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ABSTRACT 

 

A LC-MS/MS-Based Approach to Studying the Saccharomyces cerevisiae Cca1 Protein 

 

Tian Lai Guan 

 

 

The enzyme ATP (CTP): tRNA-specific tRNA nucleotidyltransferase (tRNA-NT) is an essential 

enzyme in eukaryotes and some prokaryotes and plays a critical role in tRNA maturation. This enzyme is 

responsible for the addition of AMP and CMP residues to the 3’-ends of tRNA molecules to allow for 

their aminoacylation and subsequent use in protein synthesis. The tRNA-NT (Cca1) in Saccharomyces 

cerevisiae (yeast), although encoded by a single nuclear gene (CCA1), functions in multiple cellular 

compartments (cytosol, nucleus, and mitochondrion). Here we used mass spectrometry to explore both 

cis- and trans-acting factors that could provide clues to the importance of the function and localization of 

this enzyme in Saccharomyces cerevisiae. We characterized post-translational modifications on the native 

enzyme and analyzed the proteomes of native and temperature-sensitive (ts) yeast strains at permissive 

(20oC and 30oC) and quasi-restrictive (33oC) temperatures. 

Our experiments identified amino acids cysteine 307, lysine 312 and tyrosine 317 in one α-helix 

as sites of post-translational modifications in early log phase showing acetylation, acetylation and 

phosphorylation, respectively. As these modifications were present, this may suggest that these post-

translational modifications play a role in protein function or localization. 

As we have identified a mutation in the gene coding for tRNA-NT that leads to a temperature-

sensitive phenotype, we set out to do a comparison of the proteome profiles of this strain and the native 

yeast strain from which it was derived. This study revealed specific differences between the native and ts 

strains and between the different temperatures tested. Levels of stress-response proteins (Ctt1, Ddp1, 

Gad1, Prx1, Sod2, Tdh1, Uga1, and Uga2) were increased in the variant but not the native strain at 33°C 

but not in either the native or the variant at any other temperature tested (20°C or 30°C). This suggests 

that in the ts strain, the stress response is induced to combat the loss of activity associated with the variant 

tRNA-NT. In addition, a number of mitochondrial or ribosomal proteins such as Aim24, Atp20, Cox2, 

Cox5A, Mhr1, Nuc1, Rip1, Drs1, Edc3, Hca4, Nog2, Nsa2, Rlp7, Sod1, Sof1, Tsr4, Utp23 whose levels 

differ in the native and variant proteomes were identified, suggesting pathways to be explored to explain 

the ts phenotype. 
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1. INTRODUCTION 

 

Transfer RNAs (tRNAs) play a vital role in protein synthesis (Figure 1.1). They are 

responsible for delivering amino acids to the ribosome for translation. In eukaryotic cells, tRNAs 

are transcribed from DNA as precursors that must be further processed to generate functional 

tRNAs (Bjork et al, 1987). One enzyme required in this processing is ATP(CTP): tRNA-specific 

tRNA nucleotidyltransferase (Deutscher, 1973) that post-transcriptionally adds the 3’-terminal 

cytidine-cytidine-adenosine sequence, which is needed to define the site of aminoacylation. 

 

 

Consequently, tRNA-NT plays a key role in tRNA maturation and must function in all 

intracellular locations where tRNAs are produced or used in protein synthesis (nucleus, 

mitochondrion, cytosol, and in plants, plastids). 

 

1.1. Overview of tRNA nucleotidyltransferase structure and function 

 

All tRNA-NTs belong to the polβ-type nucleotidyltransferase superfamily (Aravind and 

Koonin, 1999) and are divided into two classes based on conserved sequence motifs: Class I 

Figure 1.1 Expanded version of the central dogma (Rogers, 2012)  

A red star indicates the tRNA nucleotidyltransferase functional process. 
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confined to Archaea and Class II present in Bacteria and Eukaryota (Vörtler et al., 2009). Class 

II enzymes contain five well-conserved motifs A-E (Figure. 1.2) in the amino-terminal portion of 

the protein that play roles in substrate recognition, binding and catalysis (Cho et al., 2002). We 

have shown (Shan et al., 2008) that mutations in regions associated with these conserved motifs 

can generate a temperature-sensitive (ts) phenotype in yeast. Recently, a number of mutations in 

or near these conserved motifs have been associated with human diseases (Chakraborty et al., 

2014; Sasarman et al., 2015; Giannelou et al., 2015; Wedatilake et al., 2016; Frans et al., 2016; 

Deluca et al., 2016) highlighting the importance of these sequences in tRNA-NT structure, 

function and/or localization, and reflecting how small changes to these sequences can lead to 

changes in cells resulting in deleterious phenotypes. 

 

We recently have shown that the temperature-sensitive phenotype in yeast arises from a 

hypomorphic effect reflecting reduced activity of the tRNA-NT, i.e., the variant protein functions 

less well at any temperature tested but the reduced growth rate is only evident at the restrictive 

temperature (Goring et al., 2013). Moreover, we also showed that the temperature-sensitive 

phenotype can be suppressed by overexpressing the variant protein (Goring et al., 2013). 

 

Moreover, a number of mutations in the human TRNT1gene, coding for the human 

tRNA-NT have been linked to diseases such as SIFD (Chakraborty et al., 2014), retinitis 

pigmentosa (Sasarman et al., 2015; De Luca et al., 2016), and immune dysregulation (Giannelou 

et al., 2015).  These mutations lead to amino acid substitution that effect protein stability and 

activity (Chakraborty et al., 2014; Leibovitch et al., submitted). 

 

These data, taken with what we observed in yeast, suggest that reduced activity of 

tRNA-NT may be linked to changes in multiple systems in eukaryotic cells and that these 

changes lead to metabolic defects. 

 

While the amino-terminal portions of Class II tRNA-NTs show conserved sequences 

and defined motifs, there is little sequence similarity among the carboxy-terminal portions of 

these proteins. This less conserved portion of the protein may be involved in tRNA binding and 
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positioning (Tomita et al., 2004; Betat et al., 2004; Tretbar et al., 2011), but more work is 

needed to confirm the functions of this region of the protein. 

 

Figure 1.2 Alignment of the head and neck regions of tRNA nucleotidyltransferases 

(Goring et al., 2013) 

Alignment performed by Clustal W (Martin et al., 2007). The yeast enzyme and four other 

class II tRNA nucleotidyltransferases: Aquifex aeolicus (Tomita et al., 2004), Thermotoga 

maritime (Toh et al., 2009), Bacillus stearothermophilus (Li et al., 2002), and human 

(Augustin et al., 2003) for which crystal structures have been solved are shown. Motifs A-E 

first identified in the Bacillus stearothermophilus enzyme (Cho et al., 2002) are boxed and 

labeled. 

 

* amino acid identity 

: strongly conserved amino acid 

. weakly conserved amino acid 
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1.2. Localization of tRNA nucleotidyltransferase 

 

As discussed previously, tRNA-NT must function in all intracellular locations where 

tRNAs are produced or used in protein synthesis (mitochondrion, nucleus, cytosol and in plants, 

plastids).  Interestingly, unlike most proteins, where a single gene encodes a protein that works in 

only one compartment of the cell (Carrie et al., 2009), a single nuclear gene encodes tRNA-NT 

that functions in multiple intracellular destinations. In fact, genome sequence analysis of 163 

eukaryotic organisms (Leibovitch et al., 2013) indicated that 153 carried only a single gene 

thought to code for tRNA nucleotidyltransferase. This makes tRNA-NT one of a small group of 

proteins known as “sorting isozymes” (Martin and Hopper, 1994) where a single gene encodes 

proteins that are distributed to multiple subcellular compartments. For this to occur, these 

proteins must contain multiple intracellular targeting signals for distribution to multiple 

intracellular destinations without compromising catalytic activity. 

 

1.3. Mechanisms for targeting sorting isozymes 

 

Studies on tRNA-NTs have helped to identify mechanisms for targeting sorting 

isozymes to more than one intracellular location. For example, as far back as 1992 (Chen et al., 

1992), it was evident that the yeast tRNA-NT was a sorting isozyme and that by using multiple 

transcription and translation start sites (Wolfe et al., 1994), different forms of the protein 

containing or lacking amino–terminal mitochondrial targeting information could be produced 

(Wolfe et al., 1996). More recently, we showed a similar situation in Arabidopsis where different 

transcription and translation start sites produced tRNA-NT proteins with or without both 

mitochondrial and plastid targeting information (Schmidt von Braun et al., 2007). In addition, we 

showed that in Arabidopsis the carboxy-terminal portion of the protein could also affect 

localization (Schmidt von Braun et al., 2007; Leibovitch et al., 2013). While this provides 

evidence for where the mitochondrial and plastid targeting signals are found on tRNA-NT, in 

neither of these cases was a potential nuclear localization signal (NLS) identified, although it 

was shown (Wolfe et al., 1996) that adding an SV40 NLS to the yeast tRNA-NT caused a 

growth defect and that modifying the carboxy-terminal portion of the Arabidopsis protein could 

alter its nuclear distribution (Leibovitch et al., 2013). This suggests that some feature other than 
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the amino-terminal sequence is responsible for the distribution of this protein between the 

nucleus and the cytosol. Possible mechanisms for defining the distribution of sorting isozymes 

are illustrated in Figure 1.3 (Yogev and Pines, 2011). 

 

 

Figure 1.3 Possible modes of distribution of sorting isozymes 

 

Five different mechanisms have been identified in eukaryotic cells: (A) An ambiguous 

targeting signal is recognized by different organelles. (B) Competition between two 

targeting signals on the same protein. (C) Post-translational modification of the targeting 

signal accessibility. (C1) Nascent chain cleavage exposing a cryptic targeting signal. (C2) 

Inaccessibility of a signal caused by (i) folding, (ii) binding to cellular factors or (iii) 

modification of the polypeptide. (D) Retrograde movement, cytosolic protein is exported 

after import into an organelle. (E) Release of proteins from an organelle’s intermembrane 

space by membrane permeabilization (Yogev and Pines, 2011). 

 

While having a defined targeting signal provides a simple way to direct proteins to 

specific destinations in the cell, at times it may be important to be able to regulate the 

distribution of a protein between different intracellular destinations. For example, we showed 

that in the yeast Candida glabrata the amount of transcript (potentially encoding the form of 

tRNA-NT with its amino-terminal mitochondrial targeting signal and targeted to mitochondria) 

was greater when the yeast were grown on a non-fermentable carbon source and required 

mitochondrial respiration for energy production than when the yeast were grown on glucose (a 
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fermentable carbon source) such that mitochondrial respiration was not required for growth 

(Hanic-Joyce and Joyce, 2002). 

 

One established way in which specific targeting signals can function as regulated 

targeting signals is through post-translational modifications (mode C2iii in Figure 1.3). Studies 

have shown that the intracellular distribution of some proteins may be regulated by post-

translational modifications. For example, the distribution of mammalian NADH-cytochrome b5 

reductase between the mitochondrion and the endoplasmic reticulum is mediated by N-

myristoylation (Colombo et al., 2005). Protein targeting to chloroplasts can be mediated by 

targeting signal phosphorylation and dephosphorylation (Waegemann and Soll, 1996; Lamberti 

et al., 2011). In fact, phosphorylation and dephosphorylation can also alter the distribution of 

proteins (e.g., the non-receptor tyrosine kinase, Ab1) to the nucleus, cytoplasm, ER and 

mitochondria. In this case tyrosine phosphorylation increases mitochondrial localization 

(Williamson et al., 2002; Alvarez et al., 2004; Derkinderen et al., 2005). As another example, 

mitochondrial protein import of Tom22 was shown to be regulated by phosphorylation with 

phosphorylation mediated by cytosolic kinases (Schmidt et al., 2010, 2011). 

 

The regulation of the distribution of proteins shared between the cytosol and the nucleus 

has been studied most extensively. Proteins which move between these two destinations may 

play roles in transcription, post-transcriptional processing (e.g., RNA maturation pathways) and 

specific nuclear functions (e.g., DNA replication, gene regulation, etc.) and therefore are of 

considerable interest. Classical nuclear import involves the transport through the nuclear pore 

complex (NPC) of proteins possessing a nuclear localization signal (NLS) with the aid of helper 

proteins, importins. Nuclear export is mediated in a similar manner with a specific nuclear export 

signal (NES), exportins, etc. (Mattaj and Englmeier, 1998; Macara, 2001; Pemberton and 

Paschal, 2005). 

 

One of the best characterized post-translational modifications involved in nuclear 

import/export is phosphorylation and dephosphorylation of specific amino acids in proteins to be 

targeted to or from the nucleus (see Nardozzi et al., 2010 for review). For example, the nuclear 

import of several proteins, e.g., lamin B2, SV40 T-antigen, and yeast transcription factor SWI5 
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(Jans et al., 1991; Moll et al., 1991; Rihs et al., 1991; Hennekes et al., 1993) is inhibited by 

phosphorylation of a serine or threonine residue near the NLS on the protein. Moreover, this 

targeting can be precisely regulated by phosphorylation (Jans and Hübner, 1996). 

 

Acetylation also has been identified in proteins involved in nuclear import (Bannister et 

al., 2000) and has been shown to alter protein distribution in eukaryotic cells (Zhao et al., 2006; 

Lui et al., 2012; Cao et al., 2017; Li and Yu, 2017). Even proteins that typically would not be 

thought to have a nuclear function (e.g., glyceraldehyde-3-phosphate dehydrogenase) are 

directed to the nucleus upon acetylation (Ventura et al., 2010). In some instances, protein 

localization is defined by a combination of phosphorylation and acetylation (Wang et al., 2004). 

 

To date a single post-translational modification has been reported on the yeast Cca1 

(Albuquerque et al., 2008). These authors reported phosphorylation of the serine residue at 

position 21 just after the third in frame start codon in Cca1 (see Figure 1.2) in cells that had been 

grown to an OD600 of 0.7 and treated with 0.05% methyl methanesulfonate (MMS) for three 

hours. 

 

It would be interesting to determine whether or not the distribution or activity of tRNA-

NT is mediated by this or other post-translational modifications. 

 

1.4. Saccharomyces cerevisiae as a model organism 

 

As a biological model organism, Saccharomyces cerevisiae is ideal for studying tRNA-

NT because it combines the advantages of both prokaryotes and eukaryotes. For instance, like 

prokaryotes, it has a short doubling time (90 min) in glucose medium (Brewer et al., 1984) and is 

a unicell but with a cellular organization similar to multicellular eukaryotic organisms including 

humans. In addition, S. cerevisiae has the first fully sequenced eukaryotic genome (Goffeau et 

al., 1996) and contains ~6000 genes, compared with around 25 thousand protein coding genes in 

humans (Duina et al., 2014). Moreover, there is considerable information already available on 

the cell cycle and other processes and metabolic pathways in this organism. For example, there 

are multiple large-scale surveys on the requirements for specific genes (Ross-Macdonald et al., 
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1999, Christopher et al., 2016), the levels of expression of those genes under various conditions 

(Puig and Perez-Ortin, 2000; Carreto et al., 2010), localization of gene products (Kumar et al., 

2002; Huh et al., 2003), amounts of gene products present in the cell (Raué, 1994), and 

interactions between specific gene products (see Boone et al., 2007 for review). Moreover, the S. 

cerevisiae proteome has been well-characterized (Schwikowski et al., 2000; Griffin et al., 2002; 

Léger et al., 2016; Lawless et al., 2016) and changes in the proteome have been mapped under 

multiple different conditions (Prokisch et al., 2004; Picotti et al., 2009). 

 

1.5. Temperature-sensitive (ts) mutants of Saccharomyces cerevisiae 

 

A temperature-sensitive (ts) phenotype implies that the phenotype is dependent on the 

organism being moved to a restrictive temperature which is elevated as compared to the 

permissive temperature. In the example discussed here, specific mutations in the Saccharomyces 

cerevisiae CCA1 gene allow the yeast to grow at 20°C (the permissive temperature) but not at 

37°C (the restrictive temperature). Normally, wild-type yeast cells can grow from 10°C to 37°C 

(Miller et al., 1979). Mutations in many different genes can lead to a ts phenotype, for instance, 

Hartwell initially isolated around 400 ts mutants in his ground-breaking research (Hartwell, 

1967). These mutations mapped to genes coding for proteins responsible for essential processes 

such as the cell division cycle, cell wall formation, and the synthesis of proteins, ribonucleic acid 

(RNA), and deoxyribonucleic acid (DNA) (e.g., Hartwell, 1967; Hartwell and McLaughlin, 

1967; Hartwell et al., 1973; Matsuzaki et al., 1988). These ts mutants provided critical insights 

into gene and cell processes. Since Horowitz recognized the temperature-sensitive mutation in 

the 1950s (Horowitz, 1950), studies have relied on the ts phenotype as a useful approach either to 

identify essential gene sets for various aspects of biology or to understand the function of these 

essential genes (e.g., Edgar and Lielausis, 1964; Hartwell, 1967; Pringle, 1975; Pringle and 

Hartwell, 1981; Kawakami et al., 1992; Tan et al., 2009; Ben-Aroya et al., 2010).  

 

1.6. Saccharomyces cerevisiae tRNA-NT and the temperature-sensitive phenotype 

 

Previous studies in our lab identified a single amino acid substitution in Cca1 that 

resulted in the generation of a temperature-sensitive phenotype (Shan et al., 2008). We have 
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explored how this amino acid change alters tRNA nucleotidyltransferase structure, stability, and 

function. We showed that replacing the glutamic acid residue at position 189 in the native 

enzyme by lysine or phenylalanine led to a temperature-sensitive phenotype where the cells were 

unable to grow at the restrictive temperature (37°C) (Shan et al., 2008). Furthermore, we showed 

that these mutations lead to reduced tRNA-NT activity which ultimately resulted in the ts 

phenotype as by overexpressing the variant protein, we could suppress the ts phenotype (Goring 

et al., 2013). Based on these observations, we suggested that reduced tRNA-NT activity lead to a 

smaller pool of tRNAs with intact 3’-termini (Aebi et al., 1990) which lead to reduced efficiency 

of translation and ultimately the ts phenotype (Goring et al., 2013). In contrast, it also has been 

shown that the same glutamate to lysine substitution in the yeast tRNA-NT results in an 

alteration in the stability of some mRNAs when cells are shifted from the permissive to the 

restrictive temperature (Peltz et al., 1992). More information is required to make the connection 

between reduced tRNA-NT activity and the growth phenotype that arises from it. 

 

We believe that what we learn from yeast may be used to explore what is happening in 

humans where single amino acid substitutions have been linked to disease phenotypes (e.g., 

Chakraborty et al., 2014). As the human and yeast tRNA-NTs are homologues and single point 

mutations in either can define deleterious phenotypes (ts in yeast and disease in humans), it is 

possible that these variants may affect the same mechanism(s) or interrupt near identical 

pathways. To address this question, a novel approach is needed, which could reveal the 

relationship between tRNA nucleotidyltransferase and other proteins in vivo. For this purpose, 

we designed a nano-HPLC tandem Orbitrap mass spectrometric method to apply a whole cell 

proteomics approach to explore the yeast cell proteome in wild-type and ts strains at permissive 

and quasi-restrictive temperatures. 

 

1.7. A label-free nano-HPLC tandem Orbitrap MS/MS proteomics approach 

 

Proteomics, which is generally defined as the large-scale study of the characterization of 

the complete protein complement of a cell, tissue, or organism (a proteome), investigates the 

location, abundance/turnover, and post-translational modifications of proteins in a proteome 

(Abluquerque et al., 2008; Claydon and Beynon, 2012; Christiano et al., 2014). It also may 
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provide information to help to identify protein-protein interactions, and proteins in specific 

metabolic pathways (Zhu et al., 2001; Koller et al., 2002; Kleffmann et al., 2004). Compared 

with other proteomic techniques such as two-dimensional gel electrophoresis (2DE), two-hybrid 

analysis, and protein microarrays; mass spectrometry (MS) can handle the complexities 

associated with more comprehensive proteome analyses (Han et al., 2008). As we know, there is 

still much to learn about the properties of the proteome since it represents a complex and 

integrated system. To get deeper insights into the composition, structure, function and control of 

the proteome, and shed light on complex biological processes and phenotypes, powerful mass-

spectrometry-based technologies can be very helpful (see Aebersold and Mann, 2016 for 

review). 

 

Mass spectrometry is a powerful technology which provides both qualitative and 

quantitative analyses that can be used to enhance our understanding of complex and dynamic 

processes. As a current state-of-the-art analytical technique, mass spectrometry provides the 

necessary depth for informative proteome analysis. High-resolution MS combined with 

computational analysis has successfully achieved quantitative characterization of both cellular 

and organellar proteomes (Walther and Mann, 2010). A typical mass-spectrometric approach 

involves multiple stages (Aebersold and Mann, 2003). First, the proteins of interest are isolated 

from the cell, tissue or organism of interest grown under the conditions of interest. This typically 

involves SDS-polyacrylamide gel electrophoresis as a final step. Subsequently, the proteins are 

digested with an appropriate protease to generate peptides for analysis as MS analysis of whole 

proteins is less sensitive than peptide MS and determining the mass of multiple peptides is more 

informative than a single protein mass (as multiple proteins may share the same mass). At this 

point, the masses of the peptides are determined, usually after separation by liquid 

chromatography prior to exposure to the electrospray ion source. The mass spectrum of the 

peptides may be taken once (MS1) or in tandem (MS/MS) and the spectra acquired and stored 

for matching against available protein sequence databases to identify the peptides and ultimately 

the proteins defined by these peptides. This bottom-up proteomics method allows for protein 

identification through comparison with an existing proteome database (in this case, 

Saccharomyces cerevisiae) downloaded from UniProt. In addition, based on the signal intensities 

of unique peptides, the levels of detected proteins can be quantified. For example, this type of 
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approach was used both to identify and quantitate components of the major histocompatibility 

complex (MHC) (Caron et al., 2015). Finally, by comparing individual peptides in this way, 

post-translational modifications (PTMs) on peptides can be identified. For example, Zhang and 

colleagues used an MS approach to identify 27 different kinds of PTMs and 53 specific PTM 

sites (including 13 that had never been reported previously) in 30 GST-fused yeast kinase 

proteins (Zhang et al., 2010). 

 

1.8. The aim and approach of this study 

 

My project had two main goals linked through the Cca1 protein and mass spectrometry. 

I wanted to explore both the cis- and trans- acting factors that may mediate the structure, activity 

and localization of Cca1 protein in yeast and to determine what role a temperature-sensitive 

phenotype may have on these. Our hypothesis includes 1) that PTM(s) may be detected on Cca1 

in yeast cell during the early log phase; 2) that reduced activity of Cca1 protein may lead to 

protein levels increasing/decreasing in certain functional groups, for instance, proteins involved 

in protein synthesis process, or heat stress response proteins, which might cause the cell to 

present the ts phenotype. Thus, mass spectrometry was used 1) to detect any post-translational 

modifications on yeast Cca1 in early log phase and 2) to identify any changes in specific protein 

levels that may mediate or be mediated by changes in Cca1 function at permissive and restrictive 

temperatures. 

 

2. MATERIALS AND METHODS 

 

2.1. Strains, growth media and reagents 

 

Saccharomyces cerevisiae strains, except for the commercially-prepared Yeast TAP-

Tagged CCA1 strain YSC1178 (Id: YER168C) purchased from Dharmacon, were kindly 

provided by Dr. Pamela Hanic-Joyce. Primary antibody: Anti-Cca1 antibody for Western 

blotting was kindly provided by Dr. Erin Redmond (University of Ottawa). Pierce Goat Anti-

Rabbit IgG, (H+L), Peroxidase conjugated (Product number: 31460, Lot number PI208014, 
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Thermo Scientific). Pierce™ ECL Western Blotting Substrate (Thermo Fisher Scientific, Cat. 

Number: 32209) 

 

Table 2.1 Yeast Saccharomyces cerevisiae strains used in this study 

 

Yeast Strain Relevant Genotype Genetic Background 

BY4743  MATa/α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 

LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/ura3Δ0 

CCA1-TAP CCA1TAP-Tagged W303-1B 

NT33-5 cca1-E189K MATα ade2 his3 leu2 trp1 ura3     

W303-1B  MATα   ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-

1 can1-100 

W303 Heterozygous 

Diploid 
 MATa/Matα ade2/ade2 can1/can1 his3/his3 

leu2/leu2 trp1/trp1 ura3/ura3  

YSC1178  MATa his3-Δ1 leu2-Δ0 ura3-Δ0 met15-Δ0 RMD9-

TAP [rho+] 

 

This study used growth media and buffers listed in Table 2.2. Unless otherwise 

indicated all chemicals and reagents were from Bioshop. Ampicillin (sodium salt, BioTech 

grade) was typically prepared as 100 mg/ml stock solutions and filtered through a 0.2 µm 

sterilized syringe filter and stored at -20°C in 1 ml aliquots. DTT (dithiothreitol) was prepared as 

a 1 M stock solution and stored at -20°C in 1 ml aliquots. PMSF (phenylmethane sulfonyl 

fluoride) protease inhibitor (Thermo Scientific™, Cat. Number: 36978) was prepared at 100 mM 

in isopropanol and stored at -20°C in 1 ml aliquots. Complete™ Protease inhibitor cocktail tablets 

provided in EASYpacks (Roche). Bio-Rad protein assay dye reagent concentrate, 450 ml (Bio-

Rad, Cat. Number 5000006). CHAPS (Bio-Rad, Cat. Number 1610460) 

 

Table 2.2 Recipes for media and buffers 

 

Medium or buffer Components 

YT 

(Sambrook et al., 1989) 

0.8% Bacto-tryptone, 0.5% Bacto-yeast extract, 0.5% NaCl (plates: 1.5 

% agar) 

SC (-URA) 

(Kaiser et al., 1994) 

0.67% yeast nitrogen base without amino acids, 2% glucose, 20 mg/l: 

adenine, L-histidine-HCl, L-arginine-HCl, L-methionine, 30 mg/l: L-

leucine, L-isoleucine, L-lysine-HCl, 50 mg/l: phenylalanine. 

Autoclave. when cool, add 10 ml/l 100×T-mix (plates: 1.5 % agar) 

100×T-mix 

(Kaiser et al., 1994) 

0.2% tryptophan, 0.3% tyrosine, 2% threonine, adjust to pH10 with 

5M NaOH, filter sterilized 



13 
 

Medium or buffer Components 

YPD 

(Kaiser et al., 1994) 
2% peptone, 2% glucose, 1% yeast extract (plates: 1.5% agar) 

Luria Bertani (LB) 

(Miller, 1992) 

1% Bacto-tryptone, 0.5% Bacto-yeast extract, 1% NaCl (plates: 1.5 % 

agar) 

5×-PAGE loading buffer 

(Sambrook et al., 1989) 

250 mM Tris-HCI (pH 6.8), 30% glycerol, 10% SDS, 

5% β-mercaptoethanol, 0.02% bromophenol blue 

10× SDS-PAGE running buffer 

(pH 8.3)  

(Sambrook et al., 1989) 

Tris 30 g/l, glycine 144 g/l, SDS 10 g/l 

SDS-PAGE Resolving gel (10%) 

(Sambrook et al., 1989) 

10% acrylamide (29:1 acrylamide: bis acrylamide, 0.1% SDS, 0.1% 

APS, 0.375 M Tris-HCI (pH 8.8), 0.1% TEMED 

SDS-PAGE Stacking gel (6%) 

(Sambrook et al., 1989) 

6% acrylamide (29:1 acrylamide: bis acrylamide), 0.1% SDS, 0.1% 

APS, 0.125 M Tris-HCI (pH6.8), 0.1% TEMED 

5×TBE 

(Modified from Sambrook et al., 

1989) 

1 M Tris, 1 M Boric acid, 20 mM EDTA (pH8) 

10×TBS 

(Modified from Towbin et al., 

1979) 

137 mM Sodium Chloride, 20 mM Tris, 0.1% Tween-20. Supplied at 

pH 7.6 

Towbin transfer buffer 

(Towbin et al., 1979) 
25 mM Tris-HCl, 192 mM Glycine, 20% Methanol, 0.01% SDS 

PBS 

(Sambrook et al., 1989) 
137 mM NaCl, 2.7 mM KCl, 10.1 mM Na2HPO4, 1.8 mM KH2PO4 

50×TAE(Tirs-acetate-EDTA) 

(Slibinskas et al., 2013) 
2 M Tris-HCl, 1 M acetic acid, 50 mM EDTA 

IEF buffer 

(Slibinskas et al., 2013) 

7 M Urea, 2 M Thiourea, 2% CHAPS, 2% ampholytes, 0.02% 

bromophenol blue, (75 mM DTT, add just before use) 

Equilibrium buffer 

(Slibinskas et al., 2013) 

50 mM Tris-HCl (pH8.5), 2% SDS, 6 M urea, 30% glycerol, 0.02% 

bromophenol blue, (75 mM DTT and 150 mM iodoacetamide, add just 

before use respectively) 

Extract buffer 

(Ghaemmaghami et al., 2003) 

50 mM Tris-HCl (pH8.0),150 mM NaCl, 0.2% NP-40, 10% glycerol, 

containing one complete tablet without EDTA (Roche) per 10 ml, 1 mM 

PMSF and 1mM DTT (add just before using) 

Breaking buffer 

(Harju et al., 2004) 

2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM Tris, pH 8.0, 1 mM 

EDTA, pH 8.0 

 

Table 2.3 Oligonucleotides used in this study 

 

Oligo Sequence (5’ → 3’) 

SCCALF TAA TAT ACT AGT ATG CTA CGG TCT ACT ATA TCT CTA C 

TAPR TAT ATT CTC GAG CCT CAC TGA TGA TTC GCG TC 

 

The restriction sites used in SCCALF (SpeI) and TAPR (XhoI) are shown in bold and the start and stop codons are 

underlined. 
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2.2. Construction of Cca1 overexpression system 

 

2.2.1. Plasmid used to construct Cca1-TAP tagged fusion protein for expression in yeast 

(Figure 2.1) 

 

 

Figure 2.1 Plasmid p426 into which was cloned the CCA1-TAP open reading frame 

 

Restriction enzyme sites in the multiple cloning site are indicated in blue. The Cca1-TAP open 

reading frame was cloned between the SalI and SpeI (BcuI) restriction sites for expression 

under the control of the glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter. 

 

2.2.2. Extracting DNA from the CCA1-TAP strain YSC1178 (Harju et al., 2004) 

 

The CCA1-TAP-containing yeast strain was grown overnight on a YPD plate at 30°C. 

Cells (2 cm2) were scraped from the plate, transferred to an Eppendorf tube and resuspended in 

200 µl of breaking buffer (Harju et al., 2004). Subsequently, 200 µl of acid washed glass beads 

and 200 µl of phenol were added with vortexing for 3 min and centrifugation at 12 000 ×g for 5 

min. After centrifugation, the aqueous phase was transferred to another Eppendorf tube and the 

phenol extraction repeated. The aqueous phase (~400 µl) was collected and 1 ml of cold 99% 

ethanol was added with vortexing. The sample was centrifuged as above, the supernatant 
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discarded, and the pellet resuspend in 400 µl of dH2O by vortexing. To this was added 5.3 µl of 

7.5 M ammonium acetate and 1 ml of cold 99% ethanol with vortexing and centrifugation as 

above. The supernatant was discarded, and the pellet washed with 1 ml of 85% ethanol with 

centrifugation as above. The pellet was dried under vacuum for 20 min and resuspended in 30 µl 

of dH2O by vortexing. To check the result, 1.5 µl of sample was examined after electrophoresis 

on a 0.8% agarose 1×TBE gel (containing 1 µg/ml ethidium bromide) for 1 h at 100 V. 

 

2.2.3. Polymerase chain reaction (PCR) and the purification of PCR products 

 

In order to generate a Cca1-TAP expression system to overexpress S. cerevisiae TAP 

fusion tRNA-NT, CCA1-TAP was amplified from extracted DNA (section 2.2.2.) using oligos 

SCCALF, and TAPR (Table 2.3). Oligonucleotides were obtained from Integrated DNA 

Technologies. The PCR reactions contained 100 ng yeast genomic DNA, 100 pmol of each 

oligonucleotide primer, 10 mmol dNTP solution, 1.25 units of Phusion HF DNA polymerase, 

and dH2O to a final volume of 50 µl and were performed in a PERKIN ELMER DNA thermal 

cycler using an initial hot start cycle of 98°C/3 min, followed by 35 cycles of 98°C/15 sec, 

52°C/30 sec, 72°C/60 sec. The last cycle was finished at 72°C for 10 minutes to ensure complete 

extension of PCR products. That PCR products of the expected size were generated was 

confirmed by electrophoresis of 5 µl of the reaction mix on 0.8% agarose 1×TBE gels at 100 V 

(section 2.2.2.). 

 

2.2.4. Phenol extraction and ethanol precipitation (Ausubel et al., 1995) 

 

An aliquot (44 µl) of the PCR product was diluted to 200 µl with dH2O and 20 µl of 3 

M sodium acetate (pH 5.2) and 200 µl of phenol were added with subsequent vortexing and 

centrifugation as above. The aqueous phase was collected, and the phenol extraction repeated 

twice more. Finally, the aqueous phase was collected and extracted twice with equal volumes of 

water-saturated ether. After removing the ether phase, 400 µl of 99% ethanol was added to the 

aqueous phase with vortexing, the sample was placed at -70°C for a minimum of 30 min, 

centrifuged for 30 min and the supernatant discarded. After adding 400 µl of 80% ethanol and 

inverting the tube a few times, the tube was centrifuged for 5 min and the supernatant discarded.  



16 
 

The pellet was dried under vacuum as above and resuspended in an appropriate volume of sterile 

dH2O for use. 

 

2.2.5. Restriction digestions 

 

An appropriate amount of purified PCR product or p426 plasmid was diluted to a final 

volume of 40 µl to which was added 5µl of 10×TANGO buffer and 2 µl of BcuI and 2 µl of SalI 

(to vector) or XhoI (to PCR product). After gentle mixing, the samples were placed in a 37°C 

water bath for one hour. The digested samples were separated by agarose gel electrophoresis 

(2.2.2.) and the desired fragments were excised (2.2.6.). 

 

2.2.6. Fragment purification (Bewsey et al., 1991) 

 

After separating the fragments by agarose gel electrophoresis in the dark, fragments 

were visualized under the preparative light setting on a Foto/Prep®I (FOTODYNE Incorporated) 

transilluminator and excised. The agarose plug containing the fragment of interest was placed in 

an Eppendorf tube to which was added 300 µl of phenol (saturated with 0.1 M Tris-HCl, pH 8.0). 

After vigorous vortexing for 2 min, the sample was placed at -70°C for a minimum of 30 min 

and thawed at 37°C for a minimum of 10 min. Again, an equal volume of phenol was added, and 

the procedure repeated. After the second freeze-thaw cycle, 150 µl of dH2O and 40 µl of 3M 

sodium acetate (pH 5.2) were added with vortexing and centrifugation for 5 min to separate the 

aqueous and phenol layers. The aqueous layer was collected and two phenol and two ether 

extractions followed by ethanol precipitation were carried out as described in 2.2.4. The pellet 

remaining was resuspended in 10 µl of dH2O. 

 

2.2.7. Ligations 

 

Insert (100-200 ng) and phosphatase-treated vector (100 ng) DNA were ligated in 

1×ligase buffer (MBI) containing 1 unit of T4 DNA ligase (MBI) and 0.25 mM ATP in a final 

volume of 20 µl at room temperature for 2 hours. Linearized vector alone and dephosphorylated 

vector without insert were used as controls. Ligation mixes were stored at -20°C until needed. 
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2.2.8. E. coli transformation (Ausubel et al., 1989) 

 

Aliquots (10 µl) of the appropriate ligation mixes were added to prechilled Eppendorf 

tubes containing 100 µl of XL2 E. coli competent cells. After incubation on ice for 30 min, the 

cells were heat shocked at 42°C for 45 sec and returned to the ice. At this point 400 µl of YT 

medium was added and the tubes were incubated at 37°C for 30 min. Then the tubes were 

centrifuged at 12 000 ×g for 30 sec, 400 µl of the supernatant removed and the pellet resuspended 

in the remaining solution prior to plating on YT+Ampicillin medium for incubation overnight at 

37°C. 

 

2.2.9. Plasmid purification and confirmation 

 

A Gene Jet Plasmid Miniprep Kit (#K0503, Lot 00184629, Thermo Scientific) was 

employed to extract plasmid following the manufacturer’s instructions. Restriction digestions as 

described above (section 2.2.5.) were carried out using 1µl of purified plasmid and 1µl HindIII 

(MBI) to identify clones containing the insert of interest by agarose gel electrophoresis (section 

2.2.5.). 

 

2.2.10. Saccharomyces cerevisiae transformation (Dohmen et al., 1991) 

 

Plasmid DNA was made sterile by ethanol precipitation (2.2.4.) and resuspension in 50 

µl of sterile dH2O. A 10 µl aliquot of the plasmid DNA was added to a sterile Eppendorf tube 

containing 100 µl of competent yeast cells (W303-1B) provided by Dr. Pamela Hanic-Joyce. 

After incubation at 42°C for 2 hours, the solution was spread onto SC (-URA) plates with 

incubation at 30°C. Colonies were selected from the plate, inoculated into liquid SC (-URA) 

medium and incubated at 30°C with shaking (225 rpm). An aliquot of the transformed cells was 

taken and stored at – 70oC after addition of glycerol to 20%. 
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2.3. Western blotting  

 

2.3.1. Whole cell lysis (Ghaemmaghami et al., 2003) 

 

Yeast cells were harvested by centrifugation at 3 000 ×g for 5 min at an OD600 value of 

approximately 1.0 after growth in 1l liquid YPD medium under the appropriate experimental 

conditions (20°C, 30°C, and 33°C). The resulting cell pellet was resuspended in extract buffer  

(2 ml of buffer/g wet weight of cells) by vortexing and transferred to a 2-ml screw cap 

Eppendorf tube. An equal volume of acid washed glass beads (425-600 µm, SIGMA®) was 

added and the cells were homogenized in a Precellys™ tissue homogenizer (Bertin Technologies) 

at 6800 rpm for six cycles of 30 sec. Between cycles, tubes were chilled on ice for 5 min. The 

homogenate was cleared by centrifugation at 14 000 xg for 30 min at 4°C. The supernatant was 

collected as the total protein extract. 

 

2.3.2. Measurement of protein concentration by Bradford Assay (Bradford, 1976) 

 

Protein concentrations were determined by Bradford assay according to the procedure 

of the supplier (Bio-Rad). In brief, a 200 µl aliquot of Bio-Rad protein assay dye reagent 

concentrate was mixed with 800 µl of protein sample and water to give a final volume of 1 ml. 

Absorbance was measured at 595 nm with the Shimadzu™ UV-260 UV Visible Recording 

Spectrophotometer. A standard curve was produced by measuring absorbance at 595 nm of 

different amounts of bovine serum albumin (0, 5, 10, 15, 20, 25 µg). The colour development of 

the mixture of protein and dye reagent was time dependent, so the incubation time of the BSA 

standard and unknown samples was kept the same (5-10 minutes). The concentration of proteins 

was determined by linear regression analysis from the standard curve. 

 

2.3.3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SD-PAGE) 

 

SDS polyacrylamide stacking (6%) and resolving (10%) gels (5 ml and 2 ml, 

respectively) were made according to the instructions accompanying the Bio-Rad apparatus and 

cast between 4 cm by 10 cm gel plates separated by 0.75 mm spacers. Protein samples were 
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mixed with 5×PAGE loading buffer (see Table 2.2), boiled for 2 min and loaded into the wells of 

the stacking gel for electrophoresed in pre-chilled running buffer at constant voltage (200 volts) 

for approximately one hour. After electrophoresis, the gels were removed from the apparatus and 

stained by the procedure of Wong et al. (2000). In brief, gels were stained for one minute in a 

1000 KW Microwave oven (Whirlpool) in 100 ml of 0.1% Coomassie blue R-250, 10% 

isopropanol, 10% acetic acid and destained for one minute under the same conditions in 250 ml 

of 20% isopropanol, 10% acetic acid followed by gentle shaking for 20 min.  Finally, the 

isopropanol/acetic acid solution was removed from the gel by gentle shaking in 500 ml of dH2O 

for three hours. For Western blotting, the gels were used directly without any staining or de-

staining. 

 

2.3.4. Preparing the transfer membrane (Towbin et al., 1979) 

 

For Western blotting, the gel was removed from the SDS-PAGE apparatus and placed 

immediately into Towbin transfer buffer for 1 min with gentle shaking (Table 2.2). At the same 

time, 10×7.5 cm2 Gel Blot paper (Whatman® Item No. 10427812) and the foam pads (Bio-Rad) 

were prewetted in the transfer buffer and the PVDF membrane was prewetted in 100% methanol. 

The transfer apparatus was assembled (foam pad-filter paper-gel-membrane-filter paper-foam 

pad) and placed in the transfer apparatus (gel on the cathode, and membrane on the anode). 

Transfer in pre-chilled Towbin transfer buffer was carried out at 4°C at constant voltage (30 

Volts) overnight. 

 

2.3.5. Membrane blocking and antibody incubations (Bronstein et al., 1992) 

 

After transfer, the apparatus was disassembled, and the membrane blocked first in 20 ml 

of 4% w/v skim milk (Carnation® Instant Skim Milk Powder, Nestlé) in 1×TBST (Table 2.2) 

solution (pre-chilled to 4°C) with gentle shaking at room temperature for 1 hour. After blocking, 

the blocking solution was replaced with the primary antibody solution, rabbit anti-Cca1antibody 

(diluted 1:10 000) in 10 ml pre-chilled 4% skim milk in 1×TBST (Table 2.2) solution and gentle 

shaking at room temperature is performed for 2 hours. After incubation with the primary 

antibody is complete, the membrane is washed three times for five minutes in 20 ml 1×TBST on 
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the shaker. After washing, 20 ml of pre-chilled 4% skim milk 1×TBST containing the secondary 

antibody, goat anti-rabbit IgG (H+L) peroxidase conjugated antibody (Thermo Scientific Prod# 

31460 Lot# PI208014) diluted 1: 100 000 was added with gentle shaking at room temperature for 

1 hour. After incubation with the secondary antibody the membrane was washed again three 

times in 20 ml of 1×TBST as above. 

 

2.3.6. Protein signal development (Bronstein et al., 1992) 

 

Protein signals were developed by adding 2 ml of Pierce™ ECL Western Blotting 

Substrate solution to the membrane at room temperature for two minutes. The signal intensity 

was recorded using the Amersham Imager 600 on auto exposure mode. (GE Healthcare Life 

Sciences). 

 

2.4. Affinity purification of Cca1-TAP fusion purification 

 

Strain Cca1-TAP was grown in 1 l of SC (-URA) medium at 30°C with 225 rpm 

shaking to an OD600 of 1. Cells were collected and lyzed on ice as in section 2.3.1. The cell 

lysate was loaded at 4°C onto 1 ml of IgG Sepharose™6 Fast Flow resin that had been packed by 

gravity and pre-rinsed with 10 ml of lysis buffer (Table 2.2). The column was sealed and 

incubated at 4°C overnight with gentle rotation. The column was unsealed and the flow-through 

collected by gravity as one 10 ml sample. The column then was washed by gravity with 50 ml of 

pre-chilled lysis buffer (Table 2.2) which was collected as a single fraction. After washing, the 

IgG Sepharose beads were transferred to a new tube containing 250 µl of 5×loading dye (Table 

2.2) and placed at 37°C for 1 hour to denature and remove any protein associated with the beads. 

After collecting the beads by centrifugation (12 000 xg, 4°C, 30 min), the supernatant was 

collected and 25 µl aliquots were used in Western blotting (see section 2.3. above). 
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2.5. Yeast whole cell protein and post-translational-modification mass spectrometry-

based analysis (Xu et al., 2009) 

 

2.5.1. Yeast whole cell protein Mass Spectrometry-based analysis (Figure 2.2) 

 

The strains of interest, W303-1b and NT33-5, were grown in YPD medium at various 

temperatures (20°C, 30°C, and 33°C) to an OD600 of 1 and cleared cell lysates were prepared as 

described in section 2.3.1. An aliquot of this cleared lysate (20 µl) was mixed with 5 µl of 

5×loading dye (Table 2.2), boiled for 1 min and loaded onto a 6% SDS-PAGE gel for 

electrophoresis at 200 V for 20 min (section 2.3.3.). Electrophoresis for such a brief time allows 

the proteins to be concentrated at the interface between the stacking and separating gels. After 

staining the gel with Coomassie (section 2.3.3.), the region showing stain was excised and 

chopped by hand into ~1×1 mm pieces and transferred to an Eppendorf tube. To this tube was 

added 250-300 µl of 50 mM ammonium carbonate + 10 mM DTT with vortexing and subsequent 

incubation at room temperature for 30 min. After the time had elapsed, the tube was centrifuged 

briefly to pellet the gel pieces and the supernatant was discarded and replaced with 250-300 µl of 

50 mM ammonium carbonate + 50 mM iodoacetamide with the vortexing and incubation 

repeated. Again, after centrifugation the supernatant is discarded and replaced this time with 

250-300 µl of 50 mM ammonium carbonate with vortexing and incubation at room temperature 

for 15 min. The supernatant is changed again to 250-300 µl of 25 mM ammonium carbonate + 

5% acetonitrile and the incubation repeated. The acetonitrile concentration was increased 

stepwise with two 30 min incubations in 25 mM ammonium carbonate + 50% acetonitrile and 

one 10 min incubation in 250-300 µl 100% acetonitrile. The gel pieces, saturated with 

acetonitrile, were dried in the SpeedVac at 40°C, resuspended in 40-50 µl of 25 mM ammonium 

carbonate + 0.01µg/µl of trypsin and incubated at 30°C overnight. By adding four volumes of 

60% acetonitrile + 0.5% formic acid to the tube and incubating at room temperature for 15 min, 

the peptides resulting from the tryptic digestion were allowed to diffuse from the gel pieces into 

the solution. After vortexing and a brief centrifugation step, the supernatant was transferred to a 

new tube and the 60% acetonitrile + 0.5% formic acid extraction step repeated twice more. The 

acetonitrile, formic acid solutions were combined in a single tube and dried completely in the 

SpeedVac at 40°C. The samples were resuspended in 2% acetonitrile prior to analysis. 
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Analyses were performed on a Thermo EASY nanoLC II LC system coupled to a 

Thermo LTQ Orbitrap Velos mass spectrometer equipped with a nano-spray ion source. 

Typically, 2 µl of each sample (50-500 ng of protein) was injected onto a 10 cm × 100 µm 

column in-house packed with Michrom Bioresources Inc. Magic C18 stationary phase (5 µm 

particle diameter and 300Å pore size). 

 

Peptides were eluted using a 20-120 min linear gradient at a flow rate of 400 nl/min 

with decreasing amounts of mobile phase A (96.9% water, 3% acetonitrile, 0.1% formic acid) 

and increasing amounts of mobile phase B (2.9% water, 97% acetonitrile, 0.1% formic acid). 

 

A full MS spectrum (m/z 400-1400) was acquired in the Orbitrap at a resolution of 

60000 and the ten most abundant multiple charged ions were selected for MS/MS sequencing in 

a linear trap with the option of dynamic exclusion. Peptide fragmentation was performed using a 

collision-induced dissociation at a normalized collision energy of 35% with an activation time of 

10 ms. 

 

Figure 2.2 The general label-free MS proteomics approach 
 

(a) Post-translational Modification (PTM) identification 

(b) The label-free yeast whole cell proteomic approach 
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2.5.2. Saccharomyces cerevisiae database search 

 

The MS data were processed using Thermo Proteome Discoverer software (v2.1) with 

the SEQUEST search engine. The search was against the Saccharomyces cerevisiae proteome 

database as downloaded from UniProt. The proteolytic enzyme used to define the peptide 

database search was chosen as trypsin (full) and the maximum missed cleavage sites were set at 

three. Mass tolerances of the precursor ion and fragment ion were set at 10 ppm and 0.7 Da, 

respectively. The search allowed for dynamic modifications on methionine (oxidation, 

+15.994915 Da) and cysteine (Carbamidomethyl, + 57.021464 Da). Only peptides with high 

confidence (false discovery rate <1%) were reported. 

 

3. RESULTS 

 

3.1. CCA1-TAP fusion plasmid construction and transformation into Saccharomyces 

cerevisiae 

 

The open reading frame coding for a Cca1-TAP fusion protein was amplified from 

strain YER168C (Dharmacon™ GE Healthcare) by PCR amplification using primers (SCCALF 

and TAPR). A product of expected size, 2157 bp, was generated (Figure 3.1a), digested with 

BcuI and SalI and cloned into the vector p426. A diagnostic restriction digestion of the resulting 

plasmid with HindIII showed the expected profile (7560 bp, 766 bp, and 386 bp) for the plasmid 

containing the cloned PCR product (Figure 3.1b). DNA sequence analysis (Genome Quebec 

Innovation Centre) revealed that the sequence of the insert was correct (Appendix). The 

successfully constructed plasmid was transformed into yeast strain W303-1B and the fusion 

protein was successfully produced in high levels as seen from the Western blot (Figure 3.2). The 

native Cca1 protein shows a mass of between 50 and 75 KDa (Figure 3.2, Lane 2) in good 

agreement with the predicted molecular mass of 62 KDa. In contrast, the Cca1-TAP tagged 

fusion protein has a molecular mass of between 75 and 100 KDa (Figure 3.2, Lane 6) in good 

agreement with the predicted molecular mass of 82 KDa for the fusion protein. It is worth noting 

that the endogenous levels of Cca1 in S. cerevisiae are below the level of detection by Western 

blotting (Figure 3.2b, Lane 4). 
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(a) (b) 

Figure 3.1 Cloning of CCA1-TAP region 

(a) Agarose gel electrophoresis of products of polymerase chain reaction (PCR) of 

the CCA1-TAP region of yeast genomic DNA (YSC1178 – YER168c) 

(b) HindIII restriction enzyme digestion to confirm that the plasmids contained the 

insert of interest 

 

 

 

 

Figure 3.2 Western blot of Cca1 protein 
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3.2. Mass Spectrometry (MS) results of post-translational modification (PTM) of 

Cca1 

 

Yeast strain Cca1-TAP was generated to produce large amounts of Cca1-TAP fusion 

protein by placing the CCA1-TAP gene fusion under the control of the GPD promoter in plasmid 

p426 (Mumberg et al., 1995) and transforming this into the haploid yeast strain (W303-1B). This 

haploid strain was grown in SC (-URA) medium with shaking (225 rpm) at 30°C and a growth 

curve generated (Figure 3.3). The shape of the resulting curve was typical of growth curves in 

that it started with an initial lag phase where growth was slow, then showed a log phase with 

more rapid growth and ended with a stationary phase (Figure 3.3). Based on this growth curve, 

cells were collected at OD600 values of 1.0, the early log phase. These cells were lyzed and the 

Cca1-TAP fusion protein was purified, digested with trypsin and subjected to MS analysis under 

the parameters described to search for post-translational modifications. Cells in log phase 

showed multiple sites exhibiting potential phosphorylation and acetylation on the Cca1 protein 

(Table 3.1). To show that the identification of these modifications was reproducible the 

experiment was carried out with three biological replicates. Importantly, the acetylations at C307 

and K312 were identified in all three samples while the phosphorylation at Y317 was identified 

once in three samples (Table 3.1). 

 

 

Figure 3.3 Growth curve of Cca1-TAP1 over-expressing haploid strain in SC (-URA) medium at 30°C 
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Table 3.1 Post-translational modifications identified on the Cca1-TAP protein extracted from the 

early log phase cells 

 

Position Target Modification  PTM Score (%) 

307 C Acetylation 100.00 

312 K Acetylation 89.83 

317 Y Phosphorylation 100.00 

 

The PTMs of Cca1-TAG identified in three separate cell preparations are listed. The 

amino acid position, modified amino acid, and type of modification are indicated in the first 

three columns, respectively. The PTM scores and highest peptide confidence values were 

provided automatically by Thermo Proteome Discoverer (v2.1, SP1) software. The Sequence 

Motif column shows the position of the modification (lower case and italics) in the original 

peptide sequence.  The acetylation sites were identified in all three replicates, but the 

phosphorylation only once. 

 

3.3. Yeast cell proteomics 

 

3.3.1. Harvesting wild-type and temperature-sensitive strains at the permissive and 

quasi-restrictive temperatures 

 

The wild-type strain (W303-1B) or the temperature-sensitive mutant strain (NT33-5, 

derived from W303-1B) was grown in enriched medium (YPD) at 20°C, 30ºC, or 33ºC to an 

OD600 value of 1.0 (early log phase). The cells then were harvested and lysed as described 

previously (section 2.3.1.). As we had seen for growth at 22ºC (Shan et al., 2008) and for a 

temperature-sensitive strain bearing the cca1-E189K mutation at 37ºC (Shan et al., 2008), the wt 

and ts strains showed similar growth rates at 20°C and at 30ºC. They reached the appropriate 

OD600 after 18-20 hours at 20°C and after 8-9 hours at 30ºC. As the temperature-sensitive strain 

did not grow at 37°C, the highest temperature that could be used was 33°C. At this temperature, 

we were able to harvest wt cells after 7-8 hours and the ts strain after 48-50 hours. 

 

The ranges listed are defined by three biological replicates for each strain at each 

temperature. In all cases, the growth curves resembled typical yeast growth curves as seen in 
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Figure 3.3 except for the ts strain at 33°C. In this case, the cell density increased slowly to the 

30-h time point at which time it entered a more rapid log growth phase.  The abrupt increase in 

cell density after 30 h suggests that a mutation or mutations accumulated either in the cca1-

E189K gene (reversion or intragenic suppressor) or elsewhere in the NT33-5 genome (intergenic 

suppressor) to allow this increase in growth. As the mutation leading to the temperature-sensitive 

phenotype is a single guanine-to-adenine transition, it is possible that this increased growth 

reflects a reversion at this position although the growth rate is less than that of the wt strain. In 

spite of the fact that the increased growth rate may relate to additional mutations in the strain, 

cells were harvested for analysis anyway. 

 

3.3.2. Mass Spectrometric results  

 

Three biological replicate batches were analyzed, and each batch contained six samples 

(two strains cultured at three different temperatures) with three technical replicates. Table 3.2 

summarizes the number of identified total proteins in the three batches. In analyzing the data, the 

parameters were set such that a protein was accepted only when it had at least two unique 

peptides identified. The abundance of the protein was calculated and reported by the software, 

Thermo Proteome Discoverer (v2.1, SP1). The summarized identification results are shown in 

Table 3.2. These data show that under any experimental condition more than 1000 proteins were 

seen with the range of proteins identified varying between approximately 1100 and 1300. In each 

batch, a number of proteins ranging from two to 62 were detected only under a specific 

condition. There are no obvious correlations between the total number of proteins and the 

number of unique proteins and there is much variability between replicates of the same 

condition. 

 

Table 3.2 LC-MS/MS results for wild-type and temperature-sensitive yeast proteomes grown at 

the permissive and quasi-restrictive temperatures 

 

Strains 
The total protein number identified (≥2 unique peptides)  

20°C 30°C 33°C 

W303-1B 1198 1192 1063 

W303-1B 1311 1273 1322 



28 
 

Strains 
The total protein number identified (≥2 unique peptides)  

20°C 30°C 33°C 

W303-1B 1179 1169 1184 

wt average 1229 1211 1190 

NT33-5 1146 1182 1120 

NT33-5 1279 1284 1332 

NT33-5 1142 1174 1148 

ts average 1189 1213 1200 

 

LC-MS/MS analysis was repeated three times for each sample. Proteins were identified with at 

least two unique peptides by searching against the Uniprot Saccharomyces cerevisiae database 

(https:// www.uniprot.org/). 

 

3.3.2.1. Comparisons of the proteins identified in the wild-type and temperature-sensitive 

strains 

 

We had total of 21 698 proteins in 18 samples. Before analyzing the properties of the 

proteome, we needed to ensure that all data may be used and, therefore, a quality control was 

performed. First, we decided that if the ratio of a protein abundance was equal to or higher than 

three as compared between two samples, then this difference in protein abundance would be 

taken as significant. To account for measurement error, including random error and systematic 

error, a test was performed with the help of Dr. H. Jiang in CBAMS. In the test, tryptic peptides 

derived from a single yeast whole cell lysate were analyzed by LC-MS/MS six times. Based on 

the calculated results, we noticed a 99.9% prediction interval when the ratio of the protein 

abundance was larger than 2.2, which indicated that a ratio larger than 2.2 was the limit of an 

estimate of plausible values. We consider a number of 3.0, which the probability of a reported 

regulated protein is due to measurement errors is <0.1%, as a threshold to filter the ratio of 

protein abundance between two samples. 

 

Of the more than 1100 proteins detected by MS in each sample, there were 725 that 

were common to both strains at all three temperatures tested. Based on these 725 common 

proteins, a comparison of the relative abundance of these proteins in the wild-type strain as 

compared to the temperature-sensitive strain was carried out for each temperature. We found that 

the difference in the abundance of the majority of these common proteins was not statistically 

http://www.uniprot.org/
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significant (difference ratio less than three) between the two strains at each temperature tested 

(data not shown). 

 

3.3.2.2. Protein expression comparison between wild-type and temperature-sensitive 

mutant strains 

 

3.3.2.2.1. Permissive temperature (20°C) 

 

We identified 914 proteins common to the wild-type strain and the temperature-

sensitive strain at 20°C. Of these proteins, only one (Ypt7, P32939) showed an increased amount 

(p value = 0.19) in the wild-type strain as compared to the temperature-sensitive strain and only 

one (Utp9, P38882) showed an increased amount (p value = 0.34) in the temperature-sensitive 

strain as compared to the wild-type strain. However, the large p value suggests that their 

difference may not be true. 

 

3.3.2.2.2. Elevated temperature (30ºC) 

 

We identified 933 proteins common to the two strains at 30°C. We found six proteins 

with higher levels (but none with lower levels) in the temperature-sensitive strain as compared to 

the wild-type strain (Table 3.3) based on the ratio of the protein abundances. The differences in 

the abundance ratios of these six proteins between the temperature-sensitive strain and the wild-

type strain varied from approximately three to six-fold (Table 3.3). 

 

Table 3.3 Six proteins showing greater amounts in the temperature-sensitive strain (ts) as 

compared to the wild-type strain (wt) at 30°C based on protein abundance 

 

Accession Protein name Gene 
Ratio of abundance 

(ts/wt) 
p value 

P00815 Histidine biosynthesis trifunctional protein HIS4 6.2 0.14 

P06105 Protein SCP160 SCP160 4.6 0.07 

P07172 Histidinol-phosphate aminotransferase HIS5 4.2 0.07 
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Accession Protein name Gene 
Ratio of abundance 

(ts/wt) 
p value 

P38998 
Saccharopine dehydrogenase [NAD(+),  

L-lysine-forming] 
LYS1 4.2 0.18 

P03965 
Carbamoyl-phosphate synthase arginine-

specific large chain 
CPA2 4.2 0.03 

P07702 L-2-aminoadipate reductase LYS2 3.1 0.02 

 

3.3.2.2.3. Quasi-restrictive temperature (33ºC) 

 

We identified 787 proteins common to the wild-type and temperature-sensitive strains at 

33ºC. Of these proteins, nine were at reduced levels in the temperature-sensitive strain as 

compared to the wild-type strain (Table 3.4), and 14 were at increased levels in the temperature-

sensitive strain as compared to the wild-type strain (Table 3.5). With one exception (Gly1), all of 

the nine proteins showing higher abundance in the wild-type strain as compared to the 

temperature-sensitive strain are involved in RNA maturation or ribosome assembly. 

 

In contrast, the 14 proteins showing higher amounts in the temperature-sensitive strain 

as compared to the wild-type strain were primarily related to a stress response, e.g., DNA 

replication stress (Ape1, Dcs1, Pgm2, Tdh1), oxidative stress (Sod2, Trx2), or a combination of 

both (Uga1). The remaining seven proteins are involved in catabolic (Idh2) or anabolic processes 

(Cpa2, Bna1, His4, His5, Lys1, Ser3) (Table 3.5). 

 

Table 3.4 Proteins showing reduced levels in the temperature-sensitive strain as compared to the 

wild-type strain at 33°C 

 

Accession Protein Gene wt/ts p value 

P37303 Low specificity L-threonine aldolase GLY1 5.8 0.08 

P49166 60S ribosomal protein L37-A RPL37A 4.7 0.36 

P05748 60S ribosomal protein L15-A RPL15A 4.5 0.00 

P0CX84 60S ribosomal protein L35-A RPL35A 3.7 0.01 

Q02892 Nucleolar GTP-binding protein 1 NOG1 3.5 0.11 
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Accession Protein Gene wt/ts p value 

P04650 60S ribosomal protein L39 RPL39 3.3 0.03 

P24000 60S ribosomal protein L24-B RPL24B 3.2 0.03 

Q12211 tRNA pseudouridine synthase 1 PUS1 3.6 0.22 

P35178 Ribosomal RNA-processing protein 1 RRP1 3.0 0.08 

 

The range of the ratios is from three to six-fold. 

 

Table 3.5 Proteins showing increased levels in the temperature-sensitive strain as compared to 

the wild-type strain at 33°C 

 

Accession Protein name Gene ts/wt p value 

P00360 glyceraldehyde-3-phosphate dehydrogenase 1 TDH1 17.3 0.02 

P00815 histidine biosynthesis trifunctional protein HIS4 6.0 0.17 

P14904 vacuolar aminopeptidase 1 APE1 5.4 0.02 

P38998 Saccharopine dehydrogenase [NAD(+), L-lysine-forming] LYS1 4.1 0.37 

P37012 Phosphoglucomutase 2 PGM2 4.0 0.07 

P47096 3-hydroxyanthranilate 3,4-dioxygenase BNA1 3.8 <0.01 

P00447 Superoxide dismutase [Mn], mitochondrial SOD2 3.6 <0.01 

P40054 D-3-phosphoglycerate dehydrogenase 1  SER3 3.6 0.10 

P03965 carbamoyl-phosphate synthase arginine-specific large chain CPA2 3.2 <0.01 

Q06151 M7GpppX diphosphatase  DCS1 3.2 <0.01 

P07172 histidinol-phosphate aminotransferase   HIS5 3.2 0.06 

P28241 Isocitrate dehydrogenase [NAD] subunit 2, mitochondrial IDH2 3.1 0.12 

P17649 4-aminobutyrate aminotransferase   UGA1 3.0 0.03 

P22803 thioredoxin-2  TRX2 2.8 <0.01 

 

The ratio of the abundance varied from three to seventeen-fold. 
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3.3.2.3. Temperature effects within a single strain 

 

3.3.2.3.1. Wild-type strain 

 

To validate the variation of protein abundances linked to increasing temperatures, we 

compared the differences in proteins in a single strain at the different temperatures. In the wild-

type strain, most of the common proteins showed no statistically significant difference in 

abundance at all three temperatures. Only ten proteins showed a significant increase in 

abundance in the wild-type strain at 33ºC as compared to 20°C and 30°C. Of the proteins 

showing higher levels (p<0.01) at 33°C as compared to the lower temperatures (20°C and 30°C) 

(Table 3.6), most were involved in some aspect of a stress response, e.g., ATP-dependent RNA 

helicase Dbp5 which is essential for mRNA export from the nucleus and plays a role in the 

cellular response to heat stress, Hch1, Hsp10 involved in heat stress, Grx1 involved in oxidative 

stress, and Tps1 involved in a combination of both. Of the others, Ssa1 is involved in the protein 

folding response, Ald4 is involved in metabolic processes during anaerobic growth on glucose, 

Hxk1 is involved in glucose homeostasis, Fas2 is involved in fatty acid biosynthesis and Pnc1 

involved in the NAD+ salvage pathway. 

 

Table 3.6 Proteins with increased abundance in the wild-type strain at 30°C and 33°C as 

compared to 20°C 

 

Accession Protein name Gene 
wt 

30/20 
p value 

wt 

33/20 
p value 

P20449 ATP-dependent RNA helicase dbp5  DBP5 3.0 0.05 6.0 <0.01 

P46367 
Potassium-activated aldehyde 

dehydrogenase, mitochondrial  
ALD4 2.0 0.14 5.0 <0.01 

P04806 Hexokinase-1  HXK1 1.0 0.45 4.0 <0.01 

P19097 Fatty acid synthase subunit alpha  FAS2 1.0 0.51 4.0 0.29 

P53834 Hsp90 co-chaperone HCH1  HCH1 2.0 <0.05 4.0 <0.01 

P38910 10 kDa heat shock protein, mitochondrial  HSP10 2.0 0.06 4.0 <0.01 

P10591 heat shock protein SSA1  SSA1 2.0 0.42 3.0 0.13 

P53184 Nicotinamidase  PNC1 2.0 0.43 3.0 0.02 

Q00764 
Alpha,alpha-trehalose-phosphate synthase 

[UDP-forming] 56 kDa subunit  
TPS1 1.0 0.61 3.0 0.07 

P25373 Glutaredoxin-1   GRX1 2.0 0.2 3.0 0.01 
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3.3.2.3.2. Temperature-sensitive strain  

 

Similar to the wild-type strain, most of the common proteins in the temperature-

sensitive strain showed no significant differences in protein abundance at all three temperatures.  

However, compared to the small number of proteins, 10, in the wild-type strain showing 

increased abundance (Table 3.6), there are many more proteins, 54, in the temperature-sensitive 

strain showing increased abundance at 33°C as compared to 20°C or 30°C (Table 3.7). 

 

In the ts strain, the protein showing the greatest increase in abundance was Tdh1, 

glyceraldehyde-3-phosphate dehydrogenase 1, which showed a 47-fold increase as compared to 

the level at 20°C (p=0.089) (highlighted in Table 3.7). 

 

Table 3.7 Proteins with increased abundance in the temperature-sensitive strain at 30°C and 

33°C as compared to 20°C.  

 

Accession Protein name Gene 
ts 

30/20 
p value 

ts 

33/20 
p value 

P00360 glyceraldehyde-3-phosphate dehydrogenase 1 TDH1 1.0 0.106 47.0 0.089 

P46367 
Potassium-activated aldehyde dehydrogenase, 

mitochondrial 
ALD4 2.0 0.089 12.0 0.024 

P14904 vacuolar aminopeptidase 1 APE1 1.0 0.403 9.0 0.019 

P53184 Nicotinamidase PNC1 1.0 0.763 8.0 0.047 

P00815 histidine biosynthesis trifunctional protein HIS4 6.0 0.136 7.0 0.16 

P34227 Mitochondrial peroxiredoxin PRX1 PRX1 2.0 0.011 7.0 0.035 

P00447 Superoxide dismutase [Mn], mitochondrial SOD2 1.0 0.115 7.0 0.051 

Q06151 M7GpppX diphosphatase DCS1 2.0 0.079 6.0 0.019 

P38910 10 kDa heat shock protein, mitochondrial HSP10 2.0 0.185 6.0 0.141 

P38715 NADPH-dependent aldose reductase GRE3 GRE3 2.0 0.202 6.0 0.011 

Q04432 Glutathione-independent glyoxalase HSP31 HSP31 1.0 0.925 6.0 0.026 

P40106 Glycerol-1-phosphate phosphohydrolase 2 GPP2 1.0 0.659 6.0 0.061 

P17709 Glucokinase-1 GLK1 1.0 0.07 6.0 0.024 

P28241 
Isocitrate dehydrogenase [NAD] subunit 2, 

mitochondrial 
IDH2 2.0 0.168 5.0 0.022 

P17649 4-aminobutyrate aminotransferase UGA1 2.0 0.466 5.0 0.028 

P10591 heat shock protein SSA1 SSA1 2.0 0.338 5.0 0.011 

P38075 pyridoxamine 5'-phosphate oxidase PDX3 2.0 0.353 5.0 0.031 

P50861 6,7-dimethyl-8-ribityllumazine synthase RIB4 2.0 0.393 5.0 0.046 

P33734 imidazole glycerol phosphate synthase hisHF HIS7 3.0 0.306 5.0 0.118 
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Accession Protein name Gene 
ts 

30/20 
p value 

ts 

33/20 
p value 

P19882 heat shock protein 60, mitochondrial HSP60 2.0 0.209 5.0 0.02 

Q00764 
Alpha,alpha-trehalose-phosphate synthase 

[UDP-forming] 56 kDa subunit 
TPS1 1.0 0.815 5.0 0.05 

P47096 3-hydroxyanthranilate 3,4-dioxygenase BNA1 2.0 0.082 5.0 0.016 

P06106 Homocysteine/cysteine synthase MET17 3.0 0.07 5.0 0.021 

P00890 citrate synthase, mitochondrial CIT1 1.0 0.088 5.0 0.023 

P80210 adenylosuccinate synthetase ADE12 2.0 0.1 5.0 0.063 

P00729 carboxypeptidase Y PRC1 2.0 0.372 5.0 0.061 

Q00955 Acetyl-CoA carboxylase ACC1 2.0 0.388 5.0 0.183 

P04840 Mitochondrial outer membrane protein porin 1 POR1 2.0 0.146 4.0 0.01 

P06101 Hsp90 co-chaperone Cdc37 CDC37 2.0 0.26 4.0 0.079 

P53834 Hsp90 co-chaperone HCH1 HCH1 2.0 0.015 4.0 0.07 

P36010 Nucleoside diphosphate kinase YNK1 1.0 0.304 4.0 <0.01 

P28834 
Isocitrate dehydrogenase [NAD] subunit 1, 

mitochondrial 
IDH1 2.0 0.173 4.0 <0.01 

P19097 Fatty acid synthase subunit alpha FAS2 1.0 0.538 4.0 0.051 

P38115 
D-arabinose dehydrogenase [NAD(P)+] heavy 

chain 
ARA1 1.0 0.639 4.0 0.013 

P17505 Malate dehydrogenase, mitochondrial MDH1 1.0 0.155 4.0 0.014 

P37291 Serine hydroxymethyltransferase, cytosolic SHM2 3.0 0.132 4.0 0.154 

P04806 Hexokinase-1 HXK1 1.0 0.405 4.0 0.058 

Q12335 Protoplast secreted protein 2 PST2 1.0 0.904 4.0 0.077 

P47176 
Branched-chain-amino-acid aminotransferase, 

cytosolic 
BAT2 2.0 0.278 4.0 0.106 

P53912 Uncharacterized protein YNL134C YNL134C 1.0 0.519 4.0 <0.01 

P14832 peptidyl-prolyl cis-trans isomerase CPR1 1.0 0.488 4.0 0.065 

P25373 Glutaredoxin-1 GRX1 1.0 0.922 4.0 0.073 

P35719 Uncharacterized protein MRP8 MRP8 1.0 0.325 4.0 0.011 

P25719 
Peptidyl-prolyl cis-trans isomerase C, 

mitochondrial 
CPR3 1.0 0.806 4.0 0.058 

P38765 Uncharacterized isomerase YHI9 YHI9 3.0 0.167 4.0 0.075 

P30624 Long-chain-fatty-acid--CoA ligase 1 FAA1 2.0 0.15 4.0 0.074 

P53312 
Succinate--CoA ligase [ADP-forming] subunit 

beta, mitochondrial 
LSC2 1.0 0.248 3.0 <0.01 

P31539 heat shock protein 104 HSP104 1.0 0.613 3.0 0.05 

P33416 Heat shock protein 78, mitochondrial HSP78 1.0 0.931 3.0 0.072 

P07172 histidinol-phosphate aminotransferase HIS5 4.0 0.072 3.0 0.064 

Q12363 Transcriptional modulator WTM1 WTM1 1.0 0.672 3.0 0.077 

P25294 Protein SIS1 SIS1 1.0 0.504 3.0 0.029 

P39929 vacuolar-sorting protein snf7 SNF7 2.0 0.264 3.0 0.045 
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Red highlight indicates greatest increased abundance, the yellow highlighted proteins 

also showed increased abundance in the wild-type stain at the same temperature, the grey 

highlighted proteins are linked to mitochondria, and the blue highlighted proteins were increased 

in the temperature-sensitive strain at both 30°C and 33°C. 

 

The remaining proteins showing increased levels can be separated into several groups 

based on function and protein level: six proteins showed equal abundances at 33°C and 30°C but 

an increase over their levels at 20°C (blue highlighted in Table 3.7). Of these, five are involved 

in anabolic processes (His4, His5, His7, Met17, and Shm2) while the final one (Yhi9) is an 

uncharacterized isomerase. Nine proteins (Ald4, Hxk1, Fas2, Hch1, Hsp10, Ssa1, Pnc1, Tps1, 

Grx1) also show increased abundance in the wild-type strain at 33°C (yellow highlighted in 

Table 3.7). 

 

Of the remaining proteins: eleven are linked to mitochondria (Cit1, Cpr3, Hsp60, 

Hsp78, Idh1, Idh2, Lsc2, Mdh1, Por1, Prx1, and Sod2) (grey in Table 3.7); twelve are stress 

response proteins linked to DNA replication stress (Cpr1, Mrp8, Sis1, Ynl134C), DNA damage 

(Ynk1), heat or oxidative stress (Dcs1, Gpp2, Gre3, Hsp104, Hsp31, Pst2, Uga1); nine are 

involved in anabolic processes (Acc1, Ade12, Bat2, Bna1, Rib4, Ser3, Ara1, Faa1, and Glk1) 

and three are involved in catabolic processes in the vacuole (Ape1, Prc1, Snf7). The remaining 

three proteins are involved in protein stabilization and regulation of the cell cycle (Cdc37) or 

transcriptional modulation with roles in meiotic regulation and silencing (Wtm1) or pyridoxal 5'-

phosphate salvage (Pdx3). 

 

3.3.2.4. Unique proteins 

 

While the data till now relate to proteins that were present in one or both strains at one 

or more temperatures, some proteins were present or absent in only one strain at only one 

temperature. There was a small subset of 14 proteins present only in the temperature-sensitive 

strain only at 33°C (Table 3.8). Among these unique proteins, six were related to a stress 

response, e.g., DNA replication stress (Ddp1, Sol1, Ykl151C), oxidative stress (Ctt1), or a 

combination of both of these (Gad1, Uga2). The remaining eight proteins are involved in 
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catabolic (Nqm1, Tda3) or anabolic processes (Ecm4, GLC3, Ynl200C) or have no known 

function (Gpm2, Ymr090W, Ydr061W).  

 

Table 3.8 Fourteen unique proteins present only in the temperature-sensitive strain at 33°C 

 

Accession Description Gene Function 

P06115 catalase T   CTT1 

Occurs in almost all aerobically respiring organisms and 

serves to protect cells from the toxic effects of hydrogen 

peroxide. Cytosolic catalase T; has a role in protection 

from oxidative damage by hydrogen peroxide 

Q99321 

Diphosphoinositol 

polyphosphate 

phosphohydrolase DDP1   

DDP1 

May eliminate potentially toxic dinucleoside 

polyphosphates during sporulation,protein abundance 

increases in response to DNA replication stress 

P36156 
Glutathione S-transferase 

omega-like 2   
ECM4 

May be involved in cell wall organization and 

biogenesis 

Q04792 glutamate decarboxylase   GAD1 

Glutamate decarboxylase; converts glutamate into 

gamma-aminobutyric acid (GABA) during glutamate 

catabolism; involved in response to oxidative stress 

P32775 
1,4-alpha-glucan-

branching enzyme   
GLC3 

Glycogen branching enzyme, involved in glycogen 

accumulation 

Q12008 phosphoglycerate mutase 2   GPM2 Could be non-functional. 

P53228 Transaldolase NQM1   NQM1 
Transaldolase is important for the balance of metabolites 

in the pentose-phosphate pathway. 

P50278 

6-

phosphogluconolactonase-

like protein 1 

SOL1 

May be involved in regulation of tRNA subcellular 

distribution, protein abundance increases in response to 

DNA replication stress 

P38758 
Putative oxidoreductase 

TDA3   
TDA3 

Putative oxidoreductase that negatively regulates the 

retrieval of cargo from late endosomes to the Golgi. 

Regulates YIF1 and KEX2 localization. Required for 

fast DNA replication. Putative oxidoreductase involved 

in late endosome to Golgi transport 

P38067 
Succinate-semialdehyde 

dehydrogenase [NADP(+)]   
UGA2 

Involved in the GABA shunt pathway as a nitrogen 

source; part of the 4-aminobutyrate and glutamate 

degradation pathways 

Q12298 

uncharacterized ABC 

transporter ATP-binding 

protein YDR061W   

YDR061W ATPase activity; ATP binding 

P36059 

ATP-dependent (S)-

NAD(P)H-hydrate 

dehydratase   

YKL151C Nicotinamide nucleotide metabolic process 

Q04304 
UPF0659 protein 

YMR090W   
YMR090W Putative protein of unknown function 

P40165 
NAD(P)H-hydrate 

epimerase   
YNL200C NADP metabolic process 
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Twenty-three proteins (Table 3.9) were absent only from the temperature-sensitive 

strain at 33ºC but were found in either the wild-type or the temperature-sensitive cells at 20°C or 

30°C, or in the wild-type strain at 33°C. Again, these proteins have many functions, but the 

majority are associated with mitochondria (Aim24, Atp20, Cox2, Cox5A, Mhr1, Nuc1, and 

Rip1) and/or ribosomes (Drs1, Edc3, Hca4, Nog2, Nsa2, Rlp7, Sdo1, Sof1, Tsr4, Utp23). 

 

Table 3.9 The list of 23 proteins detected in one or more of the conditions tested and 

absent only from the temperature-sensitive strain at 33ºC 

 

Accession Protein name Gene Function 

P53909 Adenine deaminase  AAH1 
Plays an important role in the purine salvage pathway 

and in nitrogen catabolism 

P47127 

Altered inheritance of 

mitochondria protein 24, 

mitochondrial 

AIM24 

Protein with a role in determining mitochondrial 

architecture; inner membrane protein that interacts 

physically and genetically with the MICOS complex and 

is required for its integrity 

Q12233 
ATP synthase subunit g, 

mitochondrial  
ATP20 

Mitochondrial membrane ATP synthase (F1F0 ATP 

synthase or Complex V) produces ATP from ADP in the 

presence of a proton gradient across the membrane 

which is generated by electron transport complexes of 

the respiratory chain. 

P00410 
Cytochrome c oxidase 

subunit 2   
COX2 

Cytochrome c oxidase is the component of the 

respiratory chain that catalyzes the reduction of oxygen 

to water. 

P00424 

Cytochrome c oxidase 

polypeptide 5A, 

mitochondrial  

COX5A 

Subunit Va of cytochrome c oxidase; cytochrome c 

oxidase is the terminal member of the mitochondrial 

inner membrane electron transport chain 

P07258 

Carbamoyl-phosphate 

synthase arginine-specific 

small chain  

CPA1 
Synthesized by two pathway-specific (arginine and 

pyrimidine) under separate control 

P32892 
ATP-dependent RNA 

helicase DRS1  
DRS1 

ATP-binding RNA helicase involved in ribosome 

assembly 

P39998 
Enhancer of mRNA-

decapping protein 3 
EDC3 

Stimulates decapping of both stable and unstable mRNA 

during mRNA decay. 

P53045 
Methylsterol 

monooxygenase  
ERG25 

Catalyzes the first step in the removal of the two C-4 

methyl groups of 4,4-dimethylzymosterol. 

P54781 Cytochrome P450 61  ERG5 
Required to form the C-22(23) double bond in the sterol 

side chain. 

P20448 
ATP-dependent RNA 

helicase HCA4   
HCA4 

ATP-dependent RNA helicase required for ribosome 

biogenesis. 
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Accession Protein name Gene Function 

Q07938 

S-methyl-5'-

thioadenosine 

phosphorylase  

MEU1 
catalyzes the initial step in the methionine salvage 

pathway 

Q06630 

Mitochondrial 

homologous 

recombination protein 1 

MHR1 

Component of the mitochondrial ribosome 

(mitoribosome), a dedicated translation machinery 

responsible for the synthesis of mitochondrial genome-

encoded proteinshas extraribosomal functions, being 

involved in regulation of mitochondrial DNA 

recombination, maintenance and repair, and generation 

of homoplasmic cells  

P53615 Carbonic anhydrase  NCE103 Involved in protection against oxidative damage.  

P53742 
Nucleolar GTP-binding 

protein 2  
NOG2 

Putative GTPase; associates with pre-60S ribosomal 

subunits in the nucleolus and is required for their nuclear 

export and maturation 

P40078 
Ribosome biogenesis 

protein nsa2  
NSA2 

Involved in the biogenesis of the 60S ribosomal subunit. 

May play a part in the quality control of pre-60S 

particles.  

P08466 mitochondrial nuclease  NUC1 

Major mitochondrial nuclease; has RNAse and DNA 

endo- and exonucleolytic activities; roles in 

mitochondrial recombination, apoptosis and maintenance 

of polyploidy; involved in fragmentation of genomic 

DNA during PND (programmed nuclear destruction) 

P08067 

cytochrome b-c1 

complex subunit Rieske, 

mitochondrial  

RIP1 

Component of the ubiquinol-cytochrome c reductase 

complex (complex III or cytochrome b-c1 complex), 

which is a respiratory chain that generates an 

electrochemical potential coupled to ATP synthesis. The 

complex couples electron transfer from ubiquinol to 

cytochrome c. 

P40693 
Ribosome biogenesis 

protein RLP7  
RLP7 Involved in the biogenesis of the 60S ribosomal subunit 

Q07953 
Ribosome maturation 

protein SDO1  
SDO1 

Involved in the biogenesis of the 60S ribosomal subunit 

and translational activation of ribosomes. 

P33750 Protein SOF1  SOF1 
Protein required for biogenesis of 40S (small) ribosomal 

subunit, Required for ribosomal RNA processing. 

P25040 
20S rRNA accumulation 

protein 4  
TSR4 

Required for processing of the 20S pre-rRNA at site D 

to generate mature 18S rRNA. 

Q12339 
rRNA-processing protein 

utp23  
UTP23 Involved in rRNA-processing and ribosome biogenesis 
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4. DISCUSSION AND CONCLUSIONS 

 

4.1. Post-translational modification (PTM) of Cca1 protein 

 

Post-translational modifications (PTMs) refer to biochemical modifications that occur to 

one or more amino acid residues on a protein following protein biosynthesis. PTMs may include 

acetylation, glycosylation, phosphorylation, proteolytic cleavage, ubiquitination, etc., and play a 

fundamental role in protein activity, regulation, translocation, and interaction within the cell. The 

major challenge in the detection of protein PMTs in vivo originates from the low abundance of 

many cellular proteins. As an example, Cca1 is present at less than 0.01% of total yeast cellular 

protein (Chen et al., 1990) and is at a level so low as to be undetectable by Western blotting 

(Figure 3.2). To overcome the problem of low endogenous protein levels, the protein can be 

overexpressed, and/or a sensitive detection method employed. Here we used a combination of 

both of these approaches. First, to increase the abundance of Cca1, we engineered a high copy 

number plasmid to overexpress the gene encoding Cca1 fused to a multifunctional TAP tag. The 

open reading frame coding for the Cca1/TAP fusion protein was cloned downstream of the GPD 

promoter in p426, a high copy number plasmid (Mumberg et al., 1995). This plasmid increased 

expression of β-galactosidase by approximately 1000-fold as compared to the CYC promoter 

(Mumberg et al., 1995) and we anticipated that it would do the same for Cca1. That the level of 

Cca1 was increased is evident from the appearance of a strong Cca1/TAP band in our Western 

blot in the overexpressing strain as compared to the native strain (Figure 3.2). 

 

By expressing this protein with a TAP tag, we hoped to be able to efficiently enrich it 

from the whole cell extract. The plan was to express sufficient quantities of Cca1 in vivo and 

facilitate the purification of this protein via the fused tag. Once we had isolated the tagged 

protein we then could analyze it to see if it contained any post-translational modifications. There 

is no reason to expect that the protein would be completely modified at any one position, so it 

was necessary to isolate as much protein as possible in case only a small percentage of the 

protein contained any specific modification. The TAP tag harbours a Protein A module which 

has affinity for IgG Sepharose beads. Theoretically, very few yeast proteins should interact with 

the IgG resin, so we should get a good enrichment of the fusion protein. We anticipated that after 
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washing the resin and removing any non-specifically bound proteins, Cca1 would be 

conveniently released from the solid support by cleavage with the TEV protease which removes 

the Protein A tag.  Unfortunately, we found that Cca1 was not released from the IgG solid 

support after addition of the TEV protease. We propose that the TEV cleavage site is 

inaccessible in the folded Cca1-TAP fusion protein as carrying out the same experiment with 

multiple different batches of TEV protease including one that was shown to cleave another TAP-

tagged protein (kindly provided by Dr. Michael Sacher) gave the same negative result. As we 

reasoned that few yeast proteins were bound to the IgG beads, we simply treated the resin with 

SDS-containing buffer to release the Cca1-TAP fusion protein and any other proteins that were 

bound. The resulting eluate was analyzed by mass spectrometry. Regrettably, about 200 non-

specific binding proteins were also retained on the resin together with Cca1. These additional 

proteins competed with Cca1 and interfered with the detection of the PTMs on our target protein.  

Nevertheless, our proteomics analysis was moderately successful and allowed the detection of a 

single phosphorylation site (Y317) and two acetylation sites (C307 and K312) in three biological 

replicates with high confidence values (PTM scores > 85%) in each case (Table 3.1). 

 

It is recognized that the first 17 amino acids of the peptide sequence translated from the 

first in-frame ATG of CCA1 acts as a mitochondrial localization signal (Wolfe et al., 1996). 

However, it is still unknown how Cca1 is transported into the nucleus. As we know that tRNA 

nucleotidyltransferase is found in the nucleus as some tRNAs are not released from the nucleus 

unless they contain the CCA sequence (Simos and Hurt, 1999) we believe that Cca1 must have a 

nuclear localization signal. While it is possible that Cca1 binds to tRNAs in the cytosol and is 

transported with them back into the nucleus by a tRNA retrograde import mechanism (Rubio and 

Hopper, 2011), it seems more likely that Cca1 is the carrier and the tRNA is the passenger. 

Nuclear accumulation of cytoplasmic tRNA occurs when yeast cells are nutrient deprived 

(Shaheen and Hopper, 2008) and this retrograde process has been hypothesized to serve as a 

conserved process to down-regulate translation in response to nutrient availability by reducing 

the pool of tRNAs available for protein synthesis. If this is the case, then it may also be useful to 

sequester tRNA nucleotidyltransferase away from cytosolic ribosomes.  As retrograde tRNA 

transport is still not well understood but is certainly regulated in response to conditions such as 

glucose or amino acid starvation (Whitney et al., 2007) there must be some mechanism to 
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control this process. This mechanism may include tRNA-binding proteins such as Cca1. If 

Cca1is involved and there is regulation of the nuclear import of this protein, it may be mediated 

by post-translational modification perhaps linked to different growth conditions. 

 

As phosphorylation is a well characterized way to control nuclear localization (Nardozzi 

et al., 2010), phosphorylation of Cca1 may be linked to its nuclear import or export. Prior to this 

study, the literature showed a single phosphorylation site (Ser21) near the mitochondrial 

targeting signal (Albuquerque et al., 2008). One could argue that phosphorylation at this position 

could block mitochondrial targeting as had been seen previously for chloroplast targeting 

(Lamberti et al., 2011) such that less protein is directed to the mitochondrion and remains in the 

cytosol available for targeting to the nucleus. We hoped to show this phosphorylation site and to 

see if any other sites of phosphorylation could be found. Our study did not reveal 

phosphorylation at position 21, but this may reflect the different treatments that the cells 

received. Albuquerque et al. (2008) harvested their cells after a three-hour treatment with 0.05% 

methyl methanesulfonate (MMS) which damages DNA. While it may be disappointing that we 

did not see the same modification as Albuquerque et al. (2008) this may support the idea that  

 

 

 

Figure 4.1 The 3-D structural model of Cca1 

On the left-is the modeled structure of S. cerevisiae Cca1 bound to a mini tRNA. Cca1 is depicted as 

four regions: the head region (blue), neck region (indigo), body region (green), and tail region 

(pink). The post-translational modification (PTM) sites (Y317, K312 and C307) determined from 

MS analysis are located in Cca1’s body region. On the right, is a close-up which highlights the 

position of the PMT sites in the helical body domain. (Picture provided by Dr. M. Leibovitch). 
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post-translational modifications are involved in different cell processes. While we did not see 

phosphorylation at position 21, we did find a phosphorylated tyrosine at position 317. The 

potential significance of phosphorylation at this position will be discussed later. 

 

In addition to a role of phosphorylation in nuclear localization, there are also several 

reports indicating that acetylation is involved in protein localization, especially for nuclear 

import and export (Sadoul et al., 2011 for review). In addition, Zhao reported that Lys10 near the 

N-terminus of CtBP2 was critical for nuclear localization (Zhao et al., 2006). We identified two 

acetylation sites (C307 and K312) in close proximity to the Y317. In fact, a 3-D structural model 

of Cca1 designed based on the structure of related tRNA nucleotidyltransferases showed that 

these three amino acids could be found on the same face of an α-helix in the “body” domain of 

the protein (Figure 4.1). This face of the helix is solvent-exposed such that these three amino 

acids would be accessible for modification. That the three amino acids in the protein showing the 

highest degree of reproducible post-translational modification are found on the same face of one 

α-helix is interesting. Given the location of these modifications (on the side of the protein away 

from the active site) it is unlikely that they play a direct role in substrate binding or catalysis. 

However, this surface exposed sequence is exactly where one would expect a protein such as an 

importin or exportin to bind to facilitate nuclear import or export. What makes this region of 

Cca1 particularly interesting is that it represents either an insertion into the yeast protein or a 

deletion from other tRNA nucleotidyltransferases (Figure 4.2). That this sequence is present in  

 

Aeolicus   LEEIIEGFQWN-----------------------------EKVLQKLYALRKVVDWHALE 248 

Thermotoga IKHLFPKTYYT-----------------------------PSMDEKMENLFRNIPWVEEN 273 

Bacillus   LNAYLPGLAGK-----------------------------EKQLRLAAAYR--WPWLAAR 248 

yeast      ENVIFFWHNDSSVVKFNEENCQDMDKINHVYNDNILNSHLKSFIELYPMFLEKLPILREK 346 

human      APYIGLPANAS--------------------------------LEEFDKVSKNVDGFSPK 305 

 

Figure 4.2 The region found immediately after conserved motif E in yeast and four other class II 

tRNA nucleotidyltransferases: Aquifex aeolicus (Tomita et al., 2004), Thermotoga maritime (Toh 

et al., 2009), Bacillus stearothermophilus (Li et al., 2002), and human (Augustin et al., 2003) as 

taken from Figure 1.2:  Alignment performed by Clustal W (Martin et al., 2007). 

The numbers indicate the amino acid position of the last amino acid represented in the sequence. 

The sites of acetylation and phosphorylation are shaded in yellow and green, respectively. 
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Cca1 but absent from other tRNA nucleotidyltransferases including the human homologue 

suggests that this region is not important for the CCA-adding activity of the protein but may play 

some other function.  

 

The continuation of this research could take one of two main tracks: A) determining the 

importance of the modified residues identified to the structure, function or localization of Cca1, 

or B) determining what proteins may interact with this region of the protein. With respect to 

track A, experimental strategies worth pursuing could include site-directed mutagenesis to 

remove one or all of these residues to see what effect this has on the activity of the enzyme in 

vitro or on the phenotype or protein localization in vivo. We also could isolate Cca1 from 

different stages of growth of yeast to see if the presence or absence of these PTMs correlates 

with specific growth stages. For example, perhaps during fermentation, less Cca1 is required in 

the mitochondrion and the presence or absence of these PTMs is linked to targeting of Cca1 to 

mitochondria. It would be interesting to isolate Cca1 from yeast fermenting glucose (e.g., in day 

one) and those carrying out aerobic respiration in stationary phase (e.g., day seven) to compare 

the PTMs contained on Cca1 as was done previously for yeast Ccp1p (Kathiresan and English, 

2017). 

 

 In terms of demonstrating what proteins interact with this region of the protein, it 

would be interesting to test commercially available catalysts (kinases, acetylases, etc.) to see 

whether or not they function in vitro with purified Cca1. Defining the specific kinase or acetylase 

may provide insight into which pathway these modifications of Cca1 are linked. Following that, 

pull down assays or co-immunoprecipitations from whole cell extracts prepared from yeast at 

different stages of growth could be carried out. This would tell us not only what proteins are 

associated with Cca1, but also if the interactions are growth stage dependent.  

 

As the TEV protease was not able to cleave the protease cleavage site engineered into 

the TAP tag, we will use a different tag such as the hexa-His sequence or a glutathione S-

transferase domain to increase the enrichment of Cca1. As in this experiment we were forced to 

use a denaturing agent to release both Cca1 and any proteins interacting with it and also all 

proteins non-specifically binding to the resin, it is difficult to say which are interacting with 
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Cca1. Adding an additional purification step would help to solve this problem. We currently are 

engineering a plasmid which will express a fusion protein containing a glutathione S-transferase 

domain at the carboxy terminus of the Cca1-TAP tagged fusion protein. With this we can carry 

out an initial round of purification using a resin with bound GST which should remove many 

contaminating yeast proteins and then use the IgG resin to indicate more specific proteins bound 

to Cca1.  

 

In summary, this study has identified three amino acids showing post-translational 

modification in yeast Cca1. These three amino acids cluster on the surface-exposed face of an α-

helix. This site allows access for the appropriate kinases and acetylases (and potentially 

phosphatases and deacetylases) that are involved in generating these PTMs. Moreover, the 

presence of these PTMs on a region of the protein that is not found in other tRNA 

nucleotidyltransferases suggests that this region is involved in an activity other than CCA 

addition. It will be interesting to explore this region of Cca1 to see its role in protein structure 

and function and to see whether other proteins (or perhaps even other nucleic acids) interact with 

Cca1 here. 

 

4.2. Temperature-sensitive phenotype and Cca1 mutation 

 

Temperature-sensitive phenotypes have been used for many years to define and study 

essential genes in Saccharomyces cerevisiae (Edgar and Lielausis, 1964; Hartwell, 1967; Pringle, 

1975; Pringle and Hartwell, 1981; Kawakami et al., 1992; Tan et al., 2009; Ben-Aroya et al., 

2010).  Here we have studied a temperature-sensitive yeast strain derived from ts352 (Aebi et al., 

1990) that contains a single guanine-to-adenine transition in the CCA1 gene leading to the 

conversion of the glutamate at position 189 to lysine in tRNA nucleotidyltransferase (Shan et al., 

2008). This temperature-sensitive phenotype was defined by the inability of these cells to grow 

at the restrictive temperature of 37°C while they grew equally as well as the native strain at the 

permissive temperature (22°C). Our comparative biophysical and biochemical studies of both the 

native and variant proteins revealed that this amino acid substitution resulted in a structural 

change in the protein that reduces enzyme activity (both at the permissive and restrictive 

temperatures), decreases the melting temperature of the protein and alters its stability at the 
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restrictive temperature (Shan et al., 2008). Using a second site suppressor of the ts phenotype 

within the cca1-1 mutant gene, we further showed that the ts phenotype does not arise from 

thermal instability of the variant tRNA nucleotidyltransferase, but instead from the inability of a 

partially active enzyme to support growth only at higher temperatures (Goring et al., 2013). In 

fact, we argued that the ts phenotype may result simply because the defective enzyme cannot 

generate functional tRNAs at a sufficient rate for protein synthesis at the restrictive temperature, 

but we cannot exclude that it may involve other differences in the features of cells grown at 

higher temperatures (Goring et al., 2013). To explore more fully the differences between yeast 

cells carrying the wild-type or cca1-1 gene, we set out to explore and compare the proteomes of 

strains carrying the CCA1 allele or the cca1-E189K allele at permissive, intermediate and quasi-

restrictive temperatures. Based on these differences in growth rate we hypothesized that we 

would see differences in the levels of components of the protein synthetic machinery as fewer 

tRNAs should result in a reduction in protein synthesis. Moreover, if tRNA-NT plays a role in 

retrograde import of tRNAs and this shuttling of tRNAs from the cytosol to the nucleus is linked 

to nutrient deprivation (Shaheen and Hopper, 2008), then perhaps we also will see down-

regulated translation in response to a reducing the pool of functional tRNAs available for protein 

synthesis. If the pool of functional tRNAs is reduced not because of nutrient starvation directly 

but because they lack complete CCA termini, then perhaps a set of response pathways typical to 

glucose or amino acid starvation (Whitney et al., 2007) may be initiated in response to the 

reduced activity of tRNA-NT.  This may include different types of stress response pathways or 

mechanism to protect the reduced amount of proteins that are made. 

 

As expected from our previous results (Shan et al., 2008), the wt strain (W303-1B) 

showed an exponential growth rate that was greater at 30ºC than at 20ºC and slightly greater at 

33ºC than at 30ºC (Table 4.1). While the ts strain (NT33-5) had approximately the same 

exponential growth rate as the wt strain at 20ºC, it grew more slowly than the wt strain at 30ºC 

(Table 4.1) and essentially not at all at 33ºC (at least for the first 30 hours). As mentioned 

previously the growth observed after 30 h probably represents a reversion or second site 

suppression event, which does not restore the growth rate to wt levels. 
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The reduced growth rate seen at the restrictive temperature for the ts strain (10% that 

seen at the permissive temperature) likely reflects that this strain has become petite. We 

previously have shown that reduced tRNA nucleotidyltransferase activity in the mitochondrion 

of yeast cells leads to the petite phenotype and reduced respiratory competence (Shanmugam et 

al., 1996) and numerous human disease phenotypes linked to mutations in the TRNT1 gene 

coding for tRNA nucleotidyltransferase have been linked to reduced mitochondrial protein 

synthesis (Chakraborty et al., 2014; Sasarman et al., 2015; Liwak-Muir et al., 2016). 

 

Peltz et al. (1992) who showed changes in specific mRNA stability when cca1-1 cells 

where shifted to the restrictive temperature. Peltz et al. (1992) noted an increase in the stability 

of certain mRNAs and suggested that this was due to a decrease in the ability of these cells to 

carry out translation (as the population of functional tRNAs was reduced) such that some specific 

mRNAs are protected from degradation by association with the ribosome. Taken together these 

data may suggest that if polysomes exist with mRNAs bound for longer times as they wait for a 

functional charged tRNA to arrive at the ribosome to allow translation to continue, other mRNAs 

may accumulate in the cytosol. 

 

While Peltz et al. (1992), observed approximately 5-fold increases in the half-lives of 

CDC4, PAB1 and TCM1 transcripts, we did not detect any Cdc4 in our samples and the Pab1 and 

Tcm1 proteins showed no significant differences in their abundance between the wt and the ts 

strain grown at 33°C (the ratio of abundance of Pab1 and Tcm1 were 1.4 (p=0.17) and 1.7 

(p=0.08), respectively). Therefore, we could not provide a direct connection between mRNA and 

protein levels and the ts phenotype. Perhaps differences in experimental methods may have led 

to the variation in results; in the current study cells were gown at 33°C to an OD600 of one while 

Peltz et al. (1992) simply shifted the culture temperature from 24°C to 36°C for one hour. 

Finally, we also must consider that the ts cells that we examined also may represent a strain that 

has reverted or picked up a suppressor mutation and/or become petite. 

 

Given the differences in growth rates observed, it was necessary to harvest the cells for 

proteome analysis at different time points to reflect an OD600 of 1, for example, after 18-20 hours 

at 20°C or 8-9 hours at 30ºC for the wt strain. 
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Table 4.1 Exponential growth rate of each strain at various temperatures  

 

Temperature (OC) Growth Rate (ΔOD600/h) 
W303-1B NT33-5  

20 0.27 0.30 
30 0.78 0.17 

33 0.82 0.03 

 

To define differences in the two strains and at the different temperatures, we chose to 

use a label -free mass spectrometric approach to explore the proteomes of these cells at these 

different temperatures. A comparison of the different proteins and their amounts may suggest 

proteins or pathways that are affected by the changes in temperature or the decreased efficiency 

of the tRNA-NT. We hypothesized that we would see some proteins at lower levels in the ts 

strain at the elevated temperature as we have postulated that protein synthesis works less well as 

the decreased activity of the mutant tRNA-NT reduces the population of tRNAs with the 

complete CCA sequence required (Goring et al., 2013). We also thought that we may see 

increases in the levels of other proteins as the cell tries to cope with the reduced level of proteins 

resulting from this defect. 

 

Initially, we explored 2D gel electrophoresis (2DE) to compare the relative abundance 

of proteins expressed from wt cells and cells harbouring the E189K ts mutation. Proteins were 

separated based on their isoelectric point (in the first dimension) and by size (in the second 

dimension), detected by staining and excised from the polyacrylamide gel for MS analysis. A 

number of spots were analyzed including those that appeared unique, that is, were detected in 

one sample and not the other. Surprisingly, however, we observed no major differences in the 

types and levels of proteins expressed in the wt versus the ts cells. This result, coupled with the 

realization that low abundance proteins might not be readily detected on stained polyacrylamide 

gels prompted us to analyze the yeast whole proteome directly by mass spectrometry. 

 

A high-resolution nano-HPLC tandem MS mass spectrometric comparison of the 

abundance of whole cell protein levels at 20°C, 30°C, and 33°C should allow us to identify 

candidate proteins whose cellular levels are altered at the different temperatures or between the 

wt and ts strains.  Our MS approach was a label-free “bottom up” proteomic technique: the yeast 

whole-cell protein population was digested with trypsin, and the sequence of the resulting 
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peptides were determined from the analysis of their ionized fragmentation pattern. A specific 

protein was identified based on the detection of the peptides that are unique to that protein. To 

obtain results with high confidence, the data were filtered such that proteins were identified only 

if they showed ≥2 unique peptides. The advantage of this MS-based approach was that it could 

be used to quantify the amount of a specific protein in any sample (Han et al., 2008) so that we 

could determine if the abundance of a specific protein had changed between samples. If the ratio 

of the protein abundance in one sample as compared to a second sample was greater than three, 

then we consider that as a real difference. In this study, an equal amount of total protein (100 µg) 

from three biological samples of each strain was analyzed to obtain replicate MS analysis results. 

Comparing the distribution of the protein abundance ratios, we found that most of the cellular 

proteins common to both wt and ts strains were present at similar levels regardless of the strain 

sampled or at what temperature the cells were grown. We then set out to establish if the protein 

species or the abundance of the common proteins varied: 1) in a given strain as the temperature 

was changed (to 20°C, 30°C, or 33°C), or 2) between wt and ts strain at any given temperature. 

 

4.2.1. Different proteomes in wild-type and temperature-sensitive strains  

 

Our experiments suggested no major differences in growth rate between the wt and ts 

strains when they were grown at the permissive temperature (20ºC) or the intermediate 

temperature (30ºC) although both strains grew more quickly at 30ºC than at 20ºC suggesting that 

the protein synthetic machinery was sufficient to keep up with the increased growth required at 

the higher temperature. This fits with our hypothesis (Goring et al., 2013) that even though the ts 

strain has a tRNA-NT with reduced activity, its remaining activity is sufficient to meet the 

protein synthetic needs of the cell at these temperatures. When we examined the proteomes of 

the wt and ts strains at these two temperatures we found no major differences in the protein 

patterns shown. Both strains showed similar numbers and types of proteins as each other at both 

temperatures. These observations are consistent with our hypothesis that both strains can perform 

sufficient protein synthesis to keep the cells alive at these temperatures.  

 

In contrast, at the quasi-restrictive temperature the ts strain showed a much different 

growth phenotype than did the wild-type strain. If our hypothesis is correct, then we should 
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expect to see different protein profiles when we compare the wt to the ts strain under these 

conditions, so we focused initially on this comparison. Although the overall number of proteins 

in the two strains was similar, the relative amounts of many of these proteins were different 

between the two strains. Additionally, fourteen proteins were detected only in the ts strain at 

33ºC, and twenty-three proteins were missing only from the ts strain at 33ºC. When the proteins 

which were present only in the ts strain at 33ºC, or which were only absent from the ts strain at 

33ºC, or which showed increased or decreased levels as compared to the wt strain at 33ºC were 

analyzed two consistent themes became evident. Proteins which showed increased levels in the ts 

strain were linked generally to stress responses and metabolic pathways while those that showed 

reduced levels in the ts strain were primarily mitochondrial or ribosomal proteins. These 

observations are in good agreement with our hypothesis that reduced tRNA-NT activity leads to 

fewer functional tRNAs and a disruption of protein synthesis such that translation cannot meet 

the needs of the cell.  This reduced translation is then manifest in a stress response and a change 

in metabolic pathways. Linking protein synthesis and the stress response implicates proteostasis 

(protein homeostasis), the state of proteome balance (Hipp et al., 2014).  Proteostasis results 

from the balancing of protein synthesis and protein degradation and a loss of proteostasis has 

been implicated in ageing and disease (Ruan et al., 2017). We postulate that the ts phenotype 

may result from a disruption of proteostasis, particularly a reduction in the protein synthetic 

component. As described above, this is entirely consistent with our observations that both 

ribosomal and mitochondrial proteins showed reduced levels in the ts strain at the quasi-

restrictive temperature as compared to the wt strain. Moreover, proteostasis can be altered in 

response to environmental stresses (Labbadia and Morimoto, 2015) and we also see an increase 

in stress response proteins in the ts strain at the quasi-restrictive temperature. To further explore 

the links between tRNA-NT, proteostasis and the stress response we will look more specifically 

at some of the classes of proteins whose levels are altered at the quasi-restrictive temperature in 

the ts strain as compared to the wt strain or to the ts strain at the permissive temperature. 

 

4.2.2. Proteins involved in ribosome (or RNA) structure or synthesis 

 

Most of proteins showing reduced levels in the ts strain at the quasi-restrictive 

temperature (Drs1, Edc3, Hca4, Nog1, Nog2, Nsa2, Pus1, Rpl37A, Rpl15A, Rpl35A, Rpl39, 
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Rpl24B, Rrp1, Sdo1, Sof1, Tsr4, Utp23) are ribosomal proteins or are involved in ribosome 

synthesis (Table 3.4, Table 3.9). Specifically, Drs1 is the nucleolar DEAD-box protein required 

for ribosome assembly and function (Horsey et al., 2004), Edc3 has a role in mRNA decapping 

(Kshirsagar and Parker, 2004), Hca4 is the DEAD box RNA helicase and involved in 18S rRNA 

synthesis (Liang et al., 1997), Rrp1 (Horsey et al., 2004) and Nog1 (Kallstrom et al., 2003) are 

required for 60S ribosomal subunit biogenesis, Nog2 associates with pre-60S ribosomal subunits 

in the nucleolus and is involved in the nuclear export and maturation of these subunits (Saveanu 

et al., 2001), Nsa2 is involved in the processing of the 27S pre-rRNA, Rlp7 plays a key role in 

processing precursors RNAs of the large ribosomal subunit (Horsey et al., 2004), Pus1 

introduces pseudouridines into the U2 snRNA and also acts on tRNAs and some mRNAs, and 

additionally, as a nuclear protein, it appears to be involved in tRNA export (Simos et al., 1996; 

Massenet et al., 1999; Grosshan et al., 2001; Carlile et al., 2014). The remaining proteins, 

Rpl37A, Rpl15A, Rpl35A, Rpl39, Rpl24B (Venema and Tollervey, 1999), are all components of 

the large ribosomal subunit. Sdo1 plays an essential role in ribosome maturation (Menne et al., 

2007), Sof1 is response to the biogenesis of 40S (small) ribosomal subunit (Venema and 

Tollervey, 1999), Tsr4 is involved in the processing of the 20S pre-rRNA to generate mature 18S 

rRNA (Li et al., 2009), and Utp23 is involved in 40S ribosomal subunit biogenesis (Hoareau-

Aveilla et al., 2012). Taken together, these results clearly implicate reduced ribosome assembly 

in the ts phenotype.  Whether this results directly from a reduction in the amount of mature 

tRNAs or more indirectly from a response to stress induced by reduced tRNA-NT activity 

(Mazouzi et al., 2014; Mittal et al., 2016) remains unclear. 

 

4.2.3. Degradation pathway protein levels increasing 

 

As proteostasis requires a balancing of protein synthesis and protein degradation we 

also looked for proteins that may be involved in degrading proteins or protecting proteins from 

aggregation and degradation.  Interestingly, in the ts strain at the quasi-restrictive temperature we 

detected increased levels of both heat shock proteins (Cdc37, Hsp10, Hsp104, Hsp60, Hsp78, 

Ssa1) which are involved in chaperone complex formation and protein folding/unfolding to 

protect from degradation (Table 3.7), and vacuolar proteins (Ape1, Prc1, and Snf7) (Table 3.5, 

Table 3.7) involved in targeting proteins for degradation.  
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We found increases in both mitochondrial (Hsp10, Hsp60, Hsp78) and cytosolic 

(Cdc37, Hsp104, Ssa1) chaperones which play roles in eliminating aggregation and in protein 

refolding. At the quasi-restrictive temperatures, the levels of these proteins were increased by up 

to seven-fold as compared to their levels at the permissive temperature (Table 3.7) indicating that 

some type of unfolded protein response (Fu and Gao, 2014; Jovaisaite et al., 2014) had been 

upregulated. Again, it is still unclear as to whether this response is a direct result of reduced 

tRNA-NT activity altering protein synthesis or whether it results indirectly as a stress response 

initiated by the reduced tRNA-NT activity. The mitochondrial unfolded protein response is a 

stress response pathway that has been implicated in health and disease (Jovaisaite et al., 2014) 

and activation of this pathway in yeast may be linked to the ts phenotype.   

 

We propose that perhaps reduced protein synthesis in the ts strain and the subsequent 

reduction in the levels of some important proteins signals an apparent shortage of energy and 

nutrients inside the cell. This leads to the increase in the levels of proteins such as, Ape1, which 

is present in nine-fold abundance (p=0.019), and which is elevated during nitrogen starvation 

(see review by Cebollero and Reggiori 2009; Torggler et al., 2017). Ape1, as a major cargo 

protein, plays a key role in the cytoplasm-to-vacuole targeting (Cvt) pathway (Shintani and 

Klionsky, 2004). It is involved in the protein catabolic autophagy-like process in the vacuole 

(Scott et al., 1996; Baba et al., 1997), which serves to eliminate misfolded proteins (Quinones et 

al., 2012) and degrade cytosolic components in response to starvation (Lynch-Day and Klionsky, 

2010). Also along this line, Prc1, a broad-specificity C-terminal exopeptidase, which is involved 

in non-specific protein degradation in the vacuole (Van Den Hazel et al., 1996) also shows 

elevated levels in the ts strain grown at 33°C. Moreover, Snf7 which is required for localization 

of the Bro1 vacuolar protein sorting factor to endosomes (Odorizzi et al., 2003) which may 

travel to lysosomes where the proteins that they carry can be degraded. Again, the increased 

levels of these proteins associated with protein degradation is consistent with the idea that 

reduced tRNA-NT activity mimics nutrient starvation and activates pathways to degrade some 

proteins to recycle the amino acids into other proteins. Also, consistent with our hypothesis that 

reduced Cca1 activity mimics starvation conditions, we saw increased levels of Gad1, Uga1, and 

Uga2 for which previous studies (Rossignol et al., 2003) have shown increased gene expression 

during stationary phase under nitrogen starvation conditions. 
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4.2.4. Dysfunctional mitochondria in ts strain at 33ºC 

 

Given that Cca1 must function both in the cytosol and the mitochondrion we expect that 

reduced Cca1 activity at 33oC will also result in reduced mitochondrial protein synthesis and 

subsequently mitochondrial dysfunction. These indeed appears to be the case as seven 

mitochondrial proteins (Aim24, Atp20, Cox2, Cox5A, Mhr1, Nuc1, and Rip1) were not detected 

in the ts strain at 33oC but were found in both strains under all other conditions (Table 3.9).  As 

with the cytosolic ribosome one of these missing proteins, Mhr1, is mitochondrial ribosomal 

protein (Ling et al., 2000) suggesting that reduced Cca1 activity may also affect the 

mitochondrial ribosome. Other missing proteins such as Atp20, subunit g of the mitochondrial 

F1F0 ATP synthase (Davies et al., 2012), Cox2, subunit II of cytochrome c oxidase, Cox5A, 

subunit Va of cytochrome c oxidase (Taanman and Capaldi, 1992) and Rip1, a subunit of the 

mitochondrial cytochrome bc1 complex (Ljungdahl et al., 1989) are components of the electron 

transport chain and ATP synthase. While Atp20, Cox5A and Rip1are encoded by nuclear genes, 

Cox2 is encoded on the mitochondrial genome again suggesting that both cytosolic and 

mitochondrial translation are reduced.  In contrast to these proteins which play a role in oxidative 

phosphorylation and ATP synthesis there are other proteins which play a less direct role in 

mitochondrial ATP production and are involved in mitochondrial structure and maintenance. For 

example, Aim24 plays a role in determining mitochondrial architecture (Harner et al., 2014), 

while Nuc1 as a major mitochondrial nuclease with a role in the maintenance of polyploidy 

(Zassenhaus and Denniger, 1994). Taken together, the loss of these proteins involved in the 

respiratory components of the mitochondrion and mitochondrial structure and maintenance 

suggests a loss of mitochondrial function. If this is the case, then ATP production must come 

from other sources. Consistent with this, the level of the glycolytic enzyme glyceraldeyde-3-

phosphate dehydrogenase, Tdh1, increases 17-fold (p=0.02) in the ts strain as compared to the wt 

strain at 33ºC, and 47-fold higher (p=0.089) in the ts strain grown at 33ºC as compared to 20°C. 

This increase in Tdh1 levels may lead to an increase in the glycolytic rate such that in the 

absence of respiratory competent mitochondria these cells may survive by fermentation. More 

importantly, Tdh1 has been reported to be synthesized in response to NADH-reductive stress 

(Valadi et al., 2004), when cells enter stationary phase, or in conditions of glucose starvation 

(Boucherié et al., 1995), or in heat-shocked cells (Delgado et al., 2001). So, the dramatic 
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increases in Tdh1 activity may not suggest an attempt to increase glycolysis but instead a more 

general response to the stress that reduced Cca1 activity seems to generate.  Although these cells 

were harvested in early log phase and should not be at stationary phase or under starvation 

conditions, we argue that the reduced activity of Cca1 leads to a proteostatic pattern that reflects 

stationary phase or starvation conditions. Again, whether this results directly from reduced levels 

of protein synthesis or due to an indirect effect of reduced Cca1 activity on the stress responses is 

still unclear. Oxidative stress is known to affect both translation and protein turnover (Vogel et 

al., 2011; Keller, 2006) so perhaps the reduced levels of protein synthesis result from increased 

oxidative stress and not directly from reduced levels of Cca1. To explore this possibility, we 

looked for changes in the levels of proteins linked to oxidative stress. 

 

4.2.5. Reactive oxygen species (ROS) accumulation 

 

As a result of mitochondria dysfunction, reactive oxygen species (ROS) increase inside 

the cell (Leadsham et al., 2013; Murphy, 2013). Although we did not measure the levels of ROS 

directly, we have identified increased levels of some proteins (Table 3.5 and Table 3.7) which 

are involved in the cell’s response to oxidative stress, e.g., Ctt1 which plays a protective role in 

oxidative damage by hydrogen peroxide (Lushchak and Gospodaryov, 2005), Nqm1 which is 

responsive to oxidative stress and chronological cell aging (Michel et al., 2015), and Gad1, 

Uga1, and Uga2 which are all involved in the GABA shunt pathway which plays a role in the 

response to stress and signalling (Bach et al., 2009). In S. cerevisiae cells, Gad1 and Uga2 in 

addition to being upregulated in response to nitrogen starvation (section 4.2.3) also are elevated 

in response to oxidative stress (Coleman et al., 2001). More recently, Cao et al. (2013) reported 

that the GABA shunt pathway plays a crucial role in inhibiting the accumulation of ROS, which 

is caused by heat damage. So, it appears that the reduced Cca1 activity leads to an increase in 

stress responses including oxidative stress perhaps through the loss of mitochondrial function. 

 

4.2.6. Proteostasis networks (PN) maintain protein homeostasis in the cell 

 

The proteostasis network contains components involved in protein synthesis, protein 

trafficking, the unfolded protein response, and protein degradation machineries including the 
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ubiquitin proteasome and lysosomal autophagy pathway (Sklirou et al., 2018). Our data suggest 

that proteostasis is perturbed in the ts strain at 33oC with protein synthesis reduced (section 

4.2.2) and protein degradation upregulated (section 4.2.3). In the ts strain the decrease at 33oC of 

proteins such as Drs1, Edc3, Hca4, Nog1, Nog2, Nsa2, Pus1, Rpl37A, Rpl15A, Rpl35A, Rpl39, 

Rpl24B, Rrp1, Sdo1, Sof1, Tsr4, and Utp23 involved in ribosome assembly and function 

suggests a decrease in protein synthesis and the increase in proteins such as Ape1, Prc1, and Snf7 

level suggests that protein degradation has increased. Moreover, the concomitant increase in heat 

shock and ubiquitination proteins (Cdc37, Hsp10, Hsp60, Hsp78, Hsp104 and Ssa1) further 

reflects the destabilization of proteostasis. We suggest that this alteration of proteostasis leads 

ultimately to the ts phenotype observed. 

 

4.2.7. No significant difference in the expression of TOR pathway proteins 

 

It is difficult to discuss the role of proteostasis is cell viability without implicating the 

Target of Rapamycin (TOR) signalling pathway. Since the TOR signalling pathway plays a key 

role in sensing nutrient or oxygen status and promoting appropriate changes in cell growth, 

proliferation, survival, and protein synthesis (Yuan et al., 2013), we tried to identify any proteins 

that would suggest the involvement of TOR in the ts phenotype. Our data showed no increases in 

expression of the well-characterized TOR pathway proteins Tap42, Mks1, Ure2, Gln3, and Gat1 

(Raught et al., 2001) and in fact, we did not even detect Tor1 or Tor2. We did identify Kog1, a 

subunit of the TOR1 complex (Loewith and Hall, 2011), in the ts strain at 33ºC once in the three 

replicates and Slm1, a subunit of the TOR2 complex (Loewith and Hall, 2011), twice in three 

replicates but in both strains at all three temperatures. Thus, there is not enough evidence in our 

data to support a role for the TOR pathway either in the presence or absence of the ts phenotype. 

 

4.2.8. Conclusions 

 

Living cells protect themselves against stress including heat stress by making proteins 

that stabilize the structure of functional proteins in the cell. In our case, growth at 33°C was not 

sufficiently high to severely jeopardize the development of wt cells although we detected several 

stress response proteins in this strain that increased in abundance as compared to cells grown at 
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lower temperatures (Table 3.6). Our results support the idea that ROSs may play a role in the 

activation of the response to elevated temperature in yeast (Zhang et al., 2015). The evidence for 

this is the increased protein abundance of the GABA shunt pathway proteins and various 

antioxidation proteins. Furthermore, the accumulation of ROS is linked to dysfunctional 

mitochondria (Trancikova et al., 2004), which is supported by our proteomics study revealing 

that many mitochondrial proteins were below the level of detection in the ts cells grown at 33°C. 

Thus, mitochondrial dysfunction could originate from the Cca1 variant and the petite phenotype 

associated with it. When the temperature is elevated there is a need for an increase in 

mitochondrial respiratory efficiency (Postmus et al., 2011), which in turn increases the rate of 

mitochondrial protein synthesis. However, because of the defect in Cca1, we argue that the 

mitochondria in the ts cell do not contain sufficient quantities of mature tRNA to sustain 

effective protein synthesis. Under these circumstances, mitochondria are damaged by the 

shortage of viable Cca1 protein and mitochondrial DNA is damaged or lost leading to the petite 

phenotype (Doudican et al., 2005). Simultaneously, high concentrations of ROS are released into 

the cytosol from mitochondria, stimulating the cell to express more stress response proteins. 

 

The defect in Cca1 leads to a shortage of mature tRNAs and reduces protein synthesis in 

the cytosol and mitochondria. Two things happen in response to this (Fig. 4.3) reduced protein 

synthesis in the cytosol which mimics starvation or stress conditions and leads to further 

reductions in protein synthesis and an increased stress response leading to a loss of proteostasis, 

and reduced protein synthesis in the mitochondrion which reduces mitochondrial function, 

increases oxidative stress and the associated stress responses and decreases cell viability. 

Increased oxidative stress may then deleteriously affect cytosolic protein synthesis further 

disrupting proteostasis and exacerbating the detrimental effects of the reduced activity of Cca1. 
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5. FUTURE WORK 

 

To more fully explore the role of PTMs in Cca1’s function, structure and localization, 

further experiments are required. These may include site-directed mutagenesis experiments to 

see if modifying any or all of C307, K312, or Y317 alters enzyme activity in vitro or localization 

or the phenotype in vivo. It also would be interesting to see the effect of removing this entire 

region of the protein (which is absent from many other tRNA nucleotidyltransferases) on 

activity, structure, and localization. This may provide insight into what role these extra amino 

acids play in the yeast protein. Finally, a more efficient purification protocol should be 

developed so that this protein can be used to pull down proteins (or nucleic acids) that interact 

with Cca1, and accompany by a top-down MS approach. It would then be interesting to compare 

the protein profiles pulled down by the native enzyme and the one lacking the region containing 

C307, K312, or Y317, and discover more modification or sites. Now that we have shown that we 

can identify PTMs in Cca1, it would be interesting to see if these PTM differ through different 

growth phases. Are the modifications present only in early log phase, or late log phase or 

throughout stationary phase, or cell fractionation to identify the PTMs in Cca1in subcellular 

compartment. This information may help us to define the roles of these modifications. 

 

With respect to the comparison of the proteomes of the wt and ts strains, it would be 

important to repeat the experiments using the cca1-E189F strain. This strain is analogous to the 

cca1-E189K strain and shows the same ts phenotype, but is much less likely to revert. This 

would allow us to see if the anomalous growth curve that we saw for the ts mutant was due to a 

reversion or to a second site suppressor. If it is a second site suppressor, then a more detailed 

analysis of the protein profiles resulting may lead toward an understanding of proteins involved 

in tRNA metabolism. Also, we should focus on the specific protein groups identified in these 

results, such as those involved in protein degradation, oxidative stress, or mitochondrial structure 

and function, which might provide insights into proteostasis networks.  
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APPENDIX 

 

 

Sequence of Cca1-TAP 

 

agtaaatgatgacacaaggcaattgacccacgcatgtatctatctcattttcttacacct 

tctattactttctgctctctctgatttgaaaaaagctgaaaaaaaaggttgaaaccagtt 

ccctgaaattattcccctacttgactaataagtatataaagacggtaggtattgattgta 

attctgtaaatctatttcttaaacttcttaaattctacttttatagttagtctttttttt 

agttttaaaacaccagaacttagtttcgacggattctagaactagtatgctacggtctac 

tatatctctactgatgaatagtgctgctcagaaaacgatgacgaattctaattttgttct 

aaatgcacccaaaatcaccttaaccaaagtggaacagaacatctgtaacttgctgaacga 

ttatacagacttgtacaatcaaaagtaccacaataagcctgagccattgactcttcggat 

cacgggcggatgggtgcgtgacaagcttctgggacaaggttctcacgacttggatattgc 

catcaatgtgatgtcaggtgagcaatttgctactggtttgaacgagtatttgcaacaaca 

ttacgccaaatatggagccaagcctcataatatccacaagattgacaagaatcccgagaa 

atccaagcatctggaaactgccactactaagctctttggcgttgaagtggattttgtcaa 

tttaagatctgaaaagtatactgaactttccaggatacctaaagtgtgctttggcacacc 

cgaggaagacgctttaagaagggatgctacattgaacgctcttttctataacattcataa 

aggtgaagtggaagatttcaccaagagaggtctgcaagatctaaaagatggcgttctccg 

tactccgcttcctgcaaaacaaacatttttggatgatcccttgagggttttgaggttgat 

ccgtttgccttctagattcaactttaccatagatccggaagtgatggctgaaatgggcga 

tcctcagattaatgttgcattcaattcaaaaatttctagagagcgagttggtgtggagat 

ggagaaaatattagtaggaccaacccctttattggctttgcagctgattcaaagggctca 

tcttgaaaatgttatctttttttggcataatgatagctccgtcgtaaaattcaacgaaga 

gaattgtcaagatatggacaaaattaatcatgtatacaatgataacatactaaactcaca 

cttgaaaagttttattgaattatatccaatgtttttagagaagcttcctatcttaaggga 

aaaaattggtcgttcgccaggatttcagcaaaattttatattgagtgcgatcctgtcccc 

catggctaatttacaaataatcgggaacccaaagaagaaaattaacaacctggtttcggt 

gacagaaagcattgtgaaggaaggattgaagctgagtaaaaatgatgcagcagttattgc 

caagaccgtagattcaatatgttcatatgagGaaatacttgctaagtttgcagatcgtTc 

ccagctaaaaaaatccgaaatcggtatatttctacggaacttTaatggcgaatgggaaac 

agcacattttgcatctctatcagatgcatttttaaagattcccaagcttgaaactaaaaa 

aattgaattacttttccaaaattacaatgaattttattcttacatatttgacaataattt 

gaataattgtcatgaactaaaaccaatagtggacggaaaacaaatggcaaaactacttca 
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aatgaagccaggtccatggctgggtaaaattaataacgaagcgattaggtggcagtttga 

taatcctacagggactgatcaagaattaataactcatttaaaagccatactaccaaaata 

cctgggtggagggggaggcggaggcggaggcggatctcgacggatccccgggttaattaa 

tccatggaagagaagatggaaaaagaatttcatagccgtctcagcagccaaccgctttaa 

gaaaatctcatcctccggggcacttgattatgatattccaactactgctagcgagaattt 

gtattttcagggagaattcggccttgcgcaacacgatgaagccgtggacaacaaattcaa 

caaagaacaacaaaacgcgttctatgagatcttacatttacctaacttaaacgaagaaca 

acgaaacgccttcatccaaagtttaaaagatgacccaagccaaagcgctaaccttttagc 

agaagctaaaaagctaaatgatgctcaggcgccgaaagtagacaacaaattcaacaaaga 

acaacaaaacgcgttctatgagatcttacatttacctaacttaaacgaagaacaacgaaa 

cgccttcatccaaagtttaaaagatgacccaagccaaagcgctaaccttttagcagaagc 

taaaaagctaaatgatgctcaggcgccgaaagtagacgcgaatcatcaggagctgactca 

tcaatn 

 

Cca1 gene sequence is between the yellow highlighted regions; and the TAP sequence is between 

the red highlighted regions. 


