Xu, Gang, Kwok, Tsz Ho ORCID: https://orcid.org/0000000172401426 and Wang, Charlie C.L. (2017) Isogeometric Computation Reuse Method for Complex Objects with TopologyConsistent Volumetric Parameterization. ComputerAided Design, 91 . pp. 113.

Text (application/pdf)
613kBCADReuseIGA.pdf  Accepted Version Available under License Spectrum Terms of Access. 
Official URL: http://dx.doi.org/10.1016/j.cad.2017.04.002
Abstract
Volumetric spline parameterization and computational efficiency are two main challenges in isogeometric analysis (IGA). To tackle this problem, we propose a framework of computation reuse in IGA on a set of threedimensional models with similar semantic features. Given a template domain, Bspline based consistent volumetric parameterization is first constructed for a set of models with similar semantic features. An efficient quadraturefree method is investigated in our framework to compute the entries of stiffness matrix by Bezier extraction and polynomial approximation. In our approach, evaluation on the stiffness matrix and imposition of the boundary conditions can be precomputed and reused during IGA on a set of CAD models. Examples with complex geometry are presented to show the effectiveness of our methods, and efficiency similar to the computation in linear finite element analysis can be achieved for IGA taken on a set of models.
Divisions:  Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering 

Item Type:  Article 
Refereed:  Yes 
Authors:  Xu, Gang and Kwok, Tsz Ho and Wang, Charlie C.L. 
Journal or Publication:  ComputerAided Design 
Date:  October 2017 
Digital Object Identifier (DOI):  10.1016/j.cad.2017.04.002 
Keywords:  Computation reuse, Isogeometric analysis, Consistent volume parameterization 
ID Code:  983467 
Deposited By:  TSZ HO KWOK 
Deposited On:  05 Feb 2018 14:24 
Last Modified:  05 Feb 2018 14:24 
References:
Hughes T.J.R., Cottrell J.A., Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement Comput Methods Appl Mech Engrg, 194 (39–41) (2005), pp. 41354195Cottrell J.A., Hughes T.J.R., Bazilevs Y. Isogeometric analysis: toward integration of CAD and FEA Bautechnik, 88 (6) (2011), p. 423
Kwok T.H., Zhang Y., Wang C.C. Constructing common base domain by cues from Voronoi diagram Graph Models, 74 (4) (2012), pp. 152163
Kwok T.H., Zhang Y., Wang C.C.L. Efficient optimization of common base domains for cross parameterization IEEE Trans Vis Comput Graphics, 18 (10) (2012), pp. 16781692
Kraevoy V., Sheffer A. Crossparameterization and compatible remeshing of 3D models ACM SIGGRAPH 2004 Papers, SIGGRAPH’04, ACM, New York, NY, USA (2004), pp. 861869
Schreiner J., Asirvatham A., Praun E., Hoppe H. Intersurface mapping ACM SIGGRAPH 2004 Papers, SIGGRAPH’04, ACM, New York, NY, USA (2004), pp. 870877
Li X., Guo X., Wang H., He Y., Gu X., Qin H. Harmonic volumetric mapping for solid modeling applications Proceedings of the 2007 ACM symposium on solid and physical modeling, ACM, New York, NY, USA (2007), pp. 109120
Xia J., He Y., Yin X., Han S., Gu X. Directproduct volumetric parameterization of handlebodies via harmonic fields 2010 shape modeling international conference (2010), pp. 312
Xia J., He Y., Han S., Fu C.W., Luo F., Gu X. Parameterization of starShaped volumes using Green’s functions Mourrain B., Schaefer S., Xu G. (Eds.), Advances in geometric modeling and processing: 6th international conference, Castro Urdiales, Spain, June 16–18, 2010. Proceedings, Springer, Berlin, Heidelberg, Berlin, Heidelberg (2010), pp. 219235
Martin T., Cohen E., Kirby R.M. Volumetric parameterization and trivariate Bspline fitting using harmonic functions Comput Aided Geom Design, 26 (6) (2009), pp. 648664
Aigner M., Heinrich C., Jüttler B., Pilgerstorfer E., Simeon B., Vuong A.V. Swept volume parameterization for isogeometric analysis Hancock E.R., Martin R.R., Sabin M.A. (Eds.), Mathematics of Surfaces XIII: 13th IMA International Conference York, UK, September 7–9, 2009 Proceedings, Springer, Berlin, Heidelberg, Berlin, Heidelberg (2009), pp. 1944
Escobar J.M., Cascón J.M., Rodríguez E., Montenegro R. A new approach to solid modeling with trivariate Tsplines based on mesh optimization Comput Methods Appl Mech Engrg, 200 (45–46) (2011), pp. 32103222
Zhang Y., Wang W., Hughes T.J.R. Solid Tspline construction from boundary representations for genuszero geometry Comput Methods Appl Mech Engrg, 249–252 (2012), pp. 185197 Higher Order Finite Element and Isogeometric Methods
Wang W., Zhang Y., Liu L., Hughes T.J.R. Trivariate solid Tspline construction from boundary triangulations with arbitrary genus topology Comput Aided Des, 45 (2) (2013), pp. 351360 Solid and Physical Modeling 2012
Xu G., Mourrain B., Duvigneau R., Galligo A. Parameterization of computational domain in isogeometric analysis: Methods and comparison Comput Methods Appl Mech Engrg, 200 (23–24) (2011), pp. 20212031
Xu G., Mourrain B., Duvigneau R., Galligo A. Analysissuitable volume parameterization of multiblock computational domain in isogeometric applications Comput Aided Des, 45 (2) (2013), pp. 395404
Pettersen K.F., Skytt V. Spline volume fairing Boissonnat J.D., Chenin P., Cohen A., Gout C., Lyche T., Mazure M.L., Schumaker L. (Eds.), Curves and surfaces: 7th international conference. Avignon, France, June 24–30, 2010, revised selected papers, Springer, Berlin, Heidelberg, Berlin, Heidelberg (2012), pp. 553561
Zhang Y., Wang W., Hughes T.J.R. Conformal solid Tspline construction from boundary Tspline representations Comput Mech, 51 (6) (2013), pp. 10511059
Kwok T.H., Wang C.C.L. Domain construction for volumetric crossparameterization Comput Graph, 38 (2014), pp. 8696
Karatarakis A., Karakitsios P., Papadrakakis M. GPU accelerated computation of the isogeometric analysis stiffness matrix Comput Methods Appl Mech Engrg, 269 (2014), pp. 334355
Hughes T.J.R., Reali A., Sangalli G. Efficient quadrature for NURBSbased isogeometric analysis Comput Methods Appl Mech Engrg, 199 (5–8) (2010), pp. 301313 Computational Geometry and Analysis
Antolin P., Buffa A., Calabr F., Martinelli M., Sangalli G. Efficient matrix computation for tensorproduct isogeometric analysis: The use of sum factorization Comput Methods Appl Mech Engrg, 285 (2015), pp. 817828
Bartoň M., Calo V.M. Optimal quadrature rules for odddegree spline spaces and their application to tensorproductbased isogeometric analysis Comput Methods Appl Mech Engrg, 305 (2016), pp. 217240
Bartoň M., Calo V.M. Gauss–Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis Comput Aided Des, 82 (2017), pp. 5767 Isogeometric Design and Analysis
Calabró F., Sangalli G., Tani M. Fast formation of isogeometric Galerkin matrices by weighted quadrature Comput Methods Appl Mech Engrg, 316 (2017), pp. 606622 Special issue on isogeometric analysis: progress and challenges
Johannessen K.A. Optimal quadrature for univariate and tensor product splines Comput Methods Appl Mech Engrg, 316 (2017), pp. 8499 Special issue on isogeometric analysis: progress and challenges
Mantzaflaris A., Jüttler B. Integration by interpolation and lookup for Galerkinbased isogeometric analysis Comput Methods Appl Mech Engrg, 284 (2015), pp. 373400 Isogeometric analysis special issue
Wang C.C.L., Hui K.C., Tong K.M. Volume parameterization for design automation of customized freeform products IEEE Trans Autom Sci Eng, 4 (1) (2007), pp. 1121
Praun E., Sweldens W., Schröder P. Consistent mesh parameterizations Proceedings of the 28th annual conference on computer graphics and interactive techniques, SIGGRAPH’01, ACM, New York, NY, USA (2001), pp. 179184
Farin G., Hoschek J., Kim M.S. Handbook of computer aided geometric design ELSEVIER (2002), pp. 771795
Borden M.J., Scott M.A., Evans J.A., Hughes T.J.R. Isogeometric finite element data structures based on Bézier extraction of NURBS Internat J Numer Methods Engrg, 87 (1–5) (2011), pp. 1547
Scott M.A., Borden M.J., Verhoosel C.V., Sederberg T.W., Hughes T.J.R. Isogeometric finite element data structures based on Bézier extraction of Tsplines Internat J Numer Methods Engrg, 88 (2) (2011), pp. 126156
Wang X., Qian X. An optimization approach for constructing trivariate Bspline solids Comput Aided Des, 46 (2014), pp. 179191
Hu Q., Xu H. Constrained polynomial approximation of rational Bézier curves using reparameterization J. Comput Appl Math, 249 (249) (2013), pp. 133143
Shi M, Deng J. Approximating rational Bézier curves by constrained Bézier curves of arbitrary degree. arXiv:1212.3385 [math.NA], 2012
Wang G.J., Sederberg T.W., Chen F. On the Convergence of Polynomial Approximation of Rational Functions J Approx Theory, 89 (3) (1997), pp. 267288
Repository Staff Only: item control page