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Abstract

Software engineering researchers have studied specific types of issues such re-

opened bugs, performance bugs, dormant bugs, etc. However, one special type

of severe bugs is blocking bugs. Blocking bugs are software bugs that prevent

other bugs from being fixed. These bugs may increase maintenance costs, reduce

overall quality and delay the release of the software systems. In this paper,

we study blocking bugs in eight open source projects and propose a model to

predict them early on. We extract 14 different factors (from the bug repositories)

that are made available within 24 hours after the initial submission of the bug

reports. Then, we build decision trees to predict whether a bug will be a blocking

bugs or not. Our results show that our prediction models achieve F-measures of

21%-54%, which is a two-fold improvement over the baseline predictors. We also

analyze the fixes of these blocking bugs to understand their negative impact. We

find that fixing blocking bugs requires more lines of code to be touched compared

to non-blocking bugs. In addition, our file-level analysis shows that files affected

by blocking bugs are more negatively impacted in terms of cohesion, coupling

complexity and size than files affected by non-blocking bugs.
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1. Introduction

Software systems are becoming an important part of daily life for businesses

and society. Most organizations rely on such software systems to manage their

day-to-day internal operations, and to deliver services to their customers. This

ever growing demand for new and better software products is skyrocketing5

the software production and maintenance cost. In 2000, Erlikh [1] reported

that approximately 90% of the software life-cycle cost is consumed by software

maintenance activities. Two years later, a study conducted by the National

Institute of Standards and Technology (NIST) found that software bugs cost $59

billions annually to the US economy [2].10

Therefore, in recent years, researchers and industry have put a large amount of

effort in developing tools and prediction models to reduce the impact of software

defects (e.g., [3, 4, 5]). This work usually leverages data from bug reports in

bug tracking systems to build their prediction models. Other work proposed

methods for detecting duplicate bug reports [6, 7, 8], automatic assignment of15

bug severity/priority [9, 10], predicting fixing time [11, 12, 13, 14] and assisting

in bug triaging [15, 16, 17]. More recently, prior work focused on specific types of

issues such as reopened bugs, performance bugs and enhancement requests [18,

19, 20, 21].

In the normal flow of the bug process, someone discovers a bug and creates the20

respective bug report1, then the bug is assigned to a developer who is responsible

for fixing it and finally, once it is resolved, another developer verifies the fix

and closes the bug report. Sometimes, however, the fixing process is stalled

because of the presence of a blocking bug. Blocking bugs are software defects

that prevent other defects from being fixed. In this scenario, the developers25

cannot go further fixing their bugs, not because they do not have the skills or

resources (e.g., time) needed to do it, but because the components they are fixing

1We use the terms “bug” or “bug report” to refer to an issue report (e.g., corrective and

non-corrective requests) stored in the bug tracking system.
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depend on other components that have unresolved bugs. These blocking bugs

considerably lengthen the overall fixing time of the software bugs and increase

the maintenance cost. In fact, we found that blocking bugs can take up 2 times30

longer to be fixed compared to non-blocking bugs. For example, in one of our

case studies, the median number of days to resolve a blocking bug is 129, whereas

the median for non-blocking bugs is 69 days.

In our earlier work we found that the manual identification of blocking bugs

takes 3-18 days on median [22]. To reduce such impact, we built prediction35

models to flag blocking bugs early on for developers. In particular, we mined

the bug repositories from six open source projects to extract 14 different factors

related to the textual information of the bug, the location the bug is found

and the people who reported the bug. Based on these factors and employing a

decision tree-based technique (C4.5), we built our prediction models. Then, we40

compared our proposed models with many other machine learning techniques.

In addition, we performed a Top Node analysis [23] in order to determine which

factors best identify blocking bugs.

In this paper, we extended the work on blocking bugs in a number of ways.

First, to reduce the threat to external validity, we added another 2 projects to45

our data set. Second, we enhanced our prediction models by using bug report

information available within 24 hours after the initial submission of the bug

reports. This change has a significant impact on the practical value of our work,

since it means that our new approach can be applied much earlier than our

previously proposed approach. Third, we analyzed the fixes of the blocking50

bugs to empirically examine their negative impact on the bug-fixing process. In

particular, we link the bug-fixes to their corresponding bug-reports. Then, we

divide the bug-fixes into blocking/non-blocking bug-fixes in order to compare

their size. We also compared the files related to blocking and non-blocking

bugs in terms of cohesion, coupling, complexity and lines of code. We note that55

our examination of the fixes is not done to improve the predictions, nor are we

suggesting that fixing information can be used to predict blocking bugs; we study
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the fixes of blocking bugs to empirically validate their impact. In particular, we

would like to answer the following research questions:

RQ1 What is the impact of blocking bugs? By analyzing bug reports and60

bug-fix commits, we find that blocking bugs take up 2 times longer and

require 1.2-4.7 times more lines of code to be fixed than non-blocking bugs.

RQ2 Do files with blocking bugs have higher complexity than files

with non-blocking bugs? We find that files affected by blocking bugs

are bigger (in LOC), have higher complexity, higher coupling and less65

cohesion than not affected by non-blocking bugs.

RQ3 Can we build highly accurate models to predict whether a new

bug will be a blocking bug? We use 14 different factors extracted from

bug databases to build accurate prediction models that predict whether

a bug will be a blocking bug or not. Our models achieve F-measure70

values between 21%-54%. Additionally, we find that the bug description,

the comments and the experience of the reporter in identifying previous

blocking bugs are the best indicators of whether or not a bug will be

blocking bug.

The rest of the paper is organized as follows. Section 2 describes the approach75

used in this work, including the data collection, preprocessing and a brief

description of the machine learning techniques used to predict blocking bugs.

Section 3 presents the findings of our case study. We discuss the implications of

relaxing the data collection process in Section 4. Section 5 highlights the threats

to validity. We discuss the related work in Section 6. Section 7 concludes the80

paper and discusses future work.

2. Approach

In this section, we first provide a definition of blocking bugs. Second, we

present details of the data collection process. We leveraged data from three
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sources: bug reports, bug-fixing commits and source-code files. Third, we discuss85

the bug report factors used in our prediction models. Forth, we briefly discuss the

machine learning techniques, as well as, the evaluation criteria used to examine

the performance of our prediction models.

2.1. Defining Blocking and Non-Blocking bugs

When a user or developer finds a bug in a software system, she/he creates90

the respective report (bug report) in the bug tracking system. Typically, a bug

assigned to a developer who is responsible for fixing it. Once the bug is marked

as resolved, another developer verifies the fix and closes the bug report. There

are cases in which the fixing of a bug prevents (blocks) other bugs (in the same

or related component) from being fixed. We refer to such bugs as blocking95

bugs. Developers of blocked bugs will record the blocking dependency in the

“Blocks” field of the bug that is blocking them. More precisely, in this work we

consider a blocking bug as a bug report whose “Blocks” field contains at least

one reference to another bug. Similarly, we consider a non-blocking bug as a

bug report whose “Blocks” field is empty.100

2.2. Data Collection

We used the bug report, bug-fix and file history from eight different projects

listed in Table 1. We chose these projects because they are mature and long-lived

open sources projects, with a large amount of bug reports. Below we explain

how we get the bug report and bug-fix data sets from the studied projects.105

2.2.1. Bug Report Collection

We collected bug reports from the bug repository of each project. We only

considered those bug reports with status equal to verified or closed. Bug reports

closed in less than one day were also filtered out, because we want to analyze

non-trivial bug reports. The left-hand side of Table 2 shows a summary of110

our data set of bug reports. We extracted 857,581 bug reports and discarded

247,781 of them. In brief, after the preprocessing step, we have that: (a) the
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Table 1: Description of the case study projects

Project Description

Chromium Web browser developed by Google and used as the development

branch of Google Chrome.

Eclipse A popular multi-language IDE written in Java, well known for its

system of plugins that allows customization of its programming

environment.

FreeDesktop Umbrella project hosting sub projects such as Wayland (display

protocol to replace X11 ), Mesa (free implementation of the OpenGL

specification), etc.

Mozilla Framework and umbrella project that hosts and develops products

such as Firefox, Thunderbird, Bugzilla, etc.

NetBeans Another popular IDE written in Java. Although it is meant for

java development, it also provides support for PHP and C/C++

development.

OpenOffice Office suite initiated by Sun Microsystem and currently developed

by Apache.

Gentoo Operating system distribution built on top of either GNU/Linux or

FreeBSD. At the time of writing this paper, Gentoo contains over

17,000 packages.

Fedora GNU/Linux distribution developed by the Fedora-Project under the

sponsorship of Red Hat.

total number of valid bugs was 609,800, of which 77,448 were blocking bugs and

532,352 were non-blocking bugs; (b) in all projects, the percentages of blocking

bugs range from 6%-21% with an overall percentage of 12% and (c) the number115

of bugs blocked by blocking bugs is ≈ 57,000 (details in RQ1).

2.2.2. Bug-fix Collection

We summarize the extracted bug-fixing commits in the right-hand side of

Table 2. We link the bug-reports (in the bug repositories) to their bug-fixing

commits (in the code-repositories) using an approach similar to previous studies120
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Table 2: Summary of the collected bug reports

Bug-report Dataset Bug-fix Dataset

Project # Bugs # Bugs # Bugs # Blocking # Non-blocking # Commits # Commits

collected discarded studied bugs bugs collected linked to bugs

Chromium 206,125 149,057 57,068 3,468 [6.1%] 53,600 [93.9%] 223,403 78,472

Eclipse 142,923 13,122 129,801 8,022 [6.2%] 121,779 [93.8%] 422,912 115,119

FreeDesktop 5,844 552 5,292 605 [11.4%] 4,687 [88.6%] 1,002,143 10,773

Mozilla 74,982 6,156 68,826 13,994 [20.3%] 54,832 [79.7%] 214,114 22,210

NetBeans 80,473 3,069 77,404 5,101 [6.6%] 72,303 [93.4%] 210,481 13,720

OpenOffice 87,578 12,639 74,939 4,164 [5.6%] 70,775 [94.4%] 2,038 1,137

Gentoo 10,575 3,875 6,700 531 [7.9%] 6,169 [92.1%] 196,561 17,421

Fedora 249,081 59,311 189,770 41,563 [21.9%] 148,207 [78.1%] 114,048 4,493

All Projects 857,581 247,781 609,800 77,448 [12.7%] 532,352 [87.3%] 2,385,700 263,345

[24, 25]. First, we checked out the code repositories of each of the projects. The

projects studied in this work are comprised of many products and components

that use tens or even hundreds code-repositories (e.g., the Fedora website2 lists

18,000 GIT repositories). However, processing the commits from all of these

repositories would be impractical and of little benefit, since many of them have125

a small number of commits. To select the most representative code-repositories,

we use the following two approaches:

• When we were able to identify the products and their code repositories, we

manually downloaded the repositories of the 20 most buggiest products. For

example, the Bugzilla repository of Eclipse lists ≈ 230 different products,130

out of which we downloaded the code-repositories of the 20 products (84

repositories) with the highest number of bug-reports.

• On the other hand, when we were not able to match the products and the

code-repositories, we downloaded all the code-repositories, ranked them

by the number of commits and selected the 100 largest repositories. We135

also tried different number of repositories (50, 100 and 150), however in

most of the cases the number of links only slightly improved (less than 1%)

after 100 repositories.

2Fedora Git Repositories: http://pkgs.fedoraproject.org/
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In total, we downloaded more than 400 repositories. We refer the reader

to our online appendix [26] for a detailed list of the code-repositories used in140

this study. Once we obtained all the commits, we extracted those commits

that contain bug-related words (e.g., bug, fixed, failed, etc) and potential bugs

identifiers (e.g., bug#700, rhbz:800, etc) in their commit messages. To validate

the collected commits, we checked that the bug-identifiers in the commits are

present in our bug report data set. In total, we extracted ≈ 2.4 million commits,145

out of which approximately 263,345 commits were successfully linked to one

or more bug-reports in our data set. Of these linked commits, 61,052 (23%)

were commits fixing blocking bugs and about 202,293 (77%) were commits fixing

non-blocking bugs.

Table 3: Distribution of the number of blocking and non-blocking files

Project # Blocking # Non-Blocking # Buggy

Files Files Files

Chromium 34,430 [36%] 60,282 [64%] 94,712

Eclipse 74,580 [43%] 97,375 [57%] 171,955

FreeDesktop 1,074 [22%] 3,774 [78%] 4,848

Mozilla 34,939 [78%] 9,612 [22%] 44,551

NetBeans 3,876 [19%] 16,833 [81%] 20,709

OpenOffice 1,752 [4%] 48,183 [96%] 49,935

Gentoo 4,182 [33%] 8,510 [67%] 12,692

Fedora 1,674 [55%] 1,347 [45%] 3,021

All 156,507 [39%] 245,916 [61%] 402,423

2.2.3. Code-metrics Collection150

We used Understand from Scitools3 to extract four metrics from the source-

code files in the code repositories: Lack of Cohesion, Coupling Between Objects,

Cyclomatic Complexity and LOC. In our analysis, we take into account Java, C,

C++, Python, Javascript, PHP, Bash and Patch source code files.

3http://www.scitools.com
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From the bug-fixing commits obtained in the previous section, we identified155

402,423 buggy files. Then, we analyzed the distribution of the number of bugs

per file and we found that ≈ 90% of the buggy files have at most 5 bugs and

usually just 1 bug on median. Therefore, in this work, we split the buggy files

into two groups: (a) files affected by at least one blocking bug (blocking files

for brevity) and (b) files affected only by non-blocking bugs (non-blocking files160

for brevity). Table 3 shows the distribution of the blocking files and non-blocking

files across all of the projects. We can see that 39% of the files are blocking files

(156,507 files), whereas 61% are non-blocking files (245,916 files).

To better understand the files affected by blocking and non-blocking bugs, we

analyzed the distribution of their programming languages. In Table 4, we show165

the percentage of blocking files (third column) and non-blocking files (fourth

column) across the top programming languages in each of the projects. For

example, in Fedora 49% of the blocking files and 19% of the non-blocking files are

written in Bash. Additionally, from the fifth column, we can observe that about

98% of the buggy files in Fedora are Patch or Bash files. As we will discuss in170

RQ2, this situation will prevent us from extracting two of the four code metrics

for Fedora.

2.3. Factors Used to Predict Blocking Bugs

Since our goal is to be able to predict blocking bugs, we extracted different

factors from the bug reports so the blocking bugs can be detected early on. In ad-175

dition, we would like to determine which factors best identify these blocking bugs.

We consider 14 different factors to help us discriminate between blocking and

non-blocking bugs. To come up with a list of factors, we surveyed prior work. For

example, Sun et al. [27] included factors such product, component, priority, etc in

their models to detect duplicate bugs. Lamkanfi et al. [10, 28] used textual infor-180

mation to predict bug severities. Wang et al. and Jalbert et al. [7, 29] used text

mining to identify duplicate bug reports. Zimmermann et al. [19] showed that

the reporter’s reputation is negatively correlated with reopened bugs in Windows

Vista. Furthermore, many of our factors are inspired in the metrics used by our
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Table 4: Distribution of source code files across different programming languages.

In each of columns three to five, we report the percentage of files that belong to

a particular programming language.

Project Language % Blocking % Non-Blocking % Buggy

Files Files Files (%)

Chromium

C++ 86% 77% 81%

JS 6% 10% 8%

C 4% 5% 5%

Others 4% 8% 6%

Eclipse
Java 99% 99% 99%

Others 1% 1% 1%

FreeDesktop

C 88% 84% 84%

C++ 12% 14% 14%

Others 0% 2% 2%

Mozilla

C++ 40% 32% 39%

JS 28% 48% 31%

C 26% 13% 24%

Others 6% 7% 6%

NetBeans
Java 100% 97% 98%

Others 0% 3% 2%

OpenOffice

C++ 97% 81% 82%

Java 2% 17% 16%

Others 1% 2% 2%

Gentoo

Python 68% 4% 31%

C 4% 42% 26%

Bash 14% 28% 22%

Patch 7% 13% 10%

Others 7% 13% 11%

Fedora

Patch 49% 79% 60%

Bash 49% 19% 38%

Others 2% 2% 2%

prior work [18], predicting reopened bugs. We list each factor and provide a brief185

description for each below:
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1. Product: The product where the bug was found (e.g., Firefox OS, Bugzilla,

etc). Some products are older or more complex than others and therefore,

are more likely to have blocking bugs. For example, Firefox OS and

Bugzilla are two Mozilla products with approximately the same number of190

bugs (≈ 880), however there were more blocking bugs in Firefox OS (250

bugs) than in Mozilla (30 bugs).

2. Component: The component in which the bug was found (e.g., Core,

Editor, UI, etc). Some components are more/less critical than others and

as a consequence more/less likely to have blocking bugs than others. For195

example, it might be the case that bugs in critical components prevent

bugs in other components from being fixed. Note that we were not able to

have this factor for Chromium because its issue tracking system does not

support it.

3. Platform: The operating system in which the bug was found (e.g., Win-200

dows, Android, GNU/Linux etc). Some platforms are more/less prone to

have bugs than others. It is more/less likely to find blocking/non-blocking

bugs for specific platforms.

4. Severity: The severity describes the impact of the bug. We anticipate that

bugs with a high severity tend to block the development and debugging205

process. On the other hand, bugs with a low severity are related to minor

issues or enhancement requests.

5. Priority: Refers to the order in which a bug should be attended with

respect to other bugs. For example, bugs with low priority values (i.e.,

P1) should be prioritized instead of bugs with high priority values (i.e.,210

P5). It might be the case that a high/low priority is indicative of a

blocking/non-blocking bugs.

6. Number in the CC list: The number of developers in the CC list of the

bug. We think that bugs followed by a large number of developers might

11
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indicate bottlenecks in the maintenance process and therefore are more215

likely to be blocking bugs.

7. Description size: The number of words in the description. It might be

the case that long/short descriptions can help to discriminate between

blocking and non-blocking bugs.

8. Description text: Textual content that summarize the bug report. We220

think that some words in the description might be good indicators of

blocking bugs.

9. Comment size: The number of words of all comments of a bug. Longer

comments might be indicative of bugs that get discussed heavily since they

are more difficult to fix. Therefore, they are more likely to be blocking225

bugs.

10. Comment text: The comments posted by the developers during the life

cycle of a bug. We think that some words in the comments might be good

indicators of blocking bugs.

11. Priority has Increased: Indicates whether the priority of a bug has230

increased after the initial report. Increasing priorities of bugs might

indicate increased complexity and can make a bug more likely to be a

blocking bug. Note that we were unable to obtain this information for

Chromium.

12. Reporter Name: Name of the developer or user that files the bug. We235

include this factor to investigate whether bugs filed by a specific reporter

are more/less likely to be blocking bugs.

13. Reporter Experience: Counts the number of previous bug reports filed

by the reporter. We conjecture that more/less experienced reporters may

be more/less likely to report blocking bugs.240
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14. Reporter Blocking Experience: Measures the experience of the re-

porter in identifying blocking bugs. It counts the number of blocking bugs

filed by the reporter previous to this bug.

In order to extract information for the factors, we first obtained the closing-

dates and blocking-dates of the bug-reports. Closing-date refers to the latest245

date in which a bug was closed. To obtain this information, we inspect the

history of the bugs looking for the date of the last appearance of the tag “status”

with a value equal to “closed”. Blocking-date refers to the earliest date in

which a bug was marked as blocking bug. To calculate this information, we look

for the date of the first appearance of the tag “Blocks” in the history of the bugs.250

For the non-blocking bugs, we extracted the last values of the factors prior

to their closing-dates and within 24 hours after the submission. On the other

hand, for the blocking bugs, we extracted the last values of the factors prior

to their blocking-dates and within 24 hours after the submission. The rationale

for this approach is that, although the data after the blocking-date is useful255

information about the fixing process in general, it is not useful to identify a

blocking bug because we already know that the bug is a blocking bug (i.e., by

then no prediction is needed). Since our aim is to identify potential blocking

bugs early on, then we can only rely on data before the blocking phenomenon

happens. That way we can shorten the overall fixing-time.260

As we mentioned above, these 14 factors have been used in prior studies

and most of them are easy to extract through software repositories. Because

our goal is to help developers to identify blocking bugs early on, we only use

bug report information available within 24 hours after the initial submission

of the bug reports. When a factor was empty, we set its value to NA (or zero265

for numeric factors). That said, it is important to note that 3 of our factors

(product, component and reporter’s name) are project-specific. Therefore, if a

practitioner would like to predict blocking bugs in a cross-project setting, she/he

might not able to reuse models on new projects. In that situation, the simpler

approach would be to remove the project-specific factors from the model or270

13
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adapt these factors from their specific project in order to have a more flexible

model.

Finally, another important observation to note is that the description text

and the comment text factors need special treatment before being included in

our prediction models. We describe this special preprocessing in detail in the275

next sub-section.

2.4. Textual Factor Preprocessing

The description and comments in bug reports are two rich sources of un-

structured information that require special preprocessing. These factors contain

discussions about the bugs and can also provide snapshots of the progress and280

status of such bugs. One way to deal with text based factors is using a vector

representation. In this kind of representation, a new factor is created for each

unique word in the data set. Similar to prior work [30, 18], we followed this

simple approach. In Figure 1, we show our adapted approach to convert textual

factors into numerical values. We used a Naive Bayes classifier to calculate the285

Bayesian-score of these two factors. Basically this metric indicates the likelihood

First training set (D0) 

Corpus0	  
(nonblocking)	  

Corpus1	  
(blocking)	  

Naïve	  Bayes	  
Classifier	  (C0)	  

Word 
Frequency 

 Tables 

Second training set (D1) 

Corpus0	  
(nonblocking)	  

Corpus1	  
(blocking)	  

Naïve	  Bayes	  
Classifier	  (C1)	  

Word 
Frequency 

 Tables 

Bayesian	  
Score	  for	  D0	  

Bayesian	  
Score	  for	  D1	  

Apply on 

Training  
the classifier 

Training  
the classifier 

Apply on 

Figure 1: Converting textual factor into Bayesian-score
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that a description or comment belongs to certain kind of bug (i.e., blocking or

non-blocking).

We divide the entire data set into two training sets (D0 and D1) using

stratified random sampling. This ensures that we have the same number of290

blocking and non-blocking bugs in both training sets. We train a classifier (C0)

with the first training set and use it to obtain the Bayesian-scores on the second

training set. We also do the same in the opposite direction. We build a classifier

(C1) using the second training set and apply it on the first training set. This

strategy is used in order to avoid the classifiers from being biased toward their295

training sets; otherwise, it will lead to optimistic (unrealistic) values for the

Bayesian-scores.

In our classifier implementation, each training set is split into two corpora

(corpus1 and corpus0). The first corpus contains the descriptions/comments

of the blocking bugs. The second corpus contains the description/comments300

of the non-blocking bugs. We create a word frequency table for each corpus.

The textual content is tokenized in order to calculate the occurrence of each

word within a corpus. Based on these two frequency tables, the next step is to

calculate the probabilities of all the words to be in corpus1 (i.e., blocking bugs),

because we are interested in identifying these kinds of bugs. The probability305

is calculated as follow: if a word is in corpus1 and not in corpus0, then its

probability is close to 1. If a word is not in corpus1 but in corpus0, then its

probability is close to 0. On the other hand, if the word is in both corpora, then

its probability is given by p(w) = %w in corpus1
%w in corpus1+%w in corpus0

.

Once the classifiers are trained, we can obtain the Bayesian-score of a text310

based factor by mapping its words to their probabilities and combining them.

The formula for the Bayesian-score is p(text) =
∏
p(wi)∏

p(wi)+
∏

(1−p(wi))
. For this

calculation, the fifteen most relevant words are considered [31]. Here, “relevant”

means those words with probability close to 1 or 0.
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2.5. Prediction Models315

For each of our case study projects, we use our proposed factors to train a

decision tree model to predict whether a bug will be a blocking bug or not. We

also compare our prediction model with four other classifiers namely: Naive Bayes,

kNN, Zero-R, Logistic Regression, Random Forests and Stacked Generalization.

2.5.1. Decision Tree Model320

We use a tree-based learning algorithm to perform our predictions. One

of the benefits of decision trees is that they provide explainable models. Such

models intuitively show to the users (i.e., developers or managers) the decisions

taken during the prediction process. The C4.5 algorithm [32] belongs to this type

of data mining technique and like other tree-based classifiers, it follows a greedy325

divide and conquer strategy in the training stage. The algorithm recursively

splits data into subsets with rules that maximize the information gain. The

rules are of the form Xi < b if the feature is numeric or into multiple subsets if

the feature is nominal. In Figure 2, we provide an example of a tree generated

from the extracted factors in our data set. The sample tree indicates that a bug330

report will be predicted as blocking bug if the Bayesian-score of its comment is

> 0.74, there are more than 6 developers in the CC list and the number of words

in the comments is greater than 20. On the other hand, if the Bayesian-score of

comment 
bayes-score 

num-cc    

comment 
size 

priority 

6 > <= 6 

P1 P2 P4 

Blocking Blocking NonBlocking 
     

40 > <= 40 

<= 0.74 0.74 > 

P3 

reporter 
experience 

platform 
NonBlocking 

<= 5 5 > 

Win Linux    

…. 

Blocking 

Figure 2: Example of a Decision Tree
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its comment is ≤ 0.74 and the reporter’s experience is less than 5, then it will

be predicted as a non-blocking bug.335

2.5.2. Naive Bayes Model

We use this machine learning method for two purposes: to convert textual

information into numerical values (i.e., to obtain the probability that a descrip-

tion/comment belongs to a blocking-bug), and to build a prediction model and

compare its performance with that of our decision tree model. This simple model

is based on the Bayes theorem and the assumption that the factors are randomly

independent. For a given record x, the model predicts the class k that maximizes

the conditional joint distribution of the data set. Mathematically, the model can

be written as:

f(x) = arg max
k

P (C = k)
∏
i P (xi|C = k)

P (X = x)

Here, the prior-probability P (C = k) can be estimated with the percentage

of training records labeled as k (e.g., percentage of blocking or non-blocking).

The conditional probabilities P (xi|C = k) can be estimated with
Nk,i

Nk
, where

the numerator is the number of records labeled as k for which the ith-factor is340

equal to xi and the denominator is the number of records labeled as k. The

probability P (X = x) can be neglected because it is constant with respect to

the classes.

2.5.3. K-Nearest Neighbor Model

The k-nearest neighbor model is a simple, yet powerful memory-based tech-345

nique, which has been used with relative success in previous bug prediction works

[13, 28]. The idea of the method is as follows: given an unseen record x̂ (e.g., an

incoming bug report), we calculate the distance of all records x in the training

set (e.g., already-reported bugs) to x̂, then we select the k closest instances and

finally classify x̂ to the most frequent class among these k neighbors. In this350

work, we considered k = 5 as the number of neighbors, used the euclidean metric

for numerical factors and the overlap metric for nominal factors. Under the
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overlap metric, the distance is zero if the values of the factors are equal and one

otherwise.

2.5.4. Zero-R Model355

Zero-R (no rule) is the simplest prediction model because it always predicts

the majority class in the training set. We use this classifier as one of our baseline

models in the comparison section.

2.5.5. Logistic Regression

Logistic regression is statistical binary classification model extensively used

in the literature on software bug prediction [33, 21, 19]. For a given record

x = x1, x2, · · · , xp, this prediction model estimates the probability that such

a record belongs to the class k = 1 (e.g., blocking-bug) using the following

equation:

P (k = 1|x) =
eβ0+β1x1+···+βpxp

1 + eβ0+β1x1+···+βpxp

where the regression coefficients βi are found during the training phase. For360

a detailed description of the logistic regression model, we refer readers to [34].

2.5.6. Random Forests Model

Random Forests [35] is an ensemble classification approach that makes its

prediction based on the majority vote of a set of weak decision trees. This

approach reduces the variance of the individual trees and makes the model365

more resilient to noise in the data set. In general, the random forests model

outperforms simple decision trees in terms of prediction accuracy [36].

2.5.7. Stacked Generalization

Stacked Generalization [37] is an ensemble classification approach, which

attempts to increase the performance of individual machine learning methods370

by combining their outputs (i.e., individual predictions) using another machine

learning method referred to as the meta-learner. In this work, we use C4.5, Naive

Bayes and kNN algorithm as our individual models, and Logistic regression as

the meta-learner.
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2.6. Performance Evaluation375

A common metric used to measure the effectiveness of a prediction model

is its accuracy (fraction of correctly classified records). However, this metric

might not be appropriate when the data set is extremely skewed towards one

of the classes [38]. If a classifier tends to maximize the accuracy, then it can

perform very well by simply ignoring the minority class [39, 40]. Since our data380

set suffers from the class imbalance problem, the accuracy is not enough and

therefore we include three other performance measures: precision, recall and

f-measure. These measures are widely used to evaluate the quality of models

trained on imbalanced data.

1. Precision: The ratio of correctly classified blocking bugs over all the bugs385

classified as blocking.

2. Recall: The ratio of correctly classified blocking bugs over all of the

actually blocking bugs.

3. F-measure: Measures the weighted harmonic mean of the precision and

recall. It is calculated as F-measure = 2∗Precision∗Recall
Precision+Recall .390

4. Accuracy: The ratio between the number of correctly classified bugs

(both the blocking and the non-blocking) over the total number of bugs.

A precision value of 100% would indicate that every bug we classified as

blocking bug was actually a blocking bug. A recall value of 100% would indicate

that every actual blocking bug was classified as blocking bug.395

We use stratified 10-fold cross-validation [41] to estimate the accuracy of our

models. This validation method splits the data set into 10 parts of the same size

preserving the original distribution of the classes. At the i-th iteration (i.e., fold),

it creates a testing set with the i-th part and a training set with the remaining

9 parts. Then, it builds a decision tree using the training set and calculate its400

accuracy with the testing set. We report the average performance of the 10

folds. Since our data sets have a low number of blocking bugs, the stratified
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sampling prevents us from having parts without blocking bugs. Additionally, we

use re-sampling on the training data only in order to reduce the impact of the

class imbalance problem (i.e., the fact that there are many non-blocking bugs405

and very few blocking bugs) of our data sets.

3. Case Study

This section reports the results of our study on eight open source projects

and answers our three research questions. First, we characterized the impact of

blocking bugs in terms of their fixing time, blocking dependency and bug-fixing410

commits (i.e., bug-fix size). Second, we inspected the files affected by blocking

and non-blocking bugs and measure their complexity to better understand the

blocking phenomenon. Third, we built different prediction models to detect

whether a bug will be or not a blocking bug and performed Top Node analysis to

determine which of the collected factors are good indicators to identify blocking415

bugs.

RQ1. What is the impact of blocking bugs?

Motivation. Since blocking bugs delay the repair of other bugs (i.e.,

blocked bugs), they are harmful for the maintenance process. For example,

if blocking bugs take longer than other ordinary bugs, then the overall420

fixing time of the system might increase. Similarly, the presence of blocking

bugs that block a large number of other bugs (high dependency) might

become bottlenecks for maintenance, and impact the quality of the system.

Although there are different ways to define the impact of software bugs on

software projects, in this RQ we are interested in quantifying the effects425

caused by blocking bugs during bug triaging. Therefore, in this RQ, we

define the impact in terms of two proxy metrics collected at bug-report

level, namely fixing-time and degree of dependency

Approach. First, we calculate the fixing time for both blocking and non-

blocking bugs as the time period between the date when a bug is reported430
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until its closing date. Then, we performed an unpaired Wilcoxon rank-sum

test (also called Mann-Whitney U test) for the alternative hypothesis

Ha : tblock > tnonblock, in order to determine whether blocking bugs take

longer to be fixed compared to non-blocking bugs. On the other hand, we

analyze the degree of blocking dependency as the number of bugs that435

depend on the same blocking bugs.

Results. Fixing time. Table 5 reports the median fixing-time for

blocking/non-blocking bugs. For all of the projects, we observe that the

fixing-time for blocking bugs is 1.1 - 1.9 times longer than for the non-

blocking bugs. In addition, the results of the Wilcoxon test confirm that440

there is a statistically significant difference between the blocking and non-

blocking bugs for all of the projects (p-value < 0.001), meaning that the

fixing-time for blocking bugs is statistically significantly longer than the

fixing-time for non-blocking bugs.

Table 5: Median fixing time in days and the result of the Wilcoxon rank-sum test

for blocking and non-blocking bugs

Project tblock tnonblock

(X)

Chromium *** 35 [1.3X] 28

Eclipse *** 129 [1.9X] 69

FreeDesktop *** 67 [1.6X] 43

Mozilla *** 75 [1.4X] 52

NetBeans *** 204 [1.4X] 149

OpenOffice *** 129 [1.1X] 113

Gentoo *** 80 [1.6X] 52

Fedora *** 119 [1.1X] 107

(***) p < 0.001

Dependency of Blocking Bugs. In our study, we found that blocking445

bugs represent 12% of all bugs in our data set (77,448 bugs). In order to
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Table 6: Degree of Blocking Dependency

Degree Chromium Eclipse FreeDesktop Mozilla NetBeans OpenOffice Gentoo Fedora

1 74.1% 86.3% 87.4% 69.7% 89.9% 90.8% 85.7% 78.5%

2 20.1% 9.5% 10.4% 18.9% 7.8% 6.9% 9.4% 15.1%

3 3.5% 2.3% 2.0% 5.7% 1.3% 1.3% 2.8% 3.9%

4 1.4% 0.8% 0.2% 2.4% 0.5% 0.6% 1.3% 1.3%

5 0.3% 0.3% 0.0% 1.2% 0.2% 0.1% 0.2% 0.5%

6 0.3% 0.2% 0.0% 0.8% 0.1% 0.1% 0.0% 0.2%

≥ 7 0.2% 0.6% 0.0% 1.3% 0.2% 0.1% 0.6% 0.5%

assess the impact of the dependency of these blocking bugs, we extracted

the list of blocked bugs contained in the “Blocks” field of each blocking

bug. In total, we identified 57,015 different bug reports that were blocked

by blocking bugs. At the time of the data collection, many of these blocked450

bugs were still in progress (and therefore were not included in our data

set). Hence, we cannot claim that they account for about 9% of our data

set. Table 6 reports the distribution of the degree of dependency between

one and six. Furthermore, we include a category “≥ 7” for those blocking

bugs that block seven or more bugs.455

At first sight, it is easy to see that approximately 89-98% of the blocking

bugs for all projects only block 1 or 2 bugs. As a consequence, blocking

bugs with high dependency are uncommon. To better understand the

severity of these bugs with degree of dependency greater than or equal to

7, we performed a manual inspection, and we found inconclusive results.460

For example, in the Eclipse project, many bugs with high dependency

were actual enhancements with low priority (e.g., P3 or P4) instead of

real defects. On the other hand, in NetBeans, we found that indeed these

blocking bugs were real defects with high priority (e.g., P1 or P2).

Discussion Although, we found that blocking bugs take longer to be fixed compared465

to non-blocking bugs, the evidence is still unclear whether or not blocking

bugs are more complex to fix. Blocking bugs may be easy to fix, but take a

long time to find the right developers to solve them, or many blocking bugs
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are actually enhancements that while desirable, are not a priority, so the

developers postpone them in favor of more important bugs. Therefore, we470

analyze the size of bug-fixes, to determine whether blocking bugs require

more effort to fix than non-blocking bugs. First, we calculate the bug-fix

size as the number of lines modified (LM) from all the commits related

to the bug. Then, we check whether blocking bug-fixes are larger than

the non-blocking bug-fixes by using a Wilcoxon rank-sum test for the the475

hypothesis Ha : LMblock > LMnonblock.

Table 7: Median bug-fix size and the result of the Wilcoxon rank-sum test for

blocking and non-blocking bugs

Project LMblock LMnonblock

(X)

Chromium *** 205 [4.7X] 44

Eclipse *** 107 [3.3X] 32

FreeDesktop *** 25 [1.2X] 20

Mozilla *** 66 [2.4X] 28

NetBeans *** 52 [2.7X] 19

OpenOffice ** 77 [2.1X] 38

Gentoo *** 52 [2.6X] 20

Fedora *** 84 [1.4X] 58

(***) p < 0.001; (**) p < 0.01

In Table 7, we report the median bug-fix size (code-churn) of blocking and

non-blocking bugs. We can observe that for all of the projects, blocking

bug-fixes are 1.2 - 4.7 times larger than non-blocking bug-fixes. The result

of the Wilcoxon rank-sum test verify that blocking bugs have statistically480

significantly larger bug-fixes than non-blocking bugs.�

�

�

�

The time to address a blocking bug is 1.1 - 1.9 times longer

than the time it takes to address a non-blocking bug. Simul-

taneously, fixing blocking bugs requires 1.2 - 4.7 times more

lines of code to be modified than fixing non-blocking bugs.
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RQ2. Do files with blocking bugs have higher complexity than

files with non-blocking bugs?

Motivation We found that fixing blocking bugs require more effort485

and time (RQ1). However, it is not clear whether files with blocking

bugs (blocking files) are different from files with non-blocking bugs

(non-blocking files). In this RQ, we would like to analyze and

quantify the blocking phenomenon at file level.

Approach490

To answer this question, first we extract four metrics from the source-

code files in the code-repositories: size (LOC), Cyclomatic Complexity

(CC), Lack of Cohesion (LCOM) and Coupling Between Objects

(CBO).

Results Lack of cohesion. Table 8 reports the median of LCOM495

for blocking/non-blocking files. We see that blocking files have

slightly higher LCOM (1.02-1.18 times higher) than non-blocking

files. We compared these two groups of files using a Wilcoxon

rank-sum test in order to determine if the difference is statistically

significant. For four projects (Chromium, Eclipse, Netbeans and500

OpenOffice), we find that files with blocking bugs have statistically

less cohesion than files with non-blocking bugs. For FreeDesktop

and Mozilla, we find no evidence that blocking files have higher

LCOM than non-blocking files. Although these projects have a rela-

tive large number of buggy files, the Understand tool was able to505

extract the LCOM metric from only a small fraction of the buggy

files. For both FreeDesktop and Mozilla, we obtained the LCOM

metric from 7% and 25% of the buggy files respectively. In contrast,

we obtained the LCOM metric from about 44%-93% of buggy files for

the other projects. This is not surprising since, most of the buggy files510

in FreeDesktop and Mozilla are written in C and Javascript. From

Table 4, we can see that for FreeDesktop, about 84% of the buggy files
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are written in C, whereas for Mozilla about 55% of the buggy files

are written in C and Javascript.

Table 8: Median lack of cohesion for blocking and non-blocking files

Project LCOMblock LCOMnonblock

(X)

Chromium *** 67% [1.10X] 61%

Eclipse *** 58% [1.16X] 50%

FreeDesktop 71% [0.86X] 83%

Mozilla 87% [1.02X] 85%

NetBeans *** 79% [1.03X] 77%

OpenOffice *** 71% [1.18X] 60%

Gentoo – –

Fedora – –

(***) p < 0.001; (**) p < 0.01; (*) p < 0.05

Coupling between objects. In Table 9, we show the median of515

CBO for blocking/non-blocking files. For four projects (Chromium,

Eclipse, Netbeans and OpenOffice), we find that blocking files are

coupled to other classes 1.15-1.43 times more than non-blocking files.

The result of the Wilcoxon rank-sum test shows that, there is a

statistically significant difference in terms of CBO between blocking520

and non-blocking files. Similar to the previous metric, we find no

evidence that blocking files have higher CBO than non-blocking files

for FreeDesktop and Mozilla.

Cyclomatic Complexity. Prior work showed that OO metrics

such as LCOM and CBO are significantly associated with bugs525

[34, 42, 43, 44]. These OO metrics are useful for architectural and

design evaluation [45]. However, first, they cannot be extracted from

non-object oriented languages (e.g., C, Bash). Second, they might

not be easily computed by practitioners. In such cases, other code

metrics that assess the quality of the software systems should be530
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considered (e.g., CC and LOC). In Table 10 we compare the median

CC between blocking and non-blocking files. For the first six projects,

we find that blocking files have ≈ 1.2-7.6 times more execution paths

than non-blocking files. The Wilcoxon rank-sum test confirms that

Table 9: Median coupling for the blocking and non-blocking files

Project CBOblock CBOnonblock

(X)

Chromium *** 10 [1.43X] 7

Eclipse *** 11 [1.22X] 9

FreeDesktop 12 [1.26X] 9.5

Mozilla 8 [1.14X] 7

NetBeans *** 23 [1.15X] 20

OpenOffice *** 11 [1.38X] 8

Gentoo – –

Fedora – –

(***) p < 0.001; (**) p < 0.01; (*) p < 0.05

Table 10: Median cyclomatic complexity for blocking and non-blocking files

Project CCblock CCnonblock

(X)

Chromium *** 9 [1.8X] 5

Eclipse *** 12 [1.5X] 8

FreeDesktop *** 58 [1.6X] 37

Mozilla *** 11 [1.2X] 9

NetBeans *** 32 [1.3X] 24

OpenOffice *** 53 [7.6X] 7

Gentoo 18 [0.5X] 36.5

Fedora – –

(***) p < 0.001; (**) p < 0.01; (*) p < 0.05
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the difference is significant. For Gentoo, there is no evidence that535

CCblock > CCnonblock. However, this does not necessarily mean that

blocking/nonblocking files have the same complexity. After performing

the opposite hypothesis (CCblock < CCnonblock), we find that blocking

files have statistically less complexity than non-blocking files. After

a manual inspection, we find that blocking and non-blocking files540

in Gentoo are quite different in terms of functionality provided and

programming language distribution. Approximately 68% of the block-

ing files comes from Portage (Gentoo’s package management system),

which is mostly written in Python, whereas 40% of the non-blocking

files comes from Quagga (routing suite) and X-Server (window system545

server) which are mostly written in C. For Fedora, we did not have

enough data to extract the CC metric. Approximately 98% of the

files in Fedora are Patch/Bash files and our metric extraction tool

does not support these kind of files.

Lines of Code. Although CC is a good measure of structural550

complexity of a program, it cannot be easily calculated for Bash/Patch

files. On the other hand, LOC can be calculated easier than CC for

any kind of source code file. Table 11 presents the median LOC of

blocking and non-blocking files. Similar to our previous findings, we

observe that for most of the projects (the first six projects and Fedora),555

blocking files have statistically more lines of code (1.3X-12.2X) than

non-blocking files. The only exception was Gentoo, for which we find

that blocking files are smaller than non-blocking files.

Discussion. Our findings so far indicate that there is a negative

impact on the quality of the files affected by blocking bugs. Therefore,560

practitioners should plan to allocate more QA effort when fixing

blocking files. In order to help with the resource allocation, we

would like to provide practitioners with a subset of files that are

most susceptible to blocking bugs. More precisely, we would like to
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Table 11: Median LOC for blocking and non-blocking files

Project LOCblock LOCnonblock

(X)

Chromium *** 142 [1.6X] 89

Eclipse *** 122 [1.4X] 88

FreeDesktop *** 588 [1.4X] 409

Mozilla *** 174 [1.4X] 127

NetBeans *** 284 [1.3X] 223

OpenOffice *** 513 [3.7X] 140

Gentoo 121 [0.9X] 130

Fedora *** 755 [12.2X] 62

(***) p < 0.001; (**) p < 0.01; (*) p < 0.05

investigate whether we can build accurate models (trained on file565

metrics) to predict which buggy files will contain blocking bugs in the

future. First, we extract two process metrics (Num. lines modified and

Num. commits) and four code metrics (LOC, Cyclomatic, Coupling

and Cohesion) for both blocking and non-blocking files analyzed in this

RQ. Then, we train decision tree models using such file-metrics and570

evaluate their performance using the precision, recall and F-measure

metrics. For Gentoo and Fedora, we do not consider Cyclomatic,

Coupling and Cohesion metrics, since most of the files in these projects

are Patch/Bash files. In Table 12, we report the models’ performance

for each of the projects. The results indicate that our blocking files575

prediction models can achieve moderate and high F-measure values

ranging from 45.3% to 86.3%, while at the same time achieving high

accuracy values ranging from 64.9% to 96.7%. It is important to

emphasize that our models are not general models that aim to predict

buggy files, but specialized models to predict whether a buggy file will580

be a blocking file. Therefore, our proposed models should be used in
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conjunction with traditional bug prediction/localization models to

first identify buggy files [46, 47, 48].'

&

$

%

Files affected by blocking bugs have

1.02-1.18 times less cohesion,

1.15-1.43 times higher coupling,

1.2-7.6 times higher complexity and

1.3-12.2 times more lines of code

than files affected by non-blocking bugs.

RQ3. Can we build highly accurate models to predict whether585

a new bug will be a blocking bug?

Motivation. We observed that blocking bugs not only take much

longer and require more lines of code to be fixed than non-blocking

bugs, but also they negatively impact the affected files in terms of

cohesion, coupling, complexity and size. Because of these severe590

consequences, it is important to identify blocking bugs in order to

reduce their impact. Therefore, in this RQ, we want to build prediction

models that can help developers to flag blocking bugs early on, so they

can shorten the overall fixing time. Additionally, we want to know if

Table 12: Performance of blocking files prediction models

Project Precision Recall F-measure Acc.

Chromium 71.0% 62.1% 66.1% 65.7%

Eclipse 57.9% 61.7% 59.6% 64.9%

FreeDesktop 35.7% 70.0% 45.3% 71.6%

Mozilla 95.5% 78.8% 86.3% 77.4%

NetBeans 39.7% 66.8% 49.8% 71.5%

OpenOffice 48.6% 96.4% 64.5% 96.7%

Gentoo 76.5% 73.3% 74.8% 78.2%

Fedora 84.0% 70.5% 76.0% 71.0%
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we can accurately predict these blocking bugs using the factors that595

we proposed in Section 2.3.

Approach. We use decision trees based on the C4.5 algorithm as

our prediction model, because it is an explainable model that can

easily be understood by practitioners. We use stratified 10-fold cross-

validation to estimate the accuracy of our models. To evaluate their600

performance, we use the precision, recall and F-measure metrics.

The reported performances of the models are the average of the

10 folds. Baseline: In order to have a point of reference for our

performance evaluation, we use a random classifier that has a 50/50

chance of predicting two outcomes (e.g., blocking and non-blocking605

bugs). Prior studies have also used this theoretical model as their

baseline [24, 49, 50, 51]. Given a 50/50 random classifier, if an infinite

number of random predictions are performed, then the precision

will be to the percentage of blocking bugs in the data set, and the

recall will be to 50%. Additionally, we further compare them to six610

other machine learning techniques.

Results. In Table 13, we present the performance results of our

prediction models. Our models present precision values ranging from

13.7% to 45.8%. Comparing these results with those of the baseline

models (6.1%-21.9%), our models provide a approximately two-fold615

improvement over the baseline models in terms of precision.

In terms of recall, our models present better results for six projects

with values ranging from 52.9% to 66.7%. For the other projects

(Eclipse and Gentoo), the recalls were bellow the baseline recall (50%)

with values of ≈ 47%-49%. Although, we achieved low recall values620

for some of our projects, what really matters for comparing the perfor-

mance of the two models is the F-measure, which is a trade-off between

precision and recall.
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Our results show that the F-measure values of our prediction models

represent an improvement over those of the baseline models for all625

of the projects. Our F-measure values range from 21.2% to 54.3%,

whereas the F-measure values of the baseline models range from

10.8% to 30.5%. The improvement ratio of our F-measure values vary

from ≈ 1.5 to 2.3 folds.

Table 13: Performance of the decision tree models

Decision Tree model Baseline model

Project Precision Recall F-measure Precision Recall F-measure

(X)

Chromium 15.7% 59.5% 24.8% [2.3X] 6.1% 50% 10.8%

Eclipse 14.0% 49.5% 21.9% [2.0X] 6.2% 50% 11.0%

FreeDesktop 24.8% 60.3% 35.2% [1.9X] 11.4% 50% 18.6%

Mozilla 36.1% 63.4% 46.0% [1.6X] 20.3% 50% 29.0%

NetBeans 15.7% 52.9% 24.2% [2.1X] 6.6% 50% 11.6%

OpenOffice 14.7% 54.2% 23.1% [2.3X] 5.6% 50% 10.0%

Gentoo 13.7% 47.7% 21.2% [1.5X] 7.9% 50% 13.7%

Fedora 45.8% 66.7% 54.3% [1.8X] 21.9% 50% 30.5%

The above results give an idea of the effectiveness of our models with630

respect to a random classifier. However, there are other popular

machine learning techniques besides decision trees that can be used to

predict blocking bugs. In Table 14, we compare the performance of our

model to six other machine learning techniques namely: Zero-R, Naive

Bayes, kNN, Logistic Regression, Stacked Generalization and Random635

Forests. The Zero-R model presents the highest accuracy across most

of the projects (except for Fedora). This happens because the Zero-R

always predicts the majority class (e.g., non-blocking bugs), which in

our case account for approximately 87% of the bugs in most of the

projects. Clearly, it is useless to have a highly accurate model that640

cannot detect blocking bugs. Therefore, we use the F-measure metric

to perform the comparisons. The Naive Bayes model is only slightly
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Table 14: Predictions different algorithms

Project Classif. Precision Recall F-measure Acc.

Chromium

Zero-R NA 0.0% 0.0% 93.9%

Naive Bayes 19.6% 51.3% 28.4% 84.3%

kNN 13.2% 64.8% 21.9% 71.9%

Logistic Regression 17.2% 61.2% 26.8% 79.7%

Stacked Gen. 24.2% 41.5% 30.5% 88.5%

Rand. Forest 27.1% 38.3% 31.7% 90.0%

Decision Tree 15.7% 59.5% 24.8% 78.1%

Eclipse

Zero-R NA 0.0% 0.0% 93.8%

Naive Bayes 13.2% 60.2% 21.6% 73.0%

kNN 11.4% 60.2% 19.2% 68.8%

Logistic Regression 12.5% 67.3% 21.1% 68.9%

Stacked Gen. 20.6% 30.9% 24.7% 88.4%

Rand. Forest 27.7% 30.6% 29.1% 90.8%

Decision Tree 14.0% 49.5% 21.9% 78.1%

FreeDesktop

Zero-R NA 0.0% 0.0% 88.6%

Naive Bayes 24.4% 59.5% 34.4% 73.9%

kNN 20.4% 65.6% 31.1% 66.7%

Logistic Regression 24.4% 65.5% 35.6% 72.9%

Stacked Gen. 28.2% 49.1% 35.8% 79.8%

Rand. Forest 31.9% 46.1% 37.6% 82.4%

Decision Tree 24.8% 60.3% 35.2% 74.5%

Mozilla

Zero-R NA 0.0% 0.0% 79.7%

Naive Bayes 35.0% 69.7% 46.6% 67.5%

kNN 32.5% 63.4% 43.0% 65.7%

Logistic Regression 38.1% 68.1% 49.0% 71.1%

Stacked Gen. 39.1% 56.0% 46.0% 73.3%

Rand. Forest 44.7% 53.2% 48.6% 77.1%

Decision Tree 36.1% 63.4% 46.0% 69.7%

NetBeans

Zero-R NA 0.0% 0.0% 93.4%

Naive Bayes 14.4% 61.3% 23.3% 73.3%

kNN 13.0% 62.9% 21.5% 69.8%

Logistic Regression 15.2% 63.5% 24.6% 74.3%

Stacked Gen. 24.0% 37.1% 29.1% 88.1%

Rand. Forest 30.5% 36.5% 33.2% 90.3%

Decision Tree 15.7% 52.9% 24.2% 78.2%

OpenOffice

Zero-R NA 0.0% 0.0% 94.4%

Naive Bayes 6.4% 93.7% 12.0% 23.6%

kNN 11.7% 59.8% 19.6% 72.8%

Logistic Regression 13.8% 67.1% 22.9% 74.9%

Stacked Gen. 23.6% 36.3% 28.6% 89.9%

Rand. Forest 30.7% 36.8% 33.5% 91.9%

Decision Tree 14.7% 54.2% 23.1% 80.0%

Gentoo

Zero-R NA 0.0% 0.0% 92.1%

Naive Bayes 15.9% 36.5% 22.1% 79.6%

kNN 10.6% 55.9% 17.8% 59.0%

Logistic Regression 17.1% 43.9% 24.6% 78.6%

Stacked Gen. 15.4% 35.4% 21.5% 79.5%

Rand. Forest 20.9% 29.9% 24.3% 85.1%

Decision Tree 13.6% 47.7% 21.2% 72.0%

Fedora

Zero-R NA 0.0% 0.0% 78.1%

Naive Bayes 48.0% 59.7% 53.2% 77.0%

kNN 38.5% 67.1% 48.9% 69.3%

Logistic Regression 43.6% 70.2% 53.8% 73.6%

Stacked Gen. 47.2% 62.6% 53.8% 76.5%

Rand. Forest 53.5% 59.8% 56.5% 79.8%

Decision Tree 45.8% 66.7% 54.3% 75.4%
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better for Chromium, Mozilla and Gentoo with F-measure values

ranging from 22.1% to 46.6%. In the other five projects, Naive Bayes

performs worse than our model (specially for OpenOffice). The kNN645

model is slightly worse for all of the projects. For example, in Mozilla,

kNN achieves a F-measure of 43%, whereas our model achieves a

F-measure of 46%. The Logistic Regression model performs slightly

worse for FreeDesktop, OpenOffice and Fedora, whereas in the other

projects, it performs better than our model. For example, in Mozilla,650

Logistic Regression and Decision Trees achieve F-measures of 49% and

46% respectively. Random Forests and Stacked Generalization models

perform better in all of the projects. In particular, Random Forests

significantly outperforms our models with an improvement of 7%-9%

for four projects (Chromium, Eclipse, NetBeans and OpenOffice). For655

example, for the Chromium project, we observe that the F-measure

improves from 24.8% to 31.7%. However, these two ensemble models

do not provide easily explainable models. Practitioners often prefer

easy-to-understand models such as decision trees because they can

explain why the predictions are the way they are. What we observe660

is that the decision trees are close to the Random Forests (or Stacked

Generalization) in terms of F-measure in many projects, however if

one is more concerned about accuracy to detect blocking bugs, the

Random Forests would be the best prediction model. If one wants

accurate models that are easily explainable, then they would need to665

sacrifice a bit of accuracy and use the decision tree model.

Discussion. Besides warning about blocking bugs, we would like

to advise developers to be careful of factors (in the bug reports)

that potentially indicate the presence of blocking bugs. Therefore,

we investigate which factor or group of factors have a significant670

impact on the determination of blocking bugs. We perform Top

Node analysis in order to determine which factors are the best indi-
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cators of whether a bug will be a blocking bug or not. In the Top

Node analysis, we examine the decision trees created by the 10-fold

cross validation and we count the occurrences of the factors at each675

level of the trees. The most relevant factors are always close to the

root node (level 0, 1 and 2). As we traverse down the tree, the fac-

tors become less relevant. For example, in Figure 2, the comment

is the most relevant factor because it is the root of the tree (level

0). The next two most relevant factors are num-CC and reporter’s680

experience (both in level 1) and so on. In the Top Node analysis, the

combination of the level in which a factor is found along with its oc-

currences determines the importance of such as factor. If, for example,

the product factor appears as the root in seven of the ten trees and

the platform factor appears as the root in the remaining, we would685

report product as the first most important factor and platform as the

second most important factor.

Table 15 reports the Top Node analysis results for our eight projects.

The description and the comments included in the bugs are the most

important factors. For example, the description text is the most690

important factor in Chromium, FreeDesktop, NetBeans and Gentoo;

and the second most important factor in Eclipse, Mozilla, OpenOffice

and Fedora. Likewise, the comment text is the most important factor

in Mozilla, OpenOffice and Fedora; and the third most important

in NetBeans. Words such as “dtrace”, “pthreads”, “scheduling”,695

“glitches” and “underestimate” are associated with blocking bugs

by the Naive Bayes Classifier. On the other hand, words such as

“duplicate”, “harmless”, “evolution”, “enhancement” and “upgrading”

are associated with non-blocking bugs.
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Table 15: Top Node analysis results

Level Chromium Eclipse

# Attribute # Attribute

0 10 Description text 8 Rep. Blocking experience

2 Description text

1 16 Rep. Blocking experience 15 Description text

4 Comment size 4 Rep. Blocking experience

1 Comment text

2 22 Reporter 22 Component

9 Comment size 10 Reporter

8 Rep. Blocking experience 8 Description text

1 Description text

Level FreeDesktop Mozilla

# Attribute # Attribute

0 10 Description text 8 Comment text

2 Description text

1 17 Reporter 18 Description text

2 Rep. Blocking experience 2 Comment text

1 Description text

2 63 Rep. Blocking experience 14 Rep. Blocking experience

36 Rep. experience 10 Component

22 Comment size 9 Reporter

18 Priority 1 Priority

Level NetBeans OpenOffice

# Attribute # Attribute

0 10 Description text 7 Comment text

3 Description text

1 1 Rep. Blocking experience 10 Description text

19 Comment text 8 Rep. Blocking experience

2 Num. CC

2 25 Component 11 Rep. Blocking experience

8 Description text 8 Rep. experience

3 Reporter 8 Num. CC

2 Rep. Blocking experience 4 Reporter

Level Gentoo Fedora

# Attribute # Attribute

0 10 Description text 6 Comment text

4 Description text

1 10 Reporter 15 Rep. Blocking experience

3 Description text

2 Comment text

2 41 Rep. Blocking experience 15 Component

37 Rep. experience 8 Rep. Blocking experience

18 Description size 7 Reporter

17 Comment text 5 Num. CC
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The experience of reporting previous blocking bugs (Rep. Blocking700

experience) is the most important factor for Eclipse, and the sec-

ond most important for Chromium and NetBeans. It also appears

consistently in the second and third levels of all the projects.

Other factors such as priority, component, number of developers in the

CC list, reporter’s name, reporter’s experience, and description-size705

are only present in the second and third levels of two or less projects.

This means that among the factors reported in Table 15, such factors

are the less important.'

&

$

%

We can build prediction models that can achieve F-measure

values ranging from 21% to 54% when detecting blocking bugs.

In addition, we find that the description and comment text are

the most important factors in determining blocking bugs for the

majority of the projects, followed by the Rep. Blocking experience.

4. Relaxing the Data Collection Process710

4.1. Prediction models using data available after 24 hours after the bug report

submission

So far, we trained our prediction models with bug report information collected

within the 24 hours after the initial submission. One limitation of this approach

is that a large number of bug reports do not have any information recorded for715

some of the factors. For example, we found that around 92%-98% of the bug

reports have empty values for severity, priority, priority has increased, platform

and product. Therefore, it is worth investigating whether relaxing the data

collection period could improve the performance of our prediction models.

In Table 16, we present the performance of prediction models trained on data720

collected without the “24 hours restriction”. More precisely, for non-blocking

bugs we used data before their blocking-dates and for blocking-bugs we used data

before their blocking-date. From Table 16, it can be seen that the F-measures
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range from 14.1% to 42.1%. These values are lower that the F-measures of our

original models (21.2% to 54.3%) presented in Table 13. This suggests that725

collecting data after the blocking-date and closing-date is not worth the effort.

One possible explanation for the performance degradation of the prediction

models is that relaxing the data collection process introduces noise into the data

set.

Table 16: Performance of the decision tree models using data collected after 24

hours after the initial submission

Project Precision Recall F-measure

Chromium 9.1% 49.9% 15.3%

Eclipse 9.2% 47.0% 15.4%

FreeDesktop 20.4% 73.6% 31.9%

Mozilla 29.0% 76.7% 42.1%

NetBeans 12.8% 59.3% 21.1%

OpenOffice 15.9% 65.9% 25.6%

Gentoo 8.6% 39.0% 14.1%

Fedora 27.6% 67.2% 39.2%

4.2. Dealing with the Reporter’s name factor730

While building our prediction models, we faced computational issues caused by

the reporter’s name factor. In our data set, we found approximately 100,000 dif-

ferent reporters. We summarize the number of unique reporters for all of the

projects in Table 17. Having a nominal factor with such high number of levels is

computational expensive and impractical. For example, a logistic model trained735

on the Chromium data would create 16,209 dummy variable to account for the

different levels of the nominal factor reporter’s name. To overcome this issue and

because we are interested in the impact of non-sporadic developers, we reduced

the number of levels by considering the top K reporters (of each project) with

the highest number of reported bugs. The remaining reporters were grouped740
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into a level named “others”. In our work, we considered a value of K = 200 (i.e.,

the top 200 reporters) for the prediction models in RQ3.

Table 17: Number of different reporters (nominal levels)

Project Num. unique

reporters

Chromium 16,209

Eclipse 14,616

FreeDesktop 1,475

Mozilla 9,945

NetBeans 6,056

OpenOffice 14,412

Gentoo 3,333

Fedora 35,882

Instead of performing a sensitivity analysis to determine whether other values

of K (e.g., 50, 100, 300, etc.) have a potential effect on the models’ performance,

we followed a slightly different approach. First, we removed the reporter’s name745

from the data set, and then re-built the prediction models. Our experiments show

that these models achieved F-measures of 19.7% to 53.2%, which are similar to the

performance of models considering the reporter’s name built in RQ3 (F-measures

of 21.2% to 54.3%). These findings suggest that the reporter’s name does not

play a significant role in predicting blocking bugs. A detailed information about750

the models built in this section (precision, recall and F-measure) for all of the

projects can be found in our online appendix [26].

5. Threats to Validity

Internal Validity We used standard statistical libraries and methods

to perform our predictions and statistical analysis (e.g., Weka and R755

programming). We also rely on a commercial tool (Scitools Understand)

to extract the code metrics. Although these tools are not perfect, they have

been used by other researchers in the past for bug prediction [52, 53, 54].
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Construct Validity The main threat here is the quality of the ground

truth for blocking bugs. We used the information in the “Blocks” field of760

the bug reports to determine blocking and non-blocking bugs. In some

cases, developers could have mistakenly filled that field. We inspected

a subset of the blocking bugs in each of our projects and we found no

evidence of such a mistake.

For the nominal factor: reporter name, we considered the top K = 200765

reporters and grouped the remaining reporters into one level. This approach

significantly reduced the number of different levels for that factor. Although

using a different number K for the top reporters may change our results, we

found that reporter name does not play a significant role in the prediction

models. In addition, we used the number of previous reported bugs as770

the experience of a reporter. In some cases, using the number of previous

reported bugs may not be indicative of actual developer experience, however

similar measures were used in prior studies [18].

In RQ2, we used Lack of Cohesion, Coupling between Objects, Cyclomatic

Complexity and LOC as proxy metrics to quantify the impact of blocking775

bugs at file level. Although these metrics have also been reported to be

useful for architectural evaluation, other architectural and design metrics

such code smell metrics may quantify differently the effects of blocking

bugs on software systems.

Our data set suffers from the class imbalance problem. In most of the780

projects, the percentage of blocking bugs account for less than 12% of

the total data. This causes the classifier not to learn to identify the

blocking bugs very well. To mitigate this problem, we use re-sampling

of our training data and stratified cross-validation. To calculate the

Bayesian-scores, we filtered out all the words with less than five occurrences785

in the corpora. Increasing this threshold will produce different scores,

however, it will introduce more noise. Furthermore, the Bayesian-score of

a description/comment is based on the combined probability of the fifteen
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most important words of the description/comment. Changing this number

may impact our finding.790

Our work did not considered bugs with status other than resolved or

closed, because we wanted to investigate only well identified blocking and

non-blocking bugs. However, unlike non-blocking bugs, the blocking bugs

may not be restricted to verified or closed bugs. In most of the cases, bugs

marked as blocking bugs remain that way until their closed-date. In the795

future, we plan to include these blocking bugs in order to improve the

accuracy of our model.

Many of the projects do not follow any formal guidelines to label bug

reports in the commits. To extract the links between bug reports and

commits, we tried to match the bug-IDs in the messages of the commits with800

different regular expressions that may not consider all possible patterns.

Therefore, our data set might not be complete and/or contain false positive

bug-fixes. To reduce the impact of this threat, we manually inspected a

subset of the linked commits and their respective bug reports generated

by each regular expression. Additionally, we might miss actual bug-fixes805

in which the developer did not include the related bug-report. Although

more sophisticated methods (Wu et al. [55] and Nguyen et al. [56]) can

improve the identification of bug-fixes, our approach was able to extract a

large number of bug-fixes (263,345) which is a rich data set suitable for

the purpose of this study.810

In Software Bug Prediction research area, there are two well-known model

evaluation settings: Cross-validation [57, 58, 59] and Forward-release/Cross-

release validation [60, 61, 62] (i.e., train models with data from previous

releases and test them with data of the next release). Although, Forward-

release is closer to what can be deployed in a real environment, both815

approaches (and most of the studies in the Software Bug Prediction area)

assume little or no autocorrelation in the dataset. In other words, the

instances in the dataset do not have any significant temporal dependency
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among them. Since we are using cross-validation to evaluate our models

performance, we are implicitly assuming no autocorrelation in our dataset820

and as a result, our prediction models do no account for this kind of

correlation. Therefore, if there was a high autocorrelation in our dataset,

then other techniques such time series analysis could potentially improve

the performance of our models.

External Validity Including more software systems improves the gen-825

erality of research findings (which is a difficult and important aspect in

SE research). In this work, we increase the generality of our results by

studying 609,800 bug reports and 263,345 bug-fixing commits from eight

projects. That said, not always having a set of diverse projects is better

because it might introduce outliers that can impact the generality of the830

findings. To combat this, we considered long-live and large open-source

mostly written in Java and C++.

6. Related Work

Re-opened bug prediction: Similar to our work, however focusing on

different types of bugs, prior work by Shihab et al. [18] studied re-opened bugs835

on three open-source projects and proposed prediction models based on decision

trees in order to detect such type of bugs. In their work, they used 22 different

factors from 4 dimensions to train their models. Xia et al. in [63] compared the

performance of different machine learning methods to predict re-opened bugs.

They found that Bagging and Decision Table algorithms presents better results840

than decision trees when predicting re-opened bugs. Zimmermann et al. [19]

also investigated and characterized re-opened bugs in Windows. They performed

a survey to identify possible causes of reopened bugs and built statistical models

to determine the impact of various factors. The extracted factors in our data

sets are similar to those used in the previous works (specially in [18, 63]). Addi-845

tionally, we also use decision trees as our prediction models. However our work
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differs in that we are not interested in predicting reopened bugs, but instead in

predicting blocking bugs.

Fix-time prediction: A prediction model for estimating the bug’s fixing effort

based on previous bugs with similar textual information has been proposed850

by Weiss et al. [13]. Given a new bug report, they use kNN along with text

similarity techniques for finding the bugs with closely related descriptions. The

average effort of these bugs are used to estimate the fixing effort of the given

bug report. Panjer et al. in [12] used decision trees and other machine learning

methods to predict the lifetime of Eclipse bugs. Since the classifiers do not855

deal with a continuous response variable, they discretized the lifetime into seven

categories. Their models considered only primitive factors taken directly from

the bug database (e.g., fixer, severity, component, number of comments, etc.)

and achieved accuracies of 31-34%. Marks et al. [11] used Random Forest

to predict bug’s fixing time. Using the bugs from Eclipse and Mozilla, they860

examined the fixing time along 3 dimensions: location, reporter and description.

Following an approach similar to Panjer, Marks et al. discretized the fixing

time into 3 categories (within 1 month, within 1 year, more than a year). For

both projects their method was able to yield an accuracy of about 65%. In our

work, we also used decision trees as prediction models, but instead of predicting865

the bug’s lifetime, we try to predict blocking bugs. Bhattacharya et al. [64]

performed multivariate regression testing to determine the relationship strength

between various bug report factors and the fixing time. They found that the

dependency among software bugs (i.e., blocking dependency) is an important

factor that contributes to predict the fixing time. Our work is not directly related870

to bug-fixing time prediction, but the results in [64] motivate the study and

characterization of blocking bugs.

Severity/Priority prediction: Other works focused on the prediction of

specific bug report fields [10, 28, 65, 9]. Lamkanfi et al. [10] trained Naive

Bayes classifiers with textual information from bug reports on Eclipse and875

Mozilla to determine the severity of such bugs. In another paper [28], the

authors compared the performance of four machine learning algorithms (Naive
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Bayes, Naive Bayes Multinomial, kNN and SVM) for predicting the bug severity

and found that Naive Bayes Multinomial is the fastest and most accurate.

Menzies et al. [65] used a rule-based algorithm for predicting the severity of880

bug reports using their textual descriptions. They evaluated their method using

data from a NASA’s bug tracking system. Sharma et al. [9] evaluated different

classifiers for predicting the priority of bugs in OpenOffice and Eclipse. Their

prediction models achieved accuracies above 70%. Our work differs from the

previous studies in that we used that information to predict blocking bug rather885

than the severity/priority. In fact, we used the severity and priority of the

bug reports in our factors.

Bug triaging and Duplicate bug detection: Other studies use textual in-

formation from bug reports such as summary, description and execution trace

for semi-automatic triage process [66, 15, 17, 67] and bug duplicate detection890

[6, 7, 8, 29, 27]. The key idea in the majority of these works is to apply natural lan-

guage processing (NLP) and information retrieval techniques in order to find a set

of bug reports that are similar to a target bug (new bug). Based on this suggested

list of similar bugs, the triager can, for example, recommend the appropriate

developer to incoming bugs or filter out those already-reported bugs. Similar to895

these works, we included textual-based factors (comments and description) in our

prediction models with the difference that instead of using a vector space repre-

sentation, we converted them into numerical factors following the same approach

used by [18], [30].

Bug localization: Prior studies have proposed method to localize buggy files of900

a given new bug report [46, 47, 48]. Nguyen et al. [46] proposed BugScout, a new

topic model based on Latent Dirichlet Allocation that can assist practitioners in

automatically locating buggy files associated to a bug report. They exploited

the technical aspects shared by the textual content of files between code and

bug reports in order to correlate buggy files and bugs. Zhou et al. [47] proposed905

BugLocator, a method based on a revised Vector Space Model for locating source

code files relevant to a initial bug report. To rank potential buggy files, the

method uses (a) text similarity between a new bug report and the source code
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files, (b) historical data of prior fixed reports and (c) source code size. Kim et

al. [48] proposed a two-phase machine learning model to suggests the files that910

are likely to be fixed in response to a given bug report. In the first phase, their

model assesses whether the bug report has sufficient information. In the second

phase, the model proceeds to predict files to be fixed only if it believes that

the bug report is predictable. To train the model, the authors considered only

basic metadata and initial comments posted within 24 from the bug submission.915

Our work differs from these previous studies in that their goal is to recommend

relevant files related to a given bug report, whereas our main goal is to predict

whether a given bug report will be a blocking bug or not. That said, since these

bug localization techniques use textual information to do their recommendations,

they can easily be used in conjunction with our prediction models to identify920

potential buggy files with blocking bugs (as we pointed out at the end of RQ2).

7. Conclusion and Future Work

Blocking bugs increase the maintenance cost, cause delays in the release of

software projects, and may result in a loss of market share. Our empirical study

shows that blocking bugs take up 2 times longer and require 1.2-4.7 times more925

lines of code to be fixed than non-blocking bugs. On further analysis, we found

that files affected by blocking bugs are more negatively impacted in terms of

cohesion, coupling complexity and size than files affected by non-blocking bugs.

For example, we find that files with blocking bugs are 1.3-12.2 times bigger (in

LOC) than files with non-blocking bugs. Based on our findings, we suggest that930

practitioners should allocate more QA effort when fixing blocking bugs and files

related to them.

Since these bugs have such severe consequences, it is important to identify

them early on in order to reduce their impact. In this paper, we build prediction

models based on decision trees to predict whether a bug will be a blocking bug935

or not. As our data set, we used 14 factors extracted from the bug repositories

of eight large open source projects. The results of our investigation shows
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that our models achieve 13%-45% precision, 47%-66% recall and 21%-54% F-

measure when predicting blocking bugs. On the other hand, our Top Node

analysis shows that the most important factors to determine blocking bugs940

are the description, comments and the reporter’s blocking experience. In the

future, we plan to model the blocking dependency of the bug reports as a graph

structure and study it using network analysis. Particularly, we are interested in

deriving network measures to incorporate them in our prediction models and

examine whether they improve the prediction performance (Zimmermann et945

al. followed a similar approach in [68]). We also plan to extend this work by

performing feature selection on our factors. Employing feature selection may

improve the performance of our models since it removes redundant factors. From

the architectural point of view, we would like to exploit the source code topology

to identify hotspots in the architecture of software systems caused by blocking950

bugs. Furthermore, we plan to perform qualitative analyses similar to [69] at

factor and file level to better understand (a) the influence of certain factors and

(b) the characteristics of buggy files affected by blocking bugs.
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