Login | Register

Markov Prediction Model for Host Load Detection and VM Placement in Live Migration

Title:

Markov Prediction Model for Host Load Detection and VM Placement in Live Migration

Melhem, Suhib Bani ORCID: https://orcid.org/0000-0003-4998-3418, Agarwal, Anjali, Goel, Nishith and Zaman, Marzia (2018) Markov Prediction Model for Host Load Detection and VM Placement in Live Migration. IEEE Access, 6 . pp. 7190-7205. ISSN 2169-3536

[img]
Preview
Text (application/pdf)
Melhem-2018.pdf - Published Version
Available under License Spectrum Terms of Access.
5MB

Official URL: http://dx.doi.org/10.1109/ACCESS.2017.2785280

Abstract

The design of good host overload/underload detection and virtual machine (VM) placement algorithms plays a vital role in assuring the smoothness of VM live migration. The presence of the dynamic environment that leads to a changing load on the VMs motivates us to propose a Markov prediction model to forecast the future load state of the host. We propose a host load detection algorithm to find the future overutilized/underutilized hosts state to avoid immediate VMs migration. Moreover, we propose a VM placement algorithm to determine the set of candidates hosts to receive the migrated VMs in a way to reduce their VM migrations in near future. We evaluate our proposed algorithms through CloudSim simulation on different types of PlanetLab real and random workloads. The experimental results show that our proposed algorithms have a significant reduction in terms of service-level agreement violation, the number of VM migrations, and other metrics than the other competitive algorithms.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Electrical and Computer Engineering
Item Type:Article
Refereed:Yes
Authors:Melhem, Suhib Bani and Agarwal, Anjali and Goel, Nishith and Zaman, Marzia
Journal or Publication:IEEE Access
Date:2018
Funders:
  • Concordia Open Access Author Fund
Digital Object Identifier (DOI):10.1109/ACCESS.2017.2785280
Keywords:VM live migration, host overload/underload detection, VM placement, CloudSim
ID Code:983716
Deposited By: DANIELLE DENNIE
Deposited On:10 Apr 2018 20:08
Last Modified:10 Apr 2018 20:08

References:

1. E. Bauer R. Adams Reliability and Availability of Cloud Computing Hoboken NJ USA:Wiley 2012.

2. A. Beloglazov R. Buyya "OpenStack neat: A framework for dynamic and energy-efficient consolidation of virtual machines in OpenStack clouds" Concurrency Comput. Pract. Exper. vol. 27 pp. 1310-1333 2015.

3. A. Beloglazov R. Buyya "Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers" Concurrency Comput. Pract. Exper. vol. 24 no. 13 pp. 1397-1420 Sep. 2012.

4. A. Beloglazov J. Abawajy R. Buyya "Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing" Future Generat. Comput. Syst. vol. 28 no. 5 pp. 755-768 2012.

5. A. Beloglazov "Energy-efficient management of virtual machines in data centers for cloud computing" 2013.

6. F. Farahnakian P. Liljeberg J. Plosila "LiRCUP: Linear regression based CPU usage prediction algorithm for live migration of virtual machines in data centers" Proc. 39th IEEE EUROMICRO Conf. Softw. Eng. Adv. Appl. (SEAA) pp. 357-364 Sep. 2013.

7. K. Maurya R. Sinha "Energy conscious dynamic provisioning of virtual machines using adaptive migration thresholds in cloud data center" Int. J. Comput. Sci. Mobile Comput. vol. 3 no. 2 pp. 74-82 2013.

8. S. S. Masoumzadeh H. Hlavacs "An intelligent and adaptive threshold-based schema for energy and performance efficient dynamic VM consolidation" Proc. Eur. Conf. Energy Efficiency Large Scale Distrib. Syst. pp. 85-97 2013.

9. L. Salimian F. S. Esfahani M. Nadimi-Shahraki "An adaptive fuzzy threshold-based approach for energy and performance efficient consolidation of virtual machines" Computing vol. 98 no. 6 pp. 641-660 2016.

10. A. Horri M. S. Mozafari G. Dastghaibyfard "Novel resource allocation algorithms to performance and energy efficiency in cloud computing" J. Supercomput. vol. 69 no. 3 pp. 1445-1461 2014.

11. E. Arianyan H. Taheri S. Sharifian "Novel energy and SLA efficient resource management heuristics for consolidation of virtual machines in cloud data centers" Comput. Elect. Eng. vol. 47 pp. 222-240 Oct. 2015.

12. X. Meng V. Pappas L. Zhang "Improving the scalability of data center networks with traffic-aware virtual machine placement" Proc. IEEE INFOCOM pp. 1-9 Mar. 2010.

13. J. Xu J. A. Fortes "Multi-objective virtual machine placement in virtualized data center environments" Proc. IEEE/ACM Int. Conf. Green Comput. Commun. (GreenCom) Int. Conf. Cyber Phys. Soc. Comput. (CPSCom) pp. 179-188 Dec. 2010.

14. E. Feller L. Rilling C. Morin "Energy-aware ant colony based workload placement in clouds" Proc. IEEE/ACM 12th Int. Conf. Grid Comput. pp. 26-33 Sep. 2011.

15. F. Ma F. Liu Z. Liu "Multi-objective optimization for initial virtual machine placement in cloud data center" J. Inf. Comput. Sci. vol. 9 no. 16 pp. 5029-5038 2012.

16. D. Huang D. Yang H. Zhang L. Wu "Energy-aware virtual machine placement in data centers" Proc. IEEE Global Commun. Conf. (GLOBECOM) pp. 3243-3249 Dec. 2012.

17. G. Wu M. Tang Y.-C. Tian W. Li "Energy-efficient virtual machine placement in data centers by genetic algorithm" in Neural Information Processing Berlin Germany:Springer pp. 315-323 2012.

18. M. Tang S. Pan "A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centers" Neural Process. Lett. vol. 41 no. 2 pp. 211-221 2015.

19. C. T. Joseph K. Chandrasekaran R. Cyriac "A novel family genetic approach for virtual machine allocation" Procedia Comput. Sci. vol. 46 pp. 558-565 2015 [online] Available: https://www.sciencedirect.com/science/article/pii/S1877050915001544.

20. A. Beloglazov R. Buyya "Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints" IEEE Trans. Parallel Distrib. Syst. vol. 24 no. 7 pp. 1366-1379 Jul. 2013.

21. S. K. Mandal P. M. Khilar "Efficient virtual machine placement for on-demand access to infrastructure resourcesin cloud computing" Int. J. Comput. Appl. vol. 68 no. 12 pp. 6-11 2013.

22. E. Fosler-Lussier "Markov models and hidden Markov models: A brief tutorial" 1998.

23. A. Beloglazov R. Buyya "Energy efficient allocation of virtual machines in cloud data centers" Proc. 10th IEEE/ACM Int. Conf. Cluster Cloud Grid Comput. (CCGrid) pp. 577-578 May 2010.

24. R. Buyya R. Ranjan R. N. Calheiros "Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: Challenges and opportunities" Proc. IEEE Int. Conf. High Perform. Comput. Simulation (HPCS) pp. 1-11 Jun. 2009.

25. S. Ray A. De Sarkar "Execution analysis of load balancing algorithms in cloud computing environment" Int. J. Cloud Comput. Services Archit. vol. 2 no. 5 pp. 1-13 Oct. 2012.

26. C. L. Dumitrescu I. Foster "GangSim: A simulator for grid scheduling studies" Proc. IEEE Int. Symp. Cluster Comput. Grid (CCGrid) vol. 2 pp. 1151-1158 May 2005.

27. A. Legrand L. Marchal H. Casanova "Scheduling distributed applications: The SimGrid simulation framework" Proc. 3rd IEEE/ACM Int. Symp. Cluster Comput. Grid (CCGrid) pp. 138-145 May 2003.

28. R. Buyya M. Murshed "GridSim: A toolkit for the modeling and simulation of distributed resource management and scheduling for Grid computing" Concurrency Comput. Pract. Exper. vol. 14 no. 13 pp. 1175-1220 2002.

29. K. S. Park V. S. Pai "CoMon: A mostly-scalable monitoring system for PlanetLab" ACM SIGOPS Oper. Syst. Rev. vol. 40 no. 1 pp. 47-65 2006.

30. S. B. Melhem A. Agarwal N. Goel M. Zaman "Selection process approaches in live migration: A comparative study" Proc. 8th IEEE Int. Conf. Inf. Commun. Syst. (ICICS) pp. 23-28 Apr. 2017.

31. S. B. Melhem A. Agarwal N. Goel M. Zaman "A Markov-based prediction model for host load detection in live VM migration" Proc. 5th IEEE Int. Conf. Future Internet Things Cloud (FiCloud) pp. 32-38 Aug. 2017.

32. S. Mustafa B. Nazir A. Hayat S. A. Madani "Resource management in cloud computing: Taxonomy prospects and challenges" Comput. Elect. Eng. vol. 47 pp. 186-203 Oct. 2015.

33. N. Tziritas C.-Z. Xu T. Loukopoulos S. U. Khan Z. Yu "Application-aware workload consolidation to minimize both energy consumption and network load in cloud environments" Proc. 42nd IEEE Int. Conf. Parallel Process. (ICPP) pp. 449-457 Oct. 2013.

34. X. Fan W. D. Weber L. A. Barroso "Power provisioning for a warehouse-sized computer" ACM SIGARCH Comput. Archit. News vol. 35 no. 2 pp. 13-23 2007.

35. A. Beloglazov R. Buyya "Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers" Proc. 8th Int. Workshop Middleware Grids Clouds e-Sci. pp. 4 2010.

36. F. Farahnakian T. Pahikkala P. Liljeberg J. Plosila N. T. Hieu H. Tenhunen "Energy-aware VM consolidation in cloud data centers using utilization prediction model" IEEE Trans. Cloud Comput. [online] Available: http://ieeexplore.ieee.org/search/searchresult.jsp?queryText=Energy-aware%20VM%20consolidation%20 in%20cloud%20data%20centers%20using%20utilization%20prediction%20model&newsearch=true.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top