1 knapsack problem.

Protocol 1.1: FT protocol for the (fine-grained) parallel DP solution to the 0/1

Knapsack problem

Assumptions: (1) Referring to figure 5.1, the Sender Set and Receiver Set (see

chapter 4) for process Pm are denoted as PmS and PmR respectively where PmS(i) =

{Pm+wi
} if m+wi ≤ C, otherwise PmS(i) = ∅ ; and PmR(i) = {Pm−wi

} if m−wi ≥ 1,
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otherwise PmR(i) = ∅. Note that wi is the weight of the ith item and C is the

maximum knapsack capacity, which is also equal to the total number of processes.

(2) The flag-bit for process Pm corresponding to its local solution to subproblem at

iteration (i − 1) is 2-way replicated among the processes in Pk(i) = PmR(i) ∪ PmS ∪

PE(i), where PE(i) = ∅ if both PmR(i) 6= ∅ and PmS(i) 6= ∅. Wraparound is used to

handle the special cases when either one or both of the Sender Set and Receiver Set

are empty depending on if the process is a boundary process (with respect to the

DP table column mapped to it), and in those cases explicit messages are needed (i.e.

PE(i) 6= ∅). Considering both boundary and non-boundary cases, the set Pk(i) for a

process Pm can be generalized as: Pk(i) = {P1+(m+wi−1)%C , P1+(C+m−wi−1)%C}.

The protocol:

At start of iteration i, the flag-bit for process Pm corresponding to its local solution

to subproblem at iteration (i − 1) is 2-way replicated among the processes in Pk(i)

according to the following:

Step 1: if PmR(i) 6= ∅ then piggyback the flag bit together with the original

request message to Pm−wi
; otherwise send the flag bit in an explicit message to

P1+(C+m−wi−1)%C .

Step 2: if PmS(i) 6= ∅ then send the flag bit together with f(i − 1,m), as part of

the original non-FT algorithm, to Pm+wi
; otherwise send the flag bit together with

f(i− 1,m) in an explicit message to P1+(m+wi−1)%C .

End of protocol 1.1

Algorithm 5.2 describes fault tolerant algorithm.
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Algorithm 5.2 Fault Tolerant Parallel Dynamic Programming Algorithm for 0/1
Knapsack Problem

1: Initialize the DP table f by f [i, 0] = f [0,m] = 0 where i = 0, 1, ..., N and m =
0, 1, ..., (C − 1)

2: Partition f into C columns and assign to p processes where p = C

3: For any process pm, in an iteration i, during computation of f [i,m]
4: if (m− wi ≥ 1) then
5: if (m+ wi ≤ C) then
6: Send data request and flag-bit to process, P(m−wi)

7: Receive reply with (i) requesting data , (ii) flag-bit from P(m−wi)

8: Receive data request and flag-bit from Pm+wi

9: Send reply with (i) requested data , (ii) flag-bit to Pm+wi

10: else

11: Send data request and flag-bit to process, P(m−wi)

12: Receive reply with (i) requesting data , (ii) flag-bit from P(m−wi)

13: Send flag-bit to P{1+(m+w1−1)%C}

14: end if

15: else

16: Send flag-bit to P{1+(C+m−w1−1)%C}

17: Receive data request and flag-bit from Pm+wi

18: Send reply with (i) requested data , (ii) flag-bit to Pm+wi

19: Compute f [i,m] = max{(f [(i− 1,m]), (f [i− 1,m− wi] + vi)}
20: end if

21: Compute f [i,m] = f [i− 1,m]
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5.3.1 An example of Fault tolerance

Figure 5.2a presents the initial state of an arbitrary dynamic programming table with

a set of 6 processes N = {P0, P1, P2, P3, P4, P5} to solve 0/1 knapsack problem with

a total of 4 elements with weight wi = {1, 2, 3, 4} and profit vi = {3, 7, 2, 9} for a

knapsack with capacity C = 5. Table 5.1 shows the dependency among the processes

to compute each cell during iteration 1 in non-FT implementation.

Table 5.1: Data Dependency Among the Processes

Iteration Dependency
1 P2 → P0, P3 → P1, P4 → P2, P5 → P3

Following describes how fault tolerance is accomplished alongside with the execution

of the algorithm:

• Processes P0 and P1 depends on themselves for the computation. Illustrate in

figure 5.2b.

• P2 piggybacks the flag-bit (FT algorithm) with the data request message (part

of original non-FT algorithm) to P0. Next, P0 replies with the flag-bit together

with the requested data (part of original non-FT algorithm), shown in figure

5.2c.

• Similarly, P3 exchanges with P1, P4 with P2 and, P5 with P3 respectively, shown

in figure 5.2d- 5.2f.

• P0 and P4 will keep backup of P2 in their local memory. Similarly, P1 and P5

will keep the backup of P3.

• The left border processes P0 and P1 will send an extra backup message to the

right border processes P4 and P5 respectively and vice-verse. Other copy will

be with the processes for which they are contributing to their computation or
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takes contribution for their computation. For P0 and P1, it will be P2 and P3

respectively and for P4 and P5, it will be P2 and P3 respectively, display figure

5.2g.

• The logical backup dependency among the process is shown in figure 5.2h.

(a) Initial dynamic program-
ming table split among pro-
cesses

(b) Computation of P0 and
P1

(c) Computation of P2

(d) Computation of P3 (e) Computation of P4 (f) Computation of P5

(g) Extra backup message ex-
change for P0 and P1

(h) Backup depen-
dency among the
processes

Figure 5.2: Fautlt Tolerance for 0/1 Knapsack Problem
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5.4 Fault Recovery

We discuss the recovery protocol for a fine grained DP solution to the 0/1 knapsack

problem, where each process is assigned a single column of the DP table. We formulate

the recovery equation from equation (5.4) by including the flag bit fm used in protocol

1.1 as follows:

f(i,m) = f(i− 1,m).fm + {f(i− 1,m− wi) + pi}.fm (5.5)

Here, f(i,m) is the lost data of the failed process Pm from iteration i that needs to be

recovered. It can be seen from euqation 5.5 that the flag bit fm determines whether

the local or remote part of the critical data for the process at iteration i contributed

to calculating f(i,m).

Referring to Protocol 1.1, suppose process P ∈ PmS(i + 1) detects failure of Pm

at start of iteration i + 1. The recovery protocol resumes the execution of the failed

process by recovering the lost data of Pm from iteration i in the following way:

Restart execution of process Pm:

Case 1: The flag bit fm from iteration i can be recovered (from P ∈ PmR(i+ 1)).

Case 1.1: If fm = 1 then, referring to Eqn. (5.5), the lost data is recovered using

CDRemote(Pm, i) that belongs the Receiver Set PmR(i) and resume the operation of

the failed process from iteration i+ 1.

Case 1.2: If fm = 0 then, referring to Eqn. (5.5), the lost data can be recovered

with the help of CDLocal(Pm, i). However CDLocal(Pm, i) belongs to the failed process

Pm and is lost because it could not be received by PmS(i+1) (that is why the failure

is detected). So this data needs to be regenerated from a previous iteration where fm

was last set to 1; let this be at iteration (i− j). The following two cases can arise:

Case 1.2.1: If the generation of the lost data at iteration (i−j) is successful

with the help of Pk(i−j) (protocol 1.1) then resume the operation of Pm from iteration
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i + 1. Note that the data is unchanged from iteration (i − j) till iteration i because

the flag bit had been 0 during this interval.

Case 1.2.2: If not successful (due to failure of some of the processes

in Pk(i − j), then backtrack to a previous iteration from where the lost data can

be recovered, recalculate the lost data till iteration i, and resume operation from

iteration i+ 1.

Case 2: The flag bit fm from iteration i cannot be recovered. In that case, backtrack

to a previous iteration i− j, 1 ≤ j ≤ (i− 1), for which the flag bit can be recovered

and then follow the same steps as in Case 1.1 or Case 1.2 above to recover the failed

data from iteration i− j onward till the current iteration i+ 1.

5.5 Theoretical Analysis

5.5.1 An analysis of extra message overhead

As a specific case of Lemma 4.3, in the following we present an analysis of the extra

message overhead for protocol 1.1. Suppose there are N processes P1, P2, ..., PN in

the system. Referring to figure 5.1, at the start of iteration i the dependency distance

is wi where 1 ≤ wi ≤ N − 1.

First we calculate the average number of messages in the original (non-FT) parallel

solution. At iteration i, processes P1, P2, ...., Pwi
do not send request messages (i.e.,

for each of those processes, PR(i) = ∅). The other N − wi processes send requests

and receive replies. So, a total number of such request-reply messages at iteration

i = wi ∗ 0 + (N − wi) ∗ 2 = 2(N − wi). Similarly, processes PN , PN−1, ..., PN−wi+1

do not receive request messages (i.e., for each of those processes, PS(i) = ∅) but the

other N − wi processes receive requests and send replies. So, total number of such

request-reply messages at iteration i becomes 2(N − wi). Noting that each message
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is counted twice in the previous calculations, so the total number of messages at

iteration i:

{2(N − wi) + 2(N − wi)}/2 = 2(N − wi) (5.6)

Considering that wi could be any value between 1 and N − 1, the average number

of messages at iteration i becomes

1

N − 1

N−1
∑

wi=1

2 ∗ (N − wi) =
2

N − 1
∗
N(N − 1)

2
= N (5.7)

Now, referring to protocol 1.1, in the FT application, each process’ CD information

replicated among the processes in the set Pk(i) and involve explicit messages when

either of PR(i) or PS(i) is empty (Steps 1 and 2 in protocol 1.1). Based on the

previous discussion, total number of such processes for which either PR(i) or PS(i)

is empty = 2wi. Each of these processes sends an explicit message to save its CD

information with a member of Pk(i). Hence, the total number of explicit messages in

the FT application = 2wi and the total number of messages in the FT application

becomes

2(N − wi) + 2wi = 2N (5.8)

Comparing equations (5.7) and (5.8), it can be seen that in the average case

scenario the FT protocol results in extra N number of messages over the original

non-FT application.

The best case scenario in term of extra message overhead arises when wi = 1.

From equation (5.6), we can see that the total number of messages at iteration i in

the best case scenario = 2(N − 1). Compared with the FT implementation, it is

evident that the FT protocol results in two extra messages over the original non-FT

application in the best case.

The worst case scenario arises when wi = N − 1. From equation (5.6), the total
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Table 5.2: Experimental configuration

No. of
Processes

Knapsack
with

capacity

Total
number of

items

Weight
Range

Profit
Range

12 to 48 100000 1000 10 to 5000 20 to 1000

number of messages at iteration i in the worst case scenario = 2. Comparing with the

FT implementation, it can be seen that in the worst case scenario the FT protocol

results in 2(N -1) extra messages over the original non-FT application.

5.6 Experimental Evaluation

In this section, we experimentally analyze the proposed ABFT scheme and compare

its performance with diskless checkpointing [73]. All the experiments are performed

on the HPC cluster Briarée of Calcul Québec and Compute Canada1. Briarée has a

total of 8064 cores which are distributed among 672 compute nodes and connected

via a 4 TB/s Infiniband QDR network. The operating system is Scientific Linux 6.3.

and we use OpenMPI 1.8.3 for our implementation.

For our experiments, we consider the DP solution to the 0/1 knapsack problem

with a variable configuration as listed in Table 5.2. Profits and weights of items are

generated randomly and fault generation is also random. In performance comparison

with diskless checkpointing, (diskless) checkpoint is taken after execution of every

50 rows of DP table which is much lower than the MTTF for this specific set of

experiments.

Table 5.3 shows the extra message overhead of an FT implementation of the 0/1

knapsack problem using protocol 1.1, based on the configuration in Table 5.2, over a

non-FT implementation in a failure-free execution. It can be seen from table 5.3 that

the overhead increases linearly with the number of processes and also the number

1The operation of this supercomputer is funded by the Canada Foundation for Innovation (CFI),
NanoQuébec, RMGA and the Fonds de recherche du Québec - Nature et technologies (FQRNT)
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Table 5.3: Extra message overhead

No. of Processes
Total no. of

messages (nonFT)
Total number of
extra messages

Overhead(%)

12 55303 2390 4.32%
24 110789 5492 4.96%

36 140210 7136 5.09%

48 153110 9364 6.12%

of message exchanges scales up linearly with the number of processes. It should be

mentioned here that the total execution time of an FT application in our experiments

vary from 204 to 162 seconds as the number of processes varies from 12 to 48.
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Figure 5.3: Recovery Overhead with single failure.

Figure 5.3 and figure 5.4 show the recovery overhead for our scheme with single and

simultaneous multiple failures (up to 50% of the process failures) successively. The

recovery overhead is calculated as the ratio of the total recovery time to the total

execution time of the recovered application that uses our scheme. The recovery over-

head is approximately .025% in both the cases. We found that there is not much

of change in the recovery overhead between single and multiple process failures: this

can be attributed to the fact that the recovery scheme is distributed, and recovery
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of multiple processes can overlap as long as long as they are not dependent on one

another.
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Figure 5.4: Recovery Overhead with simultaneous multiple failures.

Figure 5.5 shows the fault tolerance overhead in a failure-free execution for both disk-

less checkpointing and our ABFT scheme. Diskless checkpointing is implemented by

taking checkpoints after every 50-row operations of the DP table. The result demon-

strates that our scheme introduces less fault tolerance overhead as compared to the

diskless checkpointing implementation. Also, with diskless checkpointing, the over-

head increases at a much higher rate with increasing scale as compared to our scheme.

This can be attributed to the fact that diskless checkpointing involve coordination

cost and explicit messages, and these overheads do not scale well with increasing

number of processes.

Figure 5.6 shows the performance improvement of our scheme over diskless check-

pointing in the case of single process failure. It is found that the performance gain

of our scheme over diskless checkpointing is nearly 80%. The reason is again due
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Figure 5.5: Fault Tolerance Overhead (without fault)

to the coordination cost and explicit message overhead, which are either avoided or

minimized in our case.
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Figure 5.6: Performance Improvement (Our scheme vs. Diskless checkpointing)

Figure 5.7 shows that our scheme has less recovery overhead as compared to

diskless checkpointing. The y-axis of the figure is drawn in the logarithmic scale. The
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overhead in our scheme is almost uniform irrespective of the number of processes. On

the other hand, diskless checkpointing introduces significant overhead which increases

with increasing scale. The reason is that, with diskless checkpointing, all the processes

are rolled back and recovered from a previous coordinated cut even in the case of a

single process failure. Whereas, our scheme only recovers the failed process(es) from

a previous recoverable point without rolling back any other processes.
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Figure 5.7: Failure Recovery Overhead

5.7 Conclusion

In this chapter, we have presented an ABFT for 0/1 knapsack problem by analyzing

it’s algorithmic and communication characteristics. The analysis finds more optimiza-

tion is possible in critical data for such problems where the subproblems have small

and fixed dependency cardinality among themselves. Here, we introduce a bit-vector

flag as critical data and devise a fault recovery formulation for 0/1 knapsack prob-

lem. Experimental results have shown the effectiveness of the proposed FT scheme

and indicate that our scheme has introduced much less overhead than CP/R.
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Chapter 6

Discussion and Future Work

Fault tolerance is becoming a necessity rather than an accessory for HPC applications.

The complex parallel architecture of today’s HPC systems introduces more failures

with increasing scale. Checkpoint provides an application-transparent fault tolerance

to these systems. Minimum checkpoint and recovery overhead is the principal objec-

tive of any fault tolerance (FT) design. In that case, the checkpoint and recovery

cost imposed by checkpoint/restart (CP/R) is a crucial performance issue for such

large-scale systems. In this thesis, we address the several challenging issues of the

fault tolerance scheme and develop FT techniques for two broad classes of parallel

algorithms with a notion to achieve the objectives of FT design.

In this thesis, we go further than conventional ABFT and concentrate on the dif-

ferent categories of parallel applications not addressed by conventional ABFT. This

research studies characteristic of two distinct classes of parallel algorithms: (i) paral-

lel search algorithm and (ii) parallel dynamic programming algorithm and develops

ABFT for these two types of algorithms to provide fault tolerance and recovery in

case of fail-stop failures. In particular, we bring out the communication and algorith-

mic characteristics of parallel algorithms to determine what application data needs to

be replicated and how this fault recovery data should be replicated to design efficient
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fault tolerance and recovery strategies for a class of parallel applications. Theoretical

and experimental results have successfully demonstrated that our developed fault tol-

erance schemes can endure multiple simultaneous process failures with low checkpoint

and recovery overhead.

We describe how algorithmic features and identification of fault recovery data (we

define it ”critical data”) are crucial in ABFT design. In that regard, we have de-

veloped a fault tolerance and recovery strategy for parallel search algorithms. The

aspects of parallel search algorithms associate this to the class of embarrassingly paral-

lel algorithms. We illustrate our idea with PIDA*, a generic parallel search algorithm

used to solve a broad range of discrete optimization problems. Fault tolerance is ac-

complished by integrating our approach with the existing PIDA* algorithm without

altering the original algorithm. We have observed that the FTPIDA* (fault tolerant

PIDA*) scheme outperforms the CP/R concerning checkpoint and recovery overhead

in a failure-free environment and also in the presence of single or multiple process

failures. For instance, our simulation results show that the performance improvement

of FTPIDA* is almost 30% for 20 processes and 67% for 80 processes as compared

to CP/R in the presence of 50% simultaneous process failures. Also, the FTPIDA*

outperforms the CP/R in total checkpoint data size. For example, it reduces the

overall backup size by 92.77% with 20 processes.

Next, we justify that the presence of strong interdependence among subtasks

in a communication exhaustive parallel application performs a vital role in ABFT

design. We demonstrate that communication dependency among the processes can

be exploited to replicate the fault recovery data (critical data) of one process to

its peer process’s memory. Additionally, we show that algorithmic characteristics

decide what will be the critical data for such applications. We have developed a fault

tolerance and recovery strategy for such communication-intensive parallel applications
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and demonstrate it with the help of the parallel dynamic programming (DP) class of

problems. We further show that for a n-dependent DP problem, where each subtask

has a maximum dependency of O(n), algorithm features can reduce the cardinality

of critical data from n to 1. Compared with CP/R, our proposed ABFT approach

performs significantly better in the case of fault tolerance and recovery cost in the

presence of single and multiple process failures. Theoretically, we prove that with our

proposed method, replication of a particular data (as critical data) with a peer can

achieve an overall gain of ≈ 67% for the LCS problem and for the TSP problem the

gain is between 80% to ≈ 90%.

The size of fault recovery data is a critical performance bottleneck in FT design.

More specifically, minimizing the fault recovery data size for the large-scale system is

a major research issue in FT platforms. In that regard, finally, we have demonstrated

that for particular DP types of problems, further optimization can be achieved when

a subproblem has a fixed small degree of dependency with other subproblems. We

evaluate this with a well-known DP problem, the 0/1 knapsack problem and propose

an FT scheme for such a case. Here, instead of replicating the critical data, we

replicate a bit-vector flag with peer processes for recovery purposes. This flag is used

to rebuild the lost data of the failed process with the help of the information available

in the other processes. Our simulation results show that the FT implementation

has minimal extra message overhead over non-FT implementation. For instance, it

is 4.32% with 12 processes and 6.12% with 48 processes. Moreover, for the fault

tolerance overhead in a failure-free situation, our proposed FT scheme outperforms

CP/R. In the presence of a single process failure, our proposed FT strategy has a

constant performance gain of approximately 80% over CP/R with increasing numbers

of processes.
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6.1 Future Work

The work presented in the thesis goes to provide considerable effort to address the

main challenges of existing FT techniques: (i)CP/R, and (ii)ABFT for large-scale

HPC systems. Moreover, we present an ABFT solution for two large classes of parallel

algorithms to address these issues. The objectives are to minimize fault tolerance and

recovery overhead, optimize the size of the fault recovery data, and also legitimize

the universal applicability of ABFT. However, there remain several future research

directions which may add extra benefits to meet the challenges of the fault tolerance

for current petascale and upcoming exascale systems.

This study handles two broad classes of parallel algorithms: (i) parallel search

algorithms, and (ii) parallel DP algorithms. This work can be extended to other

types of parallel algorithms: divide-and-conquer, graph algorithms, computational

geometry, Fast Fourier transform (FFT), nearest-neighbor algorithm, and more to

justify the applicability of ABFT.

This work addresses the hard or fail-stop type of faults. This research could be

broadened to handle soft faults or errors. The soft error can be hazardous to scientific

computation as in most of the cases the faulty components continue to execute the

application without reporting any symptoms of the soft fault. The soft error has a

catastrophic effect on computation and creates invalid computational results without

ever being detected. Research has been done with the traditional ABFT to handle

soft errors, but still, there is a lack of exploration. This could be another direction

where we can expand our research.

Additionally, we designed and developed the fault tolerance strategy for the clus-

ter, which is one of the platforms of HPC systems. Graphics processing units (GPUs)

are another fascinating and inexpensive parallel environment for high-performance ap-

plications. But unfortunately, GPUs are very susceptible to soft or transient failures.
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However, scientific applications with massive data processing need more reliability

even with acceptable overheads. Fault tolerance and its usability for many-core ac-

celerator architectures like GPUs are considered as a critical issue to the efficient use

of GPUs for scientific applications. Limited research has been done on developing

ABFT for heterogeneous systems with GPUs. This will be one other direction of our

future work.
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