

VM Selection Process Management for Live

Migration in Cloud Data Centers

Suhib Bani Melhem

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

December 2017

© Suhib Bani Melhem, 2017

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Suhib Bani Melhem

Entitled: VM Selection Process Management for Live Migration in Cloud Data

Centers

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

______________________________________ Chair
Dr. A. Awasthi

______________________________________ External Examiner

Dr. F. Gagnon

______________________________________ External to Program

Dr. R. Dssouli

______________________________________ Examiner

Dr. Y. Liu

______________________________________ Examiner

Dr. D. Qui

______________________________________ Thesis Supervisor

Dr. A. Agarwal

Approved by__

Dr. W.E. Lynch, Chair of Department

February 6, 2018 __

 Dr. A. Asif, Dean of Faculty of Engineering and Computer

Science

iii

ABSTRACT

VM Selection Process Management for Live Migration in Cloud Data
Centers

Suhib Bani Melhem, Ph.D.

Concordia University, 2017

With immense success and fast growth within the past few years, cloud computing

has been established as the dominant computing paradigm in information technology (IT)

industry, wherein it utilizes dissipated resource benefits and supports resource sharing

and time access flexibility. The proliferation of cloud computing has resulted in the

establishment of large-scale data centers across the world, consisting of hundreds of

thousands, even millions of servers. The emerging cloud computing paradigm provides

administrators and IT organizations with considerable freedom to dynamically migrate

virtualized computing services among physical servers in cloud data centers.

Normally, these data centers incur very high investment and operating costs for the

computing and network devices as well as for the energy consumption. Virtualization and

virtual machine (VM) migration offers significant benefits such as load balancing, server

consolidation, online maintenance and proactive fault tolerance along data centers. VM

migration relies on how to determine the trigger condition of VM migration, select the

target virtual machine, and choose the destination node.

As a result, dynamic VM migration in the scope of resource management is

becoming a crucial issue to emphasize on optimal resource utilization, maximum

iv

throughput, minimum response time, enhancing scalability, avoiding over-provisioning

of resources and prevention of overload to make cloud computing successful. Intelligent

host underload/overload detection, VM selection, and VM placement are the primary

means to address VM migration issue. Therefore, these three problems are considered to

be the most common tasks in VM migration.

This thesis presents novel techniques, models, and algorithms, for distributed

dynamic consolidation of virtual machines in cloud data centers. The goal is to improve

the utilization of computing resources and reduce energy consumption under workload

independent quality of service constraints. The proposed approaches are distributed and

efficient in managing the energy-performance trade-off.

v

ACKNOWLEDGEMENTS

To a great degree, all praises to god for giving me the power to accomplish this thesis. I

could not finish this work without its blessing and guidance. I would like to express my

heartfelt gratitude to my supervisor Prof. Anjali Agarwal who presided over this thesis

and in that line improved it significantly. I have to express out appreciation to the

committee members for evaluating my thesis. Many thanks to my close friend, Mufleh

Al-Shatnawi, for stimulating discussions and good memories shared together. Also, I

would like to thank my friend Mustafa Daraghmeh. And I would like to thank Cistech

Limited for their financial support. Last but not the least, I would like to express my

profound gratitude to my beloved family, my wife, parents, sisters, brothers, who

expressed their encouragement and love.

vi

 TABLE OF CONTENTS

LIST OF FIGURES .. x

LIST OF TABLES ... xiii

LIST OF ABBREVIATIONS ... xiv

1 Introduction ... 1

1.1 Motivation .. 11

1.2 Research Problems and Objectives .. 13

1.3 Contributions .. 16

1.3.1 A taxonomy and survey of the state-of-the-art approaches used in the live

VM migration (Chapter 2) .. 16

1.3.2 Prediction Model for Host Detection and VM Placement (Chapter 3) 17

1.3.3 Minimizing biased VM selection (Chapter 4). ... 18

1.3.4 Proactive selection process across cloud data centers (Chapter 5). 18

1.4 Thesis Organization .. 19

2 A Taxonomy of Literature Review .. 20

2.1 Overview .. 20

2.2 Host Detection Approaches .. 21

2.3 VM Selection Approaches ... 26

vii

2.4 VM Placement Approaches .. 29

2.5 WAN Area Migration Solutions .. 34

2.6 Summary .. 36

3 Markov Prediction Model for Host Load Detection and VM Placement 37

3.1 Overview .. 37

3.2 Proposed Markov Host Prediction Model .. 38

3.3 Proposed System .. 42

3.3.1 System Architecture .. 42

3.3.2 The Proposed Work .. 45

3.3.3 Sequence Diagram Scenarios .. 49

3.3.4 Illustrative Scenario .. 53

3.4 Experimental setup ... 54

3.4.1 Simulation setup.. 54

3.4.2 Workload Data .. 56

3.4.3 Performance Metrics ... 57

3.5 Experimental Results.. 61

3.5.1 Maximum Data length of host status history of Markov Model 61

3.5.2 Comparison with other benchmarks ... 63

3.6 The Impact of proposed placement algorithm on MadMCHD algorithm. 73

3.7 Summary .. 74

viii

4 Minimizing Biased VM Selection .. 76

4.1 Overview .. 76

4.2 Proposed VM Selection Policies .. 77

4.3 System Model ... 79

4.4 Experimental Setup .. 80

4.5 Experimental Results.. 82

4.6 Summary .. 89

5 Proactive Selection Process for VM Migration Across Cloud Data Centers 90

5.1 Overview .. 90

5.2 Cost of Live VM Migration ... 91

5.2.1 LAN VM Migration .. 91

5.2.2 WAN VM Migration... 93

5.3 The Proposed System Model .. 95

5.3.1 System Architecture .. 95

5.3.2 The Proposed Work .. 97

5.4 Experimental Setup .. 101

5.4.1 Simulation setup.. 101

5.4.2 Performance Metrics ... 103

5.5 Experimental Results.. 104

5.5.1 Comparison with other benchmarks for each data center 104

ix

5.5.2 Comparison with other benchmarks in the whole system 106

5.6 Summary .. 111

6 Conclusion and Future work ... 112

6.1 Concluding Remarks .. 112

6.2 Future Work ... 115

References .. 116

x

LIST OF FIGURES

Figure 1-1: Cloud Computing [6] ... 2

Figure 1-2: VMs migration over LAN/WAN ... 10

Figure 3-1: States and Transition probabilities of the Host detection Markov Model 42

Figure 3-2: System Model .. 43

Figure 3-3: Overload Host Detection .. 51

Figure 3-4: Underload Host Detection .. 52

Figure 3-5: The impact of data length on the SLA metric .. 62

Figure 3-6: The impact of data length on the number of VM migration metric 62

Figure 3-7: SLA violation for real workload trace ... 65

Figure 3-8: SLA violation for a random workload trace .. 65

Figure 3-9: Number of VM migrations for real workload trace 66

Figure 3-10: Number of VM migrations for a random workload trace 66

Figure 3-11: Performance degradation for real workload trace .. 67

Figure 3-12: Performance degradation for a random workload trace 67

Figure 3-13: SLA violation time per active host for real workload trace 68

Figure 3-14: SLA violation time per active host for a random workload trace 68

Figure 3-15: average SLA violation for real workload trace .. 69

Figure 3-16: average SLA violation for a random workload trace 69

Figure 3-17: overall SLA violation for real workload trace ... 70

xi

Figure 3-18: overall SLA violation for a random workload trace 70

Figure 3-19: energy consumption for real workload trace .. 71

Figure 3-20: energy consumption for a random workload trace 71

Figure 3-21: number of host shutdowns for real workload trace 72

Figure 3-22: number of host shutdowns for a random workload trace 72

Figure 3-23: overall SLA violation for a random workload trace 74

Figure 4-1: System Model .. 80

Figure 4-2: Maximum number of VM migrated count for real workload traces 83

Figure 4-3: Degree of load balancing of VMs migrated count for real workload traces .. 83

Figure 4-4: SLA violation for real workload traces .. 84

Figure 4-5: Number of VM migrations for real workload traces 85

Figure 4-6: Energy consumption for real workload traces ... 85

Figure 4-7: Maximum number of VM migrated count for a random workload 86

Figure 4-8: Degree of load balancing of VMs migrated count for a random workload ... 87

Figure 4-9: SLA violation for a random workload trace .. 87

Figure 4-10: Number of VM migrations for a random workload trace 88

Figure 4-11: Energy consumption for a random workload trace 88

Figure 5-1: LAN Migration .. 92

Figure 5-2: LAN Migration Process ... 92

Figure 5-3: WAN Migration Process .. 94

Figure 5-4: WAN Migration Process .. 94

Figure 5-5: System Model .. 96

xii

Figure 5-6: Number of IP Reconfiguration on each Data Center Using MIPRT Algorithm

... 105

Figure 5-7: Number of IP Reconfiguration on each Data Center Using MUDC Algorithm

... 106

Figure 5-8: Number of IP Reconfiguration ... 107

Figure 5-9: Total Distance .. 107

Figure 5-10: SLA Violation .. 108

Figure 5-11: Number of VM Migration .. 109

Figure 5-12: Energy Consumption.. 110

Figure 5-13: Average SLA Violation ... 110

xiii

LIST OF TABLES

Table 1-1: Comparison between IaaS open-source clouds Computing Solutions 6

Table 2-1: Host Overload Detection State-of-Art Algorithms Comparison 25

Table 2-2: VM Selection State-of-Art Algorithms Comparison 29

Table 2-3: VM Placement State-of-Art Algorithms Comparison 33

Table 3-1: Characteristics of the workload data (CPU utilization) 56

Table 3-2: The energy consumption at different load levels in Watts 60

Table 5-1: Data Centers Configurations ... 102

Table 5-2 Hosts Types .. 102

Table 5-3: VM types ... 102

xiv

LIST OF ABBREVIATIONS

AC : Available Capacity

ACO : Ant Colony Optimization

BST : Binary Search Tree

DFQL : Dynamic Fuzzy Q-Learning

FCM : Fuzzy C-Mean

FGA : Family Genetic Algorithm

FOMCHSD : First Order-Markov Chain Host State Detection algorithm

HFD : Host Fault Detection

HGA : Hybrid Genetic Algorithm

HPG : Highest Potential Growth

IaaS : Infrastructure as a Service

IQR : InterQuartile Range

LAN : Local Area Network

LiRCUP : Linear Regression-based CPU

LR : Local Regression

LRR : Local Robust Regression

MAD : Median Absolute Deviation

MadMCHD : Median Absolute Deviation Markov Chain host Detection algorithm

MC : Maximum Correlation

MDBP : Multidimensional Bin-Packing

MDL : Migration Delay

MedianMT : Median Migration Time

MiMc : Minimum VM Migrated Count

MIPRT : Minimum IP Reconfiguration Time

MIPS : Millions Instructions Per Second

MM : Minimization of Migration

MMT : Minimum Migration Time

MmtMiMc : Minimum Migration Time Minimum VM Migrated Count

MMTMU : Minimum Migration Time Maximum CPU Utilization algorithm

MMTMUR : Minimum Migration Time Maximum User ratio

MPABFD : Markov Power Aware Best Fit Decreasing

MU : Maximum Utilization

MUDC : Data Center Minimum Utilization

MUIPRT : Minimum Utilization minimum IP Reconfiguration Time

OS : Operating System

PaaS : Platform as a Service

PABFD : power Aware Best Fit Decreasing

PDM : Performance Degradation due to Migration

RS : Random Selection

RSDC : Data Center Random Selection

SaaS : Software as a Service

SLA : Service Level Agreement

xv

SLATAH : SLA violation Time per Active Host

VMCUP : TOPSIS-Available Capacity-Number of VMs-migration Delay

VMM : Threshold-based algorithm

VPLS : Utilization and Minimum Correlation

VPNs : Virtual Computing lab

WAN : VM-based Dynamic Threshold

1

Chapter 1

1 Introduction

Cloud computing is a fast-growing computing technology. It is defined by NIST [1]

organization as a “Model for enabling convenient, on-demand network access to a shared

pool of configurable computing resources (network devices, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction”. Several other definitions have been

proposed for cloud computing, but they all imply the existence of a shared pool of

computing resources. In cloud computing, physical servers are referred to hosts, whereas

the group of hosts and storages connected by network devices is referred to a data center,

and each host contains several numbers of virtual machines. Virtual machine (VM)

represents an entire operating system (OS) with its associated applications and services.

In cloud computing, the applications and services are accessible to clients over the

internet remotely. As shown in Figure 1-1, the services provided by cloud computing can

be classified as Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and

Software as a Service (SaaS). These services are offered available as pay-as-you-go

model to clients. The most popular examples are Google’s App Engine [2], Amazon’s

2

EC2 [3], Microsoft Azure [4], and IBM SmartCloud [5]. As shown in the figure, the

cloud computing can be deployed as a private cloud, a public cloud, or as a hybrid cloud.

Shared resources
among a

community of users

Service that is
controlled and
exclusive to the

user

Ability to move
workloads private

and public
platforms

Outsource the elements
of infrastructure like

Virtualization, Storage ,
Networking, Load

Balancers

Core hosting operating
system and optional

building block services
that allow you to run

your own applications

Consumed as a service
only for the applications

needed

Figure 1-1: Cloud Computing [6]

Cloud computing is based on the concept of virtualization. Virtualization plays a

vital role in managing and organizing access to the resource pool via a software layer

called virtual machine monitor (VMM) or hypervisor. It hides the details of the physical

resources and provides virtualized resources for high-level applications. Besides, it

virtualizes all of the resources of a given host allowing several VMs to share its resources

[7]. VMware ESX/ESXi [8], Virtual PC [9], Xen [10], Microsoft Hyper-V [11], KVM

[12], and VirtualBox [13] are popular virtualization software. Virtualization also allows

gathering several VMs into a single host using a technique called VM consolidation.

Another capability provided by virtualization is live migration, which is the ability to

transfer a VM between hosts.

3

The scope of this work focuses on a IaaS module, which handles infrastructure

resources (virtual machines, servers, storage, and network) allocation, provisioning,

requirement mapping, adaptation, discovery, brokering, estimation, and modeling.

Resource management for IaaS in cloud computing offers following benefits: scalability,

quality of service, optimal utility, reduced overheads, improved throughput, reduced

latency, specialized environment, cost effectiveness and simplified interface. With the

rise of cloud computing, a huge complexity growth of the structure happens. Therefore,

to effectively manage applications and resources it is crucial to use the models and tools

that create an application profile, which is used to apply optimal models to determine the

most suitable amount of resource for each workload. Virtual machines migration is one of

the most popular ways to manage resources, and live VM migration is the most used

technique to reload or rearrange the resources in the data center to keep the delivered

services available. Live VM migration is defined as a technique that migrates the entire

OS and its associated applications from one host to another where a user does not notice

any interruption in his service. Live VM migration plays an important role to facilitate

online maintenance, load balancing, and energy management as part of resource

management [14].

What is a Cloud Data Center?

The data centers consist of network equipment like routers, switches, cabinets, servers,

and electrical equipment like switchgear, PDUs, UPS, CRAC, generators and HVAC

systems [15]. Typically, conventional data centers are provisioned to satisfy the peak

demand, which results in wastage of resources during non-peak periods. Modern-day data

4

centers are turning to the cloud-based to mitigate the above problem. The essential

characteristics of cloud-based data centers are [16]:

• Making resources available on demand. The operation and maintenance of the data

center lie with the cloud provider. Thus, the cloud model enables the users to have

a computing environment without spending an enormous amount of money in

building a computing infrastructure.

• Flexible resource provisioning. It provides the ability to scale dynamically or

shrink the provisioned resources as per the dynamic requirements.

• Fine-grained metering. It enables the "pay-as-use" model, so the users do not need

to stay into long-term contracts since users pay only for the services used.

However, implementing cloud-based data centers demands an enormous deal of

flexibility and agility for both the users and providers. For instance, the dynamic scaling

and shrinking requirement needs compute resources to be made available at a very short

notice.

IaaS Cloud System

One of the various definitions of "cloud" is that of an Infrastructure-as-a-Service (IaaS)

system, which enables on-demand provisioning of computational resources via VMs

deployed in a cloud provider's data center [17]. It was first popularized in 2006 by

Amazon’s Elastic Compute Cloud (EC2) [3], which started to offer virtual machines

(VMs) for US$0.10 an hour using both a simple Web interface and a programmer-

friendly API. Amazon EC2 contributed to popularizing the IaaS paradigm, although not

the first to propose a utility computing model, it became closely tied to the notion of

cloud computing [18].

5

Virtual Computing Lab (an IaaS Cloud Module)

Virtual Computing Lab (VCL) is a free, cloud computing project, open-source, on-

demand, remote-access system that dynamically provisions computing resources to end

users [19, 20]. North Carolina State University in cooperation with IBM announced the

creation of the system in 2006 with the goal of creating a multi-institutional, shared

computing services community, which includes universities, colleges, schools and

business partners. It became an Apache Project in 2008 [21], and then an Apache

Software Foundation top-level project in 2012 [20], which provides an open cloud

environment for educational purposes.

VCL has high throughput architecture of computational power, which can keep

track of all its computation nodes and redistribute the VM from a heavy loaded node to

the least utilized physical computation node. The VCL framework has been chosen to

deploy an educational cloud environment where availability of the resources anywhere

and anytime is the most significant advantage of the VCL solution. Moreover, many

other benefits can be summarized as follows:

• Raising computing resource accessibility.

• Increasing integrity and availability of data, applications, and research materials.

• Increasing end users’ mobility to make resources accessible anywhere and

anytime.

• Reducing client application and the system resource footprint.

• Increasing application and computing performance utilization.

• Providing convenient web access and a self-service portal.

6

VCL is considered one of the open-source Cloud Computing solutions, which

differ by different criteria like architecture, functionality, purpose of use, and target

clients served. Table 1-1 compares eight kind of IaaS open-source clouds in an abstract

way concerning hypervisor used (infrastructure) attribute, and the main characteristic

attribute. VCL aims to develop and promote virtualization concepts and open-source

solutions for the benefit of the academia and its stakeholders – by creating shared virtual

computing resources and supporting related research. VCL has been deployed, from an

academic perspective, to provide services to students and academic staff as well [22].

Table 1-1: Comparison between IaaS open-source clouds Computing Solutions

Solutions Infrastructure Characteristic

XCP[23,24] Xen Aims to turn legacy clusters into

IaaS Clouds

Nimbus[23,24] Xen, KVM Only a tool for automatic

maintenance of cloud

OpenNebula[23,24] Xen , KVM , VMware Grouping nodes to allow HPCaaS

Eucalyptus[23] Xen, KVM Hierarchical Architecture

VCL[21] VMware, Xen, KVM Offer capabilities that are very

flexible and diverse

Enomaly[23,24] Xen, VirtualBox,

KVM, VMware

Open version is focused on small

clouds

OpenStack[25] Xen,KVM,VMware,Hyper-

V

Modular platform, complete

solution for cloud computing

CloudStack[26] Xen, VMware,KVM Complete solution for

cloud computing

Live VM Migration

There is a need to reorganize the VMs and the hosts to provide load balancing or server

consolidation depending on the service level agreement (SLA) with the end users and

other issues. Live virtual machines migration is one of the most popular ways to manage

7

resources to keep the delivered services available. The benefits of VM migration include

server consolidation, load balancing among the physical servers (hosts) and failure

tolerance in case of sudden failure.

Live VM migration is divided into two parts: 1) Selection process which involves

when to start the migration process, determining which VM must be selected to be

migrated, which destination host must be chosen to move this VM. The goals of the

selection process are to reduce power consumption, load balancing, and improve fault

tolerance, which eventually will increase the cloud productivity, services availability and

throughput, and reduce its operation cost, pollution (green data centers), and hardware

maintenance. 2) Migration Process that targets moving the VM in minimum time to avoid

any interruption of services. The process can be divided into two categories: a) Suspend

/Resume migration, which is used mainly for VM migration through wide area network

(WAN), and b) Pre-copy and Post-copy methods used for local area network (LAN) VM

migration.

The first phase of live VM migration is the selection process phase which consists

of three phases. In the first phase, host detection, a host may be in an overloaded state or

in an underloaded state. If a host is underutilized, then all the VMs from this host can be

migrated and the host will go to sleep/shutdown mode, or the host will be considered as a

good candidate to receive the migrated VMs from the overloaded hosts in the future. On

the other hand, when a given host is overloaded some VMs must be selected to migrate

from this host to other hosts. The challenges in the host overload/underload detection are

to reduce the power consumption, minimize SLA violation, and to avoid performance

degradation.

8

Once a decision to migrate VMs from a given host is made, the second phase, VM

selection phase, selects one or more VMs from the full set of VMs running on the host.

The selected VMs must be moved to other hosts. VM selection approaches are different

based on the parameters that are considered to select the migrated VMs. The challenge in

choosing one or more VMs for migration is a vital decision for resource management.

The VM migration process consumes network bandwidth and CPU resources from both

source and destination hosts besides making the VM unavailable for a certain amount of

time. The performance of other VMs that are running on source and destination hosts are

also affected due to increased resource demands during the VM migration process.

Finally, in the third phase a given VM placement algorithm is applied to selected

underloaded hosts to receive the migrated VMs. Many factors should be considered to

develop a new optimal VM placement algorithm, such as the resource availability of host

(i.e., CPU, memory, disk storages and network bandwidth), the total energy consumption

in the data center, and inter-VM traffic. The goal of VM placement is to deliver best

possible QoS to the applications running on VMs. Once a decision to migrate a VM from

a source host to a destination host is known as a result of the selection process, then the

migration process will take place either locally or widespread.

Algorithm 1-1 illustrates the overall live migration procedure based on the host

status which can be either an overloaded or an underloaded state. In the overload host

detection procedure, one of the host detection algorithms is applied to determine if the

host is overloaded. In case a host is overloaded, a Boolean variable

called 𝑚𝑖g𝑟𝑎𝑡𝑖𝑜n_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 is continuously checked until the required

number of VMs are selected and stored in 𝑣𝑚𝑠𝑡𝑜𝑚𝑖𝑔𝑟𝑎𝑡𝑒[] array. The selection can be

9

done using any VM selection algorithm. Active hosts that currently carry VMs are

determined using 𝑔𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠 function. One of the VM placement algorithms is

applied to map selected VMs to destination hosts.

In the underload host detection procedure, one of the host detection algorithms is

applied to determine if the host is underloaded. In case the host is underloaded, there is

no need of VM selection phase because all the VMs in the underloaded host must be

migrated. All these VMs are then mapped to suitable destination hosts based on a

placement algorithm. The underloaded host is switched to an idle state.

Algorithm 1-1: Live Migration Procedure.

1 Input: Host
2 Output: Do certain procedure based on the host status

3 //Overloaded host detection procedure
4 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒
5 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑖𝑠_𝑑𝑜𝑛𝑒 ← 𝑓𝑎𝑙𝑠𝑒

6 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑
← 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦(ℎ𝑜𝑠𝑡_𝑖𝑠_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑())

7 𝒘𝒉𝒊𝒍𝒆 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 = 𝑡𝑟𝑢𝑒 𝒅𝒐
8 //One of the VM selection algorithms is applied

 𝑣𝑚𝑠𝑡𝑜𝑚𝑖𝑔𝑟𝑎𝑡𝑒[] ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦(ℎ𝑜𝑠𝑡). 𝑎𝑑𝑑
9 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ←

 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦(ℎ𝑜𝑠𝑡_𝑖𝑠_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑())
10 selection_is_done ← true

11 𝒊𝒇 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑖𝑠_𝑑𝑜𝑛𝑒 = 𝑡𝑟𝑢𝑒 𝒕𝒉𝒆𝒏
12 𝐴𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠[] ← 𝑔𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠()
13 𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑃𝑜𝑙𝑖𝑐𝑦(𝑣𝑚𝑠𝑡𝑜𝑚𝑖𝑔𝑟𝑎𝑡𝑒[], 𝐴𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠[])

14 //Underloaded host detection procedure
15 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑐𝑖𝑐𝑖𝑜𝑛_𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒,
16 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑

← 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦(ℎ𝑜𝑠𝑡_𝑖𝑠_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑())
17 𝒊𝒇 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 = 𝑡𝑟𝑢𝑒 𝒅𝒐
18 𝑣𝑚𝑠𝑡𝑜𝑚𝑖𝑔𝑟𝑎𝑡𝑒[] ← 𝑎𝑙𝑙 𝑣𝑚𝑠
19 𝐴𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠[] ← 𝑔𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠()
20 𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑃𝑜𝑙𝑖𝑐𝑦(𝑣𝑚𝑠𝑡𝑜𝑚𝑖𝑔𝑟𝑎𝑡𝑒[], 𝐴𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠[])

The second phase of live VM migration is the migration process. Figure 1-2 shows

the migration process that migrates the entire operating system and its associated

10

applications from one host to another that may take place either locally or widespread.

VM migration over WAN differs from LAN. Firstly, LAN migration leads to transfer of

memory state only, whereas WAN transfers the state of local disks as well [27].

Secondly, network reconfiguration is an issue in the WAN migration, migrating into

another subnet obliges the server to get a new IP address and, subsequently, it

disconnects existing network connections. In this case, the network addresses must be

maintained, or the network reconfiguration is implemented by the applications.

The performance metrics that are generally considered to measure the performance

of live migration are [28]: 1) total migration time which represents the total time required

to move the VM between hosts, 2) downtime which represents the portion of total

migration time when the VM is not running, that is the time between pausing the VM on

the source and resuming it on the destination, 3) application degradation which represents

the extent to which migration slows down the applications executing within the VM.

Figure 1-2: VMs migration over LAN/WAN

11

1.1 Motivation

In modern data centers, resource management and allocation during VM migration is

getting more challenging every day due to their rapid growth, high dynamics of hosted

services, resource elasticity, and guaranteed availability and reliability. Thus, the

performance of applications in large virtualized data centers is highly dependent on data

center architecture and smooth network communication among VMs, while minimizing

the communication burden to avoid congestion, latency, etc. The communication cost of

a network can be reduced by minimizing the VMs migration between hosts. Therefore,

clients and service providers need to build a cloud computing infrastructure that does

minimize not only operational costs but also total network load. It should be noted that

the key aspect that is directly related to network resource management in the data center

is how to minimize network overhead, and load balancing-VM migration, which is still

an active area of research.

The resource utilization of a data center may change over time due to a creation of

new VMs and/or hosts, or due to a failure of existing hosts, or due to the removal of

existing VMs. There is a need to reorganize the VMs and the hosts to provide load

balancing or server consolidation depending on the SLA with the end users and other

issues. In cloud data center management, the three most important research problems that

have been addressed are the host underload/overload detection, VM selection, and VM

placement.

Host overload/underload detection and VM Placement: There are three main reasons

behind our motivation for the first and third problem. First, none of the existing

techniques consider a dynamic utilization threshold and predict the future CPU utilization

12

simultaneously, Second, none of the existing algorithms considered the future expectation

of CPU utilization to be underloaded or normal loaded. Third, none of the existing

algorithms considered the future expectation of CPU utilization to be underloaded or

normal loaded. In contrast, our proposed solution uses historical data to build

probabilistic model that can predict the future host load more efficiently. We present a

Markov-based VM placement and host load detection approaches, respectively with the

objective to allocate a VM based on the current and future resource utilization of host and

VMs to mitigate the unneeded VM migrations for better SLA violation, number of VM

migrations and the energy consumption in the whole system.

VM Selection: The main reason behind our motivation for this problem is that none of

the existing algorithms consider the number of migrations related to the VM. The existing

VM selection algorithms focused on minimizing SLA violation on all the system and

they ignore the frequent violation for the same VM, where a certain VM might be

selected frequently to migrate from its overloaded host to another host based on the VM

selection policies.

Proactive selection process in live VM migration across cloud data centers:

In cloud data center management, many techniques have been proposed over the last

years to solve selection process research problem, but these techniques are more

restricted for LAN live VM migration. In a sense, they are assuming that there is no need

for IP reconfiguration during the live VM migration. None of the existing algorithms take

in its consideration the number of users currently connected to a given active host. None

of the existing algorithms consider which data center must be chosen as a target to

13

receive the migrated VMs from the overloaded data centers, and no proactive criteria

exists for live WAN migration that minimizes IP reconfiguration time.

It should be noted that it is necessary to migrate the VMs to different data centers

that are located at different geographic locations (i.e. different subnet configurations) to

obtain high QoS. Thus, WAN live VM migration techniques have been proposed [16, 29-

38]. It is known that when a given VM moves to a new subnet (i.e., new data center

existing in a different LAN), a mobility solution or scheme should be applied to maintain

the network connectivity and to preserve the open connections during and after the

migration. This migration forces the VM to get a new IP address, and as a result breaks

existing network connection. Therefore, WAN live VM migration results into a mobility

problem, which may render the service unreachable and increase the downtime of VM

during the migration process. There are a few techniques proposed to solve IP network

reconfiguration [33, 36-39], but the existing techniques focused on applying a mobility

solution or scheme to maintain the network connectivity and to preserve the open

connections during and after the migration in the migration process.

1.2 Research Problems and Objectives

This thesis tackles the research challenges that are not only related to LAN VM selection

process but also are related to WAN VM selection process. The VM selection process

deals with the following subproblems: determine which hosts or data centers are

overloaded (i.e., when to migrate), determine which VMs must be selected to be

migrated, and determine which hosts or data centers must be chosen to receive the

migrated VMs (i.e., where to migrate).

14

In the following subsections, the subproblems of the VM selection process will be

discussed.

• Host Detection. The host detection can be divided into overload host detection and

underload host detection. If a host is underutilized, then all the VMs from this host

can be migrated and the host will go to sleep/shutdown mode to improve the

utilization of resources or the host will be considered as a good candidate to

receive the migrated VMs from the overloaded hosts in the future. On the other

hand, the host overload is the process of determining when a given host is

overloaded so that some VMs must be selected to migrate from this host to other

hosts to avoid performance degradation. A crucial decision that must be made in

both situations is determining the best time to migrate VMs to minimize energy

consumption, while satisfying the defined QoS constraints.

• LAN/WAN migration: It is the decsion to make a migration in the same data

center, which is called LAN migration, or in a different data center, which is called

WAN migration. WAN migration is useful in many cases even though it has

overhead related to network reconfiguration process and costs associated with

storage migration. One of the reasons for WAN migration is when a data center is

considered to be overloaded and one or more VM migration is required from data

center under consideration.

• VM Selection. Once a decision to migrate VMs from a given host is made, a

particular VM selection algorithm should be applied to select one or more VMs

from the full set of VMs running on the host. The problem consists of determining

15

the best subset of VMs to migrate that will provide the most beneficial system

reconfiguration.

• Data Center Selection. Once the decision to migrate the VM from a given data

center is made, it is necessary to find the most suitable data center to receive the

migrated VM.

• VM Placement. A given VM placement algorithm is applied to select underloaded

hosts or to receive the migrated VMs from the overloaded hosts or data centers.

The VMs are migrated to another host when the current host cannot meet the

resource requirements. Determining the best placement of new VMs or the VMs

selected for migration to other servers is another essential aspect that influences

the quality of VM consolidation and energy consumption by the system.

To deal with the challenges associated with the above research problems, the

following objectives will be delineated:

• Explore, analyze, and classify the research in the area of resource data center

management to gain a systematic understanding of the existing techniques and

approaches.

• Conduct competitive analysis of selection process algorithms to insights into the

design of algorithms for dynamic VM consolidation and load balancing-VM

migration. This analysis aims to determine the factors that lead to an optimal

resource utilization, maximum throughput, maximum response time and

prevention of overload situation.

• Propose an algorithm for dynamic host overload/underload detection. The

proposed algorithm considers metrics such as hosts threshold, SLA violation,

performance degradation, and the number of VMs migration.

• Propose algorithms for dynamic LAN and WAN VM selection. The proposed

algorithm considers metrics such as SLA violation, performance degradation, the

16

number of VMs migrating, and in case of WAN migration the needed number of

IP reconfiguration.

• Propose an approach to design a dynamic LAN and WAN VM placement system

in a distributed manner. The proposed algorithm will consider metrics such as SLA

violation, performance degradation, number of migration, and service downtime.

• Compare the results of proposed algorithms with those of the other algorithms in

the literature using CloudSim simulator.

1.3 Contributions

The contributions of this thesis can be generally divided into 4 categories: classification

and analysis of the area, novel model and algorithms for host load detection and VM

placement in Live Migration, novel algorithms for minimizing biased VM selection in

live VM migration, and design and implementation of a a system model to provide

proactive selection process for live VM migration across cloud data centers. The key

contributions are:

1.3.1 A taxonomy and survey of the state-of-the-art approaches used in

the live VM migration (Chapter 2)

• Compares existing host detection algorithms.

• Compares existing VM selection algorithms.

• Compares existing VM placement algorithms.

• Present tchniques in solving IP address change due to WAN migration

process.

17

1.3.2 Prediction Model for Host Detection and VM Placement (Chapter

3)

• In contrast to the existing VM consolidation and load balancing methods

which mostly rely on the current resource utilization of hosts, Markov

chain model considers both current and future resource utilization. In

order to predict the future utilization, we used the first-order Markov chain

model to build Markov host prediction model.

• Propose a host load detection algorithm called Median Absolute Deviation

Markov Chain Host Detection algorithm (MadMCHD) to find the future

overutilized hosts state and the future underutilized hosts state for better

host detection performance in the live migration. In addition, we propose

an efficient prediction algorithm to enhance VM placement process. We

improve the live migration process by combining the proposed algorithms

for better performance.

• Implement and evaluate Markov host prediction model and the algorithms

on a simulated large-scale data center using the real PlanetLab workloads

and a random workload.

• Study the impact of the data length of host status history in our algorithms

such that they perform the best on four well-known VM selection methods

found in the literature. In addition, we investigate how the four VM

selection methods have impact on the performance in terms of the energy

consumption, the number of SLA violations, the number of migrations,

and other metrics.

18

1.3.3 Minimizing biased VM selection (Chapter 4).

• Propose two VM selection algorithms termed as Minimum VM Migrated

Count (MiMc) and Minimum migration time Minimum VM Migrated

Count (MmtMiMc) that resolve biased VM selection in live VM

migration.

• Propose two new metrics, which are the maximum number of VM

migrated count and the degree of load balancing of VMs migrated count.

• A simulation-based evaluation and performance analysis of the algorithms

using the real PlanetLab workloads and a random workload.

1.3.4 Proactive selection process across cloud data centers (Chapter 5).

• Modify the system model to support proactive selection process

techniques that reduce network reconfiguration problem in WAN live VM

migration. This model has been proposed to consider neglected parameters

and metrics that have an effect on live migration cost.

• Propose a VM selection algorithm that aims to be a proactive solution for

decreasing migration time by minimizing the number of IP

reconfigurations that are required in case of WAN migration between the

data centers.

• Propose algorithms to find the suitable data center for the placement of the

VM selected for migration from the overloaded hosts. This criterion aims

to minimize the service downtime.

19

• Propose new metrics to evaluate WAN live migration cost. We extended

CloudSim to simulate and evaluate our algorithms and metrics for VM

migration across the data centers on random workload.

• Perform an extensive simulation based evaluation and performance

analysis of the proposed algorithms with the well-known VM selection

methods.

1.4 Thesis Organization

The remainder of this thesis is organized as follows: In Chapter 2, we present a

comparative study of selection approaches used in the live VM migration technique. In

Chapter 3, we propose efficient algorithms by studying host detection and VM placement

problems. These proposed algorithms consider the trade-off between power consumption

and SLA violation. In Chapter 4, we propose algorithms for minimizing biased VM

selection in live VM migration. In Chapter 5, we propose a new system model and

propose algorithms as proactive criteria for live WAN migration that minimizes the

number of the IP reconfigurations and new defined metrics. Chapter 6 provides

concluding remarks with a discussion of future works.

20

Chapter 2

2 A Taxonomy of Literature Review

2.1 Overview

Live virtual machine (VM) migration is defined as a technique that migrates the entire

OS and its associated applications from one host/physical server to another providing that

users should not notice any interruption in their services. Live VM migration plays an

important role to facilitate online maintenance, load balancing, and energy management

as part of resource management. As mentioned before, live VM migration can be divided

into two parts: 1) selection process which involves three different phases: when to trigger

the migration, which VMs must be selected to be migrated, and which destination host

must be chosen to move the selected VMs. 2) migration process that targets moving the

VM in minimum time to avoid any interruption of services.

In this chapter, the main selection algorithms for host detection, VM selection, and

VM placement are discussed, and some IP network reconfiguration solutions in WAN

area migration are reviewed. The selection algorithms will be categorized based on their

21

methodologies and approaches. In each category, we discuss the algorithm scope along

with other performance metrics and the considered parameters in this category.

2.2 Host Detection Approaches

When a host is overloaded one or more VM live migration is required from the host

under consideration. In [40] researchers proposed a fixed utilization threshold policy. The

policy sets upper and lower utilization thresholds for hosts, and the total utilization of the

CPU should be kept between the upper and lower thresholds. If the CPU utilization of a

host is less than the lower threshold, the algorithm detects an underutilized host. As a

consequence, all VMs have to be moved from this host to another host, and the host has

to be turned off. On the other hand, if the utilization is higher than the upper threshold,

the host is declared to be in an overutilized situation. As a result, some VMs are migrated

to reduce the utilization from this host. The static thresholds values are not a suitable

solution in dynamic environment with unexpected workloads.

Authors in [41] proposed the averaging threshold-based algorithm (THR). It

computes the mean of the n last CPU utilization values and compares it to the previously

defined threshold. The algorithm detects underload state if the average of the n last CPU

utilization measurements is lower than the specified threshold. This algorithm is

unsuitable for a dynamic environment.

In [42] researchers proposed four policies in two categories. The first category is

Adaptive utilization threshold based algorithms that include two policies: Median

Absolute Deviation (MAD) and InterQuartile Range (IQR). These policies offer auto-

adjustment of the utilization thresholds based on a statistical analysis of historical data

obtained during the lifetime of the VMs. The objective is to alter the value of the upper

22

utilization threshold based on the strength of deviation of the CPU utilization. MAD is

defined as a measure of statistical dispersion that performs better with distributions

without a mean or variance. Also, it is a more robust estimator of scale in comparison to

sample variance or standard deviation. The main disadvantage in MAD is that the

magnitude of the distances of a small number of outliers is inappropriate. IQR is another

measure of statistical dispersion. It is called the midspread or middle fifty which means

the difference between the third and first quartiles in descriptive statistics. This category

has a poor prediction of host overloading. Moreover, when a host has encountered the

same CPU utilizations in the past, the value of the threshold in these approaches is

measured around 100%, resulting in a more aggressive consolidation of VMs and more

SLA violation.

The second category is regression based algorithms that include two policies: Local

Regression (LR) and Local Robust Regression (LRR). These depend on estimation the

future CPU utilization. They perform better forecasting of host overloading but has

higher complexity. LR is an approach that fits a curve that shows the trend in the data. A

host is overloaded in case the maximum migration time is closer than a safety margin to

the trend line. LRR compares the maximum migration time to an expected value and

weights it before making the decision of overloading in the host. This category is

influenced by the presence of outliers and does not reflect the behavior of the bulk of the

data.

Researchers in [43] proposed a linear regression-based CPU usage prediction

(LiRCUP). This algorithm predicts the future state based on historical data of each host.

The algorithm measures the future CPU usage to predict overloaded and underloaded

23

hosts. This leads that some of the VMs will be moved to other hosts before an SLA

violation occurs. As a result, undesirable migrations occur even when the current

resource usage of the considered hosts is still acceptable.

In [44] authors proposed Adaptive Migration Threshold algorithm for host

detection. The authors do not use the historical data, but they use only the current

resource utilization to measure an upper and lower utilization threshold values for each

host. The algorithm uses resources utilization, including CPU utilization, RAM and

bandwidth, to measure an upper and lower utilization threshold values for each host.

In [45] researchers proposed Dynamic Fuzzy Q-Learning (DFQL) algorithm. This

algorithm relies on Fuzzy Q-Learning to detect overloaded hosts. Fuzzy C-Mean (FCM)

as a fuzzy clustering algorithm has been applied to estimate Gaussian membership

functions. The algorithm selects a new threshold for each host every time based on the

performance feedback. The convergence learning time for the algorithm is long.

Authors in [46] proposed an adaptive fuzzy threshold based algorithm. For

detecting overload and underload hosts, the algorithm uses the current and estimated

resource usage for a more efficient upper and lower threshold values. The algorithm

collects the information from a host and feeds them to a fuzzy inference engine supported

by the Sugeno fuzzy rule set to determine if the host is overloaded. Also, the lower

threshold is dynamically measured according to workload changes.

In [47] researchers proposed a VM-based dynamic threshold (VDT) algorithm to

detect underload host. This algorithm computes utilization of host based on considering

host CPU utilization and the number of VMs on the host. VDT algorithm selects host as a

candidate host for migrating all of its VMs based on the minimum CPU utilization among

24

hosts. In the case of the CPU utilization between hosts is equal, a host with least number

of VMs will be considered as underloaded host.

In [48] authors proposed a multi-criteria technique for detecting underutilized hosts

including Available Capacity (AC), Migration Delay (MDL), and TOPSIS-Available

Capacity-Number of VMs-Migration Delay (TACND) policies. AC uses available

resource capacity as parameter to detect underloaded host. MDL algorithm uses

migration delay as a measure to determine underloaded among all candidate hosts.

TACND discovers underloaded host based on three criteria, which includes host available

capacity, number of VMs on the host, and the migration delays of VMs on the host.

In [49] researchers proposed an approach for deriving an optimal policy for

detecting host overloading conditions, which optimally solves the problem of host

overloading detection by maximizing the mean intermigration time under the specified

QoS goal. One of their assumptions is that the workload satisfies the Markov property,

which may not be true for all types of workloads.

Authors in [50] proposed a virtual machine consolidation algorithm with usage

prediction (VMCUP). The VMCUP algorithm is executed during the consolidation

process to decide when a host is overloaded or underutilized based on the current and

future (i.e., predicted) resource usage.

Authors in [51] proposed a modified of five host overload detection algorithms [41,

42] using mean and standard deviation. The algorithms are modified in such a manner

that the host will be declared overloaded if the built-in overload detection finds the host

overloaded while the requested utilization is higher than the capacity or predicted

utilization is higher than the capacity.

25

Table 2-1 compares existing host detection algorithms concerning the parameters

used in the detection process for each technique and shows the metrics considered as

well.

Table 2-1: Host Overload Detection State-of-Art Algorithms Comparison

T
ec

h
n

iq
u

e

Parameters Considered Metrics Considered

Numb

er of

VMs

on the

Host

hist

oric

al

Dat

a

curre

nt

CPU

Utiliz

ation

Stati

c

Thr

esho

ld

Dyn

ami

c

Thr

esho

ld

Futur

e

CPU

Utiliz

ation

Availa

ble

Capacit

y of a

Host

Migra

tion

Delay

s of

VMs

Powe

r

Cons

umpt

ion

SL

A

Viol

atio

n

No.

of

Migr

ation

s

Beloglazov

et al. [40]

 ✓ ✓

THR [41] ✓ ✓ ✓ ✓ ✓

MAD [42] ✓ ✓ ✓ ✓ ✓

IQR [42] ✓ ✓ ✓ ✓ ✓

LR [42] ✓ ✓ ✓ ✓ ✓ ✓

LRR [42] ✓ ✓ ✓ ✓ ✓ ✓

LiRCUP

[43]
 ✓ ✓ ✓

✓ ✓ ✓

Adaptive

Migration

Threshold

[44]

 ✓ ✓

✓ ✓ ✓

DFQL [45] ✓ ✓ ✓ ✓ ✓

fuzzy

threshold

[46]

 ✓ ✓

✓ ✓ ✓

VDT [47] ✓ ✓ ✓ ✓ ✓ ✓

AC [48] ✓ ✓ ✓ ✓

MDL [48] ✓ ✓ ✓ ✓

TACND

[48]
✓

✓ ✓
✓ ✓ ✓

In summary, most of the existing detection algorithms are based on the current

CPU utilization of the system. If a host is determined to be overloaded at a moment, then

VM migration is initiated immediately, which is not the best choice. It should be noted

that each VM migration is associated with some performance degradation that in turn

increases the SLA violation rate. It is known that there is a strong relationship between

26

determining when a VM migration should be initiated and the cost associated with extra

SLA violation rate.

2.3 VM Selection Approaches

A VMs selection approach is applied after the completion of the host overload

detection phase. Three different methods are suggested by researchers in [40, 42] to

select the VMs that have to be moved to the underutilized hosts. The first approach is

called Minimization of Migrations (MM), in this approach the minimum number of VMs

is moved to underload hosts to reduce migration overhead. Descending VMs CPU

utilization ordering step is implemented as the first step in this algorithm, after that a

repeated scanning for the ordered list is performed to find the best candidate VMs to be

migrated. The candidacy of the VMs will be based on the following two conditions.

The first condition to be met is that the VM must have a higher utilization value

when compared to the difference between the host’s overall utilization and the upper

utilization threshold. The second condition that has to be satisfied when the VM is

migrated from the host, the difference between the upper threshold and the new

utilization should be the minimum of values provided by all the VMs. Then, if a suitable

VM is not found, a VM with the highest utilization value is selected to be removed from

the list. Iterations are repeated until a utilization value is found which is less than the

upper utilization threshold.

The second algorithm is Highest Potential Growth (HPG). This policy migrates

VMs which have, relatively, the lowest value of CPU usage to reduce the total likelihood

increase of the utilization and SLA violation.

27

The third algorithm is Random Selection (RS). The algorithm chooses a VM to be

moved according to a uniformly distributed discrete random variable whose values index

a set of VMs allocated to a host.

Authors in [41] proposed minimum migration time maximum CPU utilization

algorithm (MMTMU). The algorithm first selects VMs with the lowest value of RAM to

minimize the live migration time. After that, the algorithm selects the VMs from the

selected subset that resulted from previous step based on the maximum CPU utilization,

by taking the average over the last values to reduce the overall CPU utilization of the host

maximally.

Researchers in [51] proposed modified MMT and MC [52] VM selections

algorithm by using migration control. No migration will occur in the case of a VM that is

steadily occupying high resource of a host for some period.

Two different algorithms have been proposed by authors in [52], named Minimum

Migration Time (MMT). In this method, a VM is chosen based on the value of the

migration time, the less the better. Migration time can be easily computed as the amount

of RAM utilized by the VM divided by the additional network bandwidth available for

the host.

The other algorithm is namely known as the Maximum Correlation (MC). In this

approach, a correlation value is calculated. Whenever the value of the correlation

between the resource usage by applications running on an oversubscribed host then the

likelihood of overloading will be higher. So, the selection of the VMs to be migrated is

based on the correlation of the CPU utilization with other VMs, the highest correlation

28

value is selected. To assess the prediction quality of the dependent variable the multiple

correlation coefficient is used in multiple regression analysis.

Authors in [53] proposed two algorithms. The first algorithm is called the Median

Migration Time (MedianMT). This method selects a given VM that requires the median

time to complete a migration relatively to the other VMs allocated to the host. The second

algorithm is the Maximum Utilization (MU) that selects a VM to migrate from the

overutilized host based on the largest possible usage of CPU can be that expected to

minimize the number of migrations.

In [54] authors proposed a modified NVMMP algorithm based on VM priority. The

algorithm first sort VMs with the highest CPU utilization value. After that, the algorithm

selects the VMs from the selected subset that resulted from the first step based on

minimum execution, i.e. their maximum execution left.

In [55] authors proposed Host Fault Detection (HFD) algorithm that selects a VM

to migrate from the overutilized host based on the maximum impact on the cause of the

overload. If the overload is caused by RAM, then the VM with the maximum allocated

RAM is selected by the algorithm.

Table 2-2 compares existing VM selection algorithms concerning the parameters

used in the selection process for each technique and shows the metrics considered to

evaluate the algorithm as well.

29

Table 2-2: VM Selection State-of-Art Algorithms Comparison

T
ec

h
n

iq
u

e

Parameters Considered Metrics Considered

VM

CPU

Utili

zatio

n

VM

RAM

Utiliz

ation

Host

Networ

k

Bandw

idth

Uniformly

Distributed

Discrete

Random

Variable

Exe

cuti

on

Tim

e

Left

Energ

y

Consu

mptio

n

SL

A

Viol

atio

n

Num

ber

VM

Migr

ation

MM [40, 42] ✓ ✓ ✓ ✓

HPG [40, 42] ✓ ✓ ✓ ✓

RC [40, 42] ✓ ✓ ✓ ✓

MMT [52] ✓ ✓ ✓ ✓ ✓

MC [52] ✓ ✓ ✓ ✓ ✓

MedianMT [53] ✓ ✓ ✓ ✓ ✓

MaxU [53] ✓ ✓ ✓ ✓

modified NVMMP

[54]
✓

 ✓
 ✓

modified of MMT

[51]
 ✓ ✓

✓ ✓

modified of MC

[51]
✓

HFD [55] ✓ ✓ ✓ ✓ ✓

MMTMU [41] ✓ ✓ ✓ ✓ ✓ ✓

In summary, the existing VM selection algorithms focused on minimizing the

number of VM migrations and on reducing performance degradation. It should be noted

that no proactive criteria exist for live WAN migration that minimizes the number of the

IP reconfigurations. It is known that if the time needed for IP reconfiguration for all

migrated VM users increases, then there will be an increase in the interruption of service,

network overhead and performance degradation.

2.4 VM Placement Approaches

VM placement is the process that comes after the completion of the VM selection phase.

In this section, we discuss these algorithms. In addition, we discuss other VM placement

algorithms perspectives, such as VM placement resulting from a new user request to

30

create a new VM in a suitable host, or VM placement caused by dynamically reassigning

VMs to hosts due to changes of system conditions or VM requirements.

Average traffic latency reduction is the objective that researchers in [56] is

concentrating on. To achieve this objective a traffic aware VM placement algorithm has

been proposed. Two traffic models have been proposed, which are namely known as,

partitioned and global. In partitioned model the only allowed communication is the one

between the VMs in the same partition. Whereas in the global traffic model, the

communication is not constrained on the VMs in the same partition with a constant flow

rate. In this algorithm, better network scalability is satisfied by reducing the traffic going

through the switches. This can be explained by the fact that this algorithm is moving the

VMs through a minimum number of switches.

In [57] authors formulated the VM placement problem as a multi-objective

optimization problem to minimizing total resource wastage, energy consumption, and

thermal dissipation cost. The authors proposed an improved genetic algorithm with a

fuzzy multi-objective evaluation to search for solutions for allocating VMs.

In [58] researchers proposed a VM placement algorithm based on the Ant Colony

Optimization (ACO) meta-heuristic where the placement is computed in a dynamic way

according to the current load by modeling the workload consolidation problem as an

instance of the Multidimensional Bin-Packing (MDBP) problem. The goal of this

algorithm is to pack the VMs into fewer hosts. The algorithm needs the knowledge about

all the workload and its related resource requirements to compute the placement.

Authors in [59] formulated the VM placement problem as a multi-objective ACO

algorithm to minimize SLA violation, total resource wastage, and power consumption. In

31

ACO algorithm, each ant constructs a solution for selecting VM to the target server. The

constructed solution is estimated by the suitable function, which combines SLA violation,

resource consumption, and power consumption.

In [60] authors proposed a joint energy-aware and application aware VM placement

strategy based on the theory of multi-objective optimization by exploring a balance

between server energy consumption and the communication network energy consumption

in the data center. The algorithm aims to meet the conditions of the server-side

constraints, to minimize network data transmission, and to reduce power consumption in

data centers. The considered parameters are the distance between the switches that

interconnect physical hosts, constraints of servers and the application dependencies

among VMs of composite applications.

In [61] researchers applied the genetic algorithm to address the VM placement

problem considering reducing energy consumption and the communication network

among hosts. The authors present a VM placement model considering two functions. The

first function is a linear function of its workload that shows the energy consumed by a

server and the energy consumed when the server is idle. The second one is a function of

the amount of data exchanged among the VMs that displays energy consumed by the

network.

In [62] authors proposed a hybrid genetic algorithm (HGA). The HGA algorithm

approach is used to allocate VMs efficiently than the genetic approach in [61]. A

repairing procedure is embedded for converting the proposed solution into a feasible one.

This can be accomplished by the means of local optimization procedure and resolving the

existing violations in order to improve the overall quality of a solution.

32

Researchers in [63] proposed Family Genetic Algorithm (FGA) for VM placement

to overcome the limitations of the Genetic approaches [61, 62]. These limitations are the

premature convergence and the high processing time.

In [64] researchers proposed VM Scheduler placement algorithm to reduce the time

of allocation of VM to the server and to optimize the resource utilization. The algorithm

represents the list of resources in a binary search tree (BST) instead of representing them

in a queue. The algorithm generates two BSTs, one for VM specification and one for

hosts. The VM scheduler takes the VM that has the maximum requirement and searches

for a candidate host which best fits the requirement of VM.

In [42, 52, 67] authors proposed Power Aware Best Fit Decreasing (PABFD)

algorithm for VM placement to move the VMs from the overloaded host to unloaded host

or from underloaded host for server consolidation. After sorting all migrated VMs based

on a VM selection method, the algorithm selects the destination host to receive the

migrated VM, which causes the least increase in the power consumption. The algorithm

relies on the traditional greedy algorithm to optimize the allocation of VMs.

In [47] researchers proposed host utilization and minimum correlation (UMC) VM

Placement Algorithm to reallocate VMs from overutilized hosts or from underutilized

host. The considered parameters are host utilization and the correlation between the

resources of a VM with the VMs present on the host correlation. The algorithm selects

the destination host to receive the migrated VM if its CPU utilization has the lowest

correlation with all VMs CPU utilization on that host.

33

Table 2-3 compares existing VM placement algorithms concerning the parameters

used in the allocation process for each technique and shows the metrics considered as

well.

Table 2-3: VM Placement State-of-Art Algorithms Comparison

T
ec

h
n

iq
u

e

Parameters Considered Metrics Considered

V

M

Sp

ec.

H

os

t

C

P

U

Ho

st

RA

M

Net

wo

rk

Sw

itc

hes

Net

wo

rk

Lin

k

VMs

Appli

catio

n

Depe

nden

cies

Net

wo

rk

B

W.

Nu

mbe

r of

Acti

ve

Hos

t

Ex

ecu

tio

n

Ti

me

Re

sou

rce

Wa

sta

ge

Nu

mbe

r of

Swit

ches

Nu

mbe

r of

Mig

ratio

n

Ene

rgy

Con

sum

ptio

n

SL

A

Vi

ola

tio

n

Te

m

pe

rat

ur

e

Meng et al.

[56]

 ✓ ✓
 ✓

 ✓

Xu et al. [57] ✓ ✓ ✓ ✓ ✓

Feller et al.

[58]
 ✓

✓

 ✓
✓ ✓

Fei Ma et al.

[59]
✓ ✓

✓
 ✓ ✓

✓ ✓

Huang et al.

[60]

 ✓
✓

 ✓

Wu et al. [61] ✓ ✓ ✓ ✓

HGA [62] ✓ ✓ ✓

FGA [63] ✓ ✓ ✓

Mandal and

Khilar [64]
✓

 ✓ ✓

Beloglazov

and Buyya

[42, 49]

 ✓

 ✓ ✓ ✓

Horri et al.

[47]
 ✓

✓

 ✓
✓

✓

In summary, the existing VM placement approaches focused on reducing the

number of physical machines, VM allocation time and the data center energy

consumption. It should be noted that no proactive criteria exist for live WAN migration

that minimizes IP reconfiguration time, which results in minimizing the service

downtime. It is known that if the time needed for IP reconfiguration for all migrated VM

34

users increases there will be an increase in interruption of the service time, network

overhead and performance degradation.

2.5 WAN Area Migration Solutions

Over the last two decades, there has been significant research to migrate the VMs to

different data centers that are located at different geographic locations (i.e. different

subnet configurations) to obtain high QoS. Thus, WAN live VM migration techniques

have been proposed [16, 29-38, 65]. There are a few techniques proposed to solve IP

network reconfiguration [29, 30, 33, 36-38].

Bradford et al. [29] proposed a solution that depends on DNS resolutions to transfer

on going network connections transparently. When VMs migrate, they maintain their

canonical names, and the new IP address is registered with the named host. Lookups for

the VM based on the canonical name, following migration, will resolve to the new

(correct) IP address. This seamless change in original IP address and resolution of new IP

address while the VM migrates across different networks is done through IP tunneling.

Tunneling is a mechanism for providing a path to networks/LANs of different IP

configurations by taking help from the gateways encountered on the way to the

destination network (where the designated host resides). Gateways provide tunnel

endpoints, preventing any average loss of connectivity. Note that this solution places the

burden of managing endpoints on the applications (i.e., they need to be aware of the IP

address change).

Silvera et al. [31] proposed not to change IP address of the virtual machine while

being migrated between different subnets. Agents on the source and destination subnets

35

are responsible for ensuring the continued connectivity of the virtual machine via the use

of Proxy-ARP. IP-in-IP tunnels are used between the subnet agents to forward between

subnets the traffic destined to/originating from the VM.

Wood et al. [30] proposed a combination of layer 3 virtual private networks

(VPNs) and layer 2 virtual private LAN service (VPLS) to provide end-to-end routing

across multiple networks and bridge LANs at different locations. The unified virtual

network provides the view of a LAN to migrating VMs, with VMs maintaining single IP

address.

The above methods [29-31] do not support the establishment of a new TCP

connection in conjunction with VM migration, which causes increased network delay

time and traffic congestion and increased performance degradation.

Kuribayashi et al. [38] proposed mSCTP, which supports multihoming and

multiple IP addresses simultaneously. In mSCTP-based migration, VMs will transfer data

using different TCP connections before and after migration, which causes this feature to

improve response time and enhance throughput.

In summary, the existing techniques focused on applying a mobility solution or

scheme to maintain the network connectivity and to preserve the open connections during

and after the migration in the migration process. But no proactive criteria exist for live

WAN migration that minimizes the number of the IP reconfigurations. It is known that if

the time needed for IP reconfiguration for all migrated VM users increases, then there

will be an increase in the service interruption time, network overhead and performance

degradation.

36

2.6 Summary

In summary, most of the existing detection algorithms are based on the historical data of

the system, which is not always a good indicator on the real workload on the VM,

especially when we have a dynamic environment with unpredictable workloads. our work

should be concentrating on finding the optimal value for the detection threshold to trigger

the detection process. It should be noted that each VM migration is associated with some

performance degradation that in turn increases the SLA violation rate. It is known that

there is a strong relationship between determining when a VM migration should be

initiated and the cost associated with extra SLA violation rate and energy consumption.

The existing VM selection and VM placement approaches focused on minimizing

the number of VM migrations, reducing performance degradation, reducing the number

of physical machines, VM allocation time and the data center energy consumption. It

should be noted that no proactive criteria exist for live WAN migration that minimizes

the number of the IP reconfigurations. It is known that if the time needed for IP

reconfiguration for all migrated VM users increases, then there will be an increase in the

interruption of service, network overhead and performance degradation.

37

Chapter 3

3 Markov Prediction Model for Host Load

Detection and VM Placement

3.1 Overview

The design of good host overload/underload detection and VM placement algorithms

play a vital role in assuring the smoothness of VM live migration. However, the existing

algorithms have some shortcomings when it comes to the prediction of the future load

state for the VMs. The presence of the dynamic environment that leads to a changing load

on the VMs motivates us to propose a novel Markov prediction model to forecast the

future load state of the host. We propose a host load detection algorithm to find the future

overutilized/underutilized hosts state to avoid immediate VMs migration. Moreover, we

propose a VM placement algorithm determine the set of candidates hosts to receive the

migrated VMs in a way to reduce their VM migrations in near future. We evaluate our

38

proposed algorithms through CloudSim simulation on different types of PlanetLab real

and random workloads. The experimental results show that our proposed algorithms have

a significant reduction in terms of SLA violation, number of VM migrations, and other

metrics than the other competitive algorithms.

3.2 Proposed Markov Host Prediction Model

This section explains the forecasting model used to effectively decide whether it is really

necessary to migrate a VM depending on the present as well as the predicted future load

based on previously observed values using Markov model prediction technique [66].

In the Markov chain, the observed variable W is discretized, so the observation

sequence 𝑤1, 𝑤2, … , 𝑤𝑛 can be described using a discrete scalar observation sequence

{𝑤1, 𝑤2, … , 𝑤𝑛} as proposed in our forecasting model, the last w observations of a given

host CPU utilization, where each of the variables 𝑤𝑛 may take one of M different

states {𝑆1, 𝑆2, … , 𝑆𝑀}. In our proposed Markov model, in the proposed algorithms, three

different states for a given host are possible, namely underloaded (U), normal loaded (N)

and overloaded (O).

The Markov model will be used to model the host detection depending on historical

data that will be maintained in a log file. The historical training set is stored in a database,

in our forecasting model the prediction will take place when we have at least 10 historical

data observations stored in the database. This number is used in other algorithms [42, 52,

67]. The Markov model is built using three states given by {𝑆1 = 𝑈, 𝑆2 = 𝑁, 𝑆3 = 𝑂}.

The stochastic variable 𝜒 is a discrete random variable taking one of these three values,

39

where Algorithm 2-1 will be applied periodically by each host manager to find 𝜒 for each

observation and register it in the host log file.

Algorithm 2-1: Host Detection State.

1 Input: host CPU utilization of host j (𝐶𝑃𝑈𝑢(𝐻𝑗),

lower threshold, and upper threshold.

2 Output: 𝜒 (current host state).

3 𝑰𝒇 𝐶𝑃𝑈𝑢(𝐻𝑗) ≤ 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝒕𝒉𝒆𝒏

4 𝜒 ← 𝑈

5 𝒆𝒍𝒔𝒆 𝑰𝒇 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝐶𝑃𝑈𝑢(𝐻𝑗)

< 𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝒕𝒉𝒆𝒏
6 𝜒 ← 𝑁

7 𝒆𝒍𝒔𝒆 𝑰𝒇 𝐶𝑃𝑈𝑢(𝐻𝑗) ≥ 𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝒕𝒉𝒆𝒏

8 𝜒 ← 𝑂

9 𝒓𝒆𝒕𝒖𝒓𝒏 𝜒

Algorithm 2-1 shows the pseudo-code of host detection state for each observation.

Three parameters are inputs to this algorithm. The first parameter is the host CPU

utilization, which is calculated by dividing the total MIPS requested on the total host

MIPS. The other parameter is the lower threshold, which is assigned a value of 0.1. The

upper threshold is taken from the MAD algorithm which is explained in [52]. Each host

has an underloaded (U), over- loaded (O) or normal loaded (N) state, which can be easily

found by comparing the current CPU utilization value (𝐶𝑃𝑈𝑢) by the lower and upper

thresholds. After the host load state is determined it is stored in the log file in order to be

used in our proposed Markov prediction algorithm.

It should be noted that the first-order Markov chain is most widely used in

describing dynamic processes, wherein the conditional probability of an observation 𝑤, at

time 𝑛 (i.e., 𝑤𝑛) only depends on the observation, 𝑤, at time 𝑛 − 1 (i.e., 𝑤𝑛−1) as shown

in Equation (3.1). Moreover, the joint probability of 𝑛 observations, 𝑃(𝑤1, 𝑤2, … , 𝑤𝑛)

40

using the first order Markov chain can be given by Equation (3.2). Our Markov detection

algorithm starts working after collecting 10 historical observations (n = 10).

𝑃(𝑤𝑛 │𝑤𝑛−1 , 𝑤𝑛−2, … , 𝑤1) ≈ 𝑃(𝑤𝑛 │ 𝑤𝑛−1) (3.1)

P(𝑤1, … , 𝑤n) = ∏ 𝑃(𝑤𝑖│ 𝑤𝑖−1)

𝑛

𝑖=1

 (3.2)

where the conditional probabilities 𝑝 (𝑤𝑛 = 𝑆𝑗 │𝑤𝑛−1 = 𝑆𝑖) are referred to as state

transition probabilities or simply transition probabilities. The transition probabilities

describe the probability of the system at state 𝑆𝑗 at time 𝑛 given that the system was at

state 𝑆𝑖 at time 𝑛 − 1. In most cases, we assume that the transition probabilities are

homogeneous, which means that the probabilities do not change over time, so

 𝑝(𝑤𝑛 = 𝑆𝑗 |𝑤𝑛−1 = 𝑆𝑖)

 = 𝑝(𝑤𝑛+𝑇 = 𝑆𝑗 │𝑤𝑛−1+𝑇 = 𝑆𝑖)
(3.3)

where 𝑇 represents a positive integer larger or equal to one. The transition probabilities

can be written as a transition matrix, which is of dimension 𝑀 ∗ 𝑀 for a system with

𝑀 (𝑤ℎ𝑒𝑟𝑒 𝑀 = 3) different states {𝑆1, 𝑆2, … … , 𝑆𝑀}.

The state and transition probabilities of a given Markov chain can be shown using

graph. Figure 3-1 shows our host detection Markov model with three discrete

states {𝑂, U, N} with every periodic time we would transit to a (possibly) new state based

on the probabilities in Equation (3.4). The system model starts in one of these states and

moves successively from one state to another. Each move is called a step. The probability

𝑝𝑖𝑗 represents the chance of the system model to be in the current state 𝑆𝑖 and moves to

next state 𝑆𝑗.

41

 𝑈 𝑁 𝑂

 𝑃 = [

𝑝11
𝑝12 … 𝑝1𝑀

𝑝21
p22 … 𝑝23

⋮
𝑝𝑀1

⋮
𝑝𝑀2

⋮
𝑝𝑀𝑀

] =
𝑈
𝑁
𝑂

 [

𝑝𝑈𝑈 𝑝𝑈𝑁 𝑝𝑈𝑂

𝑝𝑁𝑈 𝑝𝑁𝑁 𝑝𝑁𝑂

𝑝𝑂𝑈 𝑝𝑂𝑁 𝑝𝑂𝑂

]

(3.4)

Since each element in the matrix represents a probability of staying or moving to

another state, so the matrix element of a given row should satisfy the following properties

𝑝𝑖𝑗 = 𝑝(𝑗|𝑖) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 (3.5a)

∑ 𝑝𝑖𝑗

𝑀

𝑗=1

= 1, 𝑓𝑜𝑟 𝑖 ∈ {1, … , 𝑀} (3.5b)

The state and transition probabilities of a given Markov chain can be shown using

graph. Figure 3-1 shows our host detection Markov Model with three discrete

states {𝑂, U, N}. and every periodic time we would transit to a (possibly) new state based

on the probabilities in Equation 3.4. The system model starts in one of these states and

moves successively from one state to another. Each move is called a step. The probability

𝑝𝑖𝑗 represents the chance of the system model to be in the current state 𝑆𝑖 and moves to

next state 𝑆𝑗.

Instead of immediately migrating some of its VMs we can check whether the

migration is required or not. The algorithm takes states and transition probabilities of a

given host j detection from Markov model as an input and makes the decision of

migration and the decision of hosting VMs as an output. The decision is based on the

current CPU utilization and the future CPU utilization.

42

Figure 3-1: States and Transition probabilities of the Host detection Markov Model

3.3 Proposed System

In this section, we present a Markov-based host detection and VM placement algorithms

for cloud data center. In section 3.3.1, our proposed system architecture is explained,

underload/overload detection algorithm is then explained. Then a VM placement

algorithm is explained. Finally, illustrative scenarios are clarified.

3.3.1 System Architecture

The target system is an IaaS environment, represented by a large-scale data center. The

data center consists of less than 𝐽 heterogeneous hosts where each host contains multiple

VMs. Multiple VMs can be allocated to each host through VMM. Besides, each host and

VM are characterized by the CPU performance metrics defined in term of Millions

Instructions Per Second (MIPS), the amount of RAM and network band-width. The target

system model is depicted in Figure 3-2 which is a modified version of the model

43

described in [68]. Our model includes two important parts: A Data Center manager that

has an extra predictive VM placement functionality, and the Host Manager that has an

extra Markov model prediction agent for host detection.

Figure 3-2: System Model

Figure 3-2 shows the Host Manager and the Data Center Manager components.

Host manager resides on every host for keeping continuous observation on CPU

utilization of the node. Data center manager interacts with the host managers.

Host Manager consists of the following components:

• Host detection agent: responsible for detecting the current load state of the host,

which can be either underloaded or overloaded.

• VM selection agent: responsible for finding the VM that has to be migrated.

• Prediction Markov model: responsible for finding the future load state of the host.

44

• VMM: responsible for monitoring host as well as sending gathered information to

the data center manager. In addition, VMM performs actual resizing and migration

of VMs as well as changes in power modes of the PMs.

• Data Center Manager consists of the following components:

• VM placement agent: responsible for performing the migration from

overloaded/underloaded hosts to the candidate hosts based on a predictive Markov

model.

• Database: data structure that contains all the information about the hosts and the

utilization of each host.

Our proposed algorithms suggest that the load state host detection algorithm and

the VM placement algorithm should not only depend on the current overall rewards

gained from migrating the VMs, but also the future rewards should be taken into

consideration for better SLA violation, and number of VM migrations. Host manager

interacts with the VMM manager in order to initiate the VM migration process after

finishing the host detection, and VM selection processes. It also interacts with the data

center manager in order to initiate the VM placement.

The host manager is interacting with the detection Markov model, which is shown

in more details in the sequence diagram below. Our proposed algorithms suggested that

the load state host detection algorithm and the VM placement algorithm, should not only

depends on the current overall rewards gained from migrating the VMs, but also the

future rewards should be taken into consideration for better SLA violation, number of

VM migrations. Host manager is interacting with the VMM manager in order to initiate

the VM migration process after finishing the host detection, VM selection and VM

45

placement processes. It also interacts with the data center manager in order to initiate the

VM placement.

3.3.2 The Proposed Work

The problem of VM migration can be divided into four parts: (1) determining which hosts

are overloaded, thus one or more VM migration is required from the host under

consideration, (2) determining which hosts are underloaded so that all VMs should be

migrated from those hosts; (3) selecting VMs that should be migrated from overloaded

hosts. (4) finding new placement for the migrated VMs by choosing the good candidate

hosts [66]. We have proposed three algorithms which resolve the first, second and fourth

issues of migration. For VM selection multiple selection algorithms given in [67] are

used.

3.3.2.1 Host underload/overload detection

Algorithm 2-2 describes the host overload/underload detection mechanism. Upper and

lower thresholds for CPU utilization are assigned first. These can be assigned either

statistically using First Order-Markov Chain Host State Detection algorithm

(FOMCHSD) or dynamically using Median Absolute Deviation Markov Chain Host

Detection algorithm (MadMCHD). In MadMCHD, Median Absolute Deviation (MAD)

algorithm is used, which is based on statistical analysis of historical data collected during

the lifetime of VMs [42]. For a univariate data set 𝑤1, 𝑤2, . . . , 𝑤𝑛, the MAD is defined as

the median of the absolute deviations from the median of the data set:

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑖(│𝑤𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(𝑤𝑗)│) (3.6)

46

The MAD is the median of the absolute values of deviations (residuals) from the

data’s median. In the proposed overload detection algorithm, the upper CPU utilization

threshold (𝑇𝑢) is defined as given in Equation (3.7)

𝑇𝑢 = 1 − 𝑠 ∗ 𝑀𝐴𝐷 (3.7)

where 𝑠 ∊ 𝑅+ represents a parameter of the method defining how strongly the system

tolerates host overloads. In other words, the parameter 𝑠 allows the adjustment of the

safety of the method: a lower value of 𝑠 results in a higher tolerance to variation in the

CPU utilization.

After our algorithm is triggered, the first thing to calculate is the current CPU

utilization, and then to determine whether the static or dynamic values are considered for

the upper and the lower threshold by checking the value of the input parameter B. As

mentioned before, the values of the upper and lower values are assigned statically or

dynamically using MAD. In case B = FOMCHSD, the lower threshold value is equal to

0.1 and the upper threshold value is 0.9. FOMCHSD is a static algorithm.

In case B = MadMCHD the value of the lower threshold is also equal to 0.1 and the

value of the upper threshold is calculated using equation in line 12. Our proposed

algorithm is triggered when the length of the history data stored in the log file is more

than 10.

The current host load state is determined by comparing the value of the current

utilization with the lower and the upper threshold. The future load state is predicted using

our Markov prediction model. If the future predicted load state is overloaded, then the

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 is assigned a true value and the host is considered for

migration. For the underload host detection, if the current state and the future state is

47

underloaded then the 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_ 𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 is assigned a true value and

the host is considered for energy saving or to receive migrated VMs.

Algorithm 2-2: Overload/Underload host detection.

1 Input: host, lower threshold = 0.1, upper threshold = 0.9, B
(FOMCHSD or MadMCHD).

2 Output: migration_decision_underloaded (T/F),
migration_decision_overloaded (T/F).

3 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒
4 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒

5 𝒘𝒉𝒊𝒍𝒆 ℎ𝑜𝑠𝑡𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑡𝑟𝑢𝑒 𝒅𝒐
6 𝒊𝒇 𝑙𝑜𝑔𝑓𝑖𝑙𝑒. 𝐿𝑒𝑛𝑔𝑡ℎ >= 10 𝒕𝒉𝒆𝒏
7 //calculate current CPU utilization of host h
8 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ← 𝑡𝑜𝑡𝑎𝑙 𝑅𝑒𝑞. 𝑀𝑖𝑝𝑠/ 𝑇𝑜𝑡𝑎𝑙 ℎ𝑜𝑠𝑡 𝑀𝑖𝑝𝑠

9 𝑺𝒘𝒊𝒕𝒄𝒉(𝑩)
10 𝑪𝒂𝒔𝒆 𝐹𝑂𝑀𝐶𝐻𝑆𝐷: 𝒃𝒓𝒆𝒂𝒌;
11 𝑪𝒂𝒔𝒆 𝑀𝐴𝐷𝑀𝐶𝐻𝐷:
12 𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 1 − 𝑠 ∗ 𝑀𝐴𝐷

13 //find current utilization using Algorithm 2-1
14 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 ←

ℎ𝑜𝑠𝑡_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒 (𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,
 𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

15 //find future utilization using Markov prediction technique
16 𝑓𝑢𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 ←

𝑓𝑢𝑡𝑢𝑟𝑒_𝑀𝑎𝑟𝑘𝑜𝑣_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒)
17 𝑰𝒇 𝑓𝑢𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 = 𝑂 𝒕𝒉𝒆𝒏
18 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ← 𝑇𝑟𝑢𝑒
19 𝒆𝒍𝒔𝒆 𝑰𝒇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 = 𝑈 𝑎𝑛𝑑 𝑓𝑢𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 = 𝑈 𝒕𝒉𝒆𝒏
20 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ← 𝑇𝑟𝑢𝑒

21 return 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑,

 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 _𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑

3.3.2.2 VM placement

VM placement algorithm is the last phase that comes after the detection of the

overloaded/underloaded hosts and after the suitable VMs are selected to be migrated.

48

During this phase, suitable hosts are to be found to migrate all the selected VMs, which

fits the requirements of these VMs. In the literature, a single build in VM placement

exists in CloudSim [52, 67] called Power Aware Best Fit Decreasing (PABFD), where all

the VMs are sorted based on their current CPU utilization in a descending order. Each

VM is allocated to a host with the least increase of the power consumption caused by the

allocation. We have modified the existing VM placement algorithm by adding the

Markov prediction model into the PABFD. In our Markov Power Aware Best Fit

Decreasing (MPABFD) algorithm, the future host load state is predicted based on the

historical data collected and stored in the log file.

Algorithm 2-3: Markov Power Aware Best Fit Decreasing

(MPABFD) algorithm

1 Input: hostlist, selected_vm.

2 Output: a host to receive the selected VM

3 𝑚𝑖𝑛𝑃𝑜𝑤𝑒𝑟 ← 𝑀𝐴𝑋

4 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑_ℎ𝑜𝑠𝑡 ← 𝑁𝑜𝑛𝑒

5 𝒇𝒐𝒓𝒆𝒂𝒄𝒉 ℎ𝑜𝑠𝑡 𝑖𝑛 ℎ𝑜𝑠𝑡𝑙𝑖𝑠𝑡 𝒅𝒐

6 If (host has enough resources for the selected_vm &&

 hostisactive = true && hoststateafterallocation ()

 ! = O) then

7 𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡1[] ← 𝑎𝑑𝑑. ℎ𝑜𝑠𝑡

8 𝒇𝒐𝒓𝒆𝒂𝒄𝒉 ℎ𝑜𝑠𝑡 𝑖𝑛 𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡1[] 𝒅𝒐

9 𝑓𝑢𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒

 ← ℎ𝑜𝑠𝑡. 𝑓𝑢𝑡𝑢𝑟𝑒_𝑀𝑎𝑟𝑘𝑜𝑣_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒(𝑠𝑡𝑎𝑡𝑒)

10 𝑰𝒇 (𝑓𝑢𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 == 𝑈 𝑜𝑟 𝑁)𝒕𝒉𝒆𝒏

11 𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡2[] ← 𝑎𝑑𝑑. ℎ𝑜𝑠𝑡

12 𝒇𝒐𝒓𝒆𝒂𝒄𝒉 ℎ𝑜𝑠𝑡 𝑖𝑛 𝑻𝒆𝒎𝒑𝑯𝒐𝒔𝒕𝒍𝒊𝒔𝒕𝟐 𝒅𝒐

13 𝑝𝑜𝑤𝑒𝑟 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑃𝑜𝑤𝑒𝑟(ℎ𝑜𝑠𝑡, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚)

14 𝑰𝒇 (𝑝𝑜𝑤𝑒𝑟 < 𝑚𝑖𝑛𝑃𝑜𝑤𝑒𝑟) 𝒕𝒉𝒆𝑛

15 𝑚𝑖𝑛𝑃𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟

16 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑_ℎ𝑜𝑠𝑡 ← ℎ𝑜𝑠𝑡

17 𝒓𝒆𝒕𝒖𝒓𝒏 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑_ℎ𝑜𝑠𝑡

49

Algorithm 2-3 describes our MPABFD algorithm that results in a host to receive

the selected VM. The resource availability is first checked for all the active hosts, bearing

in mind that all the candidate hosts are not overloaded after the allocation. The candidate

temporary host list is stored in array 𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡1[]. Next the future state for all the

candidate hosts stored in 𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡1[] are checked. If the future state is overloaded,

then the host is excluded from the array. A new temporary array, 𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡2[], is

generated, which is a subset of 𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡1[]. Finally, power constraint is considered

where a host with the minimum power has higher priority to be selected.

3.3.3 Sequence Diagram Scenarios

In the following sequence diagrams, our proposed algorithms are explained in detail. As

previously mentioned, the selection process is gone through three different steps which

are the host detection, VM selection and the VM placement. At the very beginning, the

host detection agent resides in each host trigger the host detection process, as explained

in algorithm.

Figure 3-3 shows an example of Overloaded detection. An overloaded host load

state is discovered by the host detection agent and the state is sent to the host manager.

The host manager sends the current host load state to the Markov agent to check the

future state. As shown in the sequence diagram, the current host load state is overloaded,

the Markov agent predicts the future host load state and send it back to the host manager.

If the future host load state is either underloaded or normally loaded, then the host

manager will ignore the overloaded host and consider it as an underloaded host since it is

predicted to be underloaded in the near future.

50

The host load detection is run repeatedly until the host manager and the Markov

agent both determine the host load state as an overloaded. At this specific time, the data

center manager is notified of the current/future host overloaded state and the resource

availability is checked in the database. Data center manager and host manager are both

notified whenever the resources are available. Then the host manager ordered the VM

selection agent to find the VM to migrate into it. Placement agent is also notified to find

the suitable host for the VM placement to take place. The first thing to be checked by the

placement agent is the load state after the VM allocation is performed and whether the

state is moved to the overloaded state or not. If the state is going to be overloaded after

the allocation process, then the placement is not executed. In the VM placement

algorithm, current and future host load state are both considered to make the placement

decision. Whenever the current and future host load state is underloaded/normal the VM

placement process is started and finally the VM live migration process after checking all

the candidate hosts and find the most suitable host with the minimum power. In our

scenario, Host 3 and Host 5 both satisfied the first two conditions which are related to the

current load state after allocation and the future load state. Host 3 is then selected since it

has the minimum power and the VM 3 is migrated to this host.

51

Host Detection
Agent

Host Manager

Overlaoded detection

Markov Agent

Current state(Overloaded)

Overlaoded detection

Ignore it

VM Selection
Agent

Current state(Overlaoded)

Data Cenetr
Manager

Notify overloaded detection

Database
Placement

Agent

Host
Manage

r Host
Manage

r Host
Manage

r

Host 1 Host 2

Available resource
Yes

List (VM3)

Host 3

Host 4

List (VM3)

Host 3 & Host 5

Host 3

Host
Manage

r

Host 5

 future State = U or N?

Yes

Check current
state after VM3
allocation to all

Active list of
host are not
Overloaded

Yes

No

 future State = U or N?

 future State = U or N?

Host 2, 3 & 5

Figure 3-3: Overload Host Detection

On the other hand, an underloaded host load state is discovered by the host

detection agent and the state is sent to the host manager. Then Markov agent is the entity

responsible on finding the future host load state, after receiving the current host load

state. In this scenario, the current host load state is underloaded, and the predicted future

load state is either overloaded or in normal state. In this case, the current underloaded

state will be neglected since the future state is not underloaded. This checking process is

performed periodically by the host detection agent until the current load state matches the

future load state, which must be “underloaded”, then the data center manager is informed

of the underloaded host state. Resources availability are checked afterwards in order to

52

perform the migration of the underloaded VMs and shut down those hosts to save power.

Whenever an available resource is found, the list of VMs input is fed up to the data center

manager and to the placement agent. The list of VMs are sorted in a decreasing order

based on the power. In our example, Host3 is considered the best host suitable for the

migration since it has the least power and lowest load compared to the other hosts, but

before the migration started another metric should be considered which is the future load

state for the host. If the future load state is predicted to be overloaded then another host

should be found, otherwise the migration process started. This is shown in Figure 3-4

below.

Host Detection
Agent

Host Manager

Underlaoded detection

Markov Agent

Current state(Underloaded)

Ignore it

VM Selection
Agent

Current state(Underloaded)

Data Cenetr
Manager

Notify underloaded detection

Database
Placement

Agent

Host
Manage

r Host
Manage

r Host
Manage

r

Host 1 Host 2

Available resource

Host 3

Host 4

Host
Manage

r

Host 5

Yes

List of VMs (VM1)

Host 2 & Host 3

Check current
state after VM1
allocation to all

Active list of hosts
(H2 & H3 & H4)
are Overloaded

List of VMs (VM1)

Host 3

Underlaoded detection

Available resource

Host 2 & Host 3

 future State = U or N?

 future State = U or N?

Yes

Yes

Figure 3-4: Underload Host Detection

53

3.3.4 Illustrative Scenario

Consider 3 heterogeneous hosts ℎ = < ℎ1, ℎ2, ℎ3 > and 7 VMs 𝑉 = <

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7 > allocated on them. The loads of VMs are allocated to each

host as following, ℎ1 = < 𝑣1 = 0.4, 𝑣2 = 0.2, 𝑣3 = 0.3 >, ℎ2 = < 𝑣4 = 0.1 >, ℎ3 =

 < 𝑣6 = 0.2, 𝑣7 = 0.2 >. The upper threshold is assumed to be a dynamic threshold,

𝑈𝑇 (ℎ1, ℎ2, ℎ3) = < 0.8, 0.7, 0.7 >. In addition to the VM loads, each host has extra

loads equal to 𝐸𝐿(ℎ1, ℎ2, ℎ3) = < 0.03, 0.04, 0.05 >.

Host 1 detection agent determines an overload situation has occurred according to:

ℎ1𝑙𝑜𝑎𝑑 = 𝑣1 𝑙𝑜𝑎𝑑 + 𝑣2 𝑙𝑜𝑎𝑑+ 𝑣3 𝑙𝑜𝑎𝑑 + ℎ1𝐸𝑙

 = 0.4 + 0.2 + 0.3 + 0.03 = 0.93.

 ℎ1𝑙𝑜𝑎𝑑 ≥ ℎ1𝑈𝑇 = 0.93 ≥ 0.8

The aim is to migrate a VM in order to avoid SLA violation. To check the host load

future state before migrating some VMs, Markov prediction model agent will calculate

the future state using the historical data in h1 given by Historical (h1) = <

𝑢, 𝑢, 𝑢, 𝑜, 𝑢, 𝑛, 𝑛, 𝑛, 𝑛, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑛, 𝑜, 𝑛, 𝑜, 𝑜, 𝑜 >. The future host load state is calculated

as:

𝑃(𝑤𝑛 = 𝑂 | 𝑤𝑛−1 = 𝑂) = 𝑃𝑂𝑂 =
𝑃(𝑤𝑛 = 𝑂, 𝑤𝑛−1 = 𝑂)

𝑃(𝑂)

 =
𝑃(𝑤𝑛=𝑂,𝑤𝑛−1=𝑂)

𝑃(𝑤𝑛=𝑂,𝑤𝑛−1=𝑈)+𝑃(𝑤𝑛=𝑂,𝑤𝑛−1=𝑁)+𝑃(𝑤𝑛=𝑂,𝑤𝑛−1=𝑂)

𝑃𝑂𝑂 =
2

1 + 1 + 2
= 0.5

Similarly, 𝑃𝑂𝑈 = 0.25 and 𝑃𝑂𝑁 = 0.25. Note that the host will probably stay in the

overload situation, therefore some VMs should be migrated. Let the selection agent select

54

𝑣2 to be migrated. To find the destination host for allocating 𝑣2, MPABFD starts to

investigate the first condition, to find the candidate hosts with the capacity requirement

still under the threshold after allocating 𝑣2 as:

ℎ2 𝑁𝑒𝑤𝑙𝑜𝑎𝑑 = ℎ2 𝑙𝑜𝑎𝑑 + 𝑣2 𝑙𝑜𝑎𝑑 = 0.14 + 0.2 = 0.34

ℎ3 𝑁𝑒𝑤𝑙𝑜𝑎𝑑 = ℎ3 𝑙𝑜𝑎𝑑 + 𝑣2 𝑙𝑜𝑎𝑑 = 0.45 + 0.2 = 0.65

As noted, both new loads are less than their upper thresholds. The second condition

is now investigated on both the candidate hosts to predict the future state using their

historical data. Considering Historical (h2) = < 𝑢, 𝑜, 𝑢, 𝑜, 𝑢. 𝑛. 𝑛. 𝑛. 𝑛, 𝑢, 𝑜, 𝑢

, 𝑢, 𝑜, 𝑛, 𝑜, 𝑜, 𝑜, 𝑜, 𝑢 >, we calculate 𝑃𝑈𝑈 = 0.1667, 𝑃𝑈𝑁 = 0.1667 𝑎𝑛𝑑 𝑃𝑈𝑂 = 0.6667.

Host 2 will move to overloaded state. Similarly considering Historical (h3) = <

𝑢, 𝑢, 𝑛, 𝑜, 𝑛, 𝑛, 𝑢, 𝑛, 𝑛, 𝑛, 𝑜, 𝑜, 𝑛, 𝑛, 𝑛, 𝑢, 𝑛, 𝑛, 𝑜, 𝑛 >, we calculate 𝑃𝑁𝑈 = 0.1818 , 𝑃𝑁𝑁 =

0.5454 and 𝑃𝑁𝑂 = 0.2727. Host 3 will stay in the normal state. It is therefore

recommended VM 𝑣2 to move to host 3 in order to reduce the number of VM migrations

and to avoid the SLA violation in the future.

3.4 Experimental setup

In this section, we describe the simulation setup of our proposed approach. We

explain the two types of workloads, PlanetLab called a real workload, and random

workload. Finally, the evaluation metrics will be described.

3.4.1 Simulation setup

It is difficult to do experiments in a very noticeably dynamic environment like cloud

because using real test delimits the experiments to the scale of the infrastructure and

55

makes reproducing the results an extremely difficult undertaking [69]. In addition,

measuring performance in real cloud environment is very sophisticated and time-

consuming [70]. For these reasons, the CloudSim simulation tool has been chosen to test

our approaches before deploying them in real cloud. Other simulators like GangSim,

SimGrid, GridSim [71-73] do not provide suitable environment that can be directly used

for modeling cloud computing environment. They are unable to isolate the multilayer

service abstractions i.e. SaaS, PaaS and IaaS required by Cloud. On the other hand, The

CloudSim tool supports modeling and simulation of data centers on a single physical

computing node that contains implemented algorithms in order to compare them with the

proposed approach.

To evaluate the efficiency of our algorithms with the existing algorithm, we have

used the same experiment setup as used in [41] with some different workload. A data

center has been simulated having 𝐽 heterogeneous physical hosts and 𝑉 virtual machines.

The value of 𝐽 and 𝑉 depends on the type of workload which is specified in Table 3-1

[74]. In each workload, half of hosts are HP ProLiant ML110 G4 servers 1,860 MIPS

each core, and the other half consists of HP ProLiant ML110 G5 servers with 2,660

MIPS each core. Depending on the CPU and memory capacity four types of single-core

VMs are used: High-CPU Medium Instance: 2500 MIPS, 0.85 GB; Extra Large Instance:

2000 MIPS, 3.75 GB; Small Instance: 1000 MIPS, 1.7 GB and Micro Instance: 500

MIPS, 0.633 GB. The characteristics of these VM types are similar to Amazon EC2

instance types.

56

Table 3-1: Characteristics of the workload data (CPU utilization)

Workload Type Date Host VMs Mean (%) SD(%)

Real (PlanetLab) 03/03/2011 800 1052 12.31 17.09
 22/03/2011 800 1516 9.26 12.78
 03/04/2011 800 1463 12.39 16.55
 20/04/2011 800 1033 10.43 15.21

Random --------------- 50 50 ------- --------

3.4.2 Workload Data

To make the simulation based evaluation applicable, we evaluate the Markov

Prediction Model approach on random workload and real-world publicly available

workloads:

• Real Workload (PlanetLab data) [74]: This is provided as a part of the CoMon

project; it is a monitoring infrastructure for PlanetLab. In this project, the CPU

utilization data is obtained every five minutes from more than a thousand VMs from

servers located at more than 500 places around the world. Data is stored in ten

different files. We chose two different days from the workload traces gathered

during March 2011 and one day from April 2011 of the project. Through the

simulations, each VM is randomly assigned a workload trace from one of the VMs

from the corresponding day. Table 3-1 shows the characteristics of each workload.

• Random Workload: Requests for provisioning of 50 heterogeneous VMs that fill the

full capacity of the simulated data center are submitted by the users. Each VM runs

an application with the variable workload, which is modeled to generate the

utilization of CPU according to a uniformly distributed random variable. Each

application has a length that determines the number of instructions with MI. The

application runs for 150,000 MI that is equal to 10 minutes of the execution on 250

MIPS CPU with 100% utilization.

57

3.4.3 Performance Metrics

To compare the performance of our proposed algorithms with the existing algorithms we

have chosen eight metrics which are previously defined: SLA violation, percentage of

SLA violation time per active host and SLA%, performance degradation that occurs due

to migration of VM from one host to another while balancing load or switching off

underutilized servers, average SLA violation which describes how many times allocated

resources are less than required resources, total number of VM migration occurred either

for hotspot mitigation or for VM consolidation, total energy consumption by the physical

resources for executing variable workloads, and finally number of hosts that are

switching off.

• SLA Violation: In a cloud environment, SLA is agreed between the service

provider and the user to ensure the required level of service. SLA contains various

details of service level that will be provided to a user, such as, minimum capacities

of CPU, RAM, storage, and bandwidth. In case of SLA violation, a party that is

responsible for its breach has to pay a fine to the other party. The CPU usage by a

VM arbitrarily varies over time. The host is oversubscribed, i.e. if all the VMs

request their maximum allowed CPU performance, and the total CPU demand

exceeds the capacity of the CPU. It is defined that when the request for the CPU

performance exceeds the available capacity, a violation of the SLA established

between the resource provider and the customer occurs. For our studies, SLA

violation is calculated as shown in Equation (3.8) [52]:

𝑆𝐿𝐴 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (𝑆𝐿𝐴𝑉) = 𝑆𝐿𝐴𝑇𝐴𝐻 ∗ 𝑃𝐷𝑀 (3.8)

58

where SLAV denotes SLA violation, SLATAH represents SLA violation Time per Active

Host, and PDM stand for Performance Degradation due to Migrations. Following

equations can be used to calculate SLATAH and PDM.

• SLA violation time per active host (SLATAH): is the observation that if a host

serving applications is experiencing the 100% utilization, the performance of the

applications is bounded by the host’s capacity; therefore, VMs are not being

provided with the required performance level. In other word, it means SLA

violations due to overutilization [52].

𝑆𝐿𝐴𝑇𝐴𝐻 =
1

𝐽
∑

𝑇𝑠𝑗

𝑇𝑎𝑗

𝐽

𝑗=1

(3.9)

where 𝐽 is number of hosts, 𝑇𝑠𝑗 is the total time that utilization of host 𝑗 reaches 100 %,

and 𝑇𝑎𝑗 is the lifetime (total time that host is active) of host 𝑗. When host utilization

reaches 100 %, the applications performance is bounded by the host.

• Performance degradation due to migration (PDM): Live migration is the process of

moving VMs from one host to another one (without suspension), it has a negative

impact on user applications performance. Voorsluys et al. [71] show that this

impact depends on application behavior, and the performance degradation can be

estimated as 10% of CPU utilization. In other word, it means the SLA violations is

due to migration.

𝑃𝐷𝑀 =
1

𝑉
∑

𝐶𝑑𝑣

𝐶𝑟𝑣

𝑉

𝑣=1

(3.10)

59

where V is the number of VMs, 𝐶𝑑𝑣 estimated as 10% CPU utilization of 𝑉𝑀𝑣 in all

migrations, 𝐶𝑟𝑣 is total CPU requested by 𝑉𝑀𝑣.

• Average SLA violation: is measured as the mean of the difference between total

requested resources (MIPS) by all the VMs and total allocated resources (MIPS).

Equation (3.11) can be used to calculate

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝐿𝐴𝑉 =
∑ (𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑀𝐼𝑃𝑆) − ∑ 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑀𝐼𝑃𝑆𝑉

𝑣=1 𝑉
𝑣=1

𝑉

(3.11)

where V shows number of VMs

• Overall SLA violation: is measured as the mean of the difference between total

requested resources (MIPS) by all the VMs and total allocated resources (MIPS)

[68]. Equation (3.12) can be used to calculate

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝐿𝐴𝑉 =
∑ (𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑀𝐼𝑃𝑆) − ∑ 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑀𝐼𝑃𝑆𝑉

𝑣=1 𝑉
𝑣=1

∑ (𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑀𝐼𝑃𝑆)𝑉
𝑣=1

(3.12)

where V is the number of VMs.

• Number of VM migration: a higher number of VM migrations increases the

network load, and results in performance degradation. Equation (3.13) can be used

to calculate the number of migrations during a given time interval [22].

𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠(𝑃, 𝑡1, 𝑡2) = ∑ ∫ 𝑀𝑖𝑔𝑗(𝑃, 𝑡)
𝑡2

𝑡1

𝐽

𝑗=1

(3.13)

where 𝑃 represents the current placements of VMs, 𝐽 is the number of hosts, 𝑀𝑖𝑔𝑗(𝑃, 𝑡)

shows the number of migration of Host 𝑗 between time intervals 𝑡1𝑎𝑛𝑑 𝑡2 for the

placement 𝑃.

• Energy Consumption: In order to measure the power consumption of a given host

at a time t with placement P [75]. Equation (3.14) can be used to calculate

60

𝑊𝑗(𝑃, 𝑡) = 𝑘 ∗ 𝑊𝑚𝑎𝑥 + (1 − 𝑘) ∗ 𝑊𝑚𝑎𝑥 ∗ 𝑈𝑗(𝑃, 𝑡)

(3.14)

where 𝑊𝑚𝑎𝑥 is the power consumption of the host at 100% utilization, k is the static

power coefficient that is equal to the amount of power consumption by an idle processor.

According to [76], an idle processor consumes 70% of the power consumed when its

utilization is 100%. Therefore, in our experiments, k is set to 70%. In this model,

𝑈𝑗(𝑃, 𝑡) is the current CPU utilization of a host 𝑗 at time t, which has a linear relationship

with the power consumption. Total energy consumption of all the hosts between time t1

and t2, can be calculated using Equation (3.15).

𝐸𝑛𝑒𝑟𝑔𝑦(𝑃, 𝑡1 , 𝑡2) = ∑ ∫ 𝑊𝑗(P, 𝑡)
𝑡2

𝑡1

𝐽

j=1

(3.15)

Table 3-2 illustrates the amount of energy consumption of two types of HP G4 and G5

servers at different load levels. The table shows the energy consumption is reduced

efficiently when under-utilized PMs switch to the sleep mode [52].

Table 3-2: The energy consumption at different load levels in Watts

Server sleep 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP G4 10 86 89.4 92.6 96 99.5 102 106 108 112 114 117

HP G5 10 93.7 97 101 105 110 116 121 125 129 133 135

• Number of host shutdowns: consolidation is applied to reduce the number of active

physical hosts, the quality of VM consolidation is inversely proportional to H, the

mean number of active hosts over n time steps [49]:

𝐻 =
1

𝑛
∑ 𝑎𝑖

𝑛

𝑖=1

(3.16)

where 𝑎𝑖 is the number of active hosts at the time 𝑠𝑡𝑒𝑝 𝑖 = 1, 2, . . . , 𝑛. A lower value of

H represents a better quality of VM consolidation.

61

QoS is mainly affected by the SLA violation, where the SLA violation is affected

by number of VMs migration, PDM, and SLATAH metrics.

3.5 Experimental Results

In this section, we first present the impact of the data length of host status history in our

algorithm that makes it perform the best on four different VM selection polices with three

different PlanetLab workloads and a random workload. We then show the impact of four

different VM selection polices on our algorithms. Then, we discuss our experimental

results in comparison to the benchmark algorithms. Finally, the impact of proposed

placement algorithm on MadMCHD algorithm is investigated.

3.5.1 Maximum Data length of host status history of Markov Model

One of the important parameter for Markov model is to determine the maximum data

length. Consequently, we first investigate a different range of data length in order to find

the most suitable length for the four different VM selection polices. To perform this

experiment, we study this parameter with three different PlanetLab workloads and a

random workload. To choose the best data length, we rely on the aforementioned eight

metrics. We have observed through this experiment that each data length parameter

affects VM selection policies differently. Therefore, we have chosen the data length

parameter that performs well in most of four VM selection policies. We have selected a

range for data length from 30 to 180. We have not increased the range over 180 because

of time complexity.

62

Figure 3-5: The impact of data length on the SLA metric

Figure 3-6: The impact of data length on the number of VM migration metric

We have studied the impact of the mentioned range on the eight metrics. However,

for the sake of space, we have shown the impact of data length on SLA violation and

number of VM migration metrics as shown in Figure 3-5 and Figure 3-6 respectively.

According to these figures, we have chosen the data length parameter, 120, and this

parameter is used for the comparison experiments. For instance, we calculate the average

63

of SLA violation metric when the work load is 20110303 and we have found the

following: when the MC policy is used and data length is 30, the average of SLA

violation metric is 4.2581. Also, the average SLA violation metric for the data length 60,

90, 120, 150, 180 are 2.9934, 2.78045, 1.984, 2.20512, and 2.0664 respectively. Based on

these numbers, we can see that the best data length is 120. From Figure 3-6, when the

work load is 20110322 is used, we have found that the average for number of VM

migration is 3296 when the data length is 120, while the average of VM migration is

3250 when the data length is 180. Since this is a slight difference, we consider 120 as the

most suitable data length to avoid time complexity when the data length is 180.

3.5.2 Comparison with other benchmarks

We are further interested in comparing our proposed algorithms with the state-of-the-art

algorithms. To perform this comparison, we employ the aforementioned eight metrics in

order to assess our results. Our comparison process is to study the algorithms’

performance in the entire selection process which includes host detection, VM selection,

and VM placement.

We compare the proposed algorithm, MadMCHD, with the state-of-the-art five

host detection algorithms, namely IQR, MAD, LRR, LR, and THR (which is a static

threshold set to 0.8) [42, 52, 67]. Besides, we investigate the impact of four well-known

VM selection polices on the proposed model, which are described below. The VM

selection algorithms include:

• Maximum Correlation (MC) is inspired that high correlation between tasks and

resource usage might lead to server overloading. MC uses the multiple correlation

coefficient which corresponds to the squared correlation between the predicted and

64

the actual values of the dependent variable [52].

• Minimum Migration Time (MMT): selects VMs based on the value of the

migration time, the less the better. The migration time can be easily computed as

the amount of RAM utilized by the VM divided by the additional network

bandwidth available for the current allocated host [52].

• Maximum Utilization (MU): Choosing the VMs to migrate from the hotspot based

on the largest possible CPU usage can be expected to minimize the number of

migrations [41].

• Random Selection (RS): selects the necessary number of VMs by picking them

according to a uniformly distributed random variable [40].

For IQR, LR, LRR, MAD, THR, and MadMCHD, we use the well-known

placement method which is called PABFD [42,52]. The main goal of these experiments is

to substantiate the threshold adaptability in hypothesis by evaluating the performance of

the proposed algorithm across single workload (20110322) that traces from more than a

thousand PlanetLab servers and one random workload. In the following we compare our

results with the minimum value for each selection algorithms when applied to host

detection algorithms. For example, when selection algorithm MC is applied to all state-

of-the-art detection algorithms, we compare our result with the one which gives

minimum value (example SLA % in Figure 3-7).

From the simulation results depicted in Figure 3-7 and Figure 3-8, it is completely

obvious that the proposed algorithm significantly outperforms the other algorithms in

terms of SLA violation for both 20110322 PlanetLab real workload and the random

workload, since our proposed host load detection algorithm avoids immediate VMs

65

migration. It reduces SLA violation metric by 97.19%, 96.16%, 92.34%, and 90% for the

real workload, and by 98.25%, 97.98%, 98.39, and 98.54% for the random workload for

VM selection policies MC, MMT, MU, and RS respectively.

Figure 3-7: SLA violation for real workload trace

Figure 3-8: SLA violation for a random workload trace

From the simulation results depicted in Figure 3-9 and Figure 3-10, it is completely

obvious that the proposed algorithm significantly outperforms the other algorithms in

terms of number of VM migrations for both 20110322 PlanetLab real workload and the

random workload, since our proposed algorithm avoids immediate VMs migration. The

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

iqr lr lrr mad thr MadMCHD

20110322

SL
A

 %

mc

mmt

mu

rs

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

iqr lr lrr mad thr MadMCHD

random

SL
A

 %

mc

mmt

mu

rs

66

proposed host load detection algorithm reduces number of VM migrations metric by

88.73%, 89.90%, 85.35%, and 89.15% for the real workload, and by 83.97%, 87.74%,

84.61%, and 80.07% for the random workload for VM selection policies MC, MMT,

MU, and RS respectively.

Figure 3-9: Number of VM migrations for real workload trace

Figure 3-10: Number of VM migrations for a random workload trace

From the simulation results depicted in Figure 3-11 and Figure 3-12 it is

completely obvious that the proposed algorithm significantly outperforms the other

algorithms in terms of PDM for both 20110322 PlanetLab real workload and the random

0

5000

10000

15000

20000

25000

30000

35000

40000

iqr lr lrr mad thr MadMCHD

20110322

N
u

m
b

e
r

o
f

V
M

 m
ig

ra
ti

o
n

s

mc

mmt

mu

rs

0

1000

2000

3000

4000

5000

6000

7000

iqr lr lrr mad thr MadMCHD

random

N
u

m
b

e
r

o
f

V
M

 m
ig

ra
ti

o
n

s

mc

mmt

mu

rs

67

workload, since our proposed algorithm reduces total CPU requested by 𝑉𝑀𝑠. The

proposed host load detection algorithm reduces PDM migration metric by 71.02%,

72.11%, 58.52%, and 79.05% for the real workload, and by 78.28%, 73.87%, 83.35%,

and 83.56% for the random workload for VM selection policies MC, MMT, MU, and RS

respectively.

Figure 3-11: Performance degradation for real workload trace

Figure 3-12: Performance degradation for a random workload trace

From the simulation results depicted in Figure 3-13 and Figure 3-14, it is

completely obvious that the proposed algorithm significantly outperforms the other

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

iqr lr lrr mad thr MadMCHD

20110322

P
D

M
 %

mc

mmt

mu

rs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

iqr lr lrr mad thr MadMCHD

random

P
D

M
 %

mc

mmt

mu

rs

68

algorithms in terms of SLATAH for both 20110322 PlanetLab real workload and the

random workload, since our proposed algorithm reduces total time of staying

overutilized. The proposed host load detection algorithm reduces SLATAH migrations

metric by 90.27%, 86.29%, 78.31%, and 90.83% for the real workload and by 84.58%,

86.30%, 82.19%, and 83.40% for the random workload for VM selection policies MC,

MMT, MU, and RS respectively.

Figure 3-13: SLA violation time per active host for real workload trace

Figure 3-14: SLA violation time per active host for a random workload trace

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

iqr lr lrr mad thr MadMCHD

20110322

SL
A

TA
H

 % mc

mmt

mu

rs

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

iqr lr lrr mad thr MadMCHD

random

SL
A

TA
H

 % mc

mmt

mu

rs

69

Figure 3-15 shows that the proposed algorithm slightly outperforms the other

algorithms in terms of the average SLA violation for 20110322 PlanetLab real workload.

Figure 3-16 shows that proposed algorithm is almost similar to the MAD and IQR

algorithms in term of the average SLA violation, and the performance of the proposed

algorithm is not much better than that of LR, LRR and THR algorithms for the random

workload.

Figure 3-15: average SLA violation for real workload trace

Figure 3-16: average SLA violation for a random workload trace

0.088

0.09

0.092

0.094

0.096

0.098

0.1

0.102

0.104

iqr lr lrr mad thr MadMCHD

20110322

A
ve

ra
ge

 S
LA

 v
io

la
ti

o
n

mc

mmt

mu

rs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

iqr lr lrr mad thr MadMCHD

random

A
ve

ra
ge

 S
LA

 v
io

la
ti

o
n

mc

mmt

mu

rs

70

Figure 3-17 shows that the proposed algorithm slightly outperforms the lr and lrr

algorithms in term of overall SLA violation for 20110322 PlanetLab real workload. It

should be noted that the performance of THR, MAD and IQR algorithms still outperform

the other algorithms. It is completely obvious from Figure 3-18 that the proposed

algorithm significantly outperforms the other algorithms in terms of overall SLA

violation for the random workload. The proposed host load detection algorithm reduces

overall SLA violation metric by 81.05%, 81.22%, 76%, and 80.07% for VM selection

policies MC, MMT, MU, and RS respectively.

Figure 3-17: overall SLA violation for real workload trace

Figure 3-18: overall SLA violation for a random workload trace

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

iqr lr lrr mad thr MadMCHD

20110322

O
ve

ra
ll

SL
A

 v
io

la
ti

o
n

mc

mmt

mu

rs

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

iqr lr lrr mad thr MadMCHD

random

O
ve

ra
ll

SL
A

 v
io

la
ti

o
n

mc

mmt

mu

rs

71

Figure 3-19 and Figure 3-20 show that the proposed algorithm is almost similar to

the THR, MAD and IQR algorithms in term of the energy consumption. It should be

noted that the performance of the proposed algorithm is not much worse than that of LR

and LRR algorithms.

Figure 3-19: energy consumption for real workload trace

Figure 3-20: energy consumption for a random workload trace

From the simulation results depicted in Figure 3-21 and Figure 3-22, it is

completely obvious that the proposed algorithm significantly outperforms the other

algorithms in terms of number of host shutdowns for both 20110322 PlanetLab real

0

50

100

150

200

250

iqr lr lrr mad thr MadMCHD

20110322

En
e

rg
y

co
n

su
m

p
ti

o
n

kW
h

mc

mmt

mu

rs

0

10

20

30

40

50

60

iqr lr lrr mad thr MadMCHD

random

En
e

rg
y

co
n

su
m

p
ti

o
n

kW
h

mc

mmt

mu

rs

72

workload and the random workload, since our proposed algorithm reduces number of

active hosts. The proposed host load detection algorithm reduces number of host

shutdowns metric with minimum improvement reach by 82.44%, 85.44%, 80.31%, and

82.52% for the real workload, and by 81.45%, 84.36%, 82.59%, and 81.42% for the

random workload for VM selection policies MC, MMT, MU, and RS respectively.

Figure 3-21: number of host shutdowns for real workload trace

Figure 3-22: number of host shutdowns for a random workload trace

0

1000

2000

3000

4000

5000

6000

7000

8000

iqr lr lrr mad thr MadMCHD

20110322

N
u

m
b

e
r

o
f

h
o

st
 s

h
u

td
o

w
n

s

mc

mmt

mu

rs

0

200

400

600

800

1000

1200

1400

1600

1800

iqr lr lrr mad thr MadMCHD

random

N
u

m
b

e
r

o
f

h
o

st
 s

h
u

td
o

w
n

s

mc

mmt

mu

rs

73

Why a lower number of host shutdowns is better with similar energy consumption?

Host shutdown due to improper VM migration in case of underloaded hosts may result in

a host not to stay in the shutdown mode for a long time which does not result in a real

improvement in the power consumption. In our case a significant decrease in number of

host shutdown indicates a better scheduling of VMs in the data center. At the same time

there is an improvement in the SLA violation, a reduction in the number of VM

migrations, and an increase in the resource utilization.

QoS is satisfied by reducing the number of VM migrations, and the percentage of

PDM and SLATAH metrics, which in turn has an effect on reducing the percentage of

SLA violations.

3.6 The Impact of proposed placement algorithm on

MadMCHD algorithm.

We investigate the impact of our proposed MPABFD placement algorithm when it is

used in combination with our proposed MadMCHD host detection algorithm, termed as

MadMCHDPP as compared to another combination where the host detection algorithm

MadMCHD is used with the state-of-the-art placement algorithm PABFD, termed as

MadMCHD. For both combinations, the four selection policies are used, which are mc,

mmt, mu and rs. Figure 3-23 shows that the proposed combination MadMCHDPP

reduces overall SLA violation metric by 47.80%, 45.52%, 47.03% and 14.86% for the

real workload for VM selection policies MC, MMT, MU, and RS respectively. On the

other hand, the proposed combination MadMCHDPP is almost similar to MadMCHD in

the other metrics.

74

Figure 3-23: overall SLA violation for a random workload trace

3.7 Summary

In this chapter, we present Median Absolute Deviation Markov Chain Host Detection

algorithm (MadMCHD) based on a dynamic utilization threshold. The proposed

algorithm avoids immediate VMs migration in cloud data center by predicting the future

host CPU utilization. The current host CPU utilization is calculated and compared with

the lower and the upper threshold to determine the current host state. The future host state

is predicted using the proposed Markov host prediction model. The proposed algorithm

determines when to migrate VMs to achieve server consolidation and load balancing for

all the host states.

We present Markov Power Aware Best Fit Decreasing (MPABFD) algorithm to

enhance VMs placement process. The future candidate host load state is predicted to

avoid overloaded state of that host after a short period. We combine the proposed

algorithms in the selection process phases in the live migration for better performance,

MadMCHD as a host detection algorithm, MPABFD as a VM placement algorithm, and

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

120 120

MadMCHD MadMCHDPP

20110322

O
ve

ra
ll

SL
A

 v
io

la
ti

o
n

mc

mmt

mu

rs

75

some of the state of the art algorithms as a VM selection. We investigate the impact of

these VM selection polices on the proposed model.

The experimental results show that increasing of the data length of Markov model

results in an enhanced performance until a certain value, after which not much

improvement in performance is obtained. This value is chosen to not further increase the

time complexity of the system.

The experimental results show that MadMCHD algorithm can minimize SLA

violation rate, number of VM migration, and the other metrics significantly as compared

to the most commonly used THR, MAD, IQR, LR and LRR algorithms. The new

combination of the proposed MadMCHD and MPABFD algorithms shows overall SLA

violation is reduced significantly.

76

Chapter 4

4 Minimizing Biased VM Selection

4.1 Overview

VM selection algorithm selects one or more VMs from the full set of VMs running on a

given overload host, once a decision to migrate VMs from that host is made to achieve

host/server consolidation and load balancing in cloud data centers while satisfying the

QoS constraints. Presently, VM selection is a crucial decision for resource management

in the cloud data center management, especially with high dynamic environment. In this

Chapter, two new VM selection algorithms are proposed, namely Minimum VM

Migrated Count and Minimum migration time Minimum VM Migrated Count to avoid

frequent SLA violation on the same VM. New metrics are proposed to compare with

other VM selection algorithms. Our proposed algorithms are evaluated through CloudSim

simulation on different types of PlanetLab real and random workloads. The experimental

results demonstrate that the proposed algorithms show significant reduction in the

Maximum number of VM migrated count and the degree of load balancing of VMs

migrated count with the other state of the art algorithms.

77

4.2 Proposed VM Selection Policies

The process of migration not only makes the VM unavailable for a certain amount of

time but also consumes the network and CPU resources from both source and destination

hosts. This study proposes VM selection policies that resolve biased VM selection in live

VM migration, resulting in a fair SLA violation on all the VMs while keeping the same

percentage in the other metrics.

• Minimum VM Migrated Count (MiMc): The algorithm selects the VM to migrate

from the host overloaded based on the minimum number of VM migrated count.

• Minimum Migration Time Minimum VM Migrated Count (MmtMiMc): The

algorithm first selects VMs with the minimum amount of RAM to minimize the

live migration time [41] and sorts them in increasing order. Then, out of the

selected subset of VMs, the algorithm selects the VM with the minimum number

of VM migrated count.

Algorithm 4- 1: Minimum VM Migrated Count (MiMc) algorithm

1 Input: OverloadedHost.

2 Output: 𝑎 𝑉𝑀 𝑡𝑜 𝑚𝑖𝑔𝑟𝑎𝑡𝑒.

3 𝑚𝑖𝑛 _𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 𝑀𝑎𝑥

4 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚 ← 𝑁𝑜𝑛𝑒

5 𝑣𝑚𝐿𝑖𝑠𝑡 ← OverloadedHost. getVmList()

6 𝒇𝒐𝒓𝒆𝒂𝒄𝒉 𝑣𝑚 𝑖𝑛 𝑣𝑚𝐿𝑖𝑠𝑡 𝒅𝒐

7 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 = 𝑣𝑚. 𝑔𝑒𝑡𝑀𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡

8 𝒊𝒇 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 < 𝑚𝑖𝑛 _𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛 𝒕𝒉𝒆𝒏

9 𝑚𝑖𝑛 _𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡

10 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚 ← 𝑣𝑚

11 return 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚

78

Algorithm 4-2: Minimum Migration Time Minimum VM Migrated

Count (MmtMiMc) algorithm

1 Input: OverloadedHost, vms_ram_values.

2 Output: 𝑎 𝑉𝑀 𝑡𝑜 𝑚𝑖𝑔𝑟𝑎𝑡𝑒.

3 𝑚𝑖𝑛 _𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 𝑀𝑎𝑥

4 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚 ← 𝑁𝑜𝑛𝑒

5 𝑣𝑚𝐿𝑖𝑠𝑡 ← OverloadedHost. getVmList()

6 𝑣𝑚𝐿𝑖𝑠𝑡. 𝑠𝑜𝑟𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔_vms_ram_values()

7 𝑭𝒐𝒓 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 4; 𝑖 + +)

8 vmList2 [𝑖] ← 𝑣𝑚𝐿𝑖𝑠𝑡[𝑖]
9 𝒇𝒐𝒓𝒆𝒂𝒄𝒉 𝑣𝑚 𝑖𝑛 𝑣𝑚𝐿𝑖𝑠𝑡2 𝒅𝒐

10 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 = 𝑣𝑚. 𝑔𝑒𝑡𝑀𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡

11 𝒊𝒇 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 < 𝑚𝑖𝑛 _𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛 𝒕𝒉𝒆𝒏

12 𝑚𝑖𝑛 _𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡

13 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚 ← 𝑣𝑚

14 return 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚

We compare proposed algorithms, MiMc and MmtMiMc, with three state-of-the-art

VM selection algorithms, namely MC, MMT, and MU [41, 52]. Besides, we investigate

the impact of the four well-known host detection policies on the proposed algorithm.

These VM host detection algorithms include:

• Averaging threshold-based algorithm (THR) computes the mean of the n last CPU

utilization values and compares it to the previously defined threshold. The

algorithm detects underload state if the average of the n last CPU utilization

measurements is lower than the specified threshold.

• Median Absolute Deviation (MAD) specifies a lower threshold empirically, while

the upper threshold is calculated using the median of the absolute deviation from

the medians of the CPU usage data sets.

• InterQuartile Range (IQR) is another approach to determine the upper threshold,

while the lower threshold is determined empirically as before.

• Local Robust Regression (LRR) compares the maximum migration time to an

79

expected value and weights it before deciding of overloading in the host.

We used the same VM placement method which is called PABFD [42, 52]. The

VM allocation algorithm selects the destination host to receive the migrated VM, which

causes the least increase in the power consumption. The algorithm relies on the

traditional greedy algorithm to optimize the allocation of VMs.

4.3 System Model

The target system is an IaaS environment, represented by a large-scale data center. The

data center consists of a maximum of J heterogeneous hosts where each host contains

multiple VMs. Multiple VMs can be allocated to each host through VMM. Besides, each

host and VM are characterized by the CPU performance metrics defined in terms of

MIPS, the amount of RAM and network bandwidth. The target system model is depicted

in Figure 4-1 [42].

As shown in the Figure 4-1, the system model consists of global and local manager.

Users submit their needs for provisioning of M heterogeneous VMs. The local managers,

which are part of VMM, resides on each node and are responsible for keeping continuous

monitoring of a node’s CPU utilization, resizing the VM in accordance with their

resource needs and making decision about when and which VMs have to be migrated

from the node. The global manager resides on a master node and gathers information

from the local managers to keep the check of the general view of the utilization of

resources. The global manager gives commands for the optimization of the VM

placement. VMMs do actual resizing, migration of VMs and changes in power states of

the nodes.

80

Figure 4-1: System Model

4.4 Experimental Setup

To evaluate the efficiency of our algorithms with the existing algorithm, we have used

the same experiment setup as used in [42] with some different workload as explained in

section 3.4.1 and section 3.4.2 of Chapter 3.

 To make the simulation based evaluation applicable, we evaluate the proposed VM

selection approaches on random workload and three real-world [42] publicly available.

 To compare the performance of our proposed algorithms with the existing

algorithms we have considered five metrics. Three of them are previously defined in the

literature, which are SLA violation, total energy consumption by the physical resources

for executing variable workloads, and total number of VM migrations occurred either for

hotspot mitigation or for VM consolidation. These three metrices are explained in Section

3.6 of Chapter 3. We propose two new metrics, which are the maximum number of VM

81

migrated count and the degree of load balancing of VMs migrated count, and are

precisely defined below:

• Maximum number of VM migrated count: higher number of VM migrated count

increases violation on the VM, and results in performance degradation. Following

equation can be used to calculate the Maximum number of VM migrated count

during a given time interval.

𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡(𝑃, 𝑡1, 𝑡2) = 𝑀𝑎𝑥(∫ 𝑀𝑖𝑔𝑉𝑀1(𝑃, 𝑡)
𝑡2

𝑡1

, ∫ 𝑀𝑖𝑔𝑉𝑀2(𝑃, 𝑡)
𝑡2

𝑡1

, … , ∫ 𝑀𝑖𝑔𝑉𝑀𝑛(𝑃, 𝑡)
𝑡2

𝑡1

)

(4.1)

where 𝑃 represents the current placements of VM, 𝑀𝑖𝑔𝑉𝑀𝑛(𝑃, 𝑡) shows the number of

migration of VM 𝑛 between time intervals 𝑡1𝑎𝑛𝑑 𝑡2 for the placement 𝑃.

• Degree of load balancing of VMs migrated count: a lower number of degree of

load balancing reduces biased selection among VMs, resulting in a fair SLA

violation on all the VMs. Degree of load balancing is calculated by the variance of

the VMs migrated count as indicated in the following equation:

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑙𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 = √
1

𝑁
∗ ∑(𝑚𝑖 − 𝑚̅)2

𝑁

𝑖=1

 (4.2)

𝑚̅ =
1

𝑁
∗ ∑ 𝑚𝑖

𝑁

𝑖=1

(4.3)

where 𝑚𝑖 represents migrated count of VM𝑖, N is the number of VMs, and 𝑚̅ is average

VM migrated count as calculated using Equation (4.3).

82

4.5 Experimental Results

We selected five performance metrics to compare the proposed algorithms with the

existing algorithms, which are SLA violation, total energy consumption, the total number

of VM migrations, and the newly proposed Maximum number of VM migrated count and

Degree of load balancing of VMs migrated count. We compare with VM selection

algorithms presented in [40, 52, 67] including MC, MMT, and MU among four well-

known host detection algorithms in [52, 67, 42] including IQR, LRR, MAD, and THR.

The main goal of these experiments is to substantiate the threshold adaptability in

hypothesis by evaluating the performance of the proposed algorithm across four

workloads. The four workloads include three real workloads (20110303, 20110322 and

20110403) that traces from more than a thousand PlanetLab servers and one random

workload.

From the simulation results depicted in Figure 4-2 and Figure 4-3, it is completely

obvious that the proposed algorithms significantly outperform the other algorithms in

terms of Maximum number of VM migrated count and Degree of load balancing of VMs

migrated count for all the real workload traces among four host detection policies.

Figure 4-2 shows that MiMc VM selection algorithm reduces Maximum number of

VM migrated count metric up to 41.03%, 68.92%, and 66.19% as compared to VM

selection policies MC, MMT, and MU respectively when the work load is 20110303.

There is almost the same reduction in the 20110322 and 20110403 workloads. Figure 4-2

also shows that MmtMiMc VM selection algorithm reduces Maximum number of VM

migrated count metric up to 12.50%, 52.03%, and 52.52% as compared to VM selection

83

policies MC, MMT, and MU respectively when the work load is 20110303. There is

almost the same reduction in the 20110322 and 20110403 workloads.

Figure 4-2: Maximum number of VM migrated count for real workload traces

Figure 4-3: Degree of load balancing of VMs migrated count for real workload traces

 Figure 4-3 shows that the Degree of load balancing of VMs migrated count metric

is reduced up to 4.63%, 46.48%, and 38.62% for MiMc as compared to the VM selection

policies MC, MMT, and MU respectively when the work load is 20110303. It should also

0

20

40

60

80

100

120

140

160

iqr lrr mad thr iqr lrr mad thr iqr lrr mad thr

20110303 20110322 20110403

M
ax

im
u

m
 n

u
m

b
e

r
o

f
V

M
 m

ig
ra

te
d

 c
o

u
n

t

mc

mmt

mu

MiMc

MmtMiMc

0

5

10

15

20

25

30

35

40

iqr lrr mad thr iqr lrr mad thr iqr lrr mad thr

20110303 20110322 20110403

D
e

gr
e

e
 o

f
lo

ad
 b

al
an

ci
n

g
o

f
V

M
s

m
ig

ra
te

d
 c

o
u

n
t

mc

mmt

mu

MiMc

MmtMiMc

84

be noted that almost the same reduction is obtained in the 20110322 and 20110403

workloads. Figure 4-3 also shows that for the proposed MmtMiMc algorithm, the Degree

of load balancing of VMs migrated count metric is reduced up to 25.85% and14.96% for

VM selection policies MMT, and MU respectively when the work load is 20110303. It

should also be noted that almost the same reduction is obtained in the 20110322 and

20110403 workloads.

Figure 4-4 compares the SLA violation of the two proposed algorithms with the

ones in the literature. The proposed MmtMiMc algorithm reduces SLA violation up to

32.14%, 25.85%, and 14.96% for MC, MU, and MiMc respectively when the work load

is 20110303. But MMT algorithm still outperforms as the best among the others.

Figure 4-4: SLA violation for real workload traces

Figure 4-5 shows that the proposed algorithms MiMc and MmtMiMc outperform

mmt and mu, and are similar to the mc algorithm in terms of number of VM migration.

The proposed MiMc and MmtMiMc VM selection algorithms reduce number of VM

migrations metric up to 14.42%, and 20.91% as compared to the VM selection policies

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

0.00009

iqr lrr mad thr iqr lrr mad thr iqr lrr mad thr

20110303 20110322 20110403

SL
A

 %

mc

mmt

mu

MiMc

MmtMiMc

85

MMT, and MU respectively when the work load is 20110303. There is almost the same

reduction in the 20110322 and 20110403 workloads.

Figure 4-5: Number of VM migrations for real workload traces

It can be seen from Figure 4-6 that the proposed algorithms are slightly better than

MMT, and MU and similar to MC in terms of the energy consumption.

Figure 4-6: Energy consumption for real workload traces

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

iqr lrr mad thr iqr lrr mad thr iqr lrr mad thr

20110303 20110322 20110403

N
u

m
b

e
r

o
f

V
M

 m
ig

ra
ti

o
n

s

mc

mmt

mu

MiMc

MmtMiMc

0

50

100

150

200

250

300

iqr lrr mad thr iqr lrr mad thr iqr lrr mad thr

20110303 20110322 20110403

En
e

rg
y

co
n

su
m

p
ti

o
n

kW
h

mc

mmt

mu

MiMc

MmtMiMc

86

From the simulation results depicted in Figure 4-7 and Figure 4-8, it is completely

obvious that the proposed algorithms significantly outperform the other algorithms in

terms of Maximum number of VM migrated count and Degree of load balancing of VMs

migrated count for the random workload. The proposed MiMc VM selection algorithm

reduces Maximum number of VM migrated count metric up to 25.41%, 52.11%, and

38.75% as compared to VM selection policies MC, MMT, and MU, respectively. It

reduces Degree of load balancing of VMs migrated count metric up to 89.74%, 97.44%,

and 90.67% as compared to VM selection policies MC, MMT, and MU, respectively.

Figure 4-7 and Figure 4-8 show that MmtMiMc VM selection algorithm reduces

Maximum number of VM migrated count metric up to 23.77%, 57.50%, and 36.25% as

compared to VM selection policies MC, MMT, and MU, respectively. It reduces Degree

of load balancing of VMs migrated count metric up to 87.68%, 96.91%, and 88.78% as

compared to VM selection policies MC, MMT, and MU, respectively.

Figure 4-7: Maximum number of VM migrated count for a random workload

trace

0

50

100

150

200

250

iqr lrr mad thr

random

M
ax

im
u

m
 n

u
m

b
e

r
o

f
V

M
 m

ig
ra

te
d

 c
o

u
n

t

mc

mmt

mu

MiMc

MmtMiMc

87

Figure 4-8: Degree of load balancing of VMs migrated count for a random workload

trace

It can be seen from Figure 4-9 that the proposed algorithms are similar to the MC,

and MU in terms of SLA violation. It should be noted that the performance of the

proposed algorithms is not much worse than that of MMT algorithm.

Figure 4-9: SLA violation for a random workload trace

Figure 4-10 shows that the proposed algorithms MiMc and MmtMiMc outperform

MMT and MU, and are similar to the MC algorithm in terms of number of VM

0

10

20

30

40

50

60

iqr lrr mad thr

random

D
e

gr
e

e
 o

f
lo

ad
 b

al
an

ci
n

g
o

f
V

M
s

m
ig

ra
te

d
 c

o
u

n
t

mc

mmt

mu

MiMc

MmtMiMc

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

iqr lrr mad thr

random

SL
A

 %

mc

mmt

mu

MiMc

MmtMiMc

88

migration. MiMc and MmtMiMc algorithms reduce number of VM migrations metric up

to 8.35%, and 17.93% for VM selection policies: MMT, and MU respectively.

Figure 4-10: Number of VM migrations for a random workload trace

It can be seen from Figure 4-11 that the proposed algorithms are similar to the MC,

MMT and MU in terms of the energy consumption for a random workload trace.

Figure 4-11: Energy consumption for a random workload trace

0

1000

2000

3000

4000

5000

6000

7000

iqr lrr mad thr

random

N
u

m
b

e
r

o
f

V
M

 m
ig

ra
ti

o
n

s

mc

mmt

mu

MiMc

MmtMiMc

0

10

20

30

40

50

60

iqr lrr mad thr

random

En
e

rg
y

co
n

su
m

p
ti

o
n

kW
h

mc

mmt

mu

MiMc

MmtMiMc

89

It should be noted that the improvements in both Maximum number of VM

migrated count and Degree of load balancing of VMs migrated count have direct impact

on the performance degradation for each VM in the cloud data center. These

improvements have impact on avoiding VM migration frequently resulting in a fair SLA

violation on all the VMs.

4.6 Summary

In this chapter, we present Minimum VM Migrated Count (MiMc) and Minimum

migration time Minimum VM Migrated Count (MmtMiMc) algorithms that resolve

biased VM selection in live VM migration. The proposed algorithms avoid frequent SLA

violation on the same VM in cloud data center by selecting the VM to migrate from the

overloaded host based on VM migrated count. The proposed algorithms determine which

VMs will be selected to migrate from the overloaded host to underloaded host to achieve

server consolidation and load balancing. The experimental results show that the proposed

algorithms can minimize maximum number of VM migrated count and degree of load

balancing of VMs migrated count significantly compared to the most commonly used

MC, MMT and MU algorithms, resulting in a fair SLA violation on all the VMs, while

keeping the same percentage in the other defined metrics.

90

Chapter 5

5 Proactive Selection Process for VM

Migration Across Cloud Data Centers

5.1 Overview

Live VM migration is a technique that migrates a VM and its application from one host to

another in the same data center, which is called LAN migration, or in a different data

center, which is called WAN migration. Live VM migration across cloud data centers are

useful for several cases despite the costs related to storage migrations and the overheads

of network reconfiguration, such as maintenance and upgrades, and large data centers

having computing infrastructure around the world that migrate VMs to follow the sun

without affecting the end user experience. In this chapter, we propose a new VM

selection algorithm, namely Minimum Migration Time Maximum User Ratio to be a

proactive solution for decreasing service downtime by minimizing the number of IP

reconfigurations that are required in case of WAN migration between the data centers.

Moreover, we propose new data center selection algorithms that also aim to be proactive

solutions to minimize IP reconfiguration time, resulting in minimizing the service

91

downtime. Two new metrics are proposed to indicate number of users that need IP

reconfiguration and the total distance of IP reconfiguration time. We extended CloudSim

to simulate and evaluate our proposed work for VM migration across the data centers on

random workload. The experimental results show that our proposed algorithms have a

significant reduction in terms of number of IP reconfigurations, and total distance than

the other competitive VM selection algorithms.

5.2 Cost of Live VM Migration

The following subsections explain the LAN migration and WAN migration process.

Moreover, metrics that are generally considered to measure the performance of live

migration are defined.

5.2.1 LAN VM Migration

The main idea in LAN migration is to transfer memory state of VM as shown in Figure 5-

1. Since we only need to migrate the VM memory state in the same LAN, we do not need

any kind of network reconfiguration process where the VM IP address should not be

changed. So, the destination host just only forces an ARP update within the broadcast

domain. Thus, from now on, all traffic addressed to the VM is sent to the destination host,

which itself forwards the traffic to the VM.

92

Figure 5-1: LAN Migration

Figure 5-2 explains the migration process in more detail [31]. The figure shows

total migration time between 𝑡0 and 𝑡3, which represents the total time required to

allocate a given VM on the destination host and deallocate this VM from the migrated

host as notification of moving this VM. The figure shows the downtime between 𝑡1

and 𝑡2, which represents the portion of total migration time when the VM is not running,

that is the time between pausing the VM on the source and resuming it on the destination.

Figure 5-2: LAN Migration Process

VM Memory

VM2VM1 VM3 VM3

Host 1 Host 3Host 2

LAN Network
attached storage

Allocate a VM
on target

Live Migration

Finish Page
transfer

deallocate VM
from source and

ARP update

t1t0 t3

Start Memory
Page transfer

t2

VM suspend
on source

VM migrated
to target

time

Service
resumed

93

5.2.2 WAN VM Migration

WAN migration is useful in many cases even though it has overhead related to network

reconfiguration process and costs associated with storage migration. Users’ geographical

region might be one of the reasons for the VM WAN migration in order to keep VM

closer to them, where large data centers or enterprises having computing infrastructure

around the world to migrate VMs. Moreover, VM WAN migration could be applied in

other cases to ensure load balancing, power saving [38], maintenance operation and

upgrade a data center [30].

WAN VM migration transfers memory state and the state of local disks as well.

Wide area migration uses the same concepts as legacy local migrations. However, one

important factor disturbs an efficient deployment of wide-area migration across Internet

Clouds. When a VM moves to a new subnet, a mobility solution or scheme should be

applied to ensure that new connections are made seamlessly to its new IP address after

the migration. Therefore, wide-area migration results into a mobility problem that may

render the service unreachable unless network recovery is performed [29-31, 33, 36-39].

Also, it will increase the performance degradation. In fact, all the network recovery

solutions still cause interruption of the service. Figure 5- 3 shows VM migrations over

WAN.

Figure 5-4 explains the migration process in more detail. The figure shows total

migration time between 𝑡0 and 𝑡3, which now includes the network reconfiguration. It

should be noted the downtime between 𝑡1and 𝑡2 for WAN VM migration is larger than

that of LAN VM migration due to its file storage transfer. In practice, the service

availability of VM does not depend only on the state of the VM (i.e., up or down) but

94

also on network connectivity [31]. As shown in Figure 5-4, there exists an additional time

in WAN VM migration required for VM to resume its services.

Figure 5-3: WAN Migration Process

Figure 5-4: WAN Migration Process

The figure shows the IP reconfiguration time between 𝑡2 and 𝑡3, which represents

the total time required to: 1) send a notification from the destination data center to the

source data center indicating end the migration (that means the connected user on the

V
M

 M
e

m
o

ry

VM2VM1

VM3

LAN Network
attached storage

WAN

VM10VM1 VM11

Host 1 Host 2

VM12

VM4 VM6

VM5

VM7 VM9

VM8

LAN
V

M
 sto

ra
ge

Network
attached storage

Network
reconfiguration
required

Allocate a VM
on target

Live Migration

Finish Pages
transfer

deallocate VM
from source

t1t0 t3

Start Memory &
storage transfer

t2

finish network and service handoff on
VM

Start network IP reconfiguration
and service handoff

VM suspend
on source

VM migrated
to target

Service
resumed

time

95

VMs have to connect to a new IP address), 2) send notification to the connected users

indicating them to start connection with the new data center, and 3) the connection time

between the users and the destination data center. The downtime and IP reconfiguration

time that are required for VM to resume its services in WAN VM migration is called

service downtime (𝑡3 - 𝑡1) as indicated in Equation (5.1).

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 + 𝐼𝑃 𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

 (5.1)

5.3 The Proposed System Model

In section 5.3.1, our proposed system architecture is explained. The VM selection

algorithm and data center selection algorithms are explained in section 5.3.2.

5.3.1 System Architecture

The target system is an IaaS environment, represented by large-scale data centers. Each

data center consists of a maximum of J heterogeneous hosts where each host contains

multiple public VMs. Each VM can be connected to a number of users. Besides, each

host and VM are characterized by the CPU performance metrics defined in term of MIPS,

the amount of RAM and network bandwidth. The target system model is depicted in

Figure 5-5, which is a modified version of the model described in [68].

Figure 5-5 shows the components of the proposed system model that provides

proactive selection techniques to address IP reconfiguration issue in WAN live VM

migration.

96

Figure 5-5: System Model

• Host Manager: a component that resides on every host for keeping continuous

observation on CPU utilization of the node. It makes local decisions, such as

deciding that the host is underloaded, or the host is overloaded and selecting VMs

to migrate to other hosts.

• Data Center Manager: a component that resides on every data center and gathers

information from host managers about the CPU utilization of its host, to manage

the allocation of VMs locally or widespread and initiating LAN VM live

migrations.

• Global Manager: a component that resides on one of the data centers and gathers

WAN

User1 User2 User3

User4 User5 User6

DATA CENTER 1

Host 1 Host 2

VM
1

Host j

VM
2

VM
1

VM
2

VM
2

VM
3

VM
4

VM
5

VM
3

VM
4

VM
3

VM
4

User1User2User3

User1User2

DATA CENTER k

Host 1 Host 2

VM
1

Host j

VM
2

VM
1

VM
2

VM
1

VM
2

VM
3

DATA CENTER 2

Host 1 Host 2

VM
1

Host j

VM
2

VM
1

VM
2

VM
1

VM
2

VM
3

User1 User2 User3

User4 User5 User6

VM
3

Global Manager

Data center 2 Manager

Data center 1 Manager

Data Center k Manager

Host 1
Manager

Host 2
Manager

Host j
Manager

VM
1

…………..

Host 1
Manager

Host 2
Manager

Host j
Manager

………

Host 1
Manager

Host 2
Manager

Host j
Manager

………

97

information from data centers managers and makes global management decisions,

such as mapping VM instances to a data center manager and initiating WAN VM

live migrations.

Host manager will check the CPU utilization status consistently for each host in its

data center. If each host CPU utilization is less than a previously defined resource

utilization threshold, then the system will be stable, and there is no need for LAN

migration. When any host CPU overutilization is detected a VM LAN migration is

triggered by data center manager between different hosts in the same data center to

maintain the fairness and load balancing between the hosts. In contrast, when the data

center CPU utilization is larger than a predefined CPU utilization threshold a VM WAN

migration is triggered. Then the CPU utilization status of the data center should be sent to

the global manager to select where to migrate the overloaded VMs based on the data

received periodically from each data center to achieve the load balancing between the

data centers as well.

5.3.2 The Proposed Work

Based on the proposed system model, the selection process algorithms can be divided

into five parts: (1) Host underload/overload detection, (2) LAN / WAN migration, (3)

VM selection, (4) Data center selection, (5) VM placement.

5.3.2.1 Host underload/overload detection

If a host is underutilized, then all the VMs from this host can be migrated in the same

data center and the host will go to sleep/shutdown mode, or the host will be considered as

a good candidate to receive the migrated VMs from the overloaded hosts in the future. On

98

the other hand, when a given host is overloaded some of its VMs must be selected to

migrate from this host to other hosts in the same data center or even a different data

center. In our experiments, the VM host detection algorithm used is (MAD) [42].

5.3.2.2 LAN/WAN migration

One of the reasons for WAN migration is when a data center is considered to be

overloaded and one or more VM migration is required from data center under

consideration. In our work, we assume the selected VMs always migrate to another data

center to make extensive evaluation and performance analysis of the proposed VM

selection and data center selection algorithms. In addition, we compare our proposed VM

selection policy with the state of the art VM selection methods algorithms in case of

WAN migration.

5.3.2.3 VM Selection

Once a host overload has been detected, it is necessary to determine which VMs are the

best to be migrated from the host. We propose a new algorithm called Minimum

Migration Time Maximum User Ratio (MMTMUR). The proposed algorithm takes the

number of users in the selected VM to be migrated into its consideration, in order to

obtain the minimum number of users that need IP reconfiguration due to WAN migration.

A new parameter, User Ratio, is introduced which calculates the ratio between the

number of users using the VM and the CPU utilization as indicated in Equation (5.2).

𝑈𝑠𝑒𝑟𝑅𝑎𝑡𝑖𝑜𝑣𝑗 =
𝐶𝑃𝑈𝑣𝑗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠 𝑜𝑓 𝑉𝑀 𝑣 𝑜𝑓 ℎ𝑜𝑠𝑡 𝑗
 (5.2)

where 𝐶𝑃𝑈𝑣𝑗 is defined as given in Equation (5.3).

99

𝐶𝑃𝑈𝑣𝑗 =
𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑀𝐼𝑃𝑆

𝑇𝑜𝑡𝑎𝑙𝑀𝐼𝑃𝑆 𝑓𝑜𝑟 VM v of host j
 (5.3)

where 𝐶𝑃𝑈𝑣𝑗 is the amount of CPU currently utilized by the VM 𝑣 of host 𝑗.

We consider both the VM migration time and User Ratio for migration between

different data centers. The migration time can be estimated as the amount of memory

used by the VM divided by the network bandwidth availability of that particular host

[42]. Migration time is formalized in Equation (5.4).

𝑇𝑀𝑖𝑔𝑣𝑗 =
𝑀𝑣

𝐵𝑗
 (5.4)

where 𝑇𝑀𝑖𝑔𝑣𝑗 is the migration time of the VM 𝑣 of host 𝑗, 𝑀𝑣 is the amount of memory

used by VM 𝑣, and 𝐵𝑗 is the available bandwidth of the host 𝑗.

The pseudo-code of the VM selection for the overutilization case is presented in

Algorithm 5-1. This algorithm first selects VMs with minimum migration time and sorts

them in increasing order. Then, out of the first 𝑖 selected VMs (in our case 𝑖 = 4), the

Algorithm 5-1: Minimum Migration Time Maximum User

Ratio (MMTMUR)

1 Input: OverloadedHost, VMs_RAM_values.

2 Output: 𝑎 𝑉𝑀 𝑡𝑜 𝑚𝑖𝑔𝑟𝑎𝑡𝑒.

3 𝑀𝑎𝑥 _𝑈𝑠𝑒𝑟𝑅𝑎𝑡𝑖𝑜 ← 𝑀𝑖𝑛

4 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑉𝑀 ← 𝑁𝑜𝑛𝑒

5 𝑉𝑀𝑙𝑖𝑠𝑡 ← OverloadedHost. getVMlist()

6 𝑉𝑀𝑙𝑖𝑠𝑡. 𝑠𝑜𝑟𝑡𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔_VMs_RAM_values()

7 𝑭𝒐𝒓 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 4; 𝑖 + +)

8 VMlist2 [𝑖] ← 𝑉𝑀𝑙𝑖𝑠𝑡[𝑖]
9 𝒇𝒐𝒓𝒆𝒂𝒄𝒉 𝑉𝑀 𝑖𝑛 𝑉𝑀𝑙𝑖𝑠𝑡2 𝒅𝒐

10 𝑈𝑠𝑒𝑟 𝑅𝑎𝑡𝑖𝑜 = 𝑉𝑀. 𝑔𝑒𝑡𝑈𝑠𝑒𝑟𝑅𝑎𝑡𝑖𝑜

11 𝒊𝒇 𝑈𝑠𝑒𝑟 𝑅𝑎𝑡𝑖𝑜 > 𝑀𝑎𝑥 _𝑈𝑠𝑒𝑟𝑅𝑎𝑡𝑖𝑜 𝒕𝒉𝒆𝒏

12 𝑀𝑎𝑥 _𝑈𝑠𝑒𝑟𝑅𝑎𝑡𝑖𝑜 ← 𝑈𝑠𝑒𝑟 𝑅𝑎𝑡𝑖𝑜

13 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑉𝑀 ← 𝑉𝑀

14 return 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑉𝑀

100

algorithm selects the VM with maximum user ratio, resulting in minimizing the number

of users that need IP reconfiguration.

In our experiments, the state of the art VM selection algorithms used to compare

with MMTMUR are presented in [40, 41, 52] including MC, MMT, MU and RS:

5.3.2.4 Data center Selection

Once the decision to migrate the VM from a given data center is made, it is

necessary to find the most suitable data center to receive the migrated VM. We propose

four data center selection algorithms:

• Data Center Random Selection (RSDC): selects a data center to receive the

migrated VM randomly.

• Data Center Minimum Utilization (MUDC): selects a data center to receive the

migrated VM based on the minimum utilization among data centers.

• Minimum IP Reconfiguration Time (MIPRT): selects a data center to receive the

migrated VM based on the minimum total time needed to connect the migrated

VM with its connected users.

• Minimum Utilization minimum IP Reconfiguration Time (MUIPRT): The

algorithm first selects VMs with the minimum utilization and sorts them in

increasing order. Then, out of the selected subset of VMs, the algorithm selects the

VM with the minimum distance to minimize the live migration time.

101

5.3.2.5 VM Placement

VM placement refers to finding the most suitable hosts in the same data center or other

data centers in order to receive the migrated VM. The VM placement algorithm method

used is PABFD [42, 52].

5.4 Experimental Setup

In this section, we describe the simulation setup of our proposed approach. Then, the

evaluation metrics will be described.

5.4.1 Simulation setup

We have simulated five data centers DC1, DC2, DC3, DC4, DC5 distributed in

different geographical areas of (500,1000,1500,2000,2500) km respectively. Each data

center contains 50 heterogeneous physical nodes of two types, half of the physical nodes

are HP ProLiant ML110 G4 server (Xeon3040) and the other half consists of HP

ProLiant ML110 G5 server (Xeon 3075). Each node is modeled to have two CPU cores

with performance equivalent to 1860 MIPS for each core of the HP ProLiant ML110 G4

server, and 2660 MIPS for each core of the HP ProLiant ML110 G5 server. In addition,

each node is modeled to have 1GB/s network bandwidth, 4GB of RAM and 50 GB of

storage. Table 5-1 shows data centers configurations, Table 5-2 illustrates host types and

Table 5-3 illustrates VM types.

The users submit requests for provisioning of 250 heterogeneous VMs, which are

randomly distributed over four types similar to Amazon EC2 instance types: High-CPU

Medium Instance (2500 MIPS, 0.85 GB), Extra Large Instance (2000 MIPS, 3.75 GB),

Small Instance (1000 MIPS, 1.7 GB), and Micro Instance (500 MIPS, 0.633 GB). In

102

addition, each VM requires one CPU core with 2500, 2000, 1000 or 500 MIPS, 100

Mbit/s network bandwidth and 2.5 GB of storage.

Each VM runs an application with the variable workload, which is modeled to

generate the utilization of CPU according to a uniformly distributed random variable.

Each application has a length that determines the number of instructions. The application

runs for 150,000 MI that is equal to 10 minutes of the execution on 250 MIPS CPU with

100% utilization. The interval of utilization measurements is every 5 minutes for 24

hours. Each VM is randomly connected to a maximum of 10 users with different

randomly generated distance from 100 km to 1500 km.

Table 5-1: Data Centers Configurations

Table 5-2 Hosts Types

Table 5-3: VM types

Data center Number of VMs geographical areas (KM)

D1 50 500

D2 50 1000

D3 50 1500

D4 50 2000

D5 50 2500

Host (Server) Type CPU Model Cores
Frequency

(MHz)
RAM (GB)

HP ProLiant G4 Xeon3040 2 1860 4

HP ProLiant G5 Xeon 3075 2 2660 4

VM Type (Instance) CPU (MIPS) RAM (GB)
Maximum

Connected Users

High-CPU Medium 2500 0.85 10

Extra Large 2000 3.75 10

Small Instance 1000 1.7 10

Micro Instance 500 0.633 10

103

5.4.2 Performance Metrics

We considered six metrics to evaluate our system model. Four of them are

previously defined in the literature, which are SLA violation, total energy consumption,

total number of VM migrations that occur either for hotspot mitigation or for VM

consolidation, and average SLA violation which describes how many times allocated

resources are less than required resources. In this chapter, we propose two new metrics,

which are the Number of IP reconfiguration and total distance for IP reconfiguration

time. All of the six metrics are precisely defined below:

• Number of IP reconfiguration: higher number of users that need IP reconfiguration

increases the network overload, and results in increased service downtime.

Following equation can be used to calculate the number of IP reconfiguration

during a given time interval for each data center.

𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑃, 𝑡1, 𝑡2) = ∑ ∫ ∑ 𝑊𝑀𝑖𝑔𝑗(𝑃, 𝑡)

𝐶

𝑐=1

𝑡2

𝑡1

𝐽

𝑗=1

 (5.5)

where 𝑃 represents the current placements of VMs, 𝐽 is the number of hosts, C is the

number of connected users to the WAN migrated VM, 𝑊𝑀𝑖𝑔𝑗(𝑃, 𝑡) shows the number

of WAN migrations of host 𝑗 between time intervals 𝑡1 and 𝑡2 for the placement 𝑃.

• Total Distance: higher number of total distance increases the network overload,

and results in increased service downtime. Following equation can be used to

calculate the total distance during a given time interval for each data center.

𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃, 𝑡1, 𝑡2) = ∑ ∫ 𝑊𝐼𝑃𝐶𝐷𝑗(𝑃, 𝑡)
𝑡2

𝑡1

𝐽

𝑗=1

 (5.6)

104

where 𝑃 represents the current placements of VMs, 𝑊𝐼𝑃𝐶𝐷𝑗(𝑃, 𝑡) shows the distance

needed to measure the IP reconfiguration time for each WAN migrated VM of host

𝑗 between time intervals 𝑡1𝑎𝑛𝑑 𝑡2 for the placement 𝑃.

𝑊𝐼𝑃𝐶𝐷𝑗(𝑃, 𝑡) = ⎸𝑥(𝑑𝑑, 𝑑𝑠) ⎸ + ∑ ⎸𝑥

𝐶

𝑐=1

(𝑑𝑠, 𝑐) ⎸

+ ∑ ⎸𝑥(𝑐, 𝑑𝑑) ⎸

𝐶

𝑐=1

(5.7)

where 𝑥(𝑑𝑑, 𝑑𝑠) represents the distance between the received data center and the

migrated data center, C is the number of connected users to the WAN migrated VM.

𝑥(𝑑𝑠, 𝑐) represents the distance between the migrated data center and the connected user.

And 𝑥(𝑐, 𝑑𝑑) represents the distance between connected user and the new location of the

migrated VM.

5.5 Experimental Results

In this section, we first present the impact of our proposed algorithms on each data center

separately and discuss our experimental results in comparison to the benchmark

algorithms. We then show the impact of the proposed algorithms on the whole system.

5.5.1 Comparison with other benchmarks for each data center

We are interested in showing the impact of our proposed algorithms on each datacenter.

We selected one performance metric, which is the number of IP reconfigurations, to

compare our proposed VM selection algorithm MMTMUR with the existing VM

105

selection algorithms presented in [40, 41, 52] including MMT, MU, MC, and RS, among

two proposed datacenter selection algorithms including, MIPRT and MUDC.

Figure 5-6 shows that data center DC5 has the least number of users that need IP

reconfiguration for WAN migration in all the VM selection algorithms, whereas data

center DC3 has the maximum number of users that need IP reconfiguration. It is

completely obvious that the proposed VM selection algorithm MMTMUR significantly

outperforms the other algorithms in terms of number of IP reconfiguration when the data

center selection algorithm is MIPRT.

Figure 5-6: Number of IP Reconfiguration on each Data Center Using MIPRT Algorithm

Figure 5-7 shows another example of the selection process effect on each

datacenter when the datacenter selection algorithm is MUDC. It is completely obvious

that the proposed VM selection algorithm MMTMUR significantly outperforms the other

algorithms in terms of number of IP reconfiguration when the datacenter selection is

MUDC. The figure shows that all the datacenters have almost the same number of users

that need IP reconfiguration for WAN migration for most of the VM selection algorithms,

and is the least when the VM selection is MMTMUR.

0

5000

10000

15000

20000

25000

30000

35000

40000

DC1 DC2 DC3 DC4 DC5

miprt

N
u

m
b

er
 o

f
IP

 R
ec

o
n

fi
gu

ra
ti

o
n

mmt

mmtmur

mu

mc

rs

106

Figure 5-7: Number of IP Reconfiguration on each Data Center Using MUDC Algorithm

5.5.2 Comparison with other benchmarks in the whole system

We are further interested in comparing our proposed algorithms with the state-of-the-art

algorithms. To perform this comparison, we employ the aforementioned six metrics in

order to assess our results. Our comparison process is to study the algorithms’

performance in the entire selection process which includes host detection, WAN/LAN

migration, VM selection, data center selection and VM placement.

We compare the proposed algorithm, MMTMUR, with the state-of-the-art four VM

selection algorithms, namely MMT, MU, MC, and RS. Besides, we investigate the

impact of four proposed datacenter selection polices, namely MIPRT, MUDC, MUIPRT,

and RSDC, on the VM selection algorithms.

From the simulation results depicted in Figure 5-8 and Figure 5-9 it is completely

obvious that the proposed VM selection algorithm significantly outperforms the other

algorithms in terms of number of IP reconfiguration and total distance in all datacenter

selection algorithms.

0

5000

10000

15000

20000

25000

30000

35000

DC1 DC2 DC3 DC4 DC5

mudc

N
u

m
b

er
 o

f
IP

 R
ec

o
n

fi
gu

ra
ti

o
n

mmt

mmtmur

mu

mc

rs

107

Figure 5-8: Number of IP Reconfiguration

Figure 5-9: Total Distance

Figure 5-8 shows that our MMTMUR VM selection algorithm reduces number of

IP reconfiguration metric by 20.93%, 26.44%, 17.18%, and 15.89% as compared to VM

selection policies MMT, MU, MC and RS respectively when the data center selection is

MIPRT, and by 24.01%, 29.74%, 19.02%, and 18.97% as compared to VM selection

policies MMT, MU, MC and RS respectively when the data center selection is MUIPRT.

Figure 5-8 also shows that MUDC outperforms the other data center selection algorithms

in terms of number of IP reconfiguration.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

miprt mudc muiprt rsdc

N
u

m
b

er
 o

f
IP

 R
ec

o
n

fi
gu

ra
ti

o
n

mmt

mmtmur

mu

mc

rs

0

20000000

40000000

60000000

80000000

100000000

120000000

miprt mudc muiprt rsdc

To
ta

l D
is

ta
n

ce
 K

M mmt

mmtmur

mu

mc

rs

108

Figure 5-9 shows that MMTMUR VM selection algorithm reduces total distance

metric by 40.62 %, 47.61%, 35.43%, and 34.98% as compared to VM selection policies

MMT, MU, MC and RS respectively when the data center selection is MUDC, and up to

43.04%, 48.51%, 37.24%, and 36.98% as compared to VM selection policies MMT, MU,

MC and RS respectively when the data center selection is MUIPRT. From the simulation

results depicted in Figure 5-9, it is completely obvious that MIPRT data center selection

algorithm significantly outperforms the other algorithms.

Figure 5-10 shows that the proposed VM selection algorithm outperforms the other

algorithms in terms of SLA violation in all the proposed data center selection algorithms

except MUDC. It reduces SLA violation metric by 5.23%, 1.95%, 2.93%, and 2.31% as

compared to VM selection policies MMT, MU, MC and RS respectively when the data

center selection is MUIPRT. Moreover, from the simulation results depicted in Figure 5-

10, it is obvious that MUDC data center selection algorithm has the best reduction of the

SLA violation. Since MUDC selects the data center based on the minimum utilization,

this lead to guarantee SLA for a long time more than the other data centers.

Figure 5-10: SLA Violation

11

11.5

12

12.5

13

13.5

14

14.5

15

miprt mudc muiprt rsdc

SL
A

 %

mmt

mmtmur

mu

mc

rs

109

From the simulation results depicted in Figure 5-11, it is completely obvious that

the proposed VM selection algorithm outperforms the other algorithms in terms of

number of VM migration metric in all the data center selection algorithms. Figure 5-11

shows that MMTMUR VM selection algorithm reduces number of VM migration metric

up to 13.24%, 21.37%, 7.3%, and 7.46% as compared to VM selection policies MMT,

MU, MC and RS respectively when the data center selection is MUIPRT. Figure 5-11

also shows that MUDC outperforms the other data center selection algorithms in terms of

number of VM migration metric.

Figure 5-11: Number of VM Migration

Figure 5-12 shows that the proposed MMTMUR algorithm is slightly better than

the other VM selection algorithm in terms of the energy consumption metric in all the

proposed data center selection algorithms. It shows that MMTMUR VM selection

algorithm reduces energy consumption metric by 10.98%, 16.94%, 8.91%, and 9.02% as

compared to VM selection policies MMT, MU, MC and RS respectively, when the data

center selection is MUIPTR. Moreover, from the simulation results depicted in Figure 5-

0

5000

10000

15000

20000

25000

30000

miprt mudc muiprt rsdc

N
u

m
b

er
 o

f
V

M
 m

ig
ra

ti
o

n
s

mmt

mmtmur

mu

mc

rs

110

12, MIPRT data center selection algorithm outperforms the other algorithms in terms of

energy consumption.

Figure 5-12: Energy Consumption

From the simulation results depicted in Figure 5-13, it is obvious that MMTMUR

VM selection algorithm outperforms the other algorithms in terms of average SLA

violation metric when the proposed data center selection algorithms are MUIPRT and

RSDC. The figure shows that the best reduction of the average SLA violation is when the

data center selection is MUIPRT and the VM selection algorithm is MMTMUR.

Figure 5-13: Average SLA Violation

0

50

100

150

200

250

300

350

miprt mudc muiprt rsdc

En
er

gy
 c

o
n

su
m

p
ti

o
n

 K
W

h

mmt

mmtmur

mu

mc

rs

55

55.5

56

56.5

57

57.5

58

miprt mudc muiprt rsdc

A
ve

ra
ge

 S
LA

 v
io

la
ti

o
n

mmt

mmtmur

mu

mc

rs

111

5.6 Summary

We present a modified system model to indicate the number of users that need IP

reconfiguration in case of WAN migration. This model has been proposed to consider

neglected parameters and metrics that have an effect on live migration cost.

We present Minimum Migration Time Maximum User Ratio (MMTMUR)

algorithm that aims to be a proactive solution for decreasing migration time by

minimizing the time and the number of IP reconfigurations that are required in case of

WAN migration between the data centers. The proposed algorithm takes the number of

users in the selected VM to be migrated into its consideration, in order to obtain the

minimum number of users that need IP reconfiguration due to WAN migration. The

experimental results show that the proposed algorithm can significantly minimize the

number of IP reconfigurations and IP reconfiguration time in terms of total distance as

compared to the most commonly used MC, MMT, MU and RS algorithms, resulting in

reduced service downtime and reduced network overhead.

We present Data Center Random Selection (RSDC), Data Center Minimum

Utilization (MUDC), Minimum IP reconfiguration time (MIPRT), and Minimum

Utilization Minimum IP reconfiguration time (MUIPRT) data center selection algorithms

that aim to minimize the IP reconfiguration time, resulting in reducing service downtime.

112

Chapter 6

6 Conclusion and Future work

6.1 Concluding Remarks

Our research work is motivated by the necessity of improving service downtime,

SLA violation and performance degradation in LAN/WAN migration. A lot of research

has been done in the literature where many aspects need to be taken into our

consideration in order to further amend the Quality of Experience (QoE) provided for the

end users for higher user satisfaction in the system.

In order to optimize the resource utilization, we need to migrate VMs across hosts.

Over time there are continuous changes in the status of the hosts. We find while

migrating we cannot select the host considering the current state only, we need to

consider various factors while selecting hosts from which we can shift VM or which we

can consider as good candidate to receive VM.

In Chapter 3, firstly, we developed an algorithm called Median Absolute Deviation

Markov Chain Host Detection Algorithm (MADMCHD). Unlike all available algorithms

which depend on historical data to build probabilistic model that predict the future host

load more efficiently. Its main goal was to improve SLA violation and to reduce VM

113

migrations. In our proposed algorithm three different states of given hosts are possible,

namely (i) Underloaded (U), (ii) Normal Loaded (N) and (iii) Overloaded (O). First, we

find state of all hosts that they are in which state using CPU current utilization value.

Then our Markov detection algorithm starts working after collecting 10 observations

based on probability observations. Hence based on our new algorithm instead of

immediately migrating we can check whether migration is required or not. We consider a

full system where Host Manager interacts with VMM Manager in order to initiate the

VM migration process. CPU utilization upper and lower thresholds can be assigned either

statistically using First Order-Markov Chain Host State Detection Algorithm

(FOMCHSD) or dynamically using Median Absolute Deviation Markov Chain host

Detection Algorithm(MADMCHD). We compared our algorithm with five host

detection algorithms which are already implemented in Cloudsim for real workloads

Secondly, we developed Markov Power Aware Best Fit Decreasing (MPABFD)

algorithm to enhance VMs placement process. The future candidate host load state is

predicted to avoid overloaded state of that host after a short period. We combine the

proposed algorithms in the selection process phases in the live migration for better

performance, MadMCHD as a host detection algorithm, MPABFD as a VM placement

algorithm, and some of the state of the art algorithms as a VM selection. We investigated

the impact of these VM selection polices on the proposed model.

After host selection, in Chapter 4, we came up with two new VM selection

algorithms namely Minimum VM Migrated Count and Minimum Migration time

Minimum Migration Count to avoid frequent SLA violation on the same VM. MiMc

(Minimum VM Migrated Count) –The Algorithm selects the VM to migrate from the

114

host overloaded based on the minimum number of VM migrated count. Minimum

Migration Time Minimum VM Migrated Count (MmtMiMc)-The algorithm first selects

VMs with minimum amount of RAM to minimize the live migration time and sorts them

in increasing order. Then out of the selected subset of VMs the algorithm selects the VM

with the minimum number of migration count. Along with that we are introducing two

new metrics to compare with other existing VM selection algorithms. We have evaluated

our proposed algorithms through CloudSim simulations on different planet lab real and

random workloads and we are able to demonstrate that the proposed algorithms show

significant reduction in maximum number of VM migrated count and degree of load

balancing of VMs migrated count with other state of art algorithms.

Live VM migration across cloud data centers are useful for several cases despite

the costs related to storage migrations and the overheads of network reconfiguration, such

as maintenance and upgrades, and large data centers having computing infrastructure

around the world that migrate VMs to follow the sun without affecting the end user

experience. In Chapter 5, we modify the system model to provide proactive selection

process techniques that reduce network reconfiguration problem in WAN live VM

migration. This model has been proposed to consider neglected parameters and metrics

that have an effect on live migration cost. We came up with a new VM selection

algorithm, namely Minimum Migration Time Maximum User Ratio to be a proactive

solution for decreasing service downtime by minimizing the number of IP

reconfigurations that are required in case of WAN migration between the data centers.

Moreover, we came up with new data center selection algorithms, namely Data Center

Random Selection, Data Center Minimum Utilization, Minimum IP reconfiguration time,

115

and Minimum Utilization Minimum IP reconfiguration time that aim to minimize the IP

reconfiguration time, resulting in reducing service downtime.

Two new metrics are proposed to indicate number of users that need IP

reconfiguration and the total distance of IP reconfiguration time. We extended CloudSim

to simulate and evaluate our proposed work for VM migration across the data centers on

random workload. The experimental results show that our proposed algorithms have a

significant reduction in terms of number of IP reconfigurations, and total distance than

the other competitive VM selection algorithms.

6.2 Future Work

There is still more work to be done in cloud data center management. This list represents

a few open topics.

• Run and apply the proposed algorithms with varying workloads which represents

the cloud consumers’ needs to realize the algorithms behaviors with it.

• Propose new measurement metrics that help the researcher to figure out the

statistics data with different ways.

• Develop new datacenter selection algorithms based on different techniques that

serves both cloud providers and cloud consumers which lead to reduce the

operation cost in provider side which lead to reduce the cost services at cloud

consumers side.

• Deploy and apply the proposed algorithms to run at real environment like

Openstack which is an open source project and it’s the best way to embraces the

development of new features.

116

References

[1] P. Mell and T. Grance. “The NIST definition of cloud computing,” Version 15, 10-

7 09. National Institute of Standards and Technology, Information Technology

Laboratory, 2011.

[2] Google, “Google’s App Engine”, (2016), [online]. Available:

https://cloud.google.com/ [Accessed: December 10, 2017].

[3] Amazon, “Amazon Elastic Compute Cloud (Amazon EC2)”, (2016), [online].

Available: aws.amazon.com/ec2/ [Accessed: December 10, 2017].

[4] Microsoft, “Microsoft Azure.”, (2016), [online]. Available:

https://azure.microsoft.com/en-us/?b=16.11a [Accessed: December 10, 2017].

[5] IBM, “SmartCloud.” (2016), [online]. Available: http://www.ibm.com/cloud-

computing/ [Accessed: December 10, 2017].

[6] HCL “Rise of The Cloud,” (2016), [online]. Available:

http://www.hcltech.com/blogs/rise-cloud [Accessed: December 10, 2017].

[7] T. Veni and S. Bhanu. “A survey on dynamic energy management at virtualization

level in cloud data centers,” Computer Science & Information Technology, pp. 107-

117. 2013.

[8] VMWare, “vSphere ESX and ESXi,” (2016), [online]. Available:

http://www.vmware.com/products/esxi-and-esx/ [Accessed: December 10, 2017].

[9] Microsoft, “Windows Virtual PC,” (2014), [online]. Available:

https://support.microsoft.com/en-us/kb/958559 [Accessed: December 10, 2017].

117

[10] Xen, “Xen Hypervisor,” (2013), [online]. Available:

http://www.xenproject.org/developers/teams/hypervisor.html [Accessed: December

10, 2017].

[11] Microsoft, “Hyper-V Server,” (2015), [online]. Available:

https://technet.microsoft.com/library/hh831531.aspx [Accessed: December 10,

2017].

[12] Linux, “Kernel-based Virtual Machine (KVM),” (2016), [online]. Available:

http://www.linux-kvm.org/page/Main_Page [Accessed: December 10, 2017].

[13] Oracle, "VirtualBox,” (2016), [online]. Available: https://www.virtualbox.org/

[Accessed: December 10, 2017].

[14] E. Bauer and R. Adams. “Reliability and availability of cloud computing,” John

Wiley & Sons, 2012.

[15] K. Bilal, S. U. Khan and A. Y. Zomaya. “Green data center networks: Challenges

and opportunities,” In Frontiers of Information Technology (FIT), 2013 11th

International Conference, IEEE, pp. 229-234. 2013.

[16] M. Mishra, A. Das, P. Kulkarni and A. Sahoo. “Dynamic resource management

using virtual machine migrations,” Communications Magazine, IEEE, vol. 50, no.

9, pp. 34-40, 2012.

[17] H. Jeong and B. Hong. “A management of resource ontology for cloud computing,”

In Communication and Networking, pp. 65-72. Springer, 2011.

[18] B. Sotomayor, R. S. Montero, I. M. Llorente and I. Foster. “Virtual infrastructure

management in private and hybrid clouds,” Internet Computing, IEEE, vol. 13, no.

5, pp. 14-22. 2009.

118

[19] P. Dreher, M. A. Vouk, E. Sills and S. Averitt. “Evidence for a cost effective cloud

computing implementation based upon the NC state virtual computing laboratory

model,” Advances in parallel computing, high speed and large scale scientific

computing, vol. 18, pp. 236-250. 2009.

[20] S. Averitt, M. Bugaev, A. Peeler, H. Shaffer, E. Sills, S. Stein, J. Thompson and M.

Vouk. “Virtual Computing Laboratory (VCL),” In Proceedings of the International

Conference on the Virtual Computing Initiative, pp. 1-6. 2007.

[21] M. A. Vouk, A. Rindos, S. F. Averitt, J. Bass, M. Bugaev, A. Kurth, A. Peeler, H.

E. Schaffer, E. D. Sills and S. Stein. “Using VCL technology to implement

distributed reconfigurable data centers and computational services for educational

institutions,” IBM Journal of Research and Development, vol. 53, no. 4, pp. 2-1.

2009.

[22] S. Mustafa, B. Nazir, A. Hayat and S. A. Madani, “Resource management in cloud

computing: Taxonomy, prospects, and challenges,” Computers & Electrical

Engineering, vol. 47, pp. 186-203, 2015.

[23] P. T. Endo, G. E. Gonçalves, J. Kelner and D. Sadok. “A Survey on Open-source

Cloud Computing Solutions,” In Brazilian Symposium on Computer Networks and

Distributed Systems, pp. 3-16. 2010.

[24] H. Elham, A. Lebbat and H. Medromi. “Enhance security of cloud computing

through fork virtual machine,” In Complex Systems (ICCS), 2012 International

Conference, pp. 1-4. 2012.

119

[25] T. Rosado and J. Bernardino. “An overview of openstack architecture,”

In Proceedings of the 18th International Database Engineering & Applications

Symposium, pp. 366-367. 2014.

[26] V. F. Albor, J. Saborido, F. Gomez-Folgar, J. L. Cacheiro and R. G. Diaz. “DIRAC

integration with CloudStack,” In Cloud Computing Technology and Science

(CloudCom), 2011 IEEE Third International Conference, pp. 537-541. 2011.

[27] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt and A.

Warfield. "Live migration of virtual machines." In Proceedings of the 2nd

conference on Symposium on Networked Systems Design & Implementation, vol.

2, pp. 273-286. USENIX Association, 2005.

[28] M. R. Hines, U. Deshpande and K. Gopalan. “Post-copy live migration of virtual

machines,” ACM SIGOPS operating systems review 43, no. 3, pp.14-26. 2009.

[29] R. Bradford, E. Kotsovinos, A. Feldmann and H. Schiöberg. “Live wide-area

migration of virtual machines including local persistent state,” In Proceedings of the

3rd international conference on Virtual execution environments, pp. 169-179, 2007.

[30] T. Wood, K. Ramakrishnan, P. Shenoy and J. Van der Merwe. “CloudNet: Dynamic

pooling of cloud resources by live WAN migration of virtual machines,” In ACM

Sigplan Notices, vol. 46, no. 7, pp. 121-132, 2011.

[31] E. Silvera, G. Sharaby, D. Lorenz and I. Shapira. “IP mobility to support live

migration of virtual machines across subnets,” In Proceedings of SYSTOR 2009,

The Israeli Experimental Systems Conference, pp. 1-13, 2009.

[32] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh and S. Sekiguchi. “A live storage

migration mechanism over WAN for relocatable virtual machine services on

120

clouds,” In Proceedings of the 2009 9th IEEE/ACM International Symposium on

Cluster Computing and the Grid, pp. 460-465, 2009.

[33] H. Watanabe, T. Ohigashi, T. Kondo, K. Nishimura and R. Aibara. “A performance

improvement method for the global live migration of virtual machine with IP

mobility,” In Proceedings of the Fifth International Conference on Mobile

Computing and Ubiquitous Networking (ICMU 2010), pp. 194-199, 2010.

[34] HP White Paper. “Live migration across data centers and disaster tolerant

virtualization architecture with HP 3 PAR Cluster Extension and Microsoft Hyper-

V,” 2016.

[35] A. Manzalini, R. Minerva, F. Callegati, W. Cerroni and A. Campi. “Clouds of

virtual machines in edge networks,” Communications Magazine, IEEE, vol. 51, no.

7, pp. 63–70, 2013.

[36] T. Wood, K. Ramakrishnan. "CloudNet: Dynamic Pooling of Cloud Resources by

Live WAN Migration of Virtual Machines," In IEEE/ACM Transactions on

Networking, vol. 23, no. 5, pp. 1568-1583, 2015.

[37] U. Kalim, M. K. Gardner, E. J. Brown and W. Feng. “Seamless migration of virtual

machines across networks,” In Computer Communications and Networks (ICCCN),

2013 22nd International Conference, pp. 1-7, IEEE, 2013.

[38] S. Kuribayashi. “Improving quality of service and reducing power consumption

with WAN accelerator in cloud computing environments,” International Journal of

Computer Networks & Communications (IJCNC), vol. 5, no.1, pp. 41-52, 2013.

121

[39] M. V. Bicakci and T. Kunz. “TCP-freeze: Beneficial for virtual machine live

migration with IP address change?” In Wireless Communications and Mobile

Computing Conference (IWCMC), 8th IEEE International, pp. 136-141, 2012.

[40] A. Beloglazov and R. Buyya, “Energy efficient allocation of virtual machines in

cloud data centers,” 10th IEEE/ACM International Conference on Cluster, Cloud

and Grid Computing (CCGrid), pp. 577-578, 2010.

[41] A. Beloglazov and R. Buyya, “OpenStack neat: A framework for dynamic and

energy‐efficient consolidation of virtual machines in OpenStack clouds,”

Concurrency and Computation: Practice and Experience, vol. 27, no. 5, pp. 1310-

1333, 2015.

[42] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and

adaptive heuristics for energy and performance efficient dynamic consolidation of

virtual machines in cloud data centers,” Concurrency and Computation: Practice

and Experience, vol. 24, no. 13, pp.1397-1420, 2012.

[43] F. Farahnakian, P. Liljeberg and J. Plosila. “Lircup: Linear regression based CPU

usage prediction algorithm for live migration of virtual machines in data centers,”

In Software Engineering and Advanced Applications (SEAA), 2013 39th

EUROMICRO Conference, pp. 357-364. IEEE, 2013.

[44] K. Maurya and R. Sinha. “Energy conscious dynamic provisioning of virtual

machines using adaptive migration thresholds in cloud data center,”

Int.J.Comput.Sci.Mob.Comput, vol.3, no. 2, pp.74-82. 2013.

122

[45] S. S. Masoumzadeh and H. Hlavacs. “An intelligent and adaptive threshold-based

schema for energy and performance efficient dynamic VM consolidation,” In

Energy Efficiency in Large Scale Distributed Systems, pp. 85-97. Springer, 2013.

[46] L. Salimian, F. S. Esfahani and M. Nadimi-Shahraki. “An adaptive fuzzy threshold-

based approach for energy and performance efficient consolidation of virtual

machines,” Computing, pp. 1-20. Springer, 2015.

[47] A. Horri, M. S. Mozafari and G. Dastghaibyfard. “Novel resource allocation

algorithms to performance and energy efficiency in cloud computing,” The Journal

of Supercomputing, vol. 69, no. 3, pp. 1445–1461. Springer, 2014.

[48] E. Arianyan, H. Taheri and S. Sharifian. “Novel energy and SLA efficient resource

management heuristics for consolidation of virtual machines in cloud data centers,”

Computers & Electrical Engineering, vol. 47pp. 222-240. Elsevier, 2015.

[49] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic

consolidation of virtual machines in cloud data centers under quality of service

constraints,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 7,

pp.1366-1379, 2013.

[50] N. T. Hieu, M. Di Francesco and A. Yla-Jaaski. “Virtual machine consolidation

with usage prediction for energy-efficient cloud data centers,” In Cloud Computing

(CLOUD), 2015 IEEE 8th International Conference, pp. 750-757. 2015

[51] M. A. H. Monil and R. M. Rahman. “Implementation of modified overload

detection technique with VM selection strategies based on heuristics and migration

control,” In Computer and Information Science (ICIS), 2015 IEEE/ACIS 14th

International Conference, pp. 223-227. 2015.

123

[52] A. Beloglazov, “Energy-efficient management of virtual machines in data centers

for cloud computing,” Ph.D. thesis, The University of Melbourne, 2013.

[53] S. Sohrabi and I. Moser. “The effects of hotspot detection and virtual machine

migration policies on energy consumption and service levels in the cloud,” Procedia

Computer Science, vol. 51, pp. 2794- 2798. Elsevier, 2015.

[54] K. Shahzad, A. I. Umer and B. Nazir. “Reduce VM migration in bandwidth

oversubscribed cloud data centers,” In Networking, Sensing and Control (ICNSC),

2015 IEEE 12th International Conference, pp. 140-145. 2015.

[55] M. Al-Ayyoub, Y. Jararweh, M. Daraghmeh and Q. Althebyan. “Multi-agent based

dynamic resource provisioning and monitoring for cloud computing systems

infrastructure,” Cluster Computing, vol. 18, no. 2, pp.919-932. Springer, 2015.

[56] X. Meng, V. Pappas and L. Zhang. “Improving the scalability of data center

networks with traffic-aware virtual machine placement,” In INFOCOM, 2010

Proceedings IEEE, pp. 1-9. 2010.

[57] J. Xu and J. A. Fortes. “Multi-objective virtual machine placement in virtualized

data center environments,” In Green Computing and Communications (GreenCom),

2010 IEEE/ACM Int'l Conference on & Int'l Conference on Cyber, Physical and

Social Computing (CPSCom), pp.179-188. 2010.

[58] E. Feller, L. Rilling and C. Morin. “Energy-aware ant colony based workload

placement in clouds,” In Proceedings of the 2011 IEEE/ACM 12th International

Conference on Grid Computing, pp. 26-33. 2011.

124

[59] F. Ma, F. Liu and Z. Liu. “Multi-objective optimization for initial virtual machine

placement in cloud data center,” In Journal of Information & Computational

Science, vol. 9, no. 16, pp. 5029–5038, 2012.

[60] D. Huang, D. Yang, H. Zhang and L. Wu. “Energy-aware virtual machine

placement in data centers,” In Global Communications Conference (GLOBECOM),

2012 IEEE, pp. 3243-3249. 2012.

[61] G. Wu, M. Tang, Y. Tian and W. Li. “Energy-efficient virtual machine placement

in data centers by genetic algorithm,” In Neural Information Processing, pp. 315-

323. Springer, 2012.

[62] M. Tang and S. Pan. “A hybrid genetic algorithm for the energy-efficient virtual

machine placement problem in data centers,” Neural Processing Letters, vol. 41, no.

2, pp. 211-221. Springer, 2015.

[63] C. T. Joseph, K. Chandrasekaran and R. Cyriac. “A Novel Family Genetic

Approach for Virtual Machine Allocation,” Procedia Computer Science, vol. 46, pp.

558-565. Elsevier, 2015.

[64] S. K. Mandal and P. M. Khilar. “Efficient virtual machine placement for on-demand

access to infrastructure resourcesin cloud computing,” International Journal of

Computer Applications, vol. 68, no. 12, pp. 6–11, 2013.

[65] U. Mandal, P. Chowdhury, M. Tornatore, C. U. Martel, & B. Mukherjee

“Bandwidth provisioning for virtual machine migration in cloud: Strategy and

application,” IEEE Transactions on Cloud Computing, 2016.

125

[66] E. Fosler-Lussier, “Markov Models and Hidden Markov Models: A Brief Tutorial,”

Technical Report (TR-98-041), International Computer Science Institute, Berkeley,

California. 1998.

[67] A. Beloglazov, J. Abawajy and R. Buyya, “Energy-aware resource allocation

heuristics for efficient management of data centers for cloud computing,” Future

Generation Computer Systems, Elsevier, vol. 28, no. 5, pp. 755-768, 2012.

[68] A. Beloglazov and R. Buyya, “Adaptive threshold-based approach for energy-

efficient consolidation of virtual machines in cloud data centers,” Proceedings of

the 8th International Workshop on Middleware for Grids, Clouds and e-Science, p.

4, 2010.

[69] R. Buyya, R. Ranjan and R. N. Calheiros, "Modeling and simulation of scalable

Cloud computing environments and the CloudSim toolkit: Challenges and

opportunities," IEEE International Conference on High Performance Computing &

Simulation (HPCS'09), pp. 1-11, 2009.

[70] S. Ray and A. De Sarkar, “Execution analysis of load balancing algorithms in cloud

computing environment,” International Journal on Cloud Computing: Services and

Architecture (IJCCSA), vol. 2, no. 5, pp. 1-13, 2012.

[71] C. L. Dumitrescu and I. Foster, “GangSim: a simulator for grid scheduling studies,”

IEEE international symposium on Cluster Computing and the Grid (CCGrid), vol.

2, pp. 1151–8, 2005.

[72] A. Legrand, L. Marchal and H. Casanova, “Scheduling distributed applications: the

SimGrid simulation framework,” 3rd IEEE/ACM International Symposium on

Cluster Computing and the Grid (CCGrid), pp. 138–45, 2003.

126

[73] R. Buyya and M. Murshed, “GridSim, a toolkit for the modeling and simulation of

distributed resource management and scheduling for grid computing,” Concurrency

and Computation: Practice and Experience; vol. 14, no. (13–15), pp. 1175–220,

2002.

[74] K.S. Park and V.S. Pai, “CoMon: a mostly-scalable monitoring system for

PlanetLab,” ACM SIGOPS Operating Systems Review, vol. 40, no. 1, pp. 65-47,

2006.

[75] N. Tziritas, C. Z. Xu, T. Loukopoulos, S. U. Khan and Z. Yu, “Application-aware

workload consolidation to minimize both energy consumption and network load in

cloud environments,” 42nd IEEE International Conference on Parallel Processing

(ICPP), pp. 449-457, 2013.

[76] X. Fan, W. D. Weber and L. A. Barroso, “Power provisioning for a warehouse-

sized computer,” ACM SIGARCH Computer Architecture News, vol. 35, no. 2, pp

13-23, 2007.

