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Abstract 
 

How do students know they are right and how does one research it? 

Natalia Vasilyeva 

Concordia University, 2017 

Although standards of rigor in mathematics are subject to debate among philosophers, 

mathematicians and educators, proof remains fundamental to mathematics and distinguishes 

mathematics from other sciences. There is no doubt that the ability to appreciate, understand and 

construct proofs is necessary for students at all levels, in particular for students in advanced 

undergraduate and graduate mathematics courses. However, studies show that learning and 

teaching proof may be problematic and students experience difficulties in mathematical 

reasoning and proving.  

This thesis is influenced by Lakatos’ (1976) view of mathematics as a ‘quasi-empirical’ science 

and the role of experimentation in mathematicians’ practice. The purpose of this thesis was to 

gain insight into undergraduate students’ ways of validating the results of their mathematical 

thinking. How do they know that they are right? While working on my research, I also faced 

methodological difficulties. In the thesis, I included my earliest experiences as a novice 

researcher in mathematics education and described the process of choosing, testing and adapting 

a theoretical framework for analyzing a set of MAST 217 (Introduction to Mathematical 

Thinking) students’ solutions of a problem involving investigation. The adjusted CPiMI 

(Cognitive Processes in Mathematical Investigation, Yeo, 2017) model allowed me to analyze 

students’ solutions and draw conclusions about the ways they solve the problem and justify their 

results. Also I placed the result of this study in the context of previous research. 
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Chapter 1. Introduction 

If there were only one truth, you couldn’t paint a hundred canvases on the same theme. 

-Pablo Picasso, 1966 

This thesis is the story of my journey as a novice researcher in mathematics education. I entered 

the MTM program with a strong intention to conduct research and make a contribution to 

mathematics education. Like many other novices, I was enthusiastic and ambitious. Conducting 

research in mathematics education has been, for me, both exciting and overwhelming.  

In the research for my thesis, I was exploring, broadly speaking, how mathematicians and 

students know they are right in their mathematical results. This turned out to be a challenging 

task: How to select what is important in the data? What to focus on? How to analyze it? What 

exactly is my research question?  

Finally, I settled on analyzing a set of MAST 217 (Introduction to Mathematical Thinking) 

students’ solutions of a problem involving a mathematical investigation, from the point of view 

of the mathematical thinking and cognitive processes they engage in solving the problem and 

making sure they are right. Together with my supervisor, we also conducted introspective and 

“inter-spective” analyses of our own solutions to this problem. This explains the first part of the 

title of this thesis. 

While struggling with the above-mentioned questions, I realized that it may be worthwhile 

sharing the story of my cyclic growth and describe my earliest experiences as a researcher. It 

could be useful for other novice researchers in mathematics education. This explains the second 

part of the title of the thesis. Thus, my thesis will take the reader behind the scenes, showing my 

personal feelings, struggles, doubts and successes.  
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1.1 Motivation for the research and development of the research questions 

My personal experience in learning and teaching mathematics has directed me towards pursuing 

a career in mathematics education. I was absolutely new in the world of mathematics education 

research. I was fascinated and energized by a qualitative methods course, where I learned the 

basic principles of different qualitative research methodologies, data collection methods and 

approaches to analyzing the data. So I started looking for a “good” research problem. 

Researchers do not often share the reasons why (or circumstances in which) they decided to 

address the problem they write about in a paper. However, they agree that identifying a research 

problem is a challenging aspect of conducting research (Creswell, 2008). Mathematicians are 

particularly greedy in this respect, perhaps because finding a good problem to research (or a 

hypothesis to verify) is crucial part of their art. As Riemann once sighed: ”If only I had the 

theorems! Then I should find the proofs easily enough” (Riemann, quoted in Lakatos, 1976). 

Schoenfeld argues that 

The hard part of being a mathematician is not solving problems; it’s finding one that you 

can solve, and whose solution the mathematical community will deem sufficiently 

important to consider an advance… In any real research (in particular, education 

research), the bottleneck issue is that of problem identification – being able to focus on 

problems that are difficult and meaningful but on which progress can be made. (as quoted 

by Selden and Selden, 2001, p.239) 

The first ideas came from my teaching practice. I noticed that most of my students do not 

evaluate or analyze their solutions. They prefer to check if their answers are the same as those 

given at the back of the textbook or just ask the teacher if they are correct (or acceptable). My 

observations were not new and were pointed out in the literature (e.g. Sierpinska, 2007). The 

ability to justify, verify and analyze their own mathematical results becomes more critical for 

students who study advanced undergraduate and graduate mathematics courses. If you ask 

someone on the street: “How do you know that 2 plus 2 equals four?” you may get a variety of 

answers 
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- It is always true, just count… 

- Because everyone knows it 

- My mom told me… 

- I don’t remember all the details, but my math teacher explained it to me, so I believe this 

is correct. 

- I can prove it, look…. 

Indeed, in mathematics, we have proof. Proof is the cornerstone of mathematics and plays the 

central role in the practice of mathematicians. Schoenfeld (1994) stresses that “proof is not a 

thing separable from mathematics as it appears to be in our curricula; it is an essential component 

of doing, communicating, and recording mathematics” (p.76). At the same time, secondary and 

high school students’ experiences with proof are limited. Studies show that undergraduate (and 

even graduate) mathematics students experience difficulties understanding, constructing, and 

validating proofs (Martin & Harel, 1989; Moore, 1994; Selden & Selden, 2003; Alcock 

& Weber, 2005). One of the problems of mathematics courses is that they do not give students a 

feeling of how new results in mathematics can be discovered. Students have seen proofs in 

lectures and textbooks as a perfect chain of logical steps from conjecture to the theorem, since 

“deductivist style hides the struggles, hides the adventure” (Lakatos, 1976, p. 142). Presenting 

mathematical results in the form of definition-theorem-proof has become one of the hallmarks of 

mathematics.  

False starts, mistakes, revisions—these are all part of the creative process. But when the 

final result is published, we seldom see the enormous effort that was necessary for the 

creation; we see the polished product, the correct statement with a clean proof. This is 

more than a matter of simple etiquette; it's an important feature of mathematics. . . . We 

observe artistic etiquette because we have artistic goals. (John Ewing, as quoted by 

Csiszar, 2003, p. 244) 

The initial goal of my study was to explore how students (‘novices’) and mathematicians 

(‘experts’) validate the results of their mathematical thinking. I had formulated the general 

research question: 
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How do students and mathematicians know that they are right? 

I was working inductively, applying some elements of grounded theory methods (Strauss and 

Corbin, 1990). Based on my initial research question and literature search I began collecting 

data. Working closely with my supervisor, I decided to use, as data in my research, the 

homework assignments of students from the course MAST 217 – Introduction to mathematical 

thinking where I was a teaching assistant.  Also, I conducted seven task-based interviews with 

‘experts’: graduate students and mathematics professors.  

After exploring the literature about proof and proving, teaching and learning proof, collecting 

students’ written responses and conducting a first round of semi-structured interviews with 

mathematicians and graduate students, I found myself with a huge amount of data which was 

very difficult to analyze. Thus, another problem surged: 

  How does one conduct research into how students and mathematicians know that they 

are right? How does one choose an appropriate framework for analyzing data? 

So this thesis is mainly about my process of coming to terms with the second question; some 

answers to the first one will be obtained as a by-product of that process.  

1.2 The structure of the thesis 

This thesis consists of six chapters. In this Chapter 1, I introduce my study. This includes my 

motivation for the study and development of the research questions. Finally, I present the outline 

of my thesis. 

In Chapter 2, I review the literature that inspired and informed me in my research. In particular, I 

provide a literature review on the epistemology and evolution of mathematical proof. I then 

discuss the functions of proof and the relationships between argumentation and proving. At the 

end of this chapter, I review studies that outline the difficulties that students experience in 

understanding and constructing proof. 

In Chapter 3, I present the methodology and the setting of the study. I focus on the procedures 

and the description of a mathematical problem used in this study.  I explain why, of all the 
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homework assignments in the course MAST 217, I chose this particular problem to analyze 

students’ solutions from the point of view of the question, “How do students know they are 

right?” The problem required finding a formula representing the outcome of a potentially infinite 

haggling process and justifying it (or, from the point of view of the student – making sure the 

formula is correct). Because, in the problem, the formula was not given but had to be found, 

solving it required engaging in a sort of small scale “mathematical investigation”. 

In Chapter 4, I describe the process of finding a theoretical framework for identifying the 

cognitive processes engaged in solving problems requiring some elements of mathematical 

investigation. One of the frameworks from the literature that I considered was “CPiMI” 

(Cognitive Processes in Mathematical Investigation, Yeo, 2017). I describe the difficulties I had 

in applying this framework to my concrete corpus of data, and I report on how, in an attempt to 

overcome these difficulties, we (myself and my supervisor), decided to first try to apply the 

framework to our own solutions, in a process we called the “introspective and inter-spective” 

analyses. I show how, in this process, we gained a better understanding of the CPiMI framework 

and found a way of adapting it to the analysis of students’ solutions of a problem involving 

investigation as a process. 

In Chapter 5, I interpret and analyze some students’ solutions in detail, using the adapted CPiMI 

framework. Also, I present a summary of the results and accompanying discussion.  

In Chapter 6, I discuss the results in the context of previous research, and I highlight the 

limitations of this study and its contribution to the field of mathematical education.  
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Chapter 2. Review of literature on mathematical proof 

The purpose of this chapter is to review the literature on the role of proof in mathematics, its 

nature, the process of proving, different kinds of proof and issues related to the teaching and 

learning of proof. I start by looking at how the views on proof have changed during its history. 

Next, I consider modern perspectives on proof and proving. In the third section, I focus on the 

relationship between argumentation and proving, and then I provide an overview on the 

functions of proof. In the fifth section, I discuss the place of proof in mathematics education 

research; in particular, on students’ conceptions of proof, as well as students’ difficulties with 

proof, as outlined in the literature. Finally, I outline relationship between problem solving, 

proving and investigation as it has been discussed in the literature.  

2.1 What is mathematical proof? 

Until the 20th century the dominant view on proof, as a sequence of formal-deductive arguments 

that establish certain and infallible truths, had not been challenged. Thanks to the ancient Greeks, 

proof as deduction from a set of axioms became the cornerstone of (Western) mathematics. All 

three absolutist philosophies of mathematics that were developed in the first decades of 20th 

century - formalism, logicism and intuitionism - held this view on proof (Hanna, 1995; Tall, 

1991; Ernest, 1991; Davis & Hersh, 1981). Formalists view mathematics as a formal system 

consisting of axioms, definitions, statements and proofs, therefore “the validity of any 

mathematical proposition rests upon the ability to demonstrate its truth through rigorous proof 

within an appropriate formal system” (Hanna, 1991, p.55). For proponents of logicism, 

mathematics is a branch of logic. This means that “all of mathematics can be expressed in purely 

logical terms and proved from logical principles alone” (Ernest, 1991, p. 9). Intuitionists reject 

some types of proofs - for instance, proof by contradiction - because they reject the law of 

excluded middle and claim that mathematical truths must be established by constructive 

methods. However, Gödel’s incompleteness theorems demonstrate the limitations of formal 

systems; moreover, they show that proof is not capable of establishing all truths. 
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Raising questions that address mathematical practice and ways of thinking, as well as new 

discoveries and development of science and mathematics, led to accepting a quasi-empirical 

view on mathematics and re-evaluating the concept of proof. 

“Quasi-empirical” nature of mathematics 

Lakatos (1976) attacks formalism in mathematics and argues for the ‘quasi-empirical’ nature of 

mathematics. He states that attention should be on “growth and permanent revolution, not 

foundations and accumulation of eternal truths” (Lakatos, 1976, p. 207). Lakatos distinguishes 

two types of deductive systems: Euclidean and quasi-empirical.  It is common for both that they 

take some statements as basic, then derive further statements in a deductive manner. The major 

difference between Euclidean and quasi-empirical systems is the direction of the flow of ‘truth’ 

and ‘falsity’. 

In Euclidean systems, truth is injected at the ‘top’ (the level of axioms); therefore, truth flows 

‘downward’ through the safe truth-preserving channels to the theorems (Figure 1). In contrast, in 

quasi-empirical systems, truth is injected at the ‘bottom’, at the level of theorems, which can be 

tested against experience (Figure 2). At the same time, truth cannot flow upwards; therefore 

falsity is inherited upwards from theorems at the ‘bottom’ to the set of axioms. In other words, 

the progress of quasi-empirical systems is pulled by refutations. Lakatos claims that mathematics 

is fallible: “we never know, we only guess”.  

  Axioms - primitive terms (at the top) 

 

 

 

   truth-value-injections 

Figure 1. Euclidean theories 

Science cannot be organized in this manner. 

proofs 
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    Infallible truth-value-injections 

 

 

 

   Basic statements – special set of theorems (at the bottom) 

Figure 2. Scientific theories 

The main statement of Lakatos’ philosophy of mathematics is that proof plays a heuristic role in 

mathematics and can be used to improve mathematical conjectures. According to Lakatos (1976) 

mathematical development is driven by counterexamples. In “Proofs and Refutations”, he 

presents a new heuristic method for modifying mathematical ideas. At first he defines informal 

proof as a “thought experiment which suggests a decomposition of the original conjecture into 

subconjectures or lemmas, thus embedding it in a possibly quite distant body of knowledge” 

(Lakatos, p.9). Then, any of these subconjectures can be refuted by counterexamples. There are 

three kinds of counterexamples: 

- ‘Global but not local counterexamples’ which refute the conjecture but do not refute the 

stated premises. They require the improvement of the proof as well as finding the ‘hidden 

lemma’. 

- ‘Local but not global counterexamples’ which refute some of the lemmas 

(subconjectures) but are not counterexamples to the conjecture. They require 

improvement of the proof by replacing the ‘guilty lemma’ with another one. 

- ‘Local and global counterexamples’ which refute both the main conjecture and the 

premises. They require the improvement of the conjecture, by modifying the concepts 

and notions to find conditions the proof’s validity. 

explanations 
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Figure 3 Lakatos' method summarized by Davis and Hersh (1980, p.292) 

2.2 Modern perspectives on proof and proving 

Accepting new forms of proof 

The concept of proof was challenged not only by quasi-empirical views on mathematics but also 

by the development of computers and acceptance of new types of proofs (Hanna & Jahnke, 1996; 

Tymoczko, 1979; Thurston, 1994). 

In “Ongoing Value of Proof” Gila Hanna (2007) points out that the use of computers in 

mathematical practice and new types of proof, such as a zero-knowledge proof and holographic 

proof, raise questions about the meaning of proof, and lead to predictions of the death of proof.  

Indeed, in his article ‘The death of proof’, Horgan (1993) states that traditional mathematical 

proofs will be replaced by experiments on computers. A zero-knowledge proof is an interactive 

protocol between two parties, called a prover and a verifier, and was first proposed by 

Goldwasser, Micali and Rackoff (1985). The prover convinces the verifier that some 

mathematical statement is true but does not reveal any details of the proof. As a result of the 

interaction, the verifier will be completely convinced that the statement is true; however, he will 

gain zero knowledge and will not be able to convince others (Hanna & Jahnke, 1996). A 
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holographic proof “consists of transforming a proof into a so-called transparent form that is 

verified by spot checks, rather than by checking every line” (Hanna & Jahnke, 1996, p. 882) 

Zero-knowledge proofs and holographic proofs are the opposite of the traditional view of 

mathematical proof, because it is impossible to verify every single line of the proof.   

Another subject of controversy is computer-assisted proofs. One of the best known examples is 

the proof of the four-color theorem, introduced by Appel and Haken in 1976. A computer has 

been used to prove the reducibility lemma. Tymoczko (1979) argues that the use a computer in 

mathematical proving, such as the proof of the four-color theorem, has significant implications 

for the philosophy of mathematics. He considers three main characteristics of proofs: 

- proofs are convincing to mathematicians; 

- proofs are surveyable, in other words “a proof is a construction that can be looked over, 

reviewed, verified by a rational agent”; 

- proofs are formalizable or can be set into “…a finite sequence of formulas of a formal 

theory satisfying certain conditions”. 

Even though the majority of the mathematical community is satisfied with the first characteristic, 

most philosophers want a deeper explanation as to why mathematical proofs should be assumed 

to be convincing. Surveyability and formalizability explain why a proof is convincing to rational 

agents. According to Tymoczko, not all formalizable proofs are surveyable, and not all 

surveyable proofs are formalizable. For example, we can take a Gödel statement (surveyable) 

and show that it has no formal proof. In addition, there are many formal proofs that are too long 

to be checked by “a mathematician in a human lifetime”, so they are not surveyable.  

Therefore, to accept the proof of the four-color theorem, we need to modify our concept of proof 

by adding a new method (computer experiment) or to allow the inclusion of computer proofs into 

proofs. By discussing the four-color theorem, Tymoczko gives additional support to the idea that 

mathematics is quasi-empirical. 

Accepting an argument as a proof 

Mathematicians continue to discuss criteria of acceptable proof. The formalist perspective on 

proof was criticized by many philosophers, mathematicians and educators (e. g., Heinze, 2010; 
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Thurston, 1994; Tymoczko, 1986; Davis & Hersh, 1981; Hanna, 1995; Rav, 1999). According to 

Rav (1999), it is important to distinguish two types of proofs. The first type is a so-called 

‘derivation’ or a formal proof, which includes the chain of statements according to rules of 

logical interference. It is possible to use a machine to verify such derivations. The second type of 

proof is a ‘conceptual proof’ or a kind of informal proof “of customary mathematical discourse, 

having an irreducible semantic content” (Rav, 1999, p.11). In other words, this type of proof 

includes rigorous arguments that can be accepted by the mathematical community. Even without 

the use of precise mathematical definitions, it is possible for mathematicians to verify the 

accuracy of each step. For instance, the majority of proofs published in mathematical journals are 

conceptual proofs (Hanna & Barbeau, 2010). Similarly, Thurston (1994) argues that “the 

humanly understandable and humanly checkable proofs” are different from formal proofs.  

Furthermore, an argument is a proof if it is convincing to a mathematician (Weber, 2008; 

Tymoczko, 1979). For Davis & Hersh (1981), this mathematician is “a mathematician who 

knows the subject”, while (Volminik, 1990) mentions “a reasonable skeptic”. Moreover, Mason, 

Burton, and Stacey (1982) state that an argument is a proof if it would convince “an enemy”. In 

addition, Hanna (1991) claims that some non-mathematical factors may affect acceptance of a 

proof. For example, the reputation of the prover may play a significant role.  

Many mathematicians emphasize the social aspect of proof. According to Manin (1977), an 

argument becomes a proof after the social act of accepting it as a proof.   

Mathematical discovery rests on a validation called ‘proof’, the analogue of experiment 

in physical science. A proof is a conclusive argument that a proposed result follows from 

accepted theory. ‘Follows’ means the argument convinces qualified, skeptical 

mathematicians. Here I am giving an overtly social definition of ‘proof’. (Hersh, 1997, p. 

6) 

We call proof an explanation accepted by a given community at a given time. (Balacheff, 

1987, translated from French) 
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I have, so far, briefly described some views on proof from the perspective of mathematicians and 

philosophers. Next, I will demonstrate that educators’ views on an acceptable proof are based on 

goals of proving in mathematical practice, as well as in mathematics education.   

2.3 Argumentation and proof 

A significant body of research has investigated the relationship between argumentation and 

proof. Duval (1991) makes a distinction between argumentation and mathematical proof, and 

suggests major differences from a cognitive and logical point of view. While the role of 

argumentation is convincing somebody of the truth of a statement, by using rhetoric means, 

proof is considered as the derivation of a statement from a set of statements, according to logical 

rules. 

Deductive thinking does not work like argumentation. However, these two kinds of 

reasoning use very similar linguistic forms and proportional connectives. This is one of 

the main reasons why most of the students do not understand the requirements of 

mathematical proofs. (Duval, 1991, Abstract) 

 Balacheff (1987) also distinguishes mathematical proof (‘démonstration’ in French) from proof 

in everyday or legal sense (‘preuve’ in French), whose meaning is close to “evidence”. Similarly, 

Hanna and De Villiers (2008) define justification as “reasoned discourse that is not necessarily 

deductive, but uses arguments of plausibility” while considering deductive proof as “a chain of 

well-organized deductive inferences that uses arguments of necessity” (p. 331). 

On the other hand, some studies of the Italian school of research in mathematics education found 

a link between “argumentation as a process of producing a conjecture and constructing its 

proof”, called ‘cognitive unity’ (Boero et al, 2010, p. 4). Commonly, argumentation is used to 

produce a conjecture. Therefore, sometimes it is possible to organize previously constructed 

arguments into a logical chain in order to produce a mathematical proof.  

During the production of the conjecture, the student progressively works out his/her 

statement through an intensive argumentative activity functionally intermingling with the 

justification of the plausibility of his/ her choices.  
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During the subsequent statement proving stage, the student links up with this process in a 

coherent way, organizing some of the previously produced arguments according to a 

logical chain. (Boero et al. 1996, p. 113) 

Moreover, Pedemonte (2002) develops the concept of ‘cognitive unity’ by distinguishing 

referential cognitive unity (using in argumentation and proof the same language, heuristics, 

drawings and theorems) and structural cognitive unity (using the same structure, such as 

deduction, abduction, and induction). While deductive reasoning moves from a general principle 

to individual instances, and inductive reasoning moves from several instances and observations 

to a general law, abductive reasoning moves from an incomplete set of observations to possible 

explanations.  It is interesting that while continuity in referential system between argumentation 

and proof leads to the construction of proof, structural continuity may lead to errors and 

inconsistencies. The structure of argumentation is usually not deductive, therefore it is necessary 

to “overcome a structural distance” and change, for example, the abductive structure into a 

deductive one, in order to construct a correct proof (Mariotti, 2006).  

Toulmin’s model of argument 

In The Uses of Argument (1958) Toulmin presents a model of informal reasoning, which is very 

different from traditional logical theory. There are three essential parts of an argument: the data 

(D), the claim (C) and the warrant (W). The claim (C) is the statement being argued. The data 

(D) are the facts or evidence used to support the claim (C). To justify the connection between the 

data (D) and the claim (C), the arguer uses the warrant (W). Moreover, the warrant might be 

supported by the backing (B) to present additional evidence. The qualifier (Q) is the statement 

that expresses the degree of confidence of the claim (C). In addition, the rebuttal (R) states the 

conditions (or provides a counter-argument) under which the claim (C) does not hold true. These 

six parts are often presented graphically, as shown in Figure 4. 
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Figure 4. Toulmin's Model of Argument. 

In recent years, Toulmin’s scheme sparked much interest among mathematics educators (Alcock 

& Weber, 2005; Knipping, 2004; Yackel, 2001). Aberdein (2005) examined the applicability of 

Toulmin’s model to mathematics and demonstrated that it can be applied to formal proofs. For 

example, Aberdein’s decomposition of the proof that there exist irrational numbers α and β such 

𝛼𝛽  is rational is provided in Figure 5. 

 

 

Figure 5. Aberdein's decomposition of a proof according to Toulmin’s model. 
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Furthermore, some researchers have tried to extend Toulmin’s Model of Argument. Weinstein 

(2006) admires Toulmin’s work and highlights that “Toulmin is correct in rejecting mathematical 

logic as a theory of argument and logical empiricism as the philosophy of science” (Weinstein, 

2006, p. 49). At the same time, he argues that there is an important place for formalism in the 

metatheory. His Model of Emerging Truth (MET) is an analogue of the metatheory of 

axiomatized mathematical theories, “which includes a function that maps from a deep 

explanatory base onto the theories upon which expectations are based” (ibid, p. 58). 

2.4 The functions of proof 

Apart from verification, which determines the truth of a statement, there are other roles of proof 

discussed in the literature (De Villiers, 1990, 2010; Hanna, 2000), such as explanation, 

systematization, discovery, communication and exploration of the meaning of a definition or the 

consequences of an assumption. Explanation is examining the proof in order to understand why a 

certain statement is true. Many researchers highlight the importance of this function of proof for 

mathematics education.  Systematization is the organization of various results into a deductive 

system of axioms, major concepts, and theorems. Discovery function of proof appears when the 

process of proving leads unexpectedly to new results, models or theories. Communication is the 

transmission of mathematical knowledge in a clear manner. Exploration of the meaning of a 

definition or the consequences of an assumption means that proofs might show why it is 

adequate to use certain axioms and definitions. Different proofs of the same statement can play 

different roles. Hanna (2000) argues that some proofs are more explanatory than others, and a 

proof might not accomplish all functions. At the same time, educators (e. g., De Villiers, 1990; 

Hanna, 2000) agree that an acceptable proof must achieve at least one of the functions mentioned 

here.  
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2.5 Proof in mathematics education 

Historically, in school, the concept of proof was introduced in geometry classes. In many cases 

classical proofs were simply memorized. This changed under the influence of constructivism, an 

educational theory based on the idea that people construct their own knowledge and 

understanding of the world through experiencing things and reflecting on those experiences.  In 

his article, “Experimentation and Proof in Mathematics”, Michael de Villiers (2010) points out 

that the educational system does not give students a feeling of how new results in mathematics 

are being discovered but just present the products of mathematical thought. As a result, students 

consider mathematics as developing in a systematic, deductive way from the beginning. Tall 

(1991) argues that undergraduate mathematics students should instead be engaged in developing 

processes of mathematical thinking. On the other hand, some mathematics educators support the 

view that learning deductive proof is not needed  anymore, because informal justification, 

exploration and investigation play a more significant role in mathematics education today 

(Hanna, 2000). For example, MacKernan expresses the extreme viewpoint: “So, do we really 

need proof at all? Especially in schools? Why on earth can’t we - the overwhelming majority – 

simply be allowed to accept that something is intuitive, or very probably true, or just simply 

obvious?” (Barnard et al., 1996, p. 16, quoting MacKernan).  

Students’ difficulties with proof 

Studies have demonstrated that high school and university students have very little aptitude for 

proof and do not appreciate the importance of proof (Moore, 1994; Schoenfeld, 1995; Senk, 

1985). Moreover, students cannot draw the line between informal argumentation and 

constructing a formal proof. “Often students do not see why a fact has to be proved, because in 

their view it is either obvious or sufficiently justified by actual measurements” (Hanna & Jahnke, 

1996, p. 897).  

Many empirical studies have focused on students` proof construction. These studies aim to 

characterize what students are doing as they construct arguments and proofs. Harel and Sowder 

(1998) studied college students’ proof understanding, production and appreciation using 

interviews, tests and classroom observations. They define the process of proving as the process 
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of removing or creating doubts about the truth of an observation. Authors divide the process of 

proving into two stages: ascertaining (convincing oneself) and persuading (convincing others). 

“A person’s proof scheme consists of what constitutes ascertaining and persuading for that 

person […] As defined, ascertaining and persuading are entirely subjective and can vary from 

person to person, civilisation to civilisation, and generation to generation within the same 

civilisation” (Harel & Sowder 1998, p.242).  Harel and Sowder (1998) described 17 different 

proof schemes and assigned them to three major classes: external conviction, empirical and 

analytical proof schemes. External conviction proof schemes are those in which students 

convince themselves and others by referring to external sources, such as the word of an 

instructor, a ritual or some symbolic manipulations. Empirical proof schemes involve using 

examples and specific cases, and can be either inductive or perceptual. Analytical proof schemes 

include the use of logical deduction and can be either transformational or axiomatic. Weber 

(2005) observed three categories of proof production: procedural, syntactic and semantic. He 

defines procedural proof as a proof that is created when a student uses “existing proof as a 

template for producing a new one” (p. 353). Syntactic proof production is characterized by 

manipulating mathematical statements and definitions without referring to intuitive 

representations. Semantic proof production is characterized by using informal representations to 

guide the creation of formal proof.  

Other researchers have investigated students’ views on proof.  Healy and Hoyles (2000) pointed 

out that even though students preferred to use empirical arguments in their own proof 

constructions, they distinguished proofs that are convincing to themselves and proofs that would 

be accepted by a teacher and get the highest marks. Also 50% of students agreed that the main 

purpose of proof is establishing the truth and more than one third (35%) chose explanatory 

function.   

Many undergraduates experience difficulties with constructing proofs. Moore (1994) analyzed 

difficulties university students face in learning formal mathematical proof and found that most of 

them had cognitive sources. He identified seven main sources of students’ difficulties in writing 

proofs: 
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D1. The students did not know the definitions, that is, they were unable to state the 

definitions. 

D2. The students had little intuitive understanding of the concepts. 

D3. The students’ concept images were inadequate for doing the proofs. 

D4. The students were unable, or unwilling, to generate and use their own examples. 

D5. The students did not know how to use definitions to obtain the overall structure of 

proofs. 

D6. The students were unable to understand and use mathematical language and notation. 

D7. The students did not know how to begin proofs. (Moore, 1994, p. 251) 

Educators believe that the ability to validate proofs is related to the ability of construct them, 

since proof validation may include recalling theorems and definitions, asking, answering 

questions and constructing subproofs (Selden & Selden, 2003).  At the same time, many of 

university students and even teachers of mathematics cannot determine whether mathematical 

arguments compose a valid proof (Martin & Harel, 1989; Selden & Selden, 2003; Alcock & 

Weber, 2005). The study conducted by Martin and Harel (1989) has shown that preservice 

elementary teachers accepted a proof mostly based on the form of the argument presented to 

them. For example, these preservice teachers rejected valid proofs written in paragraph form and 

accepted flawed proofs written in a traditional two column format. Alcock & Weber (2005) 

studied how undergraduate majors validate a flawed proof in Real Analysis. They reported that 

only 6 out of 13 students rejected the proof as invalid and only 2 of them supported their decision 

by legitimate mathematical reasons.  

2.6 Problem solving, investigation and proving 

Nowadays, educators stress the importance of proof and reasoning in mathematics education. For 

example, The National Council for Teachers of Mathematics (2000) states that “reasoning and 

proof should be a consistent part of students’ mathematical experience in pre-kindergarten 

through grade 12” (p. 56). However, as mentioned, learning and teaching proof can be 
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problematic. In this section, I address studies which discuss incorporating investigative teaching 

methods in order to improve and develop students’ mathematical thinking. Also I present studies 

that link problem solving, investigation and proving. 

“Inquiry-based”, “problem-based” learning 

In recent years there has been a shift from lecture-based approach in teaching to “problem-

based” or “inquiry-based” or “investigative” approaches (Friesen & Scott, 2013, Calleja, 2016, 

Mass & Artigue, 2013). Hattie (2009) broadly defines inquiry-based teaching as  

the art of developing challenging situations in which students are asked to observe and 

question phenomena; pose explanations of what they observe; devise and conduct 

experiments in which data are collected to support or contradict their theories; analyse 

data; drawn conclusions from experimental data; design and build models; or any 

combinations of these. (p.208) 

Educators agree that inquiry-based approaches to learning and teaching may help in developing 

students’ understanding of core concepts and procedures. However, the term “inquiry” has 

slightly different meanings across scientific disciplines. Calleja (2016) argues that “in science 

education, learning through inquiry is seen as the process of building understanding by collecting 

evidence and testing ideas” (p.2), while inquiry in mathematics includes many different forms of 

activity such as posing questions, modeling, exploring, conjecturing, reasoning, arguing and 

proving; defining and structuring; connecting, representing and communicating. Moreover, 

Schoenfeld and Kilpatrick (2013) point out that problem solving in mathematics and inquiry in 

science have similar meanings. They argue that inquiry in mathematics is seen as “finding 

connections between mathematical concepts and procedures by exploring how that mathematics 

might be used inside and outside school” (p. 908). On the other hand, mathematical problem 

solving involves conjecturing and reasoning that is similar to scientific inquiry, but an obtained 

solution must be presented “as a deduction from what was given in the problem to what was to 

be found or proved” (ibid.). 
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Mathematical problems and problem solving 

Problem solving has been deeply discussed in mathematics education literature. This section 

clarifies the notion of problem solving in mathematics and provides a short overview of the work 

of key authors on mathematical problem solving.  Not every mathematical task is a problem.  

According to Schoenfeld (1985),  

being a ‘problem’ is not a property inherent in a mathematical task. Rather, it is a 

particular relationship between the individual and the task that makes the task a problem 

for that person. [...] If one has ready access to a solution schema for a mathematical task, 

that task is an exercise and not a problem. (p. 74)  

In the context of this study I consider the term “problem” from Schoenfeld’s point of view, as a 

task that is difficult for a person who does not know how to proceed directly to a solution. 

Therefore, solving a problem takes time and efforts.  Pólya (1973) stated that “to understand 

mathematics means to be able to do mathematics” (p. 7). In 1945, he published a revolutionary 

book “How to Solve It” where he summed up general problem-solving heuristics and identified 

four major principles of problem solving: 

1. Understanding the Problem 

2. Devising a Plan 

3. Carrying Out the Plan 

4. Looking Back. 

Schoenfeld (1985) developed Pólya’s ideas about using heuristics and outlined four categories 

that determine the success in problem solving. Those categories are  

- Resources (actual knowledge base), 

- Heuristics, 

- Control (metacognition), 

- Beliefs. 

Resources include procedural knowledge of mathematics and facts about mathematical ideas. 

Moreover, incorrect knowledge may also be a part of resources. Heuristics are strategies and 
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technics for solving problems such as induction, drawing figures, specialization, analogy, 

variation, decomposition and recombining, working backwards. Schoenfeld (1985) argued that 

general heuristics do not help students to solve problems because they depend on both students’ 

prior knowledge and on problems. Belief system is “one’s mathematical world view” 

(Schoenfeld, 1985, p. 15). Control includes planning, monitoring and decision-making. 

Furthermore, Schoenfeld (1985) focused on decision-making behavior at the executive or control 

level. He analyzed students’ and mathematicians’ attempts to solve problems and identified six 

stages or episodes during problem solving: read, analyze, explore, plan, implement and verify. 

He then used a timeline to represent those episodes and analyze metacognitive control among 

novices and experts.  

In “Thinking Mathematically” (1982), Mason, Burton and Stacey proposed a problem-solving 

model that includes three phases (Entry, Attack and Review). They also identified four 

fundamental processes (specializing, generalizing, conjecturing and justifying) involved in 

Attack phase and showed how those processes of mathematical thinking alternate between each 

other. 

Proving as a part of problem solving 

Researchers indicate an overlap between proving and problem solving. For many educators, 

proving is included in problem solving. Indeed, proof writing can be a problem for the person 

and requires applying different strategies and techniques. For example, Furinghetti and Morselli 

(2009) argue that “proof is considered as a special case of problem solving” (page 71).  Weber 

(2005) considers “proof construction as a problem solving task” (p.351). Tall (1991) also linked 

proof and problem-solving by saying that “viewed as a problem-solving activity, we see that 

proof is actually the final stage of activity in which ideas are made precise” (p.16).   

Mathematical investigation 

In mathematics education the term ‘investigation’ is used in different situations and has 

sometimes different meanings. Ponte et al. (1992) pointed out that, in an investigation, “students 

are put in the role of mathematicians” (p.239).  
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Mathematical investigations share common aspects with other kinds of problem solving 

activities. They involve complex thinking processes and require a high involvement and a 

creative stand from the student. However, they also involve some distinctive features. 

While mathematical problems tend to be characterized by well-defined givens and goals, 

investigations are much looser in that respect. The first task of the student is to make 

them more precise, a common feature that they share with the activity of problem posing. 

(ibid.) 

Some educators insist that an investigation should be an open-ended problem without a clearly 

defined goal in its formulation. Moreover, in contrast to a closed mathematical problem, an open 

investigative task might have multiple correct answers (Bailey, 2007, Orton & Frobisher, 1996, 

as cited in Yeo & Yeap, 2010). While some researchers separate investigation and problem 

solving, others believe that investigation includes problem solving. Therefore an open 

investigative activity when students attempt an open investigative task involves both problem 

posing and problem solving. At the same time, some educators stress that investigation is 

primarily a process (Ernest, 1991). Indeed, processes similar to investigation, such as ‘heuristic 

reasoning’ (Pólya, 1973), ‘heuristic approach’ (Lakatos, 1976) and ‘exploration’ (Schoenfeld, 

1992), are mentioned in the literature when researchers describe processes that occur during 

problem solving. Therefore, investigation as a process which is opposite to a deductive approach 

or rigorous proof can be considered as a part of problem solving. Separating investigation as an 

activity from investigation as a process and solving problem as an activity from problem solving 

as a process helps to resolve the conflict between statements: ‘investigation includes problem 

solving’ and ‘problem solving includes investigation’ (Yeo & Yeap, 2009). 
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Chapter 3. Methodology 

In this chapter, I provide an overview of the research design and describe not only methods that I 

have applied in this thesis but also how I came to use certain research methods.  

3.1 Research design 

My research is exploratory and interpretive in nature. Thus the meaning of human actions is the 

focus of this study and my goal was to make interpretations in order to explain and understand. I 

aimed at conducting qualitative research and was open to data (Charmaz, 2006; Creswell, 2008). 

Data collected in researching my first question drove me to methodological questions. As a 

novice researcher I was overwhelmed by so much data. It was a challenge to decide where and 

how to start the analysis. Moreover, the data looked unrelated when I was trying to organize 

them. Therefore, I needed a tool to detect a structure in the data. The process of searching for a 

model for the analysis of students’ solutions is described in the next chapter. I followed grounded 

theory methods (Strauss and Corbin, 1990), in the sense that the research process was interactive 

and cyclical. After I did a first round of analyses and formulated my second research question, a 

new set of data was collected and generated. The Model for Cognitive Processes in Mathematical 

Investigation (CPiMI) by Yeo (2013) and solutions for the haggling problem, produced by 

myself and my supervisor, were added for future analysis. In this phase of the study I was inside 

the research process and had a dual role. On the one hand, I was a researcher. On the other hand, 

I was a research subject: my solution became an object of analysis on a par with the MAST 217 

students’ solutions.  Data collection, analysis and development of theory interacted very closely 

in my research. These interactions are illustrated in Figure 6. 
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Figure 6: Interaction of data collection, analysis and development of theory 

 In contrast to grounded theory I did not generate theory from data. Instead of this, the CPiMI 

model was tested and adjusted for analysis and during analysis.  

3.2 Collecting data 

There are four methods of data collection used within the interpretive paradigm: participant 

observation, interviewing, a search for artifacts and researcher’s introspection. Each of the above 

mentioned methods can give a different perspective on research. It is recommended to use 

multiple data sources for interpretive studies to increase the credibility (Eisenhart, 1988; Tobin, 

2000). Interviews can take many forms that include informal conversation, long clinical 

interviews, semi-structured and highly structured interviews; they help to gain information about 

relevant historical events or participants’ experiences in other settings. Artifacts from the field 

can be helpful in developing an extensive understanding of the context. Any information 

produced by participants or others may be considered as useful. Researcher’s introspection 

involves collecting reflections on the research activities and context (Eisenhart, 1988).  

The data for this study include transcripts from interviews with graduate mathematics students 

and mathematicians, written MAST 217 students’ solutions to the haggling problem, and 

researchers’ notes and solutions of the same problem. We also include, in the data, Yeo’s (2013) 

Model for Cognitive Processes in Mathematical Investigation (CPiMI), and the results of the 

introspective and “inter-spective” interpretations of researchers’ solutions and their coding in 

terms of CPiMI. First, each researcher (myself and my supervisor) wrote a description of their 

Data 
collection and 
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Theory 

development



25 

 

own processes of solving the haggling problem and coded it in terms of the CPiMI – this we 

called introspection.  Then we gave each other our solutions without revealing the coding and we 

coded them independently – we call it “inter-spection”. Finally, we revealed to each other our 

personal coding. We discussed any points of disagreement. This resulted in re-coding some 

elements of a solution, or changing our interpretations of some CPiMI category, or in an addition 

of a category of cognitive processes to the model. Thus, in the process, the CPiMI model was 

also an object of analysis – this is why we consider it as part of the data. The modified version of 

the CPiMI model is considered to be one of the “results” of this research. 

Collecting data from “Novices” – the MAST 217 students 

MAST 217, Introduction to Mathematical Thinking is a transition-to-proof course for first year 

undergraduate students. This course is meant for students taking a Major in Mathematics and 

Statistics to prepare them for more advanced proof-oriented courses. The content of this course 

includes the language of mathematics, the logical structure of mathematical statements, different 

styles of proofs, and different techniques of problem solving. Assessment of the students is based 

on the weekly homework assignments, one midterm test and final examination. Each of the 

weekly assignments consists of two parts. The first part was graded electronically, the second 

part included a single problem and was marked manually. As a teaching assistant I was 

responsible for marking manually graded assignments and providing written feedback. In order 

to help students improve their future responses, I made minor corrections in structure and 

terminology, provided counter-examples to incorrect reasoning and suggested valid arguments. 

Thus, the first set of data came from students’ written responses to the eleven homework 

assignments. A list of tasks from homework assignments can be found in appendix A. 

Next, I clarify the reasons I had when I chose, for analysis in my research, students’ solutions to 

the task #9 (the “haggling problem”).  

I tried to find hidden patterns in students’ solutions while I collected the data. We met with my 

supervisor every week to discuss assignments, students’ progress and our observations. It 

became clear to me that there was a need to reduce the amount of data for use in my thesis. I 

analyzed the content of the homework assignments again, after going through students’ 



26 

 

responses. I realized that some solutions should be omitted for two main reasons. First, some 

homework problems were only slightly different from examples from the class, so most of the 

students just repeated the procedure presented by the instructor.  As a result, the final solutions 

did not provide any evidence of actual thinking processes; they just supported the procedural 

approach as it is outlined in literature (Weber, 2005). For example, a part of the task #6 

(Appendix A) was 

Prove that 

(a) There is no rational number 𝑟 such that 𝑟2 = 15. 

During the lecture preceding this assignment the instructor presented solutions for following 

problems: 

Exercises 1. Prove that there is no rational number 𝑟 such that  

a) 𝑟2 =  3  

b) 𝑟2 =  5 

c) 𝑟2 =  𝑝, where 𝑝 is a prime number  

d) 𝑟2 =  14 

e) 𝑟3 =  𝑝,  where 𝑝 is a prime number 

 

The analysis of the students’ solutions have shown that 34 out of 35 students used proof by 

contradiction and assumed that there exists a rational number 𝑟 such that 𝑟2 =  15. In other 

words almost all students just repeated the steps from in class solutions and submitted very 

similar responses.  

Another reason to eliminate a big chunk of the data was cheating. In the era of the Internet it is 

easy to find a solution to almost any standard problem for an undergraduate course, such as 

MATH 217. Also some students posted identical solutions as a result of collaboration. In 

addition we suspected that some students posted their tutors’ solutions. I assumed that my study 
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must be based on what students really do by themselves. Therefore I did not take those solutions 

into account and omitted identical or very similar solutions. 

The haggling problem 

Finally, I chose to discuss in my thesis in more detail students’ solutions to assignment #9. Here 

is the text of the problem, as it was posted on the web page of the course. 

John is trying to sell Mark a bike for a dollars.  

Mark does not agree on the price and offers b dollars (0< b < a). 

John does not agree on this price but comes down to  (a + b)/2 = 1/2 a + 1/2 b. 

Mark responds by offering (b + (a + b)/2)/2 = 1/4 a  +  3/4 b. 

They continue haggling this way, each time taking the average of the previous two 

amounts. 

On what amount will they converge? Express the amount in terms of a  and  b.  

 

Explain your reasoning and justify your response. 

Have you tried to verify your answer? If yes, how? 

Assignment #9 was given to students near the end of the course, in the 10th week of classes (the 

course lasts 13 weeks). By this time related topics such as geometric sequences and series, the 

notion of limit of a sequence, the theorem that increasing (decreasing) and bounded above 

(below) sequences are convergent in ℝ and examples of convergent sequences related to 

computational algorithms were covered. Solving this non-routine problem required some 

mathematical investigation. It could be solved empirically by observing the numerical results and 

making a conjecture about the limit of the sequence. Students could try to verify the conjecture 

by drawing a diagram, by observing a link between the sequences involved in the amounts and 

geometric series or by using other means. Even though the haggling problem did not demand the 

formal construction of a proof, we expected that students will attempt to convince themselves 

and others. I believe that this question allows the researcher to view the means that participants 

use in order to be convinced that their answer is correct.   



28 

 

Collecting data from “Experts” 

I also conducted seven “task-based interviews” with “experts” in proving. Four graduate students 

and three mathematicians volunteered to participate in this study. All graduate students (Masters 

and Doctoral) completed a number of advanced proof-oriented courses such as Analysis and 

Abstract Algebra. All mathematics professors were actively involved in mathematical research 

and had experience teaching advanced proof-oriented courses to undergraduate and graduate 

students. Participants were interviewed individually. Each interview was audio recorded and 

lasted between 45 and 60 minutes. The methodology of task-based interviews is outlined in 

Goldin (1997). Each interview with a graduate student or mathematician had two components: a 

task solving part where “experts” attempted two tasks and then reflected on those tasks, and a 

semi-structured interview part where questions about proving and validating were asked. The 

first task for the interviews was selected from the homework assignments for MAST 217. As a 

part of the pilot study I included the haggling problem in the task solving part of an interview 

with a graduate student. However, I realized that the haggling problem is not well suited for the 

interviews because working on this problem takes some time and may involve using a computer 

or calculator. The second task was selected from “Proofs and Refutations” by Lakatos (1976). 

The participants were asked to prove or disprove the flawed Cauchy’s theorem that the limit of 

any sequence of continuous functions is continuous. A list of tasks and lists of questions for the 

interview can be found in appendices B and C. As this thesis focuses on addressing the second 

research question and only partially answers the first one, I do not present in this study the 

analysis of interviews. The interviews produced rich data which can be used for future research. 
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Chapter 4. Choosing a theoretical framework for analyzing the data 

This chapter describes how a theoretical framework for this study was chosen and developed. I 

first explain methodological difficulties I experienced. Then I introduce Model for Cognitive 

Processes in Mathematical Investigation (CPiMI) (Yeo, 2013) and describe our attempt to 

understand it by means of introspective and inter-spective analyses. Finally, I present the final 

coding scheme for interpretation of students’ solutions.  We consider this chapter as presenting 

partial results of my research. It is not the classical “theoretical framework” chapter in a 

mathematics education paper. The theoretical framework I discuss here was a candidate for a 

tool to answer the first of my research questions but it became itself an object of study in dealing 

with the second. What we found about it thus became part of our results. 

4.1 Searching for a model of mathematical thinking 

As it was mentioned before in Chapter 2, a Lakatosian view of mathematics as a quasi-empirical 

science has influenced both the philosophy of mathematics and mathematics education. While I 

collected the data I was looking for a model of mathematical thinking that could help me to 

capture the “thought experiments” and “the logic of mathematical discovery” in students’ 

responses in order to understand and explain the role of experimentation in their conjecturing and 

proving. I was not able to use Lakatos’ model for analysis of collected data directly. At some 

point I was lost. I formulate the major problems I had at that time: 

- huge amount of data, 

- diversity of different types of data (written solutions to homework assignments, my field 

notes, interview transcripts), 

- existing models of mathematical thinking seemed to be either very specific or too 

general. 

I started to use open coding of students’ solutions and interview transcripts using Lakatos’ quasi-

empirical view as a guideline. Also I continued to read relevant literature and search for a 

suitable model. I felt like I was looking for a needle in a haystack and discussed my concerns and 

doubts with my supervisor. I pointed out that I see a lot of similarities in struggles of novice 
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mathematics education researchers and novice proof writers. Like many students who do not 

know how to begin proofs and how to apply known definitions, I could not decide how to use 

theory in my research and navigate the process. The result of our conversation was surprising, 

because at this point I arrived at my second research question:  

How does one conduct a research into how do students and mathematicians know that 

they are right? How to choose an appropriate framework for analysis? 

It is a common situation in qualitative research that the existing frameworks are not applicable in 

new settings and must be refined and adjusted. My supervisor found that it might be interesting 

to describe the process of choosing, testing and adjusting a model for my study and include 

experiences of a novice researcher in mathematics education in my thesis.  

4.2 The CPiMI model 

There are a number of theoretical models developed to characterize thinking processes in 

problem solving, proving and investigation (Lakatos, 1976; Polya, 1973; Schoenfeld, 1985; 

Mason et al., 1982; Carlson & Bloom, 2005). A new framework called the Model for Cognitive 

Processes in Mathematical Investigation (CPiMI) was proposed recently by Yeo (2013).  

I decided to apply this model for analysis of the students’ solutions of the haggling problem 

(presented in section 3.2). 

The model was proposed to analyze the interactions between cognitive processes when 

secondary school students attempted open investigative tasks such the following one:  

Powers of 3 (Open Investigative Task) 

Powers of 3 are 31, 32, 33, 34, 35, …  Investigate. 

This task is an open investigative task because no question is posed for which there would be a 

clear-cut answer that could be evaluated as correct or incorrect; the goal is open and there are 

many correct answers (Yeo & Yeap, 2010, p. 2). Yeo & Yeap (2009) and Yeo (2013) further 

distinguish investigation as an activity from investigation as a process. They characterize 
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mathematical investigation-as-a-process as “a process involving specialisation1, conjecturing, 

justification and generalization” (Yeo & Yeap, 2009, p. Abstract) and distinguish it from 

investigation-as-an-activity by saying: “as a process, [mathematical investigation] can occur 

when solving problems with a closed goal and answer, while investigation as an activity 

involving open investigative tasks, includes both problem posing and problem solving.” (ibid.) 

When students work on an open investigative task they perform investigation as an activity. 

Investigation as an activity involves several processes, such as understanding the task, problem 

posing, problem solving, checking solution and extension, whereas problem solving as a process 

might involve a process of investigation. Similarly, when students solve a mathematical problem 

they perform problem solving as an activity. Problem solving as an activity involves 

understanding the task, problem solving, checking solution and extension of the problem. At the 

same time the process of problem solving includes investigation as a process. In summary, the 

main difference between two models is the additional process of problem posing in the model for 

investigation as an activity.  

It is worth noting that open investigative tasks are rare not only in school but also in the practice 

of mathematicians. Research in mathematics usually starts from existing or modified problems. 

“Novice mathematicians are immediately introduced into a problematique, a research program, 

with its central core of main unsolved problems and techniques that have been tried to attack 

them, and theories that have been built to support these techniques. So they are entering the field 

of mathematics via problems that someone else has already posed for them” (A. Sierpinska, 

personal communication, May 11, 2017).   

Next, I describe and explain the CPiMI model. The diagram in Figure 7 is a reproduction of the 

figure 1 given by Yeo (2017, p. 339).  

                                                 
1 Both in the sense of using special cases of a general statement and in the sense of specific examples. 
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Figure 7. The CPiMI model (Yeo, 2017) 
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In the CPiMI model, investigation as an activity is divided into three phases: Entry, Attack and 

Review.  

The Entry phase consists of two stages. During Stage 1, called Understanding the Task, students 

make sense of the task (Mason et al, 1985) by reading and analyzing the task, using examples, 

and visualizing the given information. The second stage is Problem Posing. This stage 

distinguishes investigation as an activity from problem solving as an activity. The model 

envisages two possible outcomes: a general problem such as “search for any pattern” is posed, or 

a specific problem to solve is posed. 

The Attack Phase has four stages: Specializing and using other heuristics, Conjecturing, 

Justifying and Generalizing. During the Specializing and using other heuristics stage, students 

systematically try examples to search for or test patterns. However, some specific problems can 

be solved without specializing by using other heuristics only. Moreover, as indicated in the 

diagram (Figure 7) students may alternate between specializing and using other heuristics. In the 

next stage, Conjecturing, students may engage in the process of Searching for patterns, leading to 

observing a pattern, which, if not rejected by data, leads to the formulation of a conjecture. If the 

observed pattern is rejected by data, the student returns to searching for patterns. The Formulated 

Conjecture as an outcome, may, however, also be produced directly by the process of Using 

other heuristics in the previous stage.  

According to the CPiMI model, the Justifying stage consists of three processes called: Naïve 

testing, Justifying conjecture using non-proof argument and Justifying conjecture using formal 

proof.  Naïve testing was also a crucial part of Lakatos’s model and its goal was to test the 

conjecture by looking for counterexamples to refute it. The CPiMI model assumes that if the 

conjecture is rejected, students may go back to reformulate the conjecture, search for new 

patterns or specialize. Another scenario is that students may construct a formal proof or justify 

the conjecture using non-proof arguments after naïve testing if they did not find a 

counterexample to the conjecture.  

The stage called “Generalizing” in the CPiMI model is comprised of two outcomes: a 

generalization is obtained or the problem posed is solved but the result is not generalized. Yeo 
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explains that Generalizing as a process takes place during the stages of Conjecturing and 

Justifying. 

The Review phase contains two stages: Checking and Extension. During the Checking stage the 

students may check their work after solving a problem. They could have also been checking their 

work earlier, in other stages.  

In the Extension stage, students may pose follow up questions or pose more problems to solve 

(Yeo, 2017). 

I tried to use the categories of the CPiMI model to code the MAST 217 students’ solutions of the 

haggling problem, in the aim of identifying the processes and the outcomes. Although I was able 

to label some data, many new questions arose. First, I could not code some parts of solutions in 

terms of the CPiMI model and felt that something is missing. Second, I was unsure about the 

meaning of the model’s categories. For example, what is the difference between General 

Problem and Specific Problem? What does Generalization and Checking Working mean? Third, 

the order of the processes was also unclear. I found that Specializing may occur before Problem 

Posing and Justification may precede Formulated Conjecture. I surmised that my uncertainty and 

contradictions I noted were partly due to the type of data I was working with: written texts of 

students’ solutions. Written texts do not reveal all cognitive processes occurred during solving 

problem and investigation. After discussing those concerns with my supervisor, we decided to 

add new artefacts to our research and try to analyze our own solutions of the haggling problem.  

Researchers build models of mathematical problem posing / solving / investigating based on 

observing students’ mathematical behavior in very specific situations, those they have used 

in their clinical interviews or those the instructors happened to use while they were 

observing. Then they claim that this is what happens in ANY situation. So we are trying to 

use the CPiMI to people’s behavior in a different situation and we immediately see that the 

model cannot be used as is. We have to adapt it. But is there anything in CPiMI that does 

apply to situations other than those Yeo has used? (A. Sierpinska, personal communication, 

May 11, 2017) 
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The next section presents the results of introspective, and what we called “inter-spective” 

analyses. The goal of these analyses was to test the CPiMI model and see how it can be adapted 

to describing a process of solving a problem that may involve investigation as a process.  

4.3 Trying to understand the CPiMI model by means of introspective and inter-

spective analyses 

We (AS and NV) decided to examine the CPiMI model from analyzing our own solutions. 

Therefore in this part of research we had only two participants, an experienced professor and a 

novice researcher in mathematics education. The data available for analysis consisted of our 

personal notes of solutions to the haggling problem and the CPiMI model. 

It was not easy for me to decide how to write my own solution for the haggling problem as I 

already went through all students solutions and discussed this task with my supervisor many 

times. I tried to reconstruct my initial solution and ideas behind it. As a teaching assistant in 

MAST 217 course I solved every problem from weekly homework assignments before I started 

to read students responses and grade them. I regret that I did not treat my own solutions as data 

for research and did not write detailed notes. By happy coincidence, I found my notes with a 

rough solution and used them to reconstruct my own investigative process. 

General remarks about AS and NV’s solutions 

AS’s solution is more detailed and contains comments about all the steps she was performing. So 

it is presented in a “thinking aloud” form. On the other hand, my solution looks more like a 

student’s work. Yes, I tried to make every step clear, but I skipped some thoughts and actions 

such as reading, writing and calculating. Some of those comments appeared in the second 

column where I explained cognitive processes in terms of the CPiMI model. Even though those 

comments are more about actions than interpretation, I was not sure whether or not they should 

be moved to the first column. My reason for leaving them in the second column was that the 

students’ responses are not very detailed, so reconstructing some non-written steps is a part of 

interpretation.  
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First, each of us completed an introspective analysis by using the CPiMI model. For this purpose 

a descriptive table was made which consisted of three columns: the solution of haggling 

problem, the explanation of processes in terms of CPiMI (NV) or classification of the action in 

terms of CPiMI categories for actions pertaining to investigation as an activity, and categories of 

Problem Solving as an activity (AS), and outcomes of the action in terms of CPiMI. Second, we 

interpreted each other’s solution with our own interpretations and coding hidden. As a result, we 

had two solutions, two introspective analyses and two inter-spective analyses. Table 1 and Table 

2 present the NV’s and AS’s solutions and their introspective and inter-spective interpretations. 
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Table 1: NV’s solution of the haggling problem 

  AS’s interpretation NV’s interpretation 

Line Action performed Explanation of processes in 

terms of the CPiMI model  

Outcome in terms of 

the CPiMI model 

Explanation of processes 

in terms of the CPiMI 

model  

Outcome in terms of 

the CPiMI model 

 Understanding2 the problem: 

making clear in one’s mind the objects and relations that the problem is about 
  

1 The sequence of prices: 

 

Reading3 the text of the 

problem and analyzing it, 

looking for relevant 

information: what is the 

problem about, what is given, 

what is to be found? 

 

Posed a Specific 

Problem: Re-posed 

the problem in 

mathematical terms:  

a sequence of 

numbers starts from 

two numbers and 

every next number is 

the arithmetic mean 

of the previous two. 

What is the limit of 

this sequence? 

Understanding the task  

 Attacking the problem   

2 𝑎                

𝑏 
𝑎+𝑏

2
=

1

2
𝑎 +

1

2
𝑏          

𝑏 +
𝑎 + 𝑏

2
2

=
1

4
𝑎 +

3

4
𝑏 

Specializing:  Applying the 

rule given in the text of the 

problem: “each time taking 

the average of the previous 

two amounts” to re-calculate 

the third and fourth terms 

and calculate the fifth and 

sixth terms of the sequence. 

Analyzing the problem 

Computed the first 6 

terms of the 

sequence and 

represented them as 

combinations of 𝑎 

and 𝑏 because that’s 

what is suggested in 

the text.  

 

Specializing 

 

Rewriting the initial 

statements. 

 

 

 

 

 

 

 

 

 

 

Observed pattern 1 

Two sequences of 

coefficients; every 

time the sum of 

                                                 
2 In bold, I (AS) highlight the categories of processes and outcomes that have been identified in the CPiMI model 
3 In italics, I (AS) mark actions and outcomes that characterize problem solving in general according to (Schoenfeld, 1992, p. 356): Read, Analyze, Explore, 

Plan, Implement and Verify. I consider the category of Explore as synonymous with Investigate, so Investigation is part of Problem Solving.  
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𝑎 + 𝑏
2 +

𝑏 +
𝑎 + 𝑏

2
2

2

=
3

8
𝑎

+
5

8
𝑏 

𝑏 +
𝑎 + 𝑏

2
2 +

𝑎 + 𝑏
2 +

𝑏 +
𝑎 + 𝑏

2
2

2
2

=
5

16
𝑎 +

11

16
𝑏 

Realized that the 

main problem – what 

is the amount on 

which the haggling 

process will 

eventually converge 

– reduces to two 

subproblems: 

Posed Specific 

Problems: What is 

the limit of the 

sequence 𝑝𝑛 of 

coefficients of 𝑎? 

What is the limit of 

the sequence 𝑞𝑛 of 

coefficients of 𝑏? 

Continue taking the 

average of the previous 

two amounts 

 

Searching for Patterns 

 

coefficients of a and b 

is one 

 

I see that it is unclear 

from my solution, 

but I observed this 

pattern immediately 

and it may be 

formulated it as a 

conjecture. I did not 

use this fact later in 

my solution; 

however, after 

obtaining the result  
1

3
𝑎 +

2

3
𝑏 I made sure 

that 
1

3
+

2

3
= 1  

 

3 

 

Coefficients of a 

1, 0,
1

2
,
1

4
,
3

8
,

5

16
, … …  

Problem posing 

 

Posed Specific 

Problem: 

Subproblem: What is 

the pattern in the 

sequence of 

coefficients of 𝑎? 

Understanding the Task 
and Problem posing (as I 

turned from the initial 

task to analyzing the 

coefficients  for a and b 

separately) 

 

Posed Specific 

Problems 

 

4 1) 1 

2) 0 = 1 − 1 

3) 
1

2
= 0 +

1

2
 

4) 
1

4
=

1

2
−

1

4
 

5) 
3

8
=

1

4
+

1

8
 

Searching for patterns: 

looking at ways that the next 

coefficient can be calculated 

from the previous one. 

Observed patterns: 

the next coefficient is 

obtained from the 

previous one by 

subtracting or adding 

a power of one-half. 

For 2nd coefficient, 

one subtracts; for the 

third – one adds. So 

Searching for Patterns 

An alternating infinite 

series? 

 

Observed pattern 2 
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even index – minus, 

odd index – plus.  

Denominators are 

powers of 2, starting 

from the second 

coefficient: 
0

20 ,
1

21 ,
1

22 , 𝑒𝑡𝑐.  

 

5 Starting from 𝑛 = 2 

𝑝𝑛

= 𝑝𝑛−1 + (−1)𝑛−1
1

2𝑛−2
 

Generalizing and formalizing 

the observed pattern. 

 

Formulated 

conjecture: a 

recursive formula for 

coefficients of 𝑎; the 

denominator of the 

n’th coefficient is 

2𝑛−2. 

 

Conjecturing 

 

Formulated 

conjecture for 

coefficients of a 

 

6 Coefficients of 𝑏: 

0, 1,
1

2
,

3

4
,

5

8
,

11

16
, …  

Problem posing Posed Specific 

Problem: What is 

the pattern in the 

sequence of 

coefficients of  𝑏? 

 

Problem posing Posed Specific 

Problem: 

7 1) 0 

2) 1 =  0 + 1 

3) 
1

2
= 1 −

1

2
 

4) 
3

4
=

1

2
+

1

4
 

5) 
5

8
=

3

4
−

1

8
 

Searching for Patterns Observed a pattern:  

similarly as with the 

coefficients of 𝑎, the 

next coefficient of 𝑏  

is obtained from the 

previous one by 

adding or subtracting 

a power of one-half. 

But now even index 

corresponds to plus, 

and odd index – to 

minus.  

Searching for Patterns  Observed pattern 2 
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Denominators of 

coefficients of 𝑏 are 

also powers of 2, 

with the same 

exponent as 

coefficients of 𝑎.   

8 
𝑞𝑛 = 𝑞𝑛−1 + (−1)𝑛

1

2𝑛−2
 

Generalizing and formalizing 

the observed pattern. 
Formulated 

conjecture: a 

recursive formula for 

coefficients of 𝑏; the 

denominator of the 

n’th coefficient is 

2𝑛−2. 

Conjecturing 

 

Formulated 

conjecture for 

coefficients of b 

 

 Stop, reflecting on the results obtained: Planning   

9 Rewrite the sequences of 

coefficients in terms of 𝑛 

only (without 𝑝𝑛−1 , 

𝑞𝑛−1).  

Planning  Reflecting on the 

direction of the investigation; 

deciding that it may not be 

promising and changing 

direction 

Using other heuristics: it 

may be hard to obtain the 

limit of a sequence from a 

recursive formula. A direct 

formula would be better. 

 

Posed specific 

problems: to 

represent the 𝑛𝑡ℎ 

term of the sequence 

of coefficients of 𝑎  

(𝑏) as a function of 

𝑛. 

 

Using Other Heuristics 

 

 

10 Look at numerators and 

denominators again of 

coefficients of 𝑎. 

Searching for patterns in 

the relation between the 

numerators and the 

denominators of the 

coefficients of 𝑎. 

 

 Searching for patterns  

11 for  
3

8
 ,  Observing a relationship 

when looking at the fifth and 

sixth terms. 

Observed pattern: 

denominator = 3 
 Observed pattern 
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𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 3 ∙
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 − 1  

for 
5

16
, 

 

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 3 ∙
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 + 1 

times the numerator 

plus or minus one 

12 for 1 =
1

1
 (= 𝑝1) 

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 3 ∙ 1 ±
1 ≠ 1  
So the pattern does not 

work for the first term 

for 0 =
0

1
 (= 𝑝2) 

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 1 = 3 ∙
0 + 1   

for 
1

2
 (= 𝑝3) 

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 3 ∙
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 − 1 

for 
1

4
, 

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = 3 ∙
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 + 1 
So  

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝑜𝑓 𝑝𝑛 =
3 ∙ 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 + (−1)𝑛   
 

Specializing: checking the 

relationship for the first four 

terms  

Searching for patterns:  

observing that for the 3rd 

term there is minus 1 and for 

the 4th term there is plus 1. 

 

Observed pattern: 

for coefficients with 

even index it is plus 

one; odd index 

corresponds to minus 

one 

Searching for patterns  

13 Therefore  

𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 𝑜𝑓 𝑝𝑛 =
𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟+(−1)𝑛−1

3
  

 

Using other heuristics: 

deduction by means of 

algebraic manipulation of an 

equation 

 Using Other Heuristics 

 

 

14 Denominators are powers 

of 2, starting from 𝑛 = 2, 

as noticed before: 

Generalizing and formalizing 

previously observed pattern 

Observed pattern: 

relationship between 

the power of 2 in the 
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𝑝𝑛 =
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

2𝑛−2
 

denominator and the 

index of the 

coefficient 

 

15 Therefore, for 𝑛 ≥ 2, 

 

𝑝𝑛 =
2𝑛−2 + (−1)𝑛−1

3 ∙ 2𝑛−2
 

 

Using other heuristics: 

algebraic substitution 
Formulated 

conjecture: a 

formula for the n’th 

coefficient of 𝑎  
Generalization 

Using Other Heuristics 

 

Re-Formulated 

conjecture for 

coefficients of a 

 

16 𝑝6 =
26−2+(−1)6−1

3∙26−2 =
16−1

3∙16
=

5

16
  true 

Naïve testing Not rejected by 

empirical data 

Naïve Testing (not 

rejected by empirical 

data) 

 

 

17 Coefficients of b will 

satisfy a similar relation 

with 𝑛 

𝑞𝑛 =
2𝑛−1 + (−1)𝑛

3 ∙ 2𝑛−2
 

 

Using other heuristics: 

analogy, taking account of 

the differences with the 

sequence of coefficients of 𝑎 

Formulated 

conjecture: a 

formula for the n’th 

coefficient of 𝑏.  

 

Using Other Heuristics 

Guessing the formula for 

coefficients of 𝑏 in terms 

of 𝑛 

 

 

18 𝑛 = 6,

𝑞6 =
5

8
+ (−1)6

1

26−2

=
5

8
+

1

16
=

11

16
 

 

Naïve testing Not rejected by 

empirical data 

Naïve Testing (not 

rejected by empirical 

data) 

 

 

19 Now we can calculate the 

limit of the sequence of 

amounts in the haggling 

process: 

𝑙𝑖𝑚𝑛→∞ 𝑝𝑛𝑎 + 𝑞𝑛𝑏 =?  
 

Planning what to do next: to 

compute a limit using 

properties of limits of 

sequences 
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20 2𝑛−2 + (−1)𝑛−1

3 ∙ 2𝑛−2
 𝑎

+
2𝑛−1 + (−1)𝑛

3 ∙ 2𝑛−2
𝑏 

= (
1

3
−

(−1)𝑛−2

3 ∙ 2𝑛−2
)𝑎 + (

2

3

+
(−1)𝑛−2

3 ∙ 2𝑛−2
)𝑏 

Let 𝑛 → ∞, then 

𝑙𝑖𝑚𝑛→∞ [(
1

3
+

(−1)𝑛−1

3∗2𝑛−2 )𝑎 + (
2

3
+

(−1)𝑛

3∗2𝑛−2)𝑏] =
1

3
𝑎 +

2

3
𝑏  

 

Implementing the plan Solved problem 

End 

 

 

Justifying  Conjecture 

using Formal Proof 

Solved Problem 
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Table 2: AS’s solution of the haggling problem 

  AS’s interpretation NV’s interpretation 

Line Action performed Classification of the action in 

terms of CPiMI categories 

for actions pertaining to 

investigation as an activity, 

and categories of Problem 

Solving as an activity  

Outcomes of the 

action in terms of 

CPiMI 

Classification of the 

action in terms of CPiMI 

categories for actions 

pertaining to investigation 

as an activity 

Outcomes of the 

action in terms of 

CPiMI 

 Understanding4 the problem:  

making clear in one’s mind the objects and relations that the problem is about 
  

1 Reading the text of the 

problem, and stopping to 

reflect on the rule given in 

the problem text: “each 

time taking the average of 

the previous two 

amounts”. Does this rule 

apply already to the third 

and fourth amounts? 

Questioning the claims made 

in the statement of the 

problem5 

 

Posed specific 

question: Does the 

rule “each time 

taking the average of 

the previous two 

amounts” apply to 

the 3rd and 4th 

amounts? (SP0) 

Understanding the Task 

In particular, 

understanding “the rule of 

the game” 

Posed Specific 

Problem is “On 

what amount will 

they converge? 

Express the amount 

in terms of a and b”  

2 [Writing, calculating] 

𝑎  

𝑏  
𝑎+𝑏

2
=

𝑎

2
+

𝑏

2
  

𝑏+
𝑎

2
+

𝑏

2

2
=

𝑎

4
+

3𝑏

4
  

 

Solving SP0: Re-calculating 

the first four amounts 

 

 

Computed the 3rd and 

4th amounts in the 

haggling process 

according to the rule 

“each time taking the 

average of the 

previous two 

amounts” and 

representing them as 

combinations of 𝑎 

and 𝑏 because that’s 

Rewriting in order to 

understand the problem 

and check that applying 

the rule leads to the same 

first amounts  

 

 

                                                 
4 Highlighted in bold are terms that belong to CPiMI. 
5 Highlighted in italics are categories of cognitive actions and processes involved in problem solving in general.  
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how they appeared in 

the text.  

3 [Looking back at the 

values above and 

comparing them with the 

values given in the text of 

the problem] 

Checking the claims of the 

author of the problem 

 

Verified that the 

results obtained this 

way are the same as 

those given in the 

text of the problem. 

Solved SP0: Yes.   

 

  

4 Reading the question of 

the problem: “On what 

amount will they 

converge? Express the 

amount in terms of 𝑎 and 

𝑏.” 

Understanding the main 

question of the problem 

(saying it in different words) 

 

 

 

 

 

Re-formulated the 

Main Question: MQ  

𝑙𝑖𝑚𝑛→∞ 𝐻𝑛 =?   
where 𝐻𝑛 are the 

successive amounts 

in the haggling  

process. 

𝐻𝑛 = 𝑓(𝑎, 𝑏)  

 

It is still Understanding 

the Task. At the same 

time, it is Problem 

Posing 

 

 Attacking the problem   

5 [Looking at the form of 

the first four terms 

calculated above] 

1 ∙ 𝑎 + 0 ∙ 𝑏  

0 ∙ 𝑎 + 1 ∙ 𝑏  
1

2
𝑎 +

1

2
𝑏  

1

4
𝑎 +

3

4
𝑏  

 

Searching for patterns Observed pattern: 

the amounts are 

linear combinations 

of 𝑎 and 𝑏. 

Understood the 

intention behind the 

text of the problem: 

Aha! So that’s why 

the third and fourth 

amounts in the text 

of the problem were 

written in this weird 

way. The author of 

the problem was 

Searching for Patterns Observed pattern 
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hinting at this pattern 

for us. 

 

6 [Looking at the 

coefficients by 𝑎 and 𝑏 in 

the lines] 

1 + 0 = 1  

0 + 1 = 1  
1

2
+

1

2
= 1  

1

4
+

3

4
= 1  

 

Searching for patterns Observed pattern: 

the sum of the 

coefficients by 𝑎 and 

𝑏 is equal to 1. 

Searching for Patterns Observed pattern 

7 Fifth amount = 

 
1

2
((

1

2
𝑎 +

1

2
𝑏) + (

1

4
𝑎 +

3

4
𝑏)) = 

=
1

2
(
1

2
+

1

4
)𝑎 +

1

2
(
1

2
+

3

4
)𝑏

= 
1

2
(
3

4
𝑎) +

1

2
(
5

4
𝑏) =

3

8
𝑎

+
5

8
𝑏 

 

Specializing: computing the 

fifth amount 

Searching for patterns: 

keeping record of the 

numbers added without 

writing the sum right away 

(so treating concrete numbers 

as variables) 

 

 Specializing 

Applying “the rule” to 

calculate fifth amount 

 

8 [Looking at the process of 

calculating the coefficient 

by 𝑎 ] 

 

Searching for patterns in 

the coefficients by 𝑎. 

Observed pattern: 

the next coefficient 

by 𝑎  is half of the 

sum of the previous 

two.  

 

Searching for Patterns 

 

 

9 𝐴1 = 1  

𝐴2 = 0  

𝐴3 =
1

2
  

𝐴4 =
1

4
  

Specializing: Checking the 

pattern on the first five terms. 

 

 

Observed pattern not 

rejected by data: 

Confirmation of the 

pattern on the first 

five terms. 

Searching for Patterns 

and observing a pattern 

from fifth line (coefficient 

𝐴5) 

 

Observed Pattern: 

The coefficient by a 

is one half of 

previous two 

coefficients by a 
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𝐴5 =
1

2
(

1

2
+

1

4
) =

3

8
  

 

 

10 𝐴𝑛+2 =
1

2
(𝐴𝑛 + 𝐴𝑛+1)  Formulating a conjecture  Formulated 

Conjecture 1: 

starting from the 

third amount the next 

coefficient by 𝑎 is 

the average of the 

previous two. 

 

Problem Posing Formulated 

Conjecture 1  

Posed Specific 

Problem (is 

Conjecture 1 a 

specific problem or 

sub-problem?) 

11 How can we prove 

analytically that 

Conjecture 1 is true?  

 

Problem posing Posed a Specific 

Problem:  

Sub -problem 1 

  

12 We will worry about this 

later. For now let’s 

investigate the sequence 

assuming that the 

conjecture is true. 

 

Planning what to do next  Making a decision about 

strategy 

Understanding a sub-

problem 

 

13 This looks like a modified 

Fibonacci sequence. 

Is it convergent? 

Problem posing Posed Specific 

Problem: Sub-

problem 2: Is the 

sequence of 

coefficients by 𝑎 

convergent? 

 

Conjecturing  

Searching for Patterns 

 

14 Multiplying numbers by 

one half makes them 

smaller and smaller. 

Perhaps the sequence is 

strictly decreasing. Since 

it is bounded below by 0, 

Using other heuristics: 

thinking about sufficient 

conditions for a sequence to 

convergent and asking if the 

sequence satisfies them. 

 

Formulated 

Conjecture: 
Conjecture 2: The 

sequence of 

coefficients by 𝑎 is 

strictly decreasing. 

 Formulated in 

words Conjecture 2 
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then we would have 

proved that is convergent. 

 

15 But looking at the 

numbers 𝐴1, . . , 𝐴5  we see 

that the sequence is not 

strictly decreasing; it is 

oscillating. Computing 

several more terms of the 

sequence with a computer 

algebra system (Maple), 

we see that the conjecture 

is false: 

 

 

Naïve testing (two rounds)  Conjecture 2 

rejected by 

empirical data 

Naïve Testing 

 

Rejecting  Conjecture 2 

by empirical data 

 

 

 

 

Specializing 

 

Using numerical approach 
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16 [Looking at the decimal 

approximations] But it 

looks like the sequence is 

converging to one-third.  

Searching for patterns 

Observing a pattern in the 

decimal digits of the 

approximations of the 

coefficients by 𝑎.  

 

Observed Pattern: 

more and more 

three’s in 𝐴𝑛 as 𝑛 

grows larger 

Searching for Patterns Observed Pattern 

17 
𝑙𝑖𝑚𝑛→∞ 𝐴𝑛  =

1

3
 

Formulating a conjecture 

about the convergence and 

limit of the sequence of 

coefficients [Conjecture 3] 

Formulated 

Conjecture 3: the 

limit of the sequence 

of coefficients by  𝑎 

is  
1

3
.  

 

 Formulated 

conjecture 3 

18 How can we prove 

analytically that the 

sequence is convergent? 

Problem Posing  Re-Posed Specific 

Problem: Sub-

problem 2: To prove 

analytically that the 

sequence of 

coefficients by 𝑎 is 

convergent. 

 

Problem Posing  

19 We will try to solve the 

sub-problem 2 later. 

Planning the next step  What is a sub-problem 2?  
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20 If we know that the 

sequence is convergent, 

how can we prove 

analytically that the limit 

is 
1

3
 ? 

Problem Posing  Posed Specific 

Problem: Sub-

problem 3: Assuming 

the sequence of 

coefficients by  𝑎  is 

convergent, to prove 

that the limit is 
1

3
. 

(based on Conjecture 

3) 

 

Problem Posing  

21 Let’s try to prove that the 

limit is 
1

3
.  Using the 

Conjecture 1, and the 

technique of finding 

limits of sequences 

defined by recurrence 

relations, we could write: 

𝐿 =
1

2
(𝐿 + 𝐿), where 𝐿 is 

the limit. This gives an  

identity, from which 

nothing can be deduced 

about the limit.  

 

Justifying Conjecture 3/ 

solving Sub-problem 3 

using formal proof:  

Failed at proving 

that if the sequence 

𝐴𝑛 is convergent 

then its limit is 
1

3
. 

(inappropriate 

technique) 

 

Justifying 

 

An attempt to justify 

Conjecture 3 using formal 

proof 

 

Refuting 

 

22 Perhaps there is a 

different recurrence 

relation between the 

terms. Let’s look again at 

the first terms of the 

sequence of coefficients 

by 𝑎 : 

𝐴1 = 1  

𝐴2 = 0  

Searching for patterns  Searching for Patterns 

by looking again at the 

results of previous 

specializing 
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𝐴3 =
1

2
  

𝐴4 =
1

4
  

𝐴5 =
1

2
(

1

2
+

1

4
) =

3

8
  

 

23 Observe: 

𝐴5 =
1

2
(

3

4
) =

1

2
(1 − 𝐴4)  

 

 Observed a pattern  Observed Pattern 

24 1

2
(1 − 𝐴3) =

1

2
(1 −

1

2
) =

1

4
= 𝐴4  

1

2
(1 − 𝐴2) =

1

2
(1 − 0) =

1

2
= 𝐴3  

1

2
(1 − 𝐴1) =

1

2
(1 − 1) =

0 = 𝐴2  
 

Specializing  Specializing 

 

 

25 Generalize: 

 𝐴𝑛+1 =
1

2
(1 − 𝐴𝑛) 

 Formulated 

Conjecture 4: The 

next term of the 

sequence of 

coefficients by 𝑎 is 

one-half of the 

complement to 1 of 

the previous term. 

Generalizing Formulated 

Conjecture 4 

26 This conjecture can be 

proved analytically, by 

induction, showing that 

the sequence obtained by 

the recurrence relation in 

Conjecture 4 is identical 

to the sequence obtained 

by the relation in 

Justifying Conjecture 4 

using formal proof (sketch 

only described here) 

 Making a decision about 

strategy 

Understanding a sub-

problem 
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Conjecture 1. For the 

proof to be complete we 

would have to have 

proven Conjecture 1. 

 

27 The relation in Conjecture 

4 gives an equation on the 

limit of the sequence 𝐴𝑛 

that has a single solution: 

𝐿 =
1

2
(1 − 𝐿) is true for 

𝐿 =
1

3
.    

 

 Solved problem:  

Solution of Sub-

problem 3. 

Formal proof of 

Conjecture 3. 

 

Justifying Conjecture 3 

using formal proof 

Solved problem 

28 But it is still not proved 

that the limit exists. It 

would help to have an 

expression of 𝐴𝑛 as a 

function of 𝑛. 

 

Problem Posing Posed a problem: 

Sub-problem 4: To 

express the 𝑛𝑡ℎ 

coefficient by 𝑎 as a 

function of 𝑛. 

Problem Posing 

Filling the gap in 

justification for 

Conjecture 4 

Posed Specific 

Problem 

29 We will look again at the 

initial terms of the 

sequence and try of find a 

different pattern, 

depending on 𝑛 and not 

on the previous term.  

Planning  Searching for Patterns  

30 𝐴4 =
1

2
(1 −

1

2
) =

1

2
(

2−1

2
) =

2−1

22   

𝐴5 =
1

2
(1 −

2−1

22 ) =

22−2+1

23   

Searching for patterns: 

keeping record of the 

numbers added without 

writing the sum right away 

(so treating concrete numbers 

as variables) 

 Specializing 
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𝐴6 = [𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠] =
23−22+2−1

24   

 

 

 

31 Probably: 

𝐴7 =
24−23+22−2+1

25   

Observing a pattern 

 
Formulated 

Conjecture 5: the 7th  

coefficient is (as 

shown in the left 

column) 

Searching for Patterns 
and Conjecturing 

Observed Pattern 

32 We compare the number 

on the right with the 

number obtained before 

with Maple program: both 

are equal to 
11

32
. 

 

Naïve testing of Conjecture 

5 
Conjecture 5 

justified 

Searching for Patterns  

33 Conjecture: 

𝐴𝑛 =
2𝑛−3−2𝑛−4+⋯+(−1)𝑛−3

2𝑛−2   

 

Generalizing Generalization:  

Formulated 

Conjecture 6 

Generalizing Formulated 

Conjecture 5 

34 The numerator can be 

represented in the form of 

a closed expression 

(without dots), using the  

formula: 

𝑎𝑛 − 𝑏𝑛 = (𝑎 − 𝑏)(𝑎𝑛−1

+ 𝑎𝑛−2𝑏
+ ⋯
+ 𝑎𝑏𝑛−2

+ 𝑏𝑛−1)) 
 

 Using other heuristics: 

structure recognition 

 

 

 

 Using Other Heuristics  

35 𝐴𝑛 =
(2𝑛−2−(−1)𝑛−2)

3∙2𝑛−2   

 

Using other heuristics: 
representing an expression in 

a different way 

Re-formulated 

Conjecture 6 in the 

form of a closed 

Using Other Heuristics New form of 

Formulated 

Conjecture 5 
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expression with 

variable 𝑛 only. 

36 𝐴𝑛 =
1

3
(1 −

(−1)𝑛−2

2𝑛−2 )  Justifying Conjecture 6 

using Formal proof 

 

First, re-formulated 

Conjecture 6 in a 

form convenient for 

showing that the 

sequence is 

convergent. 

Using Other Heuristics New form of 

Formulated 

Conjecture 5 

37 Using properties of limits 

of sums and products of 

convergent sequences, we 

conclude that the 

sequence 𝐴𝑛 is 

convergent and its limit is  
1

3
. 

 

Proving Provided a formal 

proof of 

convergence and 

calculating the limit. 

Justifying Conjecture 

using Formal Proof 

 

 

38 Writing the solution to the 

problem: 

1. Proving that the 

sequence of coefficients 

of 𝑎 as defined in the 

problem can be 

represented in the form 

obtained in Conjecture 6. 

2. Proving that the 

sequence is convergent 

and that its limit is 
1

3
. 

3. Proving that the 

coefficients by  𝑏 are 

equal to 1 minus the 

coefficients of 𝑎, and that, 

in the limit, the 

Writing up the solution, 

without describing the whole 

process of investigation.  

Solved MQ Constructing formal proof 

to present to others  
Solved Problem  
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coefficient by 𝑏 is equal 

to 1 −
1

3
=

2

3
 . 

4. Concluding that the 

haggling process will 

converge to the amount of 
1

3
𝑎 +

2

3
𝑏.  
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Discussion of NV’s and AS’s interpretations 

After completing our analyses of NV’s and AS’s solutions, we compared them independently 

and wrote our own reflections. In this section, I discuss results of our introspective and inter-

spective analyses and use fragments from our reflections to demonstrate what differences and 

similarities we pointed out.  I analyzed our interpretations line by line and observed that we 

coded some parts almost identically; however, there were several significant differences in our 

interpretations. In the following I organize our agreements and disagreements about using the 

particular categories as a discussion of each stage described in the CPiMI model. 

Stage 1: Understanding the Task 

It is not easy to observe Understanding the Task in written solutions; however, both NV and AS 

agreed that Understanding the Task is an inevitable part of problem solving and coded the first 

lines of their solutions in similar way. According to Polya (1973), one may make sense of a 

problem by asking questions such as “What is the unknown? What are the data? What is the 

condition?” To be more specific, AS outlined categories that characterize problem solving in 

general according to Schoenfeld (1992) such as Reading and Analyzing. 

Since Understanding the problem as a process looks very general in the CPiMI model, I decided 

to add a few sub-processes in the coding scheme, such as Reading and rewriting in order to 

understand the problem, Analyzing, Reformulating the problem, Trying examples to understand 

the problem. In his doctoral dissertation Yeo (2013) stated that there are three possible outcomes 

in the Understanding the task stage: 1) understood the task correctly, 2) misinterpreted the task 

and did not recover and 3) misinterpreted the task but recovered from the misinterpretation. As I 

analyze written responses I am not able to see the third possible outcome. At the same time it is 

important to indicate Errors or mistakes that occurred during in the Understanding the task 

stage. Therefore I added this category to the coding scheme. 

Stage 2: Problem Posing 

This is the most confusing part of coding. Even though both AS and NV, used the categories of 

Problem Posing for process and Posed Specific Problem for outcomes in a similar way in 
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different parts of their solutions, I noticed that our understanding of Problem Posing is different 

from Yeo’s view. Here is an excerpt from my notes: 

Table 1, Line 3. In terms of the CPiMI the subproblem “What is the pattern in the 

sequence of coefficients of a?” is Posed General Problem.   

… So they (students) may just set a general goal by searching for any pattern (Height, 

1989). The latter can be called the posing of the general problem “Is there any pattern?” 

(Yeo and Yeap, 2010, p. 2) 

Table 2, Line 1. I suppose that Posed specific question is not an outcome in terms of 

CPiMI because it is not the same as Posed Specific Problem 

I concluded that there is a need to clarify terms such as General Problem, Specific Problem, 

Subproblem in the context of my study. 

The haggling problem is not an investigative task since the problem is already posed. It is a 

problem solving task which requires an investigation as a process. According to the CPiMI 

model, Stage 2 (Problem posing) occurs in the Entry Phase after Stage 1 (Understanding the 

Task) and before the process of investigation which involves specializing, conjecturing, 

justifying and generalizing. There are two possible outcomes: posed the general problem of 

searching for any pattern or posed a specific problem to solve. Formally Stage 2 should not be in 

the model for problem solving activity. However, solving the haggling problem may involve 

investigation as a process and requires posing sub-problems or/and reformulating the main 

problem. In our introspection and ‘inter-spection’ we (AS and NV) used the code Problem 

Posing many times in the same way. To resolve this problem I referred to the Schoenfeld’s 

(1985) work on problem-solving. As it was mentioned in the literature review, he introduced four 

categories of knowledge necessary to be successful in problem-solving: resources, heuristics, 

control, and belief systems. Heuristics or problem solving strategies include induction, 

specialization, analogy, variation, decomposition and recombining, working backwards. 

Therefore, establishing sub-goals and solving sub-problems take place during Specializing and 

Using Other Heuristics Stage. It is necessary to point out that students may use both specializing 
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and using other heuristics; or they can alternate between them. However, according to the CPiMI 

model, using other heuristics is not part of an investigative process. 

Stage 3: Specializing and Using Other Heuristics 

In my interpretation, I used the category of Specializing in more general sense that it is required 

the CPiMI model: 

Table 1, Line 2. I wrote “Specializing” and treated it as a part of Entry Phase, because I 

specialized in order to understand the problem. I do believe that Specializing can occur 

before Attack Phase. Moreover, in most cases Specializing helps not only to understand 

the problem but also pose or reformulate it. I agree that Analyzing the problem is the best 

explanation of the process behind this action. 

Therefore I proposed to separate Trying examples to understand the problem from Specializing 

(Trying examples to search for patterns). 

Even though we did not have difficulties in identifying the category Using Other Heuristics, I 

found that it would be helpful for analyzing  students’ solutions to specify what kind of heuristics 

is used. 

“We have both thought of this category here. So this category is rather clear” (A. 

Sierpinska, personal communication, June 8, 2017). 

Stage 4: Conjecturing 

Also introspection and ‘inter-spection’ have showed that it is not easy to distinguish the 

transition between Specializing and Searching for patterns.   

Table 2, Line 30. Since we calculate A4, A5, A6 again and rewrite them in different form I 

would prefer to add Specializing to the interpretation of this process. Actually I think 

both Specializing and Searching for patterns take place here. 

Table 1, Line 12. “So Searching for pattern is not an easily observable process. We can 

only surmise that there has been a search for patterns if the student has written down a 
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formula or something to that effect: if a pattern has been observed” (A. Sierpinska, 

personal communication, June 8, 2017) 

The CPiMI model does not include Conjecturing as a process. The outcome Formulated 

Conjecture is a result of Searching for Patterns or Using other Heuristics.  

Table 1, Line 5. Conjecturing as a process is not a part of the CPiMI model. It can be 

explained as Generalizing, but according to the CPiMI model the Generalizing stage 

should come after the Justifying stage. 

Table 2, Line 31. We interpreted this part of the solution differently. I identified only one 

Conjecture. Even with word “probably” I treated A7 =
24−23+22−2+1

25  as an Observed 

pattern, not as a Conjecture.  

Stage 5: Justifying 

We used the code Naïve Testing identically then we analyzed our solutions, therefore we 

concurred that this category is pretty clear. However, the analysis of students’ solutions made me 

think that the difference between Naïve Testing and Checking is not obvious. I will discuss this 

later.  

Solving the haggling problem may involve posing subproblems and formulating more than one 

main conjecture. Analyzing our solutions we used the category of Justifying Conjecture using 

Formal Proof mostly to code proofs of small conjectures. The final result was obtained by 

implementing the plan. 

Table 1, Line 20. Probably Justifying Conjecture using Formal Proof does not 

perfectly describe the action performed here. I would suggest it is Using Other 

Heuristics again. I think we can use Planning and Implementing the plan to interpret this 

part as it looks like problem solving, rather than mathematical investigation in the strict 

sense 
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Table 2, Line 36. I would like to be more precise, so from my point of view this step can 

be interpreted as Justifying Conjecture 3: the limit of the sequence of coefficients by  a 

is  
1

3
  using Formal Proof 

Therefore, I adopted Implementing the plan as well as Planning from Schoenfeld’s (1995) 

problem solving model.   

Stage 6: Generalizing 

As it was mentioned above, Conjecturing and Generalizing have similar meanings. For the 

haggling problem there are no outcomes: Generalization and Solved problem Without 

Generalizing. I proposed two codes for this stage: Solved Sub-problem and Solved Problem.  

Stage 7: Checking 

AS coded line 3 in Table 2 as “Checking the claim of the author of the problem.” This is 

different from the meaning of Checking used in the CPiMI model. Yeo (2013) notes that 

“students can check all the working step by step, or they can just check the essential steps” (p. 

78). So it is not clear what exactly students are doing and how we can see this process in written 

responses. In Polya’s (1973) problem solving model the fourth phase calls “looking back” and 

includes examination of the solution by answering questions: 

Can you check the results? Can you check the argument? 

Can you derive the result differently? 

Similarly, Schoenfeld (1985) stressed that Verification (checking) plays an important role in the 

problem solving process. Thus, “at a local level, you can catch silly mistakes. At a global level, 

by reviewing the solution process you can often find alternative solutions, discover connections 

to other subject matter …. and that can help you become a better problem solver “ (p. 111). 

Solving the haggling problem encourages students do not ignore this stage by asking: Have you 

tried to verify your answer? If yes, how? 
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Therefore, I decided to apply the code Checking (Verifying) in the analysis of students’ solutions 

in a very specific situation when students explain how they verified their answer. 

Stage 8: Extension 

We have agreed that students were not expected to extend the haggling problem, so we made no 

effort at the time to formulate possible extensions in our solutions. Surprisingly, one of the 

students6 was very close to formulation an extension for the haggling problem, so I decided to 

keep this code. 

Also we found that, for several lines of the solutions, we could not use the CPiMI model’s 

categories. At the same time we coded those lines in similar manner. For instance, in Table 2, 

Line 12 AS states: “We will worry about this later. For now let’s investigate the sequence 

assuming that the conjecture is true.”  

AS’s interpretation was: Planning what to do next.  

NV’s interpretation was: Making a decision about strategy. 

Thus another issue regarding analysis of haggling problem is that the CPiMI model cannot help 

to indicate metacognitive processes. Schoenfeld (1992) emphasized how important it is to 

control, monitor, and self-regulate our thinking. He found that students had spent much more 

time on exploring with calculation than on analyzing, planning, implementing or verifying a 

solution. On the contrary, mathematicians had spent a lot of time on planning and analyzing and 

had demonstrated the tendency to alternate between planning and analyzing. As the CPiMI 

model does not capture those important cognitive and metacognitive processes, I proposed to add 

more categories in the coding scheme such as Planning and Monitoring.  

In conclusion, the introspective and inter-spective analyses have helped us to outline our 

difficulties in using the CPiMI model, identify gaps, and formulate the list of terms to clarify, 

                                                 
6 See the case of student #009 
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and propose additional categories needed to adapt the model for coding problem-solving 

activities involving investigation as a process.  

4.4 Arriving at a modified model of mathematical thinking 

In this section, I present the final coding scheme I adopted for analyzing the MAST 217 

students’ solutions of the haggling problem. Based on the introspective and inter-spective 

analyses of our solutions the CPiMI model was modified to be used in the context of this study 

and additional codes were added. Once I compiled the list of cognitive and metacognitive 

processes, and outcomes I grouped them according to the stages of the CPiMI model. In Table 3, 

non-italicized codes represent processes outlined in the CPiMI model; codes in italic represent 

additional processes, sub-processes, and outcomes, and codes in bold represent outcomes. 

Table 3. Final coding scheme 

Phase Stage Code 

Entry Understanding the Task Reading and rewriting in order to understand the 

problem 

Analyzing 

Trying examples to understand the problem 

Reformulating the problem 

Reformulated problem 

Error or mistake 

 

Attack Problem Posing Planning 

Decided on plan 

Posing sub-problem 

Posed Sub-Problem 

 

Specializing and Using 

Other Heuristics 

Specializing (trying examples to search for 

patterns) 

Error or mistake 

Using Other Heuristics  

Calculating 

Using Algebra 

Planning 

Implementing the plan 

 

Conjecturing Searching for patterns 

Using Algebra 

Observed Patterns 

Planning 

Using other heuristics 
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Formulated Conjecture 

 

Justifying Planning 

Implementing the plan 

Calculating 

Naïve testing 

Justifying Conjecture using formal proof 

Justifying Conjecture using reasoning 

Monitoring  

 

Generalizing Generalizing 

Error or mistake 

Solved Sub-Problem 

Solved Problem 

 

Review Checking Checking  

Calculating 

Error or mistake 

Extension Extension 

 

As it was mentioned earlier there was constant comparison and interaction between data 

collection, analysis and development of theory. Thus the coding scheme presented in Table 3 is a 

result of several rounds of analyses of students’ solutions during which the codes were revisited 

and adjusted.  
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Chapter 5. Application of the modified CPiMI model to analyzing students’ 

solutions 

In the next stage of my data analysis, I examined each student’s response to the haggling 

problem. I chose four solutions of the haggling problem to present in this thesis in detail because 

they illustrate different investigative behaviors and approaches to solving the haggling problem. 

In addition, they demonstrate that the modified codes allow us to analyze both correct and 

incorrect solutions. A summary of the results is presented in the section 5.5 of this chapter. 

5.1 The case of student #009 

Student #009 was successful at solving the haggling problem. Table 4 shows an analysis of his7 

solution. He analyzed the problem, denoted the sequence of amounts and calculated several 

amounts applying the rule given in the text of the problem. He then searched for patterns and 

observed that the amounts are linear combinations of the initial amounts 𝑎  and 𝑏 and that the sum of 

coefficients of 𝑎 and 𝑏 is 1. The student used this conjecture later but did not seem to feel the need 

to prove or somehow justify it. He looked for the limit of the sequence of coefficients of a and 

clearly demonstrated that he planned and monitored his problem-solving process. He did not 

explain or justify the existence of the limit of the sequence. He made some mistakes in notations 

and was not precise in using his mathematical knowledge. For example, he recognized a 

geometric series with first term equal to 
1

2
 and the ratio −

1

2
, but did not mention that the formula 

for the sum of the geometric series can be used since the ratio is less than 1. Despite those minor 

errors he arrived at the final (correct) answer. The student checked his solution by naïve testing 

and also by solving a special case of the problem in a different way. He observed that particular 

initial amounts are also partial sums of a convergent geometric series (in the case of first term 

100 and ratio -1/2) and in fact formulated another conjecture. This can be considered as the 

beginning of an extension of the problem. If pushed a little bit, the student could be led to asking 

questions such as: Is it just a coincidence that the sequence of amounts, when a=100 and b=50, is 

identical with the sequence of partial sums of a geometric series with first term equal to a and an 

                                                 
7 Here and throughout the analyses of students’ solutions I use the pronoun “he” as a generic pronoun.  
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appropriate ratio q?  Or is it more general? What conditions should a, b and q satisfy for the two 

sequences (one obtained by averages and the other – by partial sums of a geometric series) to be 

identical?  In summary, student #009 did not justify every step of his solution; however, he 

definitely achieved the conviction that his answer is correct. His calculations together with the 

analysis of his solution removed all doubts.          
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Table 4: Analysis of the solution of student #009 

 Action performed Processes Outcomes Remarks 

1 a(1)=a 

a(2)=b 

a(3)=(a+b)/2=(a(1)+a(2))/2=1/2a + 

1/2b 

a(4)=1/4a+3/4b 

Reading and rewriting in order 

to understand the problem 

Analyzing 

Trying examples to understand 

the problem 

 

 

 

 

 

The student denotes the 

sequence of amounts obtained in 

the haggling process by “a(n)” 

and re-writes the values of the 

amounts given in the 

formulation of the problem 

using this notation  

(𝑛 = 1, 2, 3, 4). 

(Student used plain text to write 

his solution and submitted it 

online.) 

 

2 a(5)=3/8a + 5/8b 

a(6)=5/16a +11/16b 

... 

Specializing 

 

 The student applies the rule 

“each time taking the average of 

the previous two amounts” to 

calculate a(5) and a(6). 

3 xa+yb =1 

 

Searching for patterns 

 
Observed Pattern 1 

Formulated conjecture 

1 

Error or mistake 

 

This statement is incorrect. 

Probably, the student observes 

that the amounts are linear 

combinations of the initial 

amounts 𝑎  and 𝑏 and that the 

sum of coefficients of 𝑎 and 𝑏 is 

1. So he may mean that 

coefficient by a plus coefficient 

by b is equal to 1. He should has 

written x+y =1 where x and y 

are coefficients of a and b, but 

his notation is more like 

shorthand for a phrase than 

operational symbolism 

(Clement, 1981). 
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4 Let us look for x 

 

Posing sub-problem 

Planning 

 

Posed sub-problem 1 

Decided on plan 

 

At this point the student decides 

to focus on coefficients of a and 

finding the limit of the sequence 

of coefficients of a. 

5 x=1,0,1/2,1/4,3/8,5/16... 

 

Searching for patterns 

 
Error or mistake 

 

Student’s notation is not correct 

but he probably tries to write a 

sequence of coefficients of 𝑎  
6 x[n]=1-1+1/2-1/4+1/8-1/16... 

x(n+2)=1/2-1/4+1/8-1/16... 

 

 Observed Pattern 2 

 

The student notices that starting 

from the third term, the 

coefficients of 𝑎 seem to be 

partial sums of a geometric 

series with first term equal to 
1

2
 

and the ratio −
1

2
. 

 Let us take the first term of x(n+2), 

and  -1/2=q,  

Using other heuristics Formulated conjecture 

2 

The student formulates this 

conjecture almost explicitly.  

7 for the limit of the geometric series 

𝐿 =

1
2

1 − (−
1
2

)
=

1

3
 

 

 

Using other heuristics 

Using algebra 

Calculating 

Solved sub-problem 1 The student implicitly assumes 

that in the final amount the 

coefficient of 𝑎 will be the limit 

of the sequence of the 

coefficients of 𝑎 in the haggling 

process, and calculates the sum 

of the geometric series using the 

formula: 

𝑎 + 𝑎𝑞 + 𝑎𝑞2 + ⋯ =
𝑎

1 − 𝑞
 

 

This is correct since the ratio of 

the series is less than 1 in 

absolute value, but we don’t 

know how aware he is of this. 

He is probably aware of the 

legitimacy of ignoring the first 
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two coefficients of 𝑎 using the 

fact that their sum is 0. 

8 x=1/3 at the limit =>y=2/3 

The price will converge to 1/3a+2/3b 

 

Implementing the plan 

 
Solved problem To formulate the conjecture, 

student uses the previous 

conjecture 1 

Note that he did not justify the 

conjecture 1. He accepted the 

fact that the sum of coefficients 

of 𝑎 and 𝑏 is always 1. 

9 a(1)=100 

a(2)=50 

a(3)=(100+50)/2=75 

a(4)=75+50/2=62.5 

... 

This is a geometric series 

Sn=100-50+25...=100-50/2+25/4... 

L=100/1-(-1/2)=66+2/3   

If we compute with 1/3a and 2/3b => 

1/3(100) + 2/3(50)=66+2/3 

 

Naïve testing  

 

 

 

 

Checking (by another solution) 

Extension 

Checking 

 

 

 

 

 

 

 

Observed pattern 

Formulated conjecture 

He takes 𝑎 = 100 and 𝑏 = 50 

and computes the first amounts 

in order to make sure that his 

conjecture is correct. 

In the process, he notices that 

the total amounts quoted in the 

haggling process with these 

particular initial amounts are 

also partial sums of a convergent 

geometric series (first term 100 

and ratio -1/2) and formulates it 

as yet another conjecture. Then 

he calculates the sum of this 

geometric series using the 

formula S=a/(1-q) and tests it 

with calculations and with his 

previously formulated 

conjecture for the amount to 

which the haggling process 

converges, 
1

3
𝑎 +

2

3
𝑏, for the case 

of 𝑎 = 100 and 𝑏 = 50. 
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5.2 The case of student #010 

Table 5 presents an analysis of student #10’s solution. To solve the haggling problem this student 

decided to simplify it. He parametrized the segment between 𝑏 and 𝑎 on the number line and re-

formulated the problem. It is likely that the student thought about convergence of the sequence of 

amounts when he proposed scaling of the number line and visualized the haggling process. He used 

different heuristics and demonstrated good problem-solving skills. At the same time the student appeared 

to have some difficulties in communicating his ideas. He was sloppy about mathematical notations. For 

example, he used the same letter ‘n’ to denote two different sequences. However, specializing led him to 

the conclusion that starting from the second term there is a geometric series with first term equal to -1 and 

ratio -1/2. Finally he calculated the sum of the geometric series and solved the problem. He planned his 

solution and had control over it. To validate his solution the student calculated sequences of amounts for 

several pairs of 𝑎 and 𝑏 in Excel. He was satisfied with the results of naïve testing and stated that “sure 

enough, for any values of 𝑎 and 𝑏 I experimented with, the final equation held”.  He did not consider 

numerical results as a proof (he used the word ‘experimented’), but together with his solution they looked 

convincing for him.  
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Table 5: Analysis of the solution of student #010 

 Action performed Processes Outcomes Remarks 

1 We aren’t given the values of a and b, but 

we do know that the first value, a is the 

highest term in the sequence and the 

second term, b, is the lowest.  

 

Analyzing 

 

  

2 We also know the amount they will 

converge on is somewhere between a and 

b. If we assume b to be 0 and a to be 1 

we’ll converge on a number between 0 

and 1. If we call that number x and 

convert it to % then the final amount will 

be x% of the way from b (lowest term) to 

a (highest term).  

 

Analyzing 

Reformulating the problem 

(by representing the 

relations between the 

givens and the unknown in 

a different way) 

 

 

 

 The student represents the given 

numbers 𝑎 and 𝑏 on the number 

line, putting its origin at b and 1 

at a. This way, the distance 

between 𝑎 and 𝑏 (𝑎 − 𝑏), since 

𝑎 > 𝑏) becomes the unit of 

distance on this number line. 

This allows him to represent the 

unknown price on which the 

haggling process will converge 

as a percent of the distance 

between 𝑎 and 𝑏. This may look 

like “using examples” to 

understand the problem, but, in 

fact, the student uses the 

technique of convenient scaling 

of the number line. This can also 

be seen as parametrizing the 

segment between 𝑏 and 𝑎 on the 

number line. 

3 This can be represented as b + x(a-b)  

 

 Reformulated problem 

 

 

4 n1 = 1 (our chosen value for a)  

n2 = 0 (our chosen value for b) 

n3 = ½ (the average of the last two terms) 

n4 = ¼ (the average of the last two terms) 

Specializing  

 

 He seems to write the 

consecutive amounts quoted in 

the haggling process, in two 

ways: as values of the 
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n5 = 3/8 (again the average of the last two 

terms) 

 

coefficient 𝑥 in 𝑏 + 𝑥(𝑎 − 𝑏), as 

if assuming 𝑎 = 0, 𝑏 = 1, and, 

in brackets, in terms of the 

variables 𝑎,  and 𝑏. 

5 If for every n we look at the difference 

between n and n-1, we get a pattern with 

the first few terms as: 

n1 = 1  

n2 = -1 

n3 = +1/2 

n4 = -1/4  

n5 = 1/8 

 

Searching for patterns 

 
Error or mistake 

 

Looking for the relationship 

between two consecutive terms 

of the sequence 𝑛𝑖, can we 

obtain the next one from the 

previous one? His notation is 

incorrect: he uses the same 

letters to mean different things. 

Only “n1” in line 5 means the 

same as “n1” in line 4. The 

expression “n2=-1” in line 5 

probably means “n2 – n1 = 0 - 

1” with n2 and n1 meaning the 

values in line 4. It may mean 

also that, to obtain n2, one has to 

subtract 1 from n1.  

In view of what the student 

writes in line 7 (“sum”), he may 

mean: 

n1 = 1 

n2 = 1 – 1 

n3 = 1 – 1 + ½ 

n4 = 1 – 1 + ½ - ¼  

n5 = 1 – 1 + ½ - ¼ +1/8 

 

6 In each case the next n is equal to the 

previous n multiplied by -1/2.  

 Observed Pattern Here “the next n” appears to 

refer to the terms of the sum 

representing 𝑛𝑖: 

If 

𝑛𝑖 = 𝑘1 + 𝑘2 + ⋯ + 𝑘𝑖  

then, for 𝑖 ≥ 3, 
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𝑘1 = 1  

𝑘2 = −1  

𝑘𝑗+1 = 𝑘𝑗 ∙ (−
1

2
)  for 𝑗 =

3, … , 𝑖 
 

 

7 Taking the sum of all n from n=1 to 

n=infinity we can find what value of x 

should be used in the final answer b + x(a-

b). 

Planning 

Posing sub-problem 

 

 

Decided on plan 

Posed sub-problem 1 

Formulated conjecture 

There is an implicit conjecture 

here: 

𝑥 = ∑ 𝑘𝑗
∞
𝑗=1 = lim

𝑖→∞
𝑛𝑖  

The sub-problem is to calculate 

the sum of the series. 

8 Starting from n2, we have a geometric 

series with a = -1 and q = -1/2.  

 

 Formulated conjecture Conclusion from Observed 

Pattern:  

∑ 𝑘𝑗
∞
𝑗=2  is a geometric series 

with first term equal to -1 and 

ratio -1/2. 

9 For a geometric series of this type the sum 

of the term from n=2 to n=infinity can be 

represented as 𝑎(
1

1−𝑞
). In this case we get 

-1(2/3) = -2/3. But this doesn’t include n1, 

which has a value of 1. So the sum from 

n=1 to n=infinity = 1 – 2/3 = 1/3 (or 

33.333% if expressed as a percent).  

 

Using other heuristics 

Implementing the plan 

Calculating 

Solved sub-problem 1 By saying “a geometric series of 

this type” the student probably 

means that since the ratio of the 

series is less than 1 in absolute 

value, we can use the formula 

for the sum of the geometric 

series : 

𝑎 + 𝑎𝑞 + 𝑎𝑞2 + ⋯ =
𝑎

1 − 𝑞
 

  

10 Thus the value for x in the equation 

b + x(a-b) is 1/3. 

So the final equation is: 𝑏 +
𝑎−𝑏

3
. 

 

 Solved problem  

11 This can be verified using Microsoft 

Excel. I first entered arbitrary values for a 

and b in cells A1 and A2 respectively. In 

Naïve testing 

Calculating 

Checking 
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cell A3 I used the formula 

=AVERAGE(A1,A2) which will give the 

average of a and b. I copied this formula 

down column a and when the same value 

kept repeating itself (technically each 

value is different but excel only displays a 

certain number of digits and they were all 

the same) it was clear that was the amount 

that we were converging on. And sure 

enough, for any values of a and b I 

experimented with, the final equation 

held.  
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5.3 The case of student #003  

Student #003 (Table 6) presented another type of solution. He correctly calculated several terms 

of the sequence of prices and wrote them as linear combinations of 𝑎 and 𝑏. He searched for 

patterns and regularities in coefficients of 𝑎 and 𝑏. The student summarized his observation and 

formulated three conjectures. He probably used references for the formula for the Jacobsthal 

numbers and uncritically trusted them. He assumed that the patterns he observed hold without 

looking for justification. It is possible that he tested the formula for Jacobsthal numbers to make 

sure that it works for observed patterns. So we can conclude that he obtained conviction by 

means of naïve testing. Then he decided to find the limit of the sequence. The student made 

some minor mistakes in using notations. For example, he calculated the limit of the sequence in 

infinity but he did not use the notation for the limit and continued to write the limit as nth term of 

the sequence. Finally the student solved the haggling problem and formulated the correct answer. 

He chose 𝑎 = 100 and 𝑏 = 50 to verify his solution by naïve testing. Calculating sequences of 

amounts confirmed the result obtained analytically. It was enough for him to be convinced of the 

correctness of his solution. 
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Table 6: Analysis of the solution of student #003 

 Action performed Processes Outcome Remarks 

1 First will calculate few terms of the price Pn  

P1 = 1/2 a + 1/2 b  

P2 = 1/4 a + 3/4 b  

 

Reading and rewriting in 

order to understand the 

problem 

Analyzing 

 

 

 

 

 

 

Student uses an indexed letter 

“Pn” to denote the price in the 

𝑛𝑡ℎ step of the haggling 

process and rewrites the first 

terms of the sequence of prices 

with this symbol.  He takes the 

first step of the haggling 

process to be the third number 

quoted (not 𝑎 or 𝑏). This 

decision could have been made 

after he discovered the 

connection with Jacobsthal 

numbers (see line 4 of the 

solution below). The 

representation of the first two 

terms as linear combinations 

of 𝑎 and 𝑏, is as given in the 

text of the haggling problem. 

2 P3 = 3/8 a + 5/8 b  

P4 = 5/16 a + 11/16 b  

P5 = 11/32 a + 21/32 b  

P6 = 21/64 a + 43/64 b  

P7 = 43/128 a + 85/128 b  

P8 = 85/256 a + 171/256 b 

Specializing 

Searching for patterns 

 

 In order to search for patterns 

in coefficients, student 

specializes in the sense of 

applying a general rule to 

specific values of a variable 

(here, the variable is the index 

𝑛). He calculates several terms 

of the sequence of prices and 

writes them as linear 

combinations of a and b.  

3 1. For both a and b coefficients in the 

denominator is 2𝑛 

 Observed Pattern 

Formulated 

conjecture 1 

Student lists his observations. 

He finds the first pattern in 

denominators of the 
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coefficients: the denominators 

are powers of 2 

4 2. For a, coefficients in the nominator are 1, 

1, 3, 5, 11, 21, 43, 85 ……. 

This series represent Jacobsthal number, 

which can be expressed as [(−1)𝑛−1 +

2𝑛]/38 

Searching for patterns 

Using Other Heuristics 

(structure recognition) 

Generalizing 

Observed Pattern 

Formulated 

conjecture 2 

Searching for patterns in 

numerators of coefficients of 𝑎 

and 𝑏 and probably, using 

references led him to 

Formulated conjecture 2. 

Does not mention the domain 

of the variable 𝑛: that 𝑛 =
1, 2, 3 …. and does not justify 

his claims.  Probably, trust in 

the authority of his references 

and naïve testing for a few 

initial values of  𝑛 was enough 

for him. 

5 3. For b coefficients in the nominator 

represent Jacobsthal number starting at n+1, 

which can be expressed as  [(−1)𝑛 +
2𝑛+1]/3 

Searching for patterns 

Using Other Heuristics 

(analogy) 

Observed Pattern 

Formulated 

conjecture 3 

Formulated conjecture 3 using 

analogy. 

6 substituting these coefficients  

Pn = 
(−1)𝑛−1+2𝑛

3∙2𝑛 𝑎 +
(−1)𝑛+2𝑛+1

3∙2𝑛  

Using Other Heuristics 

(substitution) 

 The student used his 

formulated conjectures to write 

terms of the sequence in 

general form. No justification 

why the power of 2 in the 

denominator is the same as the 

power of 2 in the numerator in 

the coefficient of 𝑎. 

7 Pn= [
(−1)𝑛−1

3∙2𝑛 +
2𝑛

3∙2𝑛] 𝑎 + [
(−1)𝑛

3∙2𝑛 +
2𝑛+1

3∙2𝑛 ] 𝑏 

 

Pn= [
(−1)𝑛−1

3∙2𝑛 +
1

3
] 𝑎 + [

(−1)𝑛

3∙2𝑛 +
2

3
] 𝑏 

 

Using Other Heuristics 

(algebraic manipulations) 

 

Planning 

Implementing the plan 

 Next he performed algebraic 

manipulations to present Pn as 

a function of  𝑛 . 

                                                 
8 For the sake of clarity, formulas in lines 4-7 were re-written by me in Equation Editor. They were written in plain text in the original. 
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8 When n -> infinity Planning 

 

Decided on plan He decided to find the limit of 

the sequence. 

9 Pn= {0+1/3} * a +{0 + 2/3} * b 

Pn= {1/3} * a + {2/3} * b 

Implementing the plan Errors or Mistakes Notational inaccuracy: limit in 

infinity equated with nth term 

of the sequence (possibly due 

to limitations of a software) 

10 Pn= (a+2b)/3 this represent the amount that 

they will converge on. 

 Solved Problem Finally, by calculating the 

limit he writes the answer to 

the haggling problem. 

11 To verify let’s assume a= $100 and b= $50 Planning  Student plans how to verify his 

solution.  

12 so the price should be P= (100+2*50)/3 = 

66.6666…… 

Naïve testing  

 

 He uses a particular pair of 

values for 𝑎 and 𝑏 and plugs 

them into his solution.  

13 And if calculate few terms using excel and 

look what is the price that will converge we 

noticed that the correlation is correct 

a= 100  b=50  

1. 75  

2. 62.5  

3. 68.75  

4. 65.625  

…………. 

29. 66.6666667 

30. 66.6666667 

Checking  He performs calculations to 

find the limit of the sequence 

of amounts for a=100, b=50 

numerically and compares the 

result with the value from 

previous step.  
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5.4 The case of student #014 

An analysis of the unsuccessful solution of student #14 is presented in Table 7. This student 

made multiple mistakes and typos. It was not easy to guess what was his reasoning. He had 

difficulties in applying the rule given in the text of the problem: “each time taking the average of the 

previous two amounts”.  He made mistakes in writing the 5𝑡ℎand 6𝑡ℎamounts and probably tried to search 

for a pattern in the procedure. This approach did not give him a clue, so the student turned to 

computational approach and tried a particular pair of values for 𝑎 and 𝑏 to calculate a sequence of 

amounts.  Unfortunately he made a mistake in calculations and noticed a contradiction with results of 

calculations in Excel. However, it did not help him in discovering his mistakes. As a result, he formulated 

an incorrect conjecture. He tried to verify his results by naïve testing, but he used the same pair of values 

for  𝑎 and 𝑏 and probably was satisfied because his wrong conjecture agreed with his incorrect numerical 

calculations. The student did not bother trying more examples or checking calculations.
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Table 7: Analysis of the solution of student #014 

 Action performed Processes Outcomes Remarks 

1  a 

 b 

 (a+b)/2   =1/2 a + 1/2 b 

 (b+(a+b)/2)/2   =1/4 a + 3/4 b 

 

Reading and rewriting in order to 

understand the problem 

Analyzing 

 

 Student writes down the first 

values of the sequence of 

prices 

 

2 (a+(b+(a+b)/2)/2)/2  = 5/8 a + 3/8 b 

 (b+(a+(b+(a+b)/2)/2)/2)/2 = 5/16 a + 

11/8 b 

 

Trying examples to understand 

the problem 

Searching for patterns (perhaps) 

 

 

Error or mistake Then he calculates next two 

terms of the sequence maybe 

intending to use the rule that 

every next term is the average 

of the previous two. The 

student does not use the results 

of his previous calculations to 

calculate the next. He may also 

be doing that to discover a 

pattern in the procedure (e.g., 

the number of divisions by 2 

increases by one with each 

consecutive amount?).  

Nevertheless, he makes 

mistakes in writing 5𝑡ℎand 

6𝑡ℎamounts. The 5th amount 

should be 3/8 a + 5/8 b. In the 

6th amount, there is probably a 

typo, so we should read 5/16 a 

+ 11/18 b instead of 5/16 a + 

11/8 b.  

3 If we replace a by 200 and b by 100 we 

get 

* 200 

* 100 

* 150 

Specializing 

Calculating 

Searching for patterns 

 

Error or mistake Student tries a particular pair 

of values for 𝑎 and 𝑏and 

applies a numerical approach 

to search for patterns. He does 

not apply a wrongly 
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* 175 

* 162.5 

* 168.75 

* 165.625 

* 167.1875 

* 166.40625 

* 166.796875 

* 166.6015625 

* 166.69921875 

* 166.65039063 

* ... 

* 166.666... 

 

discovered pattern of 

calculation. The student makes 

a computational mistake 

because, starting from the 4th 

amount, the values are 

incorrect. The 4th amount 

should be 125. 

4 numbers verified with Exel. If I made a 

mistake it would converge to 133.333… 

  Apparently he noticed a 

contradiction but this does not 

seem to make him to revise his 

solution. 

5 Because they haggle for a cheaper or 

more expensive price the dollar amount 

will oscillate back and forth. With the 

price converging at 2/3 of the difference 

between the first suggested price. 

 

 Observed Pattern 

Formulated 

Conjecture 1 

Error or mistake 

 

From his specific numerical 

example student observes a 

pattern and formulates a 

conjecture in words. Here it 

looks as if he was claiming 

that the limit price is 𝑏 +
2

3
(𝑎 − 𝑏), which is incorrect. 

6 John=200, Mark =100 

John-Mark+2/3(John-Mark) 

200-100+2/3(200-100) 

100+66.666...166.666... 

a, b 

a-b+2/3(a-b) 

a-b+2a/3-2b/3 

5a/3-5b/3 

 

Conjecturing 

Justifying Conjecture using 

reasoning 

 

 

Formulated 

Conjecture 2 

Error or mistake 

 

In fact, however, he thinks 

rather of the limit price being 

calculated using the formula 

(𝑎 − 𝑏) +
2

3
(𝑎 − 𝑏), which is  

5

3
(𝑎 − 𝑏). If he doesn’t notice 

the mistake, it is perhaps 

because for his particular 𝑎 

and 𝑏,  𝑎 − 𝑏 = 𝑏. 
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7 a=200, b=100 

5(200)/3-5(100)/3 

333.333...-166.666... 

166.666... 

Converge at 5a/3 - 5b/3 with 0<b<a. 

 

Naïve Testing 

 

 He uses the same pair of 

values for  𝑎 and 𝑏, so for this 

particular case his wrong 

conjecture agrees with his 

incorrect numerical 

calculations. By using the 

same numbers he actually does 

not challenge the conjecture. It 

is obvious, that taking another 

example (a=10, b=1) could 

help him to reject his 

conjecture and go back to 

Specializing and Searching for 

Patterns stages. 
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5.5 Summary of the results 

To address the first research question: how students do know that they are right and in particular, 

how they validate the results of their thinking while solving a problem that involves investigation 

as a process, I analyzed 32 solutions for the haggling problem. These results are summarized in 

Table 8. ‘Successful’ solutions are defined as solutions, where the code Solved Problem was 

used to indicate the answer to the haggling problem in the form 
1

3
 𝑎 +

2

3
 𝑏 (or an algebraically 

equivalent form). All other solutions are called ‘unsuccessful’, including completely wrong 

solutions, solutions of a misinterpreted problem, and incomplete solutions.  

Table 8. Numbers of successful and unsuccessful solutions 

Number of students (N =32) Description 

15  (47%) ‘Successful’ solutions 

17 (53%) ‘Unsuccessful’ solutions 

 

Throughout all students’ solutions, I have noticed interesting tendencies in using examples. All 

students used examples while solving the haggling problem. In this section I describe when and 

how students used examples and how it helped them in solving the haggling problem and 

verification of their results.  

In mathematics and mathematics education, the term “example” can be seen from different 

perspectives. By saying ‘for example’, we can present an algorithm for solving a problem, a type 

of problems, an object satisfying a given definition or a class of objects. In the context of my 

study, I consider the term “example” only as a mathematical object which illustrates a definition, 

concept or statement (Moore, 1994). Therefore, in solving the haggling problem students could 

use a particular pair of numbers for 𝑎 and 𝑏,  as well as particular terms of the sequence of prices 

in algebraic form which satisfy the given rule. Analysis of students’ solutions revealed four 

distinct contexts in which examples were employed: to understand the problem, to specialize, to 

test a conjecture and to validate the results (Figure 88).   
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Figure 8. Using examples in solving the haggling problem 

 

Understanding the Task stage: trying examples to make sense of the problem 

Introspection and inter-spection analyses made us think that rewriting and recalculating the first 

four amounts and calculating the 5th amount occur in Understanding the Task stage, where one 

just applies the rule given in the text to analyze the problem (Analyzing) and plans the next steps 

(Planning).  The transition between using examples to understand the problem and to search for 

patterns may be very smooth and cannot be easily observed from written solutions (Figure 9). 
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Figure 9. A part of Student's #005 solution (a) 

Calculating the 5th amount correctly is an important indicator of understanding the haggling 

problem. The eight students who misinterpreted the problem either did not calculate the 5th 

amount or made a mistake in their calculations. To calculate the 5th amount, one has to take the 

average of the 3rd and 4th amounts (they are already given in the text as 
𝑎+𝑏

2
 and  

𝑏+
𝑎+𝑏

2

2
 ) 

Some students calculated the average of the 4th and 2nd amounts and wrote a wrong expression 

for the 5th amount:  𝑏 +
𝑏+

𝑎+𝑏

2

2
 . As a result, they fixed the second amount b and instead of taking 

the average of the previous two amounts those students continued to calculate an average of the 

previous amount and the second amount b. In other words they tried to solve a different problem 

because they reformulated the haggling problem wrongly. Four students who made a mistake in 

writing the 5th amount solved the ‘wrong’ haggling problem and provided justification for their 

solutions. Here is an example of this type of solutions:  

Student # 021 

They will eventually converge towards an amount _very close_ to b. 

We know from the information of 0<b<a that the sequence is bounded above and below, and it is 

decreasing. 

Each time they take the average of the previous two amounts, a gets smaller (closer to zero), and 

b increases (getting closer to its value). 

1/2a + 1/2b 
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1/4a + 3/4b 

1/8a + 7/8b [emphasis added] 

1/16a + 15/16b 

1/32a + 31/32b 

and so on... 

the limit is expressed as  

lim a[n+1]= (a[n] +b[n])/2  

n->inf 

I've verified my answer by assuming that a=100$, and b= 55$; which respects that 0<b<a. 

therefore getting to the repeating of: 

((((((((100+55)/2)+55)/2)+55)/2)+55)/2) 

=77.5; 66.25; 60.625; 57.8125; 56.40625... 

So the limit of the sequence is the value of b. 

Another way to make sense of the problem, simplify and reformulate it is to consider the 

situation where 𝑏 =  0 and 𝑎 = 1. For instance, student #010 (see section 5.2) assumed “𝑏 to be 

0 and 𝑎 to be 1” and concluded that “we’ll converge on a number between 0 and 1”. This kind of 

scaling helped him to plan the next steps and reformulate the problem. 

Specializing Stage: trying examples systematically to search for patterns  

As the analysis revealed, 26 students went thought Specializing stage and systematically 

explored examples to attack the haggling problem. It is possible that the remaining 6 students 

also used examples during this stage; however, we were unable to decide what strategies they 

used because they stated only an answer to the haggling problem without explanation how they 

arrived at the result. The analysis of a variety of uses of examples during Specializing and Using 

other Heuristics stage led me to distinguishing two main approaches in attacking the haggling 

problem: computational and analytical. Figure 10 shows how successful were students who 

appeared those approaches in their solutions. 
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Figure 10. Attacking the haggling problem: computational and analytical approaches 

Computational approach 

By “computational approach” I mean arithmetical exploration of many concrete amounts or 

coefficients (usually using a computer software). Thus students carried out numerical 

experiments to show that a sequence of amounts converges. For example, student # 031 designed 

a code in Python and used several pairs of values for 𝑎 and 𝑏 in his calculations.  

Student # 031 

 I have used Python language to program this question. 

I attach the code in the following: 

F={} 

F[0]=0 

Attacking the haggling problem

Computational 
approach

7 solutions

4 unsuccessful3 successful

Analytical 
approach

19 solutions

8 successful 11 unsuccessful

Undefined
approach

6 solutions

2 unsuccessful4 successful
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F[1]=1 

for i in range(2,30): 

    F[i]=Fraction(F[i-1]+F[i-2])/2 

    print i,F[i] 

And after testing for several interval, for example, (a=0, b=1), (a=3, b=5) etc. 

The result converge in the 2/3 of the interval length, for example, b=1, a =0 

the result = 2/3, b=5, a=3, the result = 3+(5-3)*(2/3) 

Note that this student reversed the role of 𝑎 and 𝑏 in his code for calculations; however, he 

reverted to the assumed roles of the letters in his final, correct answer: 

 On (2/3)b +(1/3)a will converge. 

 S0 = a 

 S1 = b 

 S2 = (b+a)/2 

 S3 = (b + (b+a)/2)/2 

 ….. 

 Sn = (2/3)b + (1/3)a  

Some students calculated coefficients directly. The example of Student #027’s solution illustrates 

this:  

Student # 027 

ANALYSIS: 

John will offer for a dollars 

Mark will offer for b dollars, and we know 0< b < a 

Then John will offer for (a+b)/2=0.5a+0.5b 

Mark will offer for (a+3b)/4=0.25a+0.75b 

John will offer for (3a+5b)/8=0.375a+0.625b 
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Mark will offer for (5a+11b)/16=0.3125a+0.6875b 

John will offer for (11a+21b)/32=0.34375a+0.65625b 

Mark will offer for (21a+43b)/64=0.3281a+0.6718b 

John will offer for (43a+85b)/128=0.3359a+0.6640b 

Mark will offer for (85a+171b)/256=0.3320a+0.6679b 

John will offer for (171a+341b)/512=0.3339a+0.6660b 

Mark will offer for (341a+683b)/1024=0.3330a+0.6669b 

we can see easily in analysis above that the amount is converging to a/3+(2/3)b which is close to 

0.333a+0.666b  

Observation of numerical results did not always lead to the correct answer. For instance, student 

# 001 introduced two examples:  

 My answer has been verified with 2 examples. 

One was with the a being $100.00 and b being $50.00 and the other pricing was done with $20.00 

and $40.00 

100                                                                                         40 

50                                                                                           20 

75                                                                                           30 

62.5                                                                                        25 

68.75                                                                                      27.5 

65.63                                                                                      26.25 

67.19                                                                                      26.88 

66.40                                                                                      26.56 

66.8                                                                                        66.8 

66.6                                                                                        26.64 

66.66=0.4444(a+b) =0.4444(150)                                       26.64=0.4444(a+b)=0.4444(60) 
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as the average is being continuously taken between John and Mark, the price will be settled at  

$ 0.4444(a+b) 

As can be seen from the above excerpt, both examples illustrate a special case when 𝑏 =
1

2
𝑎. In 

fact, the student’s conjecture makes sense for all 𝑎 and 𝑏 such that 𝑏 =
1

2
𝑎. However, he did not 

try other examples or maybe he misinterpreted the problem. As a result he was not successful in 

solving the haggling problem. 

Analytical approach 

Analytical approach is assumed here to refer to an algebraical exploration of the sequence of 

coefficients, searching for patterns, and then using other heuristics, such as analogy, deduction, 

structure recognition, algebraic manipulations.  

A majority of students (19) tried to solve the haggling problem by using this approach: they 

looked for a formula to represent a sequence of prices. Most of them thought about finding the 

limit of this sequence. Moreover some of them tried to show that the sequence is bounded and 

decreasing. Problem solving pathways of students who used analytical approach demonstrate that 

they alternated between Specializing, Conjecturing, Justifying and Using Other Heuristics.  

Three students reformulated the haggling problem and considered an interval between b and a. 

The case of student #010 (see section 5.2) is an example of using this technique. The following 

example of student’s solutionalso demonstrates this strategy: 

Student # 029 

Let x=(a-b)  

first = a, second = b, third = b+(x/2), fourth = b+(x/2)-(x/4), fifth = b+(x/2)-(x/4)+(x/8), 

sixth = b+(x/2)-(x/4)+(x/8)-(x/16)... 

As we can see from this excerpt, after reformulating the problem the student focused on writing 

first terms of the sequence by using new notation. Obviously there are some steps between the 

first and second lines. Presumably the student alternated between specializing and pattern 
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searching and used other heuristics such as representing an expression in different way and 

structure recognition.   

A number of students, after calculating several first terms of the sequence and representing 

coefficients of 𝑎 and 𝑏 as fractions, posed sub-problems to explore: to find relationships in 

numerators and denominators of the coefficients. Next, they summarised their observations to 

write a direct formula for 𝑛𝑡ℎ  term of the sequence. The case of student #003 (see section 5.3) is 

an example of using this technique. Six students used Jacobsthal numbers in their solutions to 

write a formula for 𝑛𝑡ℎ term of the sequence and four of them successfully arrived to the correct 

answer. Jacobsthal numbers were not mentioned in class and they are not as famous as, for 

example, Fibonacci numbers. Therefore, I surmised that those students searched the Internet for 

references and accepted the closed form equation for the Jacobsthal number at a specific point in 

the sequence: 𝐽𝑛 =
2𝑛−(−1)𝑛

3
 as a well-known fact. A solution illustrating this is provided below:  

Student # 030 

n = 1 => (a+b)/2 

n = 2 => (a+3b)/4 

n = 3 => (3a+5b)/8 

n = 4 => (5a+11b)/16 

n = 5 => (11a+21b)/32 

n = 6 => (21a+43b)/64 

n = 7 => (43a+85b)/128 

Noticing the following: 

- coefficient of a (in numerators) = [(2^n) - (-1)^n] / 3 

- Similarly, coefficient of b (in numerators) =  [(2^(n+1)) - (-1)^(n+1)] / 3 

- denominator = 2^n  

- coefficient of a + coefficient of b (in numerator) = denominator = 2^n 

then the n’th term can be written as the following: 

 

    {[(2^n) - (-1)^n] / 3}*a + {[(2^(n+1)) - (-1)^(n+1)] / 3}*b 

= ---------------------------------------------------------------------- 
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                                        2^n 

 

By taking the limit of the 𝑛𝑡ℎ term as n goes to infinity, student #030 was able to solve the 

problem. As many others, he said nothing about existence of the limit of this sequence. 

It is worth noting that solving sub-problems (or finding a correct formula for 𝑛𝑡ℎ term of the 

sequence) does not guarantee that one ends up with correct answer. Two students were able to 

observe a pattern and recognize Jacobsthal numbers in coefficients, but they did not complete 

their solutions. Two solutions illustrating this category of answers are presented below:   

Student # 013 

Now I see a pattern that looks like the Jacobsthal sequence of 1,1,3,5,11,21,43,….  

(2^n –(-1)^n) / 3 Over the denominator of 2^n. 

Thus  

an = [((-1)^n-1 + 2^n)a /3 + ((-1)^n + 2^n+1) b /3] / 2^n   note that n-1 is used for the 

coefficient of a because it takes on the previous value. [end of the solution] 

Student # 004 

We may notice that the coefficient of a and b correspond to the Jacobsthal sequence, 

which is J[No]=J(n-1)+2J(n-2). 

lim n-->+∞(J[No]a+J(n+1)b)/2^n.  

 

Justifying Stage: trying examples to refute or validate a conjecture (naïve testing) 

In most cases I merged Justifying and Checking (Validating) stages in my analysis. Students’ 

written responses did not reveal other means of Checking than Validating results by naïve 

testing. Using particular pairs of numbers for a and b is a common strategy for this stage. Even 

successful students who used analytical approach and in fact justified the statement by deductive 
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reasoning validated their results by examples. Overall, 18 students out of 32 checked their 

conjectures in this way. The following excerpt (Figure 11) illustrates this: 

 

Figure 11. A part of Student's #005 solution (b) 

Discussion of students’ solutions 

The analysis revealed a variety of resources and heuristics that students applied to solve the 

haggling problem and justify their solution.  The resources used by students were definitions, 

knowledge of properties of limits, sequences, series and algebraic manipulations. Examples of 

used heuristics (others than specializing) are reformulating a problem or formulating 

subproblems, scaling or parametrizing, analogy, structure recognition and substitution. I did not 

observe drawing diagrams or trying to visualize the problem in students’ solutions. I surmise that 

some students (in particular those who scaled the interval between 𝑎 and 𝑏) used this strategy but 

did not present it in submitted solutions. I think so because I was drawing a picture to understand 

what is going on when I was reading the haggling problem for the first time, also when I asked 

my 14 years son to solve the haggling problem he produced an empirical solution and visualized 

the problem. He considered a particular pair of values for 𝑎 and 𝑏 and then explored the problem 

by creating a code in Pascal (programming language). As a result he presented the diagram 

below (Figure 12) to justify his conjecture that the amounts converge to  
1

3
 𝑎 +

2

3
 𝑏 .  
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Figure 12. Visualization of convergence of the sequence of amounts 

As mentioned in Chapter 4, the CPiMI model does not capture metacognitive processes. By 

adding additional codes from the Schoenfeld’s (1985) model I was able to identify planning and 

monitoring processes in students’ solutions and conclude that at least 12 students demonstrated 

control abilities (for instance, the cases of students #009, #010 and #003). However, observing 

errors and mistakes made me think that self-regulatory skills of most of the authors 

‘unsuccessful’ solutions are weak. Lack of sensitivity to contradictions (Sierpinska, 2005) was an 

issue for many students (for example, the case of student #014).  

Beliefs about proof and mathematics determine students’ behavior in justification and 

verification. The data suggests that, by ‘verify’, the majority of students (at least 18 out of 32) 

mean the procedure of plugging in the concrete numbers for 𝑎 and 𝑏 into the obtained formula 

and comparing with numerical calculations of the limit of the sequence of amounts. Students’ 

attempts to justify their conjectures shed light on their beliefs about proofs and justification. 

Three successful solutions (computational approach) did not contain deductive arguments but 
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they can be accepted as a generic example proofs (Yopp at al., 2015). Several solutions could 

count as mathematical proofs (with gaps and minor mistakes). Students who observed patterns in 

coefficients of 𝑎 and 𝑏 generalized and made conjectures; however they did not try to prove 

them. Only one student tried to justify his conjecture that the sum of coefficients of 𝑎 and 𝑏 is 1 

by using mathematical induction. Overall it seems that the majority of students did not feel the 

need to construct proof-like arguments because they were convinced of their results by other 

means (for example by naïve testing or confirming by another solution).  
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Chapter 6. Discussion and conclusions 

In this chapter, I look back at my findings in the light of my research questions and relate them to 

previous research. In the following sections 6.1 and 6.2 I address the research questions in 

reverse order. I start from reflections on the process of finding a theoretical framework for this 

thesis and discuss the methodological contribution of this study to the field of mathematics 

education. Next, I point out how the results obtained during the analysis of students’ solutions 

and presented in chapter 5 are related with findings outlined in literature. Finally, in section 6.3, I 

present some implications for teaching and my ideas for future research. 

6.1 How does one conduct research into how students and mathematicians know 

that they are right? 

Following the interpretive paradigm, the aim of my research was not only to describe things but 

interpret them to understand and see connections with other contexts. It is impossible to interpret 

and understand research findings without using some theoretical lens. In my thesis, I described 

the process of finding and adapting a theoretical framework for identifying the cognitive 

processes engaged in solving problems requiring some elements of mathematical investigation. I 

reported on difficulties in choosing and applying the CPiMI model to my concrete data and as a 

methodological contribution, this thesis presented the idea of using introspective and inter-

spective analyses for testing and adjusting theoretical models. Introspection itself is a fruitful 

way of capturing researcher’s cognitive processes (Eisenhart, 1988). Furthermore, inter-spection 

helped in establishing criteria for and ensured the objectivity of the data analysis, as it was a part 

of a triangulation method. Overall I feel that introspection and intra-spection allowed us to 

capture our mental processes and obtain a better understanding of the CPiMI model. But maybe 

more importantly, searching for an appropriate framework for the data analysis and in particular 

introspection and inter-spection triggered reflections on constructing theories and models in 

mathematics education. Going through mountains of readings about philosophical and social 

aspects of proof and proving; teaching and learning practices; empirical studies on problem 

solving, proving and investigation I realized that there is no consistency and unity in theories. I 

moved through the maze of terms and concepts where different terms were used for almost 
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identical concepts and the same terms referring to different concepts. On the one hand, novice 

researchers face a diversity of perspectives, theories, frameworks and methods to conduct 

research.  On the other hand, as Sierpinska (2002, p. 253) pointed out, “theories are not being 

sufficiently examined, tested, refined and expanded”. It seems that “novice” researchers in 

mathematics education prefer to create their own theory or elaborate their supervisor’s 

frameworks. I hope that by addressing my research question: “How does one conduct research 

into how students and mathematicians know that they are right? How does one choose an 

appropriate framework for analyzing data?” and presenting the results of testing and adjusting 

the CPiMI model in the context of my study I contributed in establishing the area of applicability 

of this model as well as in methodology of testing, examining, refining and expanding theoretical 

models in mathematics education. 

6.2 How do students and mathematicians know that they are right? 

Initially, I was interested to link students’ and mathematicians’ behaviors in justifying and 

validating the results of their mathematical thinking. The analysis of students’ solutions to the 

haggling problem, interviews with graduate students and professors, and review of related 

literature allowed me to draw some conclusions about differences in students’ and 

mathematicians’ attitudes to validating their mathematical results and a necessity of proof for 

them to being sure they are right. But before I start the discussion of the results of this study in 

the light of my first research question I would like to formulate a sub-question 

 Do students really want to know if they are right? 

Looking back to the analysis of students’ solutions to the haggling problem we observed that ten 

out of 32 students (~31.2%) did not even try to verify their final answer or any step of their 

solutions9. Does it mean that those 10 students were not sure of the correctness of their results or 

were not willing to make their own decision about the correctness? Moreover, may we conclude 

that other 22 students who somehow tried to verify their solutions were interested in verification 

or justification? Unfortunately, this study does not answer these questions. However, my 

                                                 
9 It is worth noting that only one solution among those 10 was successful and three solutions were incomplete but 

contained partial results. 
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impression was that most students looked for an answer to haggling problem and only a few of 

them were interested to know why their answer was correct.   

Sierpinska (2005) stresses that “[t]heoretical thinking asks not only, Is this statement true? but 

also What is the validity of our methods of verifying that it is true? Thus theoretical thinking 

always takes a distance towards its own results” (p. 122). Some elements of theoretical thinking 

were present in students’ reasoning. Several students were reflective, they demonstrated self-

regulation and monitored their work. It helped them to use heuristics and their knowledge 

effectively. On the other hand, many students were not able to solve the haggling problem and 

their reasoning was wrong; they could not be critical about their results. Lack of sensitivity to 

contradictions in mathematics stopped many students from arriving at a correct conclusion. For 

example, student # 014 noticed a contradiction in his calculations, but he did not revise the 

solution and did not discover mistakes. Eight students misinterpreted the problem and only 

locally checked their arguments without referring to the initial text of the problem. Sierpinska 

(2007) argues that “[t]he systemic character of theoretical thinking entails sensitivity to 

contradictions” (p. 122). Indeed, the results of this study confirm that without sensitivity to 

contradictions students cannot be successful in proving and justification and develop theoretical 

thinking.  

Algebraic notations play a significant role in the development of mathematics (Sfard and 

Linchevsky, 1994). The results presented in this thesis also revealed multiple errors in using 

mathematical notation. For instance, student #009 used shorthand for a phrase to explain that 

the sum of coefficients of 𝑎 and 𝑏 is 1 (see the case of student #009). This is similar to the 

approach that Clement (1981) called as "word order match”. He analyzed calculus students’ 

responses to The Students-and-Professors Problem. 

Write an equation for the following statement: "There are six times as many students as 

professors at this university." Use S for the number of students and P for the number of 

professors. (Clement, 1981, p. 288) 

He found that direct mapping of the words into the symbols of algebra led students to the 

incorrect answer 6 S = P. 
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Researchers have confirmed that problems with mathematical notation are common among 

transition-to-proof courses students (Moore, 1994). Even students who were successful and 

produced valid arguments demonstrated some difficulties in using mathematical language and 

notation. They were not precise and consistent in using letters to name variables, defining 

sequences, terms of series and partial sums. But without this precision and consistency one 

cannot construct a mathematical proof.  

Findings about using examples in solving the haggling problem resonate with previous studies 

(Alcock, 2004; Alcock and Weber, 2010). Alcock (2004) identified three instances in which 

mathematicians use example mathematical objects in reasoning. These are understanding a 

statement, generating an argument and checking an argument. The results of this thesis confirm 

that using examples can be useful for students in making sense of a problem, conjecturing and 

validating or checking a statement. The students appear to have better success with using 

examples to validate a conjecture (12 out of 15 ‘successful’ students checked their conjecture by 

using concrete examples). On the other hand, this study revealed that students understand 

verification of results exclusively as checking specific examples or, in other words, as naïve 

testing. Even students who used analytical approach and whose solutions could be counted as 

mathematical proofs (with gaps and minor mistakes) used specific examples to validate their 

results. I found that concrete examples look very convincing for students even if they understand 

and accept that examples do not constitute proof. This agrees both with the literature (Healy and 

Hoyles, 2000) and my interviews with expert mathematicians. For instance, participant K. said:  

You know, I find that outside of mathematics people are very scientific. Right? So they 

are very convinced by many things that show you are right. That doesn't mean your [are 

right], but many things that showing truth are very convincing. 

Then he added: 

…from looking at some examples you get [to] believe [that] something is true. Then you 

have to go back and actually prove it is true. 

This is similar to other mathematicians’ views on proof and validation. 
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Proof is distinguished from other aspects of mathematical activity… by the fact that it 

belongs mainly to the verification stage of investigation. (Bell, 1979, p. 372) 

Students in this study did not prove their conjectures about the general form of the sequences 

they were generalizing probably because they did not realize that there were only conjectures. 

The meaning of proof for them is restricted to proving exercises where they know what they 

need to do even if they do not know how. They do not consider justifications of the steps during 

problem solving as part of their conception of proof, as their conviction that the answer is correct 

comes from examples, guessing and scraps of analytical reasoning. 

For one of my course projects, I conducted several interviews with mathematics students and one 

of the answers to the question “What do you like the most about mathematics?” was 

I like it that most of the time here there is an answer…  either you get it  right or you get 

it wrong. It’s not from interpretation…. It is yes, you got it right because you know what 

you are doing and what steps to follow. So like there is a definite answer to the problems 

you are doing. 

This might seem a common view that mathematics is a citadel of infallible certainty and the truth 

of a mathematical statement is objective. This view may lead to a belief that arriving at an 

answer means that thinking about the problem is finished. But for mathematicians it is not 

enough to find a correct answer; they are looking not only for certainty but also for 

understanding. Hanna (2000) pointed out that "...proof, valid as it may be in terms of formal 

derivation, actually becomes both convincing and legitimate to a mathematician only when it 

leads to real mathematical understanding" (p.7). Can we say that proofs constructed by students 

in this study helped them in understanding why their final formula is correct? Maybe this is true 

for a few of them.  

6.3 Teaching implications and suggestions for future research 

Investigation (as a process) can be considered as a step in successful problem solving and 

proving. It is important for transition-to-proof courses to teach not only how to construct proofs 

but also to stimulate students to learn via proof by demonstrating other functions of proof besides 

conviction.  Activities that invite students to make and test conjectures can be used as an 
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opportunity to teach how to justify claims and why there is a need to do it. Inquiry-based 

teaching approaches offer many learning opportunities for students. One of them is that students 

can learn from each other. Encouraging students to present solutions in class with a goal not only 

to state and compare results but also to justify their reasoning may develop their abilities to 

communicate mathematics and see how proof can be helpful in exploration of mathematical 

properties and discovery of new results. For example, discussing different strategies of solving 

the haggling problem in class may be helpful in developing mathematical curiosity and 

skepticism in students.   

One of obvious limitations of my study is the use of written solutions without additional follow-

up interviews. At the very end of working on this thesis, my supervisor asked graduate students 

in a mathematics education course to solve the haggling problem. During the students’ 

presentations of some of their paths to solutions, I was able to ask questions that helped me to 

understand deeper several confusing steps in written solutions of students from MAST217. Also, 

I observed how discussion of solutions may lead to raising more questions and open doors to 

new investigations.  

I view this study as a first step toward a better understanding of students’ viewpoint on the 

validity of their results. More research is needed to fully characterize undergraduate and graduate 

students’ perceptions of proof. Another idea that surfaced during writing this thesis is how to 

assess and evaluate students’ performance in investigation. Thinking about computational and 

analytical approaches that I described in this thesis led me to addressing new questions. Would I 

say that analytical approach is better or more successful than computational? I measured 

students’ success very formally, but how to measure what students learned from the haggling 

problem? 
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Appendix A 

Assignment 1. 

The product of three consecutive positive integers is always a number that is divisible by 6. 

 

Decide if the statement is true or false. 

Justify your decision.  

 

Assignment 2. 

Prove: 

If n is an integer greater than 2, then there is no integer m satisfying the equation  n + m = nm and divisible by 

n.  

 

Assignment 3. 

Choose ONE of the following 4 problems to solve and submit for grading.  

 

 

PLEASE NOTE THAT: 

1) The Triangle Inequality is to be assumed true. You can use it; it is not necessary to prove it in the 

assignment.  

2) You are welcome (even encouraged) to try and solve all 4 problems but you are asked to submit for 

grading ONLY ONE. If you submit solutions of more than one problem, and do not state clearly which one 

you want to be graded, the marker will choose the shortest solution for grading (to have less work, and not 

because it will be the best!).       

 

Assignment 4. 

Let a and b be integers and let d = gcd(a, b). 

Since d is a divisor of a then a/d  is an integer. 

Since d is also a divisor of b then b/d is an integer. 

So it makes sense to speak of  gcd(a/d, b/d). 

Prove that gcd(a/d, b/d) = 1. 
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Assignment 5. 

Solve ONE of the two problems below -  Problem 1 or  Problem 2. Please state clearly which problem you are 

submitting for marking. Only one will be marked even if you upload both. 

If you solve Problem 1 correctly, you obtain 5 marks. 

If you solve part a of Problem 2, you obtain 4 marks. If you also solve part b of problem 2 correctly, you 

obtain 5 marks for the whole Problem 2. 

Saying that you submit Problem 1 for grading, and then solving it partially correctly and also solving part a or 

part b of Problem 2 correctly will not increase your marks. 

   

Problem 1. 

Prove by Mathematical Induction: 

For all integers n greater or equal 1,  4 divides (5^n – 1) 

Problem 2. 

(a) Prove by Mathematical Induction: 

For all integers n greater or equal 1,  1 + 3 + 5 + … + (2n – 1) = n^2 

In other words, the sum of the first n positive odd numbers is equal to the square of n. 

(b) Prove the same statement directly, without using Mathematical Induction. 

Assignment 6. 

Prove that 

(a)  there is no rational number  r  such that  r^2 = 15 

(b)  the number  1 - sqrt(15) is irrational. 

 

Assignment 7.  

A retailer purchased 38 gallons of canola oil and wants to put the oil in smaller cans (all of the same size) for 

sale.  He knows his customers will NOT be interested in buying less than 3/5  of a gallon or more than   4/5   of 

a gallon of oil at a time. 

He doesn’t want to put the oil in   3/5  – gallon cans or   4/5 – gallon cans because this would not allow him to 

fill a whole number of cans to full capacity, and would leave him with some oil he would not be able to 

sell.  Advise the retailer on the capacity of cans all of which he would be able to fill to full capacity, so that no 

oil is left.  Explain how you arrived at an answer and how you made sure it was correct. 

 

Assignment 8. 

Let A be the set of all real numbers of the form 1/k +1/n, where k and n are natural numbers. 
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Justify all answers. 

(a) Is A is bounded above? If yes, find Sup(A). 

(b) Is A is bounded below? If yes, find Inf(A). 

(c) True or false?  

         i.            For every real number x there exists a number of the form 1/k + k/n that is larger than x.   

       ii.            For every positive real number x there exists a number of the form 1/k + k/n that is less than x. 

      iii.            The number sqrt(2) belongs to A. 

     iv.            The number 5/6 belongs to A.  

       v.            The number 6/5 belongs to A.  

     vi.            The number 8/3 belongs to A. 

 

Assignment 9. 

John is trying to sell Mark a bike for a dollars.  

Mark does not agree on the price and offers b dollars (0< b < a). 

John does not agree on this price but comes down to  (a + b)/2 = 1/2 a + 1/2 b. 

Mark responds by offering (b + (a + b)/2)/2 = 1/4 a  +  3/4 b. 

They continue haggling this way, each time taking the average of the previous two amounts. 

On what amount will they converge? Express the amount in terms of a  and  b.  

 
Explain your reasoning and justify your response. 

Have you tried to verify your answer? If yes, how? 

 

Assignment 10. 

Give three examples of a function f  : R --> R   with the following property: 

                                for all  x  in  R,  f(x + 1) = f(x + 3) 

For each example of function, justify why it has the required property. 

  

Hint: the sine function has the property: sin(x + 0) = sin(x + 2 ) for all x in R. 

Assignment 11. 

Choose between problems 1 and 2. The maximum marks for Problem 1 is 5 marks. For Problem 2 – the 

maximum is 4 marks. State clearly which Problem you have chosen and submit a solution to this problem only. 

https://moodle.concordia.ca/moodle/filter/tex/displaytex.php?texexp=  /pi  
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If you submit solutions to both problems and do not state clearly which one you want to be marked, only 

Problem 2 will be marked. 

Problem 1 (max 5 marks) 

Consider the function f: [-2, 2]  [-1/2, 1/2 ]  

defined by   f(x)=  

(a) Prove that f is surjective. 

(b) Prove that f is injective. 

(c) From the information obtained in (a) and (b) what conclusion can be drawn about the cardinalities of the 

intervals [-2,2] and [-1/2, 1/2 ] ? 

Problem 2  (max 4 marks) 

Prove that the intervals [-10, 100] and [0, 10] have the same cardinality by exhibiting a bijective function 

from  one of these intervals to the other and proving that it is indeed bijective based on the definition of a 

bijective function (and not by reference to known properties of the kind of functions you will be using). 

 

https://moodle.concordia.ca/moodle/filter/tex/displaytex.php?texexp=  /rightarrow  
https://moodle.concordia.ca/moodle/filter/tex/displaytex.php?texexp=  /frac{2x}{4%2Bx^2}  
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Appendix B 

Tasks used for interviews with graduate students and professors. 

Question 1. 

Determine whether the following statement is true or false. Justify your decision. 

The product of three consecutive positive integers is always a number that is divisible 

by 6. 

 

Question 2. 

Determine whether the following statement is true or false. Justify your decision. 

A convergent series of continuous functions converges to a continuous function. 
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Appendix C 

Follow-up questions: 

 

At what point you made the decision to prove or disprove the statement?  

 

How did you convince yourself that the statement is true or false? How would you 

convince an undergraduate student?  

 

How would you present this statement and your decision about whether it is true or 

false in an undergraduate text? … In a graduate text?... In a lecture intended for the 

general public? 

 

 

General questions about proofs: 

 

What is a proof for you?  

 

How is it different from the proving process? 

 

What role proofs play in your research? 

 

 

Questions related to validation: 

 

 

Do you use examples to convince yourself if a general statement is true?  

 

Do you ever use your intuition to help you verify results of your mathematical 

thinking?  

 

Have you ever improved a conjecture by creating proofs and counterexamples? 

 

After you have constructed a proof what means do you use to make sure it is 

correct?   

Are you checking the proof line by line, the structure of the argument, testing it on 

examples or special cases, other? 
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Is this process different from the way you validate students’ or other 

mathematicians’ proofs? (as when you are reviewing a thesis or a manuscript 

submitted for publication) 
 

 


