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ABSTRACT

The Longitudinal Effect of Structural Brain Measurements on Cognitive Abilities

Fatemeh Hosseininasabnajar

Loss of brain tissues and cognitive abilities are natural processes of aging, and they are re-

lated to each other. These changes in cognition and brain structure are different among the

cognitively normal elderly and those with Alzheimer’s disease (AD). Despite the great de-

velopment in the longitudinal study of decline in brain volume and cognitive abilities,

previous studies are limited by their small number of data collection waves and inadequate

adjustments for important factors (such as a genetic factor). These limitations diminish

the power to detect changes in brain tissues and cognitive abilities over a longer period

of time. In this study, firstly, we aimed to explore the longitudinal association between

cognitive abilities and global and regional structural brain variables among individuals

with normal cognitive status, mild cognitive impairment (MCI), and AD using mixed ef-

fects models. Secondly, we investigated the effect of education on the relationship between

cognition and brain structure. Lastly, we utilized latent class growth analysis in order to

study the change in cognition between different MCI sub-classes based on their functional

abilities. The data in this study were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) which contained 6 time points over three years (n = 686). The results

showed that cognitive abilities decreased over time across different groups, and the rate

of decline in cognition depended on the whole brain volume. Importantly, the effect of

brain volume on the rate of decline in cognitive abilities was greater among MCI subjects

who progressed to AD (pMCI) and participants with AD. Ventricle enlargement in the

pMCI group also showed a significant influence on the rate of cognitive decline. Lastly,

based on an assessment of functional abilities at baseline, this study demonstrated an effi-

cient methodology to identify MCI subjects who are most at-risk for cognitive impairment

progression.
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1 Introduction

1.1 Background

A low population growth rate and an increase in the aged population lead to unequal

proportions of young and old people. It is predicted that the world population aged

60 and above will be the same as the number of individuals aged under 15 by 2050

(United Nations, (2017)). Although both aged people and societies may benefit from

a longer life course, any opportunities provided by an aged population (such as direct

contributions to economic growth) depends on the aged population’s health (Franklin

et al., 2014). Aging naturally results in some biological changes which affects people’s

abilities in different domains. For instance, cognitive skills (the person’s abilities to carry

out cognitively demanding tasks such a telephone use or preparing a meal (Kimbler,

2013)) are affected by aging (Harada et al., 2013). Physical abilities (such as housekeeping,

commuting, and work-related activities) are also affected as people age (Milanovic et al.,

2013).

Naturally, brain volume changes during a lifetime. In fact, it increases until early

adolescence then starts to decline beginning in early adulthood (Courchesne et al., 2000).

Scahill et al. (2003) reported that while the whole brain volume decreased by aging during

adulthood, the rate of atrophy accelerated after 70 years of age. Aging also affects distinct

domains of cognition differently. For instance, while episodic memory (remembering of

events and experiences) declines over the life course, semantic memory (remembering of

facts and information) declines in old age (after 65 years of age) (Ronnlund et al., 2005).

Moreover, changes in cognitive abilities are related to changes in brain structure. For

instance, as shown by Ritchie et al. (2015), people with lower initial levels of cognitive

abilities experienced greater brain volume changes over their late lifetime. Sluimer et al.

(2008) also reported that the brain atrophy rate was significantly associated with a decline

in cognitive abilities. Similarly, a study by Royle et al. (2013) indicated that brain tissue

deterioration contributed significantly to lower cognitive ability in later life.

In addition, biological changes accompany or coincide with a variety of chronic diseases



such as depression and dementia but depend on an individual’s personal characteristics

and lifetime circumstances (WHO, 2015). For instance, when brain atrophy or loss of

cognitive functions is severe enough to impact a person’s social and occupational life

(Chertkow et al., 2013), the person can be diagnosed with dementia. Dementia has a

prevalence of 47 million people worldwide in 2017, with 9.9 million new cases diagnosed

every year (WHO, 2017). Alzheimer’s Disease (AD) is a progressive brain disease that

brings about memory, thinking, and behavior problems (Fischer, 2002) and is the main

cause of dementia among aged people (accounting for 60-70% of dementia cases) according

to the World Health Organization (2017). AD develops gradually over time and affects

daily activities, such that at the last stage patients may not be able to talk and respond to

their environment (Alzheimer’s Association). AD has numerous physical, psychological,

and economic impacts not only on the patients but also on caregivers and societies (WHO,

2017).

People with AD live for 3 to 10 years after diagnosis (Zanetti et al., 2009), however,

research indicates that the brain started changing, years before the onset of neurodegen-

erative biomarkers and cognitive symptoms (Jack Jr et al., 2010). Due to this latency

period (Sperling et al., 2011), researchers are interested in persons with mild cognitive

impairment (MCI – the transitional stage between normal aging and AD (Petersen et al.,

2001)). Researchers have targeted patients with MCI to investigate the relationship be-

tween structural brain changes and onset of disease symptoms over this preclinical phase

of AD. In fact, studying this phase can help to have a better understanding of the early

stages of AD and to develop intervention treatments to decrease the risk of disease pro-

gression. Generally, people with MCI experience more memory loss than is expected due

to normal aging, but the memory loss is insufficient for AD diagnosis. Moreover, the rate

of conversion to dementia among MCI patients is higher than among cognitively normal

individuals (Roberts & Knopman, 2013). Driscoll et al. (2009) conducted a ten-year longi-

tudinal study to explore the age-related regional volume loss in cognitively normal controls

and people with MCI. The authors found that while natural changes in the whole brain

volume and specific regions of the brain (such as the hippocampus and entorhinal cor-
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tex) were due to aging among cognitively normal controls, the rate of global and regional

changes were accelerated by aging in the MCI group.

Nevertheless, not everyone with MCI will progress to dementia. Indeed, some will

revert back to normal cognitive health, and others will remain MCI (Roberts & Knopman,

2013). Important demographic and health differences between those who remain MCI

and who revert to normal have been reported. For instance, MCI patients who reverted

to normal did not carry any alleles of Apolipoprotein E-ε4 (APOE-ε4) and showed less

impairments in cognitive and functional abilities than MCI patient who did not revert back

to normal (Koepsell & Monsell, 2012). In contrast, Risacher et al. (2010) revealed that MCI

patients who converted to AD had greater whole brain atropy and ventricle enlargment

rates compared to people who remained MCI throughout study follow-up. In addition,

deficits in functional abilities at baseline was also reported as a predictor of conversion

from MCI to dementia (Farias et al., 2009). This great heterogeneity in people with MCI

(Petersen et al., 2001) underline the need for investigating this group of individuals in

order to learn about the characteristics which differentiate between those who remain

stable with MCI, progress to AD, or revert back to normal. By being able to accurately

identify those at highest risk for progression, results will have clinical implications on the

development of interventions to prevent or slow down the progression of MCI.

People with MCI are classified into four sub-types: (1) single-domain or (2) multiple

domain amnestic MCI (aMCI) and (3) single or (4) multiple domain non-amnestic MCI

(naMCI). While aMCI groups contain individuals with memory deficits, naMCI refers to

people with deficits in domains other than memory (Roberts & Knopman, 2013). A 6-year

population-based study conducted by Busse et al. (2006) revealed that while prevalence

of single-domain MCI was greater than the prevalence of multiple-domain, aMCI type

was as common as naMCI. However, the authors declared that persons with aMCI were

significantly more likely to progress to dementia than individuals with naMCI.

Different cognitive abilities including memory and non-memory domains have been

examined separately to differentiate their impairments due to normal aging from impair-

ments due to different stages of AD. Backman et al. (2004) declared that AD is best
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characterized by impairments in multiple cognitive domains. The authors explained that

accounting for other indicators (such as brain volumetric measures) could increase the

accuracy of AD prediction. In fact, brain deterioration in the elderly with normal health

and different stages of AD is diverse, and the changes in brain tissues vary in distinct

regions. The study conducted by Evans et al. (2010) indicated that people with AD had

a greater rate of whole brain atrophy and ventricles enlargement compared to control

groups. Moreover, some brain regions were influenced at earlier stages of AD than oth-

ers (Driscoll et al., 2009; Scahill et al., 2003). However, the literature assessing for brain

tissues changes across distinctive regions while accounting for brain volumetric measures

is limited.

Instead studies have tried to identify demographic characteristics and other predic-

tors which may affect brain degeneration and impairment in cognition among healthy

individuals or people with AD. For instance, similar to the finding that MCI carriers of

APOE-ε4 alleles are more likely to progress to AD, carrying at least 1 allele APOE-ε4 may

accelerate the rate of cognitive decline in early stages of AD (Cosentino et al., 2008) and

may impact the decline in brain volume in late life (Manning et al., 2014). Other factors

such as demographic characteristics which might influence AD progression have also been

explored. Lipnicki et al. and his colleagues in 2013 found that older age and being male

increased the risk of cognitive decline. Lipnicki et al. (2013) also found that having more

education increased cognitive decline risk. In contrast, Lindsay et al. (2002) reported the

opposite finding: that fewer years of education increased the risk of AD. Lindsay et al.

(2002) did not find any difference between men and women at-risk for dementia. However,

the mixed findings regarding education’s role on cognitive decline may be an artifact due

to differences in samples and should be further explored.

Importantly, cognitive decline is accompanied with decreased autonomy. Thus the

association between cognitive decline and a person’s ability to independently conduct in-

strumental activities of daily living (IADL, such as cleaning, doing the laundry, shopping,

driving, and managing finances (Marshall et al., 2011)) has been of interest. Pérès et al.

(2008) suggested that deficits in IADLs years before diagnosis of dementia could be an
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early sign of the disease. A 1-year study of aMCI individuals by Rozzini et al. (2007)

showed that baseline IADL, and executive functions independently predicted conversion

to AD over 1 year. Burton et al. (2009) also declared that MCI participants showed more

deficits in IADL functioning than those with normal cognitive status.

1.2 Limitations of the existing literature

Despite the great development in the longitudinal study of age-related declines in brain

volume and cognitive abilities, notable limitations of the literature exist. For instance,

most longitudinal studies have a small number of follow-up visits (only 2 time points

over 1 or 2 years) (Sluimer et al., 2008; Rozzini et al., 2007), which not only decreases the

power and precision of the results (Ritchie et al., 2015) but also limits the ability to detect

changes in the factors over a longer period of time (Lipnicki et al., 2013). Moreover, some

of the previous studies used the Mini-Mental State Examination (MMSE) test to assess the

global change in cognitive skills (Sluimer et al., 2008). However, the MMSE is a screening

test developed to detect AD and to distinguish between the different levels of AD, but is

poor in identifying changes over time (Fischer, 2002), particularly among well-educated

individuals (Jacqmin-Gadda et al., 1997). More importantly, as some participants revert

or convert to other cognitive statuses throughout the study, not accounting for these

variations may bias the associations toward the null (Plassman et al., 2010). Lastly, some

studies applied simple analyses such as partial correlation or linear change scores (Lipnicki

et al., 2013; Sluimer et al., 2008). Mixed models or latent class growth curve models are

more statistically powerful and are better equipped to handle missing values and mistimed

data (Curran et al., 2010).

Many previous studies did not properly adjust for known covariates between cogni-

tive status and cognitive abilities. Inadequate covariate adjustment for important factors

(Wilson et al., 2009) will result in residual confounding, which may mask important asso-

ciations. For instance, whole brain, hippocampus, and ventricles volume plus entorhinal

cortex thickness are reportedly significantly different between MCI and cognitively healthy

controls (Evans et al., 2010; Driscoll et al., 2009) but are oftentimes not controlled for
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in the analysis. Similarly, while health and genetic factors such as the APOE-ε4 allele

(Cosentino et al., 2008; Manning et al., 2014) and the ability to perform IADL have been

linked with cognitive skills (Pérès et al., 2008; Jekel et al., 2015), the literature linking

all of these factors together alongside longitudinal brain changes is sparse. Indeed, these

covariates have been inadequately controlled for in previous studies. Lastly, potential

moderators for the association between cognitive status and cognitive decline have been

suggested but with inconsistant results. For instance, Karp et al. (2004) reported that a

low level of education and a low socioeconomic status (based on occupation) were indepen-

dently associated with increased risk of AD and dementia. In contrast, a study by Wilson

et al. (2009) reported that education was associated with level of cognitive function but

not with the rate of cognitive decline. However, drawing conclusions from these studies is

difficult due to their variability in study quality and covariate adjustment (Plassman et

al., 2010).

To address some of these previous limitations, we propose to analyze the longitudinal

association between brain atrophy and cognitive decline in a large sample of older adults

with 6 time points over 3 years. In particular, in recognition of the better exploration

of the relationship as compared to a basic linear change score (Cardenas et al., 2011),

we propose to investigate the relationship through a mixed effects model and to explore

potential moderators for this association among subjects classified in two sub-groups:

those who remain stable in the same cognitive status throughout the study ("stable")

and those who convert to a different status over time ("converters"). In addition, there

is not a single test to assess cognitive abilities that is universally recommended. Thus,

to meet the objective of the current study, the Alzheimer’s Disease Assessment Scale-

cognition sub-scale (ADAS-Cog) is used to study changes in general cognitive abilities

over time (Rosen, Mohs, & Davis, 1984). ADAS-Cog is commonly used in clinical trials

of AD (Connor & Sabbagh, 2008). In addition, due to the heterogeneity of MCI and the

high risk of conversion to dementia among aMCI, we are interested in (1) exploring sub-

classes of aMCI individuals, (2) better characterizing these sub-classes, and (3) studying

their patterns of cognitive ability changes over time. Therefore, we propose to apply a
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latent class growth curve model based on functional assessments in order to identify MCI

subgroups, and then studying the change in cognition across MCI sub-groups based on a

mixed effects model.

More specifically, our first objective is to study the association between global and re-

gional brain atrophy and change (decline) in cognitive abilities and to compare their rates

of decline across the five groups (stable control normal, progressed control normal, stable

MCI, progressed MCI, and AD). Our second objective is to examine whether education

can play a moderating role for the changes in brain volume and cognitive abilities. The

last objective is to explore MCI sub-classes and study the change in cognitive abilities

among them.
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2 Methods

The Alzheimer’s Disease Neuroimaging Initiative (ADNI), which began in 2004, is a lon-

gitudinal study with open and ongoing recruitment designed to develop clinical, imaging,

genetic, and biochemical biomarkers for the early detection of different stages of AD in

over 50 sites in US and Canada. ADNI has four phases in which participants are followed

over time: Original ADNI (ADNI1, 2004-2010), ADNI Grand Opportunities (ADNIGO,

2009-2011), ADNI2 (2011-2016), and ADNI3 (2016-2021). While Magnetic Resonance

Imaging (MRI) scans, cognitive assessments, and biomarker tests were conducted at each

clinical visit, the phases differed in their target populations and their MRI scan technolo-

gies. For instance, ADNI1 conducted MRI by scanners with two magnetic field strengths:

1.5 Tesla (T) and 3 T (More information on MRI procedures and protocols is available

at http : //adni.loni.usc.edu/about/centers− cores/mri− core/). While ADNI1 mainly

implemented 1.5 T MRI scans, participants in ADNIGO and ADNI2 had only 3 T image

scans. Compared with 1.5 T, 3 T is preferable due to the larger signal to noise ratio

and flexibility for advanced technical scans (Jack Jr et al., 2010, 2015). Although 3 T

MRI was exclusively used in ADNIGO, ADNI2, and only among 25 percent of partici-

pants in ADNI1, Ho et al. (2010) found that 1.5 T and 3 T scans were comparable to

one another and did not differ significantly. Thus, in order to avoid adding any probable

extra variation and bias, this study included only participants with 1.5 T scans collected

throughout ADNI1 waves (n = 819). Data from the "ADNImerge" dataset specific to

ADNI1 waves were used for this analysis. More information about ADNI is available at

http : //adni.loni.usc.edu.

2.1 ADNI participants

ADNI1 enrolled people with different cognitive status who were between 55 and 90 years

of age, and in a "good general health condition with no disease expected to interfere with

the study"(Petersen et al., 2010). Other eligibility criteria included speaking in English

or Spanish and with a reliable study partner able to independently evaluate the par-

ticipant’s functioning. Participants were classified into a cognitive group based on their
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memory complaints, score on the Logical Memory II sub-scale from the Wechsler Memory

Scale (LM II, which is adjusted for education), Mini-Mental State Examination (MMSE)

score, and Clinical Dementia Rating (CDR) (see Table 1) (Petersen et al., 2010). A site

physician also assessed their cognitive status based on the significant impairment in cog-

nitive functions or activities of daily living, and stability of permitted medications for 4

weeks.

Table 1: Scores on psychological tests for inclusion in ADNI

Cognitive status MMSE CDR LM II

Education, year

0-7 8-15 >=16

CN 24-30 0 >=3 >=5 >=9

MCI 24-30 0.5 <=2 <=4 <=8

AD 20-26 0.5 0r 1 <=2 <=4 <=8

CN: control normal, MCI: mild cognitive impairment, AD: Alzheimer’s disease,

MMSE: Mini-Mental State Examination, CDR: Clinical Dementia Rating,

LM II: Logical Memory II sub-scale of the Wechsler Memory scale-revised

Based on these tests and the physician’s assessment, subjects with normal cognition,

(control normal, CN) were defined as those who did not have any symptoms of depres-

sion, cognitive impairment or dementia. However, people who did not have subjective

memory concerns (but without any effect on their daily activities reported by themselves,

their partners or a site physician), and without any signs of dementia, were classified

as subjects with MCI. Participants who met the National Institute of Neurological and

Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders

Association criteria for probable AD were classified into the AD group (Petersen et al.,

2010). Clinical assessment and imaging data were collected at baseline, 6 months after

baseline, and subsequently on an annual basis. Subjects in the MCI group also had an

in-clinic visit 18 months after baseline for a cognition assessment and MRI scan. More-

over, subjects were followed up via telephone interviews after 18 and/or 30 months from

baseline (depending on cognitive group) to assess change in cognition. CN and MCI in-
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dividuals were followed at least for three years while people with AD were followed for

at least 2 years. Further information about the ADNI study and inclusion criteria can

be found at http : //www.adni− info.org/Scientists/ADNIStudyProcedures.html. Of

the total ADNI1 participants, 229 had normal cognitive status at baseline, and 398 and

192 of them were classified in aMCI and AD groups, respectively. Normal subjects were

age-matched with aMCI and AD participants.

2.2 Cognitive measure

In 1984, Rosen et al. designed the classic ADAS-Cog (Rosen et al., 1984) in order to (1)

assess the severity of cognitive and non-cognitive dysfunctions in people with AD, (2)

measure change in general cognitive abilities over time, and (3) monitor the treatment

effects in clinical trials of dementia (Connor & Sabbagh, 2008). It was further developed

by Mohs et al. (1997) to increase the range of cognitive domains and to increase its

sensitivity to detect change in early stages of AD and is known as Modified ADAS-Cog

(often referred to as ADAS-Cog 13). In addition to 11 items from the classic ADAS-

Cog covering memory, language, praxis, and orientation domains, ADAS-Cog 13 includes

delayed verbal recall and digit cancellation measuring visual attention and concentration.

It ranges from 0 to 85 points with higher scores indicating greater degree of cognitive

dysfunctions and greater progression of the disease, and is commonly used in clinical trials

of AD (Connor & Sabbagh, 2008). As ADAS-Cog 13 measures general cognitive abilities

and covers more cognitive domains compared with ADAS-Cog, the ADAS-Cog 13 is the

outcome of interest in this study. For our third objective aiming to identify MCI subgroups,

our primary predictor of cognitive status was replaced with a measure representing degree

of autonomy. IADL assessing functional abilities were used to identify any sub-population

in MCI group with distinctive baseline values and trajectories over time to characterize

potential sub-classes. Functional Activities Questionnaire (FAQ) (Pfeffer et al., 1982) filled

by the subjects’ study partners was used to assess IADL, with scores ranging between 0

and 30 where higher scores indicate higher impairment.
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2.3 Covariates

Covariates were considered for inclusion into this study based on their reported associa-

tions in the literature. For instance, whole brain, hippocampus, and ventricles volume plus

entorhinal cortex thickness are reportedly significantly different between MCI and cogni-

tively healthy controls (Evans et al., 2010; Driscoll et al., 2009). These volumetric and

brain-related covariates were acquired from MRI scans over each clinical visit. In addition,

as several studies have found that carrying at least 1 allele of the APOE-ε4 may accelerate

the rate of cognitive decline in brain volume (Cosentino et al., 2008; Manning et al., 2014),

whether the person was a carrier of APOE-ε4 alleles was considered as a covariate. This

was collected based on conducting genotyping on blood samples collecting at the screening

visit (for more information see http : //adni.loni.usc.edu/data−samples/genetic−data).

In addition to time (in months from baseline), demographic characteristics such as gender,

baseline age, and years of education were also included.

2.4 Statistical analysis

Both participants who had progressed in their disease or remained stable over follow-up

were included in this study. Based on clinical tests, subjects were classified as ‘stable

cognition’ if their follow-up measures were consistent with their baseline classification,

and were classified as ‘progression’ if their cognition classification worsened over time. As

we were interested in studying subjects who had stable or progressed cognitive status,

subjects who reverted to healthier cognitive status were excluded from the study: MCI

who reverted to normal: n = 15; AD who reverted to MCI or normal: n = 2. In addition,

subjects with progression during the follow-ups who reverted to their baseline status were

excluded from the study (n = 7). One subject was also eliminated from the study due to

missing values at all time-points. As a result, data collected from 794 participants with

stable or progressed status were used to conduct this study.

Descriptive statistics and bivariate tests between cognitive abilities and potential risk

factors at baseline were assessed with analysis of variance and chi-square tests. Linear

regression was used to investigate the (1) cross-sectional association between cognitive
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status and ADAS-Cog 13 at baseline and the (2) longitudinal association between cog-

nitive status changes and ADAS-Cog 13. All models included baseline age (centered at

the grand mean age (75.3) to have a meaningful interpretation of the intercept), years

of education, and a binary variable as an indicator of APOE-ε4 carrier (coded as 0 for

non-carrier or 1 for those who carried 1 or 2 ε4 alleles), as well as volumetric variables

(such as whole brain or hippocampus volume) which were divided by intracranial volume

(ICV) prior to analyses in accordance with the literature (Whitwell et al., 2001) to control

for head size and inter-images variation.

Linear regression models to investigate the cross-sectional associations between global

and regional brain measurements and ADAS-Cog 13 at baseline adjusting for cognitive

status and all the covariates previously described were conducted.

2.4.1 Linear mixed effects models

Linear mixed effects models were used to study changes in cognitive abilities over time.

These models are applied to analyze changes in longitudinal data accounting for indi-

viduals effects. In fact, in mixed effects models, it is assumed that the mean response

is a combination of the population effects that are shared by all individuals (fixed ef-

fects) and subject-specific effects that are unique to a particular subject (random ef-

fects) (Fitzmaurice et al., 2012). The response of each individual differs from the mean

population by subject-specific effects and within-subject measurement errors, and the

within-subject (measurement errors) and between-subject (random effects) variations in

the response are modeled explicitly. In linear mixed effects models, including random in-

tercepts and random slopes of time allows individuals to be different from one another not

only in their baseline level of the response but also in changes in their response over time.

It is also assumed that the error terms and the random effects are normally distributed

with zero mean and an unknown variance-covariance matrix.

In this study, four linear mixed effects models with both random intercepts and ran-

dom slopes of time were conducted to test the longitudinal associations between structural

brain measurements and ADAS-Cog 13 over time across different cognitive groups. It was
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assumed that random intercepts, slopes of time, and measurement errors were normally

distributed with mean zero and unknown variance-covariance structure. Model 1 included

cognitive status (stable- control normal (sCN), progressed control normal (pCN), stable-

MCI (sMCI), progressed MCI (pMCI), and AD) and proportionate whole brain volume

(WBV/ICV) as the primary predictors in addition to all the covariates previously de-

scribed (demographic variables, APOE-ε4 carrier the genetic factor, cognitive status,

time). Model 1 also included an interaction between cognitive status*time and WB-

V/ICV*time. Interaction terms were included to test if the change in ADAS-Cog 13 was

different across groups, and if this change depends on brain volume. Model 2 addition-

ally had an interaction term between cognitive status and whole brain volume to test if

baseline cognitive dysfunctions can differ between groups. Model 3 aimed to examine if

effect of brain volume on longitudinal changes in cognitive abilities can be different across

groups, thus additionally included the interaction between cognitive status, WBV/ICV,

and time. Lastly to investigate the moderation effect of education on cognitive abilities

and global brain measurements, Model 4 additionally included an interaction between

education and WBV/ICV. In all models, sCN was considered as the reference group (see

equations 2.1 to 2.4).

Model 1:

Y = β0 + b0 + β1Time+ b1Time+ β2Age+ β3Gender + β4(APOE − ε4)

+ β5Cog.status+ β6Education+ β7WBV/ICV

+ β8WBV/ICV × Time+ β9Cog.status× Time+ ε

(2.1)

Note that βis for i = 1, 2, ..., 9 represent fixed effects, while b0 and b1 represent the random

effects (random intercept and random slope of time respectively).

Model 2: contains all terms in Model 1 plus one additional interaction term as below:

Y = β0 + b0 + β1Time+ b1Time+ β2Age+ β3Gender + β4(APOE − ε4)

+ β5Cog.status+ β6Education+ β7WBV/ICV + β8WBV/ICV × Time

+ β9Cog.status× Time+ β10WBV/ICV × Cog.status+ ε

(2.2)
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Model 3: contains all terms in Model 2 plus one additional interaction term as below:

Y = β0 + b0 + β1Time+ b1Time+ β2Age+ β3Gender + β4(APOE − ε4)

+ β5Cog.status+ β6Education+ β7WBV/ICV + β8WBV/ICV × Time

+ β9Cog.status× Time+ β10WBV/ICV × Cog.status

+ β11WBV/ICV × Cog.status× Time+ ε

(2.3)

Model 4: contains all terms in Model 3 plus one additional interaction term as below:

Y = β0 + b0 + β1Time+ b1Time+ β2Age+ β3Gender + β4(APOE − ε4)

+ β5Cog.status+ β6Education+ β7WBV/ICV + β8WBV/ICV × Time

+ β9Cog.status× Time+ β10WBV/ICV × Cog.status

+ β11WBV/ICV × Cog.status× Time+ β12WBV/ICV × Education+ ε

(2.4)

Moreover, as the literature indicates that the relationship between cognitive status and

cognitive abilities may have differential associations across brain regions, 3 models were

conducted to test this association: model I, II, and III looked for associations between

proportionate hippocampus volume to ICV (HCV/ICV), and entorhinal cortex thickness,

and ventricles volume proportionate to ICV (VEV/ICV) with ADAS-Cog 13 respectively.

These models adjusted for all the covariates as previously described in Model 4, except

that the WBV/ICV was replaced by the different regional brain variables.

Mixed models included both random intercepts and random slopes of time. The ne-

cessity of adding these random effects was confirmed by the Likelihood Ratio Test (LRT)

comparing models with (1) random intercept, (2) random slopes, and (3) both random in-

tercept and slopes models which confirmed that a model with random intercept and slope

was the best model fit. In addition, looking at variance- covariance, and the correlation

matrix of ADAS-Cog13 at different time-points, it revealed that the variance of cognitive

scores were not constant over time, but that the ADAS-Cog13 correlation was approxi-

mately constant between different time-points. Thus different covariance structures were

assessed: (1) compound symmetry with heterogeneous variances (CSH), (2) unstructured,
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(3) and auto-regressive with and without heterogeneous variances. Model comparisons

were assessed with LRTs or Akaike information criterion (AIC) and Bayesian information

criterion (BIC) statistics (depending on whether the model was nested or non-nested).

Comparing different covariance structures, in all cases but models I-III, the hybrid models

with both random intercept and slope of time with unstructured covariance matrix and

heterogeneous auto-regressive structure for within subjects errors were selected as the

best fitting models. Models I-III also used the heterogeneous auto-regressive structure.

2.4.2 Latent class growth models

Due to the literature suggesting heterogeneity among MCI, a final analysis aimed to

identify sub-classes of MCI based on latent class growth analysis. In this method, it

is assumed that the population is composed of a mixture of distinct groups in which

subjects follow the same pattern of change over time on a given variable. Provided that

the direction and the magnitude of changes can vary independently from one another,

latent class growth analysis models the heterogeneity in changes within the data by a finite

set of unique polynomial functions each corresponding to a distinct trajectory (Andruff

et al., 2009). Based on the type of the outcome variable (e.g discrete or continuous),

specific probability distribution is used to estimate the model parameters. For instance,

if the outcome of interest is continuous, a censored normal model distribution is used

for parameters estimation. In fact, as the data are forced to group at the minimum and

maximum of the scale (Jones et al., 2001), a censored distribution is used for modeling

the scaled data. In addition, the outcome is linked with the time by means of a latent

variable, y∗jit which represents the predicted value of the outcome (y) for a given group

or trajectory (j) at a specific time (t). Assuming a quadratic trend over time for subjects

given the membership in group j:

y∗jit = βj
0 + βj

1Xit + β2jX2
it + εit

where X is an independent variable of time or age, and εit, an error term, is normally

distributed with mean zero and a constant variance σ2. The link between the latent
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variable and the observed but censored variable (yit) is defined as follows (Nagin, 1999).

yit =


Smin y∗jit < Smin

y∗jit Smin ≤ y∗jit ≤ Smax

Smax y∗jit > Smax

Note that Smin and Smin represent the minimum and maximum scale of the outcome.

Parameters of each trajectory are estimated by the Maximum Likelihood method given

the number of groups and trajectory models of each group in advance based on the prior

knowledge or the literature of the study. Moreover, the optimal number of groups and the

best fitted shapes for each trajectory are assessed with Bayesian Information Criterion

(BIC), and each individual is assigned to a group with respect to the maximum posterior

probability of a group membership (Andruff et al., 2009).

In this study, a latent class growth curve model was applied to specify any probable

sub-populations in the MCI group to explore the pattern of cognitive change in cognition

among different MCI subdivisions. In addition to sMCI and pMCI, subjects with sCN

status were also included in the analysis as a reference to assess the accuracy of the

classification. Participants’ performance of IADL assessed by FAQ was used to characterize

the sub-classes among MCI subjects. After looking at baseline characteristics of these

groups, two models were used to assess the new classification based on modeling the

change in cognition among MCI subjects. Curve models with different number of groups

and complexity of relationships (linear, quadratic, cubic) were conducted and compared

to one another using censored normal models. The final model was selected based on

significant trajectories shape, BIC, including at least 5% of the sample in each group

(Andruff et al., 2009), and ease of interpretations.
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3 Results

3.1 Descriptive analysis

Descriptive statistics of demographic characteristics and structural brain variables strati-

fied by cognitive status at baseline are provided in Table 2. It is notable that groups were

similar in demographic characteristics except for gender and education, such that men ac-

counted for a larger proportion of participants in the sMCI and pMCI groups, and AD with

the most impairments had the lowest mean years of education attained (mean = 14.7).

Subjects in pMCI and AD groups were mostly carriers of at least one allele of APOE-ε4.

In addition, baseline cognitive and functional abilities differed significantly between cog-

nitive groups. pMCI and AD groups had larger average scores on baseline ADAS-Cog 13

and FAQ compared to subjects with sCN status, generally reflecting greater impairments.

Moreover, structural brain variables revealed significant differences in global and regional

brain measurements between groups: on average pMCI and AD groups had smaller whole

brain and hippocampus volume, thinner entorhinal cortex, and larger ventricles volume

at baseline compared with the control normal group. Although, cognitive groups did not

differ significantly on baseline mean of intracranial volume representing the head size.

17



Table 2: Baseline characteristics

Characteristics sCN pCN sMCI pMCI AD

No. participants 209 18 206 171 190

Male*, % 51.2 55.6 65.5 61.4 52.1

Age, years 75.7(5.0) 77.8(5.4) 74.8(7.6) 74.8(7.0) 75.3(7.5)

Education*, years 16.1(2.9) 15.7(2.8) 15.5(3.2) 15.8(2.9) 14.7(3.2)

APOE-ε4 carrier *, % 26 33.3 44.2 67.3 65.8

Average time of follow-up, month 38.2(12.2) 39.2(6.1) 30.2(15.0) 36.7(11.8) 21.2(8.6)

WBV*, cm3 1006.2(101.3) 1014.3(87.2) 1007.2(106.5) 980.2(112.2) 952.3(107.7)

HCV*, cm3 7.3(0.9) 6.8(1.0) 6.7(1.0) 6.0(1.0) 5.6(1.1)

VEV*, cm3 35.2(20.1) 37.5(16.3) 42.6(24.1) 47.4(23.1) 50.3(25.3)

ERC*, cm 382.9(64.8) 349.3(94.3) 350.4(72.2) 303.1(70.8) 273.6(69.3)

ICV, cm3 1532.9(156.3) 1594.5(157.8) 1573.3(159.0) 1573.3(176.0) 1547.5(181.8)

ADAS-Cog 13* 9.3(4.2) 12.0(4.0) 17.1(6.1) 21.3(5.3) 29.0(7.6)

FAQ* 0.1(0.4) 0.7(1.6) 2.7(3.6) 5.5(5.0) 13.1(6.8)

sCN: stable control normal, pCN: progressed control normal, sMCI: stable mild cognitive impairment, pMCI: progressed MCI, AD:

Alzheimer’s disease, HCV: hippocampus volume, ERC: entorhinal cortex, VEV: ventricles volume, ICV: intracranial volum, FAQ: functional

abilities questionnaire.* p < 0.01, chiq- square and analysis of variance tests were used to explore the association between baseline

characteristics and cognitive groups.

3.2 Baseline association

Associations between cognitive dysfunctions and each covariate at baseline were also as-

sessed. Table 3 provides the results of the models which separately explored the effect of

covariates on ADAS-Cog 13 while adjusting for centered age, gender, and cognitive status.

Greater impairments in baseline mean cognition could be seen among APOE-ε4 carriers

compared with non-carriers (p < 0.02). Controlling for head size, proportional brain vol-

umetric variables such as whole brain, hippocampus, and ventricles volume (dividing by

intracranial volume) were included in 3 separate models. It is notable that greater brain

and hippocampus volume proportionate to the head size and thicker entrohinal cortex

could be protective against cognitive impairments (p < 0.0001), while larger proportional

ventricles volume was associated with greater baseline cognitive dysfunctions. Looking at

the baseline effect of education on cognition, years of education significantly protected

individuals from concurrent cognitive dysfunctions. For instance, men with sCN status,
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who are 75 years of age on average experienced less impairment in cognitive abilities at

baseline with each year of education attained (β̂ = −0.19, p < 0.01). However, one of the

ADNI inclusion criteria was that years of education were incorporated into the classifica-

tion of different cognitive groups. Thus education might influence the relationship between

ADAS-Cog 13 and covariates. To overcome this probable influence, subjects with certain

years of education who were on the cusp of two different classifications and were thus

classified into one group based on their years of education were excluded from the study

(n = 108). After excluding these subjects, education was not associated with baseline

cognitive impairments adjusting for age and gender (p > 0.05). The rest of the analyses

used these reduced data, after excluding these subjects (n = 686).

Table 3: Baseline effects on ADAS-Cog13 by separate general linear models

Covariates
Estimated parameter

(Standard error)
p-value

Education -0.19(0.07) 0.01

APOE-ε4 Carrier, % 1.07(0.45) 0.02

WBV/ICV, % -0.24(0.06) <.0001

HC/ICV, % -18.25(3.79) <.0001

ERC, cm -0.03(0.003) <.0001

VEV/ICV, % 0.63(0.18) 0.001

HCV: hippocampus volume, ERC: entorhinal cortex, VEV: ventricles volume, ICV: intracranial volume. * p <0.05. HCV and VEV were

proportional to ICV. Each variable was tested in a separate general linear model and adjusted for centered age, gender, and cognitive

status.*p < 0.05, **p < 0.01, ***p < 0.0001.

3.3 Longitudinal association

Exploring the general patterns of cognitive abilities over time, Figure 1 displays the plots

of ADAS-Cog 13 with a random 5% of participants along with their average over time.

Subjects in pMCI and AD, on average, had greater rates of cognitive impairments over

time compared to sCN and sMCI groups. In addition, generally patients with larger base-

line cognitive scores were more likely to have larger rate of change in cognition over time.

It is also evident that the rate of change in cognition differed from the general pattern for
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different participants.

Figure 1: Time plot of cognitive dysfunctions of a 5% random sample of participants and

average cognitive dysfunctions stratified by cognitive status

Figure 2 depicts the difference in average cognitive dysfunctions scores stratified by

cognitive groups over time. It is clear that baseline and the overall trend of ADAS-Cog

13 was higher in groups with greater impairments, such that pMCI and AD groups with

higher baseline mean scores also had steeper increases in mean cognitive impairments over

time compared to other groups. Moreover, although both sCN and sMCI had almost a

constant mean ADAS-Cog 13 over time, the average cognitive disabilities was remarkably

higher among sMCI than sCN. Subjects in pCN group on average suffered from greater

impairments in cognition both at baseline and over time compared to sCN. In pCN group,

the rate of change in mean ADAS-Cog 13 was not constant over time, and it increased

until it reached the sMCI mean levels of impairments. Regarding the patterns of mean
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Figure 2: Time plot of mean cognitive dysfunctions stratified by cognitive status

cognition dysfunctions over time, the average cognitive dysfunctions increased linearly

over time in almost all groups except for sCN and sMCI which had relatively stable mean

ADAS-Cog 13 scores over time.

Further, we used mixed models with random intercept and random slope of time to

investigate the change in cognitive abilities over time. According to the time plot displays

in figure 1, patients with larger baseline cognitive scores were more likely to have larger

rate of change in cognition over time. Thus, to reflect this variation in individuals, four

models were fitted to the data to study the change in cognition over time.

To assess the adequacy of the fitted models, it is required to check the residuals for

deviation from the model assumptions such as normality. Figure 3 displays three plots of

the residuals for ADAS-Cog 13; residuals versus predicted mean values, the histogram of

residuals, and the Q-Q plot of the residuals. The scatter plot of residuals versus predicted

mean values is used to check the linearity assumption.

In order to determine whether the linearity assumption held, the scatter plot of residu-
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Figure 3: Residual plots for ADAS-Cog 13

als was reviewed. Although the linearity assumption did not appear to be grossly violated

generally (no systematic pattern), the plot appears to be approximately divided in two

parts. Looking at the cognitive status of subjects assigned to these two parts and of those

who were located in between, it was realized that mostly, individuals in the pCN group

were placed between two clusters. Therefore, it can be concluded that the small number

of subjects in the pCN group might explain a division in the scatter plot. In addition, the

residuals histogram and Q-Q plot depict a moderate violation from normality assumption.

The histogram shows a slightly skewness to the right, and Q-Q plot also displays a modest

departure from a straight line particularly at the right end. Nevertheless, after applying

different transformation methods such as logarithmic and square root transformation, a

square root transformation of the ADAS-Cog 13 brought the distribution of the data

towards normality (Figure 4).
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Figure 4: Residual plots for ADAS-Cog 13 with square root transformation

The estimated parameters with standard errors for four models of non-transformed

outcome are displayed in Table 4. In addition, due to the moderate violation of the

normality assumption, the estimated parameters of Model 3 with non-transformed and

transformed outcome were also provided in Table 5 for the comparison. The results were

interpreted regarding the adjustment for baseline characteristics and other included vari-

ables, and sCN was considered as a reference group. In Model 1, it is evident that baseline

cognitive dysfunction was higher in all groups except for pCN relative to sCN. At baseline,

individuals with greater WBV/ICV might show less impairment in cognition regardless

of their cognitive status (β̂ = −0.28, p < 0.0001), and the decrease in WBV/ICV acceler-

ated the rate of decline in cognitive abilities over time (β̂ = −0.01, p < 0.0001). Indeed,

while mean ADAS-Cog 13 increased over time in all groups (which represents a decline in

cognition over time), the rate was steeper among subjects in pMCI and AD groups com-

pared to sCN with the same baseline characteristics (β̂pMCI = 0.27 + 0.81 = 1.08, β̂AD =

0.36 + 0.81 = 1.17). In Model 1, it was assumed that baseline and the longitudinal effect

of brain volume across different groups were the same.

After including the interaction between brain volume and cognitive status in Model

2, sMCI baseline cognition was no longer significantly different from sCN. This implies
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that the effect of brain volume on baseline mean ADAS-Cog 13 was similar among sMCI,

and sCN groups. However, participants in the pMCI and AD groups with smaller brain

volume had lower cognitive impairment at baseline (β̂pMCI = −0.35, p < 0.05β̂AD =

−0.68, p < 0.0001). Model 3 tested the difference in the effect of brain volume on the rate of

cognitive abilities over time across cognitive groups by adding an interaction term between

WBV/ICV, cognitive status, and time. It is clear that in the pMCI and AD groups, the

effect of brain volume on the rate of change in average ADAS-Cog 13 differed from subjects

in other groups. In fact, the magnitude of brain volume effect on the rate of change in

cognition was larger among pMCI and AD compared to other groups (| − 0.01− 0.02| =

0.03). Therefore, it seems that greater proportional brain volume might have the greater

moderating effect on the rate of cognitive impairments over time in pMCI and AD groups.

Studying the effect of education on cognitive abilities, it can be seen that in the first

three models, individuals with the same baseline characteristics and the same proportional

brain volume but higher education attainments, on average, experienced less impairments

in cognitive abilities at the baseline (β̂ = −0.16, p < 0.05), from Models 1-3. However,

education might not moderate the relationship between whole brain volume and ADAS-

Cog 13, as the estimated coefficient of interaction between education and whole brain

volume was not significant (p > 0.05), Model 4.

In summary, subjects who were already impaired at baseline (in sMCI, pMCI, and

AD groups) had greater impairment in cognition relative to sCN participants at base-

line. While baseline impairment level was highest among pMCI and AD patients with

smaller brain volume, brain volume had a similar effect on the initial cognitive impair-

ment among sCN, pCN, and sMCI subjects. In addition, cognitive abilities declined over

time in all groups but with the steeper rate among pMCI and AD patients. Importantly,

decrease in brain volume accelerated the rate of decrease in cognition over time, however,

the brain volume effect on the rate of decline was higher among pMCI and AD subjects. In

all models, centered age, gender, and APOE-ε4 carrier status did have any effect on mean

ADAS-Cog 13 (results not shown).

24



Table 4: Modeling change in ADAS-Cog 13 over time in different clinical groups
Model 1 Model 2 Model 3 Model 4

Covariates Estimated parameters (standard error)

Cognitive status

pCN 1.95(1.41) 7.42(22.07) 9.93(22.31) 9.80(22.32)

sMCI 7.69(0.63)*** 12.50(8.31) 10.97(8.54) 10.71(8.56)

pMCI 11.01(0.67)*** 33.72(8.42)*** 27.51(8.64)** 26.97(8.70)**

AD 18.35(0.66)*** 60.96(8.01)*** 55.69(8.13)*** 55.86(8.13)***

Time 0.81(0.14)*** 0.85(0.14)*** 0.35(0.21) 0.35(0.21)

Education -0.16(0.07)* -0.16(0.07)* -0.16(0.07)* 0.33(0.82)

WBV/ICV, % -0.28(0.05)*** -0.04(0.08) -0.09(0.08) 0.03(0.21)

WBV/ICV*Time -0.01(0.002)*** -0.01(0.002)*** -0.01(0.003) -0.01(0.003)

Cognitive status* WBV/ICV

pCN -0.08(0.34) -0.12(0.35) -0.12(0.35)

sMCI -0.07(0.13) -0.04(0.13) -0.04(0.13)

pMCI -0.35(0.13)* -0.25(0.14) -0.24(0.14)

AD -0.68(0.13)*** -0.59(0.13)*** -0.59(0.13)***

Cognitive status*Time

pCN 0.11(0.05)* 0.11(0.05)* -0.43(0.74) -0.44(0.74)

sMCI 0.07(0.03)* 0.07(0.03)* 0.35(0.37) 0.34(0.37)

pMCI 0.27(0.02)*** 0.25(0.03)*** 1.28(0.33)** 1.27(0.33)**

AD 0.36(0.03)*** 0.30(0.03)*** 1.73(0.42)*** 1.73(0.42)***

Cognitive status * WBV/ICV * Time

pCN 0.01(0.01) 0.01(0.01)

sMCI -0.004(0.01) -0.004(0.01)

pMCI -0.017(0.005)** -0.016(0.005)**

AD -0.023(0.007)** -0.023(0.007)**

WBV/ICV*Education -0.01(0.01)

sCN: stable control normal, pCN: progressed control normal, sMCI: stable mild cognitive impairment, pMCI: progressed MCI, AD:

Alzheimer’s disease, WBV: whole brain volume, ICV: intracranail volume. *p < 0.05, **p < 0.01, ***p < 0.0001. sCN was the reference

group in all models.WBV was proportional to ICV for controlling the head size. Each model adjusted for centered age, gender, and APOE-ε4.

To assess whether the association between cognitive abilities and the brain measure-

ments would change after transforming the outcome, all four mixed models in Table 4

were conducted again replacing the ADAS-Cog 13 with its square root. The results re-

25



vealed that the estimated coefficients of each term in Model 1 and Model 2 remained

approximately the same regarding a significance level and direction of effects (the sign

of coefficients), however, in Model 3 and Model 4, the effect of the brain volume on the

rate of change in cognition in the pMCI and AD groups were no longer significant after

transforming the outcome. Table 5 provides information on the estimated parameters and

their standard errors in Model 3 with and without transforming the ADAS-Cog 13. The

estimated coefficients which differ from one another in terms of a significance level are

specified in bold. In general, the results were consistent with respect to the significance

level and the direction of effects in the four models regardless of whether the outcome

was transformed or non-transformed except for a small number of estimated parameters.

Moreover, due to the complexity of computation of back-transformed coefficients and dif-

ferent scales of non-transformed and transformed estimated effects, we cannot compare

the magnitude of estimated effects. Thus, regarding the general consistency in the results

and also for the ease of interpretations, the findings were presented without transforming

the outcome. However, explaining the effect of the brain volume on the rate of change in

ADAS-Cog 13 in different cognitive groups must be reported cautiously and with more

considerations.

26



Table 5: Modeling change in ADAS-Cog 13 over time with and without square root trans-

formation

Model 3 with non-transformed outcome Model 3 with transformed outcome

Covariates

Cognitive status

Non-transformed

estimated parameter(standard error)

Transformed

estimated parameter (standard error)

pCN 10.90(21.77) 1.06(2.66)

sMCI 10.97(8.54) 1.52(1.02)

pMCI 27.51(8.64)** 3.16(1.03)**

AD 55.69(8.12)*** 5.62(0.96)***

Time 0.35(0.21) 0.06(0.02)**

Education -0.16(0.07)* -0.02(0.01)**

WBV/ICV -0.09(0.08) -0.01(0.01)

WBV/ICV*Time -0.01(0.003) -0.001(0.0004)**

Cognitive status*WBV/ICV

pCN -0.14(0.34) -0.01(0.04)

sMCI -0.04(0.13) -0.01(0.02)

pMCI -0.25(0.14) -0.03(0.02)

AD -0.59(0.13)*** -0.05(0.02)**

Cognitive status*Time

pCN -0.50(0.73) -0.08(0.08)

sMCI 0.35(0.37) 0.02(0.04)

pMCI 1.28(0.33)** 0.06(0.04)

AD 1.73(0.42)*** 0.09(0.04)*

Cognitive status*WBV/ICV* Time

pCN 0.01(0.01) 0.002(0.001)

sMCI -0.004(0.01) -0.0001(0.001)

pMCI -0.02(0.01)** -0.001(0.001)

AD -0.02(0.01)** -0.001(0.001)

sCN: stable control normal, pCN: progressed control normal, sMCI: stable mild cognitive impairment, pMCI: progressed MCI, AD:

Alzheimer’s disease, WBV: whole brain volume, ICV: intracranail volume. *p < 0.05, **p < 0.01, ***p < 0.0001. sCN was the reference

group in two models.WBV was proportional to ICV for controlling the head size. Each model adjusted for centered age, gender, and

APOE-ε4. The estimated parameters with the red color display the difference between two models in terms of the significance level.

3.4 Cognitive change and brain regions

Table 6 displays 3 models which studied the effect of structural brain variables (such

as hippocampus and ventricles volume and entorhinal thickness) on baseline ADAS-Cog
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13 among subjects with different cognitive status compared with sCN individuals. Each

brain variable was tested in a separate model: Model I included proportional hippocampus

volume, Model II and III studied entorhinal cortex thickness and proportional ventricles

volume respectively. Each model also controlled for demographic and genetic character-

istics as previously described. On average subjects in sMCI and AD groups who shared

the same baseline characteristics but had a greater proportional hippocampus experi-

enced lower cognitive dysfunction at baseline compared to sCN. AD subjects with thicker

entorhinal cortex showed less impairments in mean cognitive abilities at initial levels.

Participants with AD who had larger ventricle volume proportionate to the head size had

significantly greater mean scores on ADAS-Cog 13 compared to sCN adjusting for other

covariates. However, volumetric or thickness measurements of the brain showed similar

effect on the rate of change in mean cognitive abilities across all groups except for pMCI

subjects with respect to their VEV/ICV. Indeed, ventricles enlargement had a greater

effect on the rate of increase in ADAS-Cog 13 scores (greater impairment) among pMCI

patients relative to individuals with different cognitive status with the same attributes

(β̂ = 0.04, p < 0.05).
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Table 6: Longitudinal effect of structural brain variables on ADAS-Cog 13

Covariates Model I Model II Model III

Cognitive status HCV/ICV ERC VEV/ICV

pCN 0.53(8.78) -1.08(4.28) -1.19(3.61)

sMCI 18.50(4.16)*** 12.58(2.53)*** 8.13(1.32)***

pMCI 15.98(4.15)** 13.55(2.28)*** 10.00(1.49)***

AD 25.95(3.76)*** 22.60(2.26)*** 15.30(1.38)***

Time 0.13(0.11) -0.02(0.08) -0.05(0.03)

Brain variable -6.29(6.06) -0.004(0.004) 0.62(0.35)

Brain variable*Time -0.30(0.23) 0.00003(0.0002) 0.02(0.01)

Cognitive status*Brain variable

pCN 3.96(19.83) 0.01(0.01) 1.58(1.44)

sMCI -25.69(9.29)* -0.01(0.01) -0.04(0.46)

pMCI -11.86(9.90) -0.01(0.01) 0.53(0.50)

AD -20.62(8.82)* -0.01(0.01)* 1.15(0.45)*

Cognitive status*Time

pCN 0.43(0.30) 0.41(0.19)* 0.12(0.13)

sMCI 0.12(0.17) 0.05(0.12) 0.02(0.06)

pMCI 0.16(0.16) 0.35(0.10)** 0.15(0.06)*

AD 0.07(0.17) 0.32(0.12)* 0.28(0.07)***

Cognitive status*Brain variable * Time

pCN -0.76(0.72) -0.001(0.001) 0.004(0.04)

sMCI -0.16(0.40) 0.0001(0.0003) 0.02(0.02)

pMCI 0.34(0.40) -0.0001(0.0003) 0.04(0.02)*

AD 0.87(0.44) 0.0004(0.0004) 0.02(0.02)

sCN: stable control normal, pCN: progressed control normal, sMCI: stable mild cognitive impairment, pMCI: progressed MCI, AD:

Alzheimer’s disease, HCV/ICV: proportional hippocampus volume to ICV, ERC: entorhinal cortex, VEV/ICV: proportional ventricles

volume to ICV, ICV: intracranial volume. * p <0.05. Model I, II, and III test the effect of each structural brain variable on ADAS-Cog 13

separately. Each model adjusted for centered age, gender, APOE-ε4, and education.
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3.5 MCI sub-groups

Based on model fit statistics as described in the statistical analysis section, a model

with 3 groups and linear trends in all groups was selected as a best fitting model in the

latent class growth analysis. Figure 5 depicts the pattern of mean scores on FAQ of each

group where the dashed and solid lines represented predicted and actual trend of mean

FAQ scores over time. Regarding the initial levels and trends of FAQ over time (greater

scores on FAQ represents greater impairment in IADL performance), groups were labeled

as normal, mildly impaired and impaired in terms of their performance of IADL. It is

notable that subjects in mildly impaired and impaired groups with greater mean scores at

baseline showed an increase in level of difficulties of performing IADL over time, although

subjects in the normal group had the lowest scores on FAQ and preserved the same level

of activities over time.

Figure 5: FAQ trajectories over time

Table 7 provides information on the distribution of subjects with different cognitive

30



status (which were defined based on changes in status over time as presented in previous

sections) over these 3 IADL-based groups. While there was some concordance between

cognitive status and IADL-based groups, the distribution suggests that the FAQ trajecto-

ries were also contributing complementary information. For instance, 35 individuals with

sMCI based on cognitive status were identified as part of the normal FAQ trajectory

group. In total, approximately 25% of the FAQ trajectory groups were discordant with

the cognitive status groups.

Table 7: Distribution of sCN and MCI subjects over different groups

Group Cognitive status

sCN sMCI pMCI Total

Normal 187 35 0 222

Mildly impaired 10 89 56 155

Impaired 0 25 85 110

Total 197 149 141 487

Table 8 presents baseline characteristics of subjects in different IADL-based groups. It

is evident that groups differed in baseline attributes except for age, gender, and education.

For example, not only did mildly impaired and impaired groups have greater baseline mean

scores on ADAS-Cog 13 and FAQ compared to the normal IADL-based group, but they

were also different from one another in baseline mean ADAS-Cog 13 and FAQ. Generally

groups also differed in their baseline mean of structural brain variables, although they

only differed from one another in baseline mean of hippocampus volume.
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Table 8: Baseline characteristics stratified by groups based on functional abilities

Group Normal Mildly impaired Impaired

Variable Mean (standard deviation)

Age 75.9(5.5) 74.8(6.9) 74.4(7.6)

Male, % 41.2 35.3 23.5

Education attainment, year 16.0(2.9) 15.9(3.1) 16.0(2.8)

APOE-ε4 carrier*, % 28.4 40.4 31.2

ADAS-Cog 13** 10.1(4.8) 18.5(5.8) 21.8(5.8)

FAQ** 0.1(0.4) 2.1(2.2) 8.0(5.1)

WBV*, cm3 1006.8(102.2) 1005.1(104.7) 975.3(115.3)

HCV**, cm3 7.2(0.9) 6.4(1.1) 6.1(0.9)

VEV * , cm3 35.4(19.5) 44.6(23.4) 50.4(27.3)

ERC*, cm 379.3(65.5) 321.6(72.5) 310.1(73.5)

HCV: hippocampus volume, ERC: entorhinal cortex, VEV: ventricles volume. * General difference between groups accounting for each

variable, ** both general and paired difference between groups accounting for each variable, p < 0.05

Further, to assess if the classification of individuals based on their performance of

IADL could improve the characterization of MCI subjects, Table 9 provided information

on two models: Model 1 explored the change in ADAS-Cog 13 among individuals with

different cognitive status (as previously presented in section 2.4), while Model 2 studied

the change in ADAS-Cog 13 over IADL-based groups identified from the latent class

growth analysis. Both models adjusted for centered age, gender, education, and APOE-ε4

carriers. As presented in Table 9, most of the estimated parameters in both models were

similar in terms of magnitudes and significance except for the coefficients of interaction

terms with time. For instance, while the rate of increase in mean ADAS-Cog 13 over time

was significant among subjects in the impaired IADL-based group (β̂ = 0.97, p = 0.002),

it was small and non-significant among sMCI participants (β̂ = 0.37, p = 0.27). These

results were expected, since there was an overlap between sMCI and pMCI over IADL

groups. Comparing models, the -2 log likelihood statistics of Model 1 was smaller than

Model 2 (12521 vs 12575) which indicated that Model 1 fitted the data better than Model

2.
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Table 9: Comparison between two different classification of MCI group
Model 1 (Status) Model 2 (IADL-based group)

Covariates Covariates

Group Estimated parameter (SE) p-value Group Estimated parameter (SE) p-value

sMCI 11.03(7.56) 0.14 Mildly impaired 11.84(7.81) 0.13

pMCI 27.52(7.69)** 0.0004 Impaired 23.85(8.21)** 0.004

Time 0.34(0.19) 0.07 Time 0.32(0.18) 0.08

Education -0.22(0.07)** 0.004 Education -0.23(0.08)** 0.003

WBV/ICV -0.07(0.07) 0.35 WBV/ICV -0.07(0.07) 0.31

WBV/ICV*Time -0.01(0.003) 0.06 WBV/ICV*Time -0.005(0.003) 0.08

Group*WBV/ICV Group*WBV/ICV

sMCI -0.05(0.12) 0.70 Mildly impaired -0.06(0.12) 0.6

pMCI -0.25(0.12)* 0.04 Impaired -0.20(0.13) 0.12

Group*Time Group*Time

sMCI 0.37(0.33) 0.27 Mildly impaired 0.98(0.30)** 0.001

pMCI 1.26(0.29)*** <.0001 Impaired 1.18(0.35)** 0.001

Group*WBV/ICV * Time Group*WBV/ICV* Time

sMCI -0.005(0.01) 0.38 Mildly impaired -0.01(0.005)* 0.01

pMCI -0.02(0.005)** 0.001 Impaired -0.01(0.01)* 0.01

HCV: hippocampus volume, ERC: entorhinal cortex, VEV: ventricles volume, ICV: intracranial volume. * p <0.05. HCV and VEV were

proportional to ICV. Each model studies the change on ADAS-Cog 13 over time adjusting for centered age, gender, APOE-ε4, and education.

Model 1 included cognitive status, while Model 2 was built based on IADL-based groups. Both models adjusted for centered age, gender,

education, and APOE-ε4 carriers.
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4 Discussion

This study explored the association between global and regional structural brain measure-

ments and cognitive abilities across different groups with stable or progressed cognitive

status. The results show that cognitive abilities decreased over time in all groups, and the

rate of decline was greater among individuals in all groups relative to sCN participants.

It was also revealed that brain volume affected the rate of change in cognition across all

groups. Importantly, the rate of decline in cognition over time among pMCI and AD sub-

jects differed from other groups, such that greater proportional brain volume might have

the greater moderating effect on rate of cognitive impairments over time in pMCI and AD

groups. Moreover, at baseline, cognition was associated with entorhinal cortex thickness

and ventricles volume in the AD group, but it was correlated with hippocampus volume

in sMCI and AD groups. Of all five groups, in the pMCI group, ventricles enlargement

showed a greater effect on the rate of decline in cognitive abilities over time relative to

other groups.

Looking at baseline differences between all groups with the sCN group, we concluded

that subjects in all groups except for the pCN group showed greater baseline cognitive

dysfunctions relative to sCN. In addition, decline in cognitive abilities in sMCI were

slightly steeper than sCN individuals over time. In contrast to our findings, Jack Jr et

al. (2008) observed a constant pattern in cognitive abilities in the CN group and very

slight increase in cognition in the sMCI over time. This inconsistency in results can be

explained by different psychological tests which were used in assessing cognition over time.

While we used ADAS-cog 13 which is commonly used in clinical trials to detect changes in

cognition over time, Jack Jr et al. (2008) used MMSE, which has been shown to be poor

in detecting changes over time. Moreover, we included brain volume in the models. In

contrast, previous authors assessed the pattern of decline in cognition and brain volume

in separate models.

Our findings on the baseline and longitudinal association between cognitive abilities

and structural brain variables are consistent with the literature. This study revealed that

both baseline and rate of decline in cognition depended on WBV/ICV in participants
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with AD, and the impact of brain volume on rate of decline in cognition among AD

individuals was different from other groups. AD patients with smaller proportional brain

volume had greater initial score on ADAS-Cog 13 implying greater impairment. They also

experienced steeper decline in cognition over time compared to their counterpart with

greater WBV/ICV. Similarly, Nestor et al. (2008) and Ridha et al. (2008) detected that

lower cognitive functioning was associated with smaller brain volume among AD patients.

Evans et al. (2010) declared that change in whole brain and ventricles volume correlated

with change in cognition in MCI and AD individuals comparing two time points (over

a year). However, the authors tested the change in general cognition in MCI including

both converters and non-converters in the same group. In contrast, this study was able

to assess changes in cognition for stable MCI separately from MCI who progress to AD.

In this current study, AD participants showed decline in their cognitive abilities over

time with the different rate depending on their whole brain but not their ventricles vol-

ume. We also detected the decreasing pattern in cognition over time relating to whole

brain and ventricles volume among pMCI subjects but not in the sMCI. Similar to our

study, Jack Jr et al. (2008) also found that general cognitive abilities decreased notice-

ably over time in the pMCI group, however, the authors did not control for the effect of

structural brain measurements on cognitive abilities.

Our study did not detect any association between hippocampus volume and entorhinal

cortex thickness and cognitive dysfunction over time. However, sMCI and AD individuals

with greater hippocampus and AD subjects with thicker entrohinal cortex displayed less

cognitive dysfunction at baseline compared with sCN individuals. We did not see any base-

line association between ADAS-Cog 13 and any brain regions among pMCI individuals.

Results are in contrast to a study by Jack Jr et al. (1999) in which authors reported the

association between baseline hippocampus atrophy and risk of progression to AD among

MCI. However, our study was focused on describing characteristics of different cognitive

status groups, rather than predicting those who progress to AD. Indeed, in our study, we

explored the effect of regional brain measurements on general cognitive abilities. Thus,

this inconsistency between studies implies that hippocampus may affect specific domains
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of cognitive abilities which may contribute to progression to AD. This is supported by a

study by Mungas et al. (2005) in which longitudinal change in hippocampus volume was

associated with changes in memory.

Our secondary objective was to explore the effect of education on cognitive dysfunc-

tion. We detected that after controlling for individual differences in age, gender, APOE-ε4

carrier status, and cognitive status, education was associated with initial cognitive abil-

ities. Indeed, participants with higher education displayed less impairment in baseline

cognition. In addition, similar to a study by Wilson et al. (2009) education in our study

did not affect decline in cognition over time. Moreover, education did not moderate the

association between whole brain volume and ADAS-Cog 13 in this study. In contrast,

Perneczky et al. (2009) revealed that education modified the association between change

in brain pathology and cognitive abilities in AD. However, the authors examined the

relationship between medial temporal lobe atrophy (a part of the brain) and general cog-

nition among AD. Whole brain volume as well as regional brain volume was assessed in

this study. Thus, the inconsistent findings may stem from the fact that education attain-

ment might affect particular brain regions and their relationship with cognitive changes.

In addition, global or regional brain measurements may be associated with sub-domains

of cognitive abilities rather than general cognition, or we may need to adjust for other

factors to see the effect of education. Importantly, the ADNI1 inclusion criteria adjusted

for education in their calculation of the logical memory II sub-scale from the Wechsler

Memory Scale. Thus, in order to avoid inflating the effect of education on ADAS-Cog

13 in our analysis, we excluded individuals in which their particular years of education

attainment affected the cutoff scores on the memory test. As this was a relatively small

proportion of our sample size (14%), this is unlikely to affect our results.

Our third objective was to find a methodology to better characterize MCI sub-classes.

Using a latent class growth curve model, we classified MCI individuals into three groups

based on their performance of IADLs: normal, mildly impaired, and impaired. Participants

in the mildly impaired group differed from normal and impaired subjects both at initial

levels and over time. In addition, IADL-based groups were different from one another
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based on baseline ADAS-Cog 13, FAQ, and structural brain measurements. IADL-based

group showed concordance with groups based on cognitive status (stable or progressed)

but also provided some complementary information regarding their FAQ trajectories.

Although this classification did not perfectly match with cognitive groups, it detected some

interesting results studying change in cognitive abilities over different IADL-based and

cognitive status groups in two separate models. Estimated parameters were approximately

the same in the two models at baseline regarding their magnitude and significance level,

and inconsistency between the models were observed for estimation of ADAS-Cog 13 over

time. Notably, both pMCI and impaired groups in the two models showed larger baseline

impairment in cognition relative to reference groups (sCN/ normal), and they had steeper

decline in cognition over time.

Although a model including IADL-based groups was not statistically preferable to a

model including cognitive status which classified MCI individuals based on the progression

of the disease, the latter classification requires the follow-up of participants for a longer

period of time. Moreover, baseline and FAQ trajectories of IADL-based groups depicted

that subjects in the mildly impaired group had the initial mean scores on FAQ around

2 which did not match clinical criteria of functional impairments (FAQ ≥ 9 is regarded

as impaired (Pérès et al., 2008)). However, their IADL performance impaired gradually

over time until it reached the clinical criteria of FAQ≥ 9. In addition, about 60% of

pMCI subjects were classified in the impaired group with baseline mean FAQ scores of

8, which is close to the clinical criteria. Thus, although these two groups did not meet

the FAQ criteria at baseline, there is not a consensus on cutoff points for FAQ to specify

functional impairments. Our results imply that baseline functional assessments may help

to distinguish at-risk individuals at an earlier stage. Results are consistent with previous

studies examining the role of functional assessment and its association with conversion to

AD (Pérès et al., 2008; Rozzini et al., 2007; Burton et al., 2009).

In this study, we directly investigated the relationship between cognitive abilities and

structural brain measurements and the effect of brain variables on the rate of change

in cognition over time across groups with distinct cognitive status. However, this study
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also has some limitations. Firstly, MCI group just contained participants with amnestic

MCI, and we did not explore subjects at an earlier stage of disease such as exploring

subjects at transitional stages between cognitively normal and MCI. Secondly, we focused

on the association between general cognitive abilities and global brain volume, as well

as three specific regional brain measurements. Over some groups, we saw a similar effect

of these structural brain variables on cognition, which is in contrast with the literature.

These inconsistencies might be because the general cognition or its sub-domains may be

associated with particular brain regions distinctly over different AD stages. Thirdly, to

meet the normality assumption, we used square root transformation to adjust for the

normality of the outcome. Despite the fact that the transformed data were technically

a better fit, the results were generally consistent in terms of the significance level and

the direction regardless whether the outcome was transformed or not. In addition, due

to the complexity of the models, it was complicated to back-transform the estimated

parameters and compare them with non-transformed estimations with respect to their

magnitudes. Lastly, in characterizing MCI participants, we used FAQ scores to assess

general IADL performance, although sub-domains of IADL (such as financing) as well as

other factors (such as executive functioning) or combination of these factors may more

precisely distinguish between MCI individuals, and especially those at-risk of progression

to AD. Further research is needed to clarify the association between general and sub-

domains of cognitive abilities and structural brain variables and their effect on changes in

cognition over time across AD stages, particularly at earlier stage.

In conclusion, this study reveals that cognitive abilities decreased over time across

different groups with stable or progressed cognitive status, and the rate of decline in

cognition was greater in all groups relative to sCN participants. Importantly, the rate of

change in cognition depended on whole brain volume across all groups. However, it had a

greater effect in the pMCI and AD groups compared to the sCN group. Indeed, the rate

of decline in cognitive abilities was accelerated with the greater magnitude by decrease

in brain volume among individuals in the pMCI and AD groups relative to sCN partic-

ipants. Ventricle enlargement in the pMCI group also accelerated the rate of decline in

38



cognitive abilities with the greater magnitude compared to the sCN group. Results high-

light the importance of different brain regions on cognition. Future research should further

investigate these differential effects. In addition, baseline cognition was associated with

both entorhinal cortex thickness and ventricles volume in AD group, and it was affected

differently by hippocampus volume both in sMCI and AD groups. Lastly, based on assess-

ment of functional abilities at baseline, this study demonstrated an efficient methodology

to identify MCI subjects who are most at-risk for cognitive impairment progression in

hopes to be better equipped to slow or stop cognitive impairment progression.
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5 SAS codes

l ibname t ’C: \ Users \Fatemeh\Dropbox\SAS r e s u l t s ’ ;

/∗ Extract the data were c o l l e c t e d throughout ADNI1 ∗/

data t . adni_1 ;

s e t t . adnimerge ;

where c o l p r o t=’ADNI1 ’ ;

Time=m;

Entorh ina l=Entorh ina l ∗ 0 . 1 ;

Entorhinal_bl=Entorhinal_bl ∗ 0 . 1 ;

Fusiform=Fusiform ∗0 . 0 01 ;

Fusiform_bl=Fusiform_bl ∗0 . 0 01 ;

Hippocampus=Hippocampus ∗0 . 0 01 ;

Hippocampus_bl=Hippocampus_bl ∗0 . 0 01 ;

ICV=ICV∗0 . 0 01 ;

ICV_bl=ICV_bl ∗0 . 0 01 ;

MidTemp=MidTemp∗0 . 0 01 ;

MidTemp_bl=MidTemp_bl ∗0 . 0 01 ;

Ven t r i c l e s=Ven t r i c l e s ∗0 . 0 01 ;

Vent r i c l e s_b l=Vent r i c l e s_b l ∗0 . 0 01 ;

WholeBrain=WholeBrain ∗0 . 0 01 ;

WholeBrain_bl=WholeBrain_bl ∗0 . 0 01 ;

i f i c v not in ( . , 0) then do ;

bv=100∗wholebrain / i cv ;

hipo=100∗hippocampus/ i cv ;

ven=100∗ v e n t r i c l e s / i cv ;

end ;

i f dx in (1 , 7 , 9 ) then t r =1;

40



e l s e i f dx in (2 , 4 , 8 ) then t r =2;

e l s e i f dx in (3 , 5 , 6 ) then t r =3;

i f dx_bl in (3 , 4 ) then dx_b=2;

e l s e i f dx_bl=1 then dx_b=1;

e l s e i f dx_bl=5 then dx_b=3;

i f apoe4 in (1 , 2) then apoe4=1;

e l s e i f apoe4=0 then apoe4=0;

run ;

∗∗ Creat ing a va r i a b l e i l l u s t r a t e s pa r t i c i pan t s ’ c o gn i t i v e s t a tu s \\

data dx ;

s e t t . adni_1 ;

where dx ne . ;

keep r i d dx_bl dx_b time dx t r ;

run ;

∗∗Create a dummy va r i ab l e s t : s t=1 s t ab l e s t=0 unstab le f o r \\

each sub j e c t f o r each v i s i t

proc s o r t data=dx ;

by r i d ;

run ;

data t t ;

s e t dx ;

by r i d ;

i f dx_b ne t r then s t =0;

e l s e s t =1;
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run ;

/∗∗ Calcu la te the min o f s t f o r each

sub j e c t over a l l v i s i t s ( a time−i n va r i an t va r i a b l e )∗∗/

proc s o r t data=t t ;

by r i d ;

run ;

proc summary data=t t min ;

by r i d ;

var s t ;

output out=mtt ( drop=_type_ _freq_ ) min=mst ;

run ;

/∗∗ Add mst to the main data to the de s i r ed va r i ab l e ∗∗/

proc s o r t data=mtt ;

by r i d ;

run ;

proc s o r t data=dx ;

by r i d ;

run ;

data dx_track ;

merge dx mtt ;

by r i d ;

run ;

proc contents data=dx_track ; run ;

/∗∗Making the new va r i ab l e "STATUS" with 6 l e v e l s ∗∗/

data dx_track ;

s e t dx_track ;

i f mst=1 and dx_b=1 then s t a tu s =1;
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e l s e i f mst=0 and dx_b=1 then s t a tu s =2;

e l s e i f mst=1 and dx_b=2 then s t a tu s =3;

e l s e i f mst=0 and dx_b=2 then s t a tu s =4;

e l s e i f mst=1 and dx_b=3 then s t a tu s =5;

e l s e i f mst=0 and dx_b=3 then s t a tu s =6;

run ;

proc s o r t data=dx_track ;

by r i d ; run ;

proc s o r t data=t . adni_1 ;

by r i d ; run ;

data t . adni_1 ;

merge t . adni_1 dx_track ( keep= r i d s t a tu s ) ;

by r i d ;

run ;

/∗ Removing sub j e c t s who r ev e r t back to CN, MCI, or AD ∗/

proc s o r t data=t . adni_1 ;

by r i d dx_bl time ; run ;

data t . adni_f ;

s e t t . adni_1 ;

i f r i d in (112 ,168 ,188 ,205 ,384 ,422 ,443 ,551 ,668 ,669 ,722 ,

1092 ,1168 ,1188 ,1245 ,1352 ,1408 , 429 ,1241 ,162 ,167 ,

1009 ,138 ,702 ,699) then d e l e t e ;

run ;
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/∗ Ass ign ing a random number to each sub j e c t ∗/

proc s o r t data=t . adni_f ;

by r i d ;

run ;

data t . adni_f ;

s e t t . adni_f ;

by r i d ;

i f ( f i r s t . r i d=1) then U=ranuni ( 23407 ) ;

r e t a i n U;

run ;

/∗Excluding sub j e c t s with memory s c o r e s equal to c u t o f f po in t s ∗∗/

data t e s t 1 ;

s e t t . neurobat ;

where c o l p r o t=’ADNI1 ’ and v i s code not in ( ’ f ’ , ’ uns1 ’ ) ;

keep r i d v i s code l d e l t o t a l ;

run ;

data t e s t 1 ;

s e t t e s t 1 ;

i f v i s code=’bl ’ then d e l e t e ;

run ;

data t e s t 1 ;

s e t t e s t 1 ;

i f v i s code=’sc ’ then v i s code=’bl ’ ;

run ;

44



data t . adni_f ;

s e t t . adni_f ;

ch=r i d ; run ;

proc s o r t data=t . adni_f ;

by r i d v i s code ;

run ;

proc s o r t data=t e s t 1 ;

by r i d v i s code ;

run ;

data edu ;

merge t . adni_f t e s t 1 ( keep= r i d v i s code l d e l t o t a l ) ;

by r i d v i s code ;

run ;

data edu ;

s e t edu ;

where r i d=ch ; run ;

data t e s t ;

s e t edu ;

where time=0;

i f LDELTOTAL in (8 , 9 ) and mmse>=24 and mmse<=30

and pteducat>=16 then d e l e t e =1;

e l s e i f LDELTOTAL in (2 , 3 ) and mmse>=24 and mmse<=30

and pteducat>=0 and pteducat<=7 then d e l e t e =1;

e l s e i f LDELTOTAL in (5 , 4 ) and mmse>=24 and mmse<=30

and pteducat>=8 and pteducat<=15 then d e l e t e =1;
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run ;

proc s o r t data=t e s t ;

by r i d ;

run ;

proc s o r t data=edu ;

by r i d ;

run ;

data t e s t 0 ;

merge edu t e s t ( keep=r i d d e l e t e ) ;

by r i d ;

run ;

data test_1 ;

s e t t e s t 0 ;

where d e l e t e =. ;

run ;

data test_1 ;

s e t test_1 ;

where s t a tu s ne . and time ne . ;

run ;

data t . adni_r ;

s e t test_1 ;

drop d e l e t e ;

run ;

/∗∗Di s c r i p t i v e an a l y s i s ∗∗/
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proc s o r t data=t . adni_f ;

by r i d dx_bl s t a tu s time ; run ;

proc f r e q data=t . adni_f ;

t a b l e s s t a tu s ∗ time/ noco l norow nopercent miss ing ;

run ;

proc f r e q data=t . adni_f ;

where time=0;

/∗∗ apoe4∗ s t a tu s ∗∗∗/

t ab l e s ptgender ∗ s t a tu s /norow nopercent miss ing ch i sq ;

run ;

proc anova data=t . adni_f ;

where time=0;

c l a s s s t a tu s ;

/∗∗ education , adas13 , faq , whole brain ,

hippocampus , v e n t r i c l e s , en t o rh i na l ∗∗/

model age=s ta tu s ;

means s t a tu s ;

means s t a tu s / tukey ;

run ;

/∗∗∗Center ing age at grand mean∗∗∗∗/

proc means data=t . adni_f ;

where time=0;

var age ;

run ;

data t . adni_f ;

s e t t . adni_f ;

c_age=age −75.2;

run ;
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proc means data=t . adni_r ;

where time=0;

var age ;

run ;

data t . adni_r ;

s e t t . adni_r ;

c_age=age −75.3;

run ;

/∗∗∗ Base l i n e a s s o c i a t i o n ∗∗∗/

proc glm data=t . adni_f ;

where time=0 and v1= ’1.5 Tes la MRI ’ ;

c l a s s s t a tu s ( r e f = ’1 ’) ptgender ( r e f =’Male ’ ) ;

/∗∗∗apoe4 , whole brain , hippocampus , v e n t r i c l e s , en t o rh i na l ∗∗/

model adas13=c_age ptgender pteducat s t a tu s / s s3 s o l u t i o n ;

run ;

/∗∗Time p lo t o f mean ADAS−Cog 13∗∗/

proc s o r t data=t . adni_r ;

by s t a tu s time ;

run ;

proc means data=t . adni_r mean nway nopr int ;

where v1= ’1.5 Tes la MRI ’ ;

c l a s s s t a tu s time ;

var adas13 ;

output out=ad mean=ad_mean ;

run ;

ods l i s t i n g gpath="C:\ Fatemeh\Latex " ;

ax i s 1 l a b e l = ( ang le=90 "Time(month)" f= ’ t imes new roman ’ ) ;

ax i s 2 l a b e l = ( ang le=90 "ADAS−Cog 13 mean" f= ’ t imes new roman ’ ) ;
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symbol1 i = j va lue = s t a r c = blue h = 1 l i n e = 1 width = .8 l =2;

symbol2 i = j va lue = c i r c l e c = green h = 1 l i n e = 1 width = .8 l =10;

symbol3 i = j va lue =diamond c =ye l low h = 1 l i n e = 1 width = .8 l =18;

symbol4 i = j va lue = square c = orange h = 1 l i n e = 1 width = .8 l =26;

symbol5 i = j va lue = plus c = red h = 1 l i n e = 1 width = .8 l =30;

proc gp lo t data=ad ;

where time<=36;

p l o t ad_mean∗ time=s ta tu s / vax i s=ax i s2 ;

run ;

proc sgpane l data=t . adni_r noautolegend ;

where time<=36 and u>0.95 ;

panelby Status / rows=2 columns=3 ;

s e r i e s x=time y=adas13/group=r i d l i n e a t t r s =( c o l o r=grey

pattern=1 th i ckne s s =1);

s e r i e s x=time y=ad_mean/ LineAttrs= ( pattern=1 co l o r="blue "

th i c kne s s =4);

format s t a tu s s t a tu s . ;

rowaxis l a b e l="ADAS−Cog 13" ;

run ;

/∗∗Covariance s t r u c tu r e ∗∗∗/

proc mixed data=t . adni_r cov t e s t method=ml maxiter=1000 maxfunc=5000 ;

where v1= ’1.5 Tes la MRI ’ ;

c l a s s m s ta tu s ( r e f = ’1 ’) ptgender ( r e f =’Male ’ ) apoe4 ( r e f = ’0 ’ ) ;

model adas13= c_age ptgender apoe4 s t a tu s time pteducat bv bv∗ time

s t a tu s ∗ time s t a tu s ∗bv s t a tu s ∗bv∗ time ;

repeated m/ sub j e c t=r i d r c o r r ;

ods output F i t S t a t i s t i c s=FitFix ( rename=(value=Fix ) )

F i t S t a t i s t i c s=FitFixp ;

run ;
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proc mixed data=t . adni_r cov t e s t method=ml maxiter=1000 maxfunc=5000 ;

where v1= ’1.5 Tes la MRI ’ ;

c l a s s m s ta tu s ( r e f = ’1 ’) ptgender ( r e f =’Male ’ ) apoe4 ( r e f = ’0 ’ ) ;

model adas13= c_age ptgender apoe4 s t a tu s time pteducat

bv bv∗ time s t a tu s ∗ time s t a tu s ∗bv s t a tu s ∗bv∗ time ;

random in t / sub j e c t=r i d ;

repeated m/ sub j e c t=r i d r c o r r ;

ods output F i t S t a t i s t i c s=Fitmix ( rename=(value=mix ) )

F i t S t a t i s t i c s=Fitmixp ;

run ;

proc mixed data=t . adni_r cov t e s t method=reml maxiter=1000 maxfunc=5000 ;

where v1= ’1.5 Tes la MRI ’ ;

c l a s s m s ta tu s ( r e f = ’1 ’) ptgender ( r e f =’Male ’ ) apoe4 ( r e f = ’0 ’ ) ;

model adas13= c_age ptgender apoe4 s t a tu s time pteducat

bv bv∗ time s t a tu s ∗ time s t a tu s ∗bv s t a tu s ∗bv∗ time ;

random in t / sub j e c t=r i d ; /∗∗∗ time , i n t time ∗∗/

repeated m/ sub j e c t=r i d r c o r r ;

/∗Fi t in t , Fitt ime , F i t i n t t ime ∗∗/

ods output F i t S t a t i s t i c s=Fitmix ( rename=(value=mix ) )

F i t S t a t i s t i c s=Fitmixp ;

run ;

ods csv f i l e =’C: \ Fatemeh\SAS ana l y s i s \model comparison . csv ’ ;

data f i t s ;

merge FitFix Fitmix F i t i n t Fitt ime F i t i n t t ime ;

by desc r ;

run ;

ods csv c l o s e ;
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proc mixed data=t . adni_r cov t e s t method=reml maxiter=1000 maxfunc=5000 ;

where v1= ’1.5 Tes la MRI ’ ;

c l a s s m s ta tu s ( r e f = ’1 ’) ptgender ( r e f =’Male ’ ) apoe4 ( r e f = ’0 ’ ) ;

model adas13= c_age ptgender apoe4 s t a tu s time pteducat

bv bv∗ time s t a tu s ∗ time s t a tu s ∗bv s t a tu s ∗bv∗ time ;

random in t time/ sub j e c t=r i d type=un ; /∗∗∗ time , i n t time ∗∗/

/∗∗ un , csh , arh (1 ) , toeph (1)∗∗/

repeated m/ sub j e c t=r i d type=ar (1 ) r c o r r ;

run ;

/∗∗ Latent c l a s s growth curve ana l y s i s ∗∗/

data adni ;

s e t t . adni_r ;

i f time=0 then t=1;

e l s e i f time=6 then t=2;

e l s e i f time=12 then t=3;

e l s e i f time=18 then t=4;

e l s e i f time=24 then t=5;

e l s e i f time=36 then t=6;

e l s e i f time=48 then t=7;

e l s e t =. ;

run ;

data adni ;

s e t adni ;

where t ne . ; run ;

proc s o r t data=adni ;

by r i d s t a tu s t ;

run ;

proc t ranspose data=adni out=t . faq p r e f i x=fa ;
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by r i d s t a tu s ;

var faq ;

id t ;

run ;

proc t ranspose data=adni out=t p r e f i x=t ;

by r i d ;

var time ;

id time ;

run ;

data t ;

s e t t ;

m1=t0 ; m2=t6 ; m3=t12 ;

m4=t18 ; m5=t24 ; m6=t36 ; m7=t48 ;

drop _NAME_;

run ;

proc s o r t data=t . faq ;

by r i d ;

run ;

proc s o r t data=t ;

by r i d ;

run ;

data t . faq ;

merge t . faq ( drop=_NAME_) t ;

by r i d ;

run ;
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proc t r a j data=t . faq out=out out s ta t=os outp lo t=op ;

where s t a tu s not in ( 2 , 5 ) ;

id r i d ;

var fa1−f a7 ;

Indep m1−m7;

Model cnorm ;

min 0 ;

max 30 ;

Ngroups 3 ;

order 1 1 1 ;

run ;

%t r a j p l o t ( op , os , , , ’FAQ’ , ’ Time(month ) ’ ) ;
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