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An Improved Particle Filtering-based Approach for Health
Prediction and Prognosis of Nonlinear Systems *

Najmeh Daroogheh1, Nader Meskin2 and Khashayar Khorasani1

Abstract

Health monitoring of nonlinear systems is broadly concerned with the system health tracking and its prediction

to future time horizons. Estimation and prediction schemes constitute as principle components of any health

monitoring technique. Particle filter (PF) represents a powerful tool for performing state and parameter estimation

as well as prediction of nonlinear dynamical systems. Estimation of the system parameters along with the states

can yield an up-to-date and reliable model that can be used for long-term prediction problems through utilization of

particle filters. This feature enables one to deal with uncertainty issues in the resulting prediction step as the time

horizon is extended. Towards this end, this paper presents an improved method to achieve uncertainty management

for long-term prediction of nonlinear systems by using particle filters. In our proposed approach, an observation

forecasting scheme is developed to extend the system observation profiles (as time-series) to future time horizon.

Particles are then propagated to future time instants according to a resampling algorithm instead of considering

constant weights for the particles propagation in the prediction step. The uncertainty in the long-term prediction of

the system states and parameters are managed by utilizing dynamic linear models for development of an observation

forecasting scheme. This task is addressed through an outer adjustment loop for adaptively changing the sliding

observation injection window based on the Mahalanobis distance criterion. Our proposed approach is then applied to

predicting the health condition as well as the remaining useful life (RUL) of a gas turbine engine that is affected by

degradations in the system health parameters. Extensive simulation and case studies are conducted to demonstrate

and illustrate the capabilities and performance characteristics of our proposed and developed schemes.

Index Terms

Health monitoring, prognosis, particle filters, state and parameter prediction, observation forecasting, dynami-

cally linear models, gas turbine engine, fouling, erosion.

ACRONYMS AND ABBREVIATIONS

DLM dynamic linear model
PF particle filter
RUL remaining useful life
ARMA autoregressive moving average
PHM prognosis and health management
EF equivalent flop
PRMSE percent of root mean square error
RPE regularized prediction error
VOM variable order model
FOM fixed order model
W/O RS without resampling
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RUL-API RUL online accuracy-precision index
RUL-OPI RUL online precision index
RUL-OSI RUL online steadiness index

Nomenclature:

xt system state
θt fault vector of the system parameter
ωt process noise sequence
νt measurement noise sequence
λ(xt) system health parameter function
ŷt+i|t i-step ahead observation prediction from the PF
Ŷt+i|t i-step ahead observation forecast from the DLM
ylin
j,t the linear projection of the j-th observation
εj,t white noise process in the ARMA process for the j-th observation
L delay operator
DM Mahalanobis distance metric
C(.) EF complexity

I. INTRODUCTION

Reductions in maintenance cost is a challenging goal in today’s highly complex and interconnected
engineering systems. Highly relevant to this objective is prediction of the future health of a system. This
problem has recently received a great deal of interest and is an active area of research for production and
maintenance optimization goals. Research on reliable health monitoring techniques can potentially reduce
the downtime and breakdowns of a system, and consequently add to the cost savings and operational
safety [1], [2]. To achieve these goals, prognosis and health management (PHM) techniques have been
pursued as principal active fields of research in various disciplines [3].

In PHM systems there are two principal components, namely: (i) the system health tracking that is
to be achieved by analyzing the system behavior signatures or its health parameters (also known as the
estimation module), and (ii) the system health prediction that is to be achieved by analyzing the evolution
of system signatures in the long term horizon (also known as the prediction module) for predicting the
system remaining useful life (RUL). Prognostic methods attempt to predict the future health of a system
for determining its RUL before the failure occurs [1]. Performance of prognostic schemes is mainly
influenced by accuracy of the prediction method, that in turn can be affected by activities such as the
maintenance actions [4]. Therefore, uncertainty management is an important and challenging problem that
should be considered in development of a reliable prognostic framework [5].

When the mathematical model of a system and its affected damage mechanisms are known, model-based
prognostic methods can be utilized as proposed in the literature [6], [7]. Kalman filter based methods are
used for performing prognosis in [8], [9], and a multiple model moving horizon estimation algorithm is
developed for online prediction of the system health in [10]. Among all the model-based approaches for
prognosis, particle filter (PF) Monte Carlo schemes are considered as representing the state-of-the-art in
failure prognosis [5], [11], [12]. Their capability for taking into account and incorporating the system
parameters as augmented states in the estimation scheme enables them to be suitable for uncertainty
management in failure prognosis as achieved through joint state and parameter estimation modules.
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Development of a parameter estimation scheme for system health tracking when the damage model
is not explicitly known was considered in [13], where the damage was identified according to its effect
on the system health parameters. A dual state and parameter estimation method based on a nonlinear
filtering scheme is developed in [13]. In this method, the time-varying health parameters of the system are
estimated according to a novel approach based on the regularized prediction error (RPE) concept of particle
filters (PF). In the present paper, the method developed in [14]–[16] is utilized to extend our previously
developed dual state and parameter estimation algorithm for long-term prediction of system states and
health parameters as required in our proposed prognosis scheme. Towards this end, an adaptive scheme for
observation profile forecasting is proposed. This method is developed by incorporating the dynamic linear
model (DLM) for Bayesian forecasting of univariate time-series [17], as opposed to nonlinear time-series
forecasting methods that are developed in [18]. A statistical characterization of the profiles for Li-Ion
batteries is addressed in [19] where a state space model is used to modify the observation equation that
incorporates most of the static battery nonlinearities. This modification improves the convergence of the
state estimate and provides suitable initial conditions for the prognosis stage.

The DLM represents a flexible approach for modeling a variety of fixed, time-varying, univariate or
multivariate systems through Bayesian analysis [20]. The key feature in working with the DLM models is
that their estimation and prediction schemes can be obtained recursively by using Bayesian approaches.
One can generate useful models for forecasting non-stationary observations where the implementation and
analysis are not as complicated as nonlinear time-series analytical methods that are used for forecasting
[17], [20]. In the present work, DLM models and particle filters are integrated into an observation
forecasting module for managing uncertainty in the long-term prediction of the system health condition.
This is achieved by introducing fixed-lag DLM models that are updated according to an adaptive scheme.
This adaptive updating scheme is developed based on the Mahalanobis distance metric that enables the
prediction algorithm to manage uncertainties that are originated from the non-stationary process noise.
The Mahalanobis distance is an important metric that has been used in the literature for fault diagnosis
of dynamical systems [21].

An uncertainty management system for long-term prediction horizon using particle filters was developed
in [5]. It utilizes invariant particle weights for future propagation of the particles. On the other hand, the
regularization of particles is utilized to characterize the future uncertainties by modifying the location of
particles. The prediction algorithm accuracy is shown to be improved by employing an outer correction
loop to modify the hyper-parameters of the process noise that is used in the nonlinear model of the system.
This is in particular implemented in the artificial evolution law that is utilized for estimating the system
unknown parameters. An outer feedback correction loop in particle filtering based prognosis approaches
has been introduced in several works [22]–[24]. Moreover, in a simpler prediction approach as far as
computational effort is concerned in [5] the particle weights are considered fixed for future propagation.
This is based on the assumption that the error generated by considering the invariant particle weights
for future time instants are negligible when compared to other sources of error in practical applications
affecting the system.

In our proposed method, it is shown that our previously developed dual state and parameter estimation
algorithm in [14], [15] along with the newly developed DLM prediction method where the particles
resampling is maintained for future time instants can yield an improved long-term prediction performance
and achieve a more accurate RUL estimation of the system condition. These constitute as the main goals
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of the second component of any PHM strategy [22], [25]–[28]. Our results are evaluated by utilizing the
percent of root mean square error criterion as well as the accuracy of the RUL prediction for the prognosis
problem [29].

We have also conducted an extensive study on the computational complexity of our proposed method in
terms of the so-called equivalent flop (EF) complexity that is introduced in [30] for any given operation.
Moreover, the conditions under which the equivalent time complexity of our proposed method, including
the observation prediction step and the resampling scheme for the prediction horizon, can be comparable
to the previously developed methods in [5] with an augmented state and parameter vector and constant
particle weight propagation, are also obtained. In this paper, our preliminary results in [13] are formally
justified and validated through an extensive theoretical analysis as well as a comprehensive computational
evaluation and quantitative comparisons.

Finally, our proposed prognosis strategy is applied to a gas turbine engine application to predict the
system health parameters variations when it is subjected to soft degradation damages. The mathematical
model of the considered gas turbine engine has been already verified and validated in our earlier works
[31]–[33] by utilizing the commercially available software simulation toolbox GSP10 [34]. Based on the
predicted system health parameters, the remaining useful life of the engine is determined. The main causes
of degradation in a gas turbine engine can be categorized into (a) erosion, (b) corrosion, (c) fouling, and
(d) thermal distortion that can initiate and/or accelerate the creep, low-cycle fatigue, high-cycle fatigue
and thermal fatigue damage [35], [36]. In this work, we concentrate and mainly investigate the effects
of fouling and erosion phenomena as the principle causes of the engine performance degradation. The
probabilities of an engine failure due to these degradation phenomena are approximated based on our
developed health prediction scheme.

To summarize, the main contributions of this paper can be stated as follows:

1) To develop an improved prediction strategy based on particle filters for performing the system failure
prognosis,

2) To propose an observation forecasting scheme based on the fixed/variable order DLM that are adjusted
online by utilizing an adaptive external adjustment mechanism,

3) To quantitatively determine and evaluate the computational complexity of our proposed methods in
terms of the EF complexity, and

4) To apply our proposed and developed failure prognosis methodology to a highly nonlinear and com-
plex case study of gas turbine engine subject to fouling and erosion degradations to comprehensively
evaluate and demonstrate the advantages and capabilities of our proposed methodology.

The remainder of this paper is organized as follows. In Section II, the nonlinear filtering problem is
formulated by including changes in the system health parameters through a multiplicative fault vector.
A brief background information on our previously developed dual state and parameter nonlinear filtering
schemes based on the particle filter method is also presented in this section. Our proposed framework for
predicting the future propagation of the nonlinear system states and its parameters is developed in Section
III. The utilization and implementation of our proposed prediction method in evaluating the system RUL
is presented in Section IV. Section V provides the complexity analysis of our proposed prediction scheme
based on the EF metric. Finally, extensive simulation results and comparative evaluation results using
the EF and three RUL performance metrics corresponding to the application of our proposed method for
failure prognosis of a gas turbine engine that is affected by degradations due to compressor fouling and

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

turbine erosion are provided in Section VI.

II. PROBLEM STATEMENT AND BACKGROUND INFORMATION

In model-based prognosis and health monitoring approaches, the first step in formulating the problem
is to characterize the damage model. Let us consider the following nonlinear dynamical system,

xt+1 = ft(xt, θ
T
t λ(xt), ωt), (1)

yt = ht(xt, θ
T
t λ(xt)) + νt, (2)

where xt ∈ Rnx is the system state, λ(.) : Rnx −→ Rnθ is a known differentiable function that determines
the relationship between the health parameters and the system states, θt ∈ Rnθ is an unknown and possibly
time-varying multiplicative fault vector that represents the damage effects on the system health parameter
where for the healthy system, θt is set to 1, yt ∈ Rny is the output measurement, ωt ∈ Rnω and νt ∈ Rny are
uncorrelated noise sequences with covariance matrices Wt and Vt, and mean values µw and µv, respectively
(although the mean µv ≡ 0 subsequently without loss of generality), ft : Rnx × R × Rnω −→ Rnx , and
ht : Rnx × R −→ Rny are known nonlinear functions representing the relationship between the states,
parameters and the output measurements (observations). The degradation phenomenon in mechanical
systems can in general be identified from the changes it causes on the efficiency of the system, where
the efficiency is designated as the health parameter that can in general be analytically obtained from the
states and measurements of the system. The process noise is not considered as an additive noise since
corresponding to our main focused application problem (that is, a mechanical system aircraft gas turbine
engine application) the additive process noise assumption is not necessarily valid.

A. Background Information

A brief, albeit required, background corresponding to the dual state and parameter estimation algorithm
as has been developed in our earlier works in [13]–[16], is now presented in this section. In the developed
dual state and parameter estimation structure, two concurrent filters are implemented for the state and
parameter estimation tasks. At each time step for the state (parameter) estimator filter, the parameters
(states) are treated as being known inputs to the filter from the parameter (state) estimator.

Our main goal in the dual state and parameter estimation problem is to approximate the following
conditional expectations,

E(φ1(xt)|y1:t, θt−1) =
∫
φ1(xt)p(xt|y1:t, θt−1)dxt,

E(φ2(θt)|y1:t, xt) =
∫
φ2(θt)p(θt|y1:t, xt)dθt,

where y1:t = (y1, y2, ..., yt) denotes the available observations up to the time instant t, φ1 : Rnx → R,
and φ2 : Rnθ → R are functions of states and parameters, respectively, that are to be estimated. The
conditional probability functions p(xt|y1:t, θt−1)dxt and p(θt|y1:t, xt)dθt are to be approximated by the
designed particle filters (PFs) through determining the filtering distributions according to,

p̂N(xt|y1:t, θt−1)dxt =
N∑

i=1

w(i)
xt δx(i)

t
(dxt),

p̂N(θt|y1:t, xt)dθt =
N∑

j=1

w
(j)
θt
δ
θ
(j)
t

(dθt),
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TABLE I
PSEUDO CODE CORRESPONDING TO OUR DEVELOPED DUAL STATE AND PARAMETER ESTIMATION ALGORITHM [14]–[16]

• Initialization of the states and parameters: x0 ∼ πx0 and θ0 ∼ πθ0 , where πx0 and πθ0 are the initial distributions of states and
parameters, respectively,

[x̂t|t, {x̂(i)

t|t}Ni=1, θ̂t|t, {θ̂(j)

t|t }Nj=1,Σθ̂t|t ] = DualPF({x̂(i)

t−1|t−1}Ni=1, {θ̂(j)

t−1|t−1}Nj=1,Σθ̂t−1|t−1
, yt)

1) Estimation of the a priori state distribution:

a) Generate the a priori state particles: x̂(i)

t|t−1 = ft(x̂
(i)

t−1|t−1, θ̂
T
t−1|t−1λ(x̂

(i)

t−1|t−1), ω
(i)
t ), i = 1, ..., N , where ω(i)

t follows the
same distribution as ωt in (1),

b) A priori state covariance approximation: Σx̂t|t−1
= 1

N−1

∑N
i=1(x̂

(i)

t|t−1 − 1
N

∑N
j=1 x̂

(j)

t|t−1)(x̂
(i)

t|t−1 − 1
N

∑N
j=1 x̂

(j)

t|t−1)T.

2) Estimation of the a posteriori state distribution:

a) Calculate the state particles weights: w̃(i)
xt ,

ρ(yt|x̂(i)t|t−1
,θ̂t−1|t−1)

∑N
i=1 ρ(yt|x̂

(i)
t|t−1

,θ̂t−1|t−1)
, i = 1, ..., N where ρ(yt|.) is the conditional probability

density function of yt,

b) Regularization of the a priori state distribution: π̃Nxt|t(dxt) ≈
∑Nreg

l=1

∑N
i=1 w̃

(i)
xt
|A−1
t |
bnx
K( 1

b
A−1
t (x

regl
t − x̂(i)

t|t−1)), where At is
selected such that AtAT

t = Σx̂t|t−1
,

c) Resampling to approximate a posteriori state estimate distribution: πNxt|t(dxt) = 1
N

∑N
i=1 δx̂(i)

t|t
(dxt),

d) Estimate the a posteriori state: x̂t|t = 1
N

∑N
i=1 x̂

(i)

t|t .

3) Estimation of the parameter distribution:

a) Calculate the prediction error as: εt(θ̂
(j)

t−1|t−1) = yt − h(x̂t|t, θ̂
(j)T

t−1|t−1λ(x̂t|t)), j = 1, ..., N,

b) Calculate m(j)
t from the RPE-based modified artificial law: m(j)

t = θ̂
(j)

t−1|t−1 + γtR
(j)
t ψ

(j)
t εt(θ̂

(j)

t−1|t−1), j = 1, ..., N ,
c) Apply the kernel smoothing concept through the shrinkage matrix A to obtain the first step a posteriori parameter estimation

distribution: θ̃(j)

t|t = Am
(j)
t + (I −A)m̄t−1 + ζ

(j)
t , m̄t−1 = 1

N

∑N
j=1 θ̂

(j)

t−1|t−1, ζ
(j)
t ∼ N (0, (I −A2)Σθ̂t−1|t−1

),

4) Estimation of the a posteriori parameter distribution:

a) Calculate the parameter particles weights: w̃(j)
θt
,

ρ(yt|x̂t|t,θ̃
(j)
t|t )

∑N
j=1 ρ(yt|x̂t|t,θ̃

(j)
t|t )

, j = 1, ..., N ,

b) Calculate the first step a posteriori parameter estimation distribution: π̃Nθt|t(dθt) ≈
∑N
j=1 w̃

(j)
θt
δ
θ̃
(j)
t|t

(dθt),

c) Resampling to approximate a posteriori parameter estimate distribution: πNθt|t(dθt) = 1
N

∑N
j=1 δθ̂(j)

t|t
(dθt),

d) Obtain the a posteriori parameter estimate: θ̂t|t = 1
N

∑N
j=1 θ̂

(j)

t|t ,

e) Calculate the a posteriori parameter estimate covariance: Σθ̂t|t = 1
N−1

∑N
j=1(θ̂

(j)

t|t − θ̂t|t)(θ̂
(j)

t|t − θ̂t|t)T.

The definition of the notations in the pseudo code is as follows:

• ω
(i)
t denotes the process noise added to each particle for i = 1, ..., N ,

• K(.) : The regularization kernel,
• x

regl
t : The regularized points around which K(.) is evaluated for l = 1, ..., Nreg(number of regularized steps),

• γtR
(j)
t : The adaptive step size in the parameter estimation where R

(j)
t =

√
trace(E(j)

t E(j)T

t ), E(j)
t = εt(θ̂

(j)

t−1|t−1) −
1
ny

∑l=ny
l=1 ε

(l)
t (θ̂

(j)

t−1|t−1), where ε
(l)
t (θ̂

(j)

t−1|t−1) denotes the l-th element of the εt(θ̂
(j)

t−1|t−1) vector, and γt is a constant or a
decreasing step size,

• ψ
(j)
t : The Jacobian of h(x̂t|t, θ̂

(j)

t−1|t−1) with respect to θ̂(j)

t−1|t−1 evaluated for the j-th particle,

• ζ
(j)
t : The evolution noise added to each parameter particle.

• A: The shrinkage matrix is selected such that A ≤ I .

where the subscript N implies that the state and parameter conditional probability distributions are obtained
from N particles. Each state particle x(i)

t is associated with a weight w(i)
xt and each parameter particle θ(j)

t

is associated with a related weight w(j)
θt

, where δ(.) denotes the Dirac-delta function mass. In Table I, the
pseudo code corresponding to our previously developed dual state and parameter estimation filter for the
nonlinear system (1)-(2) is provided. More details regarding this algorithm can be found in [14]–[16].

We are now in a position to present our proposed particle filters-based prediction framework by utilizing
DLMs acting as local models to obtain and develop observation profiles forecasting.
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III. PREDICTION FRAMEWORK

In this section, our proposed model-based prognosis approach (that is, the system health prediction),
as described in Section II, is developed and presented. This is accomplished by extending our previously
developed PF-based dual state and parameter estimation scheme [13]–[16] to the future time instants,
where the weight update in the long-term prediction using particle filters cannot be easily implemented
in absence of future observations.

Our proposed strategy is based on first forecasting the system observations by using the available
historical data for a given predefined time horizon. This window is adaptively adjusted whenever a
new observation batch becomes available. However, due to the system nonlinearity, the non-normality of
measurement noise, and degradation effects, these will generally lead to non-stationary system observations
[37]. Consequently, to model dynamical system observations as a time-series, as opposed to directly using
a nonlinear model, the dynamic linear model (DLM) approach is utilized. The DLM is constructed based
on the assumptions of local normality and linearity of the time-series data within a given short duration
time interval in which the observation time-series has a stationary behavior manifestation [37].

The DLM model essentially represents a special class of state space linear and Gaussian models, in
which the time-series is considered as the output of a dynamical system that is stimulated by random
disturbances. In our proposed fixed-lag DLM model, in each time window the available observation history
that originates from a stochastic non-stationary process is approximated by a stationary process based on
a linear regression method, and the observation forecasting is performed corresponding to a specific time
horizon window.

By augmenting and integrating the observation forecasting module with the PF-based estimation scheme,
the PF algorithm can be extended to future time horizons by utilizing the same weight update rule (through
performing a resampling procedure). This is accomplished in the same manner as in the estimation module
for predicting the system state and parameters for a long-term horizon according to the previously stated
estimation algorithm (Section II-A).

The DLM structure for observation forecasting is constructed according to the well-known autoregressive
moving average (ARMA) models. In the next subsection, a brief overview to forecasting with ARMA
models within the DLM formulation is provided.

A. Forecasting with ARMA Models

ARMA models are well-known as suitable modeling strategies for forecasting or predicting stationary
zero-mean stochastic processes. Although, the observation process yt in (2) is non-stationary, one can still
approximate it by an ARMA process using the DLM in a short-term time window. It is assumed that
variations in the observation time-series are not very fast during this time window, so that the assumption
of the stationarity remains valid. This assumption is indeed not going to be restrictive at all as far as
degradations forecasting in dynamical systems are concerned, since the degradation affects the system
dynamical behavior quite slowly in time. Next, we analyze the specifications for the ARMA models that
are to be utilized in our developed fixed-lag DLM framework.

Towards the above end, let us denote yj,t, j = 1, ..., ny as the j-th element of the output measurement
vector yt (implying a univariate time-series). Since yt, and consequently yj,t, are non-stationary processes,
to model each yj,t as a stationary time-series one has to consider a time interval during which the process
behavior can be approximated as a stationary process. It is assumed that yj,t is a stationary process
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between the time intervals tl and tl+1, where l ∈ N and τ denotes the number of available data points
within the time window (tl − τ, tl]. These data points are used for constructing the l-th DLM model
corresponding to each output in the interval [tl, tl+1). Subsequently, we will show how to select and
specify the time instants tl, l ∈ N based on the Mahalanobis distance criterion [38].

The DLM models corresponding to our observation forecasting module are constructed according to
the ARMA model. Consequently, corresponding to each specific output j in the time interval (tl − τ, tl],
the ARMA(pj, qj) structure is selected and specified as follows,

(1− φj,l,1L− φj,l,2L2 − ...− φj,l,pjLpj )(yj,t − µj,l) =
(1 + θj,l,1L+ θj,l,2L

2 + ...+ θj,l,qjL
qj )εj,t, (3)

where φj,l,i, i = 1, ..., pj , and θj,l,i, i = 1, ..., qj denote the autoregressive and the moving average
coefficients, respectively, the pj and qj denote the autoregressive and the moving average delay orders,
respectively, L denotes the delay operator, µj,l denotes the mean of the j-th historical observation yj,t in
the time window (tl − τ, tl], and the sequence {εj,t} is a white noise error process having a zero mean
and a variance σεj .

Remark 1: The order of ARMA(pj, qj) can be different corresponding to any given l-th DLM model
related to each observation time-series yj,t. Therefore, the DLM model can be implemented based on a
fixed order or a variable order ARMA process. In the case of a variable order ARMA model, the well-
known Akaike information criterion [39] can be utilized to determine the order of the ARMA process.

Another representation for the ARMA process in (3) can be obtained as follows,

yj,t − µj,l =
(1 + θj,l,1L+ θj,l,2L

2 + ...+ θj,l,qjL
qj )

(1− φj,l,1L− φj,l,2L2 − ...− φj,l,pjLpj )
εj,t, (4)

which yields,

yj,t − µj,l = ψj,l,1εj,t + ψj,l,2εj,t−1 + · · · , (5)

where ψj,l,i, i = 1, 2, ... denotes the coefficients corresponding to the quotient of the term in the right
hand side of (4), and refer to the fact that the stationary process yj,t − µj,l can be written as an infinite
autoregressive problem [37]. Therefore, the realization of (5) at the instant t+ 1 based on the information
set {εj,t+1, εj,t, εj,t−1, · · · } is obtained as yj,t+1 − µj,l = ψj,l,1εj,t+1 + ψj,l,2εj,t + · · · . Now, let us define
a forecasting function that is based on the information set up to the time t, i.e. {εj,t, εj,t−1, · · · } as
Ŷj,t+1|t − µj,l = ρj,l,1εj,t + ρj,l,2εj,t−1 + · · · . It has been clearly shown in the literature [18], [37], [40]
that the mean-square error which minimizes E{(yj,t+1 − Ŷj,t+1|t)2} is achieved by setting ρj,l,i = ψj,l,i.
This can also be derived from (3) which generates the true value of yj,t+1 by setting the unobserved noise
εj,t+1 to zero. Therefore, the one-step ahead forecast at time t using the ARMA process (3) model is now
obtained as,

Ŷj,t+1|t − µj,l = φj,l,1(yj,t − µj,l) + φj,l,2(yj,t−1 − µj,l)+
...+ φj,l,pj(yj,t−pj+1 − µj,l)
+ θj,l,1εj,t + θj,l,2εj,t−1 + ...+ θj,l,qj+1εj,t−qj+1.

(6)

The ARMA model parameters can be estimated by applying any recursive parameter estimation method,
such as the least-mean squares (LMS), the recursive-least squares (RLS) or the Kalman filters [41] such that
the desired cost function Vτ (φj,l,n, θj,l,m) = 1

τ

∑tl
t=tl−τ+1(yj,t − Ŷj,t|t−1)2 is minimized given the available

data within the time window t ∈ (tl − τ, tl], where n = 1, ..., pj and m = 1, ..., qj .

8
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We first utilize this stationary process to construct the locally dynamic linear model that is represented
by the ARMA process. Subsequently, the observation forecast will be performed given the obtained
DLM model. The window size τ refers to a fixed number of available data points that are used to
construct the DLM model. As new observations become available, the DLM model will be updated
according to the Mahalanobis distance [38] through an external adjustment loop. In general, the observation
forecasting task is accomplished recursively for the window time interval [t + 1, t + k], and is denoted
by Ŷt+i|t = (Ŷ1,t+i|t, ..., Ŷny ,t+i|t)

T, i = 1, ..., k. More details regarding the DLM update procedure are
investigated below.

1) The DLM Update Law: As stated earlier, at the instant t = tl a new DLM model is constructed
based on the available data within the interval (tl− τ, tl]. The next step deals with determining when the
selected DLM should be updated. It is assumed that a new observation data batch are received with the
size s, where the minimum value of s is 1 and its maximum value depends on the size of the observation
data batch that becomes available at each step. For example, for an aircraft engine the number of recorded
data at each flight cycle might be more than one data point for each measurement. Therefore, at t = tl+s,
it is required to check the validity of the stationarity assumption.

The validation data set corresponds to the available observations in the time interval [tl+s−ś+1, tl+s],
where ś is the size of the validation data. To check changes in the observation data, a sliding window of
size q́ is moved over the validation data and the Mahalanobis distance metric [38] is used to detect the
change as follows. With reference to Figure 1, let us define two q́-tuples which determine the two sliding
windows in the calculation of the Mahalanobis distance metric corresponding to the observation vector as
Qi,1 = (ytl+s−ś+i, ..., ytl+s−ś+q́+i−1)T and Qi,2 = (ytl+s−ś+i+1, ..., ytl+s−ś+q́+i)

T for i = 1, ..., ś− q́. Next,
the mean of data for these two vectors are calculated as,

µQi,1 =
1

q́

q́−1∑

j=0

ytl+s−ś+i+j, µQi,2 =
1

q́

q́−1∑

j=0

ytl+s−ś+i+1+j, (7)

and the corresponding covariance matrices are denoted by ΣQi,1 and ΣQi,2 , so that the Mahalanobis
distance is calculated for the data points in Qi,1 and Qi,2 as follows,

DM(Qi,1) =
√

(Qi,1 − µQi,11)TΣ−1
Qi,1

(Qi,1 − µQi,11), (8)

DM(Qi,2) =
√

(Qi,2 − µQi,21)TΣ−1
Qi,2

(Qi,2 − µQi,21), (9)

where DM(.) denotes the Mahalanobis distance for the observation vector and 1 denotes a unit column
vector. The change in the observation data at the time instant tl+ i is detected if the following condition is
satisfied according to [38], [42], as ∃i ∈ {2, ..., ś−q́} such that |DM(Qi,1)−DM(Qi,2)| > δ|DM(Qi−1,1)−
DM(Qi−1,2)|, where δ ≥ 1 is a positive constant. This along with |DM(Qi−1,1)−DM(Qi−1,2)| determine
the threshold for the change detection and its determination is application specific and the window length
ś, and q́ are chosen such that ś− q́ > 2. Once the change is detected in observations at the time instant
tl + i, then tl+1 = tl + i and the new DLM model is obtained based on observations in the time interval
(tl+1 − τ, tl+1], otherwise the DLM model is not updated. However, a validation algorithm is performed
whenever a new s observation data become available, therefore it is executed at the time instant tl + ḱs,
where ḱ denotes the number of data batches received after the last DLM update. The schematic depiction
of our proposed DLM update algorithm based on the Mahalanobis distance is provided in Figure 1 on a
typical trajectory of yj,t.

9
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Fig. 1. Change detection in a sample observation trajectory for the DLM update.

Remark 2: The Mahalanobis distance metric for determining when the DLM model should be updated
can also be defined based on the error between the predicted observations from the DLM model and the
real observations that are available in the time window (tl, tl + s] as in [13]. In such a case, more data
will be required for evaluating the error based on this criterion.

Remark 3: It should be noted that the Mahalanobis distance metric takes into account not only the
changes in the mean value of yi,t data, but also changes in the covariance of the observation data in
the predefined time frame. Therefore, as soon as changes in these two parameters are detected the new
observation data set is calculated and utilized to construct the DLM model. However, in the degradation
phenomenon (unlike the case of an abrupt fault occurrence) changes in the system health parameters, and
as a result in the system output observations, are quite gradual and slow and the stationary assumption
within a limited and short time interval and window is indeed a valid assumption. The Mahalanobis
distance (M-Distance) metric actually compensates for the non-stationarity of observations by moving the
observation window towards the data set which is matched more to the stationary yi,t data set.

B. Fixed-Lag DLM Model Error Analysis for Observation Forecasting

An error analysis corresponding to the observation forecasting scheme is now presented in this subsec-
tion. Based on the given ARMA(pj, qj) model in (3), the l-th general univariate DLM (for the j-th output
of the dynamical system) can be written according to the following state space representation [17],

Yj,t = Gj,lYj,t−1 + Fj,lεj,t,

yj,t − µj,l = HYj,t,
(10)

where yj,t for t ∈ (tl − τ, tl] refers to the available observations in the time interval of size τ , dj =

max(pj, qj + 1), Fj,l = (1 θj,l,1 ... θj,l,dj−1)T, H = (1 0 ... 0), Yj,t = (yj,t−µj,l, yj,t−1−µj,l, ..., yj,t−dj+1−
µj,l)

T ∈ Rdj , εj,t denotes the sequence of white noise error stimuli,

10
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Gj,l =




φj,l,1 1 0 · · · 0

φj,l,2 0 1 · · · 0
...

...
...

...
...

φj,l,dj−1 0 0 · · · 1

φj,l,dj 0 0 · · · 0



,

φj,l,i, i = 1, ..., dj and θj,l,i, i = 1, ..., dj − 1 denote the constant ARMA model coefficients of the l-th
DLM of the j-th output. Associated with the resulting stationary model, the back substitution of the state
equation from (10) yields,

Yj,t = Gj,lYj,t−1 + Fj,lεj,t =
∞∑

i=0

(Gj,l)
iFj,lεj,t−i. (11)

It should be pointed out that the stationarity condition requires that all the eigenvalues of Gj,l are located
inside the unit circle and, moreover (Gj,l)

i decreases in (11) by increasing i [17], [18]. For justification
of these properties refer to [17], [19], [43] for more details.

Remark 4: The nonlinear non-stationary observation forecast at the time instant k, i.e. yj,t+k made at
the time t + k − 1 by using the ARMA model based on its linear projection on the last available pj
observations {yj,t+k−1, ..., yj,t+k−pj}, is denoted by ylin

j,t+k. This represents a linear approximation to the
actual nonlinear observation process. By applying the one-step ahead prediction algorithm (10), ylin

j,t+k is
obtained as,

ylin
j,t+k − µj,l = H(Gj,lYj,t+k−1 + Fj,lεj,t+k)

= H(
∞∑

i=0

(Gj,l)
iFj,lεj,t+k−i). (12)

We denote the k-step ahead forecast of yj,t+k that is made at time t based on the linear approximation
according to the ARMA model (10) as Ŷj,t+k|t. The most commonly used criterion for evaluating the
performance of the predictor Ŷj,t+k|t is considered to be its mean-square error (MSE) from ylin

j,t+k that is
defined by E{(ylin

j,t+k − Ŷj,t+k|t)2}. Towards this end, Ŷj,t+k|t is obtained by back substitution of (10) into
(12) when the noise error terms related to the future time instants are set to zero (i.e., εj,t+i = 0 for i > 0)
and by applying (11), as follows

Ŷj,t+k|t − µj,l = H((Gj,l)
k+1Yj,t−1 + (Gj,l)

kFj,lεj,t)

= H((Gj,l)
k

∞∑

i=0

(Gj,l)
iFj,lεj,t−i). (13)

The above implies that once the matrix Gj,l is determined from the available data within the specified time
window, the linear forecast and prediction of the observations can be obtained from (13) for a specific
prediction horizon by assuming that the process remains stationary.

Below, in Theorem 1, an upper bound on the mean square error (MSE) of the k-step ahead forecasting
using the ARMA process with the DLM model formulation is obtained. It should be noted that the overall
forecast error has to be computed from the deviation between the predicted observation values, Ŷj,t+k|t and
their values from the nonlinear non-stationary observation process, yj,t+k as governed by (2). In Theorem
2 stated subsequently, this overall forecast error will be stated as a function of the prediction horizon (k).

First, the following lemma is stated following the results in [44] which is necessary for the proof of
our Theorem 1.
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Lemma 1. Let A represent a real square matrix with all its eigenvalues located inside the unit circle,
and B represent any real matrix having a proper dimension. Then,

‖
k−1∑

i=0

AiB(Ai)T‖ ≤ ‖B‖κ(1− rk)
1− r , (14)

where ‖B‖ denotes the matrix norm and is defined as the spectral norm ρ1/2(BTB), κ and r are positive
constants such that ρ(A) < r < 1, and ‖Ai‖2 ≤ κri, where ρ(X) denotes the maximum eigenvalue of the
matrix X .

Proof: The proof of this lemma is provided in Appendix A. �
The result in Lemma 1 is now used to obtain an upper bound on the MSE observation forecasting error

as a function of the prediction horizon (k).
Theorem 1. Consider the ARMA model with the DLM formulation as given by (10). Using this model,

the k-step ahead forecast of the observation at the time instant t, denoted by Ŷj,t+k|t, has a bounded mean

square error of E{(ylin
j,t+k−Ŷj,t+k|t)2} ≤ σ2

εj
‖Fj,lFT

j,l‖(
κj(1−rkj )

1−rj ), where ylin
j,t+k is defined according to Remark

4, σ2
εj

= E{εj,tεj,t} denotes the variance of the noise error to εj,t, and Fj,l denotes the vector related to the
moving average part of the ARMA model in the DLM formulation, κj and rj denote positive constants
such that ρ(Gj,l) < rj < 1, and for any integer i > 0, ‖(Gj,l)

i‖2 ≤ κjr
i
j .

Proof: The proof of this theorem is provided in Appendix A. �
It now follows that a threshold for the bound on the forecast error can be chosen by considering it as

a percent of the mean µj,l within a given window. Hence, one can determine the maximum acceptable
value for k in the observation forecasting algorithm for each observation vector (within the time window

(t, t+k]), by using the l-th DLM model, such that k satisfies the condition σ2
εj
‖Fj,lFT

j,l‖(
κj(1−rkj )

1−rj ) ≤ ιµj,l,
where ι denotes the desired percentage of the error in the k-step ahead prediction as a percentage of
the mean within the window interval (tl − τ, tl]. We should point out that based on the above criterion
for selecting k, it can result in different values for each DLM model. Therefore, for ease of notation in
the subsequent discussions k is considered to represent the minimum step ahead prediction horizon that
satisfies the above mentioned condition for all the DLM models.

Our proposed DLM models based observation forecasting scheme is only capable of forecasting ob-
servations as univariate time-series data. In health prediction strategies one is generally more interested
in predicting the system hidden states (those that are not necessarily measurable) as well as the system
health parameters to evaluate the dynamical system health condition. Our ultimate goal in proposed health
monitoring strategy is to utilize the above developed observation forecasting scheme for predicting the
propagation of the system states and parameters to future time horizons. Using the k-step ahead forecast
of the observations, an online prediction method is now developed based on particle filters to predict the
evolution of the system states and parameters. In the following subsections, the observation forecasting
scheme will be integrated with the particle filters to enhance the prediction performance and capabilities
of our proposed methodologies.

C. Enhancement to Particle Filters for State and Parameter Prediction

The observation forecasting scheme will now be integrated with our previously developed PF-based
dual state and parameter estimation filter, as discussed in Section II-A [13]–[16]. This will allow us
to construct a dual estimation algorithm for forecasting and predicting the system states as well as the

12
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Fig. 2. Flowchart of the health prediction methodology based on the DLM framework.

system slowly time-varying hidden parameters to achieve to a k-step ahead horizon. This prediction task
is performed by replacing the real observation matrix yt+k, where yt+k = (y1,t+k, y2,t+k, ..., yny ,t+k)

T

and is also not available after the time instant t, by the forecasted observation matrix Ŷt+k|t, where
Ŷt+k|t = (Ŷ1,t+k|t, Ŷ2,t+k|t, ..., Ŷny ,t+k|t)

T. Therefore, the resampling algorithm for both state and parameter
estimation filters is performed by utilizing the predicted measurements. It should be noted that to differ-
entiate between the forecasted output that is obtained from the fixed-lag DLM forecasting algorithm and
the one that is estimated from the particle filters, we use Ŷj,t to designate the forecasted output that is
obtained from the DLM-based algorithm, and ŷj,t to designate the estimated output that is obtained from
the particle filter algorithm.

Consider the dynamical system (1) and the associated dual state and parameter estimation filtering
expressions that are given in Table I for estimation of the a priori and a posteriori state and parameter
distributions. By applying the forecasted measurements Ŷt+k|t, the a priori and a posteriori distributions
of the system states and parameters for the k-step ahead prediction horizon are approximated accordingly.
The flowchart corresponding to our proposed methodology for the system state and health parameters
prediction is depicted in Figure 2. In this figure, the update mechanism for the DLM-based observation
forecasting module is also provided, which takes advantage of the M-Distance (Mahalanobis distance)
metric that is applied to recent observations, to emphasize that the observation forecasting module can be
updated at any time that is needed. However, in the last step, the k-step ahead state/parameter prediction
will be responsible for generating the prediction of the states, parameters, and the measurement outputs
(yt+k) as described in detail in this subsection below.
k-step Ahead State and Parameter Prediction Algorithm: The details corresponding to the states and

parameters predictions procedures are provided and summarized below, where r = 1, ..., k, namely,

1) Perform the r-step ahead a priori state prediction as follows:

a) Predict the a priori state particles according to x̂(i)
t+r|t = ft(x̂

(i)
t+r−1|t, θ̂

T
t+r−1|tλ(x̂

(i)
t+r−1|t), ω

(i)
t+r), where

ω
(i)
t+r is the particle noise that is added to the state particle at t+ r and is generated from the same

distribution as ω(i)
t ,

b) Approximate the a priori state covariance matrix according to:
Σx̂t+r|t = 1

N−1

∑N
i=1(x̂

(i)
t+r|t − 1

N

∑N
j=1 x̂

(j)
t+r|t)(x̂

(i)
t+r|t − 1

N

∑N
j=1 x̂

(j)
t+r|t)

T.
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2) Perform the r-step ahead a posteriori state prediction as follows:

a) Calculate the state estimation filter weights for resampling as: w̃(i)
xt+r ,

ρ(Ŷt+r|t|x̂(i)
t+r|t,θ̂t+r|t)∑N

i=1 ρ(Ŷt+r|t|x̂(i)
t+r|t,θ̂t+r−1|t)

,

b) Approximate the a posteriori state distribution from:
π̃Nxt+r|t(dxt+r) ≈

∑Nreg

l=1

∑N
i=1 w̃

(i)
xt+r

|A−1
t |
bnx
K(1

b
A−1
t (x

regl
t+r − x̂(i)

t+r|t)), AtAT
t = Σx̂t+r|t , where the kernel

density K is not the optimal kernel, i.e. the Epanechnikov kernel [45], rather it represents a simple
Gaussian kernel,

c) Resample the state estimate particles according to the filter weights w̃(i)
xt+r , that is denoted by

x̄
(i)
t+r|t and approximate the a posteriori state estimation distribution after resampling according to

πNxt+r|t(dxt+r) = 1
N

∑N
i=1 δx̄(i)

t+r|t
(dxt+r),

d) Approximate the a posterior state estimation according to x̂t+r|t = 1
N

∑N
i=1 x̄

(i)
t+r|t.

3) Perform the first step r-step ahead a posteriori parameter prediction as follows:

a) Calculate the corrected output prediction error as:
εt+r(θ̂

(j)
t+r−1|t) = Ŷt+r|t − ht(x̂t+r|t, θ̂(j)T

t+r−1|tλ(x̂t+r|t)),

b) Calculate m(j)
t+r as m(j)

t+r = θ̂
(j)
t+r−1|t + γt+rR

(j)
t+rψ

(j)
t+rεt+r(θ̂

(j)
t+r−1|t),

c) Calculate the first step a posteriori parameter prediction by applying the kernel shrinkage algorithm
as θ̃

(j)
t+r|t = Am

(j)
t+r + (I − A)m̄t+r−1 + ζ

(j)
t+r, m̄t+r−1 = 1

N

∑N
j=1 θ̂

(j)
t+r−1|t, ζ

(j)
t+r ∼ N (0, (I −

A2)Σθ̂t+r−1|t
),

4) Perform the second step r-step ahead a posteriori parameter prediction as follows:

a) Calculate the parameter estimation filter weights for performing the resampling as follows:

w̃
(j)
θt+r
, ρ(Ŷt+r|t|x̂t+r|t,θ̃(j)

t+r|t)∑M
j=1 ρ(Ŷt+r|t|x̂t+r|t,θ̃(j)

t+r|t)
,

b) Approximate the first step a posteriori parameter distribution according to:
π̃Nθt+r|t(dθt+r) ≈

∑N
j=1 w̃

(j)
θt+r

δ
θ̃
(j)
t+r|t

(dθt+r),

c) Perform the resampling to approximate the a posteriori parameter prediction distribution based on
the resampled parameter predicted particles θ̄(j)

t+r|t as:

πNθt+r|t(dθt+r) = 1
N

∑N
j=1 δθ̄(j)

t+r|t
(dθt+r),

d) Obtain the a posteriori parameter prediction as θ̂t+r|t = 1
N

∑N
j=1 θ̄

(j)
t+r|t,

e) Calculate the a posteriori parameter prediction covariance as Σθ̂t+r|t
= 1

N−1

∑N
i=1(θ̄

(j)
t+r|t−θ̂t+r|t)(θ̄

(j)
t+r|t−

θ̂t+r|t)T.

In view of the above, the state and parameter probability density functions can be generated for the
k-step ahead prediction by utilizing the predicted observations and by maintaining resampling for the
future time instants.

Remark 5: Consider the set DN as a set for which the functions ft(xt, θT
t λ(xt), ωt), and ht(xt, θT

t λ(xt))

are sufficiently smooth. Using a projection process as stated in [16], one can ensure that θ̂(j)
t|t−1, j = 1, ..., N ,

and consequently θ̂(j)
t|t in the estimation algorithm as stated in Table I will remain inside the subset D̄ of

DN (D̄ ⊂ DN ). On the other hand, for any dynamical system such that ∀(xt, θt) ∈ DR, where DR denotes
the stability region of the dynamical system, the function ht(xt, θ

T
t λ(xt)) is bounded, where DN ⊂ DR.

Therefore, the existence of the above mapping in the estimation, and also the r-step ahead prediction al-
gorithm for the system states and parameters guarantee that for r > 1, ht(x̂t+r|t+r, θ̂

(j)T

t+r−1|t+r−1λ(x̂t+r|t+r))

and ht(x̂t+r|t, θ̂
(j)T

t+r−1|tλ(x̂t+r|t)) remain bounded where these bounds are denoted by C1 and C2, respectively.
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It should be pointed out that in the parameter estimation filter, the prediction error εt+r(θ̂
(j)
t+r−1|t) is used

to generate a propagation law for the unknown parameters of the system. Due to lack of observations
after the time instant t, the forecasted observations that utilize the fixed-lag DLM models are used for
this purpose. Therefore, as the error increases in the observation forecasting scheme, it can lead to both
incorrect predicted parameters and states. Consider the prediction error associated with the j-th parameter
particle that is calculated at the time instant t+r assuming that observations up to t+r become available as
ε

(j)
t+r = yt+r − ht(x̂t+r|t+r, θ̂(j)T

t+r−1|t+r−1λ(x̂t+r|t+r)), and the r-step ahead prediction of ε(j)t+r|t assuming that

observations up to the time instant t are available as ε(j)t+r|t = Ŷt+r|t−ht(x̂t+r|t, θ̂(j)T

t+r−1|tλ(x̂t+r|t)). Therefore,
the discrepancy between these two quantities will affect the accuracy of the state and parameter prediction
algorithm, which is specified according to,

|ε(j)t+r − ε(j)t+r|t| = |yt+r − Ŷt+r|t + ht(x̂t+r|t, θ̂
(j)
t+r−1|t)

− ht(x̂t+r|t+r, θ̂(j)
t+r−1|t+r−1)|

≤ |yt+r − Ŷt+r|t|+ |ht(x̂t+r|t, θ̂(j)
t+r−1|t)

− ht(x̂t+r|t+r, θ̂(j)
t+r−1|t+r−1)|

≤ |yt+r − Ŷt+r|t|+ |C1|+ |C2|,

(15)

where the last inequality is obtained based on the results that are summarized in Remark 4. Now, our main
goal here is to investigate the boundedness of |yt+r − Ŷt+r|t| to ensure the boundedness of the prediction
algorithm. Towards this end, an element-wise approach for the long-term horizon prediction based on the
error that is generated for each forecasted observation that is now compared with the actual nonlinear
non-stationary process (2) measurements, is developed in the following theorem.

Theorem 2. Consider the nonlinear stochastic system described by (1) and (2), where the observation
noise to yj,t is considered to be generated from a non-stationary stochastic process with bounded variance
σ2
yj,t

. The k-step ahead observation prediction based on the DLM model using the ARMA process followed
by the particle filter results in the following bound on the mean square error, that is,

E{(yj,t+k − Ŷj,t+k|t)2} ≤ σ2
yj,t

+ Cj,l +Dj,l + Bj,l
+ 2
√

(σ2
yj,t

+ Cj,l +Dj,l)Bj,l,

where Bj,l = σ2
εj
‖Fj,lFT

j,l‖(
κ1(1−rkj )

1−rj ), with κj and rj, j = 1, ..., ny denote positive constants that satisfy
‖Gi

j,l‖ ≤ κjr
i
j . Moreover, Cj,l = h2j,t+k(xt+k, θ

T
t+kλ(xt+k)) + µ2

j,l − 2µj,lhj,t+k(xt+k, θ
T
t+kλ(xt+k)) and Dj,l =

σ2
εj‖Fj,lFT

j,l‖(
κj

1−rj ).
Proof: The proof of this theorem is provided in Appendix A. �
We would like to point out that a more complex time-series forecasting scheme that is based on neural

networks can be used to implement this part of our methodology (refer to our recent work in [46]).

IV. REMAINING USEFUL LIFE (RUL) EVALUATION

The system model that is defined in (1) and (2) is suitable for model-based prognosis specifically
in the case that the system health parameters (that are denoted by λ(xt)) are affected by degradation
damage through the fault vector θt. By performing a system health tracking and its evolution prediction
to the future, the remaining useful life (RUL) of the system can be evaluated by taking into account
the probability of the failure distribution. This is accomplished according to a known criterion on the
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maximum acceptable change (critical bound) of the system health parameters. In implementation of the
health tracking step, the filtering method presented in Section II-A is used. The developed and proposed
prediction algorithm that is presented in Section III is also utilized for implementing the health prediction
step.

It follows from Theorem 2 that as the prediction horizon is extended, the parameter prediction errors
do increase accordingly. For evaluating the performance of our prediction scheme in terms of changes in
the system health parameters, given that the true values of the parameters are assumed to be unknown, the
percentage root mean square error (PRMSE) criterion is used for the estimated outputs instead of the pa-

rameters. This is computed according to [29] as follows, PRMSEyj(i) = 100
√

1
M

∑j=tlM
j=tl1

(
ŷj,m+i−yj,m+i

yj,m+i
)2,

where ŷj,m+i denotes the predicted value of the j-th system output from the particle filters at the time m+i

where m denotes the time instants at which the DLM model is updated, m ∈ {tl1 , ..., tlM}, and M refers to
the total number of the DLM models in the entire observation trajectory, yj,m+i denotes the actual measured
output (observation) at the time m+ i, and the mean is taken over all m+ i, m = tl1 , ..., tlM , time instants
in the prediction horizon, with i = 1, ..., k. The number of steps ahead parameters prediction is chosen
from the outputs PRMSEyj results based on the considered acceptable threshold for each output. It should
be emphasized that the prediction error εt+i, which is used in the state and parameter prediction algorithm
is calculated as the difference between the forecasted observation and the predicted observation from the
particle filter after estimating the states and parameters as εt+i = Ŷt+i|t − ŷt+i. Therefore, to evaluate
the performance of the prediction scheme for states and parameters, ŷt+i = h(x̂t+i|t, θ̂T

t+i−1|tλ(x̂t+i|t)) is
utilized which also incorporates the error due to the state and parameter prediction algorithm.

To calculate the RUL of the system when multiple health parameters are estimated, we first denote
and select θ(s)

cr , s = 1, ..., nθ, as the critical value for the s-th health parameter. The following rule is
now utilized for evaluating the RUL at the time t [47], namely RUL(t) = tj − t, where tj is defined as
tj = mintj{θ̂(s)

tj − θ
(s)
cr ≥ 0, s = 1, ..., nθ}, i.e. the time at which the first parameter that is associated with

the specific degradation damage reaches its critical value. Once the critical value is reached in one of the
parameters, the maintenance action must be performed. Choosing a suitable value for θ(s)

cr is application
specific and is generally determined based on the system performance and operator experience. In most
applications and problems selecting an exact value for the RUL is not feasible or desirable. Therefore,
an acceptable bound is considered as a confidence interval for the RUL prediction. The above procedure
is to estimate the RUL at most k-steps before the occurrence of a total failure. As one gets closer to
the failure time, the RUL is approximated more accurately due to readjustments in the prediction scheme
based on more recent and reliable observations.

In the following section computational complexity of our developed algorithm for the dual state and
parameter estimation and their propagation prediction is quantitatively determined and evaluated. The
complexity results are compared with the ones that correspond to conventional augmented parameter and
state estimation methods as developed in [5], [48] based on particle filters having fixed weights and equally
weighted propagation law for particles for a long-term prediction horizon.

V. COMPLEXITY ANALYSIS

In this section, the computational complexity of our proposed prediction scheme based on our previously
developed dual state and parameter estimation method [14]–[16] that is integrated with the fixed-lag DLM
model observation forecasting scheme for long-term prediction of the system states and parameters is quan-
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TABLE II
DEFINITIONS AND DIMENSIONS OF THE ENTITIES IN THE DUAL STATE AND PARAMETER ESTIMATION SCHEME.

Variable Dimension Definition

xt Rnx state vector
θt Rnθ parameter vector
Σx Rnx×nx state estimate covariance matrix
Pt Z+ adaptive step size
A Rnθ×nθ shrinkage matrix
Σθ Rnθ×nθ parameter estimate covariance matrix
Wt Rnx×nx process noise variance
Vθt Rnθ×nθ parameter estimate distribution variance
yt Rny measurement output

ft(xt, θ
T
t λ(xt), ωt) Rnx×1 state dynamic function

ht(xt, θ
T
t λ(xt)) Rny×1 observation function

titatively obtained and analyzed. The analysis is based on the number of floating-point operations (flops)
that are required for any given algorithm. A flop is defined as one addition, subtraction, multiplication,
or division of two floating-point numbers. However, there are certain procedures where their complexity
cannot be measured by using flops, for example for generating random numbers and for evaluating a
nonlinear function.

On the other hand, the relationship between flop complexity and time complexity in execution of an
algorithm depends on many other factors that are not necessarily reflected in the flop complexity measure.
Therefore, in this paper the EF complexity that is introduced in [30] for an operation will be utilized for
conducting the complexity analysis. In the EF complexity, the number of flops that result in the same
computational time as a given operation is evaluated through the so-called proportionality coefficients.
Consequently, one can determine how the computational time will increase as the problem size increases.
The EF metric is mostly evaluated for those operations that depend on matrix and vector manipulations.

The dimensions and definitions of some of the entities that are used in the EF analysis of our proposed
PF-based state and parameter estimation algorithm are provided in Table II. Given the computational
complexity of some common matrix manipulations that are shown in Table III, the EP complexity of our
proposed scheme is now summarized in Table IV for the state estimation/prediction step and in Table
V for the parameter estimation/prediction step along with the observation forecasting scheme. The EP
quantities in these two tables correspond to only one iteration of the scheme as explained in Subsection
III-C. In our proposed algorithm instead of using yt in each prediction iteration, the forecasted observation
matrix Ŷt is utilized. The distribution of the system states and outputs are also considered as Gaussian
(the same as the parameters distribution) according to [30].

The coefficients c1, c2, c3 and c4 are used to represent the complexity of random number generation,
resampling, regularization, and ARMA model, respectively, since their complexities cannot be measured by
using flops. Therefore, their complexities have to be estimated by analyzing the actual computational time
that is consumed by various segments of the algorithm [30]. It should be noted that Gaussian likelihood
calculations are also included in the resampling step. The Schur decomposition is also used in the process
of covariance matrix decomposition to generate the new particle populations in the filters. The complexity
of the above operation increases cubically as the dimension of the problem increases. The complexity
related to initialization step is ignored in the tables since initialization of state and parameter estimation
filters are performed only once and in the start of the algorithm execution.

The complexity of our proposed dual state and parameter estimation and its propagation predictions can
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TABLE III
COMPUTATIONAL COMPLEXITY OF CERTAIN COMMON MATRIX OPERATIONS.

Operation Matrix size Multiplication Addition

A+A A ∈ Rn×m − nm

A.B A ∈ Rn×m, B ∈ Rm×l lmn (m− 1)ln

B.C B ∈ Rm×n, C ∈ Rn×1 nm (n− 1)m

D−1 D ∈ Rn×n n3 −

TABLE IV
THE EQUIVALENT COMPLEXITY OF THE STATE ESTIMATION/PREDICTION MODULE.

Instruction Mult. Add Func. Eval. Other

[U1, T1] = schur(Σx̂t+r−1|t) − − − 10n3
x

R1 = randn(nx, N) − − − Nnxc1

ω
(i)
t+r = (U1

√
T1)R1 n3

x +Nn2
x (nx − 1)n2

x +N(nx − 1)nx − n2
x

x̂
(i)

t+r|t = ft(x̂
(i)

t+r−1|t, θ̂
T
t+r−1|tλ(x̂

(i)

t+r−1|t), ω
(i)
t+r) − − Nnx −

ŷ
(i)

t+r|t = ht(x̂
(i)

t+r|t, θ̂
T
t+r−1|tλ(x

(i)

t+r|t)) − − Nny −
Σx̂t+r|t = 1

N−1

∑N
i=1(x̄

(i)

t+r|t − x̂t+r|t)(x̄
(i)

t+r|t − x̂t+r|t)T Nn2
x 2Nnx − −

Regularization and resampling to find weights w(i)
xt+r and x̄(i)

t+r|t − − − Nnxc2 +Nnxc3

x̂t+r|t = 1
N

∑N
i=1 x̄

(i)

t+r|t nx Nnx − −
Total n3

x + 2Nn2
x + nx n3

x + (N − 1)n2
x + 2Nnx N(nx + ny) 10n3

x + n2
x

Nnx(c1 + c2 + c3)

be compared with the complexity of a standard/conventional algorithm ( [5], [48]) for state and constant
parameter estimation using particle filters when the particles are propagated with fixed weights to the future
time instants [5], [48] as stated in Table VI. In the standard/conventional PF-based prediction algorithm
( [5], [48]) the parameters are augmented to the state vector, therefore the dimension of the augmented
state and parameter model becomes nx +nθ, and the complexity associated with the resampling step, i.e.,
c2 was removed from the EF complexity evaluation.

In Table VII, the EF complexity of the two methods are summarized. To compare the EF complexity

TABLE V
THE EQUIVALENT COMPLEXITY OF THE PARAMETER ESTIMATION/PREDICTION MODULE USING THE OBSERVATION PREDICTION

SCHEME.

Instruction Mult. Add Func. Eval. Other

ȳ
(j)

t+r|t = ht(x̂t+r|t, θ
(j)T

t+r−1|tλ(x̂t+r|t)) − − Nny −
Σθ = (I −A2)Σθ̂t+r−1|t

n3
θ (nθ − 1)n2

θ + n2
θ − −

ε
(j)
t+r = Ŷt+r − ȳ(j)

t+r|t − Nny − −
ψ

(j)
t+r = dh

dθ
|
x̂t+r|t,θ

(j)
t+r−1|t

− − nynθ −

P
(j)
t+r = γt+r(

√
trace(ε

(j)
t+rε

(j)T

t+r ) N +Nny N(ny − 1) +Nny − −
[U2, L2] = schur(Σθ) − − − 10n3

θ

R2 = randn(nθ, N)) − − − Nnθc1

ζ
(j)
t+r = (U2

√
L2)R2 n3

θ +Nn2
θ (nθ − 1)n2

θ +N(nθ − 1)nθ n2
θ −

m
(j)
t+r = θ̂

(j)

t+r−1|t + P
(j)
t+rψ

(j)
t+rε

(j)
t+r N(nynθ + nθ) N(ny − 1)nθ +Nnθ − −

θ̃
(j)

t+r|t = Am
(j)
t+r + (I −A) 1

N

∑N
j=1 θ̂

(j)

t+r−1|t + ζ
(j)
t+r Nn2

θ + nθ Nn2
θ + 2Nnθ +Nnθ + n2

θ − −
ŷt+r|t = ht(x̂t+r|t, θ̂

(j)T

t+r|tλ(x̂t+r|t)) − − Nny −
Resampling to find weights, w(j)

θt+r
, and θ̄(j)

t+r|t − − − Nnθc2

θ̂t+r|t = 1
N

∑N
j=1 θ̄

(j)

t+r|t nθ Nnθ − −
Σθ̂t+r|t = 1

N−1

∑N
i=1(θ̄

(j)

t+r|t − θ̂t+r|t)(θ̄
(j)

t+r|t − θ̂t+r|t)T Nn2
θ 2Nnθ − −

M-Distance calculation for ś observations − − − ś(q−1)ny

ARMA evaluation after τ observations − − − τc4ny

Total 2n3
θ + 3Nn2

θ 2n3
θ + 2Nn2

θ n2
θ + 2Nny 10n3

θ +Nnθc1 +Nnθc2

+(N + 2)nθ +Nnθny +5Nnθ + 3Nny −N +nynθ +ś(q́)−1ny

+N(ny + 1) +Nnθny +τc4ny
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TABLE VI
THE EQUIVALENT COMPLEXITY OF THE AUGMENTED STATE AND PARAMETER ESTIMATION/PREDICTION SCHEME.

Instruction Mult. Add Func. Eval. Other

[U1, T1] = schur(Σx,θ) − − − 10(nx + nθ)
3

R1 = randn(nx + nθ, N) − − − N(nx + nθ)c1

ω
(i)
t+r = (U1

√
T1)R1 (nx + nθ)

3 +N(nx + nθ)
2 (nx + nθ − 1)(nx + nθ)

2 − (nx + nθ)
2

+N(nx + nθ − 1)(nx + nθ)

ω
(i)
xt+r = ω

(i)
t+r(1 : nx) − − − −

ωθt+r = (I −A2)ω
(i)
t+r(nx + 1 : nx + nθ) n3

θ (nθ − 1)n2
θ + n2

θ − −
state/parameter augmentation: [x̂

(i)

t+r|t; θ̂
(i)

t+r|t] =

[ft(x̂
(i)

t+r−1|t, θ̂
(i)T

t+r−1|tλ(x̂
(i)

t+r−1|t), ω
(i)
xt+r ); θ̂

(i)

t+r−1|t] − − N(nx + nθ) −
ŷ

(i)

t+r|t = ht(x̂
(i)

t+r|t, θ̂
(i)T

t+r|tλ(x̂
(i)

t+r|t)) − − Nny −
Σx,θ = 1

N−1

∑N
i=1([x̄

(i)

t+r|t; θ̄
(i)

t+r|t]− [x̂t+r|t; θ̂t+r|t])

×([x̄
(i)

t+r|t; θ̄
(i)

t+r|t]− [x̂t+r|t; θ̂t+r|t])
T N(nx + nθ)

2 2N(nx + nθ) − −

Regularization without resampling

to find, x̄(i)

t+r|t and θ̄(i)

t+r|t − − − N(nx + nθ)c3

[x̂t+r|t; θ̂t+r|t] = [ 1
N

∑N
i=1 x̄

(i)

t+r|t;
1
N

∑N
i=1 θ̄

(i)

t+r|t] nx + nθ N(nx + nθ) − −
Total 2n3

θ + n3
x + n2

x(2N + 3nθ) n3
x + 2n3

θ + n2
x(3nθ − 1 +N) N(nx + nθ) 10n3

x + 10n3
θ

+n2
θ(3nx + 2N) + 4Nnθnx +n2

θ(N − 1 + 3nx) +Nny n2
x(30nθ + 1)

+nx + nθ +nxnθ(2N − 2) +n2
θ(30nx + 1)

+nx(Nc1 + 2nθ +Nc3)

+nθ(Nc1 +Nc3)

TABLE VII
THE TOTAL EQUIVALENT COMPLEXITY OF THE FILTERS.

Prediction Method Total Equivalent Complexity

DLM-Based Prediction Method CDLM (nx, nθ, c1, c2, c3, c4, N)= 12n3
x + 14n3

θ +N(3n2
x + 5n2

θ + 6nθ + 2nθny + 7ny + 3nx + c1(nx + nθ)+

(this paper) c2(nx + nθ) + c3nx)nx + n2
θ + 2nθ + nynθ + ny(τc4 + (q́)−1ś)

Standard PF-Based Prediction Method CPF (nx, nθ, c1, c3, N) = 12n3
x + 14n3

θ +N(3n2
x + 3n2

θ + 6nxnθ + (1 + c1 + c3)nx + (1 + c1 + c3)nθ + ny)

( [5], [48]) +36n2
θnx + 36n2

xnθ + nx + nθ

results, only the dominant parts of CDLM(nx, nθ, c1, c2, c3, c4, N) (that represent the EF complexity of
our proposed method) and CPF (nx, nθ, c1, c3, N) (that represent the conventional state and parameter
prediction method based on particle filters in the literature [5], [48]) are provided. This selection is
justified by the fact that N � 1, therefore the dominant parts are the ones that are related to N .

Let us assume that the time interval τ = βN, and β < 1 is a constant. To quantitatively evaluate
the EF complexity, two cases are considered now. In the first case, it is assumed that the measurement
dimension, ny as well as the parameter dimension (nθ ≤ ny) is much smaller than the state dimension
(nx). Consequently, the components that are related to only nx are considered, that is

CDLM (nx, nθ, c1, c2, c3, c4, N) ≈ N(3n2x + 3nx+

c1nx + c2nx + c3nx),

CPF (nx, nθ, c1, c2, c3, N0) ≈ N0(3n
2
x + 6nxnθ+

nx + c1nx + c3nx),

(16)

where N0 denotes the number of particles that are required for implementation of the conventional
methods [5], [48].

It follows from (16) that for achieving the same EF complexity in the two methods, the number of
particles that are required in our proposed method can be determined based on the number of the particles
that are required in the conventional methods [5], [48] as follows,

N = N0(1− 2nx + c2nx − 6nxnθ
3n2

x + 3nx + c1nx + c2nx + c3nx
), (17)
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It should be pointed out that the resampling algorithm deals with ordering, therefore it is assumed that
in the worst case its computational complexity is much greater than other operations in the algorithm.
Hence, it follows clearly that for a given complexity, since c2 + 2 > 6nθ (this results in N < N0), one
should use fewer particles in our proposed method as compared to the conventional methods [5], [48].
Therefore, the conventional method can be implemented with more particles as compared to our proposed
method to achieve the same complexity, whereas increasing the particles in our proposed method results
in more computational complexity and consequently more implementation cost. To decrease the cost of
implementing our proposed algorithm, the coefficient of N0 in (17) has to be as much as possible near
to 1. Consequently, one should get

3n2
x + 3nx + c1nx + c2nx + c3nx � 2nx + c2nx − 6nxnθ. (18)

The above inequality is always satisfied since the left-hand side term in (18) is much greater than
the right-hand side term due to existence of terms corresponding to the EF complexity of the random
number generation (c1) and regularization (c3). The most interesting result in this case is that the choice
of resampling algorithm does not affect the inequality that is stated in (18).

In the second case, it is assumed that the measurement dimension ny and the state dimension nx are
larger than the dimension of the parameters nθ, i.e. nx, ny � nθ. Hence, to evaluate the EF complexity of
the two methods (according to Table VII), the dominant terms are selected as the ones that are functions
of N , nx and/or ny, while the terms that are dependent on only N and nθ are ignored. Therefore, the
EF complexity evaluations in this case become, CDLM(nx, nθ, c1, c2, c3, c4, N) ≈ N(3n2

x + 2nθny + 7ny +

3nx+c1nx+c2nx+c3nx+nyβc4) and CPF (nx, nθ, c1, c2, c3, N0) ≈ N0(3n2
x+6nxnθ+(1+c1 +c3)nx+ny).

Finally, from the above expressions it follows that to achieve the same EF complexity for the two methods,
the number of particles that are required in our proposed method is determined based on the number of
particles that are required in the conventional methods [5], [48] (the number of particles is set to N0) and
is set to N = N0(1− c2nx+6ny+2nx+2nθny+nyβc4−6nθnx

3n2
x+2nθny+(3+c1+c2+c3)nx+7ny+nyβc4

).
By applying the same analysis as in the first case, to achieve less cost in the implementation of our

proposed algorithm as compared to the conventional methods, one must have

3n2x + 2nθny+(3 + c1 + c2 + c3)nx + 7ny + nyβc4 � c2nx

+ 6ny + 2nx + 2nθny + nyβc4 − 6nθnx.

Let us assume that nx, ny � nθ, so that the above inequality can be simplified as follows

3n2
x + nx + c1nx + c3nx + 7ny � 6ny − 6nxnθ,

where the above condition is always satisfied due to the high EF complexity of c1 and c3 and the fact that
the evaluation of our proposed algorithm implementation cost is independent of the choice of c2 and c4

(the ARMA model calculation). In simulation results that are presented in Section VI, it will be shown
that under this circumstance where one employs the same number of particles in the two methods, the
computational time (which is equivalent to the EF complexity) of our method when the ARMA structure
with variable order is used (for implementing the observation forecasting scheme), would be comparable
to and in some cases actually significantly less than the conventional methods having invariant particle
weights.
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VI. FAILURE PROGNOSIS OF A GAS TURBINE ENGINE

The application of our proposed PF-based prediction method for health monitoring and prognosis of
a gas turbine engine is presented in this section. Our approach is applied and implemented for failure
prognosis of the engine, when the system is assumed to be affected by health degradation phenomena. Our
proposed and developed prediction scheme is demonstrated and illustrated to be capable of handling cases
when non-Gaussian process noise is applied to the system. Moreover, the performance of our proposed
state and parameter prediction scheme is evaluated and investigated under general scenarios of degradation
in both the turbine and the compressor components due to erosion and fouling phenomena.

A. Model Overview

The mathematical model of a gas turbine that is used in this paper is a single spool jet engine that
was developed in [31]–[33]. The four engine states are the combustion chamber pressure and temperature,
PCC and TCC, respectively, the spool speed S, and the nozzle outlet pressure PNLT. The continuous-time
state space model of the system is given as follows,

ṪCC =
1

cvṁcc

[(cpTCθmC
ṁC + ηCCHuṁf − cpTCCθmT

ṁT)

− cvTCC(θmC
ṁC + ṁf − θmT

ṁT)] + ω1,

Ṡ =
ηmechθmT

ṁTcp(TCC − TT)− θmC
ṁCcp(TC − (Td + ω2))

JS( π
30

)2
,

ṖCC =
PCC

TCC

1

cvṁcc

[(cpTCθmC
ṁC + ηCCHuṁf

− cpTCCθmT
ṁT)− cvTCC(θmC

ṁC + ṁf − θmT
ṁT)]

+
γRTCC

VCC

(θmC
ṁC + ṁf − θmT

ṁT) + ω3,

ṖNLT =
TM

VM

(θmT
ṁT +

β

β + 1
θmC

ṁC − (ṁNozzle + ω4)) (19)

where the physical significance of all the model parameters is provided in Table VIII (also refer to
[31]–[33], and ωi, i = 1, ..., 4 denote the process noise that are applied to the system dynamics.

The five gas turbine measured outputs are considered to be the compressor temperature (y1), the
combustion chamber pressure (y2), the spool speed (y3), the nozzle outlet pressure (y4), and the turbine
temperature (y5), namely

y1 = TC = Tdiffuser[1 +
1

θηC
ηC

[(
PCC

Pdiffuzer

)
γ−1
γ − 1]] + ν1,

y2 = PCC + ν2, y3 = S + ν3, y4 = PNLT + ν4,

y5 = TCC[1− θηT
ηT(1− (

PNLT

PCC

)
γ−1
γ ] + ν5.

(20)

It should be noted that all the measurements are noise corrupted where the noise are denoted by
νi, i = 1, ..., 5. The specific noise levels are taken from [32], where the standard deviations are taken as
percentage of the nominal values at a typical cruise condition. Specifically, we set the standard deviations
as follows: σy1 = 0.280, σy2 = 0.164, σy3 = 0.051, σy4 = 0.164, and σy5 = 0.097.
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TABLE VIII
MODEL PARAMETERS DESCRIPTION.

parameter description parameter description

cv Specific heat at constant pressure, J
kg.K

TT Turbine temperature, K

cp Specific heat at constant volume, J
kg.K

Td Intake temperature, K

ṁcc Combustion chamber mass flow rate, kg/s J Rotor moment of inertia, kg.m2

TC Compressor temperature, K R Gas constant, J
kg.K

Hu Fuel specific heat, J
kg

γ Heat capacity ratio

ηCC Combustion chamber efficiency VCC Combustion camber Volume, m3

ṁf Fuel flow, kg/s TM Mixer temperature, K

ṁT Turbine mass flow rate, kg/s VM Mixer volume, m3

ηT Turbine efficiency ṁnozzle Nozzle mass flow rate, kg/s

ṁC Compressor mass flow rate, kg/s Pdiffuzer Diffuzer pressure, bar

ηC Compressor efficiency Tdiffuzer Diffuzer temperature, K

ηmech Spool mechanical efficiency

To discretize the above continuous-time model for implementation of our proposed dual state and
parameter estimation and prediction particle filters, a simple Euler Backward method is applied with the
sampling period of Ts = 10 msec.

The system health parameters are represented by the compressor and the turbine efficiency, ηC and
ηT, respectively, and the compressor and turbine mass flow capacities, ṁC and ṁT, respectively. A fault
vector is incorporated in the model (19) to represent the effects of the system health parameters that are
denoted by θ = [θηC

, θmC
, θηT

, θmT
]T. Each parameter variation is a manifestation of changes in the fault

vector and is considered as a multiplicative fault type.

B. Simulation Scenarios

In [14]–[16], capabilities of the developed state and parameter estimation algorithm were shown in
case of abrupt degradation damages that are modeled as multiplicative faults vector. In the present
scenarios considered here the engine is assumed to be subjected to degradation damages that are due
to the compressor fouling and turbine erosion that cause gradual drifts in the system health parameters.
A slowly changing linear degradation model is applied to the compressor health parameters during 1000
cycles of the aircraft engine operation that cause a 3% drop in the compressor efficiency and 1.5% drop
in its mass flow capacity, followed by a recovery through washing after 1000 cycles.

A cycle refers to a single ground-air-ground (GAG) flight cycle [49], where the recorded cruise data
related to each flight cycle is used for prognosis of the gas turbine engine due to gradual degradations.
The erosion degradation in the turbine is propagated through a quadratic evolution during the entire 1500
cycles of simulations that cause a 6% drop in the turbine efficiency and a 3% increase in its mass flow
capacity. It should be noted that fouling and erosion degradation phenomena follow linear propagation
patterns under low degradation index values, however as the degradation index increases they would not
necessarily follow a linear profile [50]. It is assumed that the flight data are generated from the same
engine thrust in the cruise mode of the aircraft operation.

In order to determine the input fuel flow to maintain the same level of thrust in all the flight cycles, a
simple PID controller has been implemented that takes the error between the desired fixed engine pressure
ratio (which is used as an indicator for the engine thrust that is not measurable) and the actual pressure
ratio in each flight cycle when the engine is affected by the fouling and/or the erosion degradations.
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TABLE IX
PSEUDO CODE OF OUR PROPOSED PREDICTION SCHEME.

1) Collect 150 available observations.
2) For j = 1 : ny

a) Construct the input-output database for the ARMA model,
b) Use the recent 150 data points for the DLM model construction,
c) Find the best DLM structure according to the ARMA model having the maximum order ARMA(4,1) that fits yj , by using the

AIC (Akaike Information Criterion) criterion [39]. In case of a constant model order, a fixed order model structure ARMA(4,1)
is selected in this step,

d) Apply the RLS to obtain the coefficients of the ARMA model (DLM model parameters) recursively for the selected data set,
e) Predict the behavior of yj for the next 60-steps ahead (Ŷj,t+k|t, k = 1, ..., 60) using the approximated DLM model.

3) Run the PF algorithm by applying the forecasted observation vector Ŷt+k|t, to obtain the k-step ahead prediction of states and
parameters.

4) Move the observation window for the minimum s ≥ 10 of the recently observed data points.

a) Calculate the M-distance for the recently received s observations and the last available 35 data points in the time window of
150 data points (used for the DLM model construction),

b) If the M-distance exceeds the threshold, go to Step 2 and re-calculate the DLM parameters,
c) If the M-distance does not exceed the threshold, continue with the previously constructed DLM model for the 60-steps ahead

prediction of the observations and go to Step 3.

A moving window of 150 observation data is used with N = 150 particles, where the window is moved
according to the previously described Mahalanobis distance (M-distance) criterion after each batch of 10

observations become available (s = 10). We use the available 150 observation data points (τ = 150) 1 in
the observation forecasting scheme to develop the fixed-lag DLM model and the last 35 data points for
validation of the DLM model (ś = 35). The size of the sliding window in the M-distance algorithm is
chosen as q́ = 10, and the threshold in the change detection algorithm is set to δ = 1.5. The parameters of
the ARMA models related to each observation time window are adjusted based on the RLS method. The
order of the time-varying ARMA structure is considered to be variable. For the AR part of the ARMA
model the number of delays varies from 1 to 4, while the order of the MA part is fixed and set to 1.
The criterion for choosing the order of the ARMA model in each time window for generating the DLM
model is devised based on the Akaike information criterion or AIC [39]. To compare the variable order
time-varying ARMA model results to forecast the system observations with the fixed order ARMA model,
an ARMA structure with the order of 4, i.e., AR(4) and MA(1) is also considered. The pseudo code of
the proposed prediction algorithm is provided in Table IX.

In the remainder of this section, the outline of the simulation case studies and objectives that are
described and provided below is first presented. The RUL results for the aircraft gas turbine engine
are provided subject to degradations due to fouling and erosion separately. These results are evaluated
comparatively using three methods, namely the variable order model (VOM), the fixed order model (FOM),
and the W/O RS schemes. The performance of the RUL prediction results are also evaluated subject to
changes and various selections of the DLM parameters. Finally, we have performed a quantitative analysis
and comparisons on the time complexity of the proposed prediction schemes to illustrate and justify the
merits of our proposed methodologies as compared to other methods that are available in the literature.

1The minimum number of data points needed for convergence of the RLS algorithm for estimation of the DLM model parameters, for
this application, is found to be 150 data points.
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PRMSE results for DLM−based prediction of system outputs

Fig. 3. PRMSE values of the predicted outputs using the Fixed Order Model (FOM), the Variable Order Model (VOM) and the model
without resampling (W/O RS).

To demonstrate the effectiveness of our proposed prediction algorithm when compared to the developed
prediction algorithm with the constant weights in the particle filter based estimation method in the literature
[5], [48], we evaluate the PRMSEyj(i) for i = 1, ..., 60, and j = 1, ..., 5 corresponding to three methods.
Specifically, the three methods considered are (a) the DLM-based particle filter prediction with constant
model order for the observation forecasting, (b) the variable DLM model order, and finally (c) the particle
filter based prediction with equally weighted particles without resampling ( [5], [48]) are presented in
Table X and in Figure 3 depicting the predicted observations.

From the results that are obtained it can be concluded that our developed DLM-based particle filter
prediction algorithm (FOM) and (VOM) for prediction of the system states and health parameters
outperform the conventional PF-based prediction method ( [5], [48]) in the sense of PRMSEyj values on
the predicted observations. This is clearly indicated when the prediction horizon is extended to 60-steps
ahead. Note that the PRMSEyj results corresponding to the compressor and the turbine pressures are
almost the same for all the three methods.

The maximum step-ahead prediction horizon is chosen based on the mean PRMSEyj (percentage of the
mean square error for the measurement outputs) as stated in Table X, whereas beyond the chosen horizon
k = 60 the error becomes unacceptable due to the deviation of E{(yj,t+k− Ŷj,t+k|t)2} from ιµj,l, ι = 0.01.
The PRMSE analysis is conducted based on 48 different DLM models which are generated throughout
the entire set of scenarios.

In the next subsection, the obtained parameter estimates are used to evaluate the remaining useful life
(RUL) of the gas turbine engine under both fouling and erosion degradation scenarios.
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Fig. 4. The predicted compressor health parameters and their related fault vectors.

TABLE X
PRMSE RESULTS FOR THE PREDICTED OUTPUTS USING THE VARIABLE ORDER MODEL (VOM), THE FIXED ORDER MODEL (FOM)

AND THE METHOD WITHOUT RESAMPLING (W/O RS).

Output
Max PRMSE Mean PRMSE

V OM FOM W/ORS V OM FOM W/ORS

TC 1.5729 1.6043 1.6653 1.5160 1.5387 1.5946

PCC 4.7397 4.8860 5.0903 4.0564 4.1217 4.3287

N 1.7625 1.7782 1.8481 1.7487 1.7577 1.8147

PNLT 5.0001 5.2708 5.1541 2.9853 3.0272 3.0720

TT 4.1064 4.1173 4.1971 4.0757 4.0872 4.1488

C. RUL Prediction

For evaluating the RUL of the gas turbine engine, as per the criteria stated in Section V, all the four
parameters are considered for health evaluation and for estimating the system RUL in a prediction horizon
of 60-steps ahead. The RUL is evaluated within the prediction windows that start from two subsequent
flight cycles 854 and 877 (these two windows are corresponding to two updated DLM models) that include
the ground truth failure cycle in their 60-steps ahead prediction horizon. The ground truth failure cycle
for the compressor health evaluation due to the fouling phenomenon is located at the cycle 900. For the
turbine health evaluation, the windows starting from the cycles 1114 and 1138 are considered (this is due
to the same reason as stated for the compressor failure time windows) while the ground truth failure cycle
due to the erosion is located at the cycle 1162. The predicted health parameters and their fault parameters
along with the actual degradations are depicted in Figures 4 and 5 for the compressor and the turbine,
respectively.

The ±1% confidence intervals for the compressor efficiency and the mass flow capacity indicate that the
two predicted parameters are located within the confidence intervals for most of the time in simulations.
For the turbine parameters, these confidence intervals are found to be ±1% for the turbine efficiency and
±2% for the turbine mass flow capacity. It should be noted that the first 150 data points in the Figures 4
and 5 are corresponding to the estimated health parameters (one-step ahead prediction) that are calculated
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Fig. 5. The predicted turbine health parameters and their related fault vectors.

in presence of the system observations. As stated earlier, as new observations become available the k-
step ahead prediction of the system states and parameters will be performed based on recently received
observations. Therefore, as far as each prediction window for the health parameters in Figures 4 and 5
are concerned there are 150 data points of estimated values that are only shown for the first prediction
window and they are removed from the figures for the remainder of the prediction windows to obtain
clearer figures for distinguishing the predicted parameters from the estimated ones.

The critical values for the parameter degradations are considered to be a 3% decrease in the compressor
efficiency [50] along with a 1.5% decrease in the mass flow capacity due to the fouling phenomenon.
This implies that after achieving this level of deficiency in any of these parameters, the compressor must
be taken for a wash up. On the other hand, the critical values for detecting erosion in the gas turbine are
considered to be a 6% decrease in the turbine efficiency and a 3% increase in the mass flow capacity.

Fouling scenario: Corresponding to the obtained compressor health parameters prediction, two sub-
sequent time windows are considered. These time windows start from the flight cycles 854 and 877,
respectively. For determining the flight cycle at which the maximum probability of failure has occurred, a
probabilistic method is proposed. In this method the distribution of the predicted data related to the system
health parameters (i.e., in the compressor mass flow capacity and efficiency in the fouling scenario and
the turbine mass flow capacity and efficiency in the erosion scenario) in each time window of 60-steps
ahead horizon is fitted to a Gaussian distribution. Consequently, the amount of changes in the mean of
this distribution through consequent prediction windows determine changes in its related health parameter.

Consider the health indicator vector for the fouling scenario as HIt+1:t+k =

(
θ̂ηCt+1|t · · · θ̂ηCt+k|t

θ̂mCt+1|t · · · θ̂mCt+k|t

)
,

where the mean value is given by mean(HIt+1:t+k) = (µηC
, µmC

)T, and the variance in denoted by

var(HIt+1:t+k) =

(
δ2
θηC

0

0 δ2
θmC

)
. Hence, the Gaussian probability function corresponding to each health
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indicator (the compressor health parameters) is governed by

Gpdf(θ̂ηCt+i|t |µηC
, δ2
θηC

) =
1

δθηC
√

2π
e
−

(θ̂ηCt+i|t−µηC)2

2δ2
θηC ,

Gpdf(θ̂mCt+i|t |µmC
, δ2
θmC

) =
1

δθmC

√
2π
e
−

(θ̂mCt+i|t−µmC
)2

2δ2
θmC .

Moreover, the failure cycle corresponding to each health indicator is obtained as the cycle at which the
predicted health parameter exceeds the 99.5% confidence bound around the critical value of that health
parameter. Therefore, considering that the fouling phenomenon is identified by its decreasing effect on
both the compressor health parameters, the upper bound on the critical values of the compressor health
parameters is considered as the criterion for determining the system failure cycle due to fouling. Due to
the fact that the failure cycle according to this rule can be more than one cycle, the one corresponding
to the maximum probability density function is considered as the failure cycle given the assumed health
parameter which is obtained as follows

FailureCycleηC
= t+ j, such that θ̂ηCt+j|t ≤ (1.05)θcr

ηC

and t+ j = argmaxkj=1Gpdf(θ̂ηCt+j|t),

FailureCyclemC
= t+ l, such that θ̂mCt+l|t ≤ (1.05)θcr

mC

and t+ l = argmaxkl=1Gpdf(θ̂mCt+l|t),

(21)

where θcr
ηC

and θcr
mC

denote the compressor efficiency and the mass flow capacity critical values, respec-
tively. Finally, the failure cycle for the system is determined as the minimum of FailureCycleηC

and
FailureCyclemC

as FailureCycle = min(FailureCycleηC
,FailureCyclemC

).
By performing a probabilistic study on the distribution of the predicted data in the considered two

time windows, the results that are summarized in Table XI and Figures 6 and 7 are obtained for the
prediction performed from all the three methods. The ground truth failure cycle, which is the flight cycle
900, corresponds to θcr

ηC
= 0.97 and θcr

mC
= 0.985.

In Table XI, the mean and standard deviation of the distribution for the 60-steps ahead predicted data
(when they are fitted to a Gaussian distribution), are shown which are based on the results that are
depicted in Figures 6 and 7. In these figures the changes in compressor fault parameters distributions for
the two considered time windows that are close to the failure cycle are presented for the three prediction
methods. In addition to the distributions that are related to changes in the health parameter fault vector, the
cycles at which the calculated probabilities are achieved are also plotted in Figure 6 for the compressor
efficiency and in Figure 7 for the compressor mass flow capacity. In cases that these distributions are
reliable Gaussian distributions, the failure cycle can be predicted as the cycle at which the probability
distribution reaches its maximum value.

The results presented in Table XI guarantee that as one gets closer to the failure cycle, the distributions
means related to prediction of both compressor health parameter faults are located within the 99.5%

confidence bound around the actual critical values. However, the results corresponding to the conventional
method (W/O RS) does not follow the correct direction for the degradation propagation. While the
distribution mean for the predicted values is located around 0.9674 in the first time window, as the window
moves towards closer points around the failure cycle, the distribution mean increases to 0.9705, which
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TABLE XI
PREDICTED DISTRIBUTIONS DUE TO THE COMPRESSOR FOULING.

Parameter
Prediction from cycle 854 Prediction from cycle 877
method mean ± std mean ± std within ±99.5% of critical value

θηC VOM 0.967 0.0003 0.967 0.0009 yes
FOM 0.966 0.0006 0.967 0.0017 yes

W/O RS 0.967 0.0028 0.970 0.0009 yes

θmC VOM 0.986 0.0004 0.985 0.0001 yes
FOM 0.985 0.0004 0.985 0.0001 yes

W/O RS 0.984 0.0018 0.982 0.0002 yes

is not correct due to the fact that the fouling phenomenon causes gradual degradation in the compressor
health parameters that have decreasing effects on the compressor health parameters (not decreasing in
one window and increasing in the consequent one). Therefore, the RUL prediction for the compressor
fouling scenario using this method cannot give us a reliable result in terms of the failure cycle. As one
can observe from the results presented in Figure 6, the maximum probability of failure is achieved at
several cycles (instead of one cycle). Considering the probability distributions around the related flight
cycles as presented in Figure 6, the failure cycle can be predicted from both windows for the VOM and
the FOM, whereas for the W/O RS only from the first time window one can obtain a reliable prediction
for the failure cycle.

Similar to the compressor efficiency fault vector results, the corresponding results for the compressor
mass flow capacity are also located in the 99.5% confidence bound around the actual critical value.
Moreover, for predicting the failure cycle, following the results presented in Figure 7 one can use the
distributions that are related to the VOM from both windows for failure cycle prediction. However, the
W/O RS is not suitable for failure cycle prediction from the first window due to unreliable probability
distribution in this time window. This causes several cycles with maximum probability of failure values,
and the FOM is not suitable for failure cycle prediction from the second window for the same reason.

Finally, the predicted RUL from the starting point of the two considered time windows is calculated
as the difference between the start cycle in the considered time window and the predicted failure cycle
in that window for each health parameter separately as shown in Table XII. The predicted failure cycle
is obtained as the cycle at which the maximum probability distribution in the related time window is
reached (for both fault vectors of the compressor and the turbine). In the first time window starting at 854

the actual RUL is 46 (900− 854 = 46), and in the second time window starting at 877 the actual RUL is
23 (900− 877 = 23). The RUL error is also specified in Table XII, which is calculated as the difference
between the actual RUL and the predicted RUL from the different methods.

In view of the results in this table, it is concluded that the VOM is capable of predicting the RUL
from two time windows for both compressor health parameters and as the time window moves towards
the actual failure cycle, the RUL prediction becomes more accurate such that in the second time window
the RUL can be predicted within ±5 cycles around the actual RUL. Moreover, the FOM method can
determine the RUL based on both health parameters in the first time window within ±14 cycles around
the actual RUL, whereas in the second time window only one of the parameters can be used for the RUL
prediction. However, the prediction method based on the W/O RS does not have sufficient accuracy for the
RUL prediction based on both health parameters of the system from the two time windows. The criterion
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Fig. 6. Predicted probability of the failure for the compressor efficiency from two prediction windows.
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Fig. 7. Predicted probability of the failure for the compressor mass flow capacity from two prediction windows.
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TABLE XII
RUL PREDICTION IN COMPRESSOR FOULING SCENARIO

Parameter
Prediction from cycle 854 Prediction from cycle 877

method failure cycle predicted RUL RUL error failure cycle predicted RUL RUL error

θηC VOM 883 29 +17 908 31 -8
FOM 888 34 +12 910 33 -10

W/O RS 880 26 +20 - - -

θmC VOM 885 31 +15 905 28 -5
FOM 886 32 +14 - - -

W/O RS - - - 896 19 +4

for evaluating the failure cycle given the multiple system health parameters is based on the parameter that
predicts an earlier failure cycle (according to the discussion in Section IV).

Erosion scenario: For the erosion scenario, the accomplished turbine health parameters prediction from
two subsequent time windows close to the failure cycle are considered. These time windows start from
the flight cycles 1114 and 1138, respectively. The health indicator vector in this scenario consists of the

turbine efficiency and the mass flow capacity HIt+1:t+k =

(
θ̂ηTt+1|t · · · θ̂ηTt+k|t

θ̂mTt+1|t · · · θ̂mTt+k|t

)
. The probability

analysis similar to the fouling scenario is also performed for this scenario assuming the turbine health
parameters as the system health indicators. However, considering that the erosion phenomenon is identified
by its decreasing effect on the turbine efficiency and increasing effect on its mass flow capacity, the upper
bound on the critical value of the turbine efficiency and the lower bound on the critical value of the turbine
mass flow capacity are considered as the criteria for determining the system failure cycle. Consequently,
in obtaining the failure cycle in this scenario the following criteria is considered,

FailureCycleηT
= t+ j, such that θ̂ηTt+j|t ≤ (1.05)θcr

ηT

and t+ j = argmaxj=kj=1Gpdf(θ̂ηTt+j|t
),

FailureCyclemT
= t+ l, such that θ̂mTt+l|t ≥ (0.995)θcr

mT

and t+ l = argmaxl=kl=1Gpdf(θ̂mTt+l|t),

(22)

where θcr
ηT

and θcr
ηT

denote the turbine efficiency and mass flow capacity critical values, respectively. The
results that are summarized in Table XIII and Figures 8 and 9 are obtained based on the probabilistic
analysis of the prediction results. The ground truth failure cycle is the cycle 1162 that corresponds to
θcr
ηT

= 0.94 and θcr
mT

= 1.03. The results presented in Table XIII show that from both time windows
the distributions means related to the turbine fault parameters are located within the 99.5% confidence
bound around the critical value for the turbine efficiency fault parameter. However, the FOM and the
W/O RS do not result in prediction distributions within the 99.5% confidence bounds. According to the
results indicated in Figures 8 and 9, the VOM method can be used for failure cycle prediction from both
windows for both turbine health parameters, whereas the FOM cannot be used for this purpose from the
first time window for the turbine efficiency and the W/O RS can not be used from the first time window
for the turbine mass flow capacity.

Consequently, the predicted RUL from the starting point of the two considered time windows in the
erosion scenario is calculated and presented in Table XIV. Since the actual failure cycle is located at 1162,
the actual RUL in the first time window starting at 1114 is 48 (1162 − 1114 = 48), and in the second
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Fig. 8. Predicted probability of the failure for the turbine efficiency from two prediction windows.
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Fig. 9. Predicted probability of the failure for the turbine mass flow capacity from two prediction windows.
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TABLE XIII
PREDICTED DISTRIBUTIONS DUE TO THE TURBINE EROSION.

Parameter
Prediction from cycle 1114 Prediction from cycle 1138

method mean ± std mean ± std within ±99.5% of critical value

θηT VOM 0.957 0.0011 0.957 0.0017 yes
FOM 0.955 0.0002 0.961 0.0028 yes

W/O RS 0.956 0.0015 0.959 0.0012 yes

θmT VOM 1.033 9.013e−4 1.033 0.0015 yes
FOM 1.029 9.486e−4 1.045 0.0049 no

W/O RS 1.029 9.033e−4 1.040 0.0037 no

TABLE XIV
RUL PREDICTION IN TURBINE EROSION SCENARIO

Parameter
Prediction from cycle 1114 Prediction from cycle 1138

method failure cycle predicted RUL RUL error failure cycle predicted RUL RUL error

θηT VOM 1139 25 +23 1167 29 -5
FOM - - - 1153 15 +9

W/O RS 1134 20 +28 1158 20 +4

θmT VOM 1170 56 -8 1170 32 -8
FOM 1147 33 +15 1156 18 +6

W/O RS - - - 1162 24 0

time window starting at 1138, the actual RUL is 24 (1162− 1138 = 24). The RUL error is also indicated
in this table. From the results presented in Table XIV one can conclude that the RUL prediction using
the FOM and the W/O RS according to variations in both health parameters of the turbine is possible
only from the second window, i.e. as one gets closer to the failure cycle, whereas the VOM is capable of
predicting the RUL based on both turbine health parameters from both time windows. However, as the
time window moves towards the actual failure cycle, the RUL prediction based on the VOM becomes
more accurate such that in the second time window the RUL can be predicted within ±5 cycles from the
actual failure cycle. Moreover, the FOM and the W/O RS can determine the RUL based on both turbine
health parameters only from the second window within ±9 and ±4 cycles from the actual failure cycle,
respectively.

D. RUL Performance Analysis with Different DLM Parameters

In this subsection, performance of the RUL prediction scheme is evaluated when the parameters in
the DLM are varying around their designed values for the prognosis of the gas turbine engine under
both fouling and erosion scenarios. It should be pointed out that the designed parameters are selected as
follows: the DLM fixed lag window size τ = 150, where 35 data points are used in the validation step
(ś = 35), the sliding window size in the M-distance algorithm is q́ = 10, the number of recent available
observation at each time instant is selected as s = 10, and the threshold in the M-distance for change
detection is δ = 1.5. To evaluate the performance of prognosis in terms of the RUL prediction error, several
scenarios are performed where in each scenario only one of the above mentioned parameters has been
changed while the remainder of the DLM tuning parameters are considered to be fixed at their designed
values. Moreover, the parameter ι = 0.01 is selected fixed for all the scenarios to obtain the maximum
k-step ahead prediction horizon. This will satisfy the desired threshold on the PRSMEyj value (based on
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Fig. 10. RUL performance subject to selection of different DLM parameters.

ι) in all considered scenarios that result in a maximum 30-steps ahead prediction horizon. Therefore, all
comparisons among the various conditions are conducted in a prediction window of 30-steps before the
failure occurrence.

In Figures 10 (a)-(d) the effects on changes of the DLM parameters in the RUL prediction absolute error
are plotted for two more values around the selected parameter designed value. The summarized results
are obtained from a window that is located in the 30-steps before reaching the ground truth failure cycle
in each scenario. The presented results in Figure 10 (a) show that by decreasing the number of data points
used in constructing the DLM model (τ ) result in higher error in the RUL prediction in both fouling and
erosion scenarios. From Figure 10 (b) one can conclude that whereas changes in the sliding window q́

do not affect the RUL error of the fouling scenario significantly, the error due to the erosion scenario is
rather high when q́ is selected as a small or as a high value compared to the number of recent available
data in each time instant, s. From the presented graphs in Figure 10 (c) one can also conclude that over
increasing/decreasing the length of s can affect the RUL error significantly in both scenarios. Finally,
the results related to changes in the threshold which is utilized in the M-distance algorithm for change
detection as presented in Figure 10 (d) show that selecting smaller values for δ can lead to erroneous
RUL prediction results.

E. Time Complexity Analysis of the Prediction Scheme

To compare the efficiency of our proposed and developed prediction schemes based on the variable
order DLM (VOM) and the fixed order DLM (FOM) models with another conventional method that is
based on augmented state and parameter estimation algorithm with regularized particle filters and without
resampling (W/O RS) [5], the execution times of theses schemes are now obtained for each iteration of the
prediction step. Assuming that the computational complexity of the prediction step is proportional to the
EF complexity of the algorithm [30]. These metrics are estimated by using an Intel Xeon CPU E31230,
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3.2GHz processor with 16GB memory. Therefore, the time complexity as a measure of time (in seconds)
that are required to execute the algorithms for the best scenario (that is the minimum execution time),
the average scenario (that is the average execution time), and the worst scenario (that is the maximum
execution time) are obtained for the VOM, the FOM and the W/O RS schemes in Table XV. For all these
methods the number of particles are considered to be the same and is set to N0 = N = 150.

From the results that are shown, it can be concluded that the time required for execution of the VOM is
less than that of the FOM and the W/O RS. It is further concluded that even with equal number of particles
when the dimensions of the states and measurements are comparable with the dimension of the parameters
(nθ = nx = 4, ny = 5), the resampling algorithm that we have used (namely, the residual resampling)
do not increase the time complexity (which is equivalent to the EF complexity) of our developed VOM
algorithm when compared to a conventional method without performing resampling.

TABLE XV
TIME COMPLEXITY ANALYSIS FOR THE VOM, FOM AND W/O RS IN SECONDS.

Model Best Scenario Average Scenario Worst Scenario

V OM 88 136.0208 190

FOM 94.0146 138.9729 194.5736

W/ORS 92.4846 138.2435 193.9752

VII. CONCLUSIONS

In this paper, conventional particle filtering based schemes are extended to predict the future behavior
of a nonlinear dynamical system states and parameters by utilizing the observation forecasting concept
and time-series methods. The observation forecasting scheme is developed based on fixed/variable order
DLM models that are being adjusted online according to an adaptive external adjustment loop. It is shown
that despite its improved performance, our proposed scheme does not impose additional computational
complexity when compared to other available methods in the literature. Our developed methodology is
then applied for the purpose of failure prognosis of an aircraft gas turbine engine. The results of the
remaining useful life (RUL) prediction do clearly demonstrate and illustrate the acceptable performance
of our developed schemes.

APPENDIX A
PROOFS

Proof of the Lemma 1:

Let us define S =
∑k−1

i=0 A
iB(Ai)T. Given that ‖Ai‖ = ‖(Ai)T‖, one gets

‖S‖ ≤ ‖B‖
k∑

i=1

‖Ai‖2. (23)

Assuming that ‖Ai‖2 ≤ κri, the summation in (23) represents a geometric series with common ratio that
is less than one (r < 1). Therefore, it follows that

∑k
i=1 ‖Ai‖2 ≤ ∑k−1

i=0 κr
i = κ(1−rk)

1−r . Consequently,
equation (23) can be re-written as

‖S‖ ≤ ‖B‖κ(1− rk)
1− r , (24)

where ‖B‖κ(1−rk)
1−r is an upper bound of ‖∑k−1

i=0 A
iB(Ai)T‖ which is a function of k. This completes the

proof of the lemma. �
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Proof of Theorem 1:

Consider the state space representation of the ARMA model corresponding to each output that is
represented as a univariate time-series having the DLM structure. The MSE of the k-step ahead forecast
of the j-th output after utilizing ylin

j,t+k and Ŷj,t+k|t from (12) and (13), respectively, can be obtained as
follows. First, we have

E{(ylinj,t+k − Ŷj,t+k|t)2} = E{(H(

∞∑

i=0

(Gj,l)
iFj,τεj,t+k−i − (Gj,l)

k
∞∑

i=0

(Gj,l)
iFj,lεj,t−i))

2}. (25)

Expanding the term inside the expectation in the right hand side of (25) results in ylin
j,t+k − Ŷj,t+k|t =

H(Fj,lεj,t+k+Gj,lFj,lεj,t+k−1+...+(Gj,l)
k−1Fj,lεj,t+1+(Gj,l)

kFj,lεj,t+...−(Gj,l)
kFj,lεj,t−(Gj,l)

k+1Fj,lεj,t−1−
...) = H(

∑k−1
i=0 (Gj,l)

iFj,lεj,t+k−i). Hence, the mean-square error can be written as E{(ylin
j,t+k−Ŷj,t+k|t)2} =

E{H(Fj,lεj,t+k +Gj,lFj,lεj,t+k−1 + ...+ (Gj,l)
k−1Fj,lεj,t+1)× (Fj,lεj,t+k +Gj,lFj,lεj,t+k−1 + ...

+(Gj,l)
k−1Fj,lεj,t+1)THT}. Consequently, since E{εj,t−nεj,t−m} =

{
σ2
εj

, if n = m

0 , if n 6= m
, we have

E{(ylin
j,t+k − Ŷj,t+k|t)2} = σ2

εj
H(

k−1∑

i=0

(Gj,l)
iFj,lF

T
j,l(Gj,l)

iT)HT. (26)

By applying the result of Lemma 1 to the right hand side of (26), the following upper bound on the
forecast error is obtained,

E{(ylin
j,t+k − Ŷj,t+k|t)2} ≤ σ2

εj
‖Fj,lFT

j,l‖(
κj(1− rkj )

1− rj
). (27)

Consequently, the upper bound of the MSE as E{(ylin
j,t+k−Ŷj,t+k|t)2} is dependent on the prediction horizon

k. This completes the proof of Theorem 1. �

Proof of Theorem 2:

Let us construct a vector of k-step ahead predicted observations that are obtained through ny univariate
time-series and fixed-lag DLM models as Ŷt+k|t = (Ŷ1,t+k|t, Ŷ2,t+k|t, ..., Ŷny ,t+k|t)

T. At the time instant
t the forecasted observations (from the linear regression model of the ARMA process), Ŷj,t+k|t are
independent from one another since each observation is constructed only from its own historical data,
i.e., cov(Ŷn,t+k|tŶm,t+k|t) = 0, for n 6= m. Consequently, the covariance matrix of Ŷt+k|t reduces to the
variance matrix with diagonal entities as var(Ŷj,t+k|t), j = 1, ..., ny. The k-step ahead prediction error of
the j-th observation, when it is obtained based on the fixed-lag DLM model using the ARMA process is
approximated along the lines that are described in Theorem 1. In this theorem the nonlinear observation
yj,t was approximated with its linear projection according to the ARMA process that was introduced in
(3) and defined in Remark 4, i.e. at the time t, yj,t ≈ ylin

j,t . Therefore, the error due to mismatch between
the actual nonlinear observation and its corresponding linear projection (12) in the k-step ahead prediction
horizon is calculated as E{(yj,t+k−ylin

j,t+k)
2} = E{(yj,t+k−µj,l−H

∑∞
i=0(Gj,l)

iFj,lεj,t+k−i)(yj,t+k−µj,l−
H
∑∞

i=0(Gj,l)
iFj,lεj,t+k−i)T} = E{y2

j,t+k} − 2E{yj,t+kµj,l} − 2E{yj,t+k(
∑∞

i=0(Gj,l)
iFj,lεj,t+k−i)THT} +

E{µ2
j,l}+ 2E{µj,l(

∑∞
i=0(Gj,l)

iFj,lεj,t+k−i)THT}
+E{H(

∑∞
i=0(Gj,l)

iFj,lεj,t+k−i)(
∑∞

i=0(Gj,l)
iFj,lεj,t+k−i)THT}.

Let us assume that the white noise process εj,t and the measurement noise process νt in (2) are zero-mean
process with covariance matrices σ2

εj,t
, and Vt = diag(σ2

ν1,t
, · · · , σ2

νny,t
), respectively. Moreover, vt and εj,t
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are two independent processes which yields E{yj,tεj,t} = 0, ∀t, and E{yj,t} = E{ht(xt, θT
t λ(xt))+νj,t} =

ht(xt, θ
T
t λ(xt)). Furthermore, in view of the fact that yj,t+k is conditionally independent from εj,t+k (since

εj,t+k is used to construct ylin
j,t+k and not yj,t+k), the above equation reduces to E{(yj,t+k − ylin

j,t+k)
2} =

σ2
νj,t+k

+h2
j,t+k(xt+k, θ

T
t+kλ(xt+k))−2µj,lhj,t+k(xt+k, θ

T
t+kλ(xt+k))−0+σ2

εj
H(
∑∞

i=0(Gj,l)
iFj,lF

T
j,l(Gj,l)

iT)HT.

Now, one requires to calculate the error due to the k-step ahead forecast of the observation vector according
to the ARMA process, that is denoted by Ŷj,t+k|t with the original nonlinear observations yj,t+k, where
Ŷj,t+k|t is considered to be obtained from (13) in the selected time window as long as the l-th DLM
is valid. Hence, by considering the linear projection ylin

j,t+k for the k-step ahead prediction horizon, the
expectation of the error between yj,t+k and Ŷj,t+k|t can be expressed as,

E{|yj,t+k − Ŷj,t+k|t|} = E{|yj,t+k − ylin
j,t+k + ylin

j,t+k − Ŷj,t+k|t|}. (28)

Let us consider the MSE representation E{|yj,t+k−ylin
j,t+k+ylin

j,t+k− Ŷj,t+k|t|2}. The Minkowski’s inequality
[51] is now utilized to obtain the following inequality E{|yj,t+k−ylin

j,t+k+ylin
j,t+k− Ŷj,t+k|t|2} ≤ E{(yj,t+k−

ylin
j,t+k)

2}+ E{(ylin
j,t+k − Ŷj,t+k|t)2}+ 2

√
E{yj,t+k − ylin

j,t+k}2E{ylin
j,t+k − Ŷj,t+k|t}2. Finally, the upper bound

on the error is obtained as E{|yj,t+k − Ŷj,t+k|t|2} ≤ E{(yj,t+k − ylin
j,t+k)

2} + E{(ylin
j,t+k − Ŷj,t+k|t)2} +

2
√
E{yj,t+k − ylin

j,t+k}2E{ylin
j,t+k − Ŷj,t+k|t}2 ≤ σ2

yj,t
+ Cj,l +Dj,l + Bj,l + 2

√
(σ2

yj,t
+ Cj,l +Dj,l)Bj,l, where

Dj,l is obtained according to Lemma 1 as an upper bound on the last term in the right hand side of the
first equation above. Moreover, Bj,l is an upper bound on the observation forecast error from the DLM
model according to Theorem 1. Consequently, since for the dynamical system we have ∀(xt, θt) ∈ DR, the
function ht(xt, θ

T
t λ(xt)) and as a result Cj,l will be bounded. Consequently, the k-step ahead prediction

error due to the observations will remain bounded. This completes the proof of the theorem. �
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