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ABSTRACT 

Autonomous Soil Assessment System for Planetary Rovers 

Dhara Shukla 

Planetary rovers face mobility hazards associated with various classes of terrains they 

traverse, and hence it is desirable to enable remote prediction of terrain trafficability (ability to 

traverse) properties. For that reason, the development of algorithms for assessing terrain type and 

mobility properties, as well as for coupling these data in an online learning framework, represent 

important capabilities for next-generation rovers. This work focuses mainly on 3-way terrain 

classification (classifying as one of the types: Sand, Bedrock and Gravel) as well as on the 

correlation of terrain types and their mobility properties in a framework that enables online 

learning. For terrain classification, visual descriptors are developed, which are primarily based on 

visual texture and are captured in form of histograms of edge filter responses at various scales and 

orientations. The descriptors investigated in this work are HOG (Histogram of Oriented 

Gradients), GIST, MR8 (Maximum Response) Textons and the classification techniques 

implemented here are nearest and k-nearest neighbors. Further, monochrome image intensity is 

used as an additional feature to further distinguish bedrock from the other terrain types. No major 

differences in performance are observed between the three descriptors, leading to the adoption of 

the HOG approach due to its lower computational complexity (over 3 orders of magnitude 

difference in complexity between HOG and Textons) and thus higher applicability to planetary 

missions. Tests demonstrate an accuracy between 70% and 93% (81% average) for the 

classification using the HOG descriptor, on images taken by NASA’s Mars rovers.  

To predict terrain trafficability ahead of the rover, exteroceptive data namely terrain type and slope, 

are correlated with the trafficability metrics namely slip, sinkage and roughness, in a learning 

framework. A queue based data structure has been implemented for the correlation, which keeps 

discarding the older data so as to avoid diminishing the effect of newer data samples, when there 

is a large amount of data. This also ensures that the rover will be able to adapt to changing terrains 

responses and predict the risk level (low, medium or high) accordingly.  

Finally, all the algorithms developed in this work were tested and verified in a field test demo at 

the CSA (Canadian Space Agency) mars yard. The risk metric in combination with the queue based 

data structure, can achieve stable predictions in consistent terrains, while also being responsive to 

sudden changes in terrain trafficability.    
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Chapter 1. Introduction 

The experiences of NASA’s series of Mars rovers—Sojourner, Sprit, Opportunity, and Curiosity—

provide a wealth of knowledge about rover mobility challenges in extra-terrestrial terrain. Spirit 

had experienced high slippage when crossing highly deformable sands [1]. Analysis of mobility 

challenges faced by Spirit showed that difficulties occurred while traversing locally low regions, 

where highly deformable sulfate-rich soils had accumulated. High sinkage events became 

particularly problematic when Spirit’s right front-wheel-drive actuator failed and the rover was 

forced to drag the wheel, leading to a final embedding event in the Troy area. In March 2010, 

communications with Spirit were lost as the winter season approached, and the mission was 

terminated [1].  

The Opportunity rover has experienced high wheel sinkage and slippage on multiple occasions 

when traversing sandy crater walls or wind-blown ripples. In some instances wheel slip 

approached 100%, leading to scenarios where the rover could not reach the desired traverse target 

and was forced to re-route [2]. Such high slippage occurred when all six wheels were on the flanks 

of wind-blown ripples with mild slope. Un-compacted regolith was shown to be highly 

deformable, leading to high wheel sinkage and thus high motion resistance and increased slip. The 

 

Figure 1-1: Image of Spirit embedded in Troy 
Courtesy NASA/JPL-Caltech 
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most significant case of sandy ripples causing difficulties for Opportunity was the embedding 

event in what was dubbed “purgatory dune” that lasted from Sol 446 to Sol 484 [76]. 

 

 

        

Figure 1-2: Front looking & Side looking views of "purgatory dune" 
Courtesy NASA/JPL-Caltech 

      

Figure 1-3: Images during Opportunity "purgatory dune" embedding event, showing wheel sinkage 
Courtesy NASA/JPL-Caltech 
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The Curiosity rover has also experienced mobility difficulties when traveling over loose, wind-

deposited soil, with the most extreme slippage events occurring when the rover attempted to travel 

over shallow slope formations (“ripples.”) [77]. Further, Figure 4 below shows tears and punctures 

in the Mars Science Laboratory Curiosity rover’s wheel. Curiosity’s wheels are at highest risk in 

areas strewn with embedded jagged rocks [1]. 

 

 

 

 

 

 

 

   

 

1.1 Problem statement and proposed solution 

Analysis of data from NASA’s series of rovers has thus clearly and repeatedly shown that non-

geometric hazards, typically in the form of loose regolith deposits and often occurring in locally 

low or ripple regions, have posed by far the greatest challenge to safe rover navigation on the 

surface of Mars [1, 2, 76]. 

Current rover navigation algorithms rely primarily on the detection and avoidance of geometric 

hazards such as rocks and steep slopes. While some “terrain induced hazards” or “non-geometric 

hazards” can be avoided by painstakingly designing a safe route through terrain that has been 

carefully analyzed by a human expert, other hazards can only be detected through the use of on-

board perception techniques. Those on-board perception techniques rely on two distinct classes of 

sensors: proprioceptive sensors and exteroceptive sensors. Proprioceptive sensors are those that 

measure the internal state of a system, e.g., quantities including vehicle body acceleration, angular 

rates, chassis vibration, and wheel/track drive torque, among others.  Exteroceptive sensors are 

 

Figure 1-4: Tear and Punctures in Curiosity’s wheel 
Courtesy NASA/JPL-Caltech 
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those that measure data related to the surrounding environment, e.g., vision sensors, LIDAR 

sensors, and multispectral sensors, among others.  

To increase the likelihood of detecting terrain induced hazards, it would be desirable to enable a 

rover system to accurately estimate the physical properties of that terrain. Non-geometric hazards 

are highly dependent on wheel-terrain interaction properties. For that reason, the development of 

algorithms for assessing the terrain type, physical properties, and mobility properties represent 

important capabilities for next-generation rovers. Furthermore, to enable remote prediction of 

terrain trafficability, it is essential to introduce learning-based methods that couple proprioceptive 

and exteroceptive data in a correlation phase.   

 One aspect of this problem is terrain classification, i.e. assigning a terrain region of interest to one 

of a small number of discrete classes, such as compacted sand, loose sand, or rock. Another aspect 

is terrain characterization, i.e. capturing measured data from (typically) rover proprioceptive 

sensors when driving over a terrain region of interest, and analyzing this data to infer a quantitative 

measure of soil strength or some other physical property related to trafficability. These terrain 

classification and characterization techniques can be useful in identifying “terrain induced 

hazards” or “non-geometric hazards” that can pose severe mobility challenges to a rover.  

Hence, the ultimate goal is to develop a system that will combine the best properties of terrain 

classification and characterization methods to allow a rover to accurately predict the physical 

properties of distant terrain and this system is named the “Autonomous Soil Assessment System 

(ASAS)”. For classification techniques, the goal is to avoid the computational load, wherever 

possible owing to the fact that planetary vehicles have extremely limited computational resources 

due to high radiation level and large temperature changes of space [78]. Whereas, for the 

combination of both the approaches, the architecture has been inspired by the work of [3], which 

exploits both proprioceptive and exteroceptive sensor data to enable accurate prediction of distant 

terrain properties.  In such an architecture, the rover captures exteroceptive sensor data from nearby 

terrain and performs terrain classification (Figure 1-5 (a)). Then, when the rover traverses that 

terrain, it captures proprioceptive sensor data and performs terrain characterization (Figure 1-5 

(b)). A machine learning algorithm is then trained in order to couple the proprioceptive and 

exteroceptive data, in a correlation phase. During rover operation, a learned, data-driven model is 
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then used to estimate trafficability properties of distant terrain using only exteroceptive data 

(Figure 1-5 (c) 

 

1.2 Contributions of this thesis 

This thesis presents the development of the exploratory phase explained above as well as the 

correlation of exteroceptive and proprioceptive data in a learning framework, which results into 

the development of a data driven model.  

The main contributions of thesis are as follows: 

1. Evaluating visual descriptors according to computational efficiency, with relevance to 

planetary rover constraints. 

2. Introducing a simple and adaptive data driven non-parametric trafficability model.  

 

 

Figure 1-5: Method for correlating terrain classification and characterization based on proprioceptive and 

exteroceptive sensing systems, From [3] 
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Chapter 2. Literature Review 

Work in the literature that is related to autonomous soil assessment includes image classification 

(both in general and for planetary terrains in particular), proprioceptive terrain classification, and 

trafficability modeling and prediction. 

2.1 Image Classification 

Exteroceptive sensors such as visible light cameras and laser range finders (LIDARs) have been 

widely employed in the field of mobile robotics and used extensively for terrain classification 

purposes. A common difference between methods lies in the choice of features or descriptors used 

to train the classifier. Common filters used for feature extraction include Gradient, Sobel, Prewitt, 

Gabor, LBP (Local Binary Patterns) [38] etc. For example, local gradient filters are used in HOG 

[36] whereas Gabor filters are used in GIST [7, 8] as well as Textons [5, 6 & 12] (in conjunction 

with Gaussian and Laplacian of Gaussian filters). These three descriptors have been implemented 

in this work and hence, they are described in detail in Chapter 3. Apart from them, local gradients 

are also used in higher order descriptor such as SIFT [35] while Haar wavelets are used in SURF 

[37]. Haar wavelets are also used for feature extraction in the work performed in [3, 20 & 34]. 

SURF consists of recognizing the interest points in an image using a Hessian matrix at different 

scales. An NxN matrix is formed around every interest point, which is further filtered to extract 

features and form a descriptor. The Haar wavelets are used for extracting features from the 

matrices. Here, Haar wavelet response is derived in the x and y directions for the 4x4 sub-regions. 

The resultant matrix obtained in x-direction is then added to form a response, Dx. Similarly, Dy, 

|Dx| and |Dy| are, sum of y-response values and sum of absolute value of responses in x-direction 

as well as y-direction, respectively. This forms a 4 length vector. Hence for 4x4 sub-region, there 

will be 16x4=64 length vector, which is called the descriptor.  

Figure 2-1 below examines the space of these techniques for capturing texture, plotted on axes of 

window size and orientation resolution. In terms of window size, gradient (3x1) is lowest in 

comparison with all the other techniques. Whereas, in terms of orientation resolution, gradient, 

Sobel, Prewitt, and Haar filters can only be oriented horizontally or vertically; LBPs additionally 

encode diagonal information; Gabor filters can be defined at arbitrarily high angular resolution, 

and co-occurrence matrices use information from all pixels regardless of their relative orientation.  
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From this comparison, it can be seen that gradient-based methods and Gabor-filter based methods 

represent opposite ends of a spectrum, from coarse to finely tunable, in terms of the metrics 

discussed. These differences motivate an exploration of whether such distinctions, at the extremes, 

lead to appreciable differences in performance or complexity. Hence, in this work, the performance 

of a gradient based method, essentially a simplified HOG descriptor, and Gabor-based methods 

including Textons and a simplified GIST descriptor has been explored and compared.  

    

 

 

 

 

 

 

 

Moreover, from the point of view of quantitative analysis of computational complexity, the 

complexity of 2D convolution in spatial filtering, in terms of Big-O notation, is given by          

O(MN mn) [52]. Here image is of size M x N, whereas, the filter size is m x n. Such quantitative 

analysis is conducted for all three descriptors as well, in Section 3.4. 

Most existing techniques for classifying terrain with exteroceptive sensors make use of machine 

learning algorithms (e.g., Support Vector Machine) [9, 10]. Some of the simplest classification 

method include nearest and k–nearest neighbor method. The work performed in [12, 35] exhibits 

the usage of nearest neighbor method for the image classification. The k -nearest neighbor 

classifier is a conventional nonparametric supervised classifier [53] and the work performed in 

[54] shows the comparison between K-NN and Neural network classification techniques for the 

classification of magnetic resonance images (MRI). Also, a neural network (NN) is used for multi-

sensor (Image, Accelerometer, Encoder) road classification in the work of [22]. 

 
Figure 2-1: Qualitative complexity of various texture approaches in terms of their 

window size and orientation resolution 
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Convolutional neural networks (CNNs) came into the focus of attention with the ‘AlexNet’ 

developed by [55] who were able to achieve a top-5 test error rate (the rate at which, given an 

image, the model does not output the correct label with its top 5 predictions) of 15.4% for 

classifying images into 1000 different categories. This work illustrated the benefits of CNNs and 

backed them up with record breaking performance in 2012 ILSVRC (ImageNet Large-Scale 

Visual Recognition Challenge). Their network was trained over 15 million annotated images from 

a total of over 22,000 categories, for five to six days. After this work, several researchers have 

worked on CNN, trying to improve performance and reduce the complexity such as [56, 57, 58]. 

The current best CNN architecture is the one in [59] with 3.6 error rate, however, this network was 

trained on 8 GPU machines for two to three weeks. Thus, the ability of neural network techniques 

to outperform other classification techniques comes at a cost of very high computational 

complexity.   

2.2 Planetary Terrain Classification 

Some recent work has investigated images of Mars terrains directly [18, 19] or Martian analogue 

terrains consisting of sand, bedrock, and soil [20, 21]. Halatci et al [19] study the performance of 

a multi-sensor classification method in the context of Mars surface exploration. Features based on 

color, texture, range (i.e., surface geometry), and vibration arising from robot wheel–terrain 

interaction are utilized for classification. For the texture detection, a wavelet-based fractal 

dimension signature method, which yields robust results in natural texture segmentation as 

demonstrated by [60] has been employed. However, they still assume the availability of color 

images and are using data from the MER Panoramic Cameras, which are a science instrument 

rather than a dedicated navigation sensor. Similarly, Otsu et al [20] also assume the availability of 

color images. Moreover, Fujita et al [21] not only classify soil types but also the velocities of a 

rover relative to a terrain surface, thus identifying slippage arising from distinct terrain properties. 

This is accomplished by a classification method based on a dynamic texture analysis. The 

effectiveness of the combined distance measure for improving classification performance is 

demonstrated through experimental runs of two rover testbeds in sand pits. However, they utilize 

frequently sampled image sequences, another feature that may not be available to near-term 

planetary rovers.  
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Apart from that, other work in this area has focused on combining multiple exteroceptive sources. 

In [41], a method based on conditional random fields is trained using data from a 3D LIDAR and 

a monocular camera. A terrain classification approach for an autonomous robot based on Markov 

random fields is proposed in [42]. Here, the authors fuse 3D laser and camera image data. An 

approach based on combining the information from a downward-looking camera and a frontal 

camera is proposed in [9]. In this case, the classification algorithm is based on a GIST descriptor 

and color features. The work of [10] describes the use of three types of perception systems to 

classify the terrain, namely vision, depth and tactile sensors. In this study, the use of visual cues 

was shown to provide poorer results than the other sensing modalities.  

2.3 Proprioceptive Data based Terrain Classification 

A substantial body of work exists describing methods for terrain classification or characterization 

based on proprioceptive sensor data. Though this aspect is not directly explored in this thesis, it is 

an important related work. Proprioceptive terrain classification based on analysis of vibration in 

the rover structure is one of the most common approaches, and was introduced in [23] and later 

explored in [24,25]. Vibrations in the rover structure can be measured via a variety of sensors, 

including accelerometers mounted rigidly to the rover structure [26, 27], IMUs (Inertial 

Measurement Units) [28], and contact microphones mounted on the rover structure, ideally near 

the wheel-terrain interface [23, 29].  

A comparative study of the utility of several different proprioceptive sensors is presented in [43]. 

That work describes experimentation with microphones, gyroscopes, accelerometers, encoders, 

motor current sensors, voltage sensors, and downward-facing ultrasonic and infrared cameras. It 

was reported that gyroscopes worked best for gravel, pavement and dirt; motor current worked 

best for sand; and microphones worked best for grass.  This is likely due to the fact that distinct 

terrain types tend to yield distinct proprioceptive signatures, e.g., travel over gravelly terrain tends 

to induce vibration in the rover structure due to terrain roughness, and this vibration is best detected 

by a gyroscope; in contrast, sandy terrain is often relatively smooth, which does not result in 

significant rover vibration but rather leads to high motor current draw due to increased soil 

compaction resistance.  Another example where a comprehensive sensor suite is tested, appears in 

[44]. In particular, accelerometers, rate gyroscopes, leg angle encoders, and motor current 

estimators are combined through a probabilistic framework for environment identification.  
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Vibration-based classifiers reported in the literature typically rely on machine learning algorithms 

to perform classification. Support vector machines (SVM) are a commonly used technique to 

enable on-line identification of terrain type [23, 29, 27, 32]. One of the practical challenges of 

vibration based classification is that such systems typically require training over a narrow range of 

operating conditions. As a specific example, it can yield poor results when the robot speed is 

significantly different from the training speeds. This effect is minimized in [30] by creating an 

estimate of the terrain profile from measured wheel accelerations and considering spatial (rather 

than temporal) frequency components of the estimated profile. Features extracted from the 

vibration data in various domains (time domain, frequency domain, and wavelet features) are 

analyzed in [45]. Another limitation of vibration-based methods is that while data is generally 

captured by a single sensor (mounted at the rover body, or near a wheel axle), each wheel is 

implicitly assumed to experience the same terrain. Thus, situations in which a vehicle 

simultaneously travels on two or more terrains may lead to poor results. In [31], a novel method 

called Terrain Input Classification improves traditional vibration-based techniques by eliminating 

or reducing speed dependency and by detecting multiple terrain traversal. 

2.4 Trafficability/Terramechanics Models 

The founding modeling paradigm of terramechanics (the study of vehicle-terrain interactions) 

relies on quasi-static pressure sinkage relationships to estimate compaction resistance [61] and/or 

empirical parameters, e.g. to estimate the location of maximum pressure beneath a wheel [62]. For 

rigid wheels on dry granular soil (a typical case for planetary rovers), the quasi-static assumption 

is contradicted by the data; Wong observed flowing granular soil, and pressure distributions more 

complex than predicted by quasi-static compaction [63]. Several researchers today highlight the 

insufficient predictive power of classical terramechanics models for planetary rovers [64-67]. 

Recently, data-driven approaches have become popular for assessing and modeling mobility. Some 

of the advantages of data-driven approaches over model-based approaches are summarized by 

[69]: adaptability to imperfect knowledge of model parameters, to heterogeneous combinations of 

materials, and to changing environmental conditions. Further, the data-driven modeling is 

increasingly non-parametric. Gaussian process regression is now commonly used to model 

relationships between terrain slope and rover slip [68-71]. This enables a data-driven model that 

is not forced to conform according to preconceived notions, and also provides estimates of 
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uncertainty in the model. A key drawback of Gaussian process regression is its computational 

complexity, O(N3) where N is the number of data-points. Karumanchi et al. provide a detailed 

discussion of Gaussian process regression in the context of slip vs. slope modeling [69]. They 

mention that use of a Relevance Vector Machine can reduce computation time, and also touch 

upon addressing multimodality in the data.  

Despite slip vs. slope being one of the strongest and most broadly used relationships in mobility 

prediction, this relationship is nonetheless far from precisely predictable. Recent field tests [72] 

(and also this work) as well as reports from Mars rover data [71] highlight instances of huge 

variability in slip on similar slopes of sandy terrains. This variability and unpredictability is one 

of the key reasons for the popularity of non-parametric methods for this application. 

2.5 Trafficability Prediction 

The problem of predicting a planetary rover's mobility across terrain located ahead of it has 

received considerable attention in the literature in recent years. In [75], data-driven slip vs. slope 

models are learned for various terrain types and then they use exteroceptive measurements to 

classify terrain types and measure slope, thus predicting slip [12]. Predicted slip values are further 

used for goodness map generation and path planning, and simulation is used to resolve ambiguities 

in predicted traversability [16]. Ishigami et al. also use simulation for path planning, though their 

approach differs by focusing on terramechanics rather than machine learning; they minimize a cost 

function of rover instability, slip, traverse time and energy consumption [73]. Brooks and 

Iagnemma combine data-driven learning with terramechanics by using a self-supervised 

framework for classifying terrain types and ultimately predicting a terrain map classified according 

to achievable drawbar pull [3]. Krebs et al. present an unsupervised framework where the rover 

develops its own associations between terrain appearance and resulting mobility [74]. Peynot et 

al. develop stochastic mobility prediction based on features detected ahead of the rover related to 

terrain slope and roughness [70].  

One trend worth noting in these approaches is that, slip is noted as a critical metric for rover 

mobility. Many researchers in the area focus on slip explicitly [3, 12, 16, 69, 75], and even 

researchers who do not do so recognize the implicit role it plays in other formulations of mobility 

prediction and note the value of investigating it directly [70, 73, 74]. When interpreting data-driven 

slip models, it is important to understand how the variability in slip data is related to mobility risk; 
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this can be informed by past work in terramechanics. In past literature studying vehicle-terrain 

interactions, 20% slip is frequently cited as an important threshold. Drawbar pull begins to plateau 

around 20% slip for many wheels (or tracks) while negative effects such as sinkage increase. 

Wheels can exhibit strongly nonlinear performance, with slip increasing very gradually with 

increasing load (induced by climbing an increasingly steep slope, for example) until it crosses 

above 20%, at which point it can rapidly increase to unsafe conditions of approximately 80% slip 

[46]; see Figure 2-2. Other researchers have noted wheels experiencing similar non-linearity at 

approximately 20% to 30% slip [47]. A non-dimensional quantity, P20/W (Drawbar pull at 20% 

slip, normalized by vehicle weight), has been used as a benchmark metric for lunar wheel 

performance from the times of Apollo [47] to today [48, 49]. 

 

The work performed in [12, 75, 3] have been very closely followed by this work and hence a brief 

overview of both the work has been given here. In [12, 75], an approach to predict rover slip 

properties from a distance using stereo imagery is proposed. To address this issue, terrain 

classification is performed using Textons based method and nearest neighbor technique. Terrain 

appearance and geometry information are then correlated with empirically measured slip 

        

Figure 2-2: Drawbar pull plateaus around 20% slip and a vehicle enters a regime of poor mobility there- 

after. This data, courtesy of NASA Glenn Research Center, characterizes the performance of a spring tire. 

From [46]. 
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properties (which were measured as the difference of velocities estimated from the difference of 

wheel and visual odometry). This relationship is learned using a regression approach. In the end, 

slip is predicted online from remote visual information only (related to terrain type and slope).   

The other work [3] follows a self-supervised learning classification paradigm. In a self-supervised 

approach, data collected on-line, which is identified by a “supervisory” classifier as belonging to 

a single terrain class, is used to incrementally train a  “supervised” classifier that operates using a 

distinct sensor modality from the “supervisory” classifier. One approach based on self-supervised 

classification, presented in [14], fuses terrain predictions based on image data with predictions 

made by a vibration-based method. When the robot later traverses the classified area, it uses 

vibration data to verify its former prediction. 

The work performed in [3] also shows the general utility of self-supervised learning. Here, a 

vibration-based terrain classifier takes the role of the supervisory classifier and the supervised 

classifier is the vision-based terrain classifier. Training data for the vision-based classifier are 

extracted from forward-looking stereo images stored in memory and recalled when the rover 

classifies a previously observed terrain patch using proprioceptive sensors. 

2.6 Summary 

The vast majority of related literature in visual terrain classification for off-road rovers [11-17, 3, 

5] has two key differences from the present work: the use of color, and the inclusion of terrestrial-

specific terrain classes like vegetation. These cited articles make very valuable contributions to the 

understanding and advancement in this field of study, but their assumptions make their goals 

somewhat different than those of this work to explicitly avoid additional sensing and computation 

load, whenever possible. Various visual descriptors, of varying complexity, have been proposed 

and used for related tasks in the literature.  

In the field of trafficability prediction, this work focuses primarily on the development of a simple 

and adaptive trafficability model. Gaussian processes are typically used for trafficability (slip vs. 

slope) modeling. A key drawback of Gaussian Process Regression (GPR) is its computational 

complexity. The literature has discussed possible methods of addressing computation time and 

multimodal data, but at the time of the development of this thesis, no published work in 

trafficability prediction has implemented a simple and adaptive modeling approach.   
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Chapter 3. Exteroceptive Module 

As mentioned in the introduction, the Mars rovers such as Spirit, Curiosity, and Opportunity have 

faced several mobility challenges on the planetary surface due to the hazards introduced by 

different terrain types. Different types of terrains introduce different levels of mobility hazard to 

the rovers. Hence, it is an important non-geometric feature, and being able to classify between 

different terrain types can inform the rover about the potential hazard level. The exteroceptive 

module is designed to use the image captured by stereo cameras (i.e. the terrain being seen in front 

of the rover), extract the features from these images and accordingly classify them into one of the 

three terrain types, viz. sand, bedrock and gravel.  

Here, the feature being extracted and used for the classification is the texture information present 

in the image. There is no particular definition of texture within computer vision, however, the 

implicit meaning of texture in this work is the local changes/edges in image intensity, at various 

scales and orientations. This texture information from any image can be extracted by filtering it 

using oriented gradients as well as various filters such as Gabor, Gaussian, LoG etc., with different 

scales and orientations and it can be represented in form of visual descriptor, which is basically a 

low dimensional representation of a scene. There are various types of descriptors presented by 

other researchers in the past, however in this work, some of the computationally inexpensive 

descriptors (e.g. HOG) are used and compared with more expensive options like GIST and 

Textons. The details of these descriptors is given in the following sections. 

Moreover for classification, simple techniques like nearest neighbor and K-nearest neighbor have 

been explored here in order to design a computationally inexpensive system. In this chapter, 

section 3.1 describes the selection and formation of the datasets, which will be used to validate the 

performance of different techniques. The implementation of various visual descriptors, tuning of 

their design parameters and their effect on the performance is described in section 3.2 as well as 

the classification techniques, their performance and the post processing technique has been 

explained in section 3.3. Lastly, the analysis of the results achieved for different datasets and some 

important observations are stated in section 3.4.  

3.1 Data-sets 

A classification system needs a Training data set to train the system, followed by a validation set 

to measure the performance of the system and execute the required improvements in the training 
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method. Finally a test data set is used to determine the final performance of the system. In this 

application, these 3 types of data sets have been prepared by selecting images from two different 

sources. One is NASA JPL website [79,80], where the real Mars planetary surface images are 

available and the other is Canadian Space Agency Mars Yard, which is the emulation of the Mars 

planetary surface.  

3.1.1 NASA JPL dataset  

This website contains images captured by different rovers namely Curiosity, Spirit and 

Opportunity, from which images taken by Opportunity during following solutions are used to form 

different datasets.  

Training dataset Validation Dataset Testing Dataset 

Sol 4303 Sol 2315 Sol 2354 

Sol 4334 Sol 1176 Sol 2330 

Sol 603 Sol 2169 Sol 2320 

Sol 2316 Sol 2173 Sol 2145 

Sol 2317 Sol 2174 Sol 4483 

Sol 2220 Sol 2324  

Table 1: Sol number of the images taken from NASA JPL website to form the datasets 

The planetary surface images primarily consist of three terrain types namely bedrock, gravel and 

sand. Each image is of 500x500 pixels. The images mentioned in the above table, which are added 

to the datasets are shown in Figures 3-1, 3-2 & 3-3. 

Further, pre-processing has been performed on these images before they gets added to any of the 

datasets. Firstly, the upper 40% of the images is discarded. The reason for this is that the terrains 

in this area are quite far from the rover in reality and it cannot provide with any reliable 

information. So, the effective image size is now 300x500 pixels instead of 500x500 and this 

cropped image gets added randomly to either of the three datasets. Secondly, each image is divided 

into small grid squares and each grid square is considered an individual image, to be added in the 

corresponding dataset. The reason for the same is that the images on the whole can heterogeneous, 

consisting of varied types of terrains and it is impossible to classify an image as one of the terrain 

type. Whereas in case of grid squares, they can be classified as one of the terrain type reliably as 
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they cover a small area & are mostly homogeneous in nature. Here, the entire image is divided into 

60 grid squares, leading to each grid size to be 50x50 pixels.  

Apart from dividing the full image into grid squares, another common approach is to divide the 

grid square further into 4X4 = 16 sub-grids. Generating a histogram for each sub-grid separately 

and then concatenate all of them in a sequential manner to form the final descriptor, ensures that 

spatial information will also be preserved, up to some extent, enabling more advanced texture 

recognition. However, in this application, spatial information is not crucial enough. For example, 

there is a grid of the terrain type gravel and the system correctly recognizes its terrain type, then 

spatial arrangement or the orientation of the rocks in that grid are not important. In fact, two 

gravelly images with different arrangement of the rocks should be recognized as the same terrain 

type in this system. The prime importance here, is to simply differentiate its terrain type from the 

others. Moreover, not including spatial information also makes the system computationally less 

intensive as well as less memory consuming. Hence, the spatial information is not incorporated in 

any of the descriptor.  

Another important factor to be considered, while preparing training library, is that it should not 

contain any bad examples or confusing images (ones which encompass more than one terrain 

types), as they can adversely affect the performance of the descriptor. Hence, such confusing 

images are eliminated (removed) from the existing training set, based on a personal judgement. 

Similarly, for the validation and the test set as well confusing image/bad examples have been 

removed. Such removal of confusing examples from validation and test datasets is considered only 

for avoiding ambiguity in performance evaluation. For example, when classifying heterogeneous 

image, containing both bedrock and sand, neither a classification as bedrock nor as sand can be 

considered unambiguously correct or incorrect. 



 

17 

 

 

 

      
(a) Sol 2316             (b) Sol 2316        (c) Sol 2316 

     
 (d) Sol 2220     (e) Sol 2220       (f) Sol 4303 

   

(g) Sol 4334    (h) Sol 603 

Figure 3-1: Training Library Images 
Courtesy NASA/JPL-Caltech 
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(a) Sol 2315             (b) Sol 1176        (c) Sol 2169 

     

 (d) Sol 2173     (e) Sol 2173       (f) Sol 2174 

   

(g) Sol 2174        (h) Sol 2324 

Figure 3-2: Validation Library Image 

Courtesy NASA/JPL-Caltech 
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At the end, providing intensity invariance to the algorithm is equally important. It is achieved by 

normalizing each image to a value, which is equivalent to the average intensity of all the images 

in the training set. After this step, the image finally gets added to either the training, validation or 

testing data sets and thus all the data sets are prepared.  

The following Figure (Figure 3-4) illustrates the step by step process of adding an image to a 

dataset, which was explained in this section. 

 

 

     
(a) Sol 2354             (b) Sol 2354             (c) Sol 2330 

     
(d) Sol 2320     (e) Sol 2145            (f) Sol 4482 

 

Figure 3-3: Test Library Images 
Courtesy NASA/JPL-Caltech 
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Figure 3-4: Illustration of step-by-step procedure of dataset formation 
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3.1.2 CSA (Canadian Space Agency) dataset 

The Canadian Space Agency mars yard is an emulation of the planetary surface on Mars and it has 

a large-scale area consisting of all three terrain types (bedrock, gravel & sand) at various slopes. 

Due to its strong resemblance with the actual martial terrains, it has been selected for the on-site 

demonstration of the ASAS project and the system is trained with the visual examples from this 

site. The first step towards the formation of the datasets, is to collect the images from the yard and 

for the same, two test campaigns were held, where numerous test runs were performed with the 

rover. The rover captured plentiful images from the mars yard during these test runs. These raw 

images are then used to form the CSA data sets (training, validation & test sets), which are further 

used to train the rover for the demo and to validate the feature extraction as well as the 

classification algorithms. Figure 3-5 shows the examples of how different/similar the CSA mars 

yard terrains look from those on the actual martian surface. 

After collecting the raw images, the same steps; as described in the NASA JPL dataset section; are 

followed for the pre-processing such as discarding the part of the image that covers the areas which 

are farther from the rover, intensity invariance, division into grids and removal of bad examples. 

Here, for the CSA images, the original image size is 720x1280 pixels, which reduces to 500x1000 

pixels after discarding the non/less-informative parts of the image and this new image in then 

divided into 5x10 = 50 grid cells, resulting into the 100x100 pixels of grid squares. These pre-

processed grid cells are then added to the corresponding data sets as the individual images. The 

images which are used to form the training and validation libraries are shown in Figures 3-6 & 3-

7. These images are shown after all the pre-processing steps, in the form of grid cells. In the 

training library, the bad examples are removed, which is not the case with the validation library. 

The crossed grid cells in the training library images are the bad examples which have been 

removed. 
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           (a)           (b) 

         
              (c)                                                                                           (d) 

         
           (e)            (f) 

 

Figure 3-5: (a & b) Bedrock examples from CSA mars yard & JPL NASA website respectively, (c & d) Gravel 

examples from CSA mars yard & JPL NASA website respectively, (e & f) Sand examples from CSA mars yard 

& JPL NASA website respectively 
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(a)            (b) 

       
   (c)         (d) 

        
(e)               (f) 

       
   (g)         (h) 

       
(i)        (j) 

Figure 3-6: CSA Training library image 
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(a)            (b) 

       
    (c)          (d) 

        
   (e)        (f) 

        
(g)         (h) 

Figure 3-7: CSA Validation library images 
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3.2 Visual Descriptors 

As mentioned above, a visual descriptor is a low dimensional representation of a scene. It formed 

by converting a full size image into a specific length vector, by extracting various features from 

the image. Here the features are extracted by filtering the image at various scales and orientations 

and the length of the vector (visual descriptor) depends on the number of pairs of scales and 

orientations, used for various filters.  

3.2.1 GIST 

For the feature extraction, GIST uses various Gabor filters, which are most commonly used for 

edge detection. Gabor filter is the modulation of a particular wavelength sine wave using a 

Gaussian filter of selected scale. Examples of Gabor filters with the scale values 4 and 8 as well 

as the orientations of 0, 45, 90 and 135° are presented in Figure 3-8.  

 

Filtering an image with such Gabor filters at various scales and orientation detects coarse as well 

as finer edges (depending on scale value) at given orientations from that image. Hence, a filter 

bank of total 32 Gabor filters, at 4 different scales (1, 2, 4 & 6) as well as 8 different orientations 

(0°, 22°, 44°, 66°, 88°, 110°, 132° & 154°) is designed. Such expanded selection of scales and 

orientations can extract wide range of textures from the image. The algorithm for generating GIST 

descriptor using this filter bank is explained below. 

3.2.1.1 Algorithm 

Applying this filter bank to any image, gives 32 filter responses for that image, which is being 

stored in an array named as ‘filter response array’. Further the average value of each response from 

 

Figure 3-8: Gabor filters at 0, 45, 90 & 135° orientations with scale values 4 (upper line) and 8 (bottom 

line) 
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the array is calculated and these 32 average values forms a 32-bin histogram. The average value is 

an indication of the strength of edges present in an image, at given scale & orientation. The 

histogram generated here is itself the GIST descriptor for an image and it incorporates 32 textures, 

formed by edges at 4 scales and 8 orientations, in the image. Similarly, GIST descriptors for all 

the images from the training as well as the validation dataset is generated, which can be used later 

for classification purpose. 

3.2.1.2 Design Parameters and Result for JPL dataset 

The Gabor filters have certain important parameters, whose selection can be crucial for texture 

detection, such as scales, orientations of filters, rotational invariance and wavelength selection for 

the Gabor filters. Hence, one can experiment with different choices for these parameters and 

analyze their effect on the texture detection, to select their best values. The detailed analysis of 

choices of parameters & their validation procedure is given below. 

I. Scales/Sigma of Gabor filters: 

Scale is the parameter associated with the gaussian filter, which is a part of the Gabor filter. 

Gaussian filter acts as a low pass filter, which removes the high frequency noise and generates a 

smooth image which can further be processed to extract the texture. Selection of a scale in form of 

sigma of the gaussian, basically decides the extent of high frequency content to be removed; the 

higher the scale value is, the more the higher frequencies gets removed. Secondly, it is very 

important to analyze the image at different scales, as some textures seem to occur at larger scales 

only and at the same time, it enables the detection of both, finer & coarse edges. Hence, to provide 

this kind of scale invariance, a set of 4 different values of sigma is being considered for the filter 

bank design. To select the appropriate set of sigma values, three different sets of sigma are being 

experimented with, which are: 

Set 1:  1, 2, 4, 6  Set 2:  4, 6, 8, 10  Set 3:  0.5, 1, 1.5, 2. 

Using all of these sets of sigma values, the classification results (using NN at this point of time) 

were acquired for the validation set images. The techniques for classification and their 

implementation will be explained in section 3.3. The results are summarized, in terms of 

percentage of correct detection out of total images of that terrain type, in Table 2, shown below. 
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As can be seen from the table, a set of “4, 6, 8, 10” sigma seems to work the best for each terrain 

type among the 3 experimental sets, closely followed by the third set of “1, 2, 4, 6”. To select the 

optimum one between these two sets, further the gaussian response of a random image were 

analysed at each of these scale values. It can be observed here that the gaussian response at 8 & 10 

sigma contains almost no information in the image due to excessive blurring, which is illustrated 

in Figure 3-9 below. Hence, finally the third set of “1, 2, 4, 6” sigma was selected for the design 

of Gabor filters to implement the GIST descriptor. 

 

 

II. Orientations of Gabor filters: 

Gabor filters detect the edges in accordance with their orientations. For example, a filter with 45° 

orientation will be able to recognize edges in the image which are at 45°. Hence, in order to be 

able to detect almost all the edges present in the image, Gabor filters for the filter bank are designed 

with 8 different orientations and to make sure that all the edges get captured by the filter bank, 

Sr. No. Scale Selection Bedrock Gravel Sand 

1 0.5 , 1 , 1.5 , 2 44% 46% 72% 

2 4 , 6 , 8 , 10 64% 67% 97% 

3 1 , 2 , 4 , 6 63% 64% 89% 

Table 2: GIST Performance at various scales 

 
Figure 3-9: (a) Original image and Gaussian responses of the image with sigma = (b) 1, (c) 2, (d) 4, (e) 6, 

(f) 8 and (g) 10 
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these 8 orientation values are selected to be equidistant within the range of 0-180°. Thus the 

selected orientations for the filter bank are 0°, 22°, 44°, 66°, 88°, 110°, 132° and 154°.  

The reason to restrict these values within the range of 0-180°, rather than 0-360° is that the edges 

detected at 45° is same as those detected at 225° i.e. -135° and this is true for all the corresponding 

values of positive and negative 0-180° ranges. This fact can also be verified from the illustration 

given below in Figure 3-10. 

 

 

III. Gabor filter frequency selection (via wavelength ƛ): 

As mentioned above, the sine wave super imposed on the Gaussian filter with a particular scale, 

forms a Gabor filter. Wavelength of this sine wave decides the frequency of the same and the 

frequency decides the thickness of the edges being selected by the given Gabor Filter. Thinner 

 
(a) 

 

   
   (b)          (c) 

Figure 3-10: (a) Original Image and response of a Gabor filter at (b) 45 and (c) 225 (-135) 
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edges can be detected if the frequency is higher and thicker edges can be selected if the frequency 

is lower. 

Moreover, for a given Gabor filter, the frequency of the sine wave is also related to the sigma 

selection for the gaussian filter. As already known, the gaussian filter removes high frequency 

content in accordance with its sigma selection and if the frequency, selected for sine wave, has 

already been removed by the gaussian filtering, then in such case, gaussian filter is basically 

smoothening out all the edges which are supposed to be captured by the Gabor filter and hence, 

the filter will not be able to extract any information from the image.  

Keeping all these things in mind, it has been decided to experiment with 5 different wavelength 

selections which are ƛ = 4, 8, 16, 2σ, 4σ for scales σ = 1, 2, 4, 6. It can be clearly seen from the 

table 3 to table 7, that the best results are achieved when the wavelength is selected to be equal to 

twice of the sigma i.e. ƛ = 2σ. 

IV. Rotational Invariance 

Another important design parameter for GIST, is rotational invariance (RI). For this application, 

it is essential for the system to be able to detect all three terrain types, regardless of how the textures 

are oriented in space and hence the RI (Rotational Invariance) feature has been added to the 

algorithm. For example, if there is a grid square consisting of sand ripples, one doesn’t need to 

consider the direction of the sand ripples, as long as it can be successfully differentiated from the 

other terrains. To implement such rotational invariance, firstly the bin with maximum magnitude 

is found from the histogram and after that taking that bin as a reference i.e. keeping that bin as the 

1st bin, the whole histogram is rotated and reformed accordingly. Here also two different RI 

approaches are being experimented with, which are Local RI and Global RI. 

 

In the first approach i.e. local rotational invariance, the histograms are considered separately for 

each scale and they are rotated by taking the largest bin as a reference. For example, let’s say in 

the histogram for scale 1, 4th bin is the largest one. Here, the histogram bins will be rotated such 

that it will have the same bins in following order:  “4 5 6 7 8 1 2 3”. Now secondly let’s say in the 

histogram for scale 2, the 7th bin is the largest one, then the histogram will be rotated to be in the 

“7 8 1 2 3 4 5 6” order. The same procedure is followed individually, for all four histograms 

corresponding to 4 different scales and then all of them are concatenated to form a GIST descriptor. 
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Whereas, in second approach i.e. global rotational invariance, firstly the addition vector is 

calculated, using all four histograms corresponding to 4 different scales and from the addition 

vector, the largest bin (bin with the maximum magnitude) is found. Now the index of this largest 

bin is used as a reference for all four scales to rotate their histograms individually. For example, 

in the addition vector, 4th bin is the largest one, hence, all four histograms are rotated such that 

their bins are in following order: “4 5 6 7 8 1 2 3”. Lastly, by concatenating these rotated 

histograms, GIST descriptor is formed. 

In order to decide the best approach among “No Rotation Invariance (RI)”, “Local RI” and “Global 

RI”, series of experiments have been performed for each approach, keeping the constant sigma 

selection i.e. σ = 1, 2, 4, 6 and varying ƛ to each of the above mentioned values i.e. 4, 8, 16, 2σ, 

4σ. Thus, total 15 cases were observed for each terrain class i.e. 5 (ƛ selection) * 3 (RI approaches) 

= 15.  

� Result Summary for wavelength & RI selections: 

From the tables 3 - 7 shown below, it can be concluded that the Local Rotational Invariance 

approach along with σ = 1, 2, 4, 6 and ƛ = 2σ provides the best texture recognition. 

ƛ / RI 4 8 16 2σ 4σ 

No RI 64 % 63 % 59 % 70 % 46 % 

Local RI 67 % 70 % 62 % 70 % 52 % 

Global RI 70 % 69 % 63 % 68 % 51 % 

Table 3: GIST performance for Bedrock 

ƛ / RI 4 8 16 2σ 4σ 

No RI 64 % 64 % 57 % 64 % 31 % 

Local RI 57 % 68 % 56 % 70 % 42 % 

Global RI 59 % 69 % 57 % 63 % 40 % 

Table 4: GIST performance for Gravel 

ƛ / RI 4 8 16 2σ 4σ 

No RI 87 % 84 %  63 %  92 %  61 %  

Local RI 80 % 94 % 64 % 91 % 54 % 

Global RI 79 % 96 %  66 %  92 % 60 % 

Table 5: GIST performance for Sand 
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ƛ / RI 4 8 16 2σ 4σ 

No RI 72 % 70 %  60 %  75 %  46 %  

Local RI 68 % 77 % 61 % 77 % 49 % 

Global RI 69 % 78 %  62 %  74 %  50 % 

Table 6: Average GIST performance for all three terrains 

ƛ / RI 4 8 16 2σ 4σ 

No RI 64 % 63 %  57 %  64 %  31 %  

Local RI 57 % 68 % 56 % 70 % 42 % 

Global RI 59 % 69 % 57 %  63 % 40 %  

Table 7:  Minimum GIST performance for all three terrains 

 

V. Final Scale Validation: 

The selection of the design parameters started with selecting the scale values for the Gabor filters 

and at that point of time, the other parameters were not selected. So, while performing initial 

experiments for scale selection, some of the other parameters viz. Gabor wavelength and RI 

approach were selected randomly and temporarily, their values were taken at ƛ = 8 and No RI 

approach. It is worth mentioning here that the values of orientations were always the same at above 

mentioned values. These temporary selections brought out the best results for the scale set of “1, 

2, 4 & 6”. However, after this initial scale selection, experiments were also performed for other 

parameters as well, to select between the different values and it turned out that the nest 

classification results can be achieved using ƛ = 2σ and Local RI approach, rather than the 

previously selected temporary values for these parameters. Hence, the finalized values for 

wavelength and RI approach are different than those taken during initial scale selection.  

As a result, it is necessary to validate the scale selections with the finalized values and hence, again 

the experiments were performed for all three set of sigma, keeping other parameters at the finalized 

values (i.e.  ƛ = 2σ, Local RI approach). From the results, shown in Table 8 below, it is evident 

that the initial selection for the set of sigma “1, 2, 4, 6”, still works the best as it seems to be giving 

the best classification results.   
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3.2.1.3 Result summary for CSA dataset 

In the efforts of achieving the best possible results for the NASA JPL dataset, there were number 

of experiments performed for selecting the appropriate values for the designing parameters and the 

methods. Further, the same selections for the designing parameters and the methods have been 

maintained with the CSA dataset as well, for the feature extraction using GIST. This way it is also 

possible to verify whether the same algorithm can work for two different datasets, which are 

similar to each other up to some extent.  The success ratio in the detection of various terrains 

acquired using GIST for CSA dataset is given in the following table 9. 

Terrain Types 
Success ratio 

with GIST 

Bedrock 76.5% 

Gravel 98% 

Sand 93% 

Table 9: GIST Performance for CSA dataset (Local RI, ƛ = 2σ, σ set = 1, 2, 4, 6)  

 

3.2.2 Histograms of Oriented Gradients (HOG) 

HOG (Histograms of Oriented Gradients) [36], is a visual descriptor, which uses the gradient 

information for texture recognition, instead of filter responses. The gradient attributes are acquired 

at pixel level in any image and there are mainly two of them: Magnitude of the gradient and 

Orientation of the gradient. These attributes indicate the amount & direction of the intensity 

changes at given pixel, respectively and hence it is possible to extract texture information in form 

of edge detection using gradients. 

Sr. No. Scale Selection Bedrock Gravel Sandy 

1 0.5 , 1 , 1.5 , 2 64% 47% 74% 

2 4 , 6 , 8 , 10 59% 64% 93% 

3 1 , 2 , 4 , 6 70% 70% 91% 

Table 8: Final Scale validation for GIST 



 

33 

 

3.2.2.1 Algorithm 

The first step for generating the HOG descriptor for any image is to calculate the gradient for the 

given image. To calculate the gradient, the image is filtered by the derivative masks, one in 

horizontal direction [-1 0 1] and the other in vertical direction [-1 0 1]’. This gives x & y derivatives 

of the image. Illustration of these X & Y derivatives of an exemplary image is given below in 

Figure 3-11.  If the x & y derivatives of an image are called Dx and Dy respectively, then the 

magnitude & orientation of a gradient at each pixel of an image can be calculated as below: 

 

 

In the present system (ASAS), for a given image, the gradient is being found at four different 

scales, for the same reasons as considered in the case of GIST, i.e. to detect the finer as well as 

coarse edges and to capture the textures that occur only at certain scales. The experiments and the 

final selection for these scale values are explained below in the section 3.2.2.2. Moreover, to 

generate the 32 bins histogram (descriptor) and to cover the entire range between 0 to 180°, the 

similar orientations as GIST are selected for each of the scaled versions as well, i.e. 0°, 22°, 44°, 

66°, 88°, 110°, 132° and 154°. Each bin of the histogram is considered to be for a particular 

orientation, for corresponding scaled version.  

After calculating the gradients, for all four scaled versions of an image; their magnitude and 

orientations are scanned at pixel level. For each pixel of a scaled version, its gradient magnitude 

gets added to any one of the 8 histogram bins of that version, according to its gradient orientation. 

The distribution of the orientations in the histogram bins is explained in detail in the next section. 

The same scanning is performed for all four scaled versions and this way four different 8 bins 

histograms are generated, which can be concatenated to form a final 32 bins histogram (HOG 

descriptor). This flow of the algorithm is also illustrated in Figure 3-12 

Magnitude = ���� +	��� 

Orientation = atan2 (Dy, Dx) 
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(a)  

 
(b)  

 

(c)  

Figure 3-11: Example of x & y derivatives of an image (a) original image, (b) x-derivative, (c) y-derivative 
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3.2.2.2 Designing Parameters and Result for JPL dataset 

Similar to GIST, there are various design parameters in HOG as well, which can be tuned to 

achieve better feature extraction. These parameters are scale, orientations, rotational invariance 

 

Figure 3-12: Illustration of the HOG algorithm 
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etc. and by experimenting with different choices for these parameters and analyzing their effect on 

texture detection, one can select their best values for the application. The detailed analysis of 

choices of parameter & their validation procedure is given below. 

I. Scale invariance: 

To achieve scale invariance (i.e. if two images are at the different scale but having same texture 

information, then they can be recognized to be of the same texture class) and to be able to detect 

finer as well as coarse edges, the image needs to be analyzed at different scales, as discussed 

before. To make this comparable to GIST, the experiments were performed with the same set of 

sigma as GIST i.e. i) 1, 2, 4, 6    ii) 4, 6, 8, 10    iii) 0.5, 1, 1.5, 2.  

However, unlike in the GIST algorithm, here there is a fixed vector as a derivative mask, whose 

window size cannot be increased. Hence, one option is to scale down the image proportionally. 

The original image size is considered to be equivalent to 0.5 scale and for other scales, image size 

is reduced with the base of 0.5. For example, if one needs to scale the image at 1 sigma, it is resized 

by multiplying with (0.5/1) i.e. dividing by 2 and so on for other scales.  

The table below illustrates the result summary for the experiments using above mentioned sigma 

sets. It can be concluded from the results that the set “1, 2, 4, 6” provides best performance and 

the same is used for further experiments.  

 

 

 

 

 

II. Gradient Orientation Range: 

Calculating the orientation using ‘atan2’ function, gives the result in form of 0 to π and – π to π. 

However, in case of GIST, it was observed that the response for a particular angle and its 

counterpart in the opposite quadrant of Cartesian plane, is same i.e. response for 45 and -135 are 

same, hence – π to π range is not significant. The same is applicable for HOG as well, and hence 

all the orientations in the range of – π to π are converted into 0 to π, by adding π to them.  

Scale Selection Bedrock Gravel Sand 

0.5 , 1 , 1.5 , 2 59 % 54 % 91 % 

4 , 6 , 8 , 10 52 % 57 % 70 % 

1 , 2 , 4 , 6 67 % 62 % 94 % 

Table 10: HOG Performance at various scales 
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III. Centralized Histogram Bins: 

For the formation of 8 histogram bins, the pixels are distributed according to their orientation, 

considering each bin to be a particular angle. Hence, one needs to divide the whole range of 

possible pixel orientations i.e. 0 to 180 degree, into 8 equal parts, giving a range of 22 degrees to 

each bin and one can take the same angles as in GIST i.e. 0°, 22°, 44°, 66°, 88°, 110°, 132° and 

154°.  

However, if the case of GIST is reconsidered, every histogram bin is actually a filter response at 

each of the following orientations, i.e.  0°, 22°, 44°, 66°, 88°, 110°, 132° and 154°. Thus 

considering the 2nd bin i.e. at 22°, it not only contains the outputs at 22° but also contains the 

outputs at the angles on both the sides of 22° up to certain extent. So, virtually one can see each 

bin is having center at one of the above mentioned angles in GIST. In order to implement the 

similar distribution in HOG, the centralized bins approach is used where, if the 2nd bin is at 22° 

then the gradient magnitude of all the pixels with gradient orientation from 11° to 33° gets added 

to the 2nd bin, so that it is centralized at 
��	


�

= 22°. Similarly, 33° to 55° is the range for 44° bin 

and so on.  

IV. Rotational Invariance: 

For the same reason as explained in GIST, rotational invariance is implemented in HOG as well. 

The experiments and analysis of the results for approaches “No RI”, “Local RI” and “Global RI” 

is also performed. The procedure is same as explained in GIST and the result summary is illustrated 

in table 11. Though there is no significant difference in the results for different RIs, Local RI seems 

to be achieving the best average performance among all three approaches, for all 3 terrains and 

hence it has been used, along with the sigma set “1, 2, 4, 6”.   

 

 

 

RI Approach Bedrock Gravel Sand Average 

No RI 67 % 63 % 94 % 74.66% 

Local RI 67 % 71 % 90 % 76% 

Global RI 62 % 65 % 96 % 74.33% 

Table 11: HOG Performance for various RI approaches 
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V. Final Scale Validation: 

Similar to GIST, here also, it is necessary to validate the scale selections with the finalized design 

parameters and procedures (Histogram Normalization) and hence, again the experiments were 

performed for all three set of sigma with histogram normalization and Local RI approach. From 

the results, shown in Table 12 below, it is evident that the initial selection for the set of sigma “1, 

2, 4, 6”, still works the best as it seems to be giving the most consistent classification results.   

 

 

 

 

 

 

 

3.2.2.3 Result Summary for CSA dataset 

Similar to what was done in the case of GIST, all the selections for the design parameters values 

and the methods have been maintained the same as they were finalized for the NASA JPL dataset 

and the results acquired using the same for the CSA dataset is shown below in Table 13.    

Terrain Types 
Success ratio 

with HOG 

Bedrock 80% 

Gravel 100% 

Sand 97% 

Table 13: HOG Performance for CSA dataset 

 

 

 

 

Sr. No. 
Scale 

Selection 
Bedrock Rock Strewn Sandy 

1 0.5 , 1 , 1.5 , 2 56% 61% 92% 

2 4 , 6 , 8 , 10 58% 54% 75% 

3 1 , 2 , 4 , 6 67% 71% 90% 

Table 12: Final Scale Validation for HOG 
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3.2.3 TEXTONS 

Texton based texture recognition aims to represent an image in form of a histogram that is a set of 

visual words, in other words a set of Textons. The Textons are basically the histograms, generated 

by clustering of the filter response vectors that were obtained by applying a filter bank to an image. 

 

3.2.3.1 Algorithm 

I. Filter Bank: 

The implementation of this method (Texton based texture recognition) starts off with the design 

of a filter bank and two significantly essential factors to be considered for the same are: 

A. To design a filter bank, which provides a rotationally invariant measure of textures. This 

makes our method compatible with HOG & GIST. 

B. To design a filter bank, which does not have the property to not respond at all to oriented 

structures in the image.  

Keeping these points in mind, the “Maximum Response (MR8) Filter bank” has been finalized, 

which includes one Gaussian & one LOG filter as well as edge and bar filters, at 3 different scales 

and 6 different orientation. Thus, the filter bank consists of total 38 filters [39]. Secondly, for being 

able to compare the performance of Textons with that of GIST and HOG, the scale and orientation 

selection should be comparable with GIST & HOG as well. However, here one has to select only 

3 scales and 6 orientations, unlike HOG & GIST (which had 4 scales and 8 orientations). 

Therefore, it has been decided to proceed with the first 3 scale selections of the previous cases i.e. 

1, 2, 4, whereas, for orientations, the 0 to π range is divided into 6 equal parts (instead of 8) i.e. 0°, 

30°, 60°, 90°, 120° & 150°.  

All the filters of the filter bank are illustrated below in Figure 3-13. 
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(a)                        (b)                          (c1)                        (c2)                        (c3)                          (c4) 

 

 
         (c5)                         (c6)                         (d1)                        (d2)                       (d3)                       (d4) 

 

 
          (d5)                       (d6)                         (e1)                      (e2)                       (e3)                      (e4) 

 

 
        (e5)                        (e6)                         (f1)                          (f2)                      (f3)                         (f4)    

 

 
         (f5)                        (f6)                         (g1)                      (g2)                          (g3)                       (g4)    

 

 
         (g5)                        (g6)                         (h1)                        (h2)                       (h3)                      (h4) 

 

         
         (h5)                       (h6)  

 Figure 3-13: (a) Gaussian filter, (b) LoG, (c1-c6) bar filters at 0°, 30°, 60°, 

90°, 120° & 150° with 1σ, (d1-d6) bar filters at 0°, 30°, 60°, 90°, 120° & 150° 

with 2σ, (e1-e6) bar filters at 0°, 30°, 60°, 90°, 120° & 150° with 4σ, (f1-f6) 

edge filters at 0°, 30°, 60°, 90°, 120° & 150° with 1σ, (d1-d6) bar filters at 0°, 

30°, 60°, 90°, 120° & 150° with 2σ, (e1-e6) bar filters at 0°, 30°, 60°, 90°, 120° 

& 150° with 4σ, (f1-f6) edge filters at 0°, 30°, 60°, 90°, 120° & 150° with 1σ, 

(g1-g6) edge filters at 0°, 30°, 60°, 90°, 120° & 150° with 2σ, (h1-h6) edge 

filters at 0°, 30°, 60°, 90°, 120° & 150° with 4σ 
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II. Texton Library: 

As mentioned above, Textons are basically the clusters of filter responses obtained from various 

images. In other words, each Texton represents a certain texture, which exists in one of the images 

whose filter response is used in clustering. Hence, as the name suggests, a set of such Textons 

forms a Texton library and this Texton library will further be used to generate the visual descriptor 

or the histogram, which is explained in the next section. In the following paragraph, the formation 

of Texton library is explained.  

The first requirement was to induce rotational invariance in the descriptor and in order to achieve 

the same, from each set of edge and bar filters, which consists of filters at 6 different orientations 

with a particular scale value, only the maximum filter response over orientations is being used. 

Here is an example to explain the above statement. In a filter response vector, first two elements 

are the response of Gaussian & LOG filters. After that, there are 3 sets of filter responses for edge 

filters, each of which contains 6 response vectors pertaining to six orientations at a particular scale 

value (1σ, 2σ, 4σ). Again, there are 3 sets of filter responses for bar filters, similar to the edge ones. 

Now for the formation of the maximum response (MR) vector, first two responses is taken as it is 

i.e. 1st and 2nd element of the MR vector are the gaussian and LoG responses. Secondly, from each 

set of the edge filter responses, an orientation is found for which the response is maximum and 

that maximum response is added to the MR vector as 3rd, 4th & 5th elements. Similar process is 

executed with bar filter responses and only 3 maximum responses over orientations forms 6th, 7th 

& 8th elements of the MR vector. This forms the MR8 vector (formed using MR8 filter bank), that 

induces the rotational invariance property in the algorithm. The whole procedure of forming the 

MR vector is illustrated below, in the Figure 3-14. 

This way an MR vector is generated for each and every pixel of an image, when filtered using the 

MR8 filter bank. As mentioned in the “Dataset” section, each grid square is considered as a training 

image, which is 50x50 pixels in size. If a matrix is formed using the MR vectors of all the pixels 

of an image, then each image in the training library gets a MR matrix of size 2500x8 and if there 

are total M images in the training library, an Mx1 cell will be generated for the entire library, where 

each element of the cell is 2500x8 MR matrix for each training image.  
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Now, the final goal here is to generate the Texton library by clustering the filter responses of the 

training images. However, the point of the Texton library is to approximate all the variety of 

textures that occur in the real world with a finite-set of Textons and using all the filter responses 

from all the MR matrices of training library is tremendously expensive from the computational 

point of view. Hence, instead of using all the filter responses in the clustering process, the filter 

responses at 100 random pixels are extracted from each image in the library. In other words, in 

 
Figure 3-14: Formation of maximum response (MR) vector using MR8 filter bank 
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Mx1 cell, from each MR matrix (2500x8 size), 100 rows are selected randomly, which are actually 

the filter responses for 100 random pixels. These randomly selected rows are concatenated into an 

enormous matrix called “GiantMatrix”, which results into a matrix of size (M*100) x 8. For 

example, if training library has 470 images, the size of the GiantMatrix will be of 47000X8 pixels.  

Further, in order to generate the Texton library, k-means clustering is performed on this 

GiantMtarix and 32 cluster points are generated, which are nothing but the actual Textons. A set 

of these 32 Texton vectors is called the “Texton Library”, which will be of the size 32x8 matrix 

and each row of this matrix represents one Texton. The reason for choosing to generate 32 Textons 

is the fact that the visual descriptor generated using Textons should be as comparable as possible 

with the other two descriptors (GIST & HOG), for the performance evaluation. The descriptors 

generated using GIST and HOG contain 32 bins and the histogram of the same number of bins can 

be generated by creating the Texton map of an image using 32 Textons. The process of generating 

the Texton map and in turn, the histogram of an image using the Textons is explained in the next 

paragraphs.  

 

III. Texton Map and The Descriptor 

In order to generate the Texton map, the first step is to derive the MR matrix for an image, by 

following the same procedure explained before. Once the 2500X8 MR matrix is generated, the 

MR vector of each pixel is compared with all 32 Textons from the Texton library. By finding 

Euclidian distance between the MR vector and the Texton vector, one can find the closest matching 

Texton for that pixel and then, the index of that Texton is assigned to that pixel. For example, if 

the closest matching Texton to a pixel is the 20th one, that pixel will get 20 as a value. This way 

all the pixels and every pixel gets a value between 1 & 32. This image with pixels having Texton 

numbers as their value is “Texton map”. At last, a 32 bin histogram is generated by counting the 

number of pixels associated with every Texton index and this histogram is called the “Texton 

Descriptor”. The entire algorithm is briefly illustrated in the Figures 3-15 and 3-16. 
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Figure 3-16: Illustration of Texton Library Generation 

 
 

Figure 3-15: Illustration of Texton Descriptor Generation 
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3.3 Classification using Histogram Matching 

Once the histograms for the training data set is obtained using any of the descriptors (explained in 

the previous section), the competency of that descriptor in recognizing different texture 

information can be determined by acquiring the ratio of correct terrain classification for that 

descriptor, using histogram matching. Such histogram matching can be performed between the 

histograms of the training set and the validation or the test data set. 

There are several methods for histogram matching; one of which is “Minimum Intersection 

Method” [40]. In this method, two histogram vectors (one from the training library and the other 

for the test image) are compared and for each set of corresponding bins from these vectors, a 

minimum value is found out and added to an additional vector, which is called the minimum 

intersection vector. Once this intersection vector is formed, all of its 32 bins are added into a 

summation value. The higher is this summation value, the higher is the probability of matching for 

the compared histograms (images). The illustration of this method is shown in Figure 3-17. 

 

However, while implementing and analysing the method for this application, one problem was 

recognized. For the explanation of the same, let’s take an example of an 8 bin histogram. Let’s say 

the histogram of a test image is as below: 

3 2 5 1 4 2 4 1 

 

 
 

Figure 3-17: Illustration of Minimum Intersection Method, From [51] 
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Now, let’s say that the histograms of three different training library images are as below: 

10 9 9 7 6 8 12 12 

 

In this case, when the intersection histogram is found for the test image with respect to the training 

library images, it will be the same as that of the test image as the test image histogram has the 

minimum values in all the bins with respect to all three training histograms. Thus, in such cases, 

because of having the same summation value for more than one training images, it is not possible 

to find one best matched image for the test image and hence, the reliable terrain classification 

cannot be achieved using this method. 

The second most common method for histogram matching is “Euclidean Distance Method”. As 

the name suggests, the euclidean distance is found between the two histogram vectors, being 

compared with each other. If the histogram of a test image is being compared with all the 

histograms of the training library images, then the one, with which the euclidean distance of the 

test histogram is the smallest, is counted as the best match for given test image. Such histogram 

matching method in turn implements the “Nearest Neighbour Method” of classification.  

In this classification method, for any test histogram vector X, a training histogram vector Yi is 

found, where the euclidean distance between X and Yi is the smallest in comparison with all the 

other examples in the training data set Y. the class of this Yi is assigned to the vector X. The same 

can be seen in Figure 3-18 (a) as well.  

However, analysing the method in detail reveals that considering only 1–nearest neighbour might 

result in erroneous result in some cases. For example, if we consider 3-nearest neighbors instead 

of 1 and then take the majority voting of the class type among the nearest neighbors, the final result 

will be different from the one achieved using 1-nearest neighbor. This can be seen in Figure 3-18 

(b). 

 

7 19 9 17 16 8 11 12 

6 5 7 7 6 8 7 9 
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In other words, let’s suppose there is a test vector for which the terrain class is known and is ‘Sand’. 

When it is compared with the training vectors for the classification, there is a possibility to have 

the closest training vector of terrain class ‘Bedrock’, due to high resemblance between the two 

images. However, by considering several nearest neighbors might result into majority of nearest 

vectors having the class ‘Sand’ and this way the error can be resolved.  

3.3.1 NASA JPL dataset 

Hence, considering this point, the “k-Nearest Neighbor Method” is also implemented for the 

application, with k = 25. The reason for selecting such a large value for k is the fact that in this 

application the data set being dealt with are quite large. So in this method, for a given test image 

of class ‘Gravel’, among the 25-nearest neighbors, if 5 are ‘Sand’, 6 are ‘Bedrock’ and 14 are 

‘Gravel’, then even if the closest neighbor is not ‘Gravel’, the system will assign ‘Gravel’ class to 

the test image owing to the majority voting result from the 25-nearest neighbors. Using k-nearest 

neighbor method for classification, the system could achieve a near perfect result of around 92% 

for the detection of ‘Sand’ terrain type among all the test or validation set images. 

3.3.1.1 Intensity Thresholding 

However, for the detection of ‘Gravel’ and ‘Bedrock’, the system did not exhibit the same success 

ratio as with ‘Sand’. Analyzing various images of terrain type ‘gravel’ & ‘Bedrock’ reveals that 

there is a notable difference in the intensity of the images having these two terrain types. Bedrocks 

              

(a)                       (b) 

Figure 3-18: Illustration of (a) 1-nearest neighbor and (b) 3-nearest neighbor 
<https://www-

users.cs.umn.edu/~kumar001/dmbook/dmslides/chap5_alternative_classification.pdf > 
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are white in color and hence, always brighter as compared to rocks in any image. This observation 

led to the conclusion that using the intensity information along with the texture information for 

classification can lead to a better differentiation between ‘Gravel’ and ‘Bedrock’ classes. For using 

the intensity information, it needs to be analysed first and for that the total intensity of all the 

training images of type ‘Gravel’ & ‘Bedrock’ are plotted in Figure 3-19. 

 

These plots have total intensity values plotted on x-axis and the number of images with given total 

intensity values are plotted on y-axis. It can be observed from the plots that, very few training 

images of terrain type ‘Gravel’ have the total intensity of more than 1400, whereas there are 

significant number of training images of type ‘Bedrock’, having more than 1400 total intensity 

 
(a) 

 

 
(b) 

Figure 3-19: Total Intensity Plots for (a) Gravel and (b) Bedrock 
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value. Hence, an intensity threshold of 1400 can be derived from the training data set such that if 

a test image has been classified as the terrain type ‘Gravel’, then its total intensity is calculated 

and if it is more than 1400, then it is assumed that classification has some mistake and test image 

is assigned the class ‘Bedrock’ because ‘Gravel’ is not supposed to have the total intensity more 

than 1400. This technique is named as “Intensity Thresholding”.  

 Implementing this technique along with k-nearest neighbor (K-NN) classification method 

improved the result substantially from that using only 1-nearest neighbor (NN) technique, for all 

the descriptors. The classification results acquired for all three visual descriptors, using NN, K-

NN as well as K-NN & IT (Intensity Thresholding) techniques, for different terrain types are 

illustrated and compared in the table below. 

 

 

3.3.2 CSA dataset 

For the CSA dataset also, the same technique as those used for NASA JPL dataset viz. Nearest 

Neighbour Method and k-Nearest Neighbour Method were implemented and experimented with, 

for the classification purpose. Here, due to the lower visual diversity in CSA dataset, NN alone 

already outperforms the best performance achieved on JPL dataset. However, analysing the results 

revealed that using k-nearest neighbour method (with k=25) either degrades the performance or 

does not improve performance, for this dataset. It seems here that the smaller CSA dataset may 

contribute to some confusion when k = 25. In none of the case, K-NN proves to be beneficial for 

the CSA dataset and hence, instead of increasing the algorithmic complexity (without any 

considerable gain), a simpler approach of the nearest neighbor is being used for the classification 

purpose.  

Terrain 

Type 

GIST HOG TEXTONS 

NN 
K-

NN  

K-NN & 

IT 
NN 

K-

NN 

K-NN & 

IT 
NN 

K-

NN 

K-NN & 

IT 

Bedrock 70% 65% 73% 67% 50% 71% 74% 65% 80% 

Gravel 70% 81% 79% 71% 86% 81% 62% 78% 72% 

Sand 91% 92% 92% 90% 96% 96% 92% 93% 93% 

Average 77% 79% 81% 76% 77% 83% 76% 78% 82% 

Table 14: Final Results (%) for NASA JPL dataset using various classification techniques 
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3.3.2.1 Intensity Thresholding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, in case of the JPL dataset, there was a difficulty in differentiating between bedrock and 

gravel and as a solution intensity thresholding was used, which aided the classification further. 

However, in the CSA dataset, gravel type terrains are visually completely different from other 

terrains and hence, are easily recognizable and differentiable, as evident from the success ratio 

 

Figure 3-20: Total Intensity Plot for Bedrock (CSA) 

 
Figure 3-21: Total Intensity Plot for Sand (CSA) 
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achieved by different descriptors. Here, bedrock and sandy terrains are confusing and hence, to 

verify whether intensity thresholding can be helpful for this case too, the intensity of all the training 

images comprising of bedrock and sand are plotted in Figures 3-20 & 3-21.     

It can be observed from the plots that, “Intensity Thresholding” can be implemented here as well, 

similar to what was done with NASA dataset, but with the threshold of 5000. The reason for the 

same is that, for bedrock there are considerable number of images whose total intensity value 

reaches beyond 5000, whereas for sand there are negligible number of images with total intensity 

beyond 5000, as evident from the plots.  Using this technique and analysing the results revealed 

that it actually helped improving the bedrock results. Thus, for the CSA dataset, nearest neighbor 

technique is used for classification and the comparison of the results acquired using this technique 

with & without intensity thresholding can be seen below in Table 15. 

Terrain 

Type 

GIST HOG TEXTONS 

NN KNN 
NN & 

IT 
NN KNN 

NN & 

IT 
NN KNN 

NN & 

IT 

Bedrock 76% 80% 83% 80% 70% 86% 90% 76% 96% 

Gravel 98% 90% 98% 99% 99% 99% 99% 97% 99% 

Sand 93% 99% 93% 97% 97% 97% 96% 99% 96% 

Average 89% 89% 91% 92% 89% 94% 95% 93% 97% 

Table 15: Final Result (%) for CSA dataset using various classification techniques 

3.4 Results analysis 

To check that the developed algorithms generalize well and have not become over fitted to the 

training and/or validation data, a final test is run on data that has been withheld throughout all 

development to this point. The table 16 below shows that the classification test results (in terms of 

percentage of correct detection out of total images of that terrain type), obtained using KNN & IT 

are comparable to those achieved at the culmination of development and validation. 
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Descriptor Bedrock Gravel Sand Average 

GIST 77% 67% 92% 78% 

HOG 80% 70% 93% 81% 

TEXTONS 90% 70% 93% 84% 

Table 16: Results (%) for Test set using KNN & IT (JPL dataset) 

Also, two examples of labeled results are given below in Figure 3-22 that represents the terrain 

classification results achieved by the system. Red area is detected as sand, blue as bedrock and 

green as gravel.  

 

The overall results for CSA dataset, using the finalized classification approach (NN & IT) and all 

three descriptors can be seen in the following table (Table 17). 

Descriptor Bedrock Gravel Sand Average 

GIST 82% 98% 93% 91% 

HOG 86% 99% 97% 94% 

TEXTONS 96% 99% 96% 97% 

Table 17: Final Results (%) for CSA dataset using NN & IT 

As evident from the table the success ratio for gravel detection using all the descriptors seems 

high, unlike the ones for the NASA dataset. Despite using the same algorithm and design 

parameters as the other dataset, the reason for achieving such a high success ratio is the highly 

substandard diversity in the CSA dataset. As evident from various examples of this dataset’s 

  
(a)        (b) 

Figure 3-22: Representation of Terrain Classification Results 
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images (seen in the Figures 3-6 & 3-7), there are gravel beds made in the CSA mars yard, each of 

which consists of gravels of a particular size. Hence, all the images consisting of gravel are almost 

identical and so are the training and validation images, whereas there is a great diversity present 

in the images taken from the NASA JPL website. Thus, because of having negligible difference 

between training and validation images, the system is able to detect almost perfectly using these 

simpler descriptors. The same reason also explains the higher overall results than the other dataset.  

Other than that, it is also evident from the table 17 that the highest success ratio is achieved by 

using Textons for the feature extraction. However, similar to the other dataset, it can be seen here 

as well that the results achieved by all three descriptor are comparable to each other and the 

algorithmic complexity does not seem to be providing substantial performance gain. Hence, as 

explained in that section, HOG seems to be the optimum choice for this dataset as well due to its 

lower complexity as well as runtime. The following figure (Figure 3-23) shows the representation 

of the terrain detection results using HOG for all the validation images of CSA dataset. 
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(a)        (b) 

    
   (c )        (d) 

    

   (e)        (f)  

    
   (g)        (h) 

 (i) 

Figure 3-23: Representation of results for CSA validation library 
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The important results observed here that merit a deeper discussion include, the importance of edge 

detection, criticality of the selection of intensity threshold value and the benefits of rotational 

invariance; in the context of planetary terrain texture classification, as well as the lack of significant 

performance difference despite varying algorithmic complexity. 

3.4.1 Intensity Thresholding 

As seen earlier, intensity thresholding has been implemented for both the datasets in combination 

with the classification algorithm. It is like utilizing an additional information from an image, along 

with the texture extraction. It was seen earlier that it helps improving the differentiation between 

certain terrain types. An important observation here is that the threshold values used for both the 

datasets are different and these values depend on all the images present in the training library for 

individual terrain types. It is notable here that adding or removing a few images from the training 

library might change the threshold value and could improve the capability of the system to 

differentiate between certain terrains. However, due to a hard coded intensity threshold value, this 

change would not be reflected in the system and continuously using the same threshold value can 

hamper the performance eventually. Thus, enabling an adaptable intensity threshold is proposed 

as potentially fruit full future work.  

3.4.2 Algorithmic Complexity 

As discussed in the Literature Review, the complexity of 2D convolution can be calculated by 

O(MN mn), where M x N is the size of the image and m x n is the filter window size. Based on 

this equation, the computational complexity of all three above mentioned descriptors are calculated 

for one image (100 x 100) below: 

(a) HOG: It uses two derivative masks of window size 1 x 3 and 3 x 1 for the filtering. Hence 

the complexity for the same for scale equal to 1 (image size = 50 x 50) will be the 

summation of O (50 x 50 x 3 x 1) and O (50 x 50 x 1 x 3), which is equal to O (15000). 

Similarly, for scale equal to 2, 4 & 6 the image size is reduced proportionally and hence, 

the complexity for them will be O (3750), O (864) & O (384) respectively, leading to a 

total of O (19998). 

(b) GIST: It uses Gabor filters at different scales (1, 2, 4, 6) and orientations (8 different 

values). Window size of the Gabor filter varies with the scale (window size = 6*scale x 

6*scale). Thus for scale 1, there are 8 Gabor filters of size 6 x 6 at different orientations, 
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giving the complexity of O (100 x 100 x 6 x 6) i.e. O (360000). Similarly filters with scale 

equals to 2, 4 & 6 gives the complexity of O (1440000), O (5760000) & O (12960000), 

respectively, leading to the total of O (20520000). 

(c) Textons:  it uses gaussian, LoG, 18 edge filters and 18 bar filters. Gaussian and LoG filters 

are of size 12 x 12, hence their computational complexity will be O (1440000) each. Edge 

and bar filters are at the scales of 1, 2 & 4 for 6 different orientations, thus there 12 filters 

at each scale value. Hence the complexity for scale 1, 2 & 4 will be O (4320000), O 

(17280000) & O (69120000), leading to a total of O (93600000). Apart from this, Texton 

based method also involves k-means clustering (O (kn) for 1 iteration; where k represents 

number of clusters and n is number of inputs). Here the number of iterations can vary and 

hence, the complexity of Textons can be thought of more than O (93600000).  

From above discussion, Textons based method is the most complex one, whereas the HOG is far 

lesser complex than GIST and Textons.  

An important observation from this work is that it demonstrates a lack of evidence that the 

increased complexity of GIST descriptors and Textons provide substantial performance gains over 

a relatively simpler gradient-based modified HOG descriptor. Runtime of the simplified HOG 

algorithm was faster than for the other options explored, consistent with its lower complexity. 

Runtime considerations are an important factor for planetary rovers, which usually have tight 

computational budgets. This is also part of the reason, why CNN (Computational Neural 

Networks) methods have not been implemented, in spite of their ability to outperform currently 

implemented approaches.  

3.4.3 Edge Detection 

Fundamentally, the various feature extraction filters most commonly used as bases of texture 

detection can be viewed as edge detectors. Textons use filter banks that include edge detectors, but 

also bar filters (i.e. ridge detectors), Gaussian, and Laplacian of Gaussian filters. An interesting 

aspect of the Texton results is that we can easily inspect the Texton library to see which of the 

filters in the filter bank contribute most prominently to the clustered textures. 

The Figure 3-24 below shows the mean magnitude of each filter bank’s contribution to the Textons 

extracted from the training data for NASA JPL dataset. The numbering of each bar along the x 

axis indicates 1: Gaussian filter; 2: Laplacian of Gaussian; 3-5: Highest edge response at 3 
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increasing scales; and 6-8: Highest bar response at 3 increasing scales. The highest contributions 

come from the 3 edge filters and the large scale bar filter, with the next highest contribution coming 

from the midscale bar filter. The other filters, notably the Gaussian and LoG, do not make 

important contributions to the Texton library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-24: Average Texton response to each of the 8 

filters in its filter bank. Edge filters and large scale bar 

filters figure most prominently 

 

Figure 3-25: Top 5 magnitude textons, demonstrating 

consistency with average Texton result 
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Further, Figure 3-25 demonstrates that the above observations are not only true on average. It 

shows the top 5 magnitude Textons, all demonstrating distributions comparable to the average 

distribution. The other 27 Textons show similar results, just at lower magnitudes; they are omitted 

simply for brevity and clarity. 

3.4.4 Rotational Invariance 

As discussed previously, classification of terrain textures should not have to depend on 

encountering these texture from particular orientations. Instead, including a form of rotational 

invariance to the features being detected can avoid needlessly separating out similar textures seen 

from different vantage points. The results shown in tables (RI table numbers for GIST & HOG) 

appear to support this line of reasoning: the best performing HOG and GIST descriptors employ 

rotational invariance. In particular, local RI (performed independently at each scale) produced 

consistently good results. The fact that local RI appears to outperform global RI suggests that the 

relative prominence of edges at different scales is more predictive of terrain than the preservation 

of relative orientation between prominent edges at different scales (global RI preserves these 

relative orientations between different scales, local RI does not). A deeper investigation of these 

issues, studying particular examples from terrain images in detail, could be a fruitful direction for 

future work. 

It is interesting to note that the MR8 Texton algorithm, in fact, implements an extreme version of 

local RI. Going beyond a reordering of edge filters such that the most prominent response 

consistently appears first for each scale (as described in the section of RI for GIST and HOG), the 

MR8 algorithm actually only includes the single most prominent response for each scale. In the 

modified HOG and GIST descriptors with local RI, this would be equivalent to only considering 

the 1st, 9th, 17th, and 25th elements of the histogram. If descriptor length is of concern for 

computational reasons, a shortening to a 4 element descriptor could be investigated in future work. 

However, a 32 element descriptor is already not long. 

3.5 Summary 

The exteroceptive module focuses mainly on 3-way terrain classification (classifying as one of the 

types: Sand, Bedrock and Gravel). For terrain classification, visual descriptors are adapted to this 

application and investigated, which are primarily based on visual texture and are captured in form 
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of histograms of edge filter responses at various scales and orientations. The descriptors 

investigated in this work are HOG, GIST, MR8 Textons and the classification techniques 

implemented here are nearest and k-nearest neighbors. The performance and computational 

complexity of all three visual descriptors are also analyzed and compared with one another. 

Further, monochrome image intensity is used as an additional feature to further distinguish bedrock 

from the other terrain types. To validate and compare the performance of different techniques, two 

different datasets (NASA JPL and CSA datasets) have been used. No major differences in 

performance are observed between the three descriptors (81% vs. 84% performance on JPL dataset 

and 94% vs. 97% performance on CSA dataset for HOG and Textons, respectively), leading to the 

adoption of the HOG approach due to its lower computational complexity (over 3 orders of 

magnitude difference in complexity between HOG and Textons) and thus higher applicability to 

planetary missions. 
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Chapter 4. Proprioceptive Module 

As mentioned in the Introduction, non-geometric hazards are highly dependent on wheel-terrain 

interaction properties. Terrain characterization is useful for deducing such wheel-terrain 

interaction properties, where the data measured by proprioceptive sensors is captured while driving 

the rover over a terrain region of interest and then this data is analyzed to infer some physical 

property related to trafficability. In ASAS, the proprioceptive data, namely linear acceleration & 

angular velocities of rover in X, Y and Z planes, visual & wheel odometry as well as pitch, roll & 

yaw of the rover (all with respect to time), is collected by driving the rover on different terrains at 

two different sites viz. CSA Mars Yard and Lafarge.  

Another thing to recall the Introduction is that the ultimate goal of this system is to combine the 

properties of classification and characterization methods to enable an accurate prediction of the 

physical properties of a distant terrain. This is the main focus of this chapter. The proprioceptive 

module of ASAS focuses on correlating some important trafficability properties with the classified 

terrain types, which were obtained in the classification phase (as described in the previous chapter) 

and develops a supervised online learning framework, which performs trafficability prediction as 

well as enables online training of the rover, simultaneously.     

The brief analysis of some of the data measured by proprioceptive sensors as well as some 

trafficability properties is given in the section 4.1. Section 4.2 gives an overview of design of the 

proprioceptive module so as to implement both the functionalities of online training and 

trafficability prediction. The detailed algorithm for implementation of these functionalities viz. 

online training and trafficability prediction is explained in the sections 4.3 and 4.4, respectively.  

4.1 Data Analysis 

As mentioned above, the proprioceptive data has been collected from two different sites i.e. CSA 

Mars Yard and Lafarge. This data is divided into different data logs for different test runs. Each 

test run has been designated by a number and its corresponding terrain type to identify which data 

log is for which terrain type. For example, Lafarge data logs for 22nd and 37th test runs are for 

Sand, while data logs for 60th, 61st and 19th test runs are for Gravel. This allows a user to analyze 

the data characteristics for different terrains. Another notable point here is that the terrain slope is 

being extracted from two different sources viz. IMU and stereo cameras. In comparison with stereo 

camera slope, IMU pitch data holds more reliability. Hence, stereo camera slope is used, only 
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when the IMU pitch is not available i.e. when the slope of a distant terrain has to be used. Apart 

from that, IMU pitch has been used for all the operations.  

4.1.1 Vibration Analysis 

The work performed in [23] shows that vibration data can be utilized for the classification between 

different terrains. Among the proprioceptive data that is being collected in ASAS, linear 

acceleration data is utilized to derive the vibrations that the rover experienced while traversing a 

specific terrain. The standard deviation in acceleration gives the strength of the vibrations, whereas 

the frequency spectrum of acceleration gives the frequency of the vibratory force. If any two terrain 

types have distinct vibration attributes (standard deviation or frequency or both), this feature can 

be used for classification. However, the standard deviation data for various terrain types does not 

possess very distinct values as can be seen below: 

• Sand (tests 6, 7)  : 0.11, 0.09 

• Bedrock (tests 6, 7)  :  0.25, 0.27 

• Small rocks (tests 14, 16, 17) :  0.34, 0.18, 0.25 

• Med rocks (tests 14, 16, 17) :  0.49, 0.36, 0.46 

It is evident from these values that sand can be distinguished from other terrain types due to very 

small standard deviation, but bedrock and small rocks have an overlapping standard deviation 

values and they are not clearly distinguishable.  

Further, another vibration attribute i.e. frequency spectrum is derived for bedrock and small rocks, 

as shown in the Figure 4-1 below. It is evident here as well that the two frequency spectrum are 

pretty much the same and hence, this feature does not have potential for classification for the given 

data.   
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4.1.2 Slip Analysis 

Slip, experienced by the rover’s wheels, is the most well-known trafficability metric, since it 

directly relates to rover forward progress. For a wide range of terrain physical types, wheel traction 

is known to increase monotonically with wheel slip until a peak is reached (typically at a slip range 

of 10-30%), at which point traction may decline or plateau. For this reason, wheel slip is an 

extremely desirable, and arguably sufficient, trafficability metric. Moreover, it changes as a 

function of slope/IMU pitch, on a particular terrain type. Hence, for its analysis, the terramechanics 

models for slip vs. IMU pitch is presented here.  

The graphs shown in Figure 4-2 are plotted for the data collected from CSA mars yard. As can be 

seen, in case of Sand and Gravel, only one test run each has pitch values greater than 20 degrees 

(~0.35 rad.), whereas in the case of bedrock, there is almost no pitch value encountered beyond 5 

degree (0.087 rad.), during any of the test runs. This is due to the lack of physical terrains at higher 

slopes, in CSA mars yard and as a result of this insufficiency of data, it is difficult to have a 

comprehensive analysis.   

 

 

 

  
(a)         (b) 

 

Figure 4-1: Frequency spectrum of linear acceleration (a) Bedrock (b) Small rocks 
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Hence, to solidify the observations, the proprioceptive data collected from the Lafarge site is also 

analyzed and the plots for the same are presented in Figure 4-3 below. As can be seen, contrarily 

to the CSA data, abundant data is available for pitch values higher than 20 degree. Moreover, it 

can be observed that as soon as the rover crosses the 20 degrees mark, the measured slip increases 

drastically for a number of test runs. This sudden rise in measured slip from 20% to almost 100%; 

for the increase in pitch values from 20 to 35 degree shows that it is a good measure of 

trafficability. Thus, 20% slip is considered a safety threshold for having a risk free trafficability. 

  
(a)                (b)   

 
(c) 

Figure 4-2: Slip vs. IMU Pitch plots for (a) Sand, (b) Gravel and (c) Bedrock (at CSA Mars Yard) 
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(a)  

 
(b)  

 
(c) 

Figure 4-3: Slip vs. IMU pitch plots for (a) Sand, (b) Gravel, (c) Bedrock (for Lafarge data) 
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4.1.3 Sinkage Analysis 

Similar to slip, sinkage is also a very important trafficability metric, owing to its decisive effect on 

rover’s ability to traverse any terrain. Here, sinkage is derived using a camera on the underside of 

the rover. Also, similar to the analysis of slip, terramechanics models of sinkage vs. IMU pitch has 

been plotted in Figure 4-4 & 4-5.  

 

 

As can be observed, most of the sinkage measurements are very small values (in the range of 0 to 

25 mm only) and unlike the slip measurements, they remain almost the same over the displayed 

range of pitch values. In other words, the trend of sinkage vs. IMU pitch is pretty much flat, with 

 
(a)        (b) 

Figure 4-4: Comparison of (a) Sinkage vs. IMU Pitch and (b) Slip vs. IMU Pitch, for Sand 
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(a)        (b) 

Figure 4-5: Comparision of (a) Sinkage vs. IMU Pitch and (b) Slip vs. IMU Pitch, for Gravel 
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some random peaks. The random peaks are explainable by some occlusions observed in the test 

run videos at particular time stamps, whereas the very small sinkage values lead to the conclusion 

that the physical terrains, over which the rover is being traversed, are not causing the rover to sink 

enough to have the wide range of sinkage measurements.   

Moreover, analyzing and comparing the plots of sinkage and slip with respect to time, for different 

test runs also provides some interesting observations such as higher sinkage value observations 

beyond 25° pitch, when the rover is experiencing the slip as high as around 70%. One of such 

example is shown in the Figure 4-6, where the occurrence of slightly higher sinkage value 

(>30mm) can be observed, at 140 second time stamp where slip measurement is almost 70%. Such 

late occurrences of higher sinkage values, where slip values have already reached way beyond the 

safety threshold (20%), do not provide additional information to the trafficability risk calculations, 

because slip measurements are already indicating very high trafficability risk.  

Thus, in ASAS, due to the lack of wide range of sinkage values in the collected dataset and inability 

of the sinkage dataset to help with risk prediction, sinkage has not been used in the calculation of 

trafficability risk. However, sinkage being an important trafficability metric in general, it is being 

correlated with the exteroceptive data along with the slip measurements for future scope.   

 

 

 
(a)                (b) 

Figure 4-6: Comparison of (a) Sinkage vs. Time and (b) Slip vs. Time, for a specific test run 

40 60 80 100 120 140 160 180
-10

0

10

20

30

40

50

S
in

k
a
g
e
 (

m
m

)

Time (s)

40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

S
lip

 (
%

)

Time (s)



 

67 

 

4.1.4 Roughness Analysis     

The exteroceptive data provides slope and roughness as a result along with the classification result. 

Both slope and roughness are being calculated from the depth map provided by stereo cameras. 

Also, both of them can have a legitimate effect on the slip, experienced by the rover and hence 

may affect the trafficability of the rover. While the effect of slope is very much clear from the 

terramechanics models of slip vs. IMU pitch, the effect of roughness on slip is analyzed here. The 

slip vs. roughness plots shown below in Figure 4-7 exhibits the slip variation from 0% to 100% 

for a number of roughness values. This implies that here roughness is not having the anticipated 

effect on the slip measurements for the given dataset. Also, our industrial partner, being 

responsible for the calculation of roughness, found out that the data is noisy. Thus for ASAS, 

roughness is not having any effect in the calculation of trafficability risk. However, considering 

its ability to affect the slip measurements and in turn, the trafficability prediction, it has been 

correlated with exteroceptive data, along with slip & sinkage, for future scope.     

 

 

 

 

 

 
Figure 4-7: Roughness vs. Slip plots for sand and gravel 
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4.2 Design Overview 

As explained in the data analysis section (4.1), there are three parameters that are collected because 

they may affect the trafficability risk prediction directly or indirectly viz. slip, sinkage and 

roughness. Also, exteroceptive data that affect the risk prediction are slope and the terrain type. 

To enable remote prediction of terrain trafficability, it is essential to develop a learning framework 

that correlates proprioceptive and exteroceptive data. Hence, the proprioceptive module of ASAS 

focuses mainly on two aspects. One of them is to develop a supervised learning framework that 

correlates the trafficability metrics viz. Slip, Sinkage and Roughness with the outputs from 

exteroceptive module viz. Slope and Terrain type online, as the rover traverses the terrains. This 

will develop an empirically learned data driven model, which is used to train the rover. The second 

aspect is to utilize this data driven model to estimate the trafficability properties of a distant terrains 

with the help of only exteroceptive data (slope & terrain type).   

 

 

 

 

 

 

The proprioceptive module operates in two phases as shown in Figure 4-8: Training Phase and 

Prediction phase. In the training phase, initially the trafficability metrics are correlated with the 

exteroceptive data in the form of a structured data file, which we will be referring to as “Correlated 

Data Model” from now onwards. After that, an algorithm for a learning framework is designed by 

which the online update of the correlated data model will take place. Moreover, using the 

correlated data certain parameters are also calculated in this phase, which are explained in detail 

in 4.3.4. These parameters describe the trafficability risks of a terrain. Similar to trafficability 

metrics, these parameters are also correlated with the corresponding exteroceptive data (slope & 

terrain type) in form of a structured data file, which will be referring to as “Trafficability Model”. 

This model also gets updated online along with the correlated data model and hence, turns into a 

 

Figure 4-8: Operational phases of Proprioceptive Module 
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data driven model during online operation. Thus, the training phase deals with the first aspect of 

the proprioceptive module.  

In the prediction phase, only the exteroceptive data viz. slope and terrain type are taken as inputs 

and the parameters correlated with this exteroceptive inputs are fetched from the “Trafficability 

model”. This parameters defines the trafficability risk of a distant terrain with given slope and 

terrain type. Thus, the prediction phase deals with the second aspect of the proprioceptive module.   

4.2.1 Training Phase 

As mentioned earlier, Training phase deals with development and update of the correlated data 

model in accordance with the learning framework. The inputs to this phase are: the output from 

exteroceptive & proprioceptive module i.e. the classified terrain type, IMU pitch as well as the 

trafficability metrics viz. slip, sinkage & roughness. While as an output, the correlated data model 

as well as trafficability model gets updated, which keeps rover’s trafficability prediction ability up 

to date according to the latest measurements.  

 

The correlated data model is nothing but a structured data file and hence, designing a base 

architecture for the same means designing the structure of that data file. As can be seen from the 

Figure 4-9, this model gets 3 trafficability metrics as well as IMU pitch and terrain type as inputs. 

The requirement here is to correlate 3 trafficability metrics with the appropriate pitch value of a 

 
Figure 4-9: Block Diagram of Training Phase 
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specific terrain type. Hence, each pitch value needs to have 3 lists of data samples associated with 

it corresponding to three trafficability metrics and all the terrain types needs to have such lists 

associated with each of their pitch values. Considering that the pitch value ranges from 0 to 45° 

and the resolution is taken to be 1°, each terrain type in the data file will end up having 135 lists 

of data samples corresponding all 45 pitch values (45 pitch values * 3 lists of data samples = 135). 

Each time a new data sample is added to the data model, the corresponding lists get updated for 

the given terrain type & pitch value. This explains the structure of the data file/correlated data 

model and by correlating several data samples of trafficability metrics to the appropriate 

exteroceptive data, which were obtained during on-earth test runs, a base architecture/base 

correlated data model is designed.  

Moreover, using this correlated data model, the parameters defining trafficability properties are 

also calculated and the base architecture for the trafficability model is also designed in this phase. 

The outputs that summarize the trafficability properties are Average and Maximum Slip & sinkage, 

risk factor, number of times rover experienced >20% slip on given slope and risk level. The details 

of the calculation for these outputs are also given in section 4.3.4. This model also has the similar 

base architecture as that of the correlated data model, which means for all three terrain types, each 

pitch value needs one list of output parameters associated with it. Thus each terrain type needs to 

have 45 lists of data samples, each list corresponding to one pitch value. With this base architecture 

implemented, the models will keep updating while maintaining the original structure.  

One important observation here is that even though the trafficability model is useful only in the 

prediction phase and not in the training phase, it is being generated and updated in the training 

phase. The reason for the same is the constraint of decision time while predicting the risk for a 

distant terrain. When a slope is queried in the prediction phase, rover needs to take a very quick 

decision about the trafficability risk and hence, all the calculations and pre-processing for the 

model is completed in the training phase itself and the system has to simply fetch the output 

parameters from the trafficability model. 

For deciding on the learning framework for the online update of the models, certain special cases 

have been considered and taken care for, which might be encountered while online update of the 

correlated data model. Considering that during the test runs, the rover may not encounter all the 

pitch values for a terrain type leads to the fact that the rover might be getting large number of data 
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samples for certain pitch values and no/very few data samples for the others, during the online 

update.  

4.2.1.1 Implementation of Queue Data Structure 

 

The first case is where large number of data gets added to a single list of data samples for any 

particular pitch value and terrain type. Here, after a certain extent, newer data won’t be affecting 

the calculations of the output parameters and in turn, on the trafficability prediction. Their effect 

gets diminished by the older data. To avoid this situation, instead of having an accumulated lists 

of data samples for each pitch value, a FIFO (First In First Out) queue like structure (as shown in 

Figure 4-10) is used for adding the data samples in the lists. In such a structure, after the number 

of data samples present in the queues reaches a certain limit, the oldest data sample gets discarded 

with every addition of a new data sample. This ensures that rover’s trafficability model does not 

remain rigidly fixed to the version that was created on earth. In future, when rover will start 

collecting and adding data samples from the planetary surface to the correlated data model, it will 

evolve and adapt to the conditions being experienced on the planetary surface and will eventually 

start predicting the trafficability risk according to the planetary conditions instead of that on earth; 

no matter how different the on-earth environment is from the actual planetary surface.     

On the contrary, the second case is where there is no/very few data samples for certain pitch values. 

Here, it is not possible to have reliable and purely data driven prediction for such pitch values in 

the prediction phase. To handle such cases, interpolation or extrapolation is used for calculating 

the output parameters of the trafficability model. The selection between interpolation and 

extrapolation depends on the IMU pitch value. Let’s say N data samples are allowed in one queue 

and minimum of N/4 data samples are required to make a reliable prediction. Suppose, pitch value 

 

Figure 4-10: Illustration of FIFO queue like data structure 
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of ∅�	is being queried for prediction and n (∅�) < �/4, where n (∅�)	= number of data samples 

present in the queue of	∅�. In this case if there exist the pitch values ∅�	and ∅�, where ∅� <	∅� & 

∅� >	∅�and both of them have n > N/4, then interpolation is used for the calculation of output 

parameters. Whereas, if there is no ∅� 	(∅� >	∅�) that has n > N/4, then interpolation is not 

possible and hence, one has to extrapolate based on the data from other terrain types to consider 

the worst case scenarios. However, it is not advisable to update the trafficability model based on 

such extrapolated values. Thus, extrapolation is just used for prediction at a present moment in 

cases where interpolation is not feasible due to lack of data. The details of various cases and their 

solution is explained in the section 4.3.6.  

Apart from these two cases, another type of unusual events observed while data analysis, were 

identified by a sudden rise in slip measurements for a very short span of time, during some of the 

test runs. Two of such events are illustrated below in Figure 4-11. 

 

In both the cases, these high slip events seem to last for around 5-6 seconds. Analyzing these events 

in detail, has revealed that sometimes they occur as a result of sharp turns or transition of the slope, 

while sometimes they are just due to noise. If such values are added to the correlated data model 

and used for the calculation of output parameters, without considering them as a special case, the 

system will learn the false model using these values. Such false learning by bad examples should 

be avoided as they can have several adverse effects.  

 

(a)            (b) 

Figure 4-11: High Slip Events during two different test runs 
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The strategy to deal with such false High Slip Detection (HSD), is to observe whether this high 

slip data is continuous or is for a short time span. Whenever a sudden high slip data is observed 

for any particular slope & terrain type, a separate correlated data model begins to develop, 

consisting of only high slip data and an HSD mode gets activated for that terrain type. Hence, a 

new trafficability model is now formed using the said high slip data model and the prediction will 

also be based on this new trafficability model, as long as the HSD mode is active. If this is just a 

short event, that means if after a short time span, again slip measurements get back to normal 

values from high values, then it can be considered as one of the events mentioned above due to 

sharp turns or noise. In such case, the high slip data model will be deleted & HSD mode will be 

deactivated. This way original training model will be free from false high slip data and the 

trafficability model will keep functioning properly without being affected by such events. On the 

contrary, if such high slip measurements sustain for some time, the user expert can analyze the 

terrain and its characteristics and can deal with it accordingly. The details about the algorithm for 

this case is given in Appendix.  

4.2.2 Prediction Phase: 

As mentioned earlier, prediction phase deals with the trafficability risk prediction, for a distant 

terrain being visualized by the rover before traversing it. It uses the trafficability model for the 

prediction. The inputs to this phase are just the visual data i.e. the classified terrain type derived 

by the exteroceptive module and the slope derived from the depth map provided by stereo cameras. 

As mentioned, the output parameters correlated in the trafficability model have already been 

calculated and processed in the training phase. Hence, in this phase, the system just needs to fetch 

those parameters that are correlated with given terrain type and slope, from the model and output 

them to the system so that it can predict the trafficability risk for the rover.  

 
Figure 4-12: Block Diagram of Prediction Phase 
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4.3 Algorithm of Training Phase 

As discussed above, in the training phase, three inputs namely terrain type, IMU Pitch and 

trafficability metrics are correlated with one another, which updates the correlated data model as 

well as the trafficability model.  

4.3.1 Structure of Correlated Data Model 

 

 

Figure 4-13: Structure of the Correlated Data Model 



 

75 

 

As mentioned in the design overview of proprioceptive module, the trafficability metrics viz. slip, 

sinkage & roughness are correlated with the appropriate exteroceptive data (slope, terrain type) to 

form the base architecture of the correlated data model and the structure of this data model seems 

as shown below in Figure 4-13. 

As can be seen here, each terrain type has 45 pitch values associated with it and each pitch value 

has 3 queues of data samples associated with it, which corresponds to 3 trafficability metrics (Slip, 

Sinkage & Roughness). These queues store the values of the trafficability metrics measured by the 

system in FIFO manner. Thus, each terrain type has 45 queues associated with itself. Moreover, 

each queue can store N data samples as shown in Figure 4-13. N decides the size of the queue i.e. 

number of latest data samples being held by the queue.       

4.3.1.1 Importance of Queue Size (N) 

The selection of this parameter N i.e. the queue size is crucial for the responsiveness and stability 

of the system. Selecting a very small size of queue means older data will keep getting replaced 

with newer ones quite frequently, which in turn means that system will adapt to the changing 

conditions instantly. This increases responsiveness of the system. However, this may lead a 

system’s behavior to be highly unstable. Even if a specific terrain behaves differently for short 

time span, it will lead the system to change its trafficability prediction. On the contrary, a higher 

size of queue will make the system stable, but will reduce its responsiveness at the same time.  

Thus, size of queue plays a decisive role in responsiveness and stability of the system and hence, 

selecting an adequate value for the same is very important. The effect of this factor on system’s 

behavior has been discussed further with example in Field Test Results (Chapter 5). 

Apart from that, some important aspects and the reasoning behind certain selections, regarding this 

structure, are discussed below: 

� Even though the IMU is capturing the pitch values at higher resolution, in the correlated data 

model, the pitch values used for the correlation are taken at 1° resolution. This is because, given 

the fact that slip measurements on pitch values, very close to each other (having <1° difference) 

cannot be significantly different, it does not seem logical to use such high resolution for 

correlation and moreover, using high resolution also requires higher storage capacity.  

Hence, all the pitch values obtained from IMU are floored to their nearest integer values, thus 

separating the data samples into the bins based on their pitch values. This implies that all the 
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values from 0° to 0.9° are considered to be 0° and all the samples measured at these pitch values 

will be added in the queue (bin) of 0° slope and so on.  

� The pitch values are ranging from 0° to 45° for each terrain type. The reason for the same lies 

in the observations from data analysis in section 4.1.2. It can be seen from the terramechanics 

models of slip vs. IMU pitch that, by the time the pitch value reaches around 40°, the slip 

measurements are already crossing the 100% mark. Hence, one can conclude that trafficability 

risk for a slope of above 45° (for any terrain) can always be predicted as high. Moreover, it was 

also observed during the test runs that there is a possibility of rover tip-over, beyond 45° slope.  

These observations lead to the conclusion that whenever there is a query for a slope value higher 

than 45° for any terrain type, system should always predict 100% slip and the highest risk. 

There is no need, to record the measurements for such high slopes and depend on them for the 

prediction. Hence, the pitch values beyond 45° are not added to the correlated data model. In 

the training phase, if the pitch value beyond 45° is given as an input, the training will be skipped 

and that data sample will not be added.  

� The queue size parameter N has been defined as a user configurable parameter. This ensures 

that, if the present value of N does not seem to be sufficient for the reliable prediction, the 

human expert in the loop can easily change it online.  

4.3.2 Algorithm for the Correlated data model update 

The correlated data model is stored in form of a structured data file (text file) in the memory of a 

computer, to make it easily accessible and also to ensure that the model does not get wiped out in 

case of power loss. This text file has a separate line for each queue. Since IMU pitch values range 

from 0 to 45°, this text fie has 45*3 = 135 lines for each terrain type, giving a total of 135*3 = 405 

lines (for 3 terrains) in the entire file.  

The flowchart shown in Figure 4-14 illustrates the algorithm for adding a new data sample in an 

appropriate queue. As can be seen, the inputs (trafficability metrics, IMU pitch and terrain type) 

are taken from exteroceptive as well as proprioceptive sensors and initial checks have been 

performed so as to accept only the appropriate pitch value. Secondly, the corresponding queues 

for given slope & terrain type (inputs) are scanned to retrieve the number of data samples present 

in them. This is accomplished by scanning a new line character while reading the text file into 2-

D matrix. This step determines the end of line. A counter keeps increasing until new line character 
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is found and then this count is stored in the (N+1)th column of the matrix. If the queue has less than 

N data samples, the new data samples can simply be added in the queue. However, if it is full, 

FIFO structure is implemented by discarding the oldest data and adding the latest one. 
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Figure 4-14: Algorithm for adding a new data sample in a queue 
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4.3.3 Structure of the Trafficability Model 

As mentioned previously in the design overview section 4.2, the output parameters, stored in the 

trafficability model are calculated and updated in the training phase itself. The structure of the 

trafficability model is given below in Figure 4-15. 

   

Similar to the correlated data model, the trafficability model is also stored in memory as a 

structured data file. As seen from Figure 4-15, this file enlists different output parameters for all 

the pitch values of each of the terrain types. Each line corresponds to a pitch value of a terrain type 

and hence, the text file has a total of 45*3 = 135 lines. Also there are 8 output parameters which 

are essential in deciding the trafficability properties. Thus, accessing this file as a 2-dimensional 

matrix requires 135 rows and 8 columns in it.  

4.3.4 Algorithm for an initial trafficability model update 

In the training phase, once a new data member is added in an appropriate queue, the system 

proceeds to updating the trafficability module so as to reflect the effects of the new data sample 

on the trafficability prediction. As can be seen from Figures 4-15 & 4-16, they are sequential, 

indicated by “Continue A”.  The system simply calculates the output parameters using all the data 

 
Figure 4-15: Structure of the Trafficability Model 
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samples present in the queue (corresponding to the queried pitch value) and updates the existing 

values by the new ones in the trafficability model. The details about the calculations of these 

parameters is given in the next section (section 4.3.5). 

  

4.3.5 Calculation of output parameters 

In the trafficability model, the output parameters listed for each pitch value are: Expected Slip, 

Maximum Slip, Expected Sinkage, Maximum Sinkage, Risk Factor, count of greater than 20% slip 

readings, Risk Level and Number of samples present in the queue of the corresponding pitch value. 

The Expected Slip and the maximum slip are calculated as average and maximum of all the data 

samples present in the slip-queue for the given slope, whereas, maximum slip is the maximum of 

all the readings in the same queue. Similarly, the Expected Sinkage and Maximum sinkage is the 

 
Figure 4-16: Algorithm for Initial Trafficability Model update 
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average and the maximum of all data samples present in the sinkage-queue of the given pitch.  Risk 

factor is calculated as the ratio of number of times the slip has been greater than 20% with respect 

to the total number of data samples present in the queue.  

Risk level is the result that decides whether the terrain is high risk, medium risk or Low risk in 

terms of trafficability. It is basically decided by threshold levels of the risk factor value and the 

expected slip value. When these two values cross their corresponding thresholds, the risk level 

transitions from Low to medium and then to high. In this system, the Risk factor value lower than 

5% and expected slip lower than 20% is termed as ‘Low Risk’ level. Similarly, ‘Medium Risk’ 

level is when the risk factor is in between 5% and 65% and expected slip value is in between 20% 

and 50%.  For the risk factor of more than 65% or the expected slip of greater than 50%, the risk 

level is termed to be ‘High’. Using the expected slip value along with the risk factor for the final 

trafficability risk prediction ensures that, if the risk factor value is lower than a certain threshold 

just because of lack of data samples for the given slope, then it does not diminish the effect of 

higher expected slip resulted from interpolation or extrapolation (explained in section 4.3.7).  

4.3.6 Algorithm for the Learning Framework/Online update 

As discussed earlier in section 4.2, online update of the correlated data and trafficability model 

takes place according to the learning framework and requires considering and handling some 

special cases. Moreover, certain cases were also discussed there (in section 4.2.1) one of them 

being, where there are no/very few data samples in the queues of given pitch and terrain type and 

hence, it is not possible to make reliable prediction in such cases. These kinds of cases can be 

handled by interpolation or extrapolation.  

For extrapolation, it has been also mentioned in the same section that the extrapolated values 

should not be used for updating the trafficability model. This is because the extrapolated values 

are calculated using the data samples of the other terrain types and it is not advisable to train the 

rover to predict the trafficability of a specific terrain type based on the other terrain type’s data 

samples. As the extrapolated values are used only to predict the trafficability for the current terrain, 

and not to train the rover, it is not required to execute the extrapolation in the training phase. It is 

executed in the prediction phase only and hence, the extrapolation algorithm is explained in the 

prediction phase (section 4.4). 
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Apart from that, the algorithm and implementation for interpolation has been explained next in 

section 4.3.6.1. Also, one more case has also been considered here, which explains what if a user 

expert wants to introduce a new terrain type to the system. The details about how to handle this 

case are discussed in section 4.3.6.2. 

4.3.6.1 Interpolation 

Interpolation is generally used to estimate a value in between two known values. It is imperative 

to have at least one slope on both the sides of the queried one, with a queue having an adequate 

number of data samples (N/4 in this case) and hence, in the cases where this condition is satisfied, 

interpolation becomes the obvious choice for the estimation of expected slip.  

In this system, linear regression model using cubic polynomial has been used for interpolation. 

This cubic regression is performed keeping the fixed y-intercept. The reason behind the same is 

that while collecting the data during test runs, rover may not encounter all the slope values for all 

the terrains and hence, the data set may not have slip measurements at 0° slope for some terrains. 

For example, if there is no slip measurements for slope values from 0 to 10°, and interpolated slip 

needs to be calculated at 11°, there would be no slope below the queried one with a queue having 

an adequate data samples and hence, interpolation would not have been possible. Thus, having a 

fixed y-intercept will ensure that there is always a data point at 0° slope and it is possible to 

estimate an interpolated slip for the queried slope as long as at least one higher pitch value has an 

adequate data samples. Also, using a fixed y-intercept overcomes the occurrence of an up-turning 

in the cubic regression at lower slope values, which is undesirable. In Figure 4-17 (a), the fitting 

curve using cubic regression without a fixed y-intercept is shown, where it can be observed that 

for the slope value lesser than around 7°, the corresponding slip values increases with the 

decreasing slope value. Whereas in Figure 4-17 (b), the fixed y-intercept is avoiding the occurrence 

of up-turning in the curve. The value of y-intercept is fixed at the average of first N data samples 

from the queues of lowest slope values.  

Secondly, it is notable here that all the checks and updates regarding interpolation are taking place 

in the training phase itself. This is because every data sample being added to the Correlated data 

model affects the curve-fit obtained for calculating interpolated values. Hence, in every training 

iteration, the necessity to update the interpolation coefficients is checked as shown in the flowchart 

(Figure 4-18). For the same, the number of training data samples present for all the slope values is 
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scanned sequentially. If any slope queue does not have enough data samples (i.e. n<N/4), the 

average slip calculated for that slope value is not reliable and the same has to be updated using 

interpolation. In this case, further slope values are scanned to determine if any of them has enough 

data samples (i.e. n>N/4), implying whether interpolation is feasible or not. If so, the 

corresponding coefficients for the interpolation curve are updated using cubic regression and are 

stored in the memory so as to be used while updating the expected slip in the trafficability model.  

4.3.6.1.1 Updating the Trafficability Model using Interpolation 

The next step in the algorithm is to update the trafficability model using the interpolation curve, 

wherever necessary. For the same, as shown in the flowchart below (Figure 4-19), again the 

number of data samples present in the queues of all the slope values are scanned sequentially and 

wherever there aren’t enough data samples (n<N/4), the average slip is replaced, by the one which 

is calculated using interpolation. Further, it is also important to ensure that the expected slip values 

in the trafficability model should increase monotonically with the slope and the same is being 

taken care of as well, after calculating interpolated slip, as shown in the same flowchart.  
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(a) 

 
Figure 4-17: Cubic regression (a) without fixed Y-intercept (b) with Y-intercept 
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Figure 4-18: Algorithm for Interpolation check in Training phase 
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Figure 4-19: Updating the Trafficability Model using Interpolation 
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4.4 Algorithm of Prediction Phase 

As discussed in section 4.2.2, the inputs to this phase are the classified terrain type and slope from 

the stereo cameras. The system simply fetches the output parameters from the trafficability model, 

corresponding to the terrain type and slope passed as inputs and displays the trafficability 

properties as outputs. However, there are few special cases and considerations which are taken 

care of in this phase.  

4.4.1 Penalty for higher degree slopes 

As discussed in section 4.3.1, the correlated data model holds the slope values from 0° to 45° only, 

for each terrain type.  The reason for the same lies in the analysis of the raw data collected in the 

test runs, where the slip measurements touch the 90% mark at the 35° itself. Considering this 

reason as well as the mechanical design, which might cause the rover to flip at higher than 45° 

slope values, it has been decided to penalize the output parameters and trafficability risk, if the 

queried slope is higher than 45°. In such cases, the expected slip is set to 100% and the predicted 

risk level is always high.  

4.4.2 Extrapolation 

As discussed in section 4.2, for the cases where enough data samples are not present to predict the 

trafficability reliably, interpolated or extrapolated slip is calculated as an expected slip. Also, as 

seen in section 4.3.6, for interpolation the queried slope needs to be between two slopes which 

have enough data samples. In other cases, where none of the slopes higher than the queried one 

have enough data samples, interpolation is not possible. Hence, the expected slip for such slopes 

is determined using extrapolation.  

First of all, the necessity of extrapolation is checked for the queried slope and terrain type. If it is 

required, that means it is not possible to predict the reliable expected slip & risk level using the 

data from the same terrain. In such a situation, one solution can be to calculate different slip values 

for each terrain type other than the queried one, using their corresponding data samples and to 

consider the maximum slip value among all of them as the expected slip, which prepares the system 

for the worst case scenario. However, for any two terrains Slip vs. Slope characteristics may not 

be inherently similar and this fact should be considered. Let’s take an example to understand this. 

For example, one needs to calculate an extrapolated slip at 35° for gravel. Calculating the slip 

values using the data samples of sand and bedrock reveals that sand gives higher prediction at 35° 



 

88 

 

than bedrock. In this case, the obvious choice might be to use the slip derived from sand data 

samples as an expected slip. However, a very important factor to be considered here is the ratio 

between the slip measurements of different terrain types. Let’s say gravel has an expected slip of 

10% at 0° slope, whereas sand has that of 5% and both of them have monotonically increasing 

curve. Looking at the fact that gravel has higher expected slip than sand at 0°, one would expect 

the same slip measurements ratio at 35° as well, considering that the expected slip curves for all 

the terrains are monotonically increasing. Hence, instead of directly using the sand prediction for 

extrapolation, the slip0 (average of the N slip measurements at the lowest slope values) is 

calculated first, for all the terrain types. This gives the idea of the inherent difference between the 

expected slip curves for different terrain types. Next, the slip0 ratio is calculated for both sand and 

bedrock with respect to gravel, which are then multiplied (only if it is greater than 1) with the 

respective predictions (from sand & bedrock respectively) to calculate the extrapolated slips. From 

these two extrapolated values, the one which is the higher than the other is used as a final 

extrapolated value. This explanation to calculate extrapolated slip can be summed up by the logical 

expression given below:  

!"#$%&$'	()*#�+�� = max	�/0123425	67�1�8�9∗;<=	>67�1?,@67�1?,9	,�A� 
Where, +	= queried slope 

i = queried terrain type, j = other terrain types 

()*#B = average of N slip measurements at the lowest slope values 

 

4.5 Summary 

The proprioceptive module focuses on the correlation of terrain types and their mobility properties 

in a framework that enables online learning. To predict terrain trafficability ahead of the rover, 

exteroceptive data viz. terrain type and slope, are correlated with the trafficability metrics viz. slip, 

sinkage and roughness. The implementation of training and prediction phases was described in 

this chapter. A queue based data structure has been implemented for the correlation, which keeps 

discarding the older data so as to avoid diminishing the effect of newer data samples, when there 

is a large amount of data. This also ensures that the rover will be able to adapt to changing terrains 

responses and predict the risk level (low, medium or high) accordingly. 
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Chapter 5. Field Test Results Analysis 

For the verification of the proposed method, a number of test runs were performed on the MARS 

yard developed by the CSA. For these field test runs, Ontario Gear Drive’s J5 rover was used. This 

rover had been pre-trained with the training datasets, which were formed as described in chapter 

3 & 4. For the proprioceptive module, the training library was comprising of the data measured 

during the test runs, from the site called “Lafarge”. Whereas, for the exteroceptive module, the 

training library comprised of the data from CSA mars yard as well as Lafarge (explained in detail 

later). Recall that the goal here is to demonstrate the performance of terrain classification as well 

as a responsive, yet stable trafficability module, where the proprioceptive training model gets 

updated online using the data being measured, the system classifies the terrains which are in front 

of the rover and also, when approved by the user, the exteroceptive training model gets updated 

by adding new classified images to the dataset.  

Thus, there were two aspects of the above mentioned goal which were mainly exhibited during 

these test runs. One is that rover runs on different terrains at different slopes present in the Mars 

Yard and it exhibits terrain classification based on the exteroceptive module and predicts the slip 

as a function of slope based on the proprioceptive module. Whereas, the other aspect is that, when 

the user enables the training of the proprioceptive module using the measured slip and slope values, 

the training model gets updated online, while the rover is traversing and collecting the data. This 

aspect exhibits the “Data Driven Model” of the proprioceptive module.  

The various parameters measured, and the results derived by the rover using the proposed 

algorithm were recorded in a GUI, developed by our industrial partner ‘Mission Control’ and the 

snapshots of the same has been presented here. The snapshot in Figure 5-1 is presented here just 

to illustrate the appearance of the GUI. 

As can be seen, the camera feed is in the center of the screen. The image is further divided into 9 

big grid squares and the small text at lower left corner of each grid square shows the classified 

terrain type (sand, bedrock or gravel) for that grid. Also, the color of these grid squares shows the 
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risk level predicted for the corresponding grid by the proprioceptive module, based on its slope 

value and terrain type.  

Further, in the bottom middle grid square, smaller sub-squares can be seen. Each bigger grid square 

is made of such small sub-grids and the classification is performed at the sub-grids level. All the 

sub-grids forming a bigger grid square get classified individually as one of the terrain types and 

then, based on the combined result of these classifications,  that particular grid square gets 

classified in to one of the terrain types. The color of these sub-grids exhibits the terrain type in 

which they have been classified to. The orange color is for representing the terrain type sand, blue 

is for bedrock, green is for gravel and black is for unknown/non-classified terrain type. 

At last, there is a Predicted Slip vs. Slope plot in the bottom horizontal section, which exhibits the 

output trafficability model for the given terrain type. The white line shown in the plot displays the 

expected slip at each slope value, fetched from the output trafficability model and the white dots 

around this line exhibits the slip measurements, present in the queue of each slope value. The areas 

 

Figure 5-1: Snapshot of GUI 
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covered with different colors exhibit the predicted risk levels, again fetched from the present output 

model. Here the green color shows low risk terrain, yellow color shows medium risk terrain and 

red color shows the risk terrain. As the terrain is traversed, the measured data gets added to the 

training model, the output model also gets updated and so do the risk level predictions.   

5.1 Important Proprioceptive Results 

There were several test runs performed and the results were recorded for all of them, but an 

important test run has been discussed and analyzed here that significantly and very clearly displays 

the updates of the terramechanics model by adding new measurements in the training data set and 

exhibits the responsiveness of the “Data Driven model”. The update and learning of the 

terramechanics model was observed in other test run as well, however, this test run was specially 

designed to exhibit the quick responsive nature of the system and its capability of online learning.  

This test run is referred to as the “Sled Test”, as a sled carrying weights, was tied behind the rover 

and the rover was made to run on normal sandy terrain with not-so-high slope. Due to having to 

pull the sled, rover was experiencing higher slip measurements than it would normally have at the 

given slope on a sandy terrain. Here, the terramechanics model was observed learning and 

changing according to the new measurements added to the library. This experiment and the results 

are illustrated in the figures below which are actually the snapshots taken at certain time stamps 

from the test run video.  

The image here (Figure 5-2) shows the GUI at the origin. The predicted slip vs. slope plot at the 

bottom shows the trafficability model at the origin i.e. before starting the sled test run. It can be 

seen here that originally the low to medium risk level threshold is at 19° slope value, whereas the 

medium to high risk level threshold is at 21°.  

Also, in the center of the GUI screen, the front camera feed can be seen. In which, as explained 

earlier in this section, the classified terrain type and the confidence in the classification is shown 

for each bigger grid square. Thus, along with the data driven terramechanics model, the 

classification results is also being validated here. However, one thing to note here is that the 

exteroceptive module is not being trained by the classified examples. In addition to that, below the 

rover status table block, the check box for enabling the training of the terramechanics model is 

checked, which means user has enabled the proprioceptive module's training. 
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 In the next snapshot in Figure 5-3, which is taken after some seconds, it can be seen that the 

recording of new slip measurements has been started. The red colored cross exhibits the current 

slip measurement that is being added to the training library. However, as evident, the 

measurements have not yet reached the value that is higher enough to change the predicted slip 

curve and hence the low to medium as well as medium to high risk level thresholds are still the 

same as that in the initial plot. Also, in the rover status table block, the current slip and slope 

measurements can be observed. 

 

Figure 5-2: GUI at origin 
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The next snapshot shown in the Figure 5-4 is taken at 5:14 time stamp. As can be seen from the 

GUI, there is no slip measurement recorded above 20% before this point of time. The very first 

reading above 20% is recorded at 5:14 seconds (20.9%) and hence, the low-to-medium and med-

to-high risk level thresholds are still the same i.e. at 19 and 21°, respectively. However, a notable 

observation is that the curve for the expected slip is modified from that in the 1:23 seconds 

snapshot, due to the addition of high slip measurements in the training library. As evident from 

Figure 5-3, the curve was at around 10% expected slip value initially for the slope values ranging 

from 1 to 16°, which is now around 20% (Figure 5-4). 

 

Figure 5-3: GUI at 1:23 time stamp 
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Now, as soon as a slip measurement of 20.9% is added to the training library in the queue of 6° 

slope, in the very next second (5:15 time stamp) the low-to-medium risk level threshold shifts to 

6° from 19° (Figure 5-5). This is explainable by recalling the risk level calculation explained in 

the proprioceptive module’s section, the risk level transitions from low to medium, as soon as the 

expected slip reaches beyond 20% or 5% of the readings in any slope’s queue are more than 20%.  

Here the queue length has been selected to be 20, whose 5% is 1 and hence, as long as one reading 

is recorded above safety slip threshold value (20%), the risk level transitions from low to medium. 

The risk level prediction is also changed for the classified terrains which are ahead of the rover, as 

can be seen from the color of the bigger grids in the camera feed section of the GUI.  

 

Figure 5-4: GUI at 5:14 time stamp 
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Similar to the low-to-medium risk level transition, medium-to-high transition is also explained in 

the same section, which says that as soon as expected slip goes beyond 50% or more than 65% of 

the readings in the queue are recorded above 20% threshold, the risk level will transition from 

medium to high. In the “Sled Test Run”, after the low-to-medium risk level transition took place 

at 6°, almost all the readings were recorded above 20% slip value and all were for the slope values 

ranging from 5.8 to 6.4. Hence, as soon as 13 readings were recorded above 20% after some 

seconds (at 5:27 seconds time stamp), the medium risk level at 6% transitioned into high risk level. 

So the high risk level which was earlier being predicted for the slope range of 21 to 45°, is now 

being predicted for all the slopes from 6 to 45° as evident from the Figure 5-6 and the modified 

 

Figure 5-5: GUI at 5:15 time stamp 
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risk level prediction for the terrains ahead of the rover is visible from the color of the grids here as 

well.  

 

This whole experiment was set up to exhibit the responsiveness of the data driven model. However, 

along with being responsive, system should possess certain level of stability as well. As explained 

earlier in section 4.3.1, the decisive factor for responsiveness and stability of the system is the 

queue size. For example, the above mentioned experiment (sled test) was performed with two 

different queue sizes. The one discussed above in this section is performed with the queue size of 

20 and the other one was also performed with the queue size of 100. It was observed in the first 

one that the system  is responsive, whereas in the latter, one the risk level thresholds did not change 

at all because of insufficiency of high slip data samples in a queue (stable but not responsive). 

Thus, queue size is responsible to maintain the balance between responsive and stable behavior of 

the system and we have two extreme values of queue size. Hence, an analysis was carried out to 

find an adequate value of queue size that balances the responsiveness and stability. It revealed that 

 

Figure 5-6: GUI at 5:27 time stamp 
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32 is an adequate queue size and to exhibit the same, following plots have been derived. These 

plots show the changes in risk level thresholds with time, as different tests were performed.  

Yellow line in the plots indicates the low to medium (L2M) risk level threshold, whereas red line 

indicates the medium to high (M2H) risk level thresholds. Moreover, the blue points on the plot 

are the actual slope value measurements, those were encountered by the rover while the traversal.  

As can be seen in the plot for sand, there is a large displacement in L2M risk level threshold around 

the first time when the rover started driving on slopes near that threshold. A similar large 

displacement can also be observed in M2H risk level threshold, in the plot for gravel. Such large 

displacements in thresholds during the initial rover runs can be justified by the fact that the 

proprioceptive module has been trained with the data from Lafarge, where the terrains behaved 

differently than CSA and hence, initially rover was predicting the risks in accordance with the 

Lafarge terrains. But once it drove on the similar slopes at CSA mars yard and gathered the data 

from there, the system learned the behavior of the terrains at CSA mars yard and hence, changed 

its prediction. This exhibits the responsiveness of the system.  

However, after this initial significant displacement, a quite stable prediction can be observed in 

both the cases, with only 2 displacements of 1° each, in the L2M risk threshold in sand’s plot. 

Similar small displacements can also be observed in L2M risk threshold in case of gravel. These 

small displacements verifies that system is responsive at all the time and is able to detect if 

suddenly a terrain starts behaving differently. At the same time, maintaining almost a constant risk 

threshold for a specific terrain type ensures that system possess stability as well, along with the 

responsiveness.    
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(a)   

 
(b)    

 
(c)  

Figure 5-7: Risk level thresholds analysis with N=32 and (a) Sand, (b) Gravel and (c)   Bedrock 
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5.2 Exteroceptive Results 

The overall performance of the exteroceptive module observed during the test runs is presented 

and discussed in this section. The test runs were performed with 3 different training data sets 

named as “Original Dataset”, “New_CSA Dataset” and “Pure_CSA Dataset”. The results obtained 

with all of them is shown below in Table 18. 

Terrain Type 
Original 

Dataset 

New_CSA 

Dataset 

Pure_CSA 

Dataset 

Bedrock 43.28% 21.37% 47.80% 

Sand 35.33% 94.92% 97.11% 

Gravel 99.6% 81.51% 90.10% 

Table 18: Field Test Results for Exteroceptive Module 

As discussed in the “CSA dataset” section, the training data collected from the CSA mars yard 

was not diverse enough and hence, to start with the test runs, it was decided to collect some more 

images from another site in Lafarge and add them to the existing training data set. So for the initial 

test runs, the training dataset was having the images from CSA and Lafarge sites, which is referred 

to as “Original Training Set”. As can be seen from the table, the classifier performance for bedrock 

and sand is not satisfactory and quite low compared to the results obtained during the algorithm 

development and verification stage. This could be attributed to several reasons such as; different 

weather conditions, some practical implementation restrictions and the mismatch between the 

training libraries used during the field test and development stage. For the weather conditions, 

when the images were collected from the CSA mars yard for developing the training library, the 

weather beautiful and sunny. Whereas, before the field tests took place, it was raining continuously 

for two days. Hence, the texture for the same terrain, in the training library and on field, was visibly 

different from each other to a great extent. Also, the lighting conditions (which are quite different 

in sunny and cloudy weather) may have affected the performance. Moreover, for the practical 

implementation, it was required to compress the images before communicating them from the 

rover to the system and this obviously degrades the texture information of any image adversely. 

Lastly, there were new diverse terrains added in the mars yard by CSA, which were not present 

while collecting the images for training set.  
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5.2.1 Queue data structure for Exteroceptive Training Library 

Further, to show case that if the training library has the examples from the same site where the 

rover is traversing, it can help improve the performance to a great extent, all examples of the sandy 

terrain were removed from the training library and plentiful sandy terrain images, taken on that 

very day by the rover, were added to the library and this library was given a name “New_CSA 

Dataset”. As can be seen from the table, the performance for the sand improved dramatically, with 

the success ratio of 94%. This proves that if the classifier is continuously being trained with the 

new images from the current site, the performance can be enhanced a lot. This leads to a conclusion 

that if a queue like structure is implemented for the exteroceptive training library as well (similar 

to proprioceptive training library), then the rover will be able to adapt to the new planetary visual 

data, no matter how different it is from the on-earth training.  

Moreover, it can be seen that the performance for the bedrock has degraded to a great extent. This 

owes majorly to the compression of the images. As discussed previously, the bedrock and sand 

images from the CSA mars yard are visually quite similar to each other and hence, intensity 

thresholding is implemented to differentiate between them. However, adding the sand images from 

the current site, compression of the images and the poor weather conditions, caused more 

confusion between both of them. Moreover, adding new images to the existing training library 

must have changed the effective intensity threshold, but having a hard coded threshold value didn’t 

allow this change to reflect in the system. Thus, it seems that lots of bedrock images were confused 

as sand images. Hence, following the same example of sandy terrain explained in previous 

paragraph, more bedrock images from the current site were added to the training set and an 

improvement in the performance was observed, which can be seen in the table under the name of 

“Pure_CSA datset”. Thus, the final field test results for exteroceptive were comparable to what 

was achieved in the in-lab analysis with a few well-explained exceptions. 

       

5.3 Summary 

This chapter was a discussion of the field test demo, which was held at CSA Mars yard to test and 

verify all the algorithms developed in this work. A ‘Sled Test’ (representing a sudden change in 

trafficability performance), demonstrates the responsiveness and online learning ability of the 

system. Moreover, the classification performance for the terrain classification was also analyzed 
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here. All in all, the proposed risk metric (i.e. proportion of data points over 20% slip) in 

combination with the queue based data structure, could achieve stable predictions in consistent 

terrains, while also being responsive to sudden changes in terrain trafficability.    
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Chapter 6. Conclusion 

The work presented here is a part of a larger program to develop an autonomous system for Mars 

rovers to make them intelligent enough to predict the trafficability properties of a distant terrain, 

just by knowing its appearance (image) and geometry (depth map) information. This work focuses 

mainly on the exteroceptive classification as well as on the correlation of proprioceptive and 

exteroceptive data in such a framework that enables the online learning.  

On the exteroceptive classification front, the aim is to be able to classify the terrains correctly as 

one of three types viz. Sand, Bedrock and Gravel and the primary objective here is to achieve the 

satisfactory performance using the least complex method (due to the tight computational budgets 

for planetary rovers [78]). As discussed in section 2.4, the gradient based methods and Gabor filter 

based methods represent the opposite ends of the spectrum, in terms of computational complexity. 

Hence, this work demonstrates the implementation along with tuning of design parameters and the 

classification performance for three different visual descriptors namely, HOG (gradient based), 

GIST and Texton (both Gabor based).  It shows that for monochrome images of planetary terrains, 

a good description of terrain texture can be achieved by quantifying edge detections at various 

scales and orientations. In addition to that it can also be observed that the classification between 

two confusing terrain types (gravel and bedrock in case of NASA JPL dataset, whereas sand and 

bedrock in case of CSA dataset) can be further enhanced by combining the texture based 

classification results with the intensity thresholding results. For example, the simplest descriptor 

HOG (along with Intensity Thresholding) achieves the accuracy of 81% for NASA JPL dataset 

(more diverse dataset) and 94% for CSA dataset (dataset with low diversity), for 3-way 

classification. Similarly, GIST achieves 78% and 91% as well as Textons achieve 84% and 97% 

accuracy, for the respective datasets.  

One of the most important conclusions, derived from these experiments and results, is that the 

increased complexity of GIST and Textons does not seem to be giving significant performance 

gain over the simple HOG descriptor. The algorithm of the HOG descriptors is computationally 

least expensive (over 3 orders of magnitude difference in complexity between HOG and Textons) 

as well as its runtime is the fastest, among all the options explored in this work. As discussed 

earlier, for planetary rovers, runtime consideration is a very important factor as they usually have 

tight computational budgets. Hence, the ability to use simpler algorithms with little to no loss in 
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performance is an important achievement for this specific application. Such constraints over the 

runtime and the algorithmic complexity, is also part of the reasons why higher order methods like 

CNN (Computational Neural Networks) methods have not been implemented for this work. A 

more detailed analysis of runtime savings can be a part of future work. 

Another important observation here is the enhancement of the classification performance with the 

use of intensity thresholding. As seen in the sections 3.3.1.1 and 3.3.2.1, two different values of 

intensity threshold have been used for two different datasets. This leads to the fact that the 

threshold value depends on the training library of the corresponding dataset. If the training library 

is being updated for the concerned terrain type, then the threshold value should also be changed to 

reflect the addition or removal of images from training library. Similarly, using the hard coded 

threshold value will lead to the false thresholding and might degrade the performance instead of 

enhancing. This fact can also be verified from the exteroceptive field test results illustrated in 

section 5.2. As discussed in that section, new_CSA dataset has the sand images taken from on-site 

and Pure_CSA dataset has the sand as well as bedrock images taken from on-site. Despite adding 

new bedrock images from the new test site, the performance for the same is not satisfactory (the 

classification performance for bedrock degraded from 86% to around 48%) and one of the reasons 

might be the hard coded intensity threshold value. In the original dataset, the bedrock images 

present in the library were taken in sunny weather during various test campaigns. The bedrocks in 

this dataset were far brighter than the ones which were being added in the Pure_CSA dataset, 

because the images being added into the Pure_CSA dataset were taken in cloudy and rainy weather. 

Due to this difference of brightness of bedrock images, the threshold for both the datasets must be 

different, and hence if ever the training dataset is updated, it is a must to update the threshold value 

as well. 

Another very important conclusion derived from the field test results is that implementing queue 

like data structure for the exteroceptive training library may improve the ability of the system to 

adapt to the changed appearance of the same terrain type. This will ensure that even if the on-earth 

terrains looks different from actual planetary terrains, the rover will be able to overcome the on-

earth training and will train itself with the new planetary images.  

On the other hand, regarding the correlation of proprioceptive and exteroceptive data, a learning 

framework has been designed and implemented in this work. It correlates the trafficability metrics 
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(Slip, Sinkage and Roughness) with the appropriate visual data (Terrain type and Slope) in a queue 

like data structured model; while the rover is traversing. It also updates the trafficability prediction 

model online according to the latest correlated data. In the field test results for the ‘Sled Test’ 

(Section 5.1), it was observed that adding the latest high slip measurements to the already existing 

correlated data model did change the trafficability prediction model online. While traversing the 

terrain, the rover was able to learn the new trafficability properties and the prediction for the distant 

terrains also updates immediately according to the new trafficability model. This demonstrates the 

successful development of a ‘Data Driven Model’, where queue structure enables the rover to adapt 

to the changed terrain behaviors.  

Apart from that, importance of the queue size is discussed in section 4.3 and its importance in 

maintaining balance between the responsiveness and stability of the system has also been exhibited 

in the field test results. It was observed that, a small value of queue size (20) leads the system to 

be quickly responsive to the changing terrain behaviors and with an adequate value of queue size, 

the system can be both; responsive and stable at the same time. This leads to the conclusion that 

queue size should be selected responsibly and tweaking its value provides the freedom to tune the 

nature of the system (responsive vs. stable). 

Future Work 

In this work, very simple classification techniques have been explored such as nearest and k-

nearest neighbors. This owes to the algorithmic complexity constraint. However, SVM is another 

simple classification technique that could have improved the performance further as compared to 

the explored ones. Thus one of the potential future work can be the implementation of multi class 

SVM, involving the tuning of several designing parameters. Another interesting future work can 

be a separate experimentation campaign, including cross-validation, to examine the effects of 

different values of K in the K-NN algorithm, which is selected to be 25 (chosen arbitrarily) at 

present. Also, as mentioned earlier, a more detailed analysis of runtime saving can be a part of 

future work. 

Regarding the development of learning framework, the High Slip Detection (HSD) scenarios have 

been analyzed and a solution, to differentiate between false and true positives of such detection as 

well as to take care of both the cases, has been proposed in this work. However, due to lack of 
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time, this solution could not be tested during the field tests. Hence, it is an interesting and well-

needed future work to test this solution on-field to confirm whether it properly detects the high 

slip scenarios, while avoiding false positives.    

Apart from that, this work can be used in further research work related to the path planning for 

planetary rovers. Moreover, this work explored some of the simplest techniques and the results 

achieved by them was analyzed. Another approach for looking at the same problem might be the 

exploration of some advanced techniques like CNN (Convolutional Neural Networks) and their 

performance. Analyzing the trade-off between the performance and complexity of these two 

different approaches for the same problem, can be a very interesting future work.  
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Appendix 

As discussed in section 4.2, a high slip mode operation is used to handle unusual events like turning 

or noisy output, where the slip value for the given slope increases drastically, relative to the normal 

operation. Due to lack of time, this operation could not be verified in the field test demo. The 

details about the implementation of the same has been explained below.  

High Slip Detection 

To check for the occurrence of these events a t-test2 is performed at every training iteration, 

wherein the latest values in the queue of the queried slope is compared with the older values, to 

decide if they are showing a different kind of distribution or not. Using a t-test2 ensures that the 

HSD mode is only detected, when the significantly high slip values are recorded consecutively in 

the training model.  

The flowchart for detection and implementation of this mode is shown in Figure 8-1. As shown, 

in between the initial steps of the training phase (shown in the flowchart in Figure 4-14), an 

additional check is performed for high slip detection, after reading the training model in the 2-D 

matrix. If the system is running in HSD mode for given terrain type, due to previously detected 

high slip events, HSD flag for that terrain type would be equal to 1 and otherwise 0. If the flag is 

0, the queue update block is executed first and then, t-test2 comparisons are performed on the 

queue of given slope value and terrain type. Let’s say given queue has N* data samples, then t-

test2 runs will be performed between latest M and the remaining older data samples, where M 

changes from 2 to N*/4, iteratively.  

As soon as t-test2 result is positive, the loop ends and the HSD flag for given terrain is turned on 

to denote that the rover is experiencing relatively higher slip measurements on the same terrain. 

Also, the M high slip data samples are removed from the regular training model and a separate 

HSD training model is created, where these M data samples are added in the corresponding queue. 

At the same time, HSD trafficability model is also updated with the average value using M data 

samples. On the contrary, if t-test2 result is never positive till M = N*/4, it denotes that no high 

slip events are detected and in that case, normal operations continue after the “Continue A” point 

in the flowcharts discussed before.  
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Now, let’s say, in the next training iteration, the system is already in the HSD mode for given 

terrain type (i.e. HSD flag = 1), then the new data sample will be added to the HSD training model 

and also, the HSD trafficability model will be updated using updated queue data. Further, to 

determine whether the slip measurements are returned back to the normal value, again t-test2 run 

is performed between the HSD and non-HSD queue data samples. If the result is positive, the HSD 

mode will continue for given terrain and if not, HSD flag will be turned off and the HSD models 

(training & trafficability models) for a given terrain type are reinitialized.  
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