Login | Register

Printed Ridge Gap Waveguide 3-dB Coupler: Analysis and Design Procedure

Title:

Printed Ridge Gap Waveguide 3-dB Coupler: Analysis and Design Procedure

Ali, Mohamed Mamdouh M. ORCID: https://orcid.org/0000-0003-4003-2851, Shams, Shoukry I. and Sebak, Abdel-Razik (2018) Printed Ridge Gap Waveguide 3-dB Coupler: Analysis and Design Procedure. IEEE Access, 6 . pp. 8501-8509. ISSN 2169-3536

[img]
Preview
Text (application/pdf)
mahmoud-ali-2018.pdf - Published Version
Available under License Spectrum Terms of Access.
1MB

Official URL: http://dx.doi.org/10.1109/ACCESS.2017.2784801

Abstract

Communication systems are witnessing an outstanding revolution that has a clear impact on all aspects of life. The world technology is drifting towards high frequency and data rate solutions to accommodate the future expansion in applications such as 5G communications. The 5G technology will offer advanced features in the mm-Wave frequency band which requires intelligent subsystems such as beam switching. Therefore, the microwave components, especially couplers, still need a significant improvement to follow the rapid variations in future technologies. One of the most recent and promising guiding technologies for mm-Wave applications is the printed ridge gap waveguide (PRGW). In this paper, a design of 3-dB planar quadrature hybrid coupler based on PRGW is presented. The proposed design has superior characteristics such as compactness, low loss, and low dispersion device. The prototype of the proposed coupler is fabricated and tested, where the measured and simulated results show an excellent agreement.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Refereed:Yes
Authors:Ali, Mohamed Mamdouh M. and Shams, Shoukry I. and Sebak, Abdel-Razik
Journal or Publication:IEEE Access
Date:2018
Funders:
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1109/ACCESS.2017.2784801
Keywords:Hybrid coupler, printed ridge gap waveguide, periodic structures
ID Code:983715
Deposited By: DANIELLE DENNIE
Deposited On:10 Apr 2018 20:03
Last Modified:10 Apr 2018 20:03

References:

1. Y. Wang J. Li L. Huang Y. Jing A. Georgakopoulos P. Demestichas "5G mobile: Spectrum broadening to higher-frequency bands to support high data rates" IEEE Veh. Technol. Mag. vol. 9 pp. 39-46 Sep. 2014.

2. IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond Jul. 2015.

3. FCC takes steps to facilitate next generation wireless technologies in spectrum above 24 GHz Jul. 2016.

4. T. S. Rappaport J. N. Murdock F. Gutierrez "State of the art in 60-GHz integrated circuits and systems for wireless communications" Proc. IEEE vol. 99 no. 8 pp. 1390-1436 Aug. 2011.

5. S. I. Shams M. Elsaadany G. Saad A. A. Kishk "Compact wideband dual loop coupler with high power handling capability for radar applications" IEEE Microw. Compon. Lett. vol. 27 no. 10 pp. 900-902 Oct. 2017.

6. H.-L. Ting S.-K. Hsu T.-L. Wu "A novel and compact eight-port forward-wave directional coupler with arbitrary coupling level design using four-mode control technology" IEEE Trans. Microw. Theory Techn. vol. 65 no. 2 pp. 467-475 Feb. 2017.

7. X. Shen Y. Liu S. Zhou Y. Wu "Coupled-line directional coupler with tunable power division ratio and operating frequency" IET Microw. Antennas Propag. vol. 11 no. 1 pp. 59-68 Jan. 2017.

8. W. M. Fathelbab "The synthesis of a class of branch-line directional couplers" IEEE Trans. Microw. Theory Techn. vol. 56 no. 8 pp. 1985-1994 Aug. 2008.

9. R. Gomez-Garcia J. I. Alonso D. Amor-Martin "Using the branch-line directional coupler in the design of microwave bandpass filters" IEEE Trans. Microw. Theory Techn. vol. 53 no. 10 pp. 3221-3229 Oct. 2005.

10. A. Doghri T. Djerafi A. Ghiotto K. Wu "Substrate integrated waveguide directional couplers for compact three-dimensional integrated circuits" IEEE Trans. Microw. Theory Techn. vol. 63 no. 1 pp. 209-221 Jan. 2015.

11. T. Djerafi K. Wu "Super-compact substrate integrated waveguide cruciform directional coupler" IEEE Microw. Wireless Compon. Lett. vol. 17 no. 11 pp. 757-759 Nov. 2007.

12. Z. Liu G. Xiao "Local design of SIW-based multi-aperture couplers using ray tracing method" IEEE Trans. Compon. Packag. Manuf. Technol. vol. 7 no. 1 pp. 106-113 Jan. 2017.

13. B. Liu W. Hong Z. C. Hao K. Wu "Substrate integrated waveguide 180-degree narrow-wall directional coupler" Proc. Asia–Pacific Microw. Conf. pp. 1-3 Dec. 2005.

14. L. Han K. Wu X.-P. Chen F. He "Accurate and efficient design technique for wideband substrate integrated waveguide directional couplers" Int. J. RF Microw. Comput.-Aided Eng. vol. 22 no. 2 pp. 248-259 Mar. 2012.

15. W. M. Abdel-Wahab S. Safavi-Naeini "Low loss H-shape SIW hybrid coupler for millimeter-wave phased arrays antenna systems" Proc. IEEE Antennas Propag. Soc. Int. Symp. (APS/URSI) pp. 1-2 Jul. 2012.

16. B. Liu W. Hong Y. Zhang H. J. Tang X. Yin K. Wu "Half mode substrate integrated waveguide 180° 3-dB directional couplers" IEEE Trans. Microw. Theory Techn. vol. 55 no. 12 pp. 2586-2592 Dec. 2007.

17. F. Parment A. Ghiotto T. P. Vuong J. M. Duchamp K. Wu "Air-filled substrate integrated waveguide for low-loss and high power-handling millimeter-wave substrate integrated circuits" IEEE Trans. Microw. Theory Techn. vol. 63 no. 4 pp. 1228-1238 Apr. 2015.

18. T. R. Jones M. Daneshmand "The characterization of a ridged half-mode substrate-integrated waveguide and its application in coupler design" IEEE Trans. Microw. Theory Techn. vol. 64 no. 11 pp. 3580-3591 Nov. 2016.

19. P.-S. Kildal E. Alfonso A. Valero-Nogueira E. Rajo-Iglesias "Local metamaterial-based waveguides in gaps between parallel metal plates" IEEE Antennas Wireless Propag. Lett. vol. 8 no. 4 pp. 84-87 Apr. 2009.

20. H. Raza J. Yang P.-S. Kildal E. A. Alós "Microstrip-ridge gap waveguide-study of losses bends and transition to WR-15" IEEE Trans. Microw. Theory Techn. vol. 62 no. 9 pp. 1943-1952 Sep. 2014.

21. E. Alfonso M. Baquero P.-S. Kildal A. Valero-Nogueira E. Rajo-Iglesias J. I. Herranz "Design of microwave circuits in ridge-gap waveguide technology" IEEE MTT-S Int. Microw. Symp. Dig. pp. 1544-1547 May 2010.

22. S. I. Shams M. M. Tahseen A. A. Kishk "Wideband relative permittivity characterization of thin low permittivity textile materials based on ridge gap waveguides" IEEE Trans. Microw. Theory Techn. vol. 64 no. 11 pp. 3839-3850 Nov. 2016.

23. S. I. Shams M. A. Abdelaal A. A. Kishk "Broadside uniform leaky-wave slot array fed by ridge gap splitted line" Proc. IEEE Antennas Propag. Soc. Int. Symp. (APS/URSI) pp. 2467-2468 Jul. 2015.

24. S. I. Shams A. A. Kishk "Design of 3-dB hybrid coupler based on RGW technology" IEEE Trans. Microw. Theory Techn. vol. 65 no. 10 pp. 3849-3855 Oct. 2017.

25. S. A. Razavi P. S. Kildal L. Xiang E. Alfonso Alos H. Chen " \$2 times 2\$ -slot element for 60-GHz planar array antenna realized on two doubled-sided PCBs using SIW cavity and EBG-type soft surface fed by microstrip-ridge gap waveguide " IEEE Trans. Antennas Propag. vol. 62 no. 9 pp. 4564-4573 Sep. 2014.

26. M. Sharifi Sorkherizi A. A. Kishk "Transition from microstrip to printed ridge gap waveguide for millimeter-wave application" Proc. IEEE Antennas Propag. Soc. Int. Symp. (APS/URSI) pp. 1588-1589 Jul. 2015.

27. A. Polemi S. Maci "Closed form expressions for the modal dispersion equations and for the characteristic impedance of a metamaterial-based gap waveguide" IET Microw. Antennas Propag. vol. 4 no. 8 pp. 1073-1080 Aug. 2010.

28. A. U. Zaman T. Vukusic M. Alexanderson P.-S. Kildal "Design of a simple transition from microstrip to ridge gap waveguide suited for MMIC and antenna integration" IEEE Antennas Wireless Propag. Lett. vol. 12 pp. 1558-1561 2013.

29. S. I. Shams A. A. Kishk "Printed texture with triangle flat pins for bandwidth enhancement of the ridge gap waveguide" IEEE Trans. Microw. Theory Techn. vol. 65 no. 6 pp. 2093-2100 Jun. 2017.

30. R. Mongia I. J. Bahl P. Bhartia S. J. Hong RF and Microwave Coupled-line Circuits Norwood MA USA:Artech House 2007.

31. C. G. Montgomery H. Robert M. Edward "Principles of microwave circuits" in Peter Peregrinus on Behalf of the Institution of Electrical Engineers London U.K.:IET 1987.

32. S. Y. Zheng J. H. Deng Y. M. Pan W. S. Chan "Circular sector patch hybrid coupler with an arbitrary coupling coefficient and phase difference" IEEE Trans. Microw. Theory Techn. vol. 61 no. 5 pp. 1781-1792 May 2013.

33. K.-L. Chan F. A. Alhargan S. R. Judah "A quadrature-hybrid design using a four-port elliptic patch" IEEE Trans. Microw. Theory Techn. vol. 45 no. 2 pp. 307-310 Feb. 1997.

34. T. Kawai I. Ohta "Planar-circuit-type 3-dB quadrature hybrids" IEEE Trans. Microw. Theory Techn. vol. 42 no. 12 pp. 2462-2467 Dec. 1994.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top