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ABSTRACT 

 
 

VM Selection Process Management for Live Migration in Cloud Data 
Centers 

 
 
 
Suhib Bani Melhem, Ph.D. 

Concordia University, 2017 

 

With immense success and fast growth within the past few years, cloud computing 

has been established as the dominant computing paradigm in information technology (IT) 

industry, wherein it utilizes dissipated resource benefits and supports resource sharing 

and time access flexibility. The proliferation of cloud computing has resulted in the 

establishment of large-scale data centers across the world, consisting of hundreds of 

thousands, even millions of servers. The emerging cloud computing paradigm provides 

administrators and IT organizations with considerable freedom to dynamically migrate 

virtualized computing services among physical servers in cloud data centers.  

Normally, these data centers incur very high investment and operating costs for the 

computing and network devices as well as for the energy consumption. Virtualization and 

virtual machine (VM) migration offers significant benefits such as load balancing, server 

consolidation, online maintenance and proactive fault tolerance along data centers. VM 

migration relies on how to determine the trigger condition of VM migration, select the 

target virtual machine, and choose the destination node. 

As a result, dynamic VM migration in the scope of resource management is 

becoming a crucial issue to emphasize on optimal resource utilization, maximum 
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throughput, minimum response time, enhancing scalability, avoiding over-provisioning 

of resources and prevention of overload to make cloud computing successful. Intelligent 

host underload/overload detection, VM selection, and VM placement are the primary 

means to address VM migration issue. Therefore, these three problems are considered to 

be the most common tasks in VM migration.  

This thesis presents novel techniques, models, and algorithms, for distributed 

dynamic consolidation of virtual machines in cloud data centers. The goal is to improve 

the utilization of computing resources and reduce energy consumption under workload 

independent quality of service constraints. The proposed approaches are distributed and 

efficient in managing the energy-performance trade-off. 
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Chapter 1 
 

1 Introduction 

Cloud computing is a fast-growing computing technology. It is defined by NIST [1] 

organization as a “Model for enabling convenient, on-demand network access to a shared 

pool of configurable computing resources (network devices, servers, storage, 

applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction”. Several other definitions have been 

proposed for cloud computing, but they all imply the existence of a shared pool of 

computing resources. In cloud computing, physical servers are referred to hosts, whereas 

the group of hosts and storages connected by network devices is referred to a data center, 

and each host contains several numbers of virtual machines. Virtual machine (VM) 

represents an entire operating system (OS) with its associated applications and services. 

In cloud computing, the applications and services are accessible to clients over the 

internet remotely. As shown in Figure 1-1, the services provided by cloud computing can 

be classified as Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and 

Software as a Service (SaaS). These services are offered available as pay-as-you-go 

model to clients. The most popular examples are Google’s App Engine [2], Amazon’s 
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EC2 [3], Microsoft Azure [4], and IBM SmartCloud [5]. As shown in the figure, the 

cloud computing can be deployed as a private cloud, a public cloud, or as a hybrid cloud. 

 

Shared resources 
among a 

community of users

Service that is 
controlled and 
exclusive to the 

user 

Ability to move 
workloads private 

and public 
platforms

Outsource the elements 
of infrastructure like 

Virtualization, Storage , 
Networking, Load 

Balancers

Core hosting operating 
system and optional 

building block services 
that allow you to run 

your own applications

Consumed as a service 
only for the applications 

needed

 

Figure 1-1: Cloud Computing [6] 

Cloud computing is based on the concept of virtualization. Virtualization plays a 

vital role in managing and organizing access to the resource pool via a software layer 

called virtual machine monitor (VMM) or hypervisor. It hides the details of the physical 

resources and provides virtualized resources for high-level applications. Besides, it 

virtualizes all of the resources of a given host allowing several VMs to share its resources 

[7]. VMware ESX/ESXi [8], Virtual PC [9], Xen [10], Microsoft Hyper-V [11], KVM 

[12], and VirtualBox [13] are popular virtualization software. Virtualization also allows 

gathering several VMs into a single host using a technique called VM consolidation. 

Another capability provided by virtualization is live migration, which is the ability to 

transfer a VM between hosts. 



3 

 

The scope of this work focuses on a IaaS module, which handles infrastructure 

resources (virtual machines, servers, storage, and network) allocation, provisioning, 

requirement mapping, adaptation, discovery, brokering, estimation, and modeling. 

Resource management for IaaS in cloud computing offers following benefits: scalability, 

quality of service, optimal utility, reduced overheads, improved throughput, reduced 

latency, specialized environment, cost effectiveness and simplified interface. With the 

rise of cloud computing, a huge complexity growth of the structure happens. Therefore, 

to effectively manage applications and resources it is crucial to use the models and tools 

that create an application profile, which is used to apply optimal models to determine the 

most suitable amount of resource for each workload. Virtual machines migration is one of 

the most popular ways to manage resources, and live VM migration is the most used 

technique to reload or rearrange the resources in the data center to keep the delivered 

services available. Live VM migration is defined as a technique that migrates the entire 

OS and its associated applications from one host to another where a user does not notice 

any interruption in his service. Live VM migration plays an important role to facilitate 

online maintenance, load balancing, and energy management as part of resource 

management [14]. 

What is a Cloud Data Center? 

The data centers consist of network equipment like routers, switches, cabinets, servers, 

and electrical equipment like switchgear, PDUs, UPS, CRAC, generators and HVAC 

systems [15]. Typically, conventional data centers are provisioned to satisfy the peak 

demand, which results in wastage of resources during non-peak periods. Modern-day data 
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centers are turning to the cloud-based to mitigate the above problem. The essential 

characteristics of cloud-based data centers are [16]: 

• Making resources available on demand. The operation and maintenance of the data 

center lie with the cloud provider. Thus, the cloud model enables the users to have 

a computing environment without spending an enormous amount of money in 

building a computing infrastructure. 

• Flexible resource provisioning. It provides the ability to scale dynamically or 

shrink the provisioned resources as per the dynamic requirements. 

• Fine-grained metering. It enables the "pay-as-use" model, so the users do not need 

to stay into long-term contracts since users pay only for the services used.  

However, implementing cloud-based data centers demands an enormous deal of 

flexibility and agility for both the users and providers. For instance, the dynamic scaling 

and shrinking requirement needs compute resources to be made available at a very short 

notice. 

IaaS Cloud System 

One of the various definitions of "cloud" is that of an Infrastructure-as-a-Service (IaaS) 

system, which enables on-demand provisioning of computational resources via VMs 

deployed in a cloud provider's data center [17]. It was first popularized in 2006 by 

Amazon’s Elastic Compute Cloud (EC2) [3], which started to offer virtual machines 

(VMs) for US$0.10 an hour using both a simple Web interface and a programmer-

friendly API. Amazon EC2 contributed to popularizing the IaaS paradigm, although not 

the first to propose a utility computing model, it became closely tied to the notion of 

cloud computing [18]. 
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Virtual Computing Lab (an IaaS Cloud Module) 

Virtual Computing Lab (VCL) is a free, cloud computing project, open-source, on-

demand, remote-access system that dynamically provisions computing resources to end 

users [19, 20]. North Carolina State University in cooperation with IBM announced the 

creation of the system in 2006 with the goal of creating a multi-institutional, shared 

computing services community, which includes universities, colleges, schools and 

business partners. It became an Apache Project in 2008 [21], and then an Apache 

Software Foundation top-level project in 2012 [20], which provides an open cloud 

environment for educational purposes.  

VCL has high throughput architecture of computational power, which can keep 

track of all its computation nodes and redistribute the VM from a heavy loaded node to 

the least utilized physical computation node. The VCL framework has been chosen to 

deploy an educational cloud environment where availability of the resources anywhere 

and anytime is the most significant advantage of the VCL solution. Moreover, many 

other benefits can be summarized as follows: 

• Raising computing resource accessibility. 

• Increasing integrity and availability of data, applications, and research materials. 

• Increasing end users’ mobility to make resources accessible anywhere and 

anytime. 

• Reducing client application and the system resource footprint. 

• Increasing application and computing performance utilization. 

• Providing convenient web access and a self-service portal. 
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VCL is considered one of the open-source Cloud Computing solutions, which 

differ by different criteria like architecture, functionality, purpose of use, and target 

clients served. Table 1-1 compares eight kind of IaaS open-source clouds in an abstract 

way concerning hypervisor used (infrastructure) attribute, and the main characteristic 

attribute. VCL aims to develop and promote virtualization concepts and open-source 

solutions for the benefit of the academia and its stakeholders – by creating shared virtual 

computing resources and supporting related research. VCL has been deployed, from an 

academic perspective, to provide services to students and academic staff as well [22]. 

Table 1-1: Comparison between IaaS open-source clouds Computing Solutions 

Solutions Infrastructure Characteristic 

XCP[23,24] Xen Aims to turn legacy clusters into 

IaaS Clouds 

Nimbus[23,24] Xen, KVM Only a tool for automatic 

maintenance of cloud 

OpenNebula[23,24] Xen , KVM , VMware Grouping nodes to allow HPCaaS 

Eucalyptus[23] Xen, KVM Hierarchical Architecture  

VCL[21] VMware, Xen, KVM  Offer capabilities that are very 

flexible and diverse 

Enomaly[23,24] Xen, VirtualBox, 

KVM, VMware 

Open version is focused on small 

clouds 

OpenStack[25] Xen,KVM,VMware,Hyper-

V 

Modular platform, complete 

solution for cloud computing 

CloudStack[26] Xen, VMware,KVM Complete solution for 

cloud computing 

 

Live VM Migration  

There is a need to reorganize the VMs and the hosts to provide load balancing or server 

consolidation depending on the service level agreement (SLA) with the end users and 

other issues. Live virtual machines migration is one of the most popular ways to manage 
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resources to keep the delivered services available. The benefits of VM migration include 

server consolidation, load balancing among the physical servers (hosts) and failure 

tolerance in case of sudden failure.  

Live VM migration is divided into two parts: 1) Selection process which involves 

when to start the migration process, determining which VM must be selected to be 

migrated, which destination host must be chosen to move this VM. The goals of the 

selection process are to reduce power consumption, load balancing, and improve fault 

tolerance, which eventually will increase the cloud productivity, services availability and 

throughput, and reduce its operation cost, pollution (green data centers), and hardware 

maintenance. 2) Migration Process that targets moving the VM in minimum time to avoid 

any interruption of services. The process can be divided into two categories: a) Suspend 

/Resume migration, which is used mainly for VM migration through wide area network 

(WAN), and b) Pre-copy and Post-copy methods used for local area network (LAN) VM 

migration. 

The first phase of live VM migration is the selection process phase which consists 

of three phases. In the first phase, host detection, a host may be in an overloaded state or 

in an underloaded state. If a host is underutilized, then all the VMs from this host can be 

migrated and the host will go to sleep/shutdown mode, or the host will be considered as a 

good candidate to receive the migrated VMs from the overloaded hosts in the future. On 

the other hand, when a given host is overloaded some VMs must be selected to migrate 

from this host to other hosts. The challenges in the host overload/underload detection are 

to reduce the power consumption, minimize SLA violation, and to avoid performance 

degradation.  
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Once a decision to migrate VMs from a given host is made, the second phase, VM 

selection phase, selects one or more VMs from the full set of VMs running on the host. 

The selected VMs must be moved to other hosts. VM selection approaches are different 

based on the parameters that are considered to select the migrated VMs. The challenge in 

choosing one or more VMs for migration is a vital decision for resource management. 

The VM migration process consumes network bandwidth and CPU resources from both 

source and destination hosts besides making the VM unavailable for a certain amount of 

time. The performance of other VMs that are running on source and destination hosts are 

also affected due to increased resource demands during the VM migration process. 

Finally, in the third phase a given VM placement algorithm is applied to selected 

underloaded hosts to receive the migrated VMs. Many factors should be considered to 

develop a new optimal VM placement algorithm, such as the resource availability of host 

(i.e., CPU, memory, disk storages and network bandwidth), the total energy consumption 

in the data center, and inter-VM traffic. The goal of VM placement is to deliver best 

possible QoS to the applications running on VMs. Once a decision to migrate a VM from 

a source host to a destination host is known as a result of the selection process, then the 

migration process will take place either locally or widespread. 

Algorithm 1-1 illustrates the overall live migration procedure based on the host 

status which can be either an overloaded or an underloaded state. In the overload host 

detection procedure, one of the host detection algorithms is applied to determine if the 

host is overloaded. In case a host is overloaded, a Boolean variable 

called  𝑚𝑖g𝑟𝑎𝑡𝑖𝑜n_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 is continuously checked until the required 

number of VMs are selected and stored in 𝑣𝑚𝑠𝑡𝑜𝑚𝑖𝑔𝑟𝑎𝑡𝑒[] array. The selection can be 
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done using any VM selection algorithm. Active hosts that currently carry VMs are 

determined using 𝑔𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠 function. One of the VM placement algorithms is 

applied to map selected VMs to destination hosts. 

In the underload host detection procedure, one of the host detection algorithms is 

applied to determine if the host is underloaded. In case the host is underloaded, there is 

no need of VM selection phase because all the VMs in the underloaded host must be 

migrated. All these VMs are then mapped to suitable destination hosts based on a 

placement algorithm. The underloaded host is switched to an idle state. 

Algorithm 1-1: Live Migration Procedure. 

1 Input: Host 
2 Output: Do certain procedure based on the host status 

  
3 //Overloaded host detection procedure 
4 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒  
5 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑖𝑠_𝑑𝑜𝑛𝑒 ←  𝑓𝑎𝑙𝑠𝑒  

6 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 
←  𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦(ℎ𝑜𝑠𝑡_𝑖𝑠_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑()) 

7 𝒘𝒉𝒊𝒍𝒆 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 =  𝑡𝑟𝑢𝑒  𝒅𝒐  
8          //One of the VM selection algorithms is applied 

         𝑣𝑚𝑠𝑡𝑜𝑚𝑖𝑔𝑟𝑎𝑡𝑒[]  ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦(ℎ𝑜𝑠𝑡). 𝑎𝑑𝑑   
9          𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ←

                           𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦(ℎ𝑜𝑠𝑡_𝑖𝑠_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑()) 
10         selection_is_done ← true 
  
11 𝒊𝒇 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑖𝑠_𝑑𝑜𝑛𝑒 =  𝑡𝑟𝑢𝑒  𝒕𝒉𝒆𝒏     
12          𝐴𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠[]  ← 𝑔𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠()  
13         𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑃𝑜𝑙𝑖𝑐𝑦(𝑣𝑚𝑠𝑡𝑜𝑚𝑖𝑔𝑟𝑎𝑡𝑒[], 𝐴𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠[])     
  
14 //Underloaded host detection procedure 
15 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑐𝑖𝑐𝑖𝑜𝑛_𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ←  𝑓𝑎𝑙𝑠𝑒,    
16 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑

←   𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦(ℎ𝑜𝑠𝑡_𝑖𝑠_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑()) 
17 𝒊𝒇 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 =  𝑡𝑟𝑢𝑒 𝒅𝒐 
18         𝑣𝑚𝑠𝑡𝑜𝑚𝑖𝑔𝑟𝑎𝑡𝑒[]  ←  𝑎𝑙𝑙 𝑣𝑚𝑠  
19          𝐴𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠[]  ← 𝑔𝑒𝑡𝑎𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠() 
20          𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑃𝑜𝑙𝑖𝑐𝑦(𝑣𝑚𝑠𝑡𝑜𝑚𝑖𝑔𝑟𝑎𝑡𝑒[], 𝐴𝑐𝑡𝑖𝑣𝑒ℎ𝑜𝑠𝑡𝑠[])   

 

The second phase of live VM migration is the migration process. Figure 1-2 shows 

the migration process that migrates the entire operating system and its associated 
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applications from one host to another that may take place either locally or widespread. 

VM migration over WAN differs from LAN. Firstly, LAN migration leads to transfer of 

memory state only, whereas WAN transfers the state of local disks as well [27]. 

Secondly, network reconfiguration is an issue in the WAN migration, migrating into 

another subnet obliges the server to get a new IP address and, subsequently, it 

disconnects existing network connections. In this case, the network addresses must be 

maintained, or the network reconfiguration is implemented by the applications. 

The performance metrics that are generally considered to measure the performance 

of live migration are [28]: 1) total migration time which represents the total time required 

to move the VM between hosts, 2) downtime which represents the portion of total 

migration time when the VM is not running, that is the time between pausing the VM on 

the source and resuming it on the destination, 3) application degradation which represents 

the extent to which migration slows down the applications executing within the VM. 

 

 

Figure 1-2: VMs migration over LAN/WAN 
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1.1 Motivation 

In modern data centers, resource management and allocation during VM migration is 

getting more challenging every day due to their rapid growth, high dynamics of hosted 

services, resource elasticity, and guaranteed availability and reliability. Thus, the 

performance of applications in large virtualized data centers is highly dependent on data 

center architecture and smooth network communication among VMs, while minimizing 

the communication burden to avoid congestion, latency, etc. The communication cost of 

a network can be reduced by minimizing the VMs migration between hosts. Therefore, 

clients and service providers need to build a cloud computing infrastructure that does 

minimize not only operational costs but also total network load. It should be noted that 

the key aspect that is directly related to network resource management in the data center 

is how to minimize network overhead, and load balancing-VM migration, which is still 

an active area of research.  

The resource utilization of a data center may change over time due to a creation of 

new VMs and/or hosts, or due to a failure of existing hosts, or due to the removal of 

existing VMs. There is a need to reorganize the VMs and the hosts to provide load 

balancing or server consolidation depending on the SLA with the end users and other 

issues. In cloud data center management, the three most important research problems that 

have been addressed are the host underload/overload detection, VM selection, and VM 

placement.   

Host overload/underload detection and VM Placement: There are three main reasons 

behind our motivation for the first and third problem. First, none of the existing 

techniques consider a dynamic utilization threshold and predict the future CPU utilization 
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simultaneously, Second, none of the existing algorithms considered the future expectation 

of CPU utilization to be underloaded or normal loaded. Third, none of the existing 

algorithms considered the future expectation of CPU utilization to be underloaded or 

normal loaded.  In contrast, our proposed solution uses historical data to build 

probabilistic model that can predict the future host load more efficiently. We present a 

Markov-based VM placement and host load detection approaches, respectively with the 

objective to allocate a VM based on the current and future resource utilization of host and 

VMs to mitigate the unneeded VM migrations for better SLA violation, number of VM 

migrations and the energy consumption in the whole system. 

VM Selection: The main reason behind our motivation for this problem is that none of 

the existing algorithms consider the number of migrations related to the VM. The existing 

VM selection algorithms focused on minimizing SLA violation on all the system and 

they ignore the frequent violation for the same VM, where a certain VM might be 

selected frequently to migrate from its overloaded host to another host based on the VM 

selection policies. 

Proactive selection process in live VM migration across cloud data centers:  

In cloud data center management, many techniques have been proposed over the last 

years to solve selection process research problem, but these techniques are more 

restricted for LAN live VM migration. In a sense, they are assuming that there is no need 

for IP reconfiguration during the live VM migration. None of the existing algorithms take 

in its consideration the number of users currently connected to a given active host. None 

of the existing algorithms consider which data center must be chosen as a target to 
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receive the migrated VMs from the overloaded data centers, and no proactive criteria 

exists for live WAN migration that minimizes IP reconfiguration time. 

It should be noted that it is necessary to migrate the VMs to different data centers 

that are located at different geographic locations (i.e. different subnet configurations) to 

obtain high QoS. Thus, WAN live VM migration techniques have been proposed [16, 29-

38]. It is known that when a given VM moves to a new subnet (i.e., new data center 

existing in a different LAN), a mobility solution or scheme should be applied to maintain 

the network connectivity and to preserve the open connections during and after the 

migration. This migration forces the VM to get a new IP address, and as a result breaks 

existing network connection. Therefore, WAN live VM migration results into a mobility 

problem, which may render the service unreachable and increase the downtime of VM 

during the migration process. There are a few techniques proposed to solve IP network 

reconfiguration [33, 36-39], but the existing techniques focused on applying a mobility 

solution or scheme to maintain the network connectivity and to preserve the open 

connections during and after the migration in the migration process. 

1.2 Research Problems and Objectives 

This thesis tackles the research challenges that are not only related to LAN VM selection 

process but also are related to WAN VM selection process. The VM selection process 

deals with the following subproblems: determine which hosts or data centers are 

overloaded (i.e., when to migrate), determine which VMs must be selected to be 

migrated, and determine which hosts or data centers must be chosen to receive the 

migrated VMs (i.e., where to migrate). 
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In the following subsections, the subproblems of the VM selection process will be 

discussed.  

• Host Detection. The host detection can be divided into overload host detection and 

underload host detection. If a host is underutilized, then all the VMs from this host 

can be migrated and the host will go to sleep/shutdown mode to improve the 

utilization of resources or the host will be considered as a good candidate to 

receive the migrated VMs from the overloaded hosts in the future. On the other 

hand, the host overload is the process of determining when a given host is 

overloaded so that some VMs must be selected to migrate from this host to other 

hosts to avoid performance degradation. A crucial decision that must be made in 

both situations is determining the best time to migrate VMs to minimize energy 

consumption, while satisfying the defined QoS constraints. 

• LAN/WAN migration: It is the decsion to make a migration in the same data 

center, which is called LAN migration, or in a different data center, which is called 

WAN migration. WAN migration is useful in many cases even though it has 

overhead related to network reconfiguration process and costs associated with 

storage migration. One of the reasons for WAN migration is when a data center is 

considered to be overloaded and one or more VM migration is required from data 

center under consideration. 

• VM Selection. Once a decision to migrate VMs from a given host is made, a 

particular VM selection algorithm should be applied to select one or more VMs 

from the full set of VMs running on the host. The problem consists of determining 
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the best subset of VMs to migrate that will provide the most beneficial system 

reconfiguration. 

• Data Center Selection. Once the decision to migrate the VM from a given data 

center is made, it is necessary to find the most suitable data center to receive the 

migrated VM. 

• VM Placement. A given VM placement algorithm is applied to select underloaded 

hosts or to receive the migrated VMs from the overloaded hosts or data centers. 

The VMs are migrated to another host when the current host cannot meet the 

resource requirements. Determining the best placement of new VMs or the VMs 

selected for migration to other servers is another essential aspect that influences 

the quality of VM consolidation and energy consumption by the system. 

To deal with the challenges associated with the above research problems, the 

following objectives will be delineated: 

• Explore, analyze, and classify the research in the area of resource data center 

management to gain a systematic understanding of the existing techniques and 

approaches. 

• Conduct competitive analysis of selection process algorithms to insights into the 

design of algorithms for dynamic VM consolidation and load balancing-VM 

migration. This analysis aims to determine the factors that lead to an optimal 

resource utilization, maximum throughput, maximum response time and 

prevention of overload situation. 

• Propose an algorithm for dynamic host overload/underload detection. The 

proposed algorithm considers metrics such as hosts threshold, SLA violation, 

performance degradation, and the number of VMs migration.   

• Propose algorithms for dynamic LAN and WAN VM selection. The proposed 

algorithm considers metrics such as SLA violation, performance degradation, the 
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number of VMs migrating, and in case of WAN migration the needed number of 

IP reconfiguration. 

• Propose an approach to design a dynamic LAN and WAN VM placement system 

in a distributed manner. The proposed algorithm will consider metrics such as SLA 

violation, performance degradation, number of migration, and service downtime. 

• Compare the results of proposed algorithms with those of the other algorithms in 

the literature using CloudSim simulator. 

1.3 Contributions 

The contributions of this thesis can be generally divided into 4 categories: classification 

and analysis of the area, novel model and algorithms for host load detection and VM 

placement in Live Migration, novel algorithms for minimizing biased VM selection in 

live VM migration, and design and implementation of a a system model to provide 

proactive selection process for live VM migration across cloud data centers. The key 

contributions are: 

1.3.1 A taxonomy and survey of the state-of-the-art approaches used in 

the live VM migration (Chapter 2) 

• Compares existing host detection algorithms. 

• Compares existing VM selection algorithms. 

• Compares existing VM placement algorithms. 

• Present tchniques in solving IP address change due to WAN migration 

process. 
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1.3.2 Prediction Model for Host Detection and VM Placement (Chapter 

3) 

• In contrast to the existing VM consolidation and load balancing methods 

which mostly rely on the current resource utilization of hosts, Markov 

chain model considers both current and future resource utilization. In 

order to predict the future utilization, we used the first-order Markov chain 

model to build Markov host prediction model.  

• Propose a host load detection algorithm called Median Absolute Deviation 

Markov Chain Host Detection algorithm (MadMCHD) to find the future 

overutilized hosts state and the future underutilized hosts state for better 

host detection performance in the live migration. In addition, we propose 

an efficient prediction algorithm to enhance VM placement process. We 

improve the live migration process by combining the proposed algorithms 

for better performance.  

• Implement and evaluate Markov host prediction model and the algorithms 

on a simulated large-scale data center using the real PlanetLab workloads 

and a random workload.  

• Study the impact of the data length of host status history in our algorithms 

such that they perform the best on four well-known VM selection methods 

found in the literature. In addition, we investigate how the four VM 

selection methods have impact on the performance in terms of the energy 

consumption, the number of SLA violations, the number of migrations, 

and other metrics.  
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1.3.3 Minimizing biased VM selection (Chapter 4). 

• Propose two VM selection algorithms termed as Minimum VM Migrated 

Count (MiMc) and Minimum migration time Minimum VM Migrated 

Count (MmtMiMc) that resolve biased VM selection in live VM 

migration. 

• Propose two new metrics, which are the maximum number of VM 

migrated count and the degree of load balancing of VMs migrated count. 

• A simulation-based evaluation and performance analysis of the algorithms 

using the real PlanetLab workloads and a random workload. 

1.3.4 Proactive selection process across cloud data centers (Chapter 5). 

• Modify the system model to support proactive selection process 

techniques that reduce network reconfiguration problem in WAN live VM 

migration. This model has been proposed to consider neglected parameters 

and metrics that have an effect on live migration cost. 

• Propose a VM selection algorithm that aims to be a proactive solution for 

decreasing migration time by minimizing the number of IP 

reconfigurations that are required in case of WAN migration between the 

data centers.  

• Propose algorithms to find the suitable data center for the placement of the 

VM selected for migration from the overloaded hosts. This criterion aims 

to minimize the service downtime.  
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• Propose new metrics to evaluate WAN live migration cost. We extended 

CloudSim to simulate and evaluate our algorithms and metrics for VM 

migration across the data centers on random workload.  

• Perform an extensive simulation based evaluation and performance 

analysis of the proposed algorithms with the well-known VM selection 

methods. 

1.4 Thesis Organization  

The remainder of this thesis is organized as follows: In Chapter 2, we present a 

comparative study of selection approaches used in the live VM migration technique. In 

Chapter 3, we propose efficient algorithms by studying host detection and VM placement 

problems. These proposed algorithms consider the trade-off between power consumption 

and SLA violation. In Chapter 4, we propose algorithms for minimizing biased VM 

selection in live VM migration. In Chapter 5, we propose a new system model and 

propose algorithms as proactive criteria for live WAN migration that minimizes the 

number of the IP reconfigurations and new defined metrics. Chapter 6 provides 

concluding remarks with a discussion of future works. 
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Chapter 2 
 

2 A Taxonomy of Literature Review 

2.1 Overview 

Live virtual machine (VM) migration is defined as a technique that migrates the entire 

OS and its associated applications from one host/physical server to another providing that 

users should not notice any interruption in their services. Live VM migration plays an 

important role to facilitate online maintenance, load balancing, and energy management 

as part of resource management. As mentioned before, live VM migration can be divided 

into two parts: 1) selection process which involves three different phases: when to trigger 

the migration, which VMs must be selected to be migrated, and which destination host 

must be chosen to move the selected VMs. 2) migration process that targets moving the 

VM in minimum time to avoid any interruption of services.  

In this chapter, the main selection algorithms for host detection, VM selection, and 

VM placement are discussed, and some IP network reconfiguration solutions in WAN 

area migration are reviewed. The selection algorithms will be categorized based on their 
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methodologies and approaches. In each category, we discuss the algorithm scope along 

with other performance metrics and the considered parameters in this category. 

2.2 Host Detection Approaches 

When a host is overloaded one or more VM live migration is required from the host 

under consideration. In [40] researchers proposed a fixed utilization threshold policy. The 

policy sets upper and lower utilization thresholds for hosts, and the total utilization of the 

CPU should be kept between the upper and lower thresholds. If the CPU utilization of a 

host is less than the lower threshold, the algorithm detects an underutilized host. As a 

consequence, all VMs have to be moved from this host to another host, and the host has 

to be turned off. On the other hand, if the utilization is higher than the upper threshold, 

the host is declared to be in an overutilized situation. As a result, some VMs are migrated 

to reduce the utilization from this host. The static thresholds values are not a suitable 

solution in dynamic environment with unexpected workloads. 

Authors in [41] proposed the averaging threshold-based algorithm (THR). It 

computes the mean of the n last CPU utilization values and compares it to the previously 

defined threshold. The algorithm detects underload state if the average of the n last CPU 

utilization measurements is lower than the specified threshold. This algorithm is 

unsuitable for a dynamic environment. 

In [42] researchers proposed four policies in two categories. The first category is 

Adaptive utilization threshold based algorithms that include two policies: Median 

Absolute Deviation (MAD) and InterQuartile Range (IQR). These policies offer auto-

adjustment of the utilization thresholds based on a statistical analysis of historical data 

obtained during the lifetime of the VMs. The objective is to alter the value of the upper 
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utilization threshold based on the strength of deviation of the CPU utilization. MAD is 

defined as a measure of statistical dispersion that performs better with distributions 

without a mean or variance. Also, it is a more robust estimator of scale in comparison to 

sample variance or standard deviation. The main disadvantage in MAD is that the 

magnitude of the distances of a small number of outliers is inappropriate. IQR is another 

measure of statistical dispersion. It is called the midspread or middle fifty which means 

the difference between the third and first quartiles in descriptive statistics. This category 

has a poor prediction of host overloading. Moreover, when a host has encountered the 

same CPU utilizations in the past, the value of the threshold in these approaches is 

measured around 100%, resulting in a more aggressive consolidation of VMs and more 

SLA violation. 

The second category is regression based algorithms that include two policies: Local 

Regression (LR) and Local Robust Regression (LRR). These depend on estimation the 

future CPU utilization. They perform better forecasting of host overloading but has 

higher complexity. LR is an approach that fits a curve that shows the trend in the data. A 

host is overloaded in case the maximum migration time is closer than a safety margin to 

the trend line. LRR compares the maximum migration time to an expected value and 

weights it before making the decision of overloading in the host. This category is 

influenced by the presence of outliers and does not reflect the behavior of the bulk of the 

data. 

Researchers in [43] proposed a linear regression-based CPU usage prediction 

(LiRCUP). This algorithm predicts the future state based on historical data of each host. 

The algorithm measures the future CPU usage to predict overloaded and underloaded 
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hosts. This leads that some of the VMs will be moved to other hosts before an SLA 

violation occurs. As a result, undesirable migrations occur even when the current 

resource usage of the considered hosts is still acceptable. 

In [44] authors proposed Adaptive Migration Threshold algorithm for host 

detection. The authors do not use the historical data, but they use only the current 

resource utilization to measure an upper and lower utilization threshold values for each 

host. The algorithm uses resources utilization, including CPU utilization, RAM and 

bandwidth, to measure an upper and lower utilization threshold values for each host. 

In [45] researchers proposed Dynamic Fuzzy Q-Learning (DFQL) algorithm. This 

algorithm relies on Fuzzy Q-Learning to detect overloaded hosts. Fuzzy C-Mean (FCM) 

as a fuzzy clustering algorithm has been applied to estimate Gaussian membership 

functions. The algorithm selects a new threshold for each host every time based on the 

performance feedback. The convergence learning time for the algorithm is long. 

Authors in [46] proposed an adaptive fuzzy threshold based algorithm. For 

detecting overload and underload hosts, the algorithm uses the current and estimated 

resource usage for a more efficient upper and lower threshold values.  The algorithm 

collects the information from a host and feeds them to a fuzzy inference engine supported 

by the Sugeno fuzzy rule set to determine if the host is overloaded. Also, the lower 

threshold is dynamically measured according to workload changes. 

In [47] researchers proposed a VM-based dynamic threshold (VDT) algorithm to 

detect underload host. This algorithm computes utilization of host based on considering 

host CPU utilization and the number of VMs on the host. VDT algorithm selects host as a 

candidate host for migrating all of its VMs based on the minimum CPU utilization among 
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hosts. In the case of the CPU utilization between hosts is equal, a host with least number 

of VMs will be considered as underloaded host. 

In [48] authors proposed a multi-criteria technique for detecting underutilized hosts 

including Available Capacity (AC), Migration Delay (MDL), and TOPSIS-Available 

Capacity-Number of VMs-Migration Delay (TACND) policies. AC uses available 

resource capacity as parameter to detect underloaded host. MDL algorithm uses 

migration delay as a measure to determine underloaded among all candidate hosts. 

TACND discovers underloaded host based on three criteria, which includes host available 

capacity, number of VMs on the host, and the migration delays of VMs on the host. 

In [49] researchers proposed an approach for deriving an optimal policy for 

detecting host overloading conditions, which optimally solves the problem of host 

overloading detection by maximizing the mean intermigration time under the specified 

QoS goal. One of their assumptions is that the workload satisfies the Markov property, 

which may not be true for all types of workloads. 

Authors in [50] proposed a virtual machine consolidation algorithm with usage 

prediction (VMCUP). The VMCUP algorithm is executed during the consolidation 

process to decide when a host is overloaded or underutilized based on the current and 

future (i.e., predicted) resource usage. 

Authors in [51] proposed a modified of five host overload detection algorithms [41, 

42] using mean and standard deviation. The algorithms are modified in such a manner 

that the host will be declared overloaded if the built-in overload detection finds the host 

overloaded while the requested utilization is higher than the capacity or predicted 

utilization is higher than the capacity. 
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Table 2-1 compares existing host detection algorithms concerning the parameters 

used in the detection process for each technique and shows the metrics considered as 

well. 

Table 2-1: Host Overload Detection State-of-Art Algorithms Comparison 
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 ✓ ✓   

  
   

THR [41]  ✓  ✓     ✓ ✓ ✓ 

MAD [42]  ✓   ✓    ✓ ✓ ✓ 

IQR [42]  ✓   ✓    ✓ ✓ ✓ 

LR [42]  ✓  ✓  ✓   ✓ ✓ ✓ 

LRR [42]  ✓  ✓  ✓   ✓ ✓ ✓ 

LiRCUP 

[43] 
 ✓  ✓  ✓ 

  
✓ ✓ ✓ 

Adaptive 

Migration 

Threshold 

[44] 

  ✓  ✓  

  

✓ ✓ ✓ 

DFQL [45] ✓ ✓       ✓ ✓ ✓ 

fuzzy 

threshold 

[46] 

 ✓   ✓  

  

✓ ✓ ✓ 

VDT [47] ✓  ✓  ✓    ✓ ✓ ✓ 

AC [48]       ✓  ✓ ✓ ✓ 

MDL [48]        ✓ ✓ ✓ ✓ 

TACND 

[48] 
✓      

✓ ✓ 
✓ ✓ ✓ 

 

In summary, most of the existing detection algorithms are based on the current 

CPU utilization of the system. If a host is determined to be overloaded at a moment, then 

VM migration is initiated immediately, which is not the best choice. It should be noted 

that each VM migration is associated with some performance degradation that in turn 

increases the SLA violation rate. It is known that there is a strong relationship between 
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determining when a VM migration should be initiated and the cost associated with extra 

SLA violation rate. 

2.3 VM Selection Approaches 

A VMs selection approach is applied after the completion of the host overload 

detection phase. Three different methods are suggested by researchers in [40, 42] to 

select the VMs that have to be moved to the underutilized hosts. The first approach is 

called Minimization of Migrations (MM), in this approach the minimum number of VMs 

is moved to underload hosts to reduce migration overhead. Descending VMs CPU 

utilization ordering step is implemented as the first step in this algorithm, after that a 

repeated scanning for the ordered list is performed to find the best candidate VMs to be 

migrated. The candidacy of the VMs will be based on the following two conditions.  

The first condition to be met is that the VM must have a higher utilization value 

when compared to the difference between the host’s overall utilization and the upper 

utilization threshold. The second condition that has to be satisfied when the VM is 

migrated from the host, the difference between the upper threshold and the new 

utilization should be the minimum of values provided by all the VMs. Then, if a suitable 

VM is not found, a VM with the highest utilization value is selected to be removed from 

the list. Iterations are repeated until a utilization value is found which is less than the 

upper utilization threshold. 

The second algorithm is Highest Potential Growth (HPG). This policy migrates 

VMs which have, relatively, the lowest value of CPU usage to reduce the total likelihood 

increase of the utilization and SLA violation. 
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The third algorithm is Random Selection (RS). The algorithm chooses a VM to be 

moved according to a uniformly distributed discrete random variable whose values index 

a set of VMs allocated to a host. 

Authors in [41] proposed minimum migration time maximum CPU utilization 

algorithm (MMTMU). The algorithm first selects VMs with the lowest value of RAM to 

minimize the live migration time. After that, the algorithm selects the VMs from the 

selected subset that resulted from previous step based on the maximum CPU utilization, 

by taking the average over the last values to reduce the overall CPU utilization of the host 

maximally. 

Researchers in [51] proposed modified MMT and MC [52] VM selections 

algorithm by using migration control. No migration will occur in the case of a VM that is 

steadily occupying high resource of a host for some period. 

Two different algorithms have been proposed by authors in [52], named Minimum 

Migration Time (MMT). In this method, a VM is chosen based on the value of the 

migration time, the less the better. Migration time can be easily computed as the amount 

of RAM utilized by the VM divided by the additional network bandwidth available for 

the host.  

The other algorithm is namely known as the Maximum Correlation (MC). In this 

approach, a correlation value is calculated. Whenever the value of the correlation 

between the resource usage by applications running on an oversubscribed host then the 

likelihood of overloading will be higher. So, the selection of the VMs to be migrated is 

based on the correlation of the CPU utilization with other VMs, the highest correlation 
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value is selected. To assess the prediction quality of the dependent variable the multiple 

correlation coefficient is used in multiple regression analysis. 

Authors in [53] proposed two algorithms. The first algorithm is called the Median 

Migration Time (MedianMT).  This method selects a given VM that requires the median 

time to complete a migration relatively to the other VMs allocated to the host. The second 

algorithm is the Maximum Utilization (MU) that selects a VM to migrate from the 

overutilized host based on the largest possible usage of CPU can be that expected to 

minimize the number of migrations. 

In [54] authors proposed a modified NVMMP algorithm based on VM priority. The 

algorithm first sort VMs with the highest CPU utilization value. After that, the algorithm 

selects the VMs from the selected subset that resulted from the first step based on 

minimum execution, i.e. their maximum execution left. 

In [55] authors proposed Host Fault Detection (HFD) algorithm that selects a VM 

to migrate from the overutilized host based on the maximum impact on the cause of the 

overload. If the overload is caused by RAM, then the VM with the maximum allocated 

RAM is selected by the algorithm. 

Table 2-2 compares existing VM selection algorithms concerning the parameters 

used in the selection process for each technique and shows the metrics considered to 

evaluate the algorithm as well. 
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Table 2-2: VM Selection State-of-Art Algorithms Comparison 
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MM [40, 42] ✓     ✓ ✓ ✓ 

HPG [40, 42] ✓     ✓ ✓ ✓ 

RC [40, 42]    ✓  ✓ ✓ ✓ 

MMT [52]  ✓ ✓   ✓ ✓ ✓ 

MC [52] ✓    ✓ ✓ ✓ ✓ 

MedianMT [53]  ✓ ✓   ✓ ✓ ✓ 

MaxU [53] ✓     ✓ ✓ ✓ 

modified NVMMP 

[54] 
✓   

 ✓ 
  ✓ 

modified of MMT 

[51] 
 ✓ ✓ 

  
✓ ✓  

modified of MC 

[51] 
✓   

  
   

HFD [55] ✓ ✓    ✓ ✓ ✓ 

MMTMU [41] ✓ ✓ ✓   ✓ ✓ ✓ 

 

In summary, the existing VM selection algorithms focused on minimizing the 

number of VM migrations and on reducing performance degradation. It should be noted 

that no proactive criteria exist for live WAN migration that minimizes the number of the 

IP reconfigurations. It is known that if the time needed for IP reconfiguration for all 

migrated VM users increases, then there will be an increase in the interruption of service, 

network overhead and performance degradation. 

2.4 VM Placement Approaches 

VM placement is the process that comes after the completion of the VM selection phase. 

In this section, we discuss these algorithms. In addition, we discuss other VM placement 

algorithms perspectives, such as VM placement resulting from a new user request to 
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create a new VM in a suitable host, or VM placement caused by dynamically reassigning 

VMs to hosts due to changes of system conditions or VM requirements. 

Average traffic latency reduction is the objective that researchers in [56] is 

concentrating on. To achieve this objective a traffic aware VM placement algorithm has 

been proposed. Two traffic models have been proposed, which are namely known as, 

partitioned and global. In partitioned model the only allowed communication is the one 

between the VMs in the same partition. Whereas in the global traffic model, the 

communication is not constrained on the VMs in the same partition with a constant flow 

rate. In this algorithm, better network scalability is satisfied by reducing the traffic going 

through the switches. This can be explained by the fact that this algorithm is moving the 

VMs through a minimum number of switches.  

In [57] authors formulated the VM placement problem as a multi-objective 

optimization problem to minimizing total resource wastage, energy consumption, and 

thermal dissipation cost. The authors proposed an improved genetic algorithm with a 

fuzzy multi-objective evaluation to search for solutions for allocating VMs. 

In [58] researchers proposed a VM placement algorithm based on the Ant Colony 

Optimization (ACO) meta-heuristic where the placement is computed in a dynamic way 

according to the current load by modeling the workload consolidation problem as an 

instance of the Multidimensional Bin-Packing (MDBP) problem. The goal of this 

algorithm is to pack the VMs into fewer hosts. The algorithm needs the knowledge about 

all the workload and its related resource requirements to compute the placement.  

Authors in [59] formulated the VM placement problem as a multi-objective ACO 

algorithm to minimize SLA violation, total resource wastage, and power consumption. In 
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ACO algorithm, each ant constructs a solution for selecting VM to the target server. The 

constructed solution is estimated by the suitable function, which combines SLA violation, 

resource consumption, and power consumption.  

In [60] authors proposed a joint energy-aware and application aware VM placement 

strategy based on the theory of multi-objective optimization by exploring a balance 

between server energy consumption and the communication network energy consumption 

in the data center. The algorithm aims to meet the conditions of the server-side 

constraints, to minimize network data transmission, and to reduce power consumption in 

data centers. The considered parameters are the distance between the switches that 

interconnect physical hosts, constraints of servers and the application dependencies 

among VMs of composite applications. 

In [61] researchers applied the genetic algorithm to address the VM placement 

problem considering reducing energy consumption and the communication network 

among hosts. The authors present a VM placement model considering two functions. The 

first function is a linear function of its workload that shows the energy consumed by a 

server and the energy consumed when the server is idle. The second one is a function of 

the amount of data exchanged among the VMs that displays energy consumed by the 

network. 

In [62] authors proposed a hybrid genetic algorithm (HGA). The HGA algorithm 

approach is used to allocate VMs efficiently than the genetic approach in [61]. A 

repairing procedure is embedded for converting the proposed solution into a feasible one. 

This can be accomplished by the means of local optimization procedure and resolving the 

existing violations in order to improve the overall quality of a solution. 
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Researchers in [63] proposed Family Genetic Algorithm (FGA) for VM placement 

to overcome the limitations of the Genetic approaches [61, 62]. These limitations are the 

premature convergence and the high processing time. 

In [64] researchers proposed VM Scheduler placement algorithm to reduce the time 

of allocation of VM to the server and to optimize the resource utilization. The algorithm 

represents the list of resources in a binary search tree (BST) instead of representing them 

in a queue. The algorithm generates two BSTs, one for VM specification and one for 

hosts. The VM scheduler takes the VM that has the maximum requirement and searches 

for a candidate host which best fits the requirement of VM.  

In [42, 52, 67] authors proposed Power Aware Best Fit Decreasing (PABFD) 

algorithm for VM placement to move the VMs from the overloaded host to unloaded host 

or from underloaded host for server consolidation. After sorting all migrated VMs based 

on a VM selection method, the algorithm selects the destination host to receive the 

migrated VM, which causes the least increase in the power consumption. The algorithm 

relies on the traditional greedy algorithm to optimize the allocation of VMs. 

In [47] researchers proposed host utilization and minimum correlation (UMC) VM 

Placement Algorithm to reallocate VMs from overutilized hosts or from underutilized 

host. The considered parameters are host utilization and the correlation between the 

resources of a VM with the VMs present on the host correlation. The algorithm selects 

the destination host to receive the migrated VM if its CPU utilization has the lowest 

correlation with all VMs CPU utilization on that host. 
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Table 2-3 compares existing VM placement algorithms concerning the parameters 

used in the allocation process for each technique and shows the metrics considered as 

well. 

Table 2-3: VM Placement State-of-Art Algorithms Comparison 
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Meng et al. 

[56] 
  

 ✓ ✓   
   ✓ 

 ✓   

Xu et al. [57]  ✓ ✓       ✓      ✓  ✓ 

Feller et al. 

[58] 
 ✓ 

✓ 
 

  ✓ 
✓ ✓   

 
 

  

Fei Ma et al. 

[59] 
✓ ✓ 

✓  
  ✓   ✓ 

  
✓ ✓ 

 

Huang et al. 

[60] 
  

   ✓  
✓   

  ✓   

Wu et al. [61]  ✓      ✓ ✓    ✓   

HGA [62]       ✓ ✓     ✓   

FGA [63]       ✓ ✓     ✓   

Mandal and 

Khilar [64] 
✓  

     
 ✓ ✓ 

     

Beloglazov 

and Buyya 

[42, 49] 

 ✓  

    

   

 ✓ ✓ ✓  

Horri et al. 

[47] 
 ✓ 

  
 

✓  
   

 ✓ 
✓ 

✓  

 

In summary, the existing VM placement approaches focused on reducing the 

number of physical machines, VM allocation time and the data center energy 

consumption. It should be noted that no proactive criteria exist for live WAN migration 

that minimizes IP reconfiguration time, which results in minimizing the service 

downtime. It is known that if the time needed for IP reconfiguration for all migrated VM 
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users increases there will be an increase in interruption of the service time, network 

overhead and performance degradation. 

2.5  WAN Area Migration Solutions 

Over the last two decades, there has been significant research to migrate the VMs to 

different data centers that are located at different geographic locations (i.e. different 

subnet configurations) to obtain high QoS. Thus, WAN live VM migration techniques 

have been proposed [16, 29-38, 65]. There are a few techniques proposed to solve IP 

network reconfiguration [29, 30, 33, 36-38]. 

Bradford et al. [29] proposed a solution that depends on DNS resolutions to transfer 

on going network connections transparently. When VMs migrate, they maintain their 

canonical names, and the new IP address is registered with the named host. Lookups for 

the VM based on the canonical name, following migration, will resolve to the new 

(correct) IP address. This seamless change in original IP address and resolution of new IP 

address while the VM migrates across different networks is done through IP tunneling. 

Tunneling is a mechanism for providing a path to networks/LANs of different IP 

configurations by taking help from the gateways encountered on the way to the 

destination network (where the designated host resides). Gateways provide tunnel 

endpoints, preventing any average loss of connectivity. Note that this solution places the 

burden of managing endpoints on the applications (i.e., they need to be aware of the IP 

address change). 

Silvera et al. [31] proposed not to change IP address of the virtual machine while 

being migrated between different subnets. Agents on the source and destination subnets 
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are responsible for ensuring the continued connectivity of the virtual machine via the use 

of Proxy-ARP. IP-in-IP tunnels are used between the subnet agents to forward between 

subnets the traffic destined to/originating from the VM. 

Wood et al. [30] proposed a combination of layer 3 virtual private networks 

(VPNs) and layer 2 virtual private LAN service (VPLS) to provide end-to-end routing 

across multiple networks and bridge LANs at different locations. The unified virtual 

network provides the view of a LAN to migrating VMs, with VMs maintaining single IP 

address. 

The above methods [29-31] do not support the establishment of a new TCP 

connection in conjunction with VM migration, which causes increased network delay 

time and traffic congestion and increased performance degradation. 

Kuribayashi et al. [38] proposed mSCTP, which supports multihoming and 

multiple IP addresses simultaneously. In mSCTP-based migration, VMs will transfer data 

using different TCP connections before and after migration, which causes this feature to 

improve response time and enhance throughput. 

In summary, the existing techniques focused on applying a mobility solution or 

scheme to maintain the network connectivity and to preserve the open connections during 

and after the migration in the migration process. But no proactive criteria exist for live 

WAN migration that minimizes the number of the IP reconfigurations. It is known that if 

the time needed for IP reconfiguration for all migrated VM users increases, then there 

will be an increase in the service interruption time, network overhead and performance 

degradation. 
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2.6  Summary 

In summary, most of the existing detection algorithms are based on the historical data of 

the system, which is not always a good indicator on the real workload on the VM, 

especially when we have a dynamic environment with unpredictable workloads. our work 

should be concentrating on finding the optimal value for the detection threshold to trigger 

the detection process. It should be noted that each VM migration is associated with some 

performance degradation that in turn increases the SLA violation rate. It is known that 

there is a strong relationship between determining when a VM migration should be 

initiated and the cost associated with extra SLA violation rate and energy consumption. 

The existing VM selection and VM placement approaches focused on minimizing 

the number of VM migrations, reducing performance degradation, reducing the number 

of physical machines, VM allocation time and the data center energy consumption. It 

should be noted that no proactive criteria exist for live WAN migration that minimizes 

the number of the IP reconfigurations. It is known that if the time needed for IP 

reconfiguration for all migrated VM users increases, then there will be an increase in the 

interruption of service, network overhead and performance degradation. 
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Chapter 3 

 

3 Markov Prediction Model for Host Load 

Detection and VM Placement 

3.1 Overview 

The design of good host overload/underload detection and VM placement algorithms 

play a vital role in assuring the smoothness of VM live migration. However, the existing 

algorithms have some shortcomings when it comes to the prediction of the future load 

state for the VMs. The presence of the dynamic environment that leads to a changing load 

on the VMs motivates us to propose a novel Markov prediction model to forecast the 

future load state of the host. We propose a host load detection algorithm to find the future 

overutilized/underutilized hosts state to avoid immediate VMs migration. Moreover, we 

propose a VM placement algorithm determine the set of candidates hosts to receive the 

migrated VMs in a way to reduce their VM migrations in near future. We evaluate our 



38 

 

proposed algorithms through CloudSim simulation on different types of PlanetLab real 

and random workloads. The experimental results show that our proposed algorithms have 

a significant reduction in terms of SLA violation, number of VM migrations, and other 

metrics than the other competitive algorithms. 

3.2 Proposed Markov Host Prediction Model 

This section explains the forecasting model used to effectively decide whether it is really 

necessary to migrate a VM depending on the present as well as the predicted future load 

based on previously observed values using Markov model prediction technique [66].  

In the Markov chain, the observed variable W is discretized, so the observation 

sequence 𝑤1, 𝑤2, … , 𝑤𝑛 can be described using a discrete scalar observation sequence 

{𝑤1, 𝑤2, … , 𝑤𝑛} as proposed in our forecasting model, the last w observations of a given 

host CPU utilization, where each of the variables 𝑤𝑛 may take one of M different 

states {𝑆1, 𝑆2, … , 𝑆𝑀}. In our proposed Markov model, in the proposed algorithms, three 

different states for a given host are possible, namely underloaded (U), normal loaded (N) 

and overloaded (O).  

The Markov model will be used to model the host detection depending on historical 

data that will be maintained in a log file. The historical training set is stored in a database, 

in our forecasting model the prediction will take place when we have at least 10 historical 

data observations stored in the database. This number is used in other algorithms [42, 52, 

67]. The Markov model is built using three states given by {𝑆1 = 𝑈, 𝑆2 = 𝑁,  𝑆3 = 𝑂}. 

The stochastic variable 𝜒 is a discrete random variable taking one of these three values, 
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where Algorithm 2-1 will be applied periodically by each host manager to find 𝜒 for each 

observation and register it in the host log file. 

Algorithm 2-1: Host Detection State.  

1 Input: host CPU utilization of host j (𝐶𝑃𝑈𝑢(𝐻𝑗), 

lower threshold, and upper threshold. 

2 Output: 𝜒 (current host state). 

3 𝑰𝒇  𝐶𝑃𝑈𝑢(𝐻𝑗) ≤ 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝒕𝒉𝒆𝒏  

4 𝜒 ← 𝑈 

5 𝒆𝒍𝒔𝒆 𝑰𝒇 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝐶𝑃𝑈𝑢(𝐻𝑗)

< 𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝒕𝒉𝒆𝒏           
6 𝜒 ← 𝑁 

7 𝒆𝒍𝒔𝒆 𝑰𝒇 𝐶𝑃𝑈𝑢(𝐻𝑗) ≥  𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝒕𝒉𝒆𝒏 

8 𝜒 ← 𝑂 

9 𝒓𝒆𝒕𝒖𝒓𝒏 𝜒 
 

Algorithm 2-1 shows the pseudo-code of host detection state for each observation. 

Three parameters are inputs to this algorithm. The first parameter is the host CPU 

utilization, which is calculated by dividing the total MIPS requested on the total host 

MIPS. The other parameter is the lower threshold, which is assigned a value of 0.1. The 

upper threshold is taken from the MAD algorithm which is explained in [52]. Each host 

has an underloaded (U), over- loaded (O) or normal loaded (N) state, which can be easily 

found by comparing the current CPU utilization value (𝐶𝑃𝑈𝑢) by the lower and upper 

thresholds. After the host load state is determined it is stored in the log file in order to be 

used in our proposed Markov prediction algorithm. 

It should be noted that the first-order Markov chain is most widely used in 

describing dynamic processes, wherein the conditional probability of an observation 𝑤, at 

time 𝑛 (i.e., 𝑤𝑛) only depends on the observation, 𝑤, at time 𝑛 − 1 (i.e., 𝑤𝑛−1 ) as shown 

in Equation (3.1). Moreover, the joint probability of 𝑛 observations, 𝑃(𝑤1, 𝑤2, … , 𝑤𝑛) 
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using the first order Markov chain can be given by Equation (3.2). Our Markov detection 

algorithm starts working after collecting 10 historical observations (n = 10). 

𝑃( 𝑤𝑛 │𝑤𝑛−1 , 𝑤𝑛−2, … , 𝑤1)  ≈  𝑃( 𝑤𝑛 │ 𝑤𝑛−1 ) (3.1) 

 

P(𝑤1, … , 𝑤n) = ∏ 𝑃(𝑤𝑖│ 𝑤𝑖−1)

𝑛

𝑖=1

 (3.2) 

where the conditional probabilities 𝑝 (𝑤𝑛  =  𝑆𝑗  │𝑤𝑛−1  =  𝑆𝑖) are referred to as state 

transition probabilities or simply transition probabilities. The transition probabilities 

describe the probability of the system at state 𝑆𝑗 at time 𝑛 given that the system was at 

state 𝑆𝑖 at time 𝑛 − 1. In most cases, we assume that the transition probabilities are 

homogeneous, which means that the probabilities do not change over time, so 

                   𝑝(𝑤𝑛  =  𝑆𝑗 |𝑤𝑛−1  =  𝑆𝑖)  

                             = 𝑝(𝑤𝑛+𝑇  =  𝑆𝑗  │𝑤𝑛−1+𝑇  =  𝑆𝑖) 
(3.3) 

where 𝑇 represents a positive integer larger or equal to one. The transition probabilities 

can be written as a transition matrix, which is of dimension 𝑀 ∗  𝑀 for a system with 

𝑀 (𝑤ℎ𝑒𝑟𝑒 𝑀 = 3) different states {𝑆1, 𝑆2, … … , 𝑆𝑀}. 

The state and transition probabilities of a given Markov chain can be shown using 

graph. Figure 3-1 shows our host detection Markov model with three discrete 

states {𝑂, U, N} with every periodic time we would transit to a (possibly) new state based 

on the probabilities in Equation (3.4). The system model starts in one of these states and 

moves successively from one state to another. Each move is called a step. The probability 

𝑝𝑖𝑗 represents the chance of the system model to be in the current state 𝑆𝑖 and moves to 

next state 𝑆𝑗.  
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                                                                𝑈     𝑁      𝑂 

  𝑃 = [

𝑝11
𝑝12 … 𝑝1𝑀

𝑝21
p22 … 𝑝23

⋮
𝑝𝑀1

⋮
𝑝𝑀2

⋮
𝑝𝑀𝑀

] =   
𝑈
𝑁
𝑂

 [

𝑝𝑈𝑈 𝑝𝑈𝑁 𝑝𝑈𝑂

𝑝𝑁𝑈 𝑝𝑁𝑁 𝑝𝑁𝑂

𝑝𝑂𝑈 𝑝𝑂𝑁 𝑝𝑂𝑂

] 

 

(3.4) 

Since each element in the matrix represents a probability of staying or moving to 

another state, so the matrix element of a given row should satisfy the following properties 

𝑝𝑖𝑗 = 𝑝(𝑗|𝑖)  ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗  (3.5a) 

 

∑ 𝑝𝑖𝑗

𝑀

𝑗=1

= 1, 𝑓𝑜𝑟 𝑖 ∈ {1, … , 𝑀} (3.5b) 

The state and transition probabilities of a given Markov chain can be shown using 

graph. Figure 3-1 shows our host detection Markov Model with three discrete 

states {𝑂, U, N}. and every periodic time we would transit to a (possibly) new state based 

on the probabilities in Equation 3.4. The system model starts in one of these states and 

moves successively from one state to another. Each move is called a step. The probability 

𝑝𝑖𝑗 represents the chance of the system model to be in the current state 𝑆𝑖 and moves to 

next state 𝑆𝑗. 

Instead of immediately migrating some of its VMs we can check whether the 

migration is required or not. The algorithm takes states and transition probabilities of a 

given host j detection from Markov model as an input and makes the decision of 

migration and the decision of hosting VMs as an output. The decision is based on the 

current CPU utilization and the future CPU utilization. 
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Figure 3-1: States and Transition probabilities of the Host detection Markov Model 

3.3 Proposed System 

In this section, we present a Markov-based host detection and VM placement algorithms 

for cloud data center. In section 3.3.1, our proposed system architecture is explained, 

underload/overload detection algorithm is then explained. Then a VM placement 

algorithm is explained. Finally, illustrative scenarios are clarified. 

3.3.1 System Architecture 

The target system is an IaaS environment, represented by a large-scale data center. The 

data center consists of less than 𝐽 heterogeneous hosts where each host contains multiple 

VMs. Multiple VMs can be allocated to each host through VMM. Besides, each host and 

VM are characterized by the CPU performance metrics defined in term of Millions 

Instructions Per Second (MIPS), the amount of RAM and network band-width. The target 

system model is depicted in Figure 3-2 which is a modified version of the model 
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described in [68]. Our model includes two important parts: A Data Center manager that 

has an extra predictive VM placement functionality, and the Host Manager that has an 

extra Markov model prediction agent for host detection.  

 

 

Figure 3-2: System Model 

 

Figure 3-2 shows the Host Manager and the Data Center Manager components. 

Host manager resides on every host for keeping continuous observation on CPU 

utilization of the node. Data center manager interacts with the host managers. 

Host Manager consists of the following components: 

• Host detection agent: responsible for detecting the current load state of the host, 

which can be either underloaded or overloaded. 

• VM selection agent: responsible for finding the VM that has to be migrated. 

• Prediction Markov model: responsible for finding the future load state of the host. 
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• VMM: responsible for monitoring host as well as sending gathered information to 

the data center manager. In addition, VMM performs actual resizing and migration 

of VMs as well as changes in power modes of the PMs. 

• Data Center Manager consists of the following components:  

• VM placement agent: responsible for performing the migration from 

overloaded/underloaded hosts to the candidate hosts based on a predictive Markov 

model. 

• Database: data structure that contains all the information about the hosts and the 

utilization of each host. 

Our proposed algorithms suggest that the load state host detection algorithm and 

the VM placement algorithm should not only depend on the current overall rewards 

gained from migrating the VMs, but also the future rewards should be taken into 

consideration for better SLA violation, and number of VM migrations. Host manager 

interacts with the VMM manager in order to initiate the VM migration process after 

finishing the host detection, and VM selection processes. It also interacts with the data 

center manager in order to initiate the VM placement.  

The host manager is interacting with the detection Markov model, which is shown 

in more details in the sequence diagram below. Our proposed algorithms suggested that 

the load state host detection algorithm and the VM placement algorithm, should not only 

depends on the current overall rewards gained from migrating the VMs, but also the 

future rewards should be taken into consideration for better SLA violation, number of 

VM migrations. Host manager is interacting with the VMM manager in order to initiate 

the VM migration process after finishing the host detection, VM selection and VM 
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placement processes. It also interacts with the data center manager in order to initiate the 

VM placement.  

3.3.2 The Proposed Work 

The problem of VM migration can be divided into four parts: (1) determining which hosts 

are overloaded, thus one or more VM migration is required from the host under 

consideration, (2) determining which hosts are underloaded so that all VMs should be 

migrated from those hosts; (3) selecting VMs that should be migrated from overloaded 

hosts. (4) finding new placement for the migrated VMs by choosing the good candidate 

hosts [66]. We have proposed three algorithms which resolve the first, second and fourth 

issues of migration. For VM selection multiple selection algorithms given in [67] are 

used. 

3.3.2.1 Host underload/overload detection 

Algorithm 2-2 describes the host overload/underload detection mechanism. Upper and 

lower thresholds for CPU utilization are assigned first. These can be assigned either 

statistically using First Order-Markov Chain Host State Detection algorithm 

(FOMCHSD) or dynamically using Median Absolute Deviation Markov Chain Host 

Detection algorithm (MadMCHD). In MadMCHD, Median Absolute Deviation (MAD) 

algorithm is used, which is based on statistical analysis of historical data collected during 

the lifetime of VMs [42]. For a univariate data set 𝑤1, 𝑤2, . . . , 𝑤𝑛, the MAD is defined as 

the median of the absolute deviations from the median of the data set: 

𝑀𝐴𝐷 =  𝑚𝑒𝑑𝑖𝑎𝑛𝑖(│𝑤𝑖 −  𝑚𝑒𝑑𝑖𝑎𝑛𝑗(𝑤𝑗)│) (3.6) 
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The MAD is the median of the absolute values of deviations (residuals) from the 

data’s median. In the proposed overload detection algorithm, the upper CPU utilization 

threshold (𝑇𝑢) is defined as given in Equation (3.7) 

𝑇𝑢 =  1 −  𝑠 ∗ 𝑀𝐴𝐷 (3.7) 

where 𝑠 ∊  𝑅+ represents a parameter of the method defining how strongly the system 

tolerates host overloads. In other words, the parameter 𝑠 allows the adjustment of the 

safety of the method: a lower value of 𝑠 results in a higher tolerance to variation in the 

CPU utilization. 

After our algorithm is triggered, the first thing to calculate is the current CPU 

utilization, and then to determine whether the static or dynamic values are considered for 

the upper and the lower threshold by checking the value of the input parameter B. As 

mentioned before, the values of the upper and lower values are assigned statically or 

dynamically using MAD. In case B = FOMCHSD, the lower threshold value is equal to 

0.1 and the upper threshold value is 0.9. FOMCHSD is a static algorithm. 

In case B = MadMCHD the value of the lower threshold is also equal to 0.1 and the 

value of the upper threshold is calculated using equation in line 12. Our proposed 

algorithm is triggered when the length of the history data stored in the log file is more 

than 10. 

The current host load state is determined by comparing the value of the current 

utilization with the lower and the upper threshold. The future load state is predicted using 

our Markov prediction model. If the future predicted load state is overloaded, then the 

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 is assigned a true value and the host is considered for 

migration. For the underload host detection, if the current state and the future state is 
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underloaded then the 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_ 𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 is assigned a true value and 

the host is considered for energy saving or to receive migrated VMs. 

Algorithm 2-2: Overload/Underload host detection. 

1 Input: host, lower threshold = 0.1, upper threshold = 0.9,   B 
(FOMCHSD or MadMCHD). 

2 Output: migration_decision_underloaded (T/F), 
migration_decision_overloaded (T/F). 

3 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ←  𝑓𝑎𝑙𝑠𝑒  
4 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ←  𝑓𝑎𝑙𝑠𝑒 

5 𝒘𝒉𝒊𝒍𝒆 ℎ𝑜𝑠𝑡𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑡𝑟𝑢𝑒 𝒅𝒐 
6    𝒊𝒇 𝑙𝑜𝑔𝑓𝑖𝑙𝑒. 𝐿𝑒𝑛𝑔𝑡ℎ >= 10 𝒕𝒉𝒆𝒏 
7 //calculate current CPU utilization of host h 
8 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ←  𝑡𝑜𝑡𝑎𝑙 𝑅𝑒𝑞. 𝑀𝑖𝑝𝑠/ 𝑇𝑜𝑡𝑎𝑙 ℎ𝑜𝑠𝑡 𝑀𝑖𝑝𝑠  

 
9   𝑺𝒘𝒊𝒕𝒄𝒉(𝑩) 
10 𝑪𝒂𝒔𝒆 𝐹𝑂𝑀𝐶𝐻𝑆𝐷:  𝒃𝒓𝒆𝒂𝒌; 
11 𝑪𝒂𝒔𝒆 𝑀𝐴𝐷𝑀𝐶𝐻𝐷: 
12          𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 1 −  𝑠 ∗ 𝑀𝐴𝐷 

 
13   //find current utilization using Algorithm 2-1 
14 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 ←  

ℎ𝑜𝑠𝑡_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒 (𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,   
                                                               𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

 

15 //find future utilization using Markov prediction technique 
16 𝑓𝑢𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 ←

𝑓𝑢𝑡𝑢𝑟𝑒_𝑀𝑎𝑟𝑘𝑜𝑣_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒)  
17 𝑰𝒇 𝑓𝑢𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 = 𝑂 𝒕𝒉𝒆𝒏 
18 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ← 𝑇𝑟𝑢𝑒  
19 𝒆𝒍𝒔𝒆 𝑰𝒇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒 = 𝑈 𝑎𝑛𝑑 𝑓𝑢𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 = 𝑈 𝒕𝒉𝒆𝒏  
20 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ← 𝑇𝑟𝑢𝑒 

 
21 return  𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑢𝑛𝑑𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑, 

              𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 _𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 
 

3.3.2.2 VM placement 

VM placement algorithm is the last phase that comes after the detection of the 

overloaded/underloaded hosts and after the suitable VMs are selected to be migrated. 
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During this phase, suitable hosts are to be found to migrate all the selected VMs, which 

fits the requirements of these VMs. In the literature, a single build in VM placement 

exists in CloudSim [52, 67] called Power Aware Best Fit Decreasing (PABFD), where all 

the VMs are sorted based on their current CPU utilization in a descending order. Each 

VM is allocated to a host with the least increase of the power consumption caused by the 

allocation. We have modified the existing VM placement algorithm by adding the 

Markov prediction model into the PABFD. In our Markov Power Aware Best Fit 

Decreasing (MPABFD) algorithm, the future host load state is predicted based on the 

historical data collected and stored in the log file. 

Algorithm 2-3: Markov Power Aware Best Fit Decreasing 

(MPABFD) algorithm 

1 Input: hostlist, selected_vm. 

2 Output: a host to receive the selected VM 

3 𝑚𝑖𝑛𝑃𝑜𝑤𝑒𝑟 ← 𝑀𝐴𝑋  

4 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑_ℎ𝑜𝑠𝑡 ← 𝑁𝑜𝑛𝑒  

5 𝒇𝒐𝒓𝒆𝒂𝒄𝒉 ℎ𝑜𝑠𝑡 𝑖𝑛 ℎ𝑜𝑠𝑡𝑙𝑖𝑠𝑡 𝒅𝒐 

6     If (host has enough resources for the selected_vm && 

         hostisactive = true && hoststateafterallocation () 

          ! = O) then 

7         𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡1[]  ← 𝑎𝑑𝑑. ℎ𝑜𝑠𝑡 

 

8 𝒇𝒐𝒓𝒆𝒂𝒄𝒉 ℎ𝑜𝑠𝑡 𝑖𝑛 𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡1[] 𝒅𝒐 

9      𝑓𝑢𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 

       ← ℎ𝑜𝑠𝑡. 𝑓𝑢𝑡𝑢𝑟𝑒_𝑀𝑎𝑟𝑘𝑜𝑣_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑡𝑒(𝑠𝑡𝑎𝑡𝑒) 

10         𝑰𝒇 (𝑓𝑢𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒 ==  𝑈 𝑜𝑟 𝑁)𝒕𝒉𝒆𝒏 

11               𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡2[]  ← 𝑎𝑑𝑑. ℎ𝑜𝑠𝑡 

 

12 𝒇𝒐𝒓𝒆𝒂𝒄𝒉 ℎ𝑜𝑠𝑡 𝑖𝑛 𝑻𝒆𝒎𝒑𝑯𝒐𝒔𝒕𝒍𝒊𝒔𝒕𝟐 𝒅𝒐 

13         𝑝𝑜𝑤𝑒𝑟 ←  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑃𝑜𝑤𝑒𝑟(ℎ𝑜𝑠𝑡, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚) 

14         𝑰𝒇 (𝑝𝑜𝑤𝑒𝑟 <  𝑚𝑖𝑛𝑃𝑜𝑤𝑒𝑟) 𝒕𝒉𝒆𝑛 

15               𝑚𝑖𝑛𝑃𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 

16               𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑_ℎ𝑜𝑠𝑡  ←  ℎ𝑜𝑠𝑡 

 

17 𝒓𝒆𝒕𝒖𝒓𝒏 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑_ℎ𝑜𝑠𝑡 
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Algorithm 2-3 describes our MPABFD algorithm that results in a host to receive 

the selected VM. The resource availability is first checked for all the active hosts, bearing 

in mind that all the candidate hosts are not overloaded after the allocation. The candidate 

temporary host list is stored in array 𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡1[]. Next the future state for all the 

candidate hosts stored in 𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡1[] are checked. If the future state is overloaded, 

then the host is excluded from the array. A new temporary array, 𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡2[], is 

generated, which is a subset of 𝑇𝑒𝑚𝑝𝐻𝑜𝑠𝑡𝑙𝑖𝑠𝑡1[]. Finally, power constraint is considered 

where a host with the minimum power has higher priority to be selected. 

3.3.3 Sequence Diagram Scenarios 

In the following sequence diagrams, our proposed algorithms are explained in detail. As 

previously mentioned, the selection process is gone through three different steps which 

are the host detection, VM selection and the VM placement. At the very beginning, the 

host detection agent resides in each host trigger the host detection process, as explained 

in algorithm. 

Figure 3-3 shows an example of Overloaded detection. An overloaded host load 

state is discovered by the host detection agent and the state is sent to the host manager. 

The host manager sends the current host load state to the Markov agent to check the 

future state. As shown in the sequence diagram, the current host load state is overloaded, 

the Markov agent predicts the future host load state and send it back to the host manager. 

If the future host load state is either underloaded or normally loaded, then the host 

manager will ignore the overloaded host and consider it as an underloaded host since it is 

predicted to be underloaded in the near future.  
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The host load detection is run repeatedly until the host manager and the Markov 

agent both determine the host load state as an overloaded. At this specific time, the data 

center manager is notified of the current/future host overloaded state and the resource 

availability is checked in the database. Data center manager and host manager are both 

notified whenever the resources are available. Then the host manager ordered the VM 

selection agent to find the VM to migrate into it. Placement agent is also notified to find 

the suitable host for the VM placement to take place. The first thing to be checked by the 

placement agent is the load state after the VM allocation is performed and whether the 

state is moved to the overloaded state or not. If the state is going to be overloaded after 

the allocation process, then the placement is not executed. In the VM placement 

algorithm, current and future host load state are both considered to make the placement 

decision. Whenever the current and future host load state is underloaded/normal the VM 

placement process is started and finally the VM live migration process after checking all 

the candidate hosts and find the most suitable host with the minimum power. In our 

scenario, Host 3 and Host 5 both satisfied the first two conditions which are related to the 

current load state after allocation and the future load state. Host 3 is then selected since it 

has the minimum power and the VM 3 is migrated to this host.  
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Figure 3-3: Overload Host Detection 

 

On the other hand, an underloaded host load state is discovered by the host 

detection agent and the state is sent to the host manager. Then Markov agent is the entity 

responsible on finding the future host load state, after receiving the current host load 

state. In this scenario, the current host load state is underloaded, and the predicted future 

load state is either overloaded or in normal state. In this case, the current underloaded 

state will be neglected since the future state is not underloaded. This checking process is 

performed periodically by the host detection agent until the current load state matches the 

future load state, which must be “underloaded”, then the data center manager is informed 

of the underloaded host state. Resources availability are checked afterwards in order to 



52 

 

perform the migration of the underloaded VMs and shut down those hosts to save power. 

Whenever an available resource is found, the list of VMs input is fed up to the data center 

manager and to the placement agent. The list of VMs are sorted in a decreasing order 

based on the power. In our example, Host3 is considered the best host suitable for the 

migration since it has the least power and lowest load compared to the other hosts, but 

before the migration started another metric should be considered which is the future load 

state for the host. If the future load state is predicted to be overloaded then another host 

should be found, otherwise the migration process started. This is shown in Figure 3-4 

below. 
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Figure 3-4: Underload Host Detection 
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3.3.4 Illustrative Scenario 

Consider 3 heterogeneous hosts ℎ = < ℎ1, ℎ2, ℎ3 > and 7 VMs 𝑉 = <

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7 > allocated on them. The loads of VMs are allocated to each 

host as following, ℎ1 = < 𝑣1 = 0.4, 𝑣2 = 0.2, 𝑣3 = 0.3 >, ℎ2 = < 𝑣4 = 0.1 >, ℎ3 =

 < 𝑣6 = 0.2, 𝑣7 = 0.2 >. The upper threshold is assumed to be a dynamic threshold, 

𝑈𝑇 (ℎ1, ℎ2, ℎ3) = < 0.8, 0.7, 0.7 >. In addition to the VM loads, each host has extra 

loads equal to 𝐸𝐿(ℎ1, ℎ2, ℎ3) = < 0.03, 0.04, 0.05 >. 

Host 1 detection agent determines an overload situation has occurred according to:  

ℎ1𝑙𝑜𝑎𝑑 = 𝑣1 𝑙𝑜𝑎𝑑 + 𝑣2 𝑙𝑜𝑎𝑑+ 𝑣3 𝑙𝑜𝑎𝑑 + ℎ1𝐸𝑙 

            = 0.4 +  0.2 + 0.3 +  0.03 = 0.93. 

                                     ℎ1𝑙𝑜𝑎𝑑 ≥  ℎ1𝑈𝑇  =  0.93 ≥  0.8  
 

The aim is to migrate a VM in order to avoid SLA violation. To check the host load 

future state before migrating some VMs, Markov prediction model agent will calculate 

the future state using the historical data in h1 given by Historical (h1) = <

𝑢, 𝑢, 𝑢, 𝑜, 𝑢, 𝑛, 𝑛, 𝑛, 𝑛, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑛, 𝑜, 𝑛, 𝑜, 𝑜, 𝑜 >. The future host load state is calculated 

as:  

𝑃( 𝑤𝑛 = 𝑂 | 𝑤𝑛−1 = 𝑂) = 𝑃𝑂𝑂 =
𝑃( 𝑤𝑛 = 𝑂, 𝑤𝑛−1 = 𝑂)

𝑃(𝑂)
 

 

                     =
𝑃( 𝑤𝑛=𝑂,𝑤𝑛−1=𝑂)

𝑃( 𝑤𝑛=𝑂,𝑤𝑛−1=𝑈)+𝑃( 𝑤𝑛=𝑂,𝑤𝑛−1=𝑁)+𝑃( 𝑤𝑛=𝑂,𝑤𝑛−1=𝑂)
  

 

𝑃𝑂𝑂 =
2

1 + 1 + 2
= 0.5 

 

Similarly, 𝑃𝑂𝑈 =  0.25 and 𝑃𝑂𝑁 = 0.25. Note that the host will probably stay in the 

overload situation, therefore some VMs should be migrated. Let the selection agent select 
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𝑣2 to be migrated. To find the destination host for allocating 𝑣2, MPABFD starts to 

investigate the first condition, to find the candidate hosts with the capacity requirement 

still under the threshold after allocating 𝑣2 as: 

ℎ2 𝑁𝑒𝑤𝑙𝑜𝑎𝑑 = ℎ2 𝑙𝑜𝑎𝑑 + 𝑣2 𝑙𝑜𝑎𝑑 = 0.14 + 0.2 = 0.34 

ℎ3 𝑁𝑒𝑤𝑙𝑜𝑎𝑑 = ℎ3 𝑙𝑜𝑎𝑑 + 𝑣2 𝑙𝑜𝑎𝑑 = 0.45 + 0.2 = 0.65 

As noted, both new loads are less than their upper thresholds. The second condition 

is now investigated on both the candidate hosts to predict the future state using their 

historical data. Considering Historical (h2) = < 𝑢, 𝑜, 𝑢, 𝑜, 𝑢. 𝑛. 𝑛. 𝑛. 𝑛, 𝑢, 𝑜, 𝑢 

, 𝑢, 𝑜, 𝑛, 𝑜, 𝑜, 𝑜, 𝑜, 𝑢 >, we calculate 𝑃𝑈𝑈 = 0.1667, 𝑃𝑈𝑁 = 0.1667 𝑎𝑛𝑑 𝑃𝑈𝑂 = 0.6667.  

Host 2 will move to overloaded state. Similarly considering Historical (h3) = <

𝑢, 𝑢, 𝑛, 𝑜, 𝑛, 𝑛, 𝑢, 𝑛, 𝑛, 𝑛, 𝑜, 𝑜, 𝑛, 𝑛, 𝑛, 𝑢, 𝑛, 𝑛, 𝑜, 𝑛 >, we calculate  𝑃𝑁𝑈 = 0.1818 , 𝑃𝑁𝑁 =

0.5454  and 𝑃𝑁𝑂 = 0.2727. Host 3 will stay in the normal state. It is therefore 

recommended VM 𝑣2 to move to host 3 in order to reduce the number of VM migrations 

and to avoid the SLA violation in the future. 

3.4 Experimental setup 

In this section, we describe the simulation setup of our proposed approach. We 

explain the two types of workloads, PlanetLab called a real workload, and random 

workload. Finally, the evaluation metrics will be described. 

3.4.1 Simulation setup 

It is difficult to do experiments in a very noticeably dynamic environment like cloud 

because using real test delimits the experiments to the scale of the infrastructure and 
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makes reproducing the results an extremely difficult undertaking [69]. In addition, 

measuring performance in real cloud environment is very sophisticated and time-

consuming [70]. For these reasons, the CloudSim simulation tool has been chosen to test 

our approaches before deploying them in real cloud. Other simulators like GangSim, 

SimGrid, GridSim [71-73] do not provide suitable environment that can be directly used 

for modeling cloud computing environment. They are unable to isolate the multilayer 

service abstractions i.e. SaaS, PaaS and IaaS required by Cloud. On the other hand, The 

CloudSim tool supports modeling and simulation of data centers on a single physical 

computing node that contains implemented algorithms in order to compare them with the 

proposed approach. 

To evaluate the efficiency of our algorithms with the existing algorithm, we have 

used the same experiment setup as used in [41] with some different workload. A data 

center has been simulated having 𝐽 heterogeneous physical hosts and 𝑉 virtual machines. 

The value of 𝐽 and 𝑉 depends on the type of workload which is specified in Table 3-1 

[74]. In each workload, half of hosts are HP ProLiant ML110 G4 servers 1,860 MIPS 

each core, and the other half consists of HP ProLiant ML110 G5 servers with 2,660 

MIPS each core. Depending on the CPU and memory capacity four types of single-core 

VMs are used: High-CPU Medium Instance: 2500 MIPS, 0.85 GB; Extra Large Instance: 

2000 MIPS, 3.75 GB; Small Instance: 1000 MIPS, 1.7 GB and Micro Instance: 500 

MIPS, 0.633 GB. The characteristics of these VM types are similar to Amazon EC2 

instance types. 
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Table 3-1: Characteristics of the workload data (CPU utilization) 

Workload Type Date Host  VMs Mean (%) SD(%) 

Real (PlanetLab) 03/03/2011 800 1052 12.31 17.09 
 22/03/2011 800 1516 9.26 12.78 
 03/04/2011 800 1463 12.39 16.55 
 20/04/2011 800 1033 10.43 15.21 

Random --------------- 50 50 ------- -------- 

3.4.2 Workload Data 

To make the simulation based evaluation applicable, we evaluate the Markov 

Prediction Model approach on random workload and real-world publicly available 

workloads: 

• Real Workload (PlanetLab data) [74]: This is provided as a part of the CoMon 

project; it is a monitoring infrastructure for PlanetLab. In this project, the CPU 

utilization data is obtained every five minutes from more than a thousand VMs from 

servers located at more than 500 places around the world. Data is stored in ten 

different files. We chose two different days from the workload traces gathered 

during March 2011 and one day from April 2011 of the project. Through the 

simulations, each VM is randomly assigned a workload trace from one of the VMs 

from the corresponding day. Table 3-1 shows the characteristics of each workload. 

• Random Workload: Requests for provisioning of 50 heterogeneous VMs that fill the 

full capacity of the simulated data center are submitted by the users. Each VM runs 

an application with the variable workload, which is modeled to generate the 

utilization of CPU according to a uniformly distributed random variable. Each 

application has a length that determines the number of instructions with MI. The 

application runs for 150,000 MI that is equal to 10 minutes of the execution on 250 

MIPS CPU with 100% utilization.  
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3.4.3 Performance Metrics 

To compare the performance of our proposed algorithms with the existing algorithms we 

have chosen eight metrics which are previously defined:  SLA violation, percentage of 

SLA violation time per active host and SLA%, performance degradation that occurs due 

to migration of VM from one host to another while balancing load or switching off 

underutilized servers, average SLA violation which describes how many times allocated 

resources are less than required resources, total number of VM migration occurred either 

for hotspot mitigation or for VM consolidation, total energy consumption by the physical 

resources for executing variable workloads, and finally number of hosts that are 

switching off. 

 

• SLA Violation: In a cloud environment, SLA is agreed between the service 

provider and the user to ensure the required level of service. SLA contains various 

details of service level that will be provided to a user, such as, minimum capacities 

of CPU, RAM, storage, and bandwidth. In case of SLA violation, a party that is 

responsible for its breach has to pay a fine to the other party. The CPU usage by a 

VM arbitrarily varies over time. The host is oversubscribed, i.e. if all the VMs 

request their maximum allowed CPU performance, and the total CPU demand 

exceeds the capacity of the CPU. It is defined that when the request for the CPU 

performance exceeds the available capacity, a violation of the SLA established 

between the resource provider and the customer occurs. For our studies, SLA 

violation is calculated as shown in Equation (3.8) [52]: 

𝑆𝐿𝐴 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (𝑆𝐿𝐴𝑉)  =  𝑆𝐿𝐴𝑇𝐴𝐻 ∗  𝑃𝐷𝑀  (3.8) 
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where SLAV denotes SLA violation, SLATAH represents SLA violation Time per Active 

Host, and PDM stand for Performance Degradation due to Migrations. Following 

equations can be used to calculate SLATAH and PDM. 

• SLA violation time per active host (SLATAH):  is the observation that if a host 

serving applications is experiencing the 100% utilization, the performance of the 

applications is bounded by the host’s capacity; therefore, VMs are not being 

provided with the required performance level. In other word, it means SLA 

violations due to overutilization [52]. 

𝑆𝐿𝐴𝑇𝐴𝐻 =
1

𝐽
∑

𝑇𝑠𝑗

𝑇𝑎𝑗

𝐽

𝑗=1

 

 

(3.9) 

where 𝐽 is number of hosts, 𝑇𝑠𝑗 is the total time that utilization of host 𝑗 reaches 100 %, 

and 𝑇𝑎𝑗 is the lifetime (total time that host is active) of host 𝑗. When host utilization 

reaches 100 %, the applications performance is bounded by the host. 

• Performance degradation due to migration (PDM): Live migration is the process of 

moving VMs from one host to another one (without suspension), it has a negative 

impact on user applications performance. Voorsluys et al. [71] show that this 

impact depends on application behavior, and the performance degradation can be 

estimated as 10% of CPU utilization. In other word, it means the SLA violations is 

due to migration. 

𝑃𝐷𝑀 =
1

𝑉
∑

𝐶𝑑𝑣

𝐶𝑟𝑣

𝑉

𝑣=1

 

 

(3.10) 
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where V is the number of VMs, 𝐶𝑑𝑣 estimated as 10% CPU utilization of  𝑉𝑀𝑣 in all 

migrations, 𝐶𝑟𝑣 is total CPU requested by 𝑉𝑀𝑣. 

• Average SLA violation: is measured as the mean of the difference between total 

requested resources (MIPS) by all the VMs and total allocated resources (MIPS). 

Equation (3.11) can be used to calculate 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝐿𝐴𝑉 =  
∑ (𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑀𝐼𝑃𝑆) − ∑ 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑀𝐼𝑃𝑆𝑉

𝑣=1  𝑉
𝑣=1

𝑉
 

 

(3.11) 

where V shows number of VMs 

• Overall SLA violation: is measured as the mean of the difference between total 

requested resources (MIPS) by all the VMs and total allocated resources (MIPS) 

[68]. Equation (3.12) can be used to calculate 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝐿𝐴𝑉 =
∑ (𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑀𝐼𝑃𝑆) − ∑ 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑀𝐼𝑃𝑆𝑉

𝑣=1  𝑉
𝑣=1

∑ (𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑀𝐼𝑃𝑆)𝑉
𝑣=1

 

 

(3.12) 

where V is the number of VMs. 

• Number of VM migration: a higher number of VM migrations increases the 

network load, and results in performance degradation. Equation (3.13) can be used 

to calculate the number of migrations during a given time interval [22]. 

𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠(𝑃, 𝑡1, 𝑡2) = ∑ ∫ 𝑀𝑖𝑔𝑗(𝑃, 𝑡)
𝑡2

𝑡1

𝐽

𝑗=1

 

 

(3.13) 

where 𝑃 represents the current placements of VMs, 𝐽 is the number of hosts, 𝑀𝑖𝑔𝑗(𝑃, 𝑡) 

shows the number of migration of Host 𝑗 between time intervals 𝑡1𝑎𝑛𝑑 𝑡2 for the 

placement 𝑃. 

• Energy Consumption: In order to measure the power consumption of a given host 

at a time t with placement P [75]. Equation (3.14) can be used to calculate  
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𝑊𝑗(𝑃, 𝑡) = 𝑘 ∗ 𝑊𝑚𝑎𝑥 + (1 − 𝑘) ∗ 𝑊𝑚𝑎𝑥 ∗ 𝑈𝑗(𝑃, 𝑡) 

 

(3.14) 

where 𝑊𝑚𝑎𝑥 is the power consumption of the host at 100% utilization, k is the static 

power coefficient that is equal to the amount of power consumption by an idle processor. 

According to [76], an idle processor consumes 70% of the power consumed when its 

utilization is 100%. Therefore, in our experiments, k is set to 70%. In this model, 

𝑈𝑗(𝑃, 𝑡) is the current CPU utilization of a host 𝑗 at time t, which has a linear relationship 

with the power consumption. Total energy consumption of all the hosts between time t1 

and t2, can be calculated using Equation (3.15).  

𝐸𝑛𝑒𝑟𝑔𝑦(𝑃, 𝑡1 , 𝑡2) =  ∑ ∫ 𝑊𝑗(P, 𝑡)
𝑡2

𝑡1

𝐽

j=1

  

 

(3.15) 

Table 3-2 illustrates the amount of energy consumption of two types of HP G4 and G5 

servers at different load levels. The table shows the energy consumption is reduced 

efficiently when under-utilized PMs switch to the sleep mode [52]. 

Table 3-2: The energy consumption at different load levels in Watts 

Server sleep 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

HP G4 10 86 89.4 92.6 96 99.5 102 106 108 112 114 117 

HP G5 10 93.7 97 101 105 110 116 121 125 129 133 135 

 

• Number of host shutdowns: consolidation is applied to reduce the number of active 

physical hosts, the quality of VM consolidation is inversely proportional to H, the 

mean number of active hosts over n time steps [49]: 

𝐻 =  
1

𝑛
∑ 𝑎𝑖

𝑛

𝑖=1

  

 

(3.16) 

where 𝑎𝑖 is the number of active hosts at the time 𝑠𝑡𝑒𝑝 𝑖 =  1, 2, . . . , 𝑛. A lower value of 

H represents a better quality of VM consolidation. 
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QoS is mainly affected by the SLA violation, where the SLA violation is affected 

by number of VMs migration, PDM, and SLATAH metrics.  

3.5 Experimental Results 

In this section, we first present the impact of the data length of host status history in our 

algorithm that makes it perform the best on four different VM selection polices with three 

different PlanetLab workloads and a random workload. We then show the impact of four 

different VM selection polices on our algorithms. Then, we discuss our experimental 

results in comparison to the benchmark algorithms. Finally, the impact of proposed 

placement algorithm on MadMCHD algorithm is investigated.  

3.5.1 Maximum Data length of host status history of Markov Model 

One of the important parameter for Markov model is to determine the maximum data 

length. Consequently, we first investigate a different range of data length in order to find 

the most suitable length for the four different VM selection polices. To perform this 

experiment, we study this parameter with three different PlanetLab workloads and a 

random workload. To choose the best data length, we rely on the aforementioned eight 

metrics. We have observed through this experiment that each data length parameter 

affects VM selection policies differently. Therefore, we have chosen the data length 

parameter that performs well in most of four VM selection policies. We have selected a 

range for data length from 30 to 180. We have not increased the range over 180 because 

of time complexity. 
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Figure 3-5: The impact of data length on the SLA metric 
 

 

Figure 3-6: The impact of data length on the number of VM migration metric 

 

We have studied the impact of the mentioned range on the eight metrics. However, 

for the sake of space, we have shown the impact of data length on SLA violation and 

number of VM migration metrics as shown in Figure 3-5 and Figure 3-6 respectively. 

According to these figures, we have chosen the data length parameter, 120, and this 

parameter is used for the comparison experiments.  For instance, we calculate the average 
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of SLA violation metric when the work load is 20110303 and we have found the 

following: when the MC policy is used and data length is 30, the average of SLA 

violation metric is 4.2581. Also, the average SLA violation metric for the data length 60, 

90, 120, 150, 180 are 2.9934, 2.78045, 1.984, 2.20512, and 2.0664 respectively. Based on 

these numbers, we can see that the best data length is 120. From Figure 3-6, when the 

work load is 20110322 is used, we have found that the average for number of VM 

migration is 3296 when the data length is 120, while the average of VM migration is 

3250 when the data length is 180. Since this is a slight difference, we consider 120 as the 

most suitable data length to avoid time complexity when the data length is 180.    

3.5.2 Comparison with other benchmarks  

We are further interested in comparing our proposed algorithms with the state-of-the-art 

algorithms. To perform this comparison, we employ the aforementioned eight metrics in 

order to assess our results. Our comparison process is to study the algorithms’ 

performance in the entire selection process which includes host detection, VM selection, 

and VM placement. 

We compare the proposed algorithm, MadMCHD, with the state-of-the-art five 

host detection algorithms, namely IQR, MAD, LRR, LR, and THR (which is a static 

threshold set to 0.8) [42, 52, 67]. Besides, we investigate the impact of four well-known 

VM selection polices on the proposed model, which are described below. The VM 

selection algorithms include: 

• Maximum Correlation (MC) is inspired that high correlation between tasks and 

resource usage might lead to server overloading. MC uses the multiple correlation 

coefficient which corresponds to the squared correlation between the predicted and 
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the actual values of the dependent variable [52]. 

• Minimum Migration Time (MMT): selects VMs based on the value of the 

migration time, the less the better. The migration time can be easily computed as 

the amount of RAM utilized by the VM divided by the additional network 

bandwidth available for the current allocated host [52].  

• Maximum Utilization (MU): Choosing the VMs to migrate from the hotspot based 

on the largest possible CPU usage can be expected to minimize the number of 

migrations [41]. 

• Random Selection (RS): selects the necessary number of VMs by picking them 

according to a uniformly distributed random variable [40]. 

For IQR, LR, LRR, MAD, THR, and MadMCHD, we use the well-known 

placement method which is called PABFD [42,52]. The main goal of these experiments is 

to substantiate the threshold adaptability in hypothesis by evaluating the performance of 

the proposed algorithm across single workload (20110322) that traces from more than a 

thousand PlanetLab servers and one random workload. In the following we compare our 

results with the minimum value for each selection algorithms when applied to host 

detection algorithms. For example, when selection algorithm MC is applied to all state-

of-the-art detection algorithms, we compare our result with the one which gives 

minimum value (example SLA % in Figure 3-7). 

From the simulation results depicted in Figure 3-7 and Figure 3-8, it is completely 

obvious that the proposed algorithm significantly outperforms the other algorithms in 

terms of SLA violation for both 20110322 PlanetLab real workload and the random 

workload, since our proposed host load detection algorithm avoids immediate VMs 
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migration. It reduces SLA violation metric by 97.19%, 96.16%, 92.34%, and 90% for the 

real workload, and by 98.25%, 97.98%, 98.39, and 98.54% for the random workload for 

VM selection policies MC, MMT, MU, and RS respectively. 

 

Figure 3-7: SLA violation for real workload trace 

 

Figure 3-8: SLA violation for a random workload trace 

From the simulation results depicted in Figure 3-9 and Figure 3-10, it is completely 

obvious that the proposed algorithm significantly outperforms the other algorithms in 

terms of number of VM migrations for both 20110322 PlanetLab real workload and the 

random workload, since our proposed algorithm avoids immediate VMs migration. The 
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proposed host load detection algorithm reduces number of VM migrations metric by 

88.73%, 89.90%, 85.35%, and 89.15% for the real workload, and by 83.97%, 87.74%, 

84.61%, and 80.07% for the random workload for VM selection policies MC, MMT, 

MU, and RS respectively. 

 

Figure 3-9: Number of VM migrations for real workload trace 

 

Figure 3-10: Number of VM migrations for a random workload trace 

From the simulation results depicted in Figure 3-11 and Figure 3-12 it is 

completely obvious that the proposed algorithm significantly outperforms the other 

algorithms in terms of PDM for both 20110322 PlanetLab real workload and the random 
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workload, since our proposed algorithm reduces total CPU requested by 𝑉𝑀𝑠. The 

proposed host load detection algorithm reduces PDM migration metric by 71.02%, 

72.11%, 58.52%, and 79.05% for the real workload, and by 78.28%, 73.87%, 83.35%, 

and 83.56% for the random workload for VM selection policies MC, MMT, MU, and RS 

respectively. 

 

Figure 3-11: Performance degradation for real workload trace 

 

Figure 3-12: Performance degradation for a random workload trace 

From the simulation results depicted in Figure 3-13 and Figure 3-14, it is 
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algorithms in terms of SLATAH for both 20110322 PlanetLab real workload and the 

random workload, since our proposed algorithm reduces total time of staying 

overutilized. The proposed host load detection algorithm reduces SLATAH migrations 

metric by 90.27%, 86.29%, 78.31%, and 90.83% for the real workload and by 84.58%, 

86.30%, 82.19%, and 83.40% for the random workload for VM selection policies MC, 

MMT, MU, and RS respectively. 

 

Figure 3-13: SLA violation time per active host for real workload trace 

 

Figure 3-14: SLA violation time per active host for a random workload trace 
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Figure 3-15 shows that the proposed algorithm slightly outperforms the other 

algorithms in terms of the average SLA violation for 20110322 PlanetLab real workload. 

Figure 3-16 shows that proposed algorithm is almost similar to the MAD and IQR 

algorithms in term of the average SLA violation, and the performance of the proposed 

algorithm is not much better than that of LR, LRR and THR algorithms for the random 

workload. 

 

Figure 3-15: average SLA violation for real workload trace 

 

Figure 3-16: average SLA violation for a random workload trace 
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Figure 3-17 shows that the proposed algorithm slightly outperforms the lr and lrr 

algorithms in term of overall SLA violation for 20110322 PlanetLab real workload. It 

should be noted that the performance of THR, MAD and IQR algorithms still outperform 

the other algorithms. It is completely obvious from Figure 3-18 that the proposed 

algorithm significantly outperforms the other algorithms in terms of overall SLA 

violation for the random workload. The proposed host load detection algorithm reduces 

overall SLA violation metric by 81.05%, 81.22%, 76%, and 80.07% for VM selection 

policies MC, MMT, MU, and RS respectively. 

 

Figure 3-17: overall SLA violation for real workload trace 

 

Figure 3-18: overall SLA violation for a random workload trace 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

iqr lr lrr mad thr MadMCHD

20110322

O
ve

ra
ll 

SL
A

 v
io

la
ti

o
n

mc

mmt

mu

rs

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

iqr lr lrr mad thr MadMCHD

random

O
ve

ra
ll 

SL
A

 v
io

la
ti

o
n

mc

mmt

mu

rs



71 

 

 

Figure 3-19 and Figure 3-20 show that the proposed algorithm is almost similar to 

the THR, MAD and IQR algorithms in term of the energy consumption. It should be 

noted that the performance of the proposed algorithm is not much worse than that of LR 

and LRR algorithms. 

 

Figure 3-19: energy consumption for real workload trace 

 

Figure 3-20: energy consumption for a random workload trace 
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workload and the random workload, since our proposed algorithm reduces number of 

active hosts. The proposed host load detection algorithm reduces number of host 

shutdowns metric with minimum improvement reach by 82.44%, 85.44%, 80.31%, and 

82.52% for the real workload, and by 81.45%, 84.36%, 82.59%, and 81.42% for the 

random workload for VM selection policies MC, MMT, MU, and RS respectively. 

 

Figure 3-21: number of host shutdowns for real workload trace 

 

 

Figure 3-22: number of host shutdowns for a random workload trace 
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Why a lower number of host shutdowns is better with similar energy consumption? 

Host shutdown due to improper VM migration in case of underloaded hosts may result in 

a host not to stay in the shutdown mode for a long time which does not result in a real 

improvement in the power consumption. In our case a significant decrease in number of 

host shutdown indicates a better scheduling of VMs in the data center. At the same time 

there is an improvement in the SLA violation, a reduction in the number of VM 

migrations, and an increase in the resource utilization. 

QoS is satisfied by reducing the number of VM migrations, and the percentage of 

PDM and SLATAH metrics, which in turn has an effect on reducing the percentage of 

SLA violations. 

3.6 The Impact of proposed placement algorithm on 

MadMCHD algorithm. 

We investigate the impact of our proposed MPABFD placement algorithm when it is 

used in combination with our proposed MadMCHD host detection algorithm, termed as 

MadMCHDPP as compared to another combination where the host detection algorithm 

MadMCHD is used with the state-of-the-art placement algorithm PABFD, termed as 

MadMCHD. For both combinations, the four selection policies are used, which are mc, 

mmt, mu and rs. Figure 3-23 shows that the proposed combination MadMCHDPP 

reduces overall SLA violation metric by 47.80%, 45.52%, 47.03% and 14.86% for the 

real workload for VM selection policies MC, MMT, MU, and RS respectively. On the 

other hand, the proposed combination MadMCHDPP is almost similar to MadMCHD in 

the other metrics. 



74 

 

 

Figure 3-23: overall SLA violation for a random workload trace 
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some of the state of the art algorithms as a VM selection. We investigate the impact of 

these VM selection polices on the proposed model.  

The experimental results show that increasing of the data length of Markov model 

results in an enhanced performance until a certain value, after which not much 

improvement in performance is obtained. This value is chosen to not further increase the 

time complexity of the system.  

The experimental results show that MadMCHD algorithm can minimize SLA 

violation rate, number of VM migration, and the other metrics significantly as compared 

to the most commonly used THR, MAD, IQR, LR and LRR algorithms. The new 

combination of the proposed MadMCHD and MPABFD algorithms shows overall SLA 

violation is reduced significantly. 
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Chapter 4 

 

4 Minimizing Biased VM Selection 

4.1 Overview 

VM selection algorithm selects one or more VMs from the full set of VMs running on a 

given overload host, once a decision to migrate VMs from that host is made to achieve 

host/server consolidation and load balancing in cloud data centers while satisfying the 

QoS constraints. Presently, VM selection is a crucial decision for resource management 

in the cloud data center management, especially with high dynamic environment. In this 

Chapter, two new VM selection algorithms are proposed, namely Minimum VM 

Migrated Count and Minimum migration time Minimum VM Migrated Count to avoid 

frequent SLA violation on the same VM.  New metrics are proposed to compare with 

other VM selection algorithms. Our proposed algorithms are evaluated through CloudSim 

simulation on different types of PlanetLab real and random workloads. The experimental 

results demonstrate that the proposed algorithms show significant reduction in the 

Maximum number of VM migrated count and the degree of load balancing of VMs 

migrated count with the other state of the art algorithms. 
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4.2 Proposed VM Selection Policies 

The process of migration not only makes the VM unavailable for a certain amount of 

time but also consumes the network and CPU resources from both source and destination 

hosts. This study proposes VM selection policies that resolve biased VM selection in live 

VM migration, resulting in a fair SLA violation on all the VMs while keeping the same 

percentage in the other metrics.  

• Minimum VM Migrated Count (MiMc): The algorithm selects the VM to migrate 

from the host overloaded based on the minimum number of VM migrated count. 

• Minimum Migration Time Minimum VM Migrated Count (MmtMiMc): The 

algorithm first selects VMs with the minimum amount of RAM to minimize the 

live migration time [41] and sorts them in increasing order. Then, out of the 

selected subset of VMs, the algorithm selects the VM with the minimum number 

of VM migrated count.   

Algorithm 4- 1: Minimum VM Migrated Count (MiMc) algorithm 

1 Input: OverloadedHost.  

2 Output: 𝑎 𝑉𝑀 𝑡𝑜 𝑚𝑖𝑔𝑟𝑎𝑡𝑒. 

3 𝑚𝑖𝑛 _𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ←  𝑀𝑎𝑥 

4 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚 ←  𝑁𝑜𝑛𝑒 

5 𝑣𝑚𝐿𝑖𝑠𝑡 ←  OverloadedHost. getVmList() 

6 𝒇𝒐𝒓𝒆𝒂𝒄𝒉 𝑣𝑚 𝑖𝑛 𝑣𝑚𝐿𝑖𝑠𝑡 𝒅𝒐 

7       𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 =   𝑣𝑚. 𝑔𝑒𝑡𝑀𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡  

8       𝒊𝒇 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡  <   𝑚𝑖𝑛 _𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛 𝒕𝒉𝒆𝒏  

9             𝑚𝑖𝑛 _𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 

10             𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚 ←  𝑣𝑚  

11 return  𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚 
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Algorithm 4-2: Minimum Migration Time Minimum VM Migrated 

Count (MmtMiMc) algorithm 

1 Input: OverloadedHost, vms_ram_values.  

2 Output: 𝑎 𝑉𝑀 𝑡𝑜 𝑚𝑖𝑔𝑟𝑎𝑡𝑒. 

3 𝑚𝑖𝑛 _𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ←  𝑀𝑎𝑥 

4 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚 ←  𝑁𝑜𝑛𝑒 

5 𝑣𝑚𝐿𝑖𝑠𝑡 ←  OverloadedHost. getVmList() 

6 𝑣𝑚𝐿𝑖𝑠𝑡. 𝑠𝑜𝑟𝑡𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔_vms_ram_values() 

7 𝑭𝒐𝒓 (𝑖𝑛𝑡 𝑖 = 0;  𝑖 < 4;  𝑖 + +) 

8 vmList2 [𝑖] ← 𝑣𝑚𝐿𝑖𝑠𝑡[𝑖]  
9 𝒇𝒐𝒓𝒆𝒂𝒄𝒉 𝑣𝑚 𝑖𝑛 𝑣𝑚𝐿𝑖𝑠𝑡2 𝒅𝒐 

10       𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 =   𝑣𝑚. 𝑔𝑒𝑡𝑀𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡  

11       𝒊𝒇 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡  <   𝑚𝑖𝑛 _𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛 𝒕𝒉𝒆𝒏  

12             𝑚𝑖𝑛 _𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 

13             𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚 ←  𝑣𝑚  

14 return  𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑣𝑚 

 

We compare proposed algorithms, MiMc and MmtMiMc, with three state-of-the-art 

VM selection algorithms, namely MC, MMT, and MU [41, 52]. Besides, we investigate 

the impact of the four well-known host detection policies on the proposed algorithm. 

These VM host detection algorithms include: 

• Averaging threshold-based algorithm (THR) computes the mean of the n last CPU 

utilization values and compares it to the previously defined threshold. The 

algorithm detects underload state if the average of the n last CPU utilization 

measurements is lower than the specified threshold. 

• Median Absolute Deviation (MAD) specifies a lower threshold empirically, while 

the upper threshold is calculated using the median of the absolute deviation from 

the medians of the CPU usage data sets. 

• InterQuartile Range (IQR) is another approach to determine the upper threshold, 

while the lower threshold is determined empirically as before. 

• Local Robust Regression (LRR) compares the maximum migration time to an 
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expected value and weights it before deciding of overloading in the host. 

We used the same VM placement method which is called PABFD [42, 52]. The 

VM allocation algorithm selects the destination host to receive the migrated VM, which 

causes the least increase in the power consumption. The algorithm relies on the 

traditional greedy algorithm to optimize the allocation of VMs. 

4.3 System Model 

The target system is an IaaS environment, represented by a large-scale data center. The 

data center consists of a maximum of J heterogeneous hosts where each host contains 

multiple VMs. Multiple VMs can be allocated to each host through VMM. Besides, each 

host and VM are characterized by the CPU performance metrics defined in terms of 

MIPS, the amount of RAM and network bandwidth. The target system model is depicted 

in Figure 4-1 [42].  

As shown in the Figure 4-1, the system model consists of global and local manager. 

Users submit their needs for provisioning of M heterogeneous VMs. The local managers, 

which are part of VMM, resides on each node and are responsible for keeping continuous 

monitoring of a node’s CPU utilization, resizing the VM in accordance with their 

resource needs and making decision about when and which VMs have to be migrated 

from the node. The global manager resides on a master node and gathers information 

from the local managers to keep the check of the general view of the utilization of 

resources. The global manager gives commands for the optimization of the VM 

placement. VMMs do actual resizing, migration of VMs and changes in power states of 

the nodes. 
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Figure 4-1: System Model 

4.4 Experimental Setup 

To evaluate the efficiency of our algorithms with the existing algorithm, we have used 

the same experiment setup as used in [42] with some different workload as explained in  

section 3.4.1 and section 3.4.2 of Chapter 3. 

 To make the simulation based evaluation applicable, we evaluate the proposed VM 

selection approaches on random workload and three real-world [42] publicly available. 

 To compare the performance of our proposed algorithms with the existing 

algorithms we have considered five metrics.  Three of them are previously defined in the 

literature, which are SLA violation, total energy consumption by the physical resources 

for executing variable workloads, and total number of VM migrations occurred either for 

hotspot mitigation or for VM consolidation. These three metrices are explained in Section 

3.6 of Chapter 3. We propose two new metrics, which are the maximum number of VM 
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migrated count and the degree of load balancing of VMs migrated count, and are 

precisely defined below: 

• Maximum number of VM migrated count: higher number of VM migrated count 

increases violation on the VM, and results in performance degradation. Following 

equation can be used to calculate the Maximum number of VM migrated count 

during a given time interval. 

𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡(𝑃, 𝑡1, 𝑡2) = 𝑀𝑎𝑥(∫ 𝑀𝑖𝑔𝑉𝑀1(𝑃, 𝑡)
𝑡2

𝑡1

 

, ∫ 𝑀𝑖𝑔𝑉𝑀2(𝑃, 𝑡)
𝑡2

𝑡1

, … , ∫ 𝑀𝑖𝑔𝑉𝑀𝑛(𝑃, 𝑡)
𝑡2

𝑡1

 ) 

 

(4.1) 

where 𝑃 represents the current placements of VM, 𝑀𝑖𝑔𝑉𝑀𝑛(𝑃, 𝑡) shows the number of 

migration of VM 𝑛 between time intervals 𝑡1𝑎𝑛𝑑 𝑡2 for the placement 𝑃. 

• Degree of load balancing of VMs migrated count:  a lower number of degree of 

load balancing reduces biased selection among VMs, resulting in a fair SLA 

violation on all the VMs. Degree of load balancing is calculated by the variance of 

the VMs migrated count as indicated in the following equation:  

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑙𝑜𝑎𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 = √
1

𝑁
∗  ∑(𝑚𝑖 − 𝑚̅)2

𝑁

𝑖=1

 (4.2) 

 

𝑚̅ =  
1

𝑁
∗  ∑ 𝑚𝑖

𝑁

𝑖=1

 

 

(4.3) 

where 𝑚𝑖 represents migrated count of VM𝑖, N is the number of VMs, and 𝑚̅  is average 

VM migrated count as calculated using Equation (4.3). 
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4.5 Experimental Results 

We selected five performance metrics to compare the proposed algorithms with the 

existing algorithms, which are SLA violation, total energy consumption, the total number 

of VM migrations, and the newly proposed Maximum number of VM migrated count and 

Degree of load balancing of VMs migrated count. We compare with VM selection 

algorithms presented in [40, 52, 67] including MC, MMT, and MU among four well-

known host detection algorithms in [52, 67, 42] including IQR, LRR, MAD, and THR. 

The main goal of these experiments is to substantiate the threshold adaptability in 

hypothesis by evaluating the performance of the proposed algorithm across four 

workloads. The four workloads include three real workloads (20110303, 20110322 and 

20110403) that traces from more than a thousand PlanetLab servers and one random 

workload.  

From the simulation results depicted in Figure 4-2 and Figure 4-3, it is completely 

obvious that the proposed algorithms significantly outperform the other algorithms in 

terms of Maximum number of VM migrated count and Degree of load balancing of VMs 

migrated count for all the real workload traces among four host detection policies. 

Figure 4-2 shows that MiMc VM selection algorithm reduces Maximum number of 

VM migrated count metric up to 41.03%, 68.92%, and 66.19% as compared to VM 

selection policies MC, MMT, and MU respectively when the work load is 20110303. 

There is almost the same reduction in the 20110322 and 20110403 workloads. Figure 4-2 

also shows that MmtMiMc VM selection algorithm reduces Maximum number of VM 

migrated count metric up to 12.50%, 52.03%, and 52.52% as compared to VM selection 
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policies MC, MMT, and MU respectively when the work load is 20110303. There is 

almost the same reduction in the 20110322 and 20110403 workloads.  

 

Figure 4-2: Maximum number of VM migrated count for real workload traces 

 

Figure 4-3: Degree of load balancing of VMs migrated count for real workload traces 

 Figure 4-3 shows that the Degree of load balancing of VMs migrated count metric 

is reduced up to 4.63%, 46.48%, and 38.62% for MiMc as compared to the VM selection 

policies MC, MMT, and MU respectively when the work load is 20110303. It should also 
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be noted that almost the same reduction is obtained in the 20110322 and 20110403 

workloads. Figure 4-3 also shows that for the proposed MmtMiMc algorithm, the Degree 

of load balancing of VMs migrated count metric is reduced up to 25.85% and14.96% for 

VM selection policies MMT, and MU respectively when the work load is 20110303. It 

should also be noted that almost the same reduction is obtained in the 20110322 and 

20110403 workloads. 

Figure 4-4 compares the SLA violation of the two proposed algorithms with the 

ones in the literature. The proposed MmtMiMc algorithm reduces SLA violation up to 

32.14%, 25.85%, and 14.96% for MC, MU, and MiMc respectively when the work load 

is 20110303. But MMT algorithm still outperforms as the best among the others. 

 

Figure 4-4: SLA violation for real workload traces 
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MMT, and MU respectively when the work load is 20110303. There is almost the same 

reduction in the 20110322 and 20110403 workloads. 

 

Figure 4-5: Number of VM migrations for real workload traces 

It can be seen from Figure 4-6 that the proposed algorithms are slightly better than 

MMT, and MU and similar to MC in terms of the energy consumption.  

 

Figure 4-6: Energy consumption for real workload traces 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

iqr lrr mad thr iqr lrr mad thr iqr lrr mad thr

20110303 20110322 20110403

N
u

m
b

e
r 

o
f 

V
M

 m
ig

ra
ti

o
n

s

mc

mmt

mu

MiMc

MmtMiMc

0

50

100

150

200

250

300

iqr lrr mad thr iqr lrr mad thr iqr lrr mad thr

20110303 20110322 20110403

En
e

rg
y 

co
n

su
m

p
ti

o
n

kW
h

mc

mmt

mu

MiMc

MmtMiMc



86 

 

From the simulation results depicted in Figure 4-7 and Figure 4-8, it is completely 

obvious that the proposed algorithms significantly outperform the other algorithms in 

terms of Maximum number of VM migrated count and Degree of load balancing of VMs 

migrated count for the random workload. The proposed MiMc VM selection algorithm 

reduces Maximum number of VM migrated count metric up to 25.41%, 52.11%, and 

38.75% as compared to VM selection policies MC, MMT, and MU, respectively. It 

reduces Degree of load balancing of VMs migrated count metric up to 89.74%, 97.44%, 

and 90.67% as compared to VM selection policies MC, MMT, and MU, respectively.  

Figure 4-7 and Figure 4-8 show that MmtMiMc VM selection algorithm reduces 

Maximum number of VM migrated count metric up to 23.77%, 57.50%, and 36.25% as 

compared to VM selection policies MC, MMT, and MU, respectively. It reduces Degree 

of load balancing of VMs migrated count metric up to 87.68%, 96.91%, and 88.78% as 

compared to VM selection policies MC, MMT, and MU, respectively.  

 

Figure 4-7: Maximum number of VM migrated count for a random workload 
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Figure 4-8: Degree of load balancing of VMs migrated count for a random workload 

trace 

It can be seen from Figure 4-9 that the proposed algorithms are similar to the MC, 

and MU in terms of SLA violation. It should be noted that the performance of the 

proposed algorithms is not much worse than that of MMT algorithm.   

 

Figure 4-9: SLA violation for a random workload trace 
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migration. MiMc and MmtMiMc algorithms reduce number of VM migrations metric up 

to 8.35%, and 17.93% for VM selection policies: MMT, and MU respectively.  

 

Figure 4-10: Number of VM migrations for a random workload trace 

It can be seen from Figure 4-11 that the proposed algorithms are similar to the MC, 

MMT and MU in terms of the energy consumption for a random workload trace.   

 

Figure 4-11: Energy consumption for a random workload trace 
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It should be noted that the improvements in both Maximum number of VM 

migrated count and Degree of load balancing of VMs migrated count have direct impact 

on the performance degradation for each VM in the cloud data center. These 

improvements have impact on avoiding VM migration frequently resulting in a fair SLA 

violation on all the VMs. 

4.6 Summary 

In this chapter, we present Minimum VM Migrated Count (MiMc) and Minimum 

migration time Minimum VM Migrated Count (MmtMiMc) algorithms that resolve 

biased VM selection in live VM migration. The proposed algorithms avoid frequent SLA 

violation on the same VM in cloud data center by selecting the VM to migrate from the 

overloaded host based on VM migrated count. The proposed algorithms determine which 

VMs will be selected to migrate from the overloaded host to underloaded host to achieve 

server consolidation and load balancing. The experimental results show that the proposed 

algorithms can minimize maximum number of VM migrated count and degree of load 

balancing of VMs migrated count significantly compared to the most commonly used 

MC, MMT and MU algorithms, resulting in a fair SLA violation on all the VMs, while 

keeping the same percentage in the other defined metrics. 
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Chapter 5 

 

5 Proactive Selection Process for VM 

Migration Across Cloud Data Centers 

5.1 Overview 

Live VM migration is a technique that migrates a VM and its application from one host to 

another in the same data center, which is called LAN migration, or in a different data 

center, which is called WAN migration. Live VM migration across cloud data centers are 

useful for several cases despite the costs related to storage migrations and the overheads 

of network reconfiguration, such as maintenance and upgrades, and large data centers 

having computing infrastructure around the world that migrate VMs to follow the sun 

without affecting the end user experience. In this chapter, we propose a new VM 

selection algorithm, namely Minimum Migration Time Maximum User Ratio to be a 

proactive solution for decreasing service downtime by minimizing the number of IP 

reconfigurations that are required in case of WAN migration between the data centers. 

Moreover, we propose new data center selection algorithms that also aim to be proactive 

solutions to minimize IP reconfiguration time, resulting in minimizing the service 
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downtime. Two new metrics are proposed to indicate number of users that need IP 

reconfiguration and the total distance of IP reconfiguration time. We extended CloudSim 

to simulate and evaluate our proposed work for VM migration across the data centers on 

random workload. The experimental results show that our proposed algorithms have a 

significant reduction in terms of number of IP reconfigurations, and total distance than 

the other competitive VM selection algorithms.  

5.2 Cost of Live VM Migration 

The following subsections explain the LAN migration and WAN migration process. 

Moreover, metrics that are generally considered to measure the performance of live 

migration are defined.  

5.2.1 LAN VM Migration 

The main idea in LAN migration is to transfer memory state of VM as shown in Figure 5-

1. Since we only need to migrate the VM memory state in the same LAN, we do not need 

any kind of network reconfiguration process where the VM IP address should not be 

changed. So, the destination host just only forces an ARP update within the broadcast 

domain. Thus, from now on, all traffic addressed to the VM is sent to the destination host, 

which itself forwards the traffic to the VM. 
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Figure 5-1: LAN Migration 

Figure 5-2 explains the migration process in more detail [31]. The figure shows 

total migration time between 𝑡0 and 𝑡3, which represents the total time required to 

allocate a given VM on the destination host and deallocate this VM from the migrated 

host as notification of moving this VM.  The figure shows the downtime between 𝑡1 

and 𝑡2, which represents the portion of total migration time when the VM is not running, 

that is the time between pausing the VM on the source and resuming it on the destination. 

 

 

Figure 5-2: LAN Migration Process 
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5.2.2 WAN VM Migration 

WAN migration is useful in many cases even though it has overhead related to network 

reconfiguration process and costs associated with storage migration. Users’ geographical 

region might be one of the reasons for the VM WAN migration in order to keep VM 

closer to them, where large data centers or enterprises having computing infrastructure 

around the world to migrate VMs. Moreover, VM WAN migration could be applied in 

other cases to ensure load balancing, power saving [38], maintenance operation and 

upgrade a data center [30]. 

WAN VM migration transfers memory state and the state of local disks as well. 

Wide area migration uses the same concepts as legacy local migrations. However, one 

important factor disturbs an efficient deployment of wide-area migration across Internet 

Clouds. When a VM moves to a new subnet, a mobility solution or scheme should be 

applied to ensure that new connections are made seamlessly to its new IP address after 

the migration. Therefore, wide-area migration results into a mobility problem that may 

render the service unreachable unless network recovery is performed [29-31, 33, 36-39]. 

Also, it will increase the performance degradation. In fact, all the network recovery 

solutions still cause interruption of the service. Figure 5- 3 shows VM migrations over 

WAN. 

Figure 5-4 explains the migration process in more detail. The figure shows total 

migration time between 𝑡0 and 𝑡3, which now includes the network reconfiguration. It 

should be noted the downtime between 𝑡1and 𝑡2 for WAN VM migration is larger than 

that of LAN VM migration due to its file storage transfer. In practice, the service 

availability of VM does not depend only on the state of the VM (i.e., up or down) but 
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also on network connectivity [31]. As shown in Figure 5-4, there exists an additional time 

in WAN VM migration required for VM to resume its services. 

 

Figure 5-3: WAN Migration Process 

  

 

Figure 5-4: WAN Migration Process 

The figure shows the IP reconfiguration time between 𝑡2 and 𝑡3, which represents 

the total time required to: 1) send a notification from the destination data center to the 

source data center indicating end the migration (that means the connected user on the 

V
M

 M
e

m
o

ry

VM2VM1

VM3

LAN Network 
attached storage

WAN

VM10VM1 VM11

Host 1 Host 2

VM12

VM4 VM6

VM5

VM7 VM9

VM8

LAN
V

M
 sto

ra
ge

Network 
attached storage

Network 
reconfiguration 
required

Allocate a VM 
on target

Live Migration

Finish Pages 
transfer

deallocate VM 
from source

t1t0 t3

Start Memory & 
storage transfer

t2

finish network  and service handoff on 
VM

Start network IP reconfiguration  
and service handoff

VM suspend 
on source

VM migrated 
to target

Service 
resumed

time



95 

 

VMs have to connect to a new IP address), 2) send notification to the connected users 

indicating them to start connection with the new data center, and 3) the connection time 

between the users and the destination data center. The downtime and IP reconfiguration 

time that are required for VM to resume its services in WAN VM migration is called 

service downtime (𝑡3 - 𝑡1) as indicated in Equation (5.1). 

 

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 =  𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 + 𝐼𝑃 𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

                   

   (5.1) 

5.3 The Proposed System Model 

In section 5.3.1, our proposed system architecture is explained. The VM selection 

algorithm and data center selection algorithms are explained in section 5.3.2. 

5.3.1 System Architecture 

The target system is an IaaS environment, represented by large-scale data centers. Each 

data center consists of a maximum of J heterogeneous hosts where each host contains 

multiple public VMs. Each VM can be connected to a number of users. Besides, each 

host and VM are characterized by the CPU performance metrics defined in term of MIPS, 

the amount of RAM and network bandwidth. The target system model is depicted in 

Figure 5-5, which is a modified version of the model described in [68]. 

Figure 5-5 shows the components of the proposed system model that provides 

proactive selection techniques to address IP reconfiguration issue in WAN live VM 

migration. 
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Figure 5-5: System Model 
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information from data centers managers and makes global management decisions, 

such as mapping VM instances to a data center manager and initiating WAN VM 

live migrations. 

Host manager will check the CPU utilization status consistently for each host in its 

data center. If each host CPU utilization is less than a previously defined resource 

utilization threshold, then the system will be stable, and there is no need for LAN 

migration. When any host CPU overutilization is detected a VM LAN migration is 

triggered by data center manager between different hosts in the same data center to 

maintain the fairness and load balancing between the hosts. In contrast, when the data 

center CPU utilization is larger than a predefined CPU utilization threshold a VM WAN 

migration is triggered. Then the CPU utilization status of the data center should be sent to 

the global manager to select where to migrate the overloaded VMs based on the data 

received periodically from each data center to achieve the load balancing between the 

data centers as well.  

5.3.2 The Proposed Work 

Based on the proposed system model, the selection process algorithms can be divided 

into five parts: (1) Host underload/overload detection, (2) LAN / WAN migration, (3) 

VM selection, (4) Data center selection, (5) VM placement. 

5.3.2.1 Host underload/overload detection 

If a host is underutilized, then all the VMs from this host can be migrated in the same 

data center and the host will go to sleep/shutdown mode, or the host will be considered as 

a good candidate to receive the migrated VMs from the overloaded hosts in the future. On 
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the other hand, when a given host is overloaded some of its VMs must be selected to 

migrate from this host to other hosts in the same data center or even a different data 

center. In our experiments, the VM host detection algorithm used is (MAD) [42].  

5.3.2.2 LAN/WAN migration 

One of the reasons for WAN migration is when a data center is considered to be 

overloaded and one or more VM migration is required from data center under 

consideration. In our work, we assume the selected VMs always migrate to another data 

center to make extensive evaluation and performance analysis of the proposed VM 

selection and data center selection algorithms. In addition, we compare our proposed VM 

selection policy with the state of the art VM selection methods algorithms in case of 

WAN migration. 

5.3.2.3 VM Selection 

Once a host overload has been detected, it is necessary to determine which VMs are the 

best to be migrated from the host. We propose a new algorithm called Minimum 

Migration Time Maximum User Ratio (MMTMUR). The proposed algorithm takes the 

number of users in the selected VM to be migrated into its consideration, in order to 

obtain the minimum number of users that need IP reconfiguration due to WAN migration. 

A new parameter, User Ratio, is introduced which calculates the ratio between the 

number of users using the VM and the CPU utilization as indicated in Equation (5.2). 

𝑈𝑠𝑒𝑟𝑅𝑎𝑡𝑖𝑜𝑣𝑗 =
𝐶𝑃𝑈𝑣𝑗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠 𝑜𝑓 𝑉𝑀 𝑣 𝑜𝑓 ℎ𝑜𝑠𝑡 𝑗
 (5.2) 

 

where 𝐶𝑃𝑈𝑣𝑗 is defined as given in Equation (5.3).  
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𝐶𝑃𝑈𝑣𝑗 =
𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝑀𝐼𝑃𝑆

𝑇𝑜𝑡𝑎𝑙𝑀𝐼𝑃𝑆 𝑓𝑜𝑟 VM v of host j
 (5.3) 

 

where 𝐶𝑃𝑈𝑣𝑗 is the amount of CPU currently utilized by the VM 𝑣 of host 𝑗. 

We consider both the VM migration time and User Ratio for migration between 

different data centers. The migration time can be estimated as the amount of memory 

used by the VM divided by the network bandwidth availability of that particular host 

[42]. Migration time is formalized in Equation (5.4). 

𝑇𝑀𝑖𝑔𝑣𝑗 =
𝑀𝑣

𝐵𝑗
 (5.4) 

 

where 𝑇𝑀𝑖𝑔𝑣𝑗  is the migration time of the VM 𝑣 of host 𝑗, 𝑀𝑣 is the amount of memory 

used by VM 𝑣, and 𝐵𝑗 is the available bandwidth of the host 𝑗. 

The pseudo-code of the VM selection for the overutilization case is presented in 

Algorithm 5-1. This algorithm first selects VMs with minimum migration time and sorts 

them in increasing order. Then, out of the first 𝑖 selected VMs (in our case 𝑖 = 4), the  

Algorithm 5-1: Minimum Migration Time Maximum User 

Ratio (MMTMUR) 

1 Input: OverloadedHost, VMs_RAM_values.  

2 Output: 𝑎 𝑉𝑀 𝑡𝑜 𝑚𝑖𝑔𝑟𝑎𝑡𝑒. 

3 𝑀𝑎𝑥 _𝑈𝑠𝑒𝑟𝑅𝑎𝑡𝑖𝑜 ←  𝑀𝑖𝑛 

4 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑉𝑀 ←  𝑁𝑜𝑛𝑒 

5 𝑉𝑀𝑙𝑖𝑠𝑡 ←  OverloadedHost. getVMlist() 

6 𝑉𝑀𝑙𝑖𝑠𝑡. 𝑠𝑜𝑟𝑡𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔_VMs_RAM_values() 

7 𝑭𝒐𝒓 (𝑖𝑛𝑡 𝑖 = 0;  𝑖 < 4;  𝑖 + +) 

8      VMlist2 [𝑖] ← 𝑉𝑀𝑙𝑖𝑠𝑡[𝑖]  
9 𝒇𝒐𝒓𝒆𝒂𝒄𝒉 𝑉𝑀 𝑖𝑛 𝑉𝑀𝑙𝑖𝑠𝑡2 𝒅𝒐 

10       𝑈𝑠𝑒𝑟 𝑅𝑎𝑡𝑖𝑜 =   𝑉𝑀. 𝑔𝑒𝑡𝑈𝑠𝑒𝑟𝑅𝑎𝑡𝑖𝑜  

11       𝒊𝒇 𝑈𝑠𝑒𝑟 𝑅𝑎𝑡𝑖𝑜 >   𝑀𝑎𝑥 _𝑈𝑠𝑒𝑟𝑅𝑎𝑡𝑖𝑜 𝒕𝒉𝒆𝒏  

12             𝑀𝑎𝑥 _𝑈𝑠𝑒𝑟𝑅𝑎𝑡𝑖𝑜 ← 𝑈𝑠𝑒𝑟 𝑅𝑎𝑡𝑖𝑜 

13             𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑉𝑀 ←  𝑉𝑀  

14 return  𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑉𝑀 
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algorithm selects the VM with maximum user ratio, resulting in minimizing the number 

of users that need IP reconfiguration. 

In our experiments, the state of the art VM selection algorithms used to compare 

with MMTMUR are presented in [40, 41, 52] including MC, MMT, MU and RS: 

5.3.2.4 Data center Selection 

Once the decision to migrate the VM from a given data center is made, it is 

necessary to find the most suitable data center to receive the migrated VM. We propose 

four data center selection algorithms: 

• Data Center Random Selection (RSDC): selects a data center to receive the 

migrated VM randomly. 

• Data Center Minimum Utilization (MUDC): selects a data center to receive the 

migrated VM based on the minimum utilization among data centers. 

• Minimum IP Reconfiguration Time (MIPRT): selects a data center to receive the 

migrated VM based on the minimum total time needed to connect the migrated 

VM with its connected users. 

• Minimum Utilization minimum IP Reconfiguration Time (MUIPRT): The 

algorithm first selects VMs with the minimum utilization and sorts them in 

increasing order. Then, out of the selected subset of VMs, the algorithm selects the 

VM with the minimum distance to minimize the live migration time. 
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5.3.2.5 VM Placement 

VM placement refers to finding the most suitable hosts in the same data center or other 

data centers in order to receive the migrated VM. The VM placement algorithm method 

used is PABFD [42, 52].  

5.4 Experimental Setup 

In this section, we describe the simulation setup of our proposed approach. Then, the 

evaluation metrics will be described. 

5.4.1 Simulation setup  

We have simulated five data centers DC1, DC2, DC3, DC4, DC5 distributed in 

different geographical areas of (500,1000,1500,2000,2500) km respectively. Each data 

center contains 50 heterogeneous physical nodes of two types, half of the physical nodes 

are HP ProLiant ML110 G4 server (Xeon3040) and the other half consists of HP 

ProLiant ML110 G5 server (Xeon 3075). Each node is modeled to have two CPU cores 

with performance equivalent to 1860 MIPS for each core of the HP ProLiant ML110 G4 

server, and 2660 MIPS for each core of the HP ProLiant ML110 G5 server. In addition, 

each node is modeled to have 1GB/s network bandwidth, 4GB of RAM and 50 GB of 

storage. Table 5-1 shows data centers configurations, Table 5-2 illustrates host types and 

Table 5-3 illustrates VM types. 

The users submit requests for provisioning of 250 heterogeneous VMs, which are 

randomly distributed over four types similar to Amazon EC2 instance types: High-CPU 

Medium Instance (2500 MIPS, 0.85 GB), Extra Large Instance (2000 MIPS, 3.75 GB), 

Small Instance (1000 MIPS, 1.7 GB), and Micro Instance (500 MIPS, 0.633 GB). In 
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addition, each VM requires one CPU core with 2500, 2000, 1000 or 500 MIPS, 100 

Mbit/s network bandwidth and 2.5 GB of storage. 

Each VM runs an application with the variable workload, which is modeled to 

generate the utilization of CPU according to a uniformly distributed random variable. 

Each application has a length that determines the number of instructions. The application 

runs for 150,000 MI that is equal to 10 minutes of the execution on 250 MIPS CPU with 

100% utilization. The interval of utilization measurements is every 5 minutes for 24 

hours. Each VM is randomly connected to a maximum of 10 users with different 

randomly generated distance from 100 km to 1500 km. 

Table 5-1: Data Centers Configurations 

 

 

 

 

Table 5-2 Hosts Types 

 

Table 5-3: VM types 

 

Data center Number of VMs geographical areas (KM) 

D1 50 500 

D2 50 1000 

D3 50 1500 

D4 50 2000 

D5 50 2500 

Host (Server) Type  CPU Model Cores 
Frequency 

(MHz) 
RAM (GB) 

HP ProLiant G4 Xeon3040 2 1860 4 

HP ProLiant G5 Xeon 3075 2 2660 4 

VM Type (Instance) CPU (MIPS) RAM (GB) 
Maximum 

Connected Users 

High-CPU Medium 2500 0.85 10  

Extra Large 2000 3.75 10 

Small Instance 1000 1.7 10 

Micro Instance 500 0.633 10 
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5.4.2 Performance Metrics  

We considered six metrics to evaluate our system model.  Four of them are 

previously defined in the literature, which are SLA violation, total energy consumption, 

total number of VM migrations that occur either for hotspot mitigation or for VM 

consolidation, and average SLA violation which describes how many times allocated 

resources are less than required resources. In this chapter, we propose two new metrics, 

which are the Number of IP reconfiguration and total distance for IP reconfiguration 

time. All of the six metrics are precisely defined below: 

• Number of IP reconfiguration: higher number of users that need IP reconfiguration 

increases the network overload, and results in increased service downtime. 

Following equation can be used to calculate the number of IP reconfiguration 

during a given time interval for each data center. 

𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑃, 𝑡1, 𝑡2) = ∑ ∫ ∑ 𝑊𝑀𝑖𝑔𝑗(𝑃, 𝑡)

𝐶

𝑐=1

𝑡2

𝑡1

𝐽

𝑗=1

 (5.5) 

 

where 𝑃 represents the current placements of VMs,  𝐽 is the number of hosts, C is the 

number of connected users to the WAN migrated VM, 𝑊𝑀𝑖𝑔𝑗(𝑃, 𝑡) shows the number 

of WAN migrations of host 𝑗 between time intervals 𝑡1 and 𝑡2 for the placement 𝑃. 

• Total Distance: higher number of total distance increases the network overload, 

and results in increased service downtime. Following equation can be used to 

calculate the total distance during a given time interval for each data center. 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃, 𝑡1, 𝑡2) = ∑ ∫ 𝑊𝐼𝑃𝐶𝐷𝑗(𝑃, 𝑡)
𝑡2

𝑡1

𝐽

𝑗=1

 (5.6) 
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where 𝑃 represents the current placements of VMs, 𝑊𝐼𝑃𝐶𝐷𝑗(𝑃, 𝑡) shows the distance 

needed to measure the IP reconfiguration time for each WAN migrated VM of host 

𝑗 between time intervals 𝑡1𝑎𝑛𝑑 𝑡2 for the placement 𝑃. 

𝑊𝐼𝑃𝐶𝐷𝑗(𝑃, 𝑡) =  ⎸𝑥(𝑑𝑑, 𝑑𝑠) ⎸ + ∑ ⎸𝑥

𝐶

𝑐=1

(𝑑𝑠, 𝑐) ⎸

+ ∑ ⎸𝑥(𝑐, 𝑑𝑑) ⎸

𝐶

𝑐=1

 

 

(5.7) 

where 𝑥(𝑑𝑑, 𝑑𝑠) represents the distance between the received data center and the 

migrated data center, C is the number of connected users to the WAN migrated VM. 

𝑥(𝑑𝑠, 𝑐) represents the distance between the migrated data center and the connected user. 

And 𝑥(𝑐, 𝑑𝑑) represents the distance between connected user and the new location of the 

migrated VM. 

5.5 Experimental Results 

In this section, we first present the impact of our proposed algorithms on each data center 

separately and discuss our experimental results in comparison to the benchmark 

algorithms. We then show the impact of the proposed algorithms on the whole system. 

5.5.1 Comparison with other benchmarks for each data center 

We are interested in showing the impact of our proposed algorithms on each datacenter. 

We selected one performance metric, which is the number of IP reconfigurations, to 

compare our proposed VM selection algorithm MMTMUR with the existing VM 
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selection algorithms presented in [40, 41, 52] including MMT, MU, MC, and RS, among 

two proposed datacenter selection algorithms including, MIPRT and MUDC. 

Figure 5-6 shows that data center DC5 has the least number of users that need IP 

reconfiguration for WAN migration in all the VM selection algorithms, whereas data 

center DC3 has the maximum number of users that need IP reconfiguration. It is 

completely obvious that the proposed VM selection algorithm MMTMUR significantly 

outperforms the other algorithms in terms of number of IP reconfiguration when the data 

center selection algorithm is MIPRT. 

 

Figure 5-6: Number of IP Reconfiguration on each Data Center Using MIPRT Algorithm 

Figure 5-7 shows another example of the selection process effect on each 

datacenter when the datacenter selection algorithm is MUDC. It is completely obvious 

that the proposed VM selection algorithm MMTMUR significantly outperforms the other 

algorithms in terms of number of IP reconfiguration when the datacenter selection is 

MUDC. The figure shows that all the datacenters have almost the same number of users 

that need IP reconfiguration for WAN migration for most of the VM selection algorithms, 

and is the least when the VM selection is MMTMUR.  
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Figure 5-7: Number of IP Reconfiguration on each Data Center Using MUDC Algorithm  
 

5.5.2 Comparison with other benchmarks in the whole system 

We are further interested in comparing our proposed algorithms with the state-of-the-art 

algorithms. To perform this comparison, we employ the aforementioned six metrics in 

order to assess our results. Our comparison process is to study the algorithms’ 

performance in the entire selection process which includes host detection, WAN/LAN 

migration, VM selection, data center selection and VM placement. 

We compare the proposed algorithm, MMTMUR, with the state-of-the-art four VM 

selection algorithms, namely MMT, MU, MC, and RS. Besides, we investigate the 

impact of four proposed datacenter selection polices, namely MIPRT, MUDC, MUIPRT, 

and RSDC, on the VM selection algorithms.  

From the simulation results depicted in Figure 5-8 and Figure 5-9 it is completely 

obvious that the proposed VM selection algorithm significantly outperforms the other 

algorithms in terms of number of IP reconfiguration and total distance in all datacenter 

selection algorithms. 
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Figure 5-8: Number of IP Reconfiguration 

 

Figure 5-9: Total Distance 

Figure 5-8 shows that our MMTMUR VM selection algorithm reduces number of 

IP reconfiguration metric by 20.93%, 26.44%, 17.18%, and 15.89% as compared to VM 

selection policies MMT, MU, MC and RS respectively when the data center selection is 

MIPRT, and by 24.01%, 29.74%, 19.02%, and 18.97% as compared to VM selection 

policies MMT, MU, MC and RS respectively when the data center selection is MUIPRT.  

Figure 5-8 also shows that MUDC outperforms the other data center selection algorithms 

in terms of number of IP reconfiguration. 
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Figure 5-9 shows that MMTMUR VM selection algorithm reduces total distance 

metric by 40.62 %, 47.61%, 35.43%, and 34.98% as compared to VM selection policies 

MMT, MU, MC and RS respectively when the data center selection is MUDC, and up to 

43.04%, 48.51%, 37.24%, and 36.98% as compared to VM selection policies MMT, MU, 

MC and RS respectively when the data center selection is MUIPRT. From the simulation 

results depicted in Figure 5-9, it is completely obvious that MIPRT data center selection 

algorithm significantly outperforms the other algorithms. 

Figure 5-10 shows that the proposed VM selection algorithm outperforms the other 

algorithms in terms of SLA violation in all the proposed data center selection algorithms 

except MUDC. It reduces SLA violation metric by 5.23%, 1.95%, 2.93%, and 2.31% as 

compared to VM selection policies MMT, MU, MC and RS respectively when the data 

center selection is MUIPRT. Moreover, from the simulation results depicted in Figure 5-

10, it is obvious that MUDC data center selection algorithm has the best reduction of the 

SLA violation. Since MUDC selects the data center based on the minimum utilization, 

this lead to guarantee SLA for a long time more than the other data centers.  

 

Figure 5-10: SLA Violation 
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From the simulation results depicted in Figure 5-11, it is completely obvious that 

the proposed VM selection algorithm outperforms the other algorithms in terms of 

number of VM migration metric in all the data center selection algorithms. Figure 5-11 

shows that MMTMUR VM selection algorithm reduces number of VM migration metric 

up to 13.24%, 21.37%, 7.3%, and 7.46% as compared to VM selection policies MMT, 

MU, MC and RS respectively when the data center selection is MUIPRT.  Figure 5-11 

also shows that MUDC outperforms the other data center selection algorithms in terms of 

number of VM migration metric. 

 

Figure 5-11: Number of VM Migration 
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12, MIPRT data center selection algorithm outperforms the other algorithms in terms of 

energy consumption. 

 

Figure 5-12: Energy Consumption 
 

From the simulation results depicted in Figure 5-13, it is obvious that MMTMUR 

VM selection algorithm outperforms the other algorithms in terms of average SLA 

violation metric when the proposed data center selection algorithms are MUIPRT and 

RSDC. The figure shows that the best reduction of the average SLA violation is when the 

data center selection is MUIPRT and the VM selection algorithm is MMTMUR.  

 

Figure 5-13: Average SLA Violation 
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5.6 Summary 

We present a modified system model to indicate the number of users that need IP 

reconfiguration in case of WAN migration. This model has been proposed to consider 

neglected parameters and metrics that have an effect on live migration cost. 

We present Minimum Migration Time Maximum User Ratio (MMTMUR) 

algorithm that aims to be a proactive solution for decreasing migration time by 

minimizing the time and the number of IP reconfigurations that are required in case of 

WAN migration between the data centers. The proposed algorithm takes the number of 

users in the selected VM to be migrated into its consideration, in order to obtain the 

minimum number of users that need IP reconfiguration due to WAN migration. The 

experimental results show that the proposed algorithm can significantly minimize the 

number of IP reconfigurations and IP reconfiguration time in terms of total distance as 

compared to the most commonly used MC, MMT, MU and RS algorithms, resulting in 

reduced service downtime and reduced network overhead.  

We present Data Center Random Selection (RSDC), Data Center Minimum 

Utilization (MUDC), Minimum IP reconfiguration time (MIPRT), and Minimum 

Utilization Minimum IP reconfiguration time (MUIPRT) data center selection algorithms 

that aim to minimize the IP reconfiguration time, resulting in reducing service downtime. 
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Chapter 6 

 

6 Conclusion and Future work 

6.1 Concluding Remarks 

Our research work is motivated by the necessity of improving service downtime, 

SLA violation and performance degradation in LAN/WAN migration. A lot of research 

has been done in the literature where many aspects need to be taken into our 

consideration in order to further amend the Quality of Experience (QoE) provided for the 

end users for higher user satisfaction in the system.  

In order to optimize the resource utilization, we need to migrate VMs across hosts. 

Over time there are continuous changes in the status of the hosts. We find while 

migrating we cannot select the host considering the current state only, we need to 

consider various factors while selecting hosts from which we can shift VM or which we 

can consider as good candidate to receive VM.  

In Chapter 3, firstly, we developed an algorithm called Median Absolute Deviation 

Markov Chain Host Detection Algorithm (MADMCHD). Unlike all available algorithms 

which depend on historical data to build probabilistic model that predict the future host 

load more efficiently. Its main goal was to improve SLA violation and to reduce VM 
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migrations. In our proposed algorithm three different states of given hosts are possible, 

namely (i) Underloaded (U), (ii) Normal Loaded (N) and (iii) Overloaded (O). First, we 

find state of all hosts that they are in which state using CPU current utilization value. 

Then our Markov detection algorithm starts working after collecting 10 observations 

based on probability observations. Hence based on our new algorithm instead of 

immediately migrating we can check whether migration is required or not. We consider a 

full system where Host Manager interacts with VMM Manager in order to initiate the 

VM migration process. CPU utilization upper and lower thresholds can be assigned either 

statistically using First Order-Markov Chain Host State Detection Algorithm 

(FOMCHSD) or dynamically using Median Absolute Deviation Markov Chain host 

Detection Algorithm(MADMCHD).  We compared our algorithm with five host 

detection algorithms which are already implemented in Cloudsim for real workloads 

Secondly, we developed Markov Power Aware Best Fit Decreasing (MPABFD) 

algorithm to enhance VMs placement process. The future candidate host load state is 

predicted to avoid overloaded state of that host after a short period. We combine the 

proposed algorithms in the selection process phases in the live migration for better 

performance, MadMCHD as a host detection algorithm, MPABFD as a VM placement 

algorithm, and some of the state of the art algorithms as a VM selection. We investigated 

the impact of these VM selection polices on the proposed model.  

After host selection, in Chapter 4, we came up with two new VM selection 

algorithms namely Minimum VM Migrated Count and Minimum Migration time 

Minimum Migration Count to avoid frequent SLA violation on the same VM. MiMc 

(Minimum VM Migrated Count) –The Algorithm selects the VM to migrate from the 
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host overloaded based on the minimum number of VM migrated count. Minimum 

Migration Time Minimum VM Migrated Count (MmtMiMc)-The algorithm first selects 

VMs with minimum amount of RAM to minimize the live migration time and sorts them 

in increasing order. Then out of the selected subset of VMs the algorithm selects the VM 

with the minimum number of migration count. Along with that we are introducing two 

new metrics to compare with other existing VM selection algorithms. We have evaluated 

our proposed algorithms through CloudSim simulations on different planet lab real and 

random workloads and we are able to demonstrate that the proposed algorithms show 

significant reduction in maximum number of VM migrated count and degree of load 

balancing of VMs migrated count with other state of art algorithms.  

Live VM migration across cloud data centers are useful for several cases despite 

the costs related to storage migrations and the overheads of network reconfiguration, such 

as maintenance and upgrades, and large data centers having computing infrastructure 

around the world that migrate VMs to follow the sun without affecting the end user 

experience. In Chapter 5, we modify the system model to provide proactive selection 

process techniques that reduce network reconfiguration problem in WAN live VM 

migration. This model has been proposed to consider neglected parameters and metrics 

that have an effect on live migration cost. We came up with a new VM selection 

algorithm, namely Minimum Migration Time Maximum User Ratio to be a proactive 

solution for decreasing service downtime by minimizing the number of IP 

reconfigurations that are required in case of WAN migration between the data centers. 

Moreover, we came up with new data center selection algorithms, namely Data Center 

Random Selection, Data Center Minimum Utilization, Minimum IP reconfiguration time, 
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and Minimum Utilization Minimum IP reconfiguration time that aim to minimize the IP 

reconfiguration time, resulting in reducing service downtime. 

Two new metrics are proposed to indicate number of users that need IP 

reconfiguration and the total distance of IP reconfiguration time. We extended CloudSim 

to simulate and evaluate our proposed work for VM migration across the data centers on 

random workload. The experimental results show that our proposed algorithms have a 

significant reduction in terms of number of IP reconfigurations, and total distance than 

the other competitive VM selection algorithms.  

6.2 Future Work 

There is still more work to be done in cloud data center management. This list represents 

a few open topics. 

• Run and apply the proposed algorithms with varying workloads which represents 

the cloud consumers’ needs to realize the algorithms behaviors with it. 

• Propose new measurement metrics that help the researcher to figure out the 

statistics data with different ways. 

• Develop new datacenter selection algorithms based on different techniques that 

serves both cloud providers and cloud consumers which lead to reduce the 

operation cost in provider side which lead to reduce the cost services at cloud 

consumers side. 

• Deploy and apply the proposed algorithms to run at real environment like 

Openstack which is an open source project and it’s the best way to embraces the 

development of new features. 
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