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ABSTRACT

Modelling wildfire in an intermediate complexity earth system climate model - exploring the 

importance of timestep and weather variability

Étienne Guertin

Fire is an integral part of the Earth system, interacting in complex ways with humans, vegetation 

and climate. Global fire activity is an important driver of the carbon cycle and could have important 

feedback effects on climate in a climate change context. Despite its potential importance, fire 

modelling as an integral part of global vegetation-climate models has only been developed in the 

past two decades, following the availability of global fire activity satellite products. This research 

aims to parameterize wildfire in an intermediate complexity earth system climate model coupled to 

a dynamic global vegetation model. I used a mechanistic fire model which simulates a burned area 

per grid cell based on a number of fires and the average burned area per fire. The fire 

parametrization was originally designed and calibrated for more realistic weather with more 

variability. Due to the simplicity of the atmosphere module of the climate model used, I explored 

the effect smaller modelling timesteps as well as prescribing natural variability to the simulated 

climatology. The simulations show no effect of timestep, while adding natural variability to the 

simulated climatology improves the global spatial correlation (R) of burnt fraction with 

observations. The best model (R=0,36; global burned area underestimated by 63%), however, does 

not capture the crucial difference of fire regime between the highly burning tropical savannas and 

the unburnt rainforests. This research shows the essential role of simulated weather variability 

rather than modelling timestep in generating realistic fire patterns in the context of this earth system 

climate model of intermediate complexity. Additional calibration could potentially improve the 

simulated fire and would allow the simulation of potential feedbacks within the fire-climate-

vegetation system in a climate change context. 
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1. INTRODUCTION

Fire interacts with global vegetation distribution and structure, the carbon cycle, climate and 

human activities (Bowman et al., 2009). Modelling has shown that without fire, global tree 

cover would reach two times its actual extent (27% vs. 56%; Bond, Woodward and Midgley, 

2005) and savanna ecosystems could become closed canopy forests (Murphy and Bowman, 

2012). Global fire-caused carbon emissions  (i.e. gross carbon emissions to the atmosphere 

due to fire, including deforestation fires) amount today to about 20% of anthropogenic CO2 

emissions from fossil fuel burning and cement production (Yang et al., 2015; van Der Werf et  

al., 2010; ). During the 20th century, between 20%-50% of fire-caused carbon emissions have 

not returned to the terrestrial carbon pool (Li, Bond-Lamberty and Levis, 2014; Yue et al., 

2014; Yang et al., 2015). Fire is also an important driver of inter-annual atmospheric CO2 

growth anomaly (van der Werf, 2004) and significantly contributes to other greenhouse gas 

(van der Werf et al., 2010; Ciais et al., 2013) and aerosol (Andreae and Marlet, 2001) 

emissions. Regional and global fire activity projections do not agree to which extent climate 

and fire will interact in a climate change context (Westerling et al., 2006; Williams et al., 

2009, Krawchuk et al., 2009). Moreover, these studies of future fire activity do not treat fire 

as an integral part of the global climate-vegetation system. Despite being an integral part of 

the Earth system and a potentially important component of climate change, fire modelling is 

still a young science. In the last two decades, fire modelling has gradually been incorporated 

into global climate-vegetation models (eg. Arora and Boer, 2005; Thonicke et al., 2010; 

Prentice et al., 2011), following the availability of reliable global fire datasets (Giglio, 

Csiszar and Justice, 2006; Giglio, Randerson and Van Der Werf, 2013). To capture the 

dynamic interactions of fire with vegetation, human activity and climate, process-based 

approaches (i.e, that explicitly represent with varying levels of complexity the successive 
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steps that lead an ignition to biomass burning),  rather than statistical approaches, are best 

suited to fire modelling. Modelling fire using this mechanistic approach is commonly done in 

a Dynamic Global Vegetation Model (DGVM) with prescribed climate data (e.g. (Li, Zeng 

and Levis, 2012)). To enable the climate feedback on fire in addition to the vegetation 

feedback, the DGVM can be coupled to an Earth System Climate Model (ESCM). Many fire 

models with varying levels of complexity and depth of coupling exist to this date, but it is not 

clear yet which level of complexity is required to accurately represent fire and its interactions 

with the Earth system (Hantson et al., 2016). The process-based approach, combined with 

global fire products to calibrate the fire model parameters, has been successful at representing 

broad fire spatial patterns and seasonal variability (e.g. Li, Zeng and Levis, 2012, Li, Levis 

and Ward, 2013). However, these models forced climate data to drive the fire and vegetation 

component (Li, Zeng and Levis, 2012; Thonicke et al., 2010) or used simulated climatology 

from Global Climate Models (GCMs) to drive future fire simulations (Pechony and Shindell, 

2009; Knorr, Jiang and Arneth, 2015). The potential feedbacks between fire, vegetation and 

climate are thus currently not being assessed in the scientific literature. To achieve a 

reasonable fire activity that would enable reaching such goal, it is not clear yet which amount 

of variability is required by the simulated climatology and vegetation of an ESCM-DGVM.

1.1 Research goal 

The scientific goal of the current thesis is to assess the signifiance of potential feebacks 

between fire, climate and vegetation in a climate change context. In order to reach this goal, I 

integrated a process-based fire model (Li, Zeng and Levis, 2012) to an intermediate 

complexity ESCM coupled to a DGVM  and I evaluated the coupled model in terms of its 

ability to represent global fire activity. I addressed the shortcomings of the climatology of the 
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ESCM used by :

(1) adding natural variability to the simulated weather variables that drive the fire model;

(2) integrating the fire processes at an intermediate timestep, lying between the timestep at 

which the ESCM simulates variability and the one at which fire is modelled. 

In the following sections, I will first review the emerging discipline of pyrogeography, that 

treats fire as an integral part of the human-Earth system (Bowman, O’Brien and Goldammer, 

2013) by examining its human and climate change dimensions. I will then examine biome-

specific fire ecology, review the global fire modelling efforts and discuss the improvements 

and challenges of this emerging discipline. I will follow with a description of the ESCM-

DGVM I used, as well as the fire parameterization I chose to add. I will then present the 

methodology I used to add natural variability to the simulated weather variables and to 

simulate fire at different timesteps, followed by a sensitivity analysis of key parameters of the 

fire model inside this ESCM-DGVM. I will follow by presenting the results of the 

simulations and compare them to the ones obtained by the original parametrization and other 

similar fire parameterizations. I will finish by discussing the limitations of my approach, the 

next steps to take to improve the model and the potential feedbacks I hope to assess with a 

working fire model. 
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2. LITERATURE REVIEW

2.1 Pyrogeography

Wildfires are processes triggered by an ignition. If there is enough dry fuel at the ignition 

point, a fire then starts. The fire spreads depending on many factors including vegetation 

type, fuel dryness, temperature, human suppression and wind direction and speed (Krawchuk 

and Moritz, 2014).

 

2.1.1 Human dimension

During the preindustrial period (1000-1800 A.D.), the global fire regime was controlled by 

precipitation and during the industrialisation period, the main influence shifted to humans 

because of deforestation fires for agriculture (Pechony and Shindell, 2010). Humans now 

play a central role regarding fire and blur its natural interactions with climate (Bowman et al., 

2011, Bowman et al., 2014). In developing economies, many forests are rapidly being 

converted to agricultural land and at the same time, migration to urban areas is increasing 

biomass accumulation in abandoned rural areas (Bowman et al., 2013). Tropical forests in 

Asia and Amazonia, which are traditionally almost immune to fire, have become increasingly 

vulnerable due to the expansion of agricultural frontiers (Bowman et al., 2013). In Indonesia, 

the 1997 El Niño extended dry season increased the extent of deforestation fires (Tacconi, 

2003). In developed economies, fire-suppression effort is high in increasingly populated 

suburban areas at the interface with wildlands (Bowman et al., 2009). Fire management 

policies have aimed at completely suppressing fires (Bowman et al., 2013) to protect 

infrastructure, plantations, forest resources and agricultural land. However, this management 

practice has led to the accumulation of high fuel loads, increasing the risk of high-intensity 

wildfire which were not previously present in the ecosystem (e.g. Ponderosa pine in the 
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western United States; Bowman et al., 2013). These high-intensity fires can kill entire stands 

of trees (Allen et al., 2002; Syphard et al., 2009). High levels of grazing can reduce fire 

frequency by allowing woody plants to grow and create a closed canopy where the flammable 

grass is outcompeted (Sankaran, Ratnam and Hanan, 2004; Werner, 2005). Effects of humans 

on fire also include an increased number of ignitions due to population growth, greater 

accessibility to remote areas and the spread of flammable plants (Bowman, O’Brien and 

Goldammer, 2013).

2.1.2 Climate change dimension

Fire-caused carbon emissions over the 1901-2010 period have been estimated to 2.43 

petagrams of carbon per year (Pg C yr-1) on average (Yang et al., 2015). Comparatively, 

anthropogenic CO2 emissions from fossil fuel burning and cement production were 7.6-9.0 

Pg C yr-1 for the 2002-2011 period (Ciais et al., 2013). Although burning biomass emits CO2, 

the effect on the climate is not comparable to the effect of CO2 emissions from fossil fuel 

burning, because of vegetation regrowth and decomposition and land surface albedo changes 

(Landry and Matthews, 2015). Modelling has shown that during the 20th century, the 

terrestrial carbon pool has lost 0.32-1.00 Pg C yr-1 due to fire-caused carbon emissions (Li, 

Bond-Lamberty and Levis, 2014; Yue et al., 2014; Yang et al., 2015). Global annual fire-

caused carbon emissions were decreasing during the 20th century, but likely due to global 

climate change, the trend has reversed since the 1980's (Yang et al., 2015) and fire frequency 

is predicted to increase during the 21st century (Pechony and Shindell, 2010; Daniau et al., 

2012; Moritz et al., 2012; Ward et al., 2012). Many regional studies have shown that large 

wildfire events have become more frequent since the end of the 20th century (Westerling et 

al., 2006; Williams et al., 2009). Yet, local increases of fire could be counter-balanced by 
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decreases at other locations, resulting in no net global change (Krawchuk et al., 2009). There 

is currently no consensus, for more than half of the world's land area, on which direction fire 

activity will take in the next decades (Settele et al., 2014), but there is less disagreement for 

longer-range predictions. Modelling groups generally agree that more fire will occur in the 

mid-to-high latitudes and less in the tropics by the end of this century (Moritz et al., 2012). 

Fire could have a warming (Tosca, Randerson and Zender, 2013; Knorr, Jiang and Arneth, 

2015) or cooling (Ward et al., 2012; Landry, Matthews and Ramankutty, 2015) feedback on 

the climate that would have an important influence on contemporary climate projections 

(Bowman et al., 2009; Flannigan et al., 2009). 

2.1.3 Fire ecology

  -Tropical region

The highest level of fire activity is observed in tropical savannahs (Bowman, O’Brien and 

Goldammer, 2013; Pausas and Ribeiro, 2013). The rainfall pattern of these regions allows the 

accumulation of fuel loads during the intense wet season followed by drying to a high 

flammability point during the intense dry season. In tropical rainforests, where there is no dry 

season, the fuel loads are always high but the vegetation is never dry enough to allow fire. 

There, annual precipitation and net primary productivity (NPP; the net flux of carbon from 

the atmosphere to plants) are the highest. Rainfall and NPP are lowest in arid tropical regions, 

while they are intermediate in savannahs (Del Grosso, 2008). Although high fire activity is 

observed in most intermediate NPP regions, low fire activity is also observed. For example, 

in the tropics, large areas experiencing similar climatic conditions (i.e. strong wet-dry 

contrast between seasons) can either have an open canopy where high grass cover propagates 

fire and limits tree closure (tropical savanna) or a closed canopy where the absence of grass 
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inhibits fire (tropical seasonal forest). It has been hypothesized that these two biomes are 

stable states maintained by strong negative fire-tree cover feedbacks (grasslands in savannas 

encourage the spread of fire while trees in forests are more resistant to fire) and that whether 

the stability will be forest or grass dominated depends on the balance between the factors that 

influence tree growth rate and fire frequency (i.e. vegetation, climate, fire, atmospheric CO2 

and human factors). For example, increasing CO2 concentrations likely explain the current 

trend of forest expansion in savanna ecosystems (Murphy and Bowman, 2012; Bowman et 

al., 2014).

 -Boreal region

Boreal forests have and will experience the most temperature rise of any forested region due 

to global warming (IPCC 2013). This will lead to more fire activity, which will increase CO2 

net emissions and reinforce the cycle by a positive feedback loop (Bond-Lamberty et al., 

2007). The largest wildfires are observed in sparsely populated areas (Archibald et al., 

2010) and the burned areas are on average 2.4 times larger for lightning caused fires than 

human caused fires for Canada. This suggests that without fire management in the boreal 

region, extreme wildfire events will be more frequent in a climate change context. Boreal 

wildfires are different across North American and Eurasian forests although the fire weather 

is similar. The North American fires are crown fires and thus more intense, while the 

Eurasian fires are less intense and consist of surface fires. This is due to the difference in 

dominant tree species – North American forests are dominated by trees that spread crown 

fires (fire embracers) while Eurasian trees suppress them (fire resisters). North American 

boreal forest fires should increase the spring albedo because of high fire mortality which will 

result in cooling while Eurasian boreal forests will probably be climate neutral or have a 

warming effect because surface fires cause less mortality and thus don't affect the albedo as 

7



much. Current dynamic global vegetation models, by using a single needleleaf functional 

type, do not represent the contrasting fire strategies observed which are arguably as important 

for the global carbon and energy cycles as the savanna-tropical forests transitions (Rogers et 

al., 2015).

2.2 Global fire modelling

Fire modelling, as any environmental modelling branch, is done with either statistical models 

or process-based models. 

2.2.1 Statistical fire modelling

Statistical models derive empirical relationships between climate and fuel availability, and 

prescribe the probabilities of fire occurring (e.g. Moritz et al., 2012 with fire counts). They 

are good at predicting fire regime in a modern day context given fuel and climate conditions. 

However, they are limited when it comes to predicting how fire regimes will change in an 

environment where, for example, climate, land use and vegetation distribution and structure 

become significantly different from their present day value or state. This is because these 

environmental variables then exceed the range of values or states on which the statistical 

model was built. In this expanded range, the complex interactions between climate, 

vegetation and fire often become non-linear. These interactions include, for example, the 

effect of atmospheric CO2 on vegetation growth through water-use efficiency (Keenan et al., 

2016) and vegetation structure (Cramer et al., 2001). This limitation of statistical models can 

be generalized to any environmental system that one tries to model, simply because the 

statistical models are dependent on the data they are based on and therefore on the state of the 

system at the time of collecting the data (Costanza and Ruth, 1998). Despite their inherent 
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weaknesses, statistical models are essential to inform process-based models of key variables, 

such as (Bistinas et al., 2014) - Sec. 2.2.4.

2.2.2 Process-based fire modelling

Process-based fire models, on the other hand, are built from the series of mechanisms 

underlying biomass burning (e.g. from ignitions to burned area) and are integrated to 

DGVMs driven by climate data (e.g. Li, Zeng and Levis, 2012) or coupled to ESCMs. Both 

models carry varying degrees of complexity, allowing the representation of feedbacks on fire 

from vegetation (DGVM) or vegetation and climate (ESCM-DGVM) in a changing 

environment. 

DGVMs model vegetation by representing a Plant Functional Types (PFT) (e.g. broadleaf 

trees, evergreens, bushes, C3 and C4 grasses). The PFTs compete with each other in every 

grid cell of the model according to, for example, a competition model (e.g. Lotka-Volterra 

competition model (Goel, Maitra and Montroll, 1971; implemented in Cox, 2001), for 

resources (e.g. light and water) inputted by prescribed weather data or data from an ESCM 

which is coupled to the DGVM.

Burned area is the most common output variable in fire modelling because it allows easy 

calculation of the burned biomass (burned area * biomass per unit area) which is needed to 

estimate greenhouse gases and aerosols emissions. It is also readily available in satellite 

observation data products (Giglio, Randerson and Van Der Werf, 2013). The authors of the 

fire models described in the current section used the Global Fire Emissions Database (GFED) 

burned area products version 3 (Giglio, Csiszar and Justice, 2006) and version 4 (Giglio, 

Randerson and Van Der Werf, 2013) to calibrate and evaluate their parameterizations.
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Global fire regimes have long been neglected in climate models because of the lack of 

consistent global fire observations. Satellite monitoring in the past 20 years has provided the 

scientific community with homogeneous and global observations of fire regimes (e.g. Giglio, 

Randerson and Van Der Werf, 2013 ). These new data products, which give global burned 

area values, have made possible the study of global fire trends and their prediction. Many 

modelling groups have parameterized fire disturbance in vegetation using a mechanistic 

approach (i.e., a process based approach that represents the mechanism that leads to biomass 

burning) (Thonicke et al., 2001; Venevsky et al., 2002; Arora and Boer, 2005; Pechony and 

Shindell, 2009; Kloster et al., 2010; Li, Zeng and Levis, 2012; Li, Levis and Ward, 2013).

A common process based approach to fire modelling has three main steps: (1) fire 

occurrence, (2) fire spread and (3) fire impacts. The fire occurrence step depends on ignition 

sources (natural and anthropogenic) and the characteristics of the vegetation and specifies the 

fire counts per grid cell. The fire spread step estimates the area burned by those fires 

depending on vegetation characteristics and weather conditions and in the last step, the 

resulting emissions and impacts on vegetation and the carbon cycle are estimated.  

At first, ignition was considered ubiquitous and fire counts were solely a function of 

minimum fuel load (i.e. under a certain quantity of fuel, no fire can start) and maximum litter 

moisture thresholds (Thonicke et al., 2001). Fire occurrence was then converted to burned 

area assuming a direct relationship between the proportion of a year where fire occurred and 

the fraction of that grid cell that would burn in the same period (Thonicke et al., 2001). 

However, a grid cell that burned at least once a day for 365 days was assumed to totally burn, 

but the temporal and spatial aspects of fire are not exclusively dependent (Chuvieco, Giglio 

and Justice, 2008). Additionally, this method assumes that fire does not spread between grid 

cells. This early fire modelling attempt showed nonetheless fairly good agreement with 
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observations.

In a second study, the same lead authors improved their model by following more closely the 

three step approach previously described (Venevsky et al., 2002). They added ignition 

probability as a function of lightning frequency, population density and socioeconomic status. 

They also used a fire danger index, the Nesterov Index (NI; originally developed for Siberian 

forests management) to determine if a fire would start (fire count) after an ignition occurred. 

The NI is calculated from daily temperature at 15:00 LT, dew point temperature and 

precipitation. It takes into account that fire danger increases for consecutive days until a 

threshold amount of precipitation occurs, in which case the index falls back to zero. The 

ignition triggers and the Nesterov index allowed the estimation of fire counts per grid cell. 

Burned area was then calculated for every fire counted as a function of the average fire 

spread rate and fire duration, which were assumed to be the same for every fire in a given cell 

on a given day. The major improvement of this model over the previous one is that burned 

area was explicitly described for fires.

Building on these previous studies, another research group developed a general process based 

approach for fire modelling (Arora and Boer 2005). Their parameterization was meant to be 

replicable in DGVMs coupled to climate models. They were the first to include lightning 

frequency explicitly as an ignition source. Fire occurrence depended on the availability of 

fuel to burn (minimum threshold biomass), its readiness to burn (maximum threshold soil 

moisture) and the probability of ignition (human and lightning). They added an elliptical 

function to describe how fire would spread. The shape and size of the burned area was 

determined by wind speed and direction, soil moisture and a constant fire spread rate. The 

major improvement they brought was that in every grid cell, daily burned area was the 

product of the fire occurrence probability for a 1000km2 area with the average burned area 
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per fire, divided by 1000km2.  However, this approach inherently limited the maximum 

number of fires to a single fire/day/1000km2; it thus did not capture large burned areas in 

regions where there are more than 1 fire/day/1000km2. The CO2 emissions were then 

estimated according to the PFTs present in the burned area. The authors used weather 

observation records to drive the meteorology of the model and assessed how well it 

represented reality by comparing the burned area, CO2 emissions and the fire return interval 

(FRI) to fire observation data. The FRI is the time interval between the burning of an area 

equivalent to the total area of a region. The model, driven by sub-daily climate data, 

performed well (global spatial correlation of burned area with observations R=0.52; Arora 

and Boer 2005). However, fire was underestimated in some regions where more than one 

fire/day/1000km2 occurred and did not account for anthropogenic effects on fire. 

This parameterization of fire in DGVMs was further improved by taking into account human 

caused ignitions and human suppression of fires (as a function of population density) and 

land use change (prescribed from an external dataset) (Kloster et al., 2010). The simulated 

burned area and emissions generally agreed with observations spatially (R = 0.53) except for 

two regions where over (South America) or under (Africa) estimation occurred. The authors 

attribute this local bias to the biomass estimation from the DGVM used. Also, including fire 

suppression greatly improved the spatial correlation between simulated and observed values 

(R = 0.33 without fire suppression). 

Li, Zeng and Levis (2012) improved the parameterization by explicitly representing the 

number of fires occurring in every grid cell. The burned area was then the product of fire 

counts within the average fire spread area. This new parameterization eliminated the problem 

encountered by Arora and Boer (2005) regarding the underestimation of large burned areas 

when they were generated by many small fires. The authors also improved the fire spread and 
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biomass combustion parameterization by adding key elements to them. The new fire model 

showed further improved spatial correlation with observations (R=0.60). However, the 

authors pointed out areas that required improvement: anthropogenic impacts on fire were 

only dependent on population density, average fire duration was taken as one day (but fires 

are often multi day events) and vegetation dynamics processes were only updated annually.  

The same lead authors improved their parameterization by splitting fire in different categories 

(i.e. agricultural, deforestation, peat and non-peat) (Li, Levis and Ward, 2013). Agricultural 

fires were parameterized according to GDP and population density. Deforestation fires 

happened in the Amazon, and these were controlled by a prescribed deforestation rate and 

climate conditions. The coefficients used were derived from regressions maximizing the 

explained variance from the GFED3. Peat fires were also controlled by climate conditions. 

GDP was added to population density to explain fire occurrence. The authors simulated fire 

for the 1997-2004 period while driving the model with weather and socioeconomic 

observation records. The model simulated the fire regime and fire emissions from the four 

categories in good agreement with the GFED3 and better than Li, Zeng and Levis (2012) 

(R=0.69; Li, Levis and Ward, 2013).

Other fire models include one which takes into account the multiday nature of fire (Le Page 

et al., 2015) and one which parameterizes wind speed so that it has a decreased influence on 

fire spread (and thus burned area) at high wind speeds, as suggested by comparison of 

modelled and observed burned area (Lasslop, Thonicke and Kloster, 2014).

Another fire parameterization combined the parameters described so far and predicted fire 

counts instead of burned area, outside a DGVM (i.e. with prescribed vegetation data) 

(Pechony and Shindell 2009; R=0.74). They used the Vapour Pressure Deficit (VPD) as an 

indicator of flammability conditions, a parameter calculated from temperature and relative 
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humidity. Additionally, their method required monthly precipitation and vegetation density.  

The higher agreement with observations in this case is not comparable to the others because it 

represents fire counts, not burned area and because the prescription of vegetation data 

removes the biases associated with its simulation. Burned area, as noted previously, is more 

desirable in a climate modelling context because it can be used to estimate biomass burning 

and then atmospheric emissions of CO2 and other aerosols. However, this method, by its 

simplicity and its compatibility with a monthly time step, could be used to model the first part 

of wildfires, the fire counts.

2.2.4 Statistically-informed process-based models

The fire modelling studies previously presented have been criticized for their use of 

relationships that were not validated by statistical analysis of satellite observations. A simple 

multiple logistic regression analysis of burned area against vegetation, weather and 

anthropogenic predictor variables has challenged the assumed direct causation of some 

variables widely used in fire modelling (Bistinas et al., 2014). They have found that emerging 

patterns (i.e. relationship observed between two variables when not controlling for any other 

variable) between burned area and some predictors were in fact explained by underlying 

relationships with other variables. For example, lightning frequency, which is widely used in 

fire modelling as a cause of ignition, varies in the same manner as the seasonally changing 

angle at which the solar radiation enters the atmosphere. After controlling for this seasonal 

solar variation, the lightning frequency did not have a significant effect on burned area. 

Bistinas et al. (2014) concluded that although lightning frequency most likely had an effect 

on the number of fires that start, it was not an important factor controlling monthly burned 

area in the end. Instead, fire spread and the presence of humans to suppress it could be more 
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important determinants of the burned area, as suggested by (Knorr et al., 2014). This 

affirmation, although valid in the present day climatology, should be taken cautiously in the 

context of climate change, which will likely change the lightning frequency (Romps et al., 

2014). Another widely held assumption was that at low population densities, burned area 

increased with density but that at higher densities, population density had a suppression effect 

on fire; this was the emerging pattern observed when plotting population density against 

burned area (e.g. Knorr et al., 2014). However, Bistinas et al. (2014) found that when taking 

into account NPP, and land use change (cropland and grazing-land areas), population density 

had a strong negative effect on burned area even at low densities. The authors explained the 

apparent positive relationship between burnt area and population density observed at low 

densities by the strong positive correlation between NPP and population at low densities 

(NPP is always low where population density is low and low NPP means low burned area). 

However, Bistinas et al. (2014) used a generalized linear model, which assumes linear 

relationships and they do not seem to have tested the relationship separately for low 

population densities only. The observed increase in burned area associated with an increase in 

population density, at low densities, could therefore still exist independently of NPP and the 

other controls used by Bistinas et al., (2014), but this effect could not be captured in their 

multiple linear regression approach. In their analysis, the strongest predictors of monthly 

burned area were the number of dry days (+), the monthly maximum temperature (+), the net 

primary production (+), the ratio of actual to equilibrium evapotranspiration (-), the 

grass/shrub cover (+), cropland area (-), grazing-land area (+), population density (-) and the 

diurnal temperature range (+). Cropland areas fragment vegetation cover, limiting fire spread, 

and grazing-land areas increase burnt area probably because of an increase in flammable fine 

fuel (grass). 
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3. METHODS

3.1 Description of the UVic ESCM and its submodels

3.1.1 UVIC ESCM 

The University of Victoria Earth System Climate Model (UVic-ESCM) (Weaver et al., 

2001) is an intermediate complexity model of 3.6° X 1.8° which contains a 19 layer ocean 

general circulation model coupled to a thermodynamic/dynamic sea-ice model, a single layer 

thermo-mechanical land ice model and a single layer reduced complexity vertically integrated 

energy-moisture balance atmospheric model. The atmospheric and sea-ice models are 

updated every 15 hours and the ocean every 30 hours. Every four ocean time steps, the 

atmosphere and sea-ice models, which have accomplished eight time steps by that time, are 

coupled to the ocean model. With the default settings, this coupling of all modules thus 

occurs every 5 model days. Present-day winds are prescribed in the atmosphere model and a 

dynamical wind feedback is added to allow a first order approximation of wind stress changes 

in a changing climate. Precipitation occurs when relative humidity reaches 85%. Simulated 

globally-averaged precipitation per year is in good agreement with observations, but at 

shorter time scales and spatially, it suffers from a lack of variability compared to reality. 

3.1.2 TRIFFID

The Top-down Representation of Interactive Foliage and Flora Including Dynamics 

(TRIFFID) (Cox, 2001) is the DGVM coupled to the UVIC ESCM. TRIFFID explicitly 

models five plant functional types (PFT): broadleaf trees, needleleaf trees, C3 grasses, C4 

grasses and shrubs. When coupled to an ESCM, climate variables influence vegetation 

structure, distribution and growth, which change land-surface parameters and affect 

atmospheric CO2 concentration. The areal coverage, leaf area index and canopy height of 
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each PFT are calculated for each grid cell periodically (normally every ten days) based on 

carbon available in the land surface scheme and a Lotka-Volterra competition model. Carbon 

availability is derived from net carbon fluxes calculated every thirty minutes. Carbon fluxes 

are the difference between photosynthesis and plant respiration and depend both on climate 

and atmospheric CO2 concentration. Carbon is transferred to the soil in the land surface 

scheme by litterfall. From the soil, carbon is transferred to the atmosphere by microbial 

respiration, which depends on soil moisture and temperature. TRIFFID explicitly describes 

vegetation in detail but it is less complex than other DGVMs in terms of PFT diversity. For 

example, the Community Land Model (CLM; Levis et al., 2004) used in fire modeling by Li, 

Zeng and Levis (2012) and Kloster et al. (2010) has 10 PFTs instead of the 5 PFTs of 

TRIFFID in the UVic ESCM. Currently, fire is represented in TRIFFID as a constant loss rate 

attributed to disturbance independent of climate and vegetation.

3.1.3 MOSES

The UVic ESCM-TRIFFID is coupled to a land surface scheme (Meissner et al., 2003). The 

land surface scheme is a simplified version of the Met Office Surface Exchange Scheme 

(MOSES). The scheme is a single layer which describes the land module in terms of lying 

snow, skin and soil temperature and soil moisture content. It recognizes the five PFTs of the 

TRIFFID as well as bare soil. Carbon and water fluxes to the atmosphere and runoff are 

calculated four times per day. Those fluxes are time-averaged and are passed to the ocean and 

atmosphere every five days and to the TRIFFID every month. The TRIFFID model then 

passes vegetation information to the land surface scheme which updates its vegetation-

dependent parameters (every month). The simulated vegetation structure is spatially 

correlated with observations at r=0.635, which is comparable to TRIFFID coupled to 

atmospheric general circulation models. However, specific areas show low correlation due to 
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complex physiological responses not captured by global vegetation models and because of 

climate anomalies simulated by the UVic ESCM.

3.2 Fire parameterization

The fire parameterization used in this thesis models fire as a mechanistic process (see Fig. 21; 

adapted from Li, Zeng and Levis, 2012) with three mains steps: (1) fire occurrence, (2) fire 

spread and (3) fire impacts. Li, Zeng and Levis (2012) designed fire occurrence and fire 

spread for a daily (or less) timestep and fire impacts for a daily to annual timestep. I used the 

parametrization by Landry, Matthews and Ramankutty (2015) for fire impacts, designed for a 

30 day timestep. I integrated all three steps at both a 5 and 30 day timesteps. The parameters 

used in the formulas of the following Section (3.2) are described in Table 1.

3.2.1 Fire occurrence

-Ignition sources

The number of ignitions Ni in a grid cell is

N i=I n+ Ia (1)

where In is the number of natural ignitions and Ia

 
the number of anthropogenic ignitions. The 

number of natural ignitions is 

I n=Il I ratioγ (2)

where Il is the total number of lightning flashes, Iratio is the ratio between the number of cloud-

to-ground flashes and the number of lightning flashes and γ is the ignition efficiency of 

cloud-to-ground lightning (Latham and Schlieter, 1989). Iratio is given by

Iratio=
1

5.16+2.16cos (3∗ lat )
(3)
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where lat is the latitude in degrees (Prentice and Mackerras, 1977). 

The number of anthropogenic ignitions Ia (count month-1) is

I a=0.026452∗D
0.4

(4)

where D is the population density (number of people km-2) (Li, Zeng and Levis, 2012). 

-Fire counts

The fire counts Nf (i.e. the number of ignitions that start a fire) are

N f  =  {                0              snow>0

N i∗ f b∗ f m∗(1−f s )      snow=0
(5)

where snow is the amount of lying snow, fb is the fuel availability,  fm is the fuel combustibility 

and fs is the fire anthropogenic suppression  (Li, Zeng and Levis, 2012). The three f functions 

vary between 0 and 1.

Fuel availability fb

 
is a function of biomass surface density and is given by

f b  =  {
        0               Bact<Blow

Bact−Blow

Bup−Blow

         Blow≤ Bact≤Bup

1               Bact>Bup

(6)

where Bact is the actual biomass density (g C m-2), Blow is the minimum biomass density at 

which a fire can start and Bup is the biomass density over which fuel availability no longer 

limits ignitions from starting fires (Li, Zeng and Levis, 2012).

Fuel combustibility fm

 
is
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f m=f RH∗ f θ (7)

where fRH  is a function of relative humidity (RH) and fθ

 
is a function of soil moisture (Li, 

Zeng and Levis, 2012). Both functions vary between 0 and 1.

fRH  was given by

f RH  = {
        1                RH ≤RH low

RH high−RH

RH high−RH low

  RH low<RH<RHhigh

        0                RH≥ RH high

(8)

where RHlow is the RH below which ignitions are not limited by RH and RHhigh is the 

maximum RH over which a fire cannot start.
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Figure 1: Fire parameterization diagram of the present study. Red dashes arrows represent a transient 

simulation using different GHG emission scenarios. The current study only looks at an equilibrium climate 

scenario.



fθ is calculated from the soil moisture θ

f θ  = exp[−π( θθe
)

2

] (9)

where θ is the soil moisture  (sm) relative to that at saturation smSAT and θe is the extinction 

coefficient of soil wetness (Li, Zeng and Levis, 2012).  The choice of θe

 
determines a 

threshold soil moisture level at which the success of ignitions is very small.

Fire suppression fs by humans is a function of population density D and is applied to fire 

counts by the following relationship:

f s  =ϵ1−ϵ2 exp (−α D ) (10)

where ε1 and ε2  and α are constants (Li, Zeng and Levis, 2012; Pechony and Shindell 2009).

3.2.2 Fire spread

-Average fire duration

In Li, Zeng and Levis (2012), the average fire duration is assumed to be 1 day which is an 

underestimation of large scale wildfires which last many days in Li, Zeng and Levis (2012). 

This value is still a good estimate of fire duration, as it corresponds to the mathematical 

expectation of an empirically-derived exponential distribution of fire duration (Venevsky et 

al., 2002).

-Average fire spread rate

Every fire counted spreads in an elliptical shape where the longest axis is in the downwind 

direction. 
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The length-to-breadth ratio LB is estimated by

LB=1+10∗ (1−e−0.06 w) (11)

where w is the wind speed in m s-1 (Arora and Boer 2005).

The head-to-back ratio HB

 
is given by

HB  =  
LB+(LB

2
−1)

1/2

LB−(LB

2
−1)

1 /2 (12)

(Li, Zeng and Levis, 2012). 

Fire spread rate in the downwind direction uw (m s-1) is

uw  =  2umax ,i∗ f RH∗ f root∗ g (w ) (13)

where umax,i is the maximum fire spread rate in natural vegetation regions for vegetation type i  

and froot and g(w) are functions of soil moisture and wind speed respectively and vary between 

0 and 1 (Li, Zeng and Levis, 2012). froot is a surrogate for vegetation moisture content (Arora 

and Boer, 2005). The 2 factor comes from the corrigendum of Li, Zeng and Levis (2012). In 

Li, Zeng and Levis (2012), froot is dependent on the water content of the different soil layers 

associated with different vegetation types. Since the land surface scheme of the UVic is single 

layered (Meissner et al., 2003), froot will be constant among plant functional types. 

froot is given by 

f root  = 1− tanh(1.75 βroot
βe

)
2

(14)

where βroot is the availability of water in the soil and βe is an extinction wetness constant above 

which the probability of fire is negligible (Arora and Boer, 2005).
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βroot  is given by

βroot  =max[0, min(1,
θ−θw

θc−θw )] (15)

where θw is the wilting soil moisture content (the volumetric soil moisture concentration 

below which stomata close) and θc is the critical soil moisture content (the volumetric soil 

moisture concentration above which stomata are not sensitive to soil water) (Arora and Boer, 

2005).
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Table 1: Fire and climate parameters values used. Broadleaf trees (BT), needleleaf trees (NT), shrubs (S), C3 

grass (C3) and C4 grass (C4).

Fire parameter Description Value Units reference

γ 0.25 dimensionless Latham and Schlieter (1989)

extinction coefficient of soil wetness  dimensionless
Li, Zeng and Levis (2012)

Arora and Boer (2005)

Thonicke et al. (2001)

saturated soil moisture 458 Li, Zeng and Levis (2012)

wilting soil moisture content 0,136 dimensionless Arora and Boer (2005)

critical soil moisture content 0,242 dimensionless Arora and Boer (2005)

g(0) constant 0,05 dimensionless Li, Zeng and Levis (2012)

155 Li, Zeng and Levis (2012)

1050 Li, Zeng and Levis (2012)

0,3 dimensionless Li, Zeng and Levis (2012)

0,7 dimensionless Li, Zeng and Levis (2012)

fire suppression constant dimensionless

fire suppression constant dimensionless

α fire suppression constant dimensionless

maximum fire spread rate 

Li, Zeng and Levis (2012)

Climate param.Description Value Units reference

1E-07

1E-05

cloud-to-ground lightning ignition 

efficiency

θ
e

0,69 
0,35 

0,3

sm
SAT kg m-2

Θ
w

Θ
c
 

B
low

minimum biomass density  for fuel 

availability g C m-2

B
up

maximum biomass density for fuel 

availability g C m-2

RH
low

minimum relative humidity for fuel 

combustibility

RH
high

maximum relative humidity for fuel 

combustibility

ε
1 

0.99 
0.95

          Li, Zeng and Levis (2012) 

  Pechony and Shindell (2009)

ε
2 

0.98 
0.90

          Li, Zeng and Levis (2012) 

  Pechony and Shindell (2009)

0.025 
0.05

          Li, Zeng and Levis (2012) 

  Pechony and Shindell (2009)

u
max

       BT/NT/S/C3/C4      
      

0,11/0,15/0,17/0,2/0,2  
                                        

pr
min

min. precipitation threshold (rh
fire

) mm s-1

pr
max max. precipitation threshold (rh

fire
) mm s-1



g(w) is given by

g(w )  =  
2LB

1+
1

HB

g (0 ) (16)

(Li, Zeng and Levis, 2012), where g(0) is a constant.

The fire spread rate perpendicular to the wind up is

up=umax∗g (0)∗ f root∗ f RH  (17)

(Li, Zeng and Levis, 2012).

-Average burned area

The average burned area Ba (km2) of a single fire is then defined according to the formula for 

the area of an ellipse, namely,

Ba=
Π∗uw

2
∗ t

2

(4 LB)
∗(1+

1

H B
)

2

∗10
−6

(18)

(Li, Zeng and Levis, 2012), where t is the average fire duration in seconds and 10-6 converts 

m2 to km2.

-Burned area

The burned area BA (km2) in the grid cell is then the product of the number of fires with the 

average burned area per fire, 

B A=N f∗Ba (19)

3.2.3 Fire impacts

Once the burned fraction is calculated, it is then applied to the vegetation fraction for each 

PFT using the code from Landry, Matthews and Ramankutty (2015, Supplemental material). 
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It takes into account that woody PFTs will not burn completely because of islands of 

vegetation that remain unburned. This amounts to a 5% difference between modelled gross 

and net burned area. The agriculture fraction (crop + pasture) is prescribed in the UVic 

ESCM (see Fig. 3) and is not included in the vegetation fraction – fire therefore does not 

happen in the agriculture fraction.

3.3 Fire model integration in the UVic ESCM-TRIFFID

I created new variables to store the 5/30 days averages of simulated climate variables 

required in the fire model. Every fire step (5 or 30 days), the time averaged gridded 

precipitation calculated in the atmosphere module and the soil moisture in the land surface 

module are used in the fire module according to the fire parameterization (Sec. 3.2). 

3.3.1 Description of prescribed data

I converted all the climatology data I prescribed to the fire model to a monthly timestep. I 

reduced the high resolution data sets listed in table 2 to the UVic ESCM resolution (1.8° x 

3.6°) using a custom linear interpolation code. The code averages the values of the small cells 

contained inside each larger cell and splits the smaller cells that are part of two different large 

cells appropriately. For the 5 days fire model, the monthly lightning flash rate dataset was 

divided by 6 instead of using the 5 days average, which limits the variability compared but 

still gives a reliable estimate of the lightning climatology. 
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3.3.2 Simulated climate variability

3.3.2.1 Relative humidity

Li, Zeng and Levis (2012) prescribed observation-based climate data to drive the CLM– 

DGVM, while I used the simulated climate variables outputted by the UVic ESCM. The two 

main climate variables used by the fire parametrization were relative humidity and soil 

moisture. Relative humidity is poorly simulated in the UVic ESCM, as shown by Fig. 2, and 

definitely lacked the necessary variability to have a meaningful effect on the simulated fire. 

In order to address this shortcoming, I used the more variable simulated precipitation to 

derive a relative humidity field as follows:  
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Figure 2: Monthly relative humidity simulated by the UVic ESCM. All months are the same 

except for minor changes in the drier area over the Sahara region.



rhfire  =  {
        0                pr fire≤ prmin
prfire− prmin

prmax− prmin
  prmin<pr fire<prmax

        1                pr fire≥ prmax

 (20)

where rhfire is the relative humidity field used in the fire model, prfire is the simulated 

precipitation (with or without added prescribed variability), prmin and prmax are arbitrary 

precipitation value thresholds determining the null and saturated relative humidity. These two 

values (Table 1), when projected at a yearly timescale, correspond to a desert climate (prmin) 

and a semi-arid climate (prmax). They were chosen to optimize seasonal and spatial variability 

of the relative humidity field generated by the simulated climatology (Fig. A1, first column).

3.3.2.2 Natural variability

Since the monthly and 5 days simulated soil moisture and relative humidity (rhfire) had poor 

variability compared to reality (Fig. A1, first and last column), I added the standard deviation 

of observed precipitation and soil moisture products (Table 2) to the simulated values (Figs. 
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Variable units period* source

Prescribed

Lightning rate 1995-2013 Cecil, Buechler and Blakeslee, 2014

Population density 2000 Jones and O'Neill 2016

Precipitation variability 1901-2013 Schneider et al. 2014

Soil moisture variability 1948-2016 Fan and van den Dool, 2004

Crop and pasture lands fraction of gridcell 1800 UVic ESCM default

Model validation

Fire counts 2001-2006

Burned fraction 2001-2012

Relative humidity unitless 1948-2014 Kalnay et al. 1996

Soil moisture 1948-2016 Fan and van den Dool, 2004

flashes km2 month-1

people km-2

mm month-1

kg m-2

number of fires km -2 month-1 Giglio, Csiszar and Justice, 2006

fraction of gridcell month-1 Giglio, Randerson and Van Der Werf, 2013

kg m-2

Table 2: Description of datasets used for forcing and validation. 

*Time intervals are averaging periods.



A1-A2, center column). A visual analysis of histograms for randomly selected gridcells from 

diverse biomes showed that both monthly-averaged precipitation and soil moisture were 

generally normally distributed across the observation periods (113 and 58 years, 

respectively). Every fire step (5 or 30 days), when variability was added, the precipitation and 

soil moisture used in the fire model in a grid cell were given by

pr fire=prsim+stdev pr∗ rndnum   ;   prfire≥0 (21)

sm fire=smsim+stdev sm∗rndnum  ;   smfire≥0 (22)

where prsim and smsim are the simulated precipitation and soil moisture, stdev their respective 

monthly standard deviation and rndnum is a random normal number.

3.4 Study design

3.4.1 Model evaluation

I used the version 4 of the Global Fire Emissions Database (GFED4) (Giglio, Randerson and 

Van Der Werf, 2013) as a benchmark to evaluate the fire parameterizations. The dataset I 

used was created by Landry, Matthews and Ramankutty (2015). This dataset varies monthly 

from 2001-2010 at the UVic ESCM spatial resolution and restricts the burned fraction 

product to data from MODerate resolution Imaging Spectroradiometer (MODIS) only. The 

global burned area of GFED4 amounts to 350Mha yr-1, 4Mha yr-1 of which corresponds to 

deforestation fires (based on van der Werf et al (2010)). GFED4 does not detect small fires 

that have been estimated to affect 120 Mha/yr, mostly (80%) from croplands, savannahs and 

grasslands (Randerson et al, 2012).

 

3.4.2 Multimodel comparison

Prior to creating a suite of models to compare against each other, I performed a sensitivity 
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analysis on relevant parameters, θe

 
and Bhigh, to determine their effect on the fire simulation. 

Increasing Bhigh, the threshold at which fuel availability does not limit fire anymore, strongly 

decreased the spatial variability of the simulated burned area relative to GFED4, without 

improving the spatial correlation. Only θe

 
improved the simulated burned area and was 

retained in the multimodel simulations. I also tested the effect of the added variability to 

precipitation and soil moisture, as well as the 5 days and 30 days timesteps (Table 3).

3.4.3 Simulation settings

Each simulation ran for 300 years with constant forcings, at which time the models reached 

equilibrium in terms of global vegetation carbon. The atmospheric CO2 concentration (282.2 

ppm) and agricultural fraction (Fig. 3) were prescribed for year 1800 while population 

density and the benchmark fire regime were from the beginning of the 21st century (Table 2). 

This time period difference between these forcing datasets was unavoidable, and its impact 

on the results is examined in the discussion. To compare the models against each other, I used 

the monthly burned fraction (BF) and above-ground vegetation carbon (VC) and their yearly 

global values for the last 10 years of each simulation at equilibrium. 
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Table 3: Settings of the different equilibrium simulations. The soil moisture availability 

parameter θe was tested for high (H), medium (M) and low (L) values and variability (v) was 

added to  soil moisture (s) and/or precipitation (p) or none (no). 

model name  imestep (days) prescribed variability

H5pv 0,69 5 precipitaion

H5spv 0,69 5 precipitaion and soil moisture

M5pv 0,6 5 precipitaion

L5spv 0,55 5 precipitaion and soil moisture

H5nov 0,69 5 none

H30spv 0,69 30 precipitaion and soil moisture

H30nov 0,69 30 none

GFED4 30

θ
e
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Figure 3: Constant agriculture fraction prescribed to the simulations (year 1800). Fire does 

not happen in the agriculture fraction of grid cells.



4. RESULTS

I used the GFED4 to evaluate the different fire models in terms of BF and VC. Fig. 4 and Fig. 

5 show the spatial evaluation of the different models (Table 3) using Taylor Diagrams. 

4.1 Taylor Diagrams

Taylor Diagrams are used to summarize how well patterns match each other breaking them 

down into three statistics (Taylor, 2001). These diagrams are especially useful when applied 

to complex models such as global climate models. A variable is assessed for different models 

versus its observed value in terms of global spatial correlation, standard deviation and root 

mean squared error. The global spatial correlation describes the spatial match between the 

simulated and observed variable. The standard deviation describes the total global variability 

of the variable and the root mean squared error describes the total global bias of the 

simulation relative to the observation. 

 4.2 Simulated climate variables

The simulated relative humidity and soil moisture both generally showed seasonal variability 

comparable in timing to observations, but with a smaller amplitude. Some regions in the 

simulation had major discrepancies with observations. 

                                                                       

  4.2.1 Relative humidity

The relative humidity derived from the simulated precipitation (Fig. A1) reproduces the 

wet/dry season variability observed in the tropics, but with less seasonal variability and some 

discrepancies. The Amazon Basin is wetter from January-April and gets drier in July but this 

pattern isn't as clear as for the observed data. Over tropical Africa, seasonal variability occurs 

31



but the central rainforest part is often drier than the adjacent tropical area experiencing the 

wet season (e.g. July and October in Simulated vs. Observed). In reality, the boreal forest has 

a low relative humidity in July, and in the other seasons the air water content is higher 

because of lower temperatures which lower the saturation threshold. In the simulations, July 

is the only month with some relative humidity, because most rain precipitation, the proxy for 

relative humidity, happens in the summer at those latitudes. This pattern is particularly 

striking in the Eurasian boreal forest. 

4.2.2 Soil moisture

Simulated soil moisture generally has a weaker seasonal variability than in reality (Fig. A2). 

Eastern continental USA is too dry in the UVic ESCM from April-October, while Western 

Continental North America should be drier all year-long. The Eurasian boreal forest is too 

wet in the eastern part. The observed tropical Africa’s soil moisture is seasonally very 

variable, while the simulation shows poor variability. South America displays the same 

seasonal variability pattern as in the observations, but with less inter-seasonal variation.

4.3 Effect of timestep

The fire model timesteps (5 days or 30 days) produced the same BF or VC. For the 

simulations without added variability, the H30nov and H5nov had the same correlation 

coefficient, standard deviation and mean squared error (MSE) relative to the reference 

simulation using prescribed GFED4 burned area. The same happened for the simulations with 

added variability, with H30spv and H5spv which are juxtaposed in the three dimensional 

diagrams (Figs. 4 and 5). 
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4.4 Effect of natural climate variability

Adding natural variability to the precipitation used to generate the relative humidity field did 

not have a significant effect on the simulation either, as can be seen by comparing H5pv and 

H5nov. Adding variability to soil moisture, however, significantly improved the correlation 

coefficient of the burned fraction with GFED4 from R=0.28 (H5pv and H30nov) to 

R=0.36/0.37 (H5spv/H30spv; Table 4). The only benefit of not prescribing variability to soil 

moisture seems to be in the Amazon. There the burned fraction is lower for M5pv compared 

to L5spv despite that the increase in θe from L5spv to M5pv should increase burned fraction, 

signalling the stronger effect of adding soil moisture variability.
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Figure 4: Taylor diagram of the simulated annual burned fraction for the different models. Description of 

models is given in Table 3. The black dashed lines represent the correlation coefficient intervals, the blue 

dashed curves the normalized standard deviation relative to the reference model using prescribed GFED4 

fire regime and the gray curves represent the Mean Squared Error relative to GFED4.



4.5 Effect of θe 

Increasing the value of the extinction coefficient of soil wetness, θe, increased the spatial 

variability of the simulated burned fraction, as shown by L5spv (low θe), M5spv (medium θe) 

and H5spv (high θe) in Fig. 4, and decreased the spatial variability of the above-ground 

vegetation carbon (Fig. 5). The global burned area (GBA) and global vegetation carbon 

(GVC) were affected similarly, with GBA increasing by more than 3x and GVC decreasing 

by 2.5x between L5spv and H5spv (Table 4).  
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Figure 5: Taylor diagram of the simulated aboveground vegetation carbon for the different models. The 

description of models is given in Table 3. The black dashed lines represent the correlation coefficient 

intervals, the blue dashed curves the normalized standard deviation relative to the reference model using 

prescribed GFED4 fire regime and the gray curves represent the Mean Squared Error relative to GFED4.



4.6 Model evaluation

The two models that were the closest to GFED4 were H5spv/H30spv and L5spv. Given the 

effect of θe on burned fraction and aboveground vegetation carbon (Sec. 4.3), it is not a 

surprise to see in Table 4 that H5spv/H30spv produced the best combination of spatial 

correlation (R=0.36) and GBA (overestimated by 12-14%), at the cost of having the lowest 

spatial correlation for AVC (R=0.46 vs. 0.57-0.73 for other models) and global vegetation 

carbon (GVC; underestimated by 67%). On the other hand, L5spv produced both the highest 

spatial correlation for BF and AVC and underestimated GVC by 18% but GBA by 63% 

(Table 4). L5spv also simulated a low spatial variability for burned area (0.21 vs. 0.51 for 

H5spv/H30spv; Fig. 4). When looking at the spatially explicit annual burned fraction (Fig. 5), 

we see that H5spv/H30spv (shown as H30spv) overestimates burned fraction everywhere 

except in tropical Africa and northern Australia, while L5spv is more in agreement with 

GFED4 except for those two regions. 
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Table 4: Annual global burned area (GBA) and global vegetation carbon (GVC) 

simulated and their spatial correlation coefficient (R) with the GFED4 prescribed burned 

area simulation. Models in bold are examined more in depth. 

model GVC (Pg-C) R (Vegetaion carbon)

H5pv 252 200 0,28 0,57

H5spv 384 148 0,36 0,46

M5pv 99 416 0,18 0,73

L5spv 124 366 0,36 0,73

H5nov 260 204 0,28 0,57

H30spv 372 149 0,37 0,46

H30nov 259 207 0,28 0,57

GFED4 334 447 1 1

GBA (Mha yr-1) R (Burned fracion)



Both models strongly overestimate burned fraction over the three main rainforests (Amazon, 

central Africa and Indonesia). This overestimation is stronger for H30spv, which results in the 

absence of vegetation in these areas at equilibrium (Fig. A4). In the L5spv simulation, the 

Amazon and Indonesia are correctly preserved but with a lower AVC; however the African 

vegetation is completely burned in the rainforest area that GFED4 preserves. The visual 

agreement between L5spv and GFED4 in terms of vegetation is also better for the Eurasian 

boreal forest and western USA, which are almost completely burned at equilibrium in 

H30spv (Fig. A4). Despite underestimating GBA by two thirds, L5spv is still better at 

predicting burned fraction because it preserves more accurately the large rainforest carbon 

pools than H5spv/H30spv. The global spatial correlation (R=0.36) is comparable to older and 

less complex fire parameterizations such as Glob-FIRM  (R=0.39; Thonicke et al., 2011) and 

the one used by Levis et al. (2004) (R=0.44). The GBA obtained, 124 Mha yr-1, is also similar 

to these two fire modules (Glob-FIRM : 54 Mha yr-1; Levis et al. (2004): 93 Mha yr-1). 

However, the authors who designed the current fire parametrization (Li, Zeng and Levis, 

2012) obtained a stronger global spatial correlation (R=0.60) and a GBA close to GFED3 

(330 Mha yr-1 vs. 380 Mha yr-1 GFED3). 
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5. DISCUSSION

The  results  point  to  improvements  that  are  necessary in  order  to  be  able  to  address  the 

potential feedbacks between climate, vegetation and fire in a climate change scenario context. 

5.1 Timestep and added natural variability

The absence of notable differences between simulating fire at a 5 or 30 days interval was 

expected when no natural variability was added to the simulated climate variables, given that 

the UVic ESCM simulates climate with very low variability at the 5 days timestep. The 

precipitation and soil moisture 5 and 30 days spatial time averages were in fact negligibly 

different even before adding variability. Adding variability to precipitation did not change its 

effect on burned fraction, probably because the relative humidity function (Eq. 8) that was 

affected by this did not vary much more with the added variability. There was no difference 

between 5 days and 30 days when I prescribed to soil moisture its natural variability. This 

result has, in fact, a simple mathematical explanation. The simulated 5 days and 30 days 

averages were the same for soil moisture, and I used the monthly standard deviation for both 

timesteps. The range of possible values was therefore identical regardless of the timestep, and 

the long term averages used to evaluate the models  – 10 years in this case – converged to the 

same value. The 5 days standard deviation, if calculated, would have been larger than for 30 

days because the extreme values in the observation dataset are less masked by time averaging 

as the time resolution increases. 

I tested the effect of the monthly 2x standard deviation to emulate the 5 days standard 

deviation, and it increased the global burned area compared to the 1x standard deviation. 

However, I did not include this simulation in the Taylor Diagrams at the time of producing 

them. I assume 2x standard deviation would further increase the global spatial correlation of 
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burned fraction as well as the spatial standard deviation relative to GFED4. 

The other possible effect of a 5 days timestep was to progressively reduce the burnable area 

by reducing the vegetation fraction in each gridcell over each 30 days interval, since 

vegetation regrowth happens every 30 days in the model while fire impacts happen at the fire 

timestep. The fire parameterization was designed to update vegetation according to burned 

area yearly (Li, Zeng and Levis, 2012). In areas with high fire activity, this method 

overestimates burned area because, over a one year period, the model potentially reburns the 

already burnt area multiple times. This overestimation is of concern for areas with high 

seasonal burned fraction, such as African savannas. In my simulations, however, the results 

do not show a significant difference in monthly burned area between the two timesteps. This 

is probably because the maximum simulated 5 days burned fraction (at most ~2% of grid cell 

per 5 days) was too small to significantly impact the remaining burning 5-days steps before 

regrowth. The absence of differences between 5 days and 30 days timesteps highlights the 

importance of climate variability rather than timestep for fire modelling in the context of an 

ESCM of intermediate complexity. In other words, timestep, in the present study, only 

matters because the climate variability appropriate to fire is intrinsic to shorter timesteps. 

5.2 Comparison with Li, Zeng and Levis (2012)

The fact that Li, Zeng and Levis (2012) (Li et al. for the rest of this section) obtained 

significantly better results than my parametrization (Sec. 4.5) in key areas is probably largely 

due to the use of sub-daily climate data to drive their DGVM and simulating the burned 

fraction consequently at an hourly timestep. They captured the high burned fractions of 

tropical savannas and the null fraction in the African and Amazon rainforests (Li et al.; Fig. 8 

– Mod-new), while my parametrization simulated a mostly homogeneous medium fraction 
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over those biomes (Fig. A3, L5spv), which leads to the disappearance of rain forests (Fig. A4 

-L5spv). Both models capture the medium fraction in Northern Eurasia, although a visual 

comparison confirms that Li et al. obtain a better spatial correlation. My model better 

captures the spatial pattern of fire in North America, while Li et al. strongly overestimate fire 

in Continental North America. This is due to the fact that agricultural fractions are treated the 

same as vegetation fractions by Li et al., while they are ignored in my parameterization. Their 

results thus lead to the overestimation of fire because crop PFTs burn easily in a natural 

context, while I underestimate fire in gridcells with high agricultural fractions. Both models 

do not capture the high burned fraction in Northern Australia. In my case,  the TRIFFID 

underestimates vegetation density at this location (Fig. A5 vs. Fig A6) and therefore probably 

regrowth rate, which limits the possibility of an annual high burned fraction, although the 

simulated climatology's low variability probably does not capture the necessary fire weather 

in the first place (Figs. A3 and A4). The most important differences between the results of Li 

et al. and this study are the ability in the UVic ESCM to capture (1) the null burned fraction 

in tropical rainforests of Africa and the Amazon and (2) high burned fractions (>50%) in 

African savannas. These differences are important given that observations indicate that global 

burned area is largely controlled by African vegetation (66%; 1997-2004; van der Werf et al., 

2006).

5.3 Limitations due to relative humidity

One of the most notable limitations of the UVic ESCM for this project was the absence of 

spatial variability for the simulated relative humidity (Fig. 2), which is a key variable in 

the original fire parameterization (Li, Zeng and Levis, 2012). The use of precipitation as a 

proxy strongly improved the spatial variability of relative humidity and its seasonal pattern 
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(Fig. A1). The African rainforest (the area that is unburned in central Africa in GFED4, 

Fig. A3) has a relative humidity close to or at 100% all year long according to 

observations, while the simulated values tended to be lower than the surrounding tropical 

savannas in their respective wet season (Fig. A1). This difference contributed to the strong 

overestimation of burned fraction in this area, and the associated strong decrease of global 

vegetation carbon, due to the high carbon density of rainforests. Natural ignitions are 

abundant in tropical rainforests, especially in Africa (Fig. A9), but constantly high fuel 

wetness prevents fires from starting (Del Grosso, 2008). The fire counts were highly 

overestimated by the simulations (Fig. A8 vs. A7) probably because of relative humidity. 

Both fire counts and burned area depend on relative humidity through fRH (Eq. 7 and 13, 

respectively), which means that burned area (fire counts * fire spread) is dependent on the 

square of fRH. This directs us toward the parameter RHhigh (Eq. 8), the relative humidity 

threshold value at which the air is too wet for ignitions to become fires. It was left 

unchanged from its original value (0.7) during the sensitivity tests, but lowering Rhhigh 

could perhaps reduce the burning of the central African rainforest. In addition to being less 

variable than observations the simulated relative humidity was also lower on average. This 

lack of variability was exposed by the null effect of adding its natural variability to the 

simulated precipitation used as a proxy for relative humidity (Table 4). Narrowing and 

lowering the RHow-RHhigh range might also increase the variability generated by Eq. 8 and 

improvement the spatial correlation (similar to that of θE) when adding the natural 

variability. 

5.4 Agricultural land and vegetation

Central Asia, the Middle East, Southern South America and South Australia experience fire 
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activity in GFED4, but not in the UVic ESCM (Fig. A3). In the case of Southern South 

America and South Australia, part of the reason is that TRIFFID simulates vegetation in these 

areas with an underestimation bias (Fig. A6 vs. Fig. A5). The other major cause is that a large 

fraction (at least 0.5) of the land in these regions - and other regions - is cropland or pasture 

land (Figs. 3and7). The current fire model underestimates burned fraction in these areas by 

ignoring agricultural land, which represents 8-11% of global annual fire counts (2001-2003; 

Korontzi et al., 2006) and about 4.7% of global burned area (Van Der Werf et al., 2010) or 

10% when including small fires (Randerson et al., 2012). However, this overestimation is 

blurred by the 
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Figure 6: Difference between the agriculture fraction matching the time period (2005) of the 

burned fraction benchmark dataset (GFED4) and the burned fraction prescribed to the 

simulations (year 1800). The prescribed agricultural fraction period should have been 2005. 

Fire does not happen in the agriculture fraction of grid cells.



difference in the time period of the agricultural fraction prescribed (1800) and the burned 

fraction product used to evaluate the fire model (GFED4, 2001-2010). This difference in 

agricultural fraction likely caused an overestimation of burned area in most areas due to a 

smaller agricultural fraction (Fig. 7) (and thus a larger vegetation fraction). The areas most 

affected by this overestimation were South-Western USA and Mexico, South Africa, Northern 

Hemisphere African savannah and Southern Australia (Fig. A3, L5spv). The parameterization 

of agricultural fires in Li, Levis and Ward (2013) (along with peat fires and deforestation) 

improved the global spatial correlation of the model with GFED3 from R=0.6 to R=0.69. 

Adding this parameterization to the current fire model would correct the low biases of burned 

fraction for areas with high agricultural fraction and no vegetation. The net effect is not clear 

for areas with both high vegetation and agricultural fractions, as burning natural vegetation 

would be replaced with burning crops. 

5.5 Other sources of uncertainty or bias

I identified minor sources of uncertainty or bias that should be taken into consideration when 

interpreting the results of my research, although the major simulation bias remains that the 

rainforests burned fraction is rather high.

-Limitations of the GFED

 Although the current generation of GFED products are state of the art fire datasets, they do 

no detect small fires (less than 1km2). These fires account for an additionnal 35% of global 

burned area (464Mha yr-1 vs. 345Mha yr-1, Randerson et al., 2012). They are particularly 

common in savannas (30.5 Mha yr-1, +34%), woody savannas (46.4 Mha yr-1, +27%), 

grasslands (9.6 Mha yr-1, +24%) and croplands (11.8 Mha yr-1, +123%). This means that all 

fire models are calibrated to capture a biased representation of global fire regime.
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-GFED4 vs. GFED3

GFED4 (Giglio, Randerson and Van Der Werf, 2013) covers all land while GFED3 (Giglio, 

Csiszar and Justice, 2006) did not, and the dataproducts are calculated differently. These 

differences added to the different time periods decreased global burned area from 380 Mha 

yr-1 (GFED3, 1997-2004) to 350 Mha yr-1 (GFED4, 2001-2012). The current fire model was 

calibrated on GFED3 but its implementation in the UVic ESCM was evaluated using the 

GFED4. The largest discrepancy between both datasets is that GFED4 estimates the total 

burned area in North Hemisphere South America and Central America to be about 35% and 

25% higher than GFED3 respectively (Giglio, Randerson and Van Der Werf, 2013). 

-Root zone soil moisture function

The root zone soil moisture function βroot is PFT dependent (Li, Zeng and Levis, 2012; Arora 

and Boer, 2005) and depends on the soil water potential of each soil layer ((Levis et al., 2004; 

Oleson et al., 2010). I reduced it to a single value per grid cell in the UViC ESCM-TRIFFID, 

because this model has a single 1m deep soil layer (Meissner et al., 2003). This could cause 

part of the high bias of burned fraction in rainforests, since rainforest trees can access water 

below 1m during drier periods (Stahl et al., 2013).

 

-Relative humidity patterns

Another particularity of the relative humidity generated by the precipitation proxy was 

observed in the Northern Hemisphere boreal forests across North America and Eurasia. 

There, the relative humidity seasonal pattern was inversed (July was the wettest month in the 

simulations but the driest in observations, Fig. A1), because the precipitation proxy does not 

consider the influence of surface air temperature on relative humidity (Eccel, 2012). 
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However, this didn't seem to affect the fire model because of the presence of snow (Eq. 5) 

and the absence of ignitions in the winter months (Fig. A9), that could otherwise potentially 

burn due to low observed relative humidity (Fig. A4).

5.5 Deforestation fires

Deforestation fires are not distinguished from non deforestation fires in GFED3, the dataset 

used to calibrate the current fire parametrization (Li, Zeng and Levis, 2012)  (except for θe). 

This means that areas prone to deforestation fires were modelled as non-deforestation fire 

areas in the present study. Although deforestation fires represent a small fraction of GBA 

(2.8% - the 1997-2004 average; Li, Bond-Lamberty and Levis, 2014), they have a 

significantly higher emission to burned area ratio. They account for about 20% of annual 

global fire CO2 emissions (van der Werf et al., 2010, Li, Levis and Ward, 2013) and about 

50% of fire emissions that do not return to vegetation through regrowth (van der Werf et al., 

2010). It is therefore important to parameterize these fires, as done by Li, Levis and Ward 

(2013), in the hope of improving the accuracy of the simulated carbon cycle.
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6. CONCLUSIONS

The major findings of this research project are that weather variability is a key driver of fire 

regimes and that the timestep in modelling only matters because of the intrinsic variability of 

simulated variables at a short time scale.

The scientific goal of this thesis was to assess the potential feedbacks between climate, 

vegetation and fire in a climate change context. In order to reach that goal, I parameterized 

fire in the intermediate complexity UVic ESCM-TRIFFID using a process based approach 

developped by Li, Zeng and Levis (2012). This fire parameterization – or similar 

parameterizations on which it is based – was designed and used in many other ESCM-

DGVMs with a higher degree of complexity (Thonicke et al., 2001; Venevsky et al., 2002; 

Arora and Boer 2005; Kloster et al., 2010; Li, Zeng and Levis, 2012; Li, Levis and Ward, 

2013). All models simulated the burnt area at a daily or sub-daily timestep and at a finer 

spatial resolution than the UVic ESCM, with climate data taken from GCMs or observations 

prescribed to the terrestrial components. Their land and vegetation modules were able to 

represent more PFTs and multiple soil layers interacting with the water use of PFTs. These 

differences can all potentially explain the deficiencies of the fire model coupled in this thesis. 

The main shortcoming of the UVic ESCM was probably the lack of variability and possible 

bias in the simulated climatology, necessary to reproduce the appropriate fire weather. I 

addressed this by integrating the fire module at a finer timestep than the interval at which 

variability was captured by the UVic ESCM (5 days instead of 30 days) and by adding natural 

variability to the simulated climate variables of interest for the fire model. The timestep did 

not directly affect the representation of fire – instead it was the natural variability attached to 

the timestep that increased the global spatial correlation of burned fraction with observations. 
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The best parameterization obtained (R=0.37; GBA = 124Mha yr-1) performed similarly to 

previous less complex parameterizations by Thonicke et al. (2011) (Glob-FIRM : R=0.39;  

54Mha yr-1) and Levis et al. (2004) (CTEM-FIRE: R=0.44; 93Mha yr-1), although its original 

implementation in the CLM-DGVM by Li, Zeng and Levis (2012) fared significantly better 

(R=0.60; GBA is underestimated by 13% vs. 63% for this thesis). However, unlike any of 

these three models, the present parameterization did not capture at all the large difference of 

annual burned fraction between the rainforests and savannas of the Amazon and Africa, 

which causes rainforests to burn down completely in Africa and partially in the Amazon (Fig. 

A4). This discrepancy is potentially due to a biased relative humidity, which was proxied by 

the simulated precipitation field (Eq. 20). More generally, it is the lack of intrinsic variability 

in the model's climatology that causes its poor performance. Other minor problems include 

the biased agricultural fraction used (Figs. 3 and 7), and improvements could be made by 

formally parameterizing fires coming from deforestation and agriculture (Li, Levis and Ward, 

2013). 

The long term objective of integrating fire in an ESCM-DGVM of intermediate complexity is 

to represent and assess the importance of the many feedbacks of the fire-vegetation-climate 

system (Fig. 21), namely the feedbacks of fire on climate, sometimes mediated by vegetation.

One of these feedbacks could happen in a climate change context through changes in 

vegetation composition in tropical savannahs. For example, it is likely that grass dominated 

African savannahs will transition to woody species dominated forests through CO2 

fertilization and increased precipitation (Murphy and Bowman, 2012). Climate projections 

generally agree that precipitation would increase in African tropical savannahs (Christensen, 

2007), which would favor woody species over grassy species in the TRIFFID. Additionally 
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the maximal fire spread rate constant in the current fire model allows grassy vegetation (C3 

and C4) to burn over an area close to 4x more than deciduous trees. This transition would 

have a negative effect on fire activity in this area and a positive effect on vegetation carbon 

accumulation, leading to a negative feedback on atmospheric CO2 concentration.

Biomass burning increases land surface albedo, which has been shown to have a non-

negligible regional cooling effect in increasingly burning boreal forests (Randerson et al., 

2006; Beck et al., 2011) and globally with modelling (Landry and Matthews, 2015). 

Fuel availability could eventually limit fire in areas where weather becomes drier, leading to 

a complete biome and fire regime switch. This fire regime change has been shown by 

modelling (Landry, Matthews and Ramankutty, 2015). 

A possible positive feedback loop of fire on climate would happen at a regional scale through 

changes in evapotranspiration. A regional change in fire activity caused by climate-mediated 

change of precipitation would lead to a change of local evapotranspiration due to changing 

vegetation composition and density. This would in all cases lead to a positive feedback loop 

reinforcing the precipitation change. It is not clear, however, if this effect can be captured by 

the current climate-vegetation.

Assessing these potential feedbacks requires a reasonable representation of the broad spatial 

and temporal patterns of fire in terms of burned fraction, which is used to estimate fire 

emissions (Andreae and Merlet, 2001). A fire impacts module including pyrogenic emissions 

of aerosols and other greenhouse gases was already integrated in the UVic ESCM-TRIFFID 

by Landry, Matthews and Ramankutty, (2015). 

In order to improve sufficiently this fire model, a careful tuning of the relative humidity field 

proxied by the simulated precipitation, as well as a careful sensitivity analysis of the relative 

importance of the different functions relating fire to climate and vegetation are necessary. 
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Annex A – Figures
Figure A1:Relative humidity simulated with or without prescribed standard deviation and observed, for the middle month of each 

season. Relative humidity over oceans was kept by mistake for the observed data as for simulated data.
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Figure A2:Soil moisture simulated with or without prescribed standard deviation and observed, for the middle month of each season. 
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Figure A3: The model settings are given in table 3. The correlation coefficient R was calculated relative to the GFED4 dataset.
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Figure A4: The model settings are given in table 3. The correlation coefficient R was calculated relative to the GFED4 dataset.
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Figure A5: Observed above- and below-ground vegetation carbon. The units (t – C/ha) divided 

by 10 match the ones from Figure A6. Figure taken from Ruesch & Gibbs (2008).

Figure A6: Simulated aboveground vegetation carbon at equilibrium without fire. The units 

(kg-C m-2) multiplied by 10 match the ones from Figure A5.
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Figure A7: Annual fire counts observed by MODIS (Giglio et al. 2006). Figure taken from Bowman et al. 

(2009)

Figure A8: Annual fire counts simulated by the L5spv simulation (see table 3 for model description). 

Firecounts per gridcell were adjusted to match the units of Figure A7. 
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Figure A9: Annual flash count prescribed to the fire parameterization based on 1995-2013. 

See Table 2 for source.
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