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Abstract

Knowledge inference from smartphone GPS data

Mohsen Rezaie

With the advent of the incorporation of GPS receivers and then GPS-enabled smartphones in

transportation data collection, many studies have looked at how to infer meaningful information

from this data. Research in this field has concentrated on the use of heuristics and supervised

machine learning methods to detect trip ends, trip itineraries, travel mode and trip purpose. Until

now approaches to inference have relied on the use of fully-validated data. However, respondent

burden associated with validation lowers participation rates and reduces the amount of precisely

validated data because some people do not validate their trips or misreport them.

This thesis consists of two studies. In the first study I propose the application of a semi-

supervised method to mode detection from smartphone travel survey data. Semi-supervised meth-

ods let researchers and planners use both validated and un-validated data. I compare the accuracy

of three popular supervised methods (Decision Tree, Random Forest and Logistic Regression) with

a simple semi-supervised method (Label Propagation with KNN kernel). Simple features such as

speed, duration and length of trip and closeness of start and end points to transit network are used

for model estimation. The results show that the semi-supervised method outperforms the supervised

methods in the presence of high proportions of un-validated data and better predicts the observations

in the test set. Furthermore, the run-time of the best model among the supervised methods was on

average almost 16 times longer than the average run-times of the semi-supervised method.

In the second study, I develop a method to infer transit itineraries from smartphone travel survey

data. Since the application of semi-supervised algorithms in travel surveys and transit itinerary

detection are both in the early stages of development, a supervised approach is taken to tackle the

problem of transit itinerary detection. To this end, trip features were extracted from smartphone
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collected data and transit network information available in the General Transit Feed Specification

(GTFS) format. Based on these features, a Random Forest model was trained. Using the model,

transit routes for 62% of trip segments was correctly detected.
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Chapter 1

Introduction

Collecting daily travel data is one of the most important challenges in urban transportation

planning and transportation infrastructure management. Transportation planners use the information

from current daily travel to study people’s travel behavior and plan the future transportation system.

Since the 1950s, methods used for household trip data collection have been evolving. The initial

household travel surveys developed in the 1950s used face-to-face interviews that suffered from

high costs and being time consuming (Shafique and Hato, 2015). To overcome these disadvantages,

researchers started using computer-assisted telephone interviews, which were less costly and time

consuming compared to face-to-face interviews. However, and while they remain the workhorse

of urban transportation data collection, these also have some disadvantages, such as inaccuracy in

recording of starting and ending times of trips, trip under-reporting and non-response (Bricka et al.,

2009; Shafique and Hato, 2015; Stopher and Greaves, 2007). These problems are attributed partly

to the large number of questions asked to respondents that are based on memory (Nitsche et al.,

2014), and partly to respondents forgetting short trips or reporting wrong data unintentionally.

GPS technology, during late 1990s, introduced a new era of trip data collection by making it

possible to record the traces of travelers via the installation of GPS devices in respondent vehicles.

GPS devices carried by travelers during their daily trips were also used. Using GPS devices for

collecting trip data has some disadvantages, such as the relatively high cost of such devices and that

it can take time for GPS to get accurate fixes on locations. The latter can result in inaccurate GPS

points collected when a device starts working. This is known as a “cold start” and occurs when
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a device has no almanac data. Similarly, “warm starts” occur when a device has valid almanac

data, but lacks ephemeris data (Yoldi and Lebena, 2002). Also, it is quite common for travelers to

forget their GPS devices when traveling (Nitsche et al., 2014). Finally, these devices are typically

installed in traveler vehicles so that only people using vehicles are included in data collection. These

disadvantages have led to GPS devices being primarily as supplements to traditional data collection

methods.

In the last decade, smartphones equipped with GPS chips have become increasingly popular as

a tools to collect travel behavior data. Since smartphones have become one of the essential devices

of modern life and are usually carried by their owners wherever they go, they have a clear advantage

over GPS devices in transportation surveys. Also smartphones do better with warm starts compared

to dedicated GPS devices (Bierlaire et al., 2013). Considering the potential of smartphones for

collecting travel data, researchers have increasingly focused on developing mobile applications to

collect travel data (Patterson and Fitzsimmons, 2016; Safi et al., 2015).

Despite the clear advantages of smartphones and GPS receivers, and while they can easily record

time and location information, the use of smartphone collected data requires methods for inferring

travel information, methods that are in the process of being developed. Essentially, smartphone-

collected data is a sequence of time-stamped GPS locations. As such, it must be processed and

turned into travel information such as travel mode and route to be used for transportation planning

purposes. Generally, information inference is divided into the following sequential steps: trip/seg-

ment identification, map-matching, mode detection and purpose detection (Shen and Stopher, 2014).

Among these, mode detection has received the most attention in the scientific literature. Some

smartphone and other wearable accessories even provide an estimation of mode of transport by de-

fault, but these estimates are not always accurate and, because they are intended to detect the type

of activity of users for health purposes, they do not provide the details needed in urban planning.

Also some accurate and detailed information detected by applications such as Google Maps are not

available publicly.

While many studies have tried to automatically detect mode of transport and achieve increas-

ingly better results (i.e. higher accuracies), they have mostly used supervised learning methods. All

data used for calibrating supervised algorithms must be validated by participants and un-validated
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data cannot be used in the model estimation. When all of the observations in a dataset are vali-

dated, supervised algorithms are believed to estimate better models compared to unsupervised and

semi-supervised algorithms. Therefore, supervised algorithms are usually used to estimate models

on fully validated data. However, when there are unvalidated observations in a dataset, use of a

semi-supervised method can help us take advantage of valuable unlabeled (un-validated) data. Even

when data is collected by surveyors rather than regular respondents, since resources are limited,

there is always a trade-off between survey size and precision of data collection in the survey (more

specifically data validation). Use of a semi-supervised algorithm that only needs a small portion

of data to be validated has the potential of using data from large-scale surveys without requiring

participants to learn the validation process and taking their time for validating the collected data.

As such, by further reducing participant burden, such an algorithm might make it possible to make

important steps towards substituting traditional travel surveys with GPS travel surveys. As such, the

use of semi-supervised methods in mode detection from smartphone travel survey data was the goal

behind the first study of this thesis.

While a large body of literature has examined the methods to infer travel information from GPS

records, few have considered inferring information about transit itineraries. As such, the purpose

of the second study of this thesis is to develop algorithms to detect transit itineraries. Because both

transit itinerary inference and the use of semi-supervised algorithms in travel information inference

from smartphone travel surveys are new fields, the second study considers the novel problem of

transit itinerary inference, while using supervised algorithms whose characteristics are better under-

stood.

In Chapter 2, first a literature review of GPS surveys is provided. Then we provide a summary

of methods used in previous mode detection and transit itinerary inference studies. Among machine

learning algorithms used in the literature, I give a quick description of those that are widely used. I

discuss some of their advantages and disadvantages and explain the reasons leading to the selection

of the algorithms used in this thesis. Datasets used in this study are explained in Chapter 3. Chapter

4 describes the semi-supervised vs. supervised mode detection study. First, the steps taken to

find optimal meta-parameters for the models are explained. Then, models are estimated and a few

comparisons between the accuracy of the models in different scenarios are provided and discussed.
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Chapter 5 documents the work related to the detection of transit route itinerary using DataMobile1

and the General Transit Feed Specification (GTFS) data provided by the Société de transport de

Montréal (STM). Chapter 6 includes a conclusion of both studies, limitations of the two studies and

suggestions for future works.

1https://www.itinerum.ca/about.html
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Chapter 2

Literature Review

This section concentrates primarily on methods used to to detect travel mode from GPS- and

smartphone-collected data. Given there small amount of literature on transit itinerary inference,

methods used to detect transit itinerary are left to a short discussion after that on mode.

Early studies in mode detection were based on heuristically derived rules. With this approach,

rules were manually set to detect mode of transport (Gilani, 2005; Bohte and Maat, 2009). Later, re-

searchers became interested in the automatic inference of information from travel data. Researchers

started using machine learning algorithms (Miller et al., 1992; Wolf et al., 2003) to save time (rather

than spending time looking for the rules manually) and got better results. This literature has focused

on supervised learning methods, of which there are many. These methods use fully validated (la-

beled) data to train a model. Recently, there has been research into the use of un-supervised learning

methods using unvalidated data to develop travel information inference models based on GPS data

(Patterson et al., 2003; Liao et al., 2007). However, these models were user-specific, aiming at in-

dividual daily behavior. Therefore, the models trained in these studies were suitable to estimate the

behavior of the same person rather than being able to predict the behavior of other individuals. Also

the data were collected by the authors was small in size.

The rest of this consists of two subsections. The first part discusses the evolution of travel

surveys, different steps of GPS data processing and the first efforts and studies in this area, based

rule-based approaches of processing and information inference. The second part explains machine
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learning methods, discusses studies that have used learning algorithms and also describes the algo-

rithms chosen for this current study.

2.1 Traditional Travel Survey Methods

Travel surveys are a common way to collect data needed in transportation planning. Starting

in the early 1950s, face-to-face methods were used to collect data from households. Surveyors

visited households in person and asked questions about general information on the households and

their travel habits. This information was collected by paper and pencil. These surveys included

questions on the socio-demographic information of household, including number of people living in

the household, household income, number of vehicles and also about daily trips made by household

members like their origin and destination, mode of transport, trip purpose and start time.

However because of confidentiality of data and cost of these surveys, in the 1960s, mail-

out/mail-back methods were introduced where questionnaires were sent to households by mail and

after completing the answers, were mailed back to the surveyors (Wolf, 2000). These methods are

still being used in some cases (e.g., (Stopher et al., 2007; Handy et al., 2005)).

In the 1980s, computer-assisted methods were introduced to replace the use of paper and pencil

to facilitate data entry. The three different types of this method are computer-assisted telephone

interviews (CATI), computer-assisted personal interviews, and computer-assisted self-interviews

(CASI) (Stopher et al., 2008). In computer assisted personal interviews, surveyors meet respondents

in person and ask them to answer questionnaires on a computer. In CATI, surveyors call households

on the phone and respondents answer questions by pressing dial numbers of the telephone or by

responding to the interviewer who inputs respondent answers. In CASI surveys, such as web-

based surveys, respondents have access to questionnaires through the web and can answer questions

remotely. Even though these methods have been used for decades in transportation studies and are

still in use, they suffer from at least two issues. First is non-response (Tourangeau et al., 1997). A

considerable portion of people ignore the questionnaires and do not respond since the answering

procedure is time consuming. Also some of them may not mail back surveys because they must

return them by post. Even though on-line options are less burdensome, these surveys also suffer
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from non-response. Second is misreporting, when when respondents intentionally or unintentionally

mis- or under-report information about their daily travel. Misreporting can be caused by failure to

correctly recollect, or from carelessness (Wolf, 2000).

In the late 1990s GPS was proposed as a potential tool to be used in travel surveys (Wagner,

1997). It was seen to have potential to overcome some misreporting issues (Bricka et al., 2009).

Studies report rates of 20-30% of trip under-reporting in traditional surveys when compared to GPS

surveys (Ogle et al., 2002; Wolf et al., 2003; Bricka and Bhat, 2006). Also, heavy travelers, those

who make more non-motorized trips, workers who travel as part of their jobs and middle-aged

individuals are more likely to under-report their trips. As a results, GPS collection methods have a

greater impact on the records of trips belonging to these demographics (Bricka et al., 2012).

To collect other attributes of trips, such as mode and purpose of the trip, personal data assistants

(PDAs) were used in early studies of GPS survey (Bachu et al., 2001). Respondents had to record

this information at the beginning of each trip, which made the survey procedure more complicated

and costly. To decrease burden on participants, prompted recall (PR) surveys were introduced. With

prompted recall, participants are provided information on their trips using a map showing GPS log

data and are asked to add other attributes of their trips. They may even be able to correct and

augment GPS log data that may have been missing due to lack of GPS signal, or when not carrying

the device. In a study in 2001, a face-to-face survey was conducted along with a PR survey (Bachu

et al., 2001). Participants had to report trip purpose and vehicle occupancy as well. The study

suggests that PR surveys make data collection easier for respondents since it only takes 15-20%

of the time required for answering face-to-face questions. In addition, with PR, respondents were

found to be able to recall information for up to four days. Web-based surveys are another form

of PR where respondents receive a map of their daily trip through a website and they can edit it,

validate the information, and add other attributes of trips (Giaimo et al., 2010; Greaves et al., 2010).

2.2 The Potential of GPS Data

Since smartphones are increasing in popularity and because almost all of them include an in-

ternal GPS chip, they are an appealing choice for GPS surveys (Gilani, 2005). As smartphone
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penetration is increasing, the use of these devices is becoming even more promising. Also most

smartphones have both GPS and accelerometer sensors, so both of these types of information can

be collected (Shen and Stopher, 2014). As stated before, smartphones also do better in warm start

compared to GPS-dedicated devices (Bierlaire et al., 2013).

There is a lot of new research using smartphones to collect GPS data for trips (Reddy et al.,

2010; Hudson et al., 2012; Xiao et al., 2012; Bierlaire et al., 2013; Patterson and Fitzsimmons,

2016). Smartphones have also been used to study freight transportation (Joubert and Axhausen,

2011) and public transportation networks (Saddier et al., 2016).

The City of Montreal has started a collaboration with WazeTM. Waze is an application collects

spatial information of the users. This information can help the municipal to have detailed and real

time information about the road and transportation network (CBC-News, 2016). Patterson (Patter-

son, 2017) has also developed the travel survey application MTL Trajet for the City of Montreal to

collect information on the travel behavior of Montrealers. The app was used in the fall of 2016 and

2017.

2.2.1 Steps in GPS Data Processing

GPS devices and smartphones can record time and position information. For the most part, they

do not indicate trip mode, trip end and purpose of the trip except for in-vehicle devices that record

engine off as trip end (Shen and Stopher 2014). Although in prompted recall surveys, participants

provide some of this information, doing so places additional burden on respondents. Thus, not all

of them fill out all the fields carefully in a real-world surveys. This has encouraged researchers

to substitute prompted recall surveys with information inferred from GPS (and other sensor) data.

Also like any other device, GPS devices are not absolutely accurate. Therefore the data provided by

these devices does not necessarily match with road networks and does not necessarily indicate the

route taken by the user. The data must be processed before being used in transportation planning. In

addition to the fact that GPS devices may run out of battery, or that respondents might leave devices

somewhere else while making trips, there are two main sources of error; signal loss and signal noise

(Biljecki, 2010). With cold or warm starts while looking for reliable signals, a device may record

some points that are inaccurate or miss a part of trips. Urban canyons are another source of signal
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problems where high-rise buildings that disrupt GPS signals. Signals can also be lost in tunnels and

underground rail networks. These signal problems result in spurious trips, missing trips or part of

trips (Shen and Stopher, 2014).

The first step toward processing data is Trip Identification (TI) or more specifically Segment

Identification (SI). Trips are defined as a commute from one point at which an activity has taken

place to another point where another activity takes place. Sections of a trip done with a single mode

of transport are trip segments.

Mode detection and map matching (route detection) are the next steps in data processing. Since

location data recorded by GPS devices are not always precise, they must be matched with trans-

portation networks. Because of the close relationship between route and mode of transport, their

detection is usually done simultaneously (Shen and Stopher, 2014).

Another aspect of trip information to be inferred is trip purpose. Despite the fact that this is

probably the most difficult aspect of trip information to infer, some researches have tried to detect

it (Wolf et al., 2001; Stopher et al., 2008; Bohte and Maat, 2009; Yazdizadeh et al., 2018).

2.2.2 Methods Used in GPS Data Processing

Trip and segment identification processing are typically rule-based. In manually-set rule-based

methods, a set of hierarchical rules and criteria is used by the analyst processing the data (Bohte and

Maat, 2009; Wolf, 2000; Schüssler and Axhausen, 2009).

As mentioned before, there are two important problems in TI: signal loss and signal noise.

Wolf suggested at least a couple of minutes delay between two trips since the traffic light cycles

are mostly less than this time period (Wolf, 2000). Regarding the ”120 second rule”, Tsui studied

signal loss and suggested that when the duration of signal loss is between 120 seconds and 600

seconds and change in location is less than 50 meters, there should be a short duration activity, and

when the traveled distance is more than 500 meters, there may be an underground trip even if the

duration for signal loss is more than 120 seconds (Tsui, 2005; Gonzalez et al., 2010). Also some

activities may take less time such as pick up/drop off that can even be done in less than a minute.

In this regard Shen and Stopher suggested 60 seconds as dwell time (Shen and Stopher, 2013). In

another study, a two-step model is used which in the first step movement between two meaningful

9



points is considered as a journey and in the second step trips are found with 12 seconds as a dwell

time threshold (Biljecki, 2010). However, the choice of this threshold is not justified by the authors.

Also this relatively low threshold for the time interval between the trips results in too many trips.

Therefore, in another step after mode detection, excessive trips are found and merged.

There is also a large body of literature in route and mode detection using rule-based approaches.

Most rule-based models used in mode detection are based on travel speed, acceleration/deceler-

ation and GIS information (Gilani, 2005; Bohte and Maat, 2009). Stopher et al. (Stopher et al.,

2008) suggest that walking trips can be distinguished with speeds below 6 km/h and vehicle trips

can be distinguished with speeds above 40 km/h. Also acceleration/deceleration can be helpful

in distinguishing walk and bicycle trips or automobile and public transport trips. Even household

information such as the location of place of residences can be useful. Also public transport time

tables, routes and stops can help to distinguish public transport trips. Using this method Stopher et

al. report that 95% of trip modes are detected correctly. Data from accelerometer sensors is another

source of data to use in detecting mode but it does not detect all modes and further information

is still needed to distinguish modes with similar acceleration patterns (Stenneth et al., 2011). Ac-

celerometer data is also more sensitive to how the device is carried (e.g., fastened to arms or legs of

a cyclist). Automatic Vehicle Location (AVL) is another source of information which has recently

been used in mode and route detection. It is used by Carrel et al. to detect transit routes and using a

set of rules they correctly detected almost 90% of the trips out of 103 validated trips (Carrel et al.,

2015).

Fuzzy rule-based algorithms are another method used in GPS data processing. This method

penalizes modes where some characteristics of trip are not close to usual characteristics of the

modes, such as speed and acceleration. Biljecki used a fuzzy method to detect modes (Biljecki,

2010). He used speed, acceleration, proximity to a network and proximity to water surface among

other variables as characteristics of trips. Schussler and Axhausen proposed a fuzzy-logic approach

in which some fuzzy rules are made based on median of speed distribution and 95th percentiles of

speed and acceleration distributions for which a score is assigned (Schüssler and Axhausen, 2009).

The final decision as to what mode is being used is made based on the minimum score for each

mode among the set of characteristic scores.
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In a 2000 study, a number of simple rules were used to match the points with the underlying

transportation network (White et al., 2000). In a recent study, a probabilistic method was used to

match GPS records with routes on the map (Bierlaire et al., 2013). It generated a set of candidate

paths and calculated the likelihood of each of them being the true-path by assuming independently

normal distributed errors of location in longitudinal and latitudinal directions resulting in a Rayleigh

distribution of overall error. The method was applied on a sample of 19 trips recorded in approxi-

mately 2 hours. Parameters of the model made on the sample were all statistically significant.

While there is a large body of literature in GPS data processing using manually-set rule-based

models, there is a growing number of studies that have considered the use of machine learning

methods, particularly in the inference of travel mode.

2.2.3 Machine Learning

Generally, and in contrast to manually-set rule-based algorithms, Machine Learning algorithms

are algorithms that enable computers to build models without being explicitly programmed. Com-

pared to traditional statistics, in machine learning emphasis is on algorithmic considerations such as

efficiency of algorithms. Also while asymptotic behaviour is often praised and sought in statistics,

machine learning pays more attention to finite sample behavior. It is not just about convergence of

estimates when the sample sizes grow to infinity but is more focused on the prediction accuracy of

models. Also machine learning tends to work with a more “distribution-free” paradigm with as few

assumptions as possible and letting the algorithm choose the best model (Shai and Shai, 2014).

To find the best model based on the given observations, sample data is usually divided into three

parts: a training set, a validation set to validate the model and variables used, and a test set to report

prediction error. Models are made based on the training set by choosing the best fitting model to

the training set. Algorithms are steps looking for the best values for parameters given a hypothesis

about the structure of the model (e.g., degree of freedom). The best hypothesis is chosen based on

the results of the model on validation tests (cross-validation) which is disjoint of the training set.

Cross-validation captures over-fitting of model to training set. Lastly the error of results using the

best model on the test set is reported as model’s prediction error.
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Supervised, Unsupervised and Semi-supervised Algorithms

Based on the presence of known output in the sample data, learning algorithms are divided

into supervised, unsupervised and semi-supervised. An algorithm is called supervised only if it

takes advantage of known labels or values for the output variable in the sample dataset. With these

algorithms, the model is prepared in the training process and is corrected when its predictions for the

training set do not match with the observations. Regression and classification problems are of this

type and algorithms such as Logistic Regression, Artificial neural Network and classification Trees

are usually considered supervised (Bishop, 2006). However, there are some extensions of these

algorithms that are unsupervised. In unsupervised learning, training data consists of input values

without any corresponding target values. Unsupervised algorithms estimate a model by deducing

structures present in observations. It is usually done by organizing data by similarity. Common

problems solved by unsupervised learning are clustering and association rule learning. One of

the most popular and simple unsupervised algorithms is K-Means (Bishop, 2006). Also, when a

sample is mostly unlabeled but there are few labelled observations, semi-supervised algorithms are

used which are usually extensions of other algorithms by making assumptions about how to model

unlabelled observations.

Learning Methods

Based on function, there are many types of algorithms used in machine learning that are different

in structure and computational demand (such as required memory). In this section a review on some

of the most popular learning methods is provided.

A simple but useful class of algorithms are instance-based learners. Usually there are not many

steps in their learning procedures. These methods store sample data and compare new data with

it to make a prediction based on similar observations. The focus is on the representation of data

and finding a suitable measure of similarity. One of the most popular instance-based learners is

K-Nearest Neighbours (KNN) with which data are projected in a multi-dimensional space where

each axis represents a feature of the instances. Given a new instance, K observations with the least

Euclidean distance to this new instance are selected within the sample data. The prediction for new
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a instance is the mode of labels for those K observations (Bishop, 2006).

A very popular and simple method in learning is the classification tree. This method is often fast

and accurate. Decision Trees can be represented as a directed graph consisting of a finite number

of nodes and arrows of which each node is a direct successor (child) of one and only one node,

except for the root which does not have any predecessor (parent). Each arrow (branch) represents

a rule on a feature. It generates a Decision Tree based on a sample set of observations by making

a set of hierarchical rules on features of instances. It is a rule-based modelling where rules are

generated and the best one is chosen automatically by the algorithm rather than adjusting thresholds

and comparing rules manually. As a result, it is more likely to find the best model. Decision Trees

need to be pruned to avoid over-fitting. Models can be stored easily without consuming a lot of

memory and can be applied on new observations very quickly for prediction (Gelfand et al., 1989).

Artificial Neural Network is a method inspired by the functioning of brains that process complex

tasks through the interaction of many simple processing units. Each processing unit takes some

unprocessed inputs or outputs of other processing units as input and returns an output. An ANN

model can be represented as a directed graph with hierarchical groups (layers) of nodes, to which

nodes within a layer are not connected, and all the nodes are both successors and predecessors of

other nodes, except for the nodes in the first and last layer. Nodes in the first layer represent the input

features, and output is returned in the last layer. ANN is good in modelling complex behaviours such

as medical image and signal processing (Miller et al., 1992), finance (Wong and Selvi, 1998), power

electronics and motion control (Bose, 1994) and gotechnical engineerig (Shahin et al., 2001). It also

produces probabilistic outputs. The main disadvantage of ANNs is that they usually needs a lot of

training (Bishop, 2006).

Regression models are statistical models used in machine learning. They are usually used when

the desired output is a continuous variable but there are some regression models that can be used to

predict discrete variables. A regression model is in the form of a function that provides a predicted

value for a desired output (Bishop, 2006).

Bayesian algorithms are learning algorithms that apply Bayes’ theorem explicitly to classifica-

tion or regression problems. Assuming a prior distribution for parameters of the model, the data is

applied to get a posterior distribution. Sometimes, features are assumed to be independent to ease

13



computation (Naive Bayes) but some algorithms such as Bayesian Networks can consider depen-

dencies as well (McCallum et al., 1998).

The Markov chain is another probabilistic model that consists of a set of random variables

having the property that given present, future of system is independent of the past:

P (Zi|Z1, Z2, · · · , Z(i−1)) = P (Zi|Z(i−1))

where Zj is jth variable in the sequence of variables. This means that if present state is known,

knowledge on prior states does not improve prediction of future (Bishop, 2006).

Support Vector Machines (SVM) are based on projecting sample observations in a multidimen-

sional space and splitting the data with hyper-planes to have sections including points with the same

label (hard-margin) or least number of observations with other labels (soft-margin). In a simple

SVM algorithm, a hyper-plane with maximum margin is chosen. SVMs initially find a linear rela-

tion of features to classify binary observations. However, it is possible to use SVMs in nonlinear

classification by projecting instances in a space where the proper classifier has a linear form (Kernel

trick). Also for multi-class problems it is possible to break down the problem into a finite number

of binary-class problems (Bishop, 2006).

Rather than a single hypothesis, ensemble methods use a set of hypotheses to explain the data.

They take votes over the set of hypotheses to predict the target values. Experimental evidence shows

that ensemble methods (e.g., Random Forest) are often more accurate than any single classifier (e.g.,

Decision Tree) (Dietterich, 2002).

Clustering algorithms are typically used in unsupervised learning. They split sample data into

subsets (clusters) based on a similarity measurement (such as vicinity to a centroid or density) to

which observations within a cluster are similar, but from which observations of different clusters

are dissimilar (Bishop, 2006).

Regularization algorithms are extensions to other methods, usually regression algorithms that

penalize complex models in favour of having simpler models. The algorithms may result in the

reduction in the number of features affecting the output or lowering their effects and providing

the opportunity to decide about which one should be removed from the model. This also imposes

increase in error of models (Schölkopf and Smola, 2002).
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2.3 Machine Learning Methods and GPS Data

This subsection describes Machine Learning methods used in information inference from GPS

and smartphone data. It considers primariliy travel mode detection and finishes with transit itinerary

inference.

In 2013, Feng and Timmermans used a Bayesian Belief Network (BNN) (Feng and Timmer-

mans, 2013). They used data collected by dedicated GPS devices. The data included 80,670 obser-

vations (GPS points) collected every second, almost 23 hours of data. They investigated the use of

accelerometer and GPS data and detected modes correctly in 92% of cases. They used filtered data

and excluded records for train journeys because of GPS signal loss inside trains and poor data.

Liao et al. used 60 days of data from one person to apply a hidden Markov model for mode

detection (Liao et al., 2007). They used the first 30 days as the training set and the second 30 days

as the test set. This model focused on one persons travel behavior and inferred detailed information

about trips and even returned errors and mistakes made by the participant in validation, such as

missing the destination stop and getting off the bus at the next stop. Although the model is built

using an unsupervised procedure and works well in detail for travel patterns, it is trained for one

person instead of a sample of people and therefore a customized model needs to be made for each

person.

Neural Network modeling has been used in a number of studies. Tsui used a fuzzy-logic NN

algorithm to detect modes of transportation (Tsui and Shalaby, 2006). While his process relied

more on a fuzzy system, an NN was used to find the values for the fuzzy membership functions.

His algorithm detected trip modes correctly in 94% of cases, although they were compared with trip

diaries provided by participants that may have some of the typical errors in diaries such as under-

reporting of short trips. Also in 2010, Gonzalez et al. used an NN in mode detection (Gonzalez

et al., 2010). As input for their model, they used six attributes: two attributes representing accuracy

of points, speed, acceleration, dwell time and standard deviation of distances between stop points.

They trained the model with two types of inputs: firstly they fed their models with all the GPS coor-

dinates recorded, and for the rest of the models they input “critical points” (i.e., points representing

a change in direction of movement). Surprisingly, accuracies for the models trained with critical
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points are higher than accuracies of models that took benefit of whole the data. This may have been

caused by overfitting the models to the training data and noise included in the records. Although the

method they used require only a small portion of data, only three modes were included (i.e., walk,

bus and car).

In a 2012 study (Bolbol et al., 2012), an SVM was used to detect mode of transportation for

daily trips of 81 persons over 2 weeks. To detect mode for the segments of the trips, a moving

window algorithm was used to consider attributes of adjacent segments and the best window size

was found to be three segments. In the network of London with different modes of transportation

(i.e., walk, bike, car, bus, LRT and metro) the algorithm correctly detected modes for 88% of the

trips (Bolbol et al., 2012). The authors did not use other sources of information like locations of bus

stops and metro stations. From four attributes including length of segment, speed, acceleration and

change in heading, they chose speed and acceleration to be used in their model.

Witayangkurn et al. also used an SVM on data collected in Japan by 100 participants during

1 month (Witayangkurn et al., 2013). To give a more realistic taste to the experiment and to try a

survey with low cost and frequency of data collection, GPS points were collected every 5 minutes.

After using a handful of rules to segment the trips and prepare the data, they reached a precision of

87% (portion of correct detection) and 85% recall (portion of correct detected modes to all obser-

vation of same mode).

STOP

In 2008 Zheng et al. used Conditional Random Field (CRF) to include the probability of tran-

sition from one mode to another one (Zheng et al., 2008). In this method, which is a specific case

of Markov random field, after assigning a score (probability) for a mode of transportation for each

segment of a trip, the probability of using that mode considering the modes used in the adjacent

segments of the trip multiplies with it and the result is the total probability of that mode being used

on that segment of the trip. In addition to CRF, three other algorithms including Decision Tree,

Bayesian Net and SVM were used in this study. Finally the results of the four algorithms were

compared and DT outperformed the other three algorithms in this comparison.

In another study, Reddy et al. compared 6 classifiers and finally used a combination of Decision

Tree and hidden Markov model to detect transportation modes (Reddy et al., 2010). The method
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was able to correctly detect the mode in 93.6% of cases. Also, this study includes the effect of

sensor position while being carried by the participants and the results do not show major differences

between the carrying positions such as in-hand, attached to chest or inside a bag. Although this study

investigated interesting aspects of data collection and analysis. The “modes” considered in this study

are still, walk, run, bike and motorized vehicle which does not discriminate public transportation

and private vehicle, let alone different transit modes and routes of transit. Moreover this study does

not consider GIS and personal information, which can useful in prediction.

Stenneth et al. compared 5 classification models including naive Bayes, Bayesian network, De-

cision Tree, Random Forest and Multilayer Perceptron (Stenneth et al., 2011). They found that the

random forest dominates the others in precision. They also reported a noticeable improvement in

mode detection by considering transportation network features, especially for the motorized and

public modes of transportation.

Typically, researchers use speed and acceleration (and realted attributes such as average speed,

maximum speed, standard deviation of speed and acceleration, 95th percentile speed) as well as

GIS information of trips in their studies (Shen and Stopher, 2014). Stenneth et al. have considered

closeness to transit infrastructure for mode detection and defined several variables such as “average

bus location closeness”, “candidate bus location closeness”, “average rail line trajectory closeness”,

“bus stop closeness rate” (Stenneth et al., 2011).

2.4 Learning Algorithm in This Study

Looking into the literature on information inference from GPS surveys, it can be found that

most of the studies that have used learning algorithms have used them for mode detection (Wu

et al., 2016). This is likely because of the importance of mode detection in processing GPS data and

generally in transportation planning.

Bierlaire et al. used a probabilistic map matching method rather than rule-based algorithms

(Bierlaire et al., 2013). The method used in their study is theoretically strong and the equations

used there might be generalizable to higher dimensions and thus be applicable to other problems

such as transit route detection. However, the inclusion of integrals in computations makes it more
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likely to be time consuming, especially in higher dimensions. This method is not yet applied on

large datasets; even in 2-dimensional space. It was not selected to be used in this thesis because

the focus of the current study is on the application of learning algorithms that are used in a large

number of studies on GPS data processing and have performed well on large datasets rather than

comparison of every method used in the literature.

Looking for a suitable learning algorithm, there is no single right learning method for a prob-

lem. Different algorithms have been used in the literature to infer travel information and most of

them have resulted in fairly high accuracies. A couple of studies have compared accuracy of some

algorithms, but it does not necessarily mean that the dominant algorithms will get better accuracies

for this problem as well. This is because a set of assumptions suitable for a problem in one domain

may work poorly in another. Thus, there is no universally best model (Wolpert, 1996). However,

cross-validation can be used to empirically choose the best model for a particular problem (Murphy,

2012).

Usually if all, or a part, of a dataset is labeled, the use of unsupervised methods such as clustering

algorithms is unnecessary because neglecting the validated part results in a loss of information.

Since validating few observations in GPS surveys is typically attainable in a research project, there

is no need to use unsupervised algorithms.

SVM is a robust method that can be extended to nonlinear classification. But usually it is not

a good choice when the number of observations is high. The algorithm is highly complex and

requires a lot of memory (Horvath, 2003). It is also very slow in testing (Burges et al., 1996; Osuna

and Girosi, 1998). ANN is also considered to give good results, but it is not preferred for large

sample sizes because it large computational burden (Tu, 1996). Because in large surveys such as

regional surveys there are potentially millions of trips and GPS records, these methods were not

considered to be practical.

Bayesian algorithms can fit a model for this study but finding a good prior is an issue. It re-

quires a good knowledge about the data and the relationship between the input and output variables.

Logistic regression is another candidate for this study, but it is more used in decision behaviour

studies.

Decision Tree is a simple and fast method. It does not require a lot of memory and can deal with
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huge datasets. Also, the fact that many studies have used manually-set rule-based models gives the

impression that a rule-based learning algorithm such as classification tree should be suitable.

Also an ensemble of Decision Tree classifiers (e.g., Random Forest) may improve the perfor-

mance and make the model robust with respect to noise. This method is used to overcome general-

ization biases (Ho, 1995).It has been used in different studies (Witayangkurn et al., 2013; Montini

et al., 2014) and has resulted in higher accuracy (Stenneth et al., 2011).

So far we have discussed Machine Learning methods with an emphasis on their use in mode

detection. Transit itinerary inference has not been mentioned simply as a result of a paucity of re-

search on the topic in general, and the use of Machine Learning methods in this context in particular.

At the same time, conclusions about the above methods in the context of mode are also relevant in

the context of transit itinerary inference. However, since so little is known about transit itinerary

inference, a Machine Learning method whose behavior is well-known and understood is considered

wisest in this context.
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Chapter 3

Data

A number of data sources were used in this research. Travel mode data was collected as a part

of a travel survey using a smartphone application, DataMobile, now known as ItinerumTM. It was

developed, and is maintained, in the Transportation Research for Integrated Planning (TRIP) Lab

at Concordia University in Montreal, Canada. In October and November of 2014, 44,000 members

of the Concordia community (students, faculty and staff) were invited by e-mail to download and

install the application on their smartphones (Patterson and Fitzsimmons, 2016). The application

included a short survey on participant socio-demographics and some information on frequent trips

(e.g., transportation mode between home and the university). The application then ran in the back-

ground to collect GPS points automatically. The interval between records was set to 25m, although

somtimes intervals were longer in the case of signal loss, e.g. in the underground Metro system. The

collected data was then transferred via Internet to TRIP Lab servers.Transit itinerary data (described

in Section 3) was collected by surveyors in the summer of 2016.

Each observation collected by ItinerumTM is a vector u = (i, p∗, τ∗,m) representing a GPS

point where the elements in each record include:

• i (user-ID), a string including 32 characters (letters and numbers). It is unique for each

participant and randomly generated to ensure the confidentiality of the data.

• p∗ = (φ∗, λ∗) (longitude and latitude) are two numbers, each one with 6 digits after decimal

point. They provide geographical location for a collected point in degrees.
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Table 3.1: Example ItinerumTM observations
Record User-ID Longitude Latitude Time-stamp Mode
u1 6A755F -73.5607 45.5150 02/11/2014 8:22:10 AM Bike
u2 127BD2 -73.5416 45.5365 20/10/2016 4:37:22 AM Transit

• τ∗ (timestamp) includes date and local time at which a point is collected.

• m (mode) is a string representing the mode that the participant was using when the point was

collected. Details on this are provided in Section 3 below.

Other information such as phone device estimates of speed, acceleration, altitude and as well as

horizontal- and vertical-accuracies were also stored, but were not used in the analysis. During data

collection for the transit itinerary detection study, surveyors were also asked to record transit route

used during their trips. Therefore, each record in the corresponding the transit itinerary dataset has

two more elements:

• q (route) is an integer number that identifies the transit route that was used when the point

was collected.

• w (ipere) is an integer number that identifies the origin and destination of the trip based on

the defined trips in the regional household Origin-Destination (OD) travel survey of Montreal

in 2013 (see 3 below).

Table 3.1 presents a few examples of observations collected with ItinerumTM.

A trace of GPS points on a map with two candidate transit routes for the trip are presented in

Figure 3.1. The red dots on the map show the points collected with DataMobile. It shows a trip

where the respondent has taken a bus to reach a metro station. The rest of GPS trace is lost until the

respondent exited the metro station at Concordia University.

The second source of information used is the General Transit Feed Specification (GTFS) data

that included information about the public transit network. This data was provided by Société de

Transport de Montréal (STM) and is publicly available on the Internet 1. It includes location of bus

stops and metro stations and their daily service schedules. Daily schedules might not be same for
1https://transitfeeds.com/p/societe-de-transport-de-montreal/39
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Figure 3.1: A public transit trip from the 2014 DataMobile study including candidate bus routes

different days of week. GTFS data usually consists of many comma-separated values (CSV) files

(or tables), each including a type of information. There are three main files used in this study:

(1) Trips: This file includes a list of transit trips with their unique trip-IDs. Each record in this

file is a vector ρ representing a unique transit trip. Many of the ρs might belong to a single

transit route. The main elements of a vector ρ are:

• σ (route-ID) is a foreign key to identify transit routes.

• ψ (trip-ID) is the primary key for this file. Each scheduled service from beginning to

the end of a transit route has its unique trip-ID. Two services are considered different

and assigned different trip-IDs only if they pass different stops or arrive/depart the same

stops at different times of the day.

Example records from the trips table are provided in Table 3.2.
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Table 3.2: Example records in GTFS trips table
Record Route-ID Trip-ID Trip head-sign
ρ1 165 166f 165 b 166 a Cote Des Neiges
ρ2 435 166a 435 n 165 b Express Cote Des Neiges

Table 3.3: Example records from the GTFS stops table
Record Stop-ID Stop lon. Stop lat. Stop name
ν1 627 -73.4451 45.3256 Cote Des Neiges - Van Horne
ν2 10014 -73.5364 45.5466 Sainte-Catherine/d’Orléans
ν3 7 -73.5978 45.5312 Station Rosemont

(2) Stops: This file contains the location of metro stations and bus stops. Each record is a vector

ν = (κ, p) where p = (φ, λ) and:

• κ (stop-ID) is an integer that is the primary key in the file to identify stations and stops.

• φ (longitude) and λ (latitude) are as explained before in Table 3.1.

Table 3.3 shows example records from the stops table.

(3) Stop-times: Contains the scheduled arrival/departure times of transit vehicles to/from stops

for all transit trips. Each record is a vector µ representing an arrival and departure of a transit

vehicle for a single transit trip at a station or stop. The main elements in µ are:

• ψ (trip-ID) is a foreign key in this file.

• κ (stop-ID) is a foreign key in this file.

• τ (arrival/departure time) shows the time of day that a transit vehicle performing a given

transit trip is supposed to arrive at/depart from a specific stop. This is a schedule, and

the duration of time spent at stops is relatively short; both the arrival and departure times

are the same.

Example records in stop-times are shown in Table 3.4.

Table 3.4: Example records in the GTFS stop times table
Record Trip-ID Departure time Stop-ID
µ1 166f 165 b 166 a 2016/06/15 13:45:52 627
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The last dataset used is a map of city zones. It was used to limit the queries on the trips and

transit routes in the same zone and decrease run-time for data processing. The main elements in this

dataset are:

• zone-ID is the primary key in this file.

• boundary is a closed line-string that represents boundary for each zone

Mode detection data

For the mode detection, only points associated to trips with validated transportation mode were

used since the supervised methods require fully labeled training data.

Participants declared their main and alternative mode of transportation in their regular daily

trips. To validate the mode used in the trips, only participants that declared a single transportation

mode were chosen and their corresponding trips were used in the study. Based on this criterion, 788

trips with validated transportation mode provided by the participants were selected. (While this is a

relatively small dataset, the intention is to test inference methods that could be more easily scaled,

that is semi-supervised methods.) Transportation modes included walk (212 trips), bike (14 trips),

car (49 trips), transit (453 trips), car & transit (28 trips) and shuttle (32 trips).

Trips were defined by their start and end points, but were not broken into segments (i.e., sec-

tions of a trip, with their own mode of transport). The dominant transportation mode (by distance

traveled) was assigned to the entire trip. This was a constraint related to how the data were labeled

when validated by respondents,i.e. they were asked to assign a mode for their entire trip.

Transit Itinerary detection data

For transit itinerary detection, student surveyors were recruited for data collection. These sur-

veyors were asked to carry iPhones with DataMobile installed while undertaking predefined se-

quences of trips. The first trip of each sequence was assigned randomly and the next ones were

chosen in a way that the distance between the end of a trip and the beginning of the next one did not

to exceed 750m. If there was more than one candidate trip starting within this range, one was chosen

randomly (Zahabi et al., 2017).Trips were chosen from the regional household Origin-Destination
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(OD) survey for Montreal in 2013 (Agence métropolitaine de transport, 2013). To collect validated

GPS data, but at the same time have a realistic simulation of those trips, decisions about which tran-

sit mode or route to take in each trip segment was made by the surveyor. For validation, surveyors

recorded their boarding and alighting times and also transit line numbers (Zahabi et al., 2017) and

associated them to the collected point ex post using GIS software. The dataset includes 390 trips.
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Chapter 4

Semi-supervised vs. Supervised Mode

Detection

4.1 Methodology

4.1.1 Data Preprocessing and Feature Selection

The data collected by smartphones consisted of observations, each of which represented a single

GPS point. The first step was to aggregate GPS points into trips and to derive trip features. The

result was a randomly ordered array of (u1, x1, y1), ..., (u702, x702, y702), each representing a trip

s ∈ {1, ..., 702}, us = (us1, ..., u
s
r(s)) is the time-ordered sequence of time stamped points of the

trip and r(s) is a function of trip s, equal to the number of GPS points collected in the trip. The

ith time stamped point of the trip s is usi = (usi , τ
s
i ) where τ si is the time stamp associated with the

GPS point, usi . Also xs is the feature vector of the trip s and ys is its corresponding label that is the

mode of transportation used in the trip s.

Since the main purpose of this thesis was proposing the application of a semi-supervised learn-

ing method rather than improving the current algorithms, only a few simple features were used. Let

P be the set of points representing all bus stops and metro stations in the network and D(a, b) be

the distance between the points a and b. For a trip s with us = (us1, ..., u
s
r(s)), a feature vector xs

was derived with the following features as its components:
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• t, total trip travel time in minutes:

ts = τ sr(s) − τ
s
1

(1)

• υ, average trip speed in km/h:

υs =
D(us1, u

s
r(s))

(τ sr(s) − τ
s
1 )

(2)

• l, trip length in meters:

ls =

r(s)∑
i=2

D(usi , u
s
i−1) (3)

• dO, The minimum distance between the origin of a trip and the closest transit stop in meters:

dsO = min
p∈P

D(us1, p) (4)

• dD, The minimum distance between the destination of a trip and the closest transit stop in

meters:

dsD = min
p∈P

D(usr(s), p) (5)

Features were calculated in PostgreSQL 1, which is a relational database management software.

It has an add-in named PostGIS 2 designed specifically to manage GIS operations.

For the aim of feature selection, a correlation matrix was used to remove attributes with high

correlations. Among the proposed features, only origin-destination distance and length of trip were

highly correlated (> 0.6). Therefore, direct distance was excluded in the model training step. Table

4.2 shows examples of the values for the feature vectors, xs, and their associated labels, ys.
1https://www.postgresql.org
2https://postgis.net
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Table 4.1: Correlation matrix between features in the dataset
Attributes υ t la lb dO dD

υ 1 -0.08 0.39 0.39 -0.09 0.20
t -0.08 1 0.23 0.24 0.03 0.10
la 0.39 0.23 1 0.97 -0.06 0.57
lb 0.39 0.24 0.97 1 -0.06 0.56
dO -0.09 0.03 -0.06 -0.06 1 0.02
dD 0.20 0.10 0.57 0.56 0.02 1

Table 4.2: Example of the dataset used to train the models
x1 (υ) x2 (t) x3 (lb) x4 (dD) x5 (dO) y (mode)

4.4 1247 5487 43 104 transit
1.7 824 1410 400 32 car

4.1.2 Modelling

In this step, trip features were used to train the mode detection models. To do the comparison,

six simple and widely used algorithms were chosen: Decision Tree (DT), Random Forest (RF),

Logistic Regression (LR), Naı̈ve Bayes (NB) and Multi-Layer Perceptron (MLP) as supervised

methods, and Label Propagation (LP) as a semi-supervised method. However, NB and MLP resulted

in low accuracies and in some cases they did not even converge. Therefore, they are not present in

some figures and comparisons and the four other algorithms were used as the main algorithms in

the comparisons.

For each method, in order to estimate the best model and to see the sensitivity of the model with

respect to its meta-parameters, different models were estimated by changing the meta-parameters.

This is explained in detail in the next section where the results of the sensitivity analyses are pro-

vided. The data was randomly split into a training set (80%) and a test set (20% of observations) and

then the models were trained and tested. For a given set of values for meta-parameters, this process

was repeated 100 times using different random splits in order to capture the effect of training sample

on the model. This allowed the calculation of the average accuracy together with the variation of

accuracy due to changes in training and test sets.

The novelty of this study is testing the use of a semi-supervised method for mode inference from

GPS surveys and how they compare with traditional supervised methods using different proportions

of validated data. Therefore, a very important issue is to compare the semi-supervised method with
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Figure 4.1: Dataset split into training and test set and de-labeling a portion of training set

other methods considering different scenarios for the portion of unlabeled data. Thus, even for the

supervised methods, after finding the best settings using the entire dataset, these settings were used

to estimate models on different portions of de-labeled data. After splitting the data into training set

and test sets, labels for a portion of the training set were removed. This is visualized in Figure 4.1.

Obviously, the supervised algorithms could only use the portion of training set that still had labels,

but the semi-supervised algorithm could use all the observations in the training set to make a model.

Decision Tree for mode detection

The algorithm used for growing trees in this study is recursive partitioning. In this method,

the training set of observations is split into subsets by putting thresholds on the features to have

subsets with mostly homogeneous labels. Also to avoid over-splitting the training set into too many

subsets, the Decision Tree needed to be pruned. The minimum number of observations in the nodes

and cost-complexity was considered for pruning in this study. Details of recursive partitioning and

pruning can be found in Therneau et al. (Therneau et al., 1997).
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Random Forest for mode detection

The second method used in this study is an ensemble algorithm that generates several trees

based on random samples (with replacement) from the training set. While generating each tree, this

algorithm picks the best split from a subset of candidate features rather than the best split among all

features (Breiman, 2001). Selection of the best split from a subset of features rather than all of them

adds a slight bias in the predictions of the classifiers, but in return slightly decreases the variance.

The main parameter of this algorithm is the number of generated trees.

The only difference in the algorithm used in scikit-learn package in Python used in this study

with the one described by Breiman is that the algorithm embedded in scikit-learn uses average of

probabilistic predictions of classifiers rather than taking votes. The developers of this package have

not explained the reason behind their decision to use a modified version of Breiman’s algorithm.

One possible explanation is that only Breiman’s algorithm assigns the frequency of estimates among

classifiers as a probability of each particular estimate. On the other hand, the modified version

gives more information such as average, variance and distribution of probability for each particular

estimate using the probability values provided by each classifier.

Logistic Regression for mode detection

In the terminology of statistics this model is called regression, however it is usually used for

classification purposes. It uses a sigmoid function and takes the linear combination of input variables

to regress a probability for each class. The class with the highest probability is the estimation of the

model (Bishop, 2006).

Label Propagation for mode detection

As a semi-supervised algorithm, Label Propagation with the K-Nearest Neighbors (KNN) kernel

was used. The algorithm is described in detail by (Delalleau et al., 2005). The Radial Basis Function

(RBF) is another popular kernel used in label propagation in which all observations contribute to

changing the label for each observation based on their distance. But KNN is simpler and faster,

using a sparse matrix to represent the relations between the observations compared with the RBF
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that uses a fully connected graph represented in memory with a dense matrix. Therefore KNN was

picked as the kernel to keep the model simple and fast (Zhu and Ghahramani, 2002).

The similarity measure used here for the KNN kernel is Euclidean distance. A main parameter

for the algorithm is the number of neighbors considered for each observation. The algorithm also

gets a clamping factor (α) which defines the portion of labeled observations that are allowed to

be changed. Also, to check the stability of results due to the change in the proportion of labeled

and unlabeled data in the training set, the experiment was repeated with different proportions of

unlabeled data in the training set.

Algorithm 1 below describes the steps of label propagation with the KNN kernel. The first

m + n observations are used as the training set where the first m observations are used as labeled

and the labels for the next n observations are not used to simulate unlabeled observations in a semi-

supervised learning algorithm. The rest of the observations excluded from the training set are used

as test set.

input : (x1, y1), ..., (x702, y702), ε, α

output: ˆym+n+1, ..., y702

Randomly assign labels ys for s ∈ {(m+ 1), ..., (m+ n+ 1)}
while portion of labels updated in the last iteration among s ∈ {1, ...,m+n} more than ε do

while portion of labels in updated in the last iteration among s ∈ {1, ...,m} less than α
do

for s ∈ {1, ...,m+ n} do
Estimate the label ys by taking vote from K nearest observations to s and update

the label if the previous estimation is different;
end

end
for s ∈ {n+ 1, ...,m+ n} do

Estimate the label ys by taking vote from K nearest observations to a and update the
label if the previous estimation is different;

end
end

Algorithm 1: Label propagation algorithm

4.2 Results

Since there are four methods compared in this study and each of them was tested in many

different scenarios and compared with the others, use of confusion matrices would make evaluation
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of the different methods difficult due to the high number of values to be compared together. Thus,

to keep the comparisons more clear and readable, accuracy of prediction was used as the measure

of performance.

4.2.1 Sensitivity to Sampling

The first sensitivity analysis was for the variation of accuracy (on the test set) with respect to

a change in the training sample. All the four models were estimated in Python using the package

sklearn (Pedregosa et al., 2011). The Decision Tree model was estimated without pruning, the

Random Forest generated 30 classifiers and label propagation used 11 as the number of neighbors

for its KNN kernel and was fully clamped (no change in the real labels). With these settings and

repeating the modeling 100 times, each time splitting the data into an 80% training set and a 20%

test set, the Random Forest shows a higher average accuracy of the model according to Figure 4.2.

Also it has the lowest variance compared to DT and LP (based on these settings).
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Figure 4.2: Normal distributions fitted to the results of cross-validated accuracy for DT (without
pruning), RF, LR and LP methods with iteration on randomly split of dataset into training and
validation set

Regarding Figure 4.2, accuracy values are sensitive to changes in the training set. To avoid
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the effect of training set selection while modeling given a setting, the dataset was split randomly

one hundred times into training and test sets. Each split resulted in a model and its accuracy was

based on the corresponding test set. The average of one hundred accuracy values was reported as

the accuracy of models with the corresponding setting and this was included for the analyses and

comparisons.

4.2.2 Decision Tree Meta-parameters

Decision Trees can grow until there is either only one observation in each leaf or a group of

observations with the same label. To prevent over-fitting of the model to the training set, pruning is

required3.

To prune the model, the complexity cost ranged from 0.000001 to 100. The results are shown in

the Figure 4.3. The model was fitted 100 times to different random samples, the plot result does not

look smooth. Nevertheless, the graph shows a drop in accuracy with an increase in the complexity

cost factor. This was expected because higher complexity cost results in a more pruned tree, which

would be weaker for explaining instances.
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Figure 4.3: Sensitivity of accuracy for DT method with respect to complexity cost and minimum
number of observations in leaves

3Unfortunately neither sklearn, nor any other package in Python provides pruning. Therefore for this purpose, the
package rpart in R was used.
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As shown in the figure, accuracy is convex with respect to the logarithm of CP for the lower

values of CP. After a turning point, accuracy is concave with respect to logarithm of CP for the

higher values of CP. Since the axis in the figure corresponding to CP is logarithmic scaled, the

relation between accuracy and CP may either be generally similar (i.e., with a turning point, convex

in the beginning and concave in the end) or totally concave. Regardless of concavity and convexity,

accuracy is strictly descending with respect to CP and the logarithm of CP. The other meta-parameter

that is the minimum number of observations in nodes does not have much effect on accuracy. Based

on Figure 4.3, we chose CP = 0.01 to prune the Decision Tree for comparison (last section).

The final Decision Tree made with CP = 0.01 is shown in Figure 4.4. The boxes represent

nodes in the tree and the circles are its leaves. The label that has the largest number of observations

in each node or leaf is written on the node or leaf. For example among all (788) observations, 453

of them are transit trips, the dominant label for the root (i.e., node on the top) is “Transit”.
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Figure 4.4: An example of pruned Decision Tree
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4.2.3 Random Forest Meta-parameters

The main parameter for the Random Forest is the number of trees generated. Figure 4.5 presents

the average accuracy of models for different number of classifiers. As was expected, the increase

in the number of classifiers improved the accuracy of the model. According to the figure, accuracy

converge quickly with increases in the number of classifiers. This could be caused by the double

randomization embedded in the algorithm including the random selection of the training set for

each classifier and choosing best split based on a random subset of features. Based on the graph, we

chose 10 as the number of classifiers for the RF method.
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Figure 4.5: RF sensitivity to number of trees

4.2.4 Logistic Regression Meta-parameters

This model takes only input variables, but no meta-parameters. Therefore no meta-parameter

assessment was needed.
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4.2.5 Label Propagation Meta-parameters

The first parameter to check for this method was the clamping factor that represents the mini-

mum portion of labeled observations kept in the model. It seems that apart from values very close

to zero, the parameter does not have a considerable effect on the accuracy (test set) of the model.

We kept it equal to 1 (fully clamped) in the rest of LP models.

The second parameter of the LP model was the number of neighbors, which was actually the

parameter of the kernel. The LP model is supposed to work with different portions of unlabeled

data. Because the first experiments showed the importance of k on the performance of the model,

its effect on the accuracy of the model was observed under different scenarios with respect to the

portion of unlabeled data.

Figures 4.6 show the average accuracy of the LP models for different values of α andK. In each

figure, the blue surface represents the average accuracies for the models on training sets and the red

surface represents average accuracies for the test sets. To better visualize the accuracy results for

test sets (cross-validated results), a contour is provided that is a 2D projection of the red surface on

the surface z = 0.
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Figure 4.6: Sensitivity of accuracy for Label Propagation method with different portions of unla-
beled data (i.e., n
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As seen in these figures, fewer neighbors resulted in better models with almost fully labeled

(validated) data. But as the proportion of labeled data was reduced, the smaller number of neighbors

lost their advantage and a large number of neighbors (K) provided superior results. Because this

method is usually adopted in situations with small proportions of validated data, it might be better

to decide upon the best K from the plots with less labeled data. Based on the plots below, while

the values below 5 for K performed better in mostly labeled situations, they all performed worse

than values higher than 5 in situations with more than 20% unlabeled data. Values above 5 barely

showed a change in their performance in the different scenarios. Thus, choosing a value (such as

K=12) with more reliable performance might be a smart choice.

4.2.6 Comparison Between the Models

The last step of the analysis was to compare the models with the meta-parameters chosen from

the previous steps. To compare the algorithms, a portion of the training set was randomly de-labeled

(labels were removed from he training set). 100 models were estimated using each algorithm for

each de-labeling portion based on 100 different randomly split data into 80% training set and 20%

test set. The de-labeling factor for the training set ranged from 0% (fully validated data) to 90%.

The steps are explained in Algorithm 2. The Python code for this algorithm is included in Appendix

A.

Figure 4.7 shows the average accuracy of algorithms under the different data validation scenar-

ios. In this plot, a change in x-value does not change the total sample size but instead the number

of unlabeled trips in the sample. Thus, for label propagation, the size of training set remains the

same but the proportion of unlabeled and labeled trips changes. The size of training set for the

supervised algorithms reduces with an increase in the number of unlabeled trips since they cannot

use unlabeled observations for training a model.

Based on this plot, the RF model has the highest prediction accuracy for most of the scenar-

ios. However, as the portion of unlabeled data increases, its prediction accuracy gets closer to the

accuracy of the Label Propagation model. The LP model starts to outperform the RF model when

the proportion of unlabeled data is higher than 80%. LP keeps taking advantage of unlabeled data,

while RF does not use the valuable information provided by unlabeled (un-validated) data. Average
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Data: {(xs, ys)|s ∈ S}
Result: c: a vector of accuracies with 10 elements for each algorithm
for Each algorithm do

for i ∈ {0, 50, 85} do
Define c as a vector with no element;
for j ∈ {1, ..., 100} do

Split the S randomly into 80% as St and 20% as St;
Split the ST randomly into j% as Su

t and (100− j)% as slt;
if DT, RF or LR then

Train a model on {(xs, ys)|s ∈ Sl
t};

else if LP then
Train a model on {(xs, ys)|s ∈ Sl

t}, {xs|s ∈ Sl
t};

Calculate the accuracy of the model on test set;
end
Add the average of accuracies (on test sets) for i% unlabeled training set as the last
element of c;

end
end

Algorithm 2: Sensitivity analysis on portion of unlabeled data.

standard deviations are shown in the figure by vertical bars on the lines. The values for the average

standard deviations appear close to each other, which is consistent with Figure 4.2. At the same

time, slight increases in the values are observed when average accuracy is decreased. This shows

that when a model has lower accuracy, the estimates are more sensitive to training set selection.

The Decision Tree, Random Forests and Logistic Regression, the supervised methods mostly

perform as well or better than the semi-supervised LP method even when a considerable portion

of the data is unvalidated, that means the supervised algorithms are using a considerably smaller

portion of the data for training compared to the semi-supervised algorithm. However, when there

is more than 70% unvalidated data, the semi-supervised algorithm performs better than the others

and has the highest cross-validated accuracy. It is an empirical question whether it is reasonable to

expect being able to collect 30% validated data in a real-world data gathering exercise.While it may

be possible to have higher portions of precisely validated data in a big survey, every increase in the

proportion of validated data will likely result in increased cost.

To give another perspective on the performance of the different models, Figures 4.8, 4.9 and

4.10 are provided. They show the average accuracy of the models with respect to the size of labeled

and unlabeled training sets rather than the proportion of labeled and unlabeled data in the training
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Figure 4.7: Comparison of average accuracy of the models for different portions of data as unlabeled
(DT with CP=0.001, RF with 10 trees, fully clamped LP with K=20)

sets. Each figure shows the results for a constant number of labeled observations in the training set,

while the number of unlabeled observations in the training set changes.

In these figures, it is not surprising to see that the accuracy of the supervised models does

not change with the change in number of unlabeled observations, since these methods do not use

unlabeled data for training. The semi-supervised model, however, takes advantage of both labeled

and unlabeled observations. As such, we see that given a fixed number of labeled observations, the

average accuracy increases with the rise in number of unlabeled observations.

It needs to be considered that the run-time for DT, RF and LR was much longer compared to

the LP method. Although run-time is directly related to the parameters of the models (especially for

the RF which is very sensitive to the number of trees), given the parameters used here (10 trees for

RF and K=12 for the fully clamped LP), the run-time of the RF model was almost 16 times longer

than the LP model (8’ 20” compared to 30” to produce the curves in the Figure 4.7, each consisting

of 1100 models)4. While these run-times are not long, for a real-world-sized survey with millions
4The algorithms were run on a 64-bit Windows 7 machine with IntelTM XenonTM X5650 CPU and 12 GB of RAM.

The RF and LP algorithms were run in Python 64-bit while for the DT algorithm, R 64-bit was used. Thus, only the RF
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Figure 4.8: Comparison of average accuracy of the models for 570 labeled observations (DT with
CP=0.001, RF with 10 trees, fully clamped LP with K=20)

of trips, the difference would be noticeable (especially because KNN run-time, which is used in LP

algorithm, is less sensitive to sample size compared to RF).

In this section, the application of semi-supervised and supervised algorithms was studied. The

results show that the semi-supervised model has a higher accuracy compared to the supervised

models when more than 70% of the observations in the data set are un-labeled. This is due to the

fact that the semi-supervised algorithm can take advantage of un-labeled observations in the data

set.

and LP can be compared based on run-time confidently
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Figure 4.9: Comparison of average accuracy of the models for 315 labeled observations (DT with
CP=0.001, RF with 10 trees, fully clamped LP with K=20)
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Figure 4.10: Comparison of average accuracy of the models for 100 labeled observations (DT with
CP=0.001, RF with 10 trees, fully clamped LP with K=20)
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Chapter 5

Transit Itinerary Detection

5.1 Methodology

In order to infer transit route used by respondents, GPS points associated with trips were com-

pared with GTFS data. First, using longitude, latitude and stop departure times, each departure was

represented as a point in 2+1 dimensional space-time. Then 3D bus itineraries were made by con-

necting these points for every scheduled bus trip. Also from data collected with DataMobile, GPS

points and their associated timestamps were used to map respondent traces in space-time. Figure

5.1 shows a set of GPS points for a hypothetical trip and a nearby transit route in space-time. The

x- and y-axes represent geographical location and the t-axis represents time.

Two algorithms were developed for transit itinerary detection. The first algorithm assumes that

start and end point of segments of trips are provided a priori. The second transit itinerary detection

algorithm estimates the start and end point of each segment of a trip and detects its transit route

simultaneously.

Trips were broken into segments where each segment was a section of trip with only one bus-

line being used in it. The first transit itinerary detection algorithm breaks each trip into segments

using given start and end point of segments. The second transit itinerary detection algorithm selects

subsections of transit routes close to each trip. For each trip, these subsections are considered

as its candidate segments. Then the algorithm estimates whether each candidate segment and its

corresponding transit route is a true segment and transit route of the trip. Further details are available
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Figure 5.1: GPS records and a candidate transit route in a 2+1 dimensional space-time

in Appendix B.

Then, points for each segment were checked with the bus-lines to see if they fell within a buffer

around the lines. Since the data used for buses was a schedule and could be different from real

operating times, the spatial distance of GPS points with bus lines was used. If any of the points for

a segment was close enough to a line, the line was added to the set of possible transit routes for the

segment.

For every possible transit route for each segment, a number of features were calculated. These

features include average spatial distance of GPS points with bus-line, average Euclidean distance

of GPS points with bus-line in space-time, the number of GPS points in the vicinity of bus lines

in space-time and the portion of segment covered by bus-line. Then the dataset was split into an

80% training set and a 20% test set and a Random Forest model was made using these features.

The model used features for the observations in the training set to estimate whether a segment and

bus-line were matched (bus-line was used in the segment). A segment was considered as incorrectly

estimated if any wrong bus line was estimated for the segment or the true bus line was not estimated

for the segment.
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To detect transit routes in the segments, the GPS points and GIS information related to the transit

network needed to be processed to extract more explicit information (features). Features were then

used as input data for the Random Forest model to detect if a possible route was used for a segment

or not.

5.1.1 Pre-processing

Four tables were built using collected GPS points and GTFS data. Information about transit

routes was summarized in table T1 from stop-times and stops tables in GTFS files. Each row in T1,

r, represents a route in the transit network.

• r1 (route-ID) is a primary key in this file.

• r2 (route-line) is a linestring made by connecting the sequence of stop locations for an arbi-

trary transit trip for a given transit-route.

A transit route can be projected on a map as a sequence of stop locations regardless of arrival

times. T2 is another table built based on GTFS data. Each row in T2, b, represents a trip of a transit

vehicle during a specific period of time, t, that can be projected in space-time. For each transit route

in T1 depending on the service frequency of the route, there would be a number of transit trips in

T2.

• b1 (trip-ID) is a primary key in this file.

• b2 (trip-line) the sequence of points in space-time from the GTFS stop-times table for a given

transit trip.

To speed up the queries by checking trip segments only against the transit routes in the same

neighborhood, table zone-route was built. For zone z intersecting withmz routes, there aremz rows

in table T3 containing the zone-ID and route-ID.

• z1 (zone-ID)

• z2 (route-ID)
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The last table created is T4. To create this table, for each person, p, his/her sequence of GPS

points was selected as lp, ordered by their timestamps. Then, for each route in T1, the longest

sequences of GPS points (possible segment qp,rts,te) in lp was selected and added to T4 where all GPS

points in qp,rts,te are close enough to route r and ts and tr are timestamps for the first and the last GPS

points in each sequence respectively. qp,rts,te is a possible segment of the trip because this section of

a trip by person p can be expected to be done using only transit route r. Also, given a person and

a route, no GPS point can appear in more than one sequence, and for any pair of sequential GPS

points in qp,rts,te , there would be no more than one GPS point u excluded from qp,rts,te . Each record in

T4, q, is a vector of elements:

• q1 (User-ID), q2 (start-time) and q3 (end-time) are elements that together represent a section

of trip of a person, s.

• q4 (Route) is the real transit route associated with section s. It is the most repeated value of

v6 for all v ∈ DataMobile that v belongs to s.

• q5 (Route-ID) represents the transit route r that is close to the section s and is a candidate

transit route for being the real transit-route.

The process to make Table T4 is described in Algorithm 3:

A Random Forest model was estimated based on the table T4 where entries in T4 were fed into

the algorithm as observations. The Python code for the whole algorithm is included in Appendix B.

5.1.2 Creating features

For each possible segment q ∈ T4, a set Xq was made, including features of the possible

segment s with respect to route r. These features represent some characteristics of the GPS points

in a possible segment such as average distance between GPS points and some mutual characteristics

of recorded GPS points and the nearby transit route, such as average distance of GPS points with

the transit route. The final features used to estimate the models are:

• x1 (metro-boolean) is a boolean value indicating whether the candidate transit route r is a

metro line.
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Data: {(xs, ys)|s ∈ S}
Result: c
for r ∈ T1 do

From T3, find the zones that r falls within them;
for b ∈ T2,r do

for GPS point u in the same zone as r do
if D(u, b) < 100 then

Add u to a temporary table T6

sort the GPS points in T6 by corresponding user and time-stamp.;
Make a vector with the time-ordered sequence of GPS points for each user and

add it to T4.;
for q ∈ T4 do

for i ∈ {1, · · · , ‖q‖} do
if There is more than 1 hour difference between ui and ui+1 or more than
2 points recorded in the time interval between them (excluded from T4)
then

Break the q into to vectors, one ending with ui and the other one
starting with ui+1

end
end

end
end

end
Algorithm 3: Preparing the input table T4 for the learning algorithms

• x2 is the length of section s.

• x3 is the average distance of points belonging to section s from the candidate route r in

time-space.

• x4 is the average geographical distance of points belonging to section s from the candidate

route r on the map.

• x5 is the average distance between sequential points in S.

• x6 is a combination of the previous features compared to the other alternative routes. Let cq

be the combination of features for the record q in T4, calculated as below:

cq = xq1/(x
q
2 ∗ x

q
3) (6)

Then for all q′ ∈ T4 that q1 = q′1, q2 < q′3 and q3 > q′2 we have:
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x6 = cq/max
q′

cq
′

(7)

5.1.3 RF model

Observations in T4 were split into a training set and a validation set based on which participant

and day to which they belonged. 80% of participant-days were picked as the training set and 20%

as the validation set. A Random Forest model was estimated on the training set and it was used to

estimate values for the dependent variable on the validation set. For each GPS point u belonging to

a person-day for the validation set, if all of the observations in the validation set are associated with

the correct transit line, the GPS points are considered as correctly estimated.

Let Γs be the set of ∀πsi ∈ πs where πsi and πsi+1 are correctly estimated points. The accuracy

of a model over the test set is defined as:

accuracy =
∑

s∈{m+n+1,...,702}

∑
i∈Γs D

(
πsi , π

s
i+1

)∑
i∈{1,...,r(s)−1} D

(
πsi , π

s
i+1

) (8)

To avoid ovefitting the dataset was split 100 times and a model was made each time. The average

of these 100 values for the accuracy is reported as the accuracy of the algorithm.

5.2 Results

To examine the performance of the model, the accuracy measure was calculated for each it-

eration with a different training and test set. The method developed here resulted in an average

cross-validated accuracy of 62% with a standard deviation of 0.6%. When the start and end point

of trip-segments was given to the model as input data, the average accuracy was 78% with 0.8%

standard deviation, which suggests that pre-processing the data with a segment detection algorithm

might improve the results. The pre-processing steps in the transit itinerary detection algorithms

were time consuming. Therefore, iteration of the algorithms took a significant amount of time. As

a result, it was not possible to undertake a thorough sensitivity analysis. Conclusions about the

48



methods in the context of mode mentioned in the previous section are also relevant in the context

of transit itinerary inference. However, since so little is known about transit itinerary inference, a

Machine Learning method whose behavior is well-known and understood (Random Forest) rather

than a semi-supervised algorithm was considered wisest in this context.

While there are many studies that have investigated segment detection, they have all focused on

change of segment based on the change of characteristics of movement related to mode of transport.

Therefore a new segment detection algorithm that is sensitive to the change of transit vehicle can be

beneficial.

These trips were made continuously without common activities between trips. Participants

started their next trip right after ending the previous trip and did not necessarily take a break be-

tween the two trips. This makes it harder to detect the beginning and end of a trip. Therefore on

data with daily activities between trips that trips and segments are easier to detect, higher results

might be achieved.
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Chapter 6

Conclusion

Contributions

The first study in this thesis proposed the application of semi-supervised algorithms in mode

detection when using smartphone travel survey data. This can help researchers and planners to use

both validated and un-validated data allowing models estimated to be more accurate and realistic as

since they would be able to use larger data-sets. These types of algorithms have not yet been tested

for information inference in GPS or smartphone travel surveys in the transportation literature. The

semi-supervised method used in this study was label propagation with K-nearest neighbors as its

kernel. The results of this model were compared with those of three popular supervised learning

methods, namely decision tree, random forest and logistic regression. All models were trained and

tested using 100 different training and test sets. Several sensitivity analyses were done to choose

the best values for the meta-parameters of each model.

The results show that when training data sets include higher proportions of validated data, the

models estimated by the supervised algorithms perform better than the model estimated by the

semi-supervised algorithm. However, their average accuracies decrease when the proportion of

unlabeled data increase, while the label propagation model, as expected, performs almost the same

under these circumstances. In general, the study shows that the proposed semi-supervised algorithm

outperforms the three supervised algorithms when the proportion of unlabeled data was greater than

70%.

50



In the second study, an algorithm, based on 100% validated data was developed to detect the

transit itinerary. In order to examine the performance of the model, the sum of the distance between

consecutive correctly estimated points was divided be the sum of the whole length of all trips. This

accuracy measure was calculated for each iteration with a different training and test set. The method

developed here resulted in 62% on average cross-validated accuracy with a 0.6% standard deviation.

It is worth mentioning that when the start and end point of trip-segments was given to the model

as input data, the average accuracy was 78% with 0.8% standard deviation. This suggests that

preprocessing the data with a good segment detection algorithm might improve the results.

Limitations

In this study, the dominant transportation mode was considered as the transportation mode for

whole trip, which adds error to the estimations and might affect a particular model more than others.

While there are many studies that have investigated segment detection, they have all focused on

change of segment based on the change of characteristics of movement related to mode of transport.

Therefore a new segment detection algorithm that is sensitive to the change of transit vehicle can be

beneficial.

Also this data was collected in continuously without common activities between trips. This

makes it harder to detect the beginning and end of a trip. Therefore on a data with daily activities

between trips that trips and segments are easier to detect, better results might be achieved.

Future work

This study is a beginning for the application of semi-supervised methods in transportation mode

detection using GPS data. As a result, there are quite a few possibilities for improvement. For

example, in this study, the dominant transportation mode was considered as the transportation mode

for the entire trip. This adds error to the estimations and might affect a particular model more

than others. Thus, a more detailed dataset containing mode information by segment, could help

to have a better comparison. Also, features used in this study were very simple. Application of

more advanced features such as closeness to specific locations of the transportation network might

improve results overall.
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Most importantly, the methods used in this study were mostly chosen due to their popularity,

simple structure and availability in software packages. There remain many other interesting meth-

ods, especially in the case of semi-supervised algorithms, that could be considered and tested.
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Appendix A

Comparison of Python Code for

Supervised and Semi-supervised

Algorithms

4.8, 4.9 and 4.10:

import csv , psycopg2 , d a t e t i m e , s k l e a r n , random

from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r

from s k l e a r n . n e u r a l n e t w o r k import M L P C l a s s i f i e r

from s k l e a r n . l i n e a r m o d e l import L o g i s t i c R e g r e s s i o n

from s k l e a r n . n a i v e b a y e s import GaussianNB

from s k l e a r n . n a i v e b a y e s import Mult inomialNB

from s k l e a r n . s e m i s u p e r v i s e d import L a b e l P r o p a g a t i o n

import pyRserve

import numpy as np

import s c i p y . s t a t s a s s t a t s

import m a t p l o t l i b . p y p l o t a s p l t

53



conn = psycopg2 . c o n n e c t ( ” dbname = ’ DataMobi le2014 ’ u s e r = ’ p o s t g r e s ’

h o s t = ’ l o c a l h o s t ’ password = ’0 ’ ” )

c u r = conn . c u r s o r ( )

d a t a s e t = [ ]

c u r . e x e c u t e ( ””” s e l e c t c u m u l a t i v e d i s t a n c e , avg speed ,

d i s t a n c e s t o p s t a r t , d i s t a n c e s t o p e n d , t r i p d u r a t i o n s e c o n d s ,

mode code

from d a t a s e t f i n a l

where d i r e c t d i s t a n c e >250 and t r i p d u r a t i o n >’2 min ’

””” )

d a t a s e t . append ( [ ] )

f o r i in c u r :

d a t a s e t . append ( l i s t ( i ) )

d e l d a t a s e t [ 0 ]

conn . c l o s e ( )

u u s e d = [ 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 ]

conn = pyRserve . c o n n e c t ( )

def comp ( u r a t i o , i t ) :

p r i n t ’ s t a r t model ing ’ , d a t e t i m e . d a t e t i m e . now ( )

D T s e n s t r a i n = [ ]

D T s e n s t e s t = [ ]

D T s e n s t e s t s t d = [ ]

R F s e n s t r a i n = [ ]

R F s e n s t e s t = [ ]

R F s e n s t e s t s t d = [ ]

54



MLPsens t r a in = [ ]

MLPsens te s t = [ ]

M L P s e n s t e s t s t d = [ ]

L G T s e n s t r a i n = [ ]

L G T s e n s t e s t = [ ]

L G T s e n s t e s t s t d = [ ]

GNBsens t ra in = [ ]

GNBsens tes t = [ ]

G N B s e n s t e s t s t d = [ ]

MNBsenst ra in = [ ]

MNBsenstest = [ ]

MNBsens t e s t s td = [ ]

L P s e n s t r a i n = [ ]

L P s e n s t e s t = [ ]

L P s e n s t e s t s t d = [ ]

f o r j in u u s e d :

D T t r a i n a c c l i s t = [ ]

D T t e s t a c c l i s t = [ ]

R F t r a i n a c c l i s t = [ ]

R F t e s t a c c l i s t = [ ]

M L P t r a i n a c c l i s t = [ ]

M L P t e s t a c c l i s t = [ ]

L G T t r a i n a c c l i s t = [ ]

L G T t e s t a c c l i s t = [ ]

G N B t r a i n a c c l i s t = [ ]

G N B t e s t a c c l i s t = [ ]

M N B t r a i n a c c l i s t = [ ]

M N B t e s t a c c l i s t = [ ]
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L P t r a i n a c c l i s t = [ ]

L P t e s t a c c l i s t = [ ]

f o r i in range ( i t ) :

random . s h u f f l e ( d a t a s e t )

t r a i n = d a t a s e t [ 0 : i n t ( 0 . 8 * l e n ( d a t a s e t ) ) ]

t e s t = d a t a s e t [ i n t ( 0 . 8 * l e n ( d a t a s e t ) ) : l e n (

d a t a s e t ) ]

t r a i n y = [ a [−1] f o r a in t r a i n ]

t r a i n x = [ ]

# number o f p o i n t s , avg d i s t a n c e and p o i n t

r a t i o as i n p u t

f o r row in t r a i n :

t r a i n x . append ( row [ 0 : 5 ] )

t e s t y = [ a [−1] f o r a in t e s t ]

t e s t x = [ ]

f o r row in t e s t :

t e s t x . append ( row [ 0 : 5 ] )

conn . r . x0=np . a r r a y ( [ row [ 0 ] f o r row in t r a i n x

[ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ] )

conn . r . x1=np . a r r a y ( [ row [ 1 ] f o r row in t r a i n x

[ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ] )

conn . r . x2=np . a r r a y ( [ row [ 2 ] f o r row in t r a i n x

[ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ] )

conn . r . x3=np . a r r a y ( [ row [ 3 ] f o r row in t r a i n x

[ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ] )
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conn . r . x4=np . a r r a y ( [ row [ 4 ] f o r row in t r a i n x

[ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ] )

conn . r . y=np . a r r a y ( t r a i n y [ i n t ( u r a t i o * l e n (

t r a i n ) ) : ] )

conn . v o i d E v a l ( ’ ’ ’ l i b r a r y ( r p a r t )

d <− da ta . f rame ( y = y , x0 = x0 , x1 = x1 ,

x2 = x2 , x3 = x3 , x4 = x4 )

d t <− r p a r t ( y ˜ x0+x1+x2+x3+x4 , d a ta=d ,

method=” c l a s s ” , c o n t r o l =r p a r t . c o n t r o l (

m i n s p l i t =20 , cp =0 .01 ) )

t r a i n p r e d i c t i o n <− p r e d i c t ( d t , d , t y p e =”

c l a s s ”)

’ ’ ’ )

t r a i n p r e d = conn . r . t r a i n p r e d i c t i o n

t r a i n a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e (

t r a i n y [ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ,

t r a i n p r e d , n o r m a l i z e =True )

D T t r a i n a c c l i s t . append ( t r a i n a c c )

conn . r . x0=np . a r r a y ( [ row [ 0 ] f o r row in t e s t x

] )

conn . r . x1=np . a r r a y ( [ row [ 1 ] f o r row in t e s t x

] )

conn . r . x2=np . a r r a y ( [ row [ 2 ] f o r row in t e s t x

] )

conn . r . x3=np . a r r a y ( [ row [ 3 ] f o r row in t e s t x

] )

conn . r . x4=np . a r r a y ( [ row [ 4 ] f o r row in t e s t x

] )
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conn . e v a l ( ’ ’ ’

d <− da ta . f rame ( x0 = x0 , x1 = x1 , x2 = x2

, x3 = x3 , x4 = x4 )

t e s t p r e d i c t i o n <− p r e d i c t ( d t , d , t y p e =”

c l a s s ”)

’ ’ ’ )

t e s t p r e d = conn . r . t e s t p r e d i c t i o n

t e s t a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e (

t e s t y , t e s t p r e d , n o r m a l i z e =True )

D T t e s t a c c l i s t . append ( t e s t a c c )

r f = R a n d o m F o r e s t C l a s s i f i e r ( n e s t i m a t o r s =10 ,

n j o b s =−1) . f i t ( t r a i n x [ i n t ( u r a t i o * l e n (

t r a i n ) ) : ] , t r a i n y [ i n t ( u r a t i o * l e n ( t r a i n ) )

: ] )

t r a i n p r e d = [ i f o r i in r f . p r e d i c t ( t r a i n x ) ]

t r a i n a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e (

t r a i n y [ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ,

t r a i n p r e d [ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ,

n o r m a l i z e =True )

R F t r a i n a c c l i s t . append ( t r a i n a c c )

t e s t p r e d = [ i f o r i in r f . p r e d i c t ( t e s t x ) ]

t e s t a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e (

t e s t y , t e s t p r e d , n o r m a l i z e =True )

R F t e s t a c c l i s t . append ( t e s t a c c )
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mlp = M L P C l a s s i f i e r ( h i d d e n l a y e r s i z e s =15 ,

a c t i v a t i o n = ’ t a n h ’ , s o l v e r = ’ sgd ’ , a l p h a

=0 .0001 , b a t c h s i z e = ’ a u t o ’ , l e a r n i n g r a t e =

’ c o n s t a n t ’ , l e a r n i n g r a t e i n i t = 0 . 0 0 1 ,

m a x i t e r =50000) . f i t ( t r a i n x [ i n t ( u r a t i o *

l e n ( t r a i n ) ) : ] , t r a i n y [ i n t ( u r a t i o * l e n (

t r a i n ) ) : ] )

t r a i n p r e d = [ i f o r i in mlp . p r e d i c t ( t r a i n x ) ]

t r a i n a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e (

t r a i n y [ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ,

t r a i n p r e d [ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ,

n o r m a l i z e =True )

M L P t r a i n a c c l i s t . append ( t r a i n a c c )

t e s t p r e d = [ i f o r i in mlp . p r e d i c t ( t e s t x ) ]

t e s t a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e (

t e s t y , t e s t p r e d , n o r m a l i z e =True )

M L P t e s t a c c l i s t . append ( t e s t a c c )

l g t = L o g i s t i c R e g r e s s i o n ( n j o b s =−1) . f i t (

t r a i n x [ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] , t r a i n y

[ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] )

t r a i n p r e d = [ i f o r i in l g t . p r e d i c t ( t r a i n x ) ]

t r a i n a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e (

t r a i n y [ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ,

t r a i n p r e d [ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ,

n o r m a l i z e =True )

L G T t r a i n a c c l i s t . append ( t r a i n a c c )

t e s t p r e d = [ i f o r i in l g t . p r e d i c t ( t e s t x ) ]
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t e s t a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e (

t e s t y , t e s t p r e d , n o r m a l i z e =True )

L G T t e s t a c c l i s t . append ( t e s t a c c )

mnb = Mult inomialNB ( ) . f i t ( t r a i n x [ i n t ( u r a t i o

* l e n ( t r a i n ) ) : ] , t r a i n y [ i n t ( u r a t i o * l e n (

t r a i n ) ) : ] )

t r a i n p r e d = [ i f o r i in mnb . p r e d i c t ( t r a i n x ) ]

t r a i n a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e (

t r a i n y [ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ,

t r a i n p r e d [ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ,

n o r m a l i z e =True )

M N B t r a i n a c c l i s t . append ( t r a i n a c c )

t e s t p r e d = [ i f o r i in mnb . p r e d i c t ( t e s t x ) ]

t e s t a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e (

t e s t y , t e s t p r e d , n o r m a l i z e =True )

M N B t e s t a c c l i s t . append ( t e s t a c c )

c1 , c2 , c3 , c4 , c5 = [ 1 , 3 . 6 , 1 , 1 , 1 ]

t r a i n y = [ i n t ( a [−1]) f o r a in t r a i n ]

# u n l a b a l i n g some o b s e r v a t i o n s

f o r i in range ( i n t ( u r a t i o * l e n ( t r a i n ) ) ) :

t r a i n y [ i ] = −1

t r a i n x = [ ]

f o r row in t r a i n :

t r a i n x . append ( [ c1 * f l o a t ( row [ 0 ] ) , c2 *

f l o a t ( row [ 1 ] ) , c3 * f l o a t ( row [ 2 ] ) , c4 *

f l o a t ( row [ 3 ] ) , c5 * f l o a t ( row [ 4 ] ) ] )
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t e s t y = [ i n t ( a [−1]) f o r a in t e s t ]

t e s t x = [ ]

f o r row in t e s t :

t e s t x . append ( [ c1 * f l o a t ( row [ 0 ] ) , c2 * f l o a t

( row [ 1 ] ) , c3 * f l o a t ( row [ 2 ] ) , c4 * f l o a t (

row [ 3 ] ) , c5 * f l o a t ( row [ 4 ] ) ] )

l p = L a b e l P r o p a g a t i o n ( k e r n e l = ’ knn ’ ,

n n e i g h b o r s =15 , a l p h a =1) . f i t ( t r a i n x [ i n t

((1− j ) * u r a t i o * l e n ( t r a i n ) ) : ] , t r a i n y [ i n t

((1− j ) * u r a t i o * l e n ( t r a i n ) ) : ] )

t r a i n p r e d = [ i f o r i in l p . p r e d i c t ( t r a i n x ) ]

t r a i n a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e (

t r a i n y [ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ,

t r a i n p r e d [ i n t ( u r a t i o * l e n ( t r a i n ) ) : ] ,

n o r m a l i z e =True )

L P t r a i n a c c l i s t . append ( t r a i n a c c )

t e s t p r e d = [ i f o r i in l p . p r e d i c t ( t e s t x ) ]

t e s t a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e (

t e s t y , t e s t p r e d , n o r m a l i z e =True )

L P t e s t a c c l i s t . append ( t e s t a c c )

D T s e n s t r a i n . append ( np . mean ( D T t r a i n a c c l i s t ) )

D T s e n s t e s t . append ( np . mean ( D T t e s t a c c l i s t ) )

D T s e n s t e s t s t d . append ( np . s t d ( D T t e s t a c c l i s t ) * 2 / 1 0 )

R F s e n s t r a i n . append ( np . mean ( R F t r a i n a c c l i s t ) )

R F s e n s t e s t . append ( np . mean ( R F t e s t a c c l i s t ) )

R F s e n s t e s t s t d . append ( np . s t d ( R F t e s t a c c l i s t ) * 2 / 1 0 )
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MLPsens t r a in . append ( np . mean ( M L P t r a i n a c c l i s t ) )

MLPsens te s t . append ( np . mean ( M L P t e s t a c c l i s t ) )

M L P s e n s t e s t s t d . append ( np . s t d ( M L P t e s t a c c l i s t ) * 2 / 1 0 )

L G T s e n s t r a i n . append ( np . mean ( L G T t r a i n a c c l i s t ) )

L G T s e n s t e s t . append ( np . mean ( L G T t e s t a c c l i s t ) )

L G T s e n s t e s t s t d . append ( np . s t d ( L G T t e s t a c c l i s t ) * 2 / 1 0 )

MNBsenst ra in . append ( np . mean ( G N B t r a i n a c c l i s t ) )

MNBsenstest . append ( np . mean ( G N B t e s t a c c l i s t ) )

MNBsens t e s t s td . append ( np . s t d ( G N B t e s t a c c l i s t ) * 2 / 1 0 )

L P s e n s t r a i n . append ( np . mean ( L P t r a i n a c c l i s t ) )

L P s e n s t e s t . append ( np . mean ( L P t e s t a c c l i s t ) )

L P s e n s t e s t s t d . append ( np . s t d ( L P t e s t a c c l i s t ) * 2 / 1 0 )

p r i n t ’ end RF ’ , d a t e t i m e . d a t e t i m e . now ( )

f i g = p l t . f i g u r e ( )

p l t . y l im ( ( 0 . 5 , 0 . 9 ) )

p l t . x l a b e l ( r ’ $n$ ’ , f o n t s i z e =15)

p l t . y l a b e l ( ’ a c c u r a c y ’ , f o n t s i z e =15)

p l t . e r r o r b a r ( np . m u l t i p l y ( u used , u r a t i o * l e n ( t r a i n ) ) ,

D T s e n s t e s t , D T s e n s t e s t s t d , l a b e l = ’ D e c i s i o n Tree ’ ,

e l i n e w i d t h = 0 . 5 , c a p s i z e =2)

p l t . e r r o r b a r ( np . m u l t i p l y ( u used , u r a t i o * l e n ( t r a i n ) ) ,

R F s e n s t e s t , R F s e n s t e s t s t d , l a b e l = ’Random F o r e s t ’ ,

e l i n e w i d t h = 0 . 5 , c a p s i z e =2)

p l t . e r r o r b a r ( np . m u l t i p l y ( u used , u r a t i o * l e n ( t r a i n ) ) ,

MLPsens tes t , M L P s e n s t e s t s t d , l a b e l = ’ Mul t i−Layer P e r c e p t r o n

’ , e l i n e w i d t h = 0 . 5 , c a p s i z e =2)
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p l t . e r r o r b a r ( np . m u l t i p l y ( u used , u r a t i o * l e n ( t r a i n ) ) ,

LGTsens te s t , L G T s e n s t e s t s t d , l a b e l = ’ L o g i s t i c R e g r e s s i o n ’ ,

e l i n e w i d t h = 0 . 5 , c a p s i z e =2)

p l t . e r r o r b a r ( np . m u l t i p l y ( u used , u r a t i o * l e n ( t r a i n ) ) ,

MNBsenstest , MNBsens tes t s td , l a b e l = ’ M u l t i n o m i a l Naive

Bayes ’ , e l i n e w i d t h = 0 . 5 , c a p s i z e =2)

p l t . e r r o r b a r ( np . m u l t i p l y ( u used , u r a t i o * l e n ( t r a i n ) ) ,

L P s e n s t e s t , L P s e n s t e s t s t d , l a b e l = ’ Labe l P r o p a g a t i o n ’ ,

e l i n e w i d t h = 0 . 5 , c a p s i z e =2)

p l t . l e g e n d ( )

p l t . s a v e f i g ( ”C : / Use r s / Mohsen / Dropbox / Mohsen ’ s t h e s i s ( t i i ) /ML

P r o j e c t ( mode , semi−sup . vs sup . ) / o u t p u t / compar i son {}%

u n l a b e l e d i e e e . pdf ” . format (100* u r a t i o ) )

f o r i in [ 0 . 0 1 , 0 . 5 , 0 . 7 , 0 . 7 5 , 0 . 8 , 0 . 8 5 ] :

comp ( i , 100)

4.7

import csv , psycopg2 , d a t e t i m e , s k l e a r n , random

from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r

from s k l e a r n . n e u r a l n e t w o r k import M L P C l a s s i f i e r

from s k l e a r n . l i n e a r m o d e l import L o g i s t i c R e g r e s s i o n

from s k l e a r n . n a i v e b a y e s import GaussianNB

from s k l e a r n . n a i v e b a y e s import Mult inomialNB

from s k l e a r n . s e m i s u p e r v i s e d import L a b e l P r o p a g a t i o n

import pyRserve

import numpy as np

import s c i p y . s t a t s a s s t a t s

import m a t p l o t l i b . p y p l o t a s p l t

63



conn = psycopg2 . c o n n e c t ( ” dbname = ’ DataMobi le2014 ’ u s e r = ’ p o s t g r e s ’

h o s t = ’ l o c a l h o s t ’ password = ’0 ’ ” )

c u r = conn . c u r s o r ( )

d a t a s e t = [ ]

c u r . e x e c u t e ( ””” s e l e c t c u m u l a t i v e d i s t a n c e , avg speed ,

d i s t a n c e s t o p s t a r t , d i s t a n c e s t o p e n d , t r i p d u r a t i o n s e c o n d s ,

mode code

from d a t a s e t f i n a l

where d i r e c t d i s t a n c e >250 and t r i p d u r a t i o n >’2 min ’

””” )

d a t a s e t . append ( [ ] )

f o r i in c u r :

d a t a s e t . append ( l i s t ( i ) )

d e l d a t a s e t [ 0 ]

conn . c l o s e ( )

conn = pyRserve . c o n n e c t ( )

v a l = [ 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 ]

p r i n t ’ s t a r t model ing ’ , d a t e t i m e . d a t e t i m e . now ( )

D T s e n s t r a i n = [ ]

D T s e n s t e s t = [ ]

D T s e n s t e s t s t d = [ ]

R F s e n s t r a i n = [ ]

R F s e n s t e s t = [ ]

R F s e n s t e s t s t d = [ ]
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MLPsens t r a in = [ ]

MLPsens te s t = [ ]

M L P s e n s t e s t s t d = [ ]

L G T s e n s t r a i n = [ ]

L G T s e n s t e s t = [ ]

L G T s e n s t e s t s t d = [ ]

GNBsens t ra in = [ ]

GNBsens tes t = [ ]

G N B s e n s t e s t s t d = [ ]

MNBsenst ra in = [ ]

MNBsenstest = [ ]

MNBsens t e s t s td = [ ]

L P s e n s t r a i n = [ ]

L P s e n s t e s t = [ ]

L P s e n s t e s t s t d = [ ]

f o r j in v a l :

D T t r a i n a c c l i s t = [ ]

D T t e s t a c c l i s t = [ ]

R F t r a i n a c c l i s t = [ ]

R F t e s t a c c l i s t = [ ]

M L P t r a i n a c c l i s t = [ ]

M L P t e s t a c c l i s t = [ ]

L G T t r a i n a c c l i s t = [ ]

L G T t e s t a c c l i s t = [ ]

G N B t r a i n a c c l i s t = [ ]

G N B t e s t a c c l i s t = [ ]

M N B t r a i n a c c l i s t = [ ]

M N B t e s t a c c l i s t = [ ]
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L P t r a i n a c c l i s t = [ ]

L P t e s t a c c l i s t = [ ]

f o r i in range ( 1 0 0 ) :

random . s h u f f l e ( d a t a s e t )

t r a i n = d a t a s e t [ 0 : i n t ( 0 . 8 * l e n ( d a t a s e t ) ) ]

t e s t = d a t a s e t [ i n t ( 0 . 8 * l e n ( d a t a s e t ) ) : l e n ( d a t a s e t )

]

t r a i n y = [ a [−1] f o r a in t r a i n ]

t r a i n x = [ ]

f o r row in t r a i n :

t r a i n x . append ( row [ 0 : 5 ] )

t e s t y = [ a [−1] f o r a in t e s t ]

t e s t x = [ ]

f o r row in t e s t :

t e s t x . append ( row [ 0 : 5 ] )

conn . r . x0=np . a r r a y ( [ row [ 0 ] f o r row in t r a i n x [ i n t

( j * l e n ( t r a i n ) ) : ] ] )

conn . r . x1=np . a r r a y ( [ row [ 1 ] f o r row in t r a i n x [ i n t

( j * l e n ( t r a i n ) ) : ] ] )

conn . r . x2=np . a r r a y ( [ row [ 2 ] f o r row in t r a i n x [ i n t

( j * l e n ( t r a i n ) ) : ] ] )

conn . r . x3=np . a r r a y ( [ row [ 3 ] f o r row in t r a i n x [ i n t

( j * l e n ( t r a i n ) ) : ] ] )

conn . r . x4=np . a r r a y ( [ row [ 4 ] f o r row in t r a i n x [ i n t

( j * l e n ( t r a i n ) ) : ] ] )
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conn . r . y=np . a r r a y ( t r a i n y [ i n t ( j * l e n ( t r a i n ) ) : ] )

conn . v o i d E v a l ( ’ ’ ’ l i b r a r y ( r p a r t )

d <− da ta . f rame ( y = y , x0 = x0 , x1 = x1 , x2 =

x2 , x3 = x3 , x4 = x4 )

d t <− r p a r t ( y ˜ x0+x1+x2+x3+x4 , d a ta=d , method

=” c l a s s ” , c o n t r o l =r p a r t . c o n t r o l ( m i n s p l i t

=20 , cp =0 .01 ) )

## d t <− prune ( dt , cp = 0 . 0 1 )

t r a i n p r e d i c t i o n <− p r e d i c t ( d t , d , t y p e =”

c l a s s ”)

’ ’ ’ )

t r a i n p r e d = conn . r . t r a i n p r e d i c t i o n

t r a i n a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t r a i n y

[ i n t ( j * l e n ( t r a i n ) ) : ] , t r a i n p r e d , n o r m a l i z e =

True )

D T t r a i n a c c l i s t . append ( t r a i n a c c )

conn . r . x0=np . a r r a y ( [ row [ 0 ] f o r row in t e s t x ] )

conn . r . x1=np . a r r a y ( [ row [ 1 ] f o r row in t e s t x ] )

conn . r . x2=np . a r r a y ( [ row [ 2 ] f o r row in t e s t x ] )

conn . r . x3=np . a r r a y ( [ row [ 3 ] f o r row in t e s t x ] )

conn . r . x4=np . a r r a y ( [ row [ 4 ] f o r row in t e s t x ] )

conn . e v a l ( ’ ’ ’

d <− da ta . f rame ( x0 = x0 , x1 = x1 , x2 = x2 , x3

= x3 , x4 = x4 )

t e s t p r e d i c t i o n <− p r e d i c t ( d t , d , t y p e =” c l a s s

”)

’ ’ ’ )

t e s t p r e d = conn . r . t e s t p r e d i c t i o n
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t e s t a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t e s t y ,

t e s t p r e d , n o r m a l i z e =True )

D T t e s t a c c l i s t . append ( t e s t a c c )

r f = R a n d o m F o r e s t C l a s s i f i e r ( n e s t i m a t o r s =10 ,

n j o b s =−1) . f i t ( t r a i n x [ i n t ( j * l e n ( t r a i n ) ) : ] ,

t r a i n y [ i n t ( j * l e n ( t r a i n ) ) : ] )

t r a i n p r e d = [ i f o r i in r f . p r e d i c t ( t r a i n x ) ]

t r a i n a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t r a i n y

[ i n t ( j * l e n ( t r a i n ) ) : ] , t r a i n p r e d [ i n t ( j * l e n (

t r a i n ) ) : ] , n o r m a l i z e =True )

R F t r a i n a c c l i s t . append ( t r a i n a c c )

t e s t p r e d = [ i f o r i in r f . p r e d i c t ( t e s t x ) ]

t e s t a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t e s t y ,

t e s t p r e d , n o r m a l i z e =True )

R F t e s t a c c l i s t . append ( t e s t a c c )

mlp = M L P C l a s s i f i e r ( h i d d e n l a y e r s i z e s =15 ,

a c t i v a t i o n = ’ t a n h ’ , s o l v e r = ’ sgd ’ , a l p h a =0 .0001 ,

b a t c h s i z e = ’ a u t o ’ , l e a r n i n g r a t e = ’ c o n s t a n t ’ ,

l e a r n i n g r a t e i n i t = 0 . 0 0 1 , m a x i t e r =50000) . f i t (

t r a i n x [ i n t ( j * l e n ( t r a i n ) ) : ] , t r a i n y [ i n t ( j * l e n

( t r a i n ) ) : ] )

t r a i n p r e d = [ i f o r i in mlp . p r e d i c t ( t r a i n x ) ]

t r a i n a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t r a i n y

[ i n t ( j * l e n ( t r a i n ) ) : ] , t r a i n p r e d [ i n t ( j * l e n (

t r a i n ) ) : ] , n o r m a l i z e =True )

M L P t r a i n a c c l i s t . append ( t r a i n a c c )
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t e s t p r e d = [ i f o r i in mlp . p r e d i c t ( t e s t x ) ]

t e s t a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t e s t y ,

t e s t p r e d , n o r m a l i z e =True )

M L P t e s t a c c l i s t . append ( t e s t a c c )

l g t = L o g i s t i c R e g r e s s i o n ( n j o b s =−1) . f i t ( t r a i n x [

i n t ( j * l e n ( t r a i n ) ) : ] , t r a i n y [ i n t ( j * l e n ( t r a i n ) )

: ] )

t r a i n p r e d = [ i f o r i in l g t . p r e d i c t ( t r a i n x ) ]

t r a i n a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t r a i n y

[ i n t ( j * l e n ( t r a i n ) ) : ] , t r a i n p r e d [ i n t ( j * l e n (

t r a i n ) ) : ] , n o r m a l i z e =True )

L G T t r a i n a c c l i s t . append ( t r a i n a c c )

t e s t p r e d = [ i f o r i in l g t . p r e d i c t ( t e s t x ) ]

t e s t a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t e s t y ,

t e s t p r e d , n o r m a l i z e =True )

L G T t e s t a c c l i s t . append ( t e s t a c c )

mnb = Mult inomialNB ( ) . f i t ( t r a i n x [ i n t ( j * l e n ( t r a i n

) ) : ] , t r a i n y [ i n t ( j * l e n ( t r a i n ) ) : ] )

t r a i n p r e d = [ i f o r i in mnb . p r e d i c t ( t r a i n x ) ]

t r a i n a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t r a i n y

[ i n t ( j * l e n ( t r a i n ) ) : ] , t r a i n p r e d [ i n t ( j * l e n (

t r a i n ) ) : ] , n o r m a l i z e =True )

M N B t r a i n a c c l i s t . append ( t r a i n a c c )

t e s t p r e d = [ i f o r i in mnb . p r e d i c t ( t e s t x ) ]

t e s t a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t e s t y ,

t e s t p r e d , n o r m a l i z e =True )
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M N B t e s t a c c l i s t . append ( t e s t a c c )

c1 , c2 , c3 , c4 , c5 = [ 1 , 3 . 6 , 1 , 1 , 1 ]

t r a i n y = [ i n t ( a [−1]) f o r a in t r a i n ]

# u n l a b a l i n g some o b s e r v a t i o n s

f o r i in range ( i n t ( j * l e n ( t r a i n ) ) ) :

t r a i n y [ i ] = −1

t r a i n x = [ ]

f o r row in t r a i n :

t r a i n x . append ( [ c1 * f l o a t ( row [ 0 ] ) , c2 * f l o a t (

row [ 1 ] ) , c3 * f l o a t ( row [ 2 ] ) , c4 * f l o a t ( row

[ 3 ] ) , c5 * f l o a t ( row [ 4 ] ) ] )

t e s t y = [ i n t ( a [−1]) f o r a in t e s t ]

t e s t x = [ ]

f o r row in t e s t :

t e s t x . append ( [ c1 * f l o a t ( row [ 0 ] ) , c2 * f l o a t ( row

[ 1 ] ) , c3 * f l o a t ( row [ 2 ] ) , c4 * f l o a t ( row [ 3 ] ) ,

c5 * f l o a t ( row [ 4 ] ) ] )

l p = L a b e l P r o p a g a t i o n ( k e r n e l = ’ knn ’ , n n e i g h b o r s

=15 , a l p h a =1) . f i t ( t r a i n x , t r a i n y )

t r a i n p r e d = [ i f o r i in l p . p r e d i c t ( t r a i n x ) ]

t r a i n a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t r a i n y

[ i n t ( j * l e n ( t r a i n ) ) : ] , t r a i n p r e d [ i n t ( j * l e n (

t r a i n ) ) : ] , n o r m a l i z e =True )

L P t r a i n a c c l i s t . append ( t r a i n a c c )

t e s t p r e d = [ i f o r i in l p . p r e d i c t ( t e s t x ) ]
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t e s t a c c = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t e s t y ,

t e s t p r e d , n o r m a l i z e =True )

L P t e s t a c c l i s t . append ( t e s t a c c )

D T s e n s t r a i n . append ( np . mean ( D T t r a i n a c c l i s t ) )

D T s e n s t e s t . append ( np . mean ( D T t e s t a c c l i s t ) )

D T s e n s t e s t s t d . append ( np . s t d ( D T t e s t a c c l i s t ) * 2 / 1 0 )

R F s e n s t r a i n . append ( np . mean ( R F t r a i n a c c l i s t ) )

R F s e n s t e s t . append ( np . mean ( R F t e s t a c c l i s t ) )

R F s e n s t e s t s t d . append ( np . s t d ( R F t e s t a c c l i s t ) * 2 / 1 0 )

MLPsens t r a in . append ( np . mean ( M L P t r a i n a c c l i s t ) )

MLPsens te s t . append ( np . mean ( M L P t e s t a c c l i s t ) )

M L P s e n s t e s t s t d . append ( np . s t d ( M L P t e s t a c c l i s t ) * 2 / 1 0 )

L G T s e n s t r a i n . append ( np . mean ( L G T t r a i n a c c l i s t ) )

L G T s e n s t e s t . append ( np . mean ( L G T t e s t a c c l i s t ) )

L G T s e n s t e s t s t d . append ( np . s t d ( L G T t e s t a c c l i s t ) * 2 / 1 0 )

MNBsenst ra in . append ( np . mean ( G N B t r a i n a c c l i s t ) )

MNBsenstest . append ( np . mean ( G N B t e s t a c c l i s t ) )

MNBsens t e s t s td . append ( np . s t d ( G N B t e s t a c c l i s t ) * 2 / 1 0 )

L P s e n s t r a i n . append ( np . mean ( L P t r a i n a c c l i s t ) )

L P s e n s t e s t . append ( np . mean ( L P t e s t a c c l i s t ) )

L P s e n s t e s t s t d . append ( np . s t d ( L P t e s t a c c l i s t ) * 2 / 1 0 )

p r i n t ’ end RF ’ , d a t e t i m e . d a t e t i m e . now ( )

f i g = p l t . f i g u r e ( )

p l t . x l im ( ( 0 , 1 ) )

p l t . y l im ( ( 0 . 5 , 0 . 9 ) )
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p l t . x l a b e l ( r ’ $\ f r a c {n}{m+n}$ ’ , f o n t s i z e =15)

p l t . y l a b e l ( ’ a c c u r a c y ’ , f o n t s i z e =15)

p l t . e r r o r b a r ( va l , D T s e n s t e s t , D T s e n s t e s t s t d , l a b e l = ’ D e c i s i o n Tree

’ , e l i n e w i d t h = 0 . 5 , c a p s i z e =2)

p l t . e r r o r b a r ( va l , R F s e n s t e s t , R F s e n s t e s t s t d , l a b e l = ’Random F o r e s t

’ , e l i n e w i d t h = 0 . 5 , c a p s i z e =2)

p l t . e r r o r b a r ( va l , MLPsens tes t , M L P s e n s t e s t s t d , l a b e l = ’ Mul t i−Layer

P e r c e p t r o n ’ , e l i n e w i d t h = 0 . 5 , c a p s i z e =2)

p l t . e r r o r b a r ( va l , LGTsens te s t , L G T s e n s t e s t s t d , l a b e l = ’ L o g i s t i c

R e g r e s s i o n ’ , e l i n e w i d t h = 0 . 5 , c a p s i z e =2)

p l t . e r r o r b a r ( va l , MNBsenstest , MNBsens tes t s td , l a b e l = ’ M u l t i n o m i a l

Naive Bayes ’ , e l i n e w i d t h = 0 . 5 , c a p s i z e =2)

p l t . e r r o r b a r ( va l , L P s e n s t e s t , L P s e n s t e s t s t d , l a b e l = ’ Labe l

P r o p a g a t i o n ’ , e l i n e w i d t h = 0 . 5 , c a p s i z e =2)

p l t . l e g e n d ( )

p l t . s a v e f i g ( ”C : / Use r s / Mohsen / Dropbox / Mohsen ’ s t h e s i s ( t i i ) /ML

P r o j e c t ( mode , semi−sup . vs sup . ) / o u t p u t / compar i son . pdf ” )
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Appendix B

Python Code for Transit Itinerary

Detection

import os , csv , psycopg2 , d a t e t i m e , s k l e a r n , random , numpy as np

from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r

from s k l e a r n . l i n e a r m o d e l import L o g i s t i c R e g r e s s i o n

conn = psycopg2 . c o n n e c t ( ” dbname = ’

D a t a M o b i l e M a y 2 0 1 6 p l u s s e g m e n t d e t e c t i o n ’ u s e r = ’ p o s t g r e s ’ h o s t

= ’ l o c a l h o s t ’ password = ’0 ’ ” )

c u r =conn . c u r s o r ( )

def f i n i t i a l i z e ( ) :

p r i n t ’ s t a r t f i n i t i a l i z e ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

c r e a t e e x t e n s i o n i f n o t e x i s t s p o s t g i s ;

drop t a b l e i f e x i s t s s t o p t i m e s ;
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c r e a t e t a b l e s t o p t i m e s ( t r i p i d c h a r a c t e r v a r y i n g ,

a r r i v a l t i m e i n t e r v a l , d e p a r t u r e t i m e i n t e r v a l ,

s t o p i d i n t e g e r , s t o p s e q u e n c e s m a l l i n t ) ;

copy s t o p t i m e s ( t r i p i d , a r r i v a l t i m e , d e p a r t u r e t i m e ,

s t o p i d , s t o p s e q u e n c e )

from ’C:\ PostgreSQL \9 . 5\ da ta \DataMobi le 2016 −05\

g t f s \ s t o p t i m e s . c s v ’ d e l i m i t e r ’ , ’ c s v header ;

drop t a b l e i f e x i s t s s t o p s ;

c r e a t e t a b l e s t o p s ( s t o p i d i n t e g e r , s t o p c o d e i n t e g e r ,

s top name c h a r a c t e r v a r y i n g , s t o p l a t r e a l , s t o p l o n

r e a l , s t o p u r l c h a r a c t e r v a r y i n g , w h e e l c h a i r b o a r d i n g

s m a l l i n t ) ;

copy s t o p s ( s t o p i d , s t o p c o d e , s top name , s t o p l a t ,

s t o p l o n , s t o p u r l , w h e e l c h a i r b o a r d i n g )

from ’C:\ PostgreSQL \9 . 5\ da ta \DataMobi le 2016 −05\

g t f s \ s t o p s . c s v ’ d e l i m i t e r ’ , ’ c s v header ;

drop t a b l e i f e x i s t s t r i p s ;

c r e a t e t a b l e t r i p s ( r o u t e i d s m a l l i n t , s e r v i c e i d varchar

, t r i p i d varchar , t r i p h e a d s i g n varchar , d i r e c t i o n i d

boolean , s h a p e i d i n t , w h e e l c h a i r a c c e s s i b l e s m a l l i n t

, n o t e f r varchar , n o t e e n v a r c h a r ) ;

copy t r i p s ( r o u t e i d , s e r v i c e i d , t r i p i d , t r i p h e a d s i g n ,

d i r e c t i o n i d , s h a p e i d , w h e e l c h a i r a c c e s s i b l e ,

n o t e f r , n o t e e n )

from ’C:\ PostgreSQL \9 . 5\ da ta \DataMobi le 2016 −05\

g t f s \\ t r i p s . c s v ’ d e l i m i t e r ’ , ’ c s v header ;

drop t a b l e i f e x i s t s c o o r d i n a t e s ;

CREATE TABLE c o o r d i n a t e s
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( i d i n t e g e r , u s e r i d c h a r a c t e r v a r y i n g , l a t i t u d e

r e a l , l o n g i t u d e r e a l , speed r e a l ,

h a c c u r a c y r e a l , v a c c u r a c y r e a l , p o i n t t y p e

i n t e g e r , t varchar ,

i n s t a c c c h a r a c t e r v a r y i n g ) ;

s e t d a t e s t y l e t o ’YMD ’ ;

COPY c o o r d i n a t e s ( id , u s e r i d , l a t i t u d e , l o n g i t u d e , speed

, h accuracy , v a c c u r a c y , p o i n t t y p e , t ,

i n s t a c c )

FROM ’C:\ PostgreSQL \9 . 5\ da ta \DataMobi le 2016 −05\

c o o r d i n a t e s . c s v ’ DELIMITER ’ , ’ CSV HEADER;

CREATE INDEX i f n o t e x i s t s i s t o p s

ON s t o p s ( s t o p i d , s t o p l a t , s t o p l o n ) ;

CREATE INDEX i f n o t e x i s t s i s t o p t i m e s

ON s t o p t i m e s ( t r i p i d , s t o p i d , a r r i v a l t i m e ) ;

CREATE INDEX i f n o t e x i s t s i t r i p s

ON t r i p s ( r o u t e i d , t r i p i d ) ;

d e l e t e from c o o r d i n a t e s where ( s u b s t r i n g ( t FROM ’[0−9]+ ’)

: : s m a l l i n t ) <1990;

a l t e r t a b l e c o o r d i n a t e s a l t e r column t t y p e t i m e s t a m p

USING t : : t i m e s t a m p w i t h o u t t i m e zone ;

d e l e t e from c o o r d i n a t e s where l a t i t u d e <40 or l a t i t u d e >50

or l o n g i t u d e <−80 or l o n g i t u d e >−65;

a l t e r t a b l e c o o r d i n a t e s add column p geomet ry ;

up da t e c o o r d i n a t e s s e t p= s t t r a n s f o r m ( s t s e t s r i d ( s t p o i n t

( l o n g i t u d e , l a t i t u d e ) , 4326) , 32618)

−− drop t a b l e i f e x i s t s m e t r o l i n e s ;
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−− s e l e c t r o u t e i d , t r i p i d , s t m a k e l i n e (

t r a n s i t r o u t e p o i n t s ) m l i n e s i n t o m e t r o l i n e s from

t r a n s i t r o u t e s

−− where r o u t e i d <10 group by r o u t e i d , t r i p i d

””” )

conn . commit ( )

p r i n t ’ end f i n i t i a l i z e ’ , d a t e t i m e . d a t e t i m e . now ( )

def f t r a n s i t t r i p ( ) :

p r i n t ’ s t a r t f t i m e s t a m p c o r r e c t i o n ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

drop t a b l e i f e x i s t s t r a n s i t t r i p ;

s e l e c t r o u t e i d , t r i p i d , min ( t ) mint , max ( t ) maxt ,

s t m a k e l i n e ( p ) t r i p l i n e i n t o t r a n s i t t r i p from

( s e l e c t r o u t e i d , a . t r i p i d , t , s t m a k e p o i n t ( s t x ( gps

) , s t y ( gps ) , t ) p from

( s e l e c t r o u t e i d , t r i p i d from t r i p s ) a ,

( s e l e c t t r i p i d , e x t r a c t ( epoch from ( a r r i v a l t i m e )

) t , s t o p i d from s t o p t i m e s ) b ,

( s e l e c t s t o p i d , s t t r a n s f o r m ( s t s e t s r i d (

s t m a k e p o i n t ( s t o p l o n , s t o p l a t ) , 4326) ,

32618) gps from s t o p s ) c

where a . t r i p i d =b . t r i p i d and b . s t o p i d =c . s t o p i d

o r d e r by t ) aa

group by r o u t e i d , t r i p i d ;

CREATE INDEX i f n o t e x i s t s i t r a n s i t t r i p

ON t r a n s i t t r i p ( r o u t e i d , t r i p i d , ( md5 (

t r i p l i n e : : t e x t ) ) ) ;
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””” )

conn . commit ( )

p r i n t ’ end f t r a n s i t t r i p ’ , d a t e t i m e . d a t e t i m e . now ( )

def f t r a n s i t r o u t e ( ) :

p r i n t ’ s t a r t f t r a n s i t r o u t e ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ””” s e l e c t r o u t e i d , c o u n t ( 0 ) f r e q from t r i p s

group by r o u t e i d

””” )

r o u t e l i s t = [ ]

f o r row in c u r :

r o u t e l i s t . append ( l i s t ( row ) )

c u r . e x e c u t e ( ”””

drop t a b l e i f e x i s t s t r a n s i t r o u t e ;

c r e a t e t a b l e t r a n s i t r o u t e ( r o u t e i d i n t e g e r , t r i p i d

varchar , r o u t e f r e q i n t e g e r , dur i n t e g e r , r o u t e a v g t

r e a l , s t o p f r e q r e a l , r o u t e s p e e d r e a l , t r a n s l i n e

geome t ry )

””” )

conn . commit ( )

f o r i in range ( l e n ( r o u t e l i s t ) ) :

c u r . e x e c u t e ( ”””

i n s e r t i n t o t r a n s i t r o u t e

s e l e c t r o u t e i d , t r i p i d , r o u t e f r e q , dur ,

r o u t e a v g t , s t l e n g t h ( t r a n s l i n e ) / n p o i n t s

s t o p f e r q , s t l e n g t h ( t r a n s l i n e ) / dur

r o u t e s p e e d , t r a n s l i n e from
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( s e l e c t r o u t e i d , t r i p i d , {} r o u t e f r e q ,

c o u n t ( 0 ) n p o i n t s , max ( t t )−min ( t t ) dur ,

avg ( t t ) r o u t e a v g t ,

s t m a k e l i n e ( s t t r a n s f o r m ( s t s e t s r i d (

s t m a k e p o i n t ( s t o p l o n , s t o p l a t ) ,

4326) , 32618) ) t r a n s l i n e from

( s e l e c t r o u t e i d , f . t r i p i d , s t o p l o n ,

s t o p l a t , t t f rom

( s e l e c t * , e x t r a c t ( epoch from

a r r i v a l t i m e ) t t from

s t o p t i m e s o r d e r by t t ) f ,

( s e l e c t * from s t o p s ) g ,

( s e l e c t r o u t e i d , t r i p i d from

t r i p s where r o u t e i d ={} l i m i t

1 ) h

where f . s t o p i d =g . s t o p i d and f .

t r i p i d =h . t r i p i d

o r d e r by a r r i v a l t i m e asc ) a

group by r o u t e i d , t r i p i d ) aa

””” . format ( r o u t e l i s t [ i ] [ 1 ] , r o u t e l i s t [ i ] [ 0 ] ) )

conn . commit ( )

p r i n t i , r o u t e l i s t [ i ] , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

CREATE INDEX i f n o t e x i s t s i t r a n s i t r o u t e

ON t r a n s i t r o u t e ( r o u t e i d , t r a n s l i n e )

””” )

conn . commit ( )

d e l r o u t e l i s t
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p r i n t ’ end f t r a n s i t r o u t e ’ , d a t e t i m e . d a t e t i m e . now ( )

def f z o n e r o u t e ( ) :

p r i n t ’ s t a r t f z o n e r o u t e ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

drop t a b l e i f e x i s t s z o n e r o u t e ;

c r e a t e t a b l e z o n e r o u t e ( sm13 i n t e g e r , r o u t e i d i n t e g e r ) ;

i n s e r t i n t o z o n e r o u t e

s e l e c t sm13 , r o u t e i d from

t r a n s i t r o u t e a ,

sm eod13 b

where s t i n t e r s e c t s ( a . t r a n s l i n e , s t t r a n s f o r m ( b .

geom , 32618) )

””” )

conn . commit ( )

p r i n t ’ end f z o n e r o u t e ’ , d a t e t i m e . d a t e t i m e . now ( )

def f d a t a m o b i l e d a t a f e t c h ( ) :

p r i n t ’ s t a r t f d a t a f e t c h ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

drop t a b l e i f e x i s t s t i i ;

CREATE TABLE t i i

( i d i n t e g e r , u s e r i d varchar , l a t i t u d e r e a l ,

l o n g i t u d e r e a l , speed r e a l ,

h a c c u r a c y r e a l , v a c c u r a c y r e a l , p o i n t t y p e varchar ,

t t imes tamp ,

i n s t a c c varchar , i p e r e i n t e g e r , modes varchar , r o u t e

varchar ,
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zone s m a l l i n t , ord i n t e g e r )

””” )

conn . commit ( )

f o r f i l e in os . l i s t d i r ( ”C:\ PostgreSQL \9 . 5\ d a t a \

DataMobi le 2016 −05\Data ” ) :

i f not f i l e . e n d s w i t h ( ” . c sv ” ) :

c o n t in u e

wi th open ( ”C:\ PostgreSQL \9 . 5\ d a t a \DataMobi le 2016 −05\Data

\{} ” . format ( f i l e ) , ’ rU ’ ) a s f :

r e a d e r = csv . D i c t R e a d e r ( f )

d a t a s e t = [ ]

f o r row in r e a d e r :

i f row [ ’ i d ’ ] ! = ’ ’ :

d a t a s e t . append ( [ row [ ’ i d ’ ] , row [ ’ u s e r i d ’ ] ,

row [ ’ l a t i t u d e ’ ] , row [ ’ l o n g i t u d e ’ ] , row [ ’

speed ’ ] ,

row [ ’ h a c c u r a c y ’ ] , row [ ’

v a c c u r a c y ’ ] , row [ ’

p o i n t t y p e ’ ] , row [ ’

t imes t amp ’ ] ,

row [ ’ i n s t a c c ’ ] , row [ ’ i p e r e ’

] , row [ ’mode ’ ] , row [ ’ r o u t e

’ ] ] )

i f ’ / ’ in d a t a s e t [ 0 ] [ 8 ] and [ i n t ( s ) f o r s in d a t a s e t

[ 0 ] [ 8 ] . s p l i t ( ’ / ’ ) i f s . i s d i g i t ( ) ] [ 1 ] in [ 5 , 6 , 7 ] :

c u r . e x e c u t e ( ””” s e t d a t e s t y l e t o ’DMY’””” )

e l i f ’− ’ in d a t a s e t [ 0 ] [ 8 ] and [ i n t ( s ) f o r s in d a t a s e t

[ 0 ] [ 8 ] . s p l i t ( ’− ’ ) i f s . i s d i g i t ( ) ] [ 1 ] in [ 5 , 6 , 7 ] :
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c u r . e x e c u t e ( ””” s e t d a t e s t y l e t o ’DMY’””” )

e l s e :

c u r . e x e c u t e ( ””” s e t d a t e s t y l e t o ’MDY’””” )

d e l d a t a s e t [ 0 ]

c u r . executemany ( ”””INSERT INTO t i i ( id , u s e r i d , l a t i t u d e

, l o n g i t u d e , speed ,

h accuracy , v a c c u r a c y , p o i n t t y p e , t ,

i n s t a c c , i p e r e , modes , r o u t e , zone ,

ord )

VALUES (%s , %s , %s , %s , %s , %s , %s , %s , %

s , %s , %s , %s , %s , 0 , 0 ) ””” , d a t a s e t )

conn . commit ( )

p r i n t ’ end f d a t a m o b i l e d a t a f e t c h ’ , d a t e t i m e . d a t e t i m e . now ( )

def f t i i c o r r e c t i o n ( ) :

p r i n t ’ s t a r t f t i i c o r r e c t i o n ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

up da te t i i a s e t t=b . t from c o o r d i n a t e s b where

a . u s e r i d =b . u s e r i d and a . l a t i t u d e =b . l a t i t u d e and

a . l o n g i t u d e=b . l o n g i t u d e and a . t<b . t+ i n t e r v a l ’2 min ’

and a . t>b . t− i n t e r v a l ’2 min ’ ;

d e l e t e from t i i where i d IN

( s e l e c t i d from

( s e l e c t id , row number ( ) ove r ( p a r t i t i o n by

u s e r i d , t o r d e r by i d ) as rnum

FROM t i i ) a

where a . rnum > 1) ;

81



d e l e t e from t i i where t<t i m e s t a m p ’2016−05−01 0 0 : 0 0 : 0 1 ’

or t>t i m e s t a m p ’2016−07−01 0 0 : 0 0 : 0 1 ’ ;

up da t e t i i s e t modes=lower ( r e g e x p r e p l a c e ( modes , ’\ s + ’ ,

’ ’ ) ) ;

up da t e t i i s e t modes=’unknown ’ where modes = ’ ’;

up da t e t i i s e t modes=’unknown ’ where modes=’unkown ’ ;

up da t e t i i s e t modes=’ walk ’ where modes=’ w a i t ’ ;

up da t e t i i s e t r o u t e=lower ( r e g e x p r e p l a c e ( r o u t e , ’\ s + ’ ,

’ ’ ) ) ;

up da t e t i i s e t r o u t e =’unknown ’ where r o u t e = ’ ’;

up da t e t i i s e t modes=’ car ’ where

modes=’ p a s s e n g e r c a r ’ or modes=’ c a r p a s s e n g e r ’ or

modes=’ p a s s e n g e r ’ ;

up da t e t i i s e t r o u t e=r e g e x p r e p l a c e ( r o u t e , ’ [ ˆ a−zA−Z0

−9]+ ’ , ’ ’ ) ;

up da t e t i i s e t r o u t e=modes where modes != ’ bus ’ ;

up da t e t i i a s e t zone=sm13 from sm eod13 b

where s t i n t e r s e c t s ( s t t r a n s f o r m ( s t s e t s r i d (

s t m a k e p o i n t ( l o n g i t u d e , l a t i t u d e ) , 4326) , 32618) ,

s t t r a n s f o r m ( b . geom , 32618) )

””” )

conn . commit ( )

c u r . e x e c u t e ( ”””

s e l e c t u s e r i d , t from t i i o r d e r by u s e r i d , t

””” )

t i i l i s t = [ ]

f o r row in c u r :

t i i l i s t . append ( row )
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i =0

f o r row in t i i l i s t :

c u r . e x e c u t e ( ”””

up da te t i i s e t ord ={} where u s e r i d = ’{} ’ and t=

t i m e s t a m p ’{} ’

””” . format ( i , row [ 0 ] , row [ 1 ] ) )

conn . commit ( )

i +=1

c u r . e x e c u t e ( ”””

CREATE INDEX i f n o t e x i s t s i t i i

ON t i i ( ord , u s e r i d , l a t i t u d e , l o n g i t u d e , t )

””” )

conn . commit ( )

p r i n t ’ end f t i i c o r r e c t i o n ’ , d a t e t i m e . d a t e t i m e . now ( )

def f s e g r o u t e p a i r s ( ) :

p r i n t ’ s t a r t f s e g r o u t e p a i r s ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

s e l e c t r o u t e i d , t r a n s l i n e from t r a n s i t r o u t e

””” )

r o u t e l i s t = [ ]

f o r row in c u r :

r o u t e l i s t . append ( row )

c u r . e x e c u t e ( ”””

drop t a b l e i f e x i s t s s e g r o u t e p a i r s ;

c r e a t e t a b l e s e g r o u t e p a i r s ( i d i n t e g e r , u s e r i d varchar

, s t a r t t t imes tamp , e n d t t imes tamp , s t a r t o r d

i n t e g e r , e n d o r d i n t e g e r , r o u t e i d s m a l l i n t )
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””” )

conn . commit ( )

j =0

f o r r o u t e in r o u t e l i s t :

t e m p l i s t = [ ]

c u r . e x e c u t e ( ”””

s e l e c t aaa . u s e r i d , aaa . t , aaa . ord from

( s e l e c t aa . * from

t i i aa ,

( s e l e c t sm13 from

( s e l e c t * from t r a n s i t r o u t e

where r o u t e i d ={}) a ,

sm eod13 b

where s t i n t e r s e c t s ( a . t r a n s l i n e ,

s t t r a n s f o r m ( b . geom , 32618) ) )

bb

where aa . zone=bb . sm13

−− and aa . i p e r e !=99999

) aaa ,

( s e l e c t * from t r a n s i t r o u t e where r o u t e i d ={})

bbb

where s t d i s t a n c e ( t r a n s l i n e , s t t r a n s f o r m (

s t s e t s r i d ( s t m a k e p o i n t ( l o n g i t u d e , l a t i t u d e ) ,

4326) , 32618) )<100

o r d e r by u s e r i d , t

””” . format ( r o u t e [ 0 ] , r o u t e [ 0 ] ) )

f o r row in c u r :

t e m p l i s t . append ( row )
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n= l e n ( t e m p l i s t )

i f n>1:

s t a r t t = t e m p l i s t [ 0 ] [ 1 ]

s t a r t o r d = t e m p l i s t [ 0 ] [ 2 ]

f o r i in range ( n ) :

i f i != n−1:

i f t e m p l i s t [ i ] [ 0 ] ! = t e m p l i s t [ i −1] [0 ] or

t e m p l i s t [ i ] [1]− t e m p l i s t [ i −1][1]> d a t e t i m e

. t i m e d e l t a ( h o u r s =1) or t e m p l i s t [ i ] [2]−

t e m p l i s t [ i −1][2]>3:

e n d t = t e m p l i s t [ i −1] [1 ]

e n d o r d = t e m p l i s t [ i −1] [2 ]

c u r . e x e c u t e ( ”””

i n s e r t i n t o s e g r o u t e p a i r s ( id ,

u s e r i d , s t a r t t , e n d t , s t a r t o r d

, end ord , r o u t e i d )

v a l u e s (%s , %s , %s , %s , %s , %s , %

s )

””” , [ j , t e m p l i s t [ i ] [ 0 ] , s t a r t t ,

e n d t , s t a r t o r d , end ord , r o u t e

[ 0 ] ] )

conn . commit ( )

s t a r t t = t e m p l i s t [ i ] [ 1 ]

s t a r t o r d = t e m p l i s t [ i ] [ 2 ]

j +=1

e l s e :

e n d t = t e m p l i s t [ i ] [ 1 ]

e n d o r d = t e m p l i s t [ i ] [ 2 ]
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c u r . e x e c u t e ( ”””

i n s e r t i n t o s e g r o u t e p a i r s ( id , u s e r i d ,

s t a r t t , e n d t , s t a r t o r d , end ord ,

r o u t e i d )

v a l u e s (%s , %s , %s , %s , %s , %s , %s )

””” , [ j , t e m p l i s t [ i ] [ 0 ] , s t a r t t , e n d t ,

s t a r t o r d , end ord , r o u t e [ 0 ] ] )

conn . commit ( )

j +=1

c u r . e x e c u t e ( ”””

drop t a b l e i f e x i s t s s e g r o u t e l i s t ;

s e l e c t id , u s e r i d , s t a r t t , e n d t , s t a r t o r d , end ord ,

r o u t e i d i n t o s e g r o u t e l i s t from s e g r o u t e p a i r s

””” )

conn . commit ( )

p r i n t ’ end f s e g r o u t e p a i r s ’ , d a t e t i m e . d a t e t i m e . now ( )

def f u p d a t e o u t p u t ( ) :

p r i n t ’ s t a r t f u p d a t e o u t p u t ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

a l t e r t a b l e s e g r o u t e p a i r s

add column modes varchar ,

add column r o u t e s m a l l i n t ,

add column i p e r e s m a l l i n t ,

add column doy s m a l l i n t ,

add column o u t p u t s m a l l i n t ,

add column r o u t e t y p e s m a l l i n t ;

up da t e s e g r o u t e p a i r s s e t
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modes=’unknown ’ ,

r o u t e =0 ,

i p e r e =0 ,

doy =0 ,

o u t p u t =0;

up da t e s e g r o u t e p a i r s a s e t

modes=g .m

from ( s e l e c t f . id , f . modes m from

( s e l e c t id , max ( n ) max from

( s e l e c t c . id , b . modes , c o u n t ( 1 ) n

from ( s e l e c t u s e r i d , t , ord , modes from

t i i ) b ,

( s e l e c t * from s e g r o u t e l i s t ) c

where b . ord>c . s t a r t o r d and b . ord<c .

e n d o r d

group by id , modes ) d

group by i d ) e ,

( s e l e c t c . id , b . modes , c o u n t ( 1 ) n

from ( s e l e c t u s e r i d , t , ord , modes from t i i )

b ,

( s e l e c t * from s e g r o u t e l i s t ) c

where b . ord>c . s t a r t o r d and b . ord<c . e n d o r d

group by id , modes

) f

where e . i d= f . i d and e . max=f . n

) g

where a . i d=g . i d ;

up da t e s e g r o u t e p a i r s a s e t
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r o u t e=g . r

from ( s e l e c t f . id , f . r o u t e r from

( s e l e c t id , max ( n ) max from

( s e l e c t c . id , b . r o u t e , c o u n t ( 1 ) n

from ( s e l e c t u s e r i d , t , ord , c a s t (

s u b s t r i n g ( r o u t e , ’ [0−9]+ ’) as i n t )

r o u t e from t i i ) b ,

( s e l e c t * from s e g r o u t e l i s t ) c

where b . ord>c . s t a r t o r d and b . ord<c .

e n d o r d

group by id , r o u t e ) d

group by i d ) e ,

( s e l e c t c . id , b . r o u t e , c o u n t ( 1 ) n

from ( s e l e c t u s e r i d , t , ord , c a s t ( s u b s t r i n g (

r o u t e , ’[0−9]+ ’) as i n t ) r o u t e from t i i ) b ,

( s e l e c t * from s e g r o u t e l i s t ) c

where b . ord>c . s t a r t o r d and b . ord<c . e n d o r d

group by id , r o u t e

) f

where e . i d= f . i d and e . max=f . n

) g

where a . i d=g . i d ;

up da t e s e g r o u t e p a i r s a s e t

o u t p u t=d . o

from ( s e l e c t c . id , round ( ( 1 . 0 * c o u n t ( 1 ) / ( end ord−

s t a r t o r d ) ) +0 .35) o
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f rom ( s e l e c t u s e r i d , t , ord , modes , c a s t (

s u b s t r i n g ( r o u t e , ’ [0−9]+ ’) as i n t ) r from t i i )

b ,

( s e l e c t * from s e g r o u t e l i s t ) c

where b . ord>c . s t a r t o r d and b . ord<c . e n d o r d and b

. modes=’ bus ’ and c . r o u t e i d =b . r

group by id , end ord , s t a r t o r d ) d

where a . i d=d . i d ;

up da t e s e g r o u t e p a i r s a s e t

o u t p u t=d . o

from ( s e l e c t c . id , round ( ( 1 . 0 * c o u n t ( 1 ) / ( end ord−

s t a r t o r d ) ) +0 .35) o

from ( s e l e c t u s e r i d , t , ord , modes , c a s t (

s u b s t r i n g ( r o u t e , ’ [0−9]+ ’) as i n t ) r from t i i )

b ,

( s e l e c t * from s e g r o u t e l i s t ) c

where b . ord>c . s t a r t o r d and b . ord<c . e n d o r d and b

. modes=’ metro ’ and c . r o u t e i d <10 and c .

r o u t e i d >0

group by id , end ord , s t a r t o r d ) d

where a . i d=d . i d ;

up da t e s e g r o u t e p a i r s a s e t

i p e r e=d . o

from ( s e l e c t c . id , round (1− (1 .0* c o u n t ( 1 ) / ( end ord−

s t a r t o r d ) ) ) o

from ( s e l e c t u s e r i d , t , ord , i p e r e from t i i ) b ,

( s e l e c t * from s e g r o u t e l i s t ) c
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where b . ord>c . s t a r t o r d and b . ord<c . e n d o r d and b

. i p e r e =99999

group by id , end ord , s t a r t o r d ) d

where a . i d=d . i d ;

up da t e s e g r o u t e p a i r s a

s e t doy= d a t e p a r t ( ’ doy ’ , b . t )

from ( s e l e c t u s e r i d , t , ord , d a t e p a r t ( ’ doy ’ , t ) d

from t i i ) b

where b . ord=round ( ( s t a r t o r d +e n d o r d ) / 2 ) ;

up da t e s e g r o u t e p a i r s s e t r o u t e t y p e =0 where r o u t e i d >0

and r o u t e i d <10;

up da t e s e g r o u t e p a i r s s e t r o u t e t y p e =1 where r o u t e i d

>=10 and r o u t e i d <250;

up da t e s e g r o u t e p a i r s s e t r o u t e t y p e =2 where r o u t e i d

>=250 and r o u t e i d <300;

up da t e s e g r o u t e p a i r s s e t r o u t e t y p e =3 where r o u t e i d

>=300 and r o u t e i d <400;

up da t e s e g r o u t e p a i r s s e t r o u t e t y p e =4 where r o u t e i d

>=400

””” )

conn . commit ( )

p r i n t ’ end f u p d a t e o u t p u t ’ , d a t e t i m e . d a t e t i m e . now ( )

def f s i m p l e f e a t u r e ( ) :

p r i n t ’ s t a r t f s i m p l e f e a t u r e ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

a l t e r t a b l e s e g r o u t e p a i r s

add column l e n g t h r e a l ,
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add column d u r a t i o n r e a l ,

add column p o i n t s i n t e g e r ;

up da t e s e g r o u t e p a i r s a s e t

l e n g t h=l / 1 0 0 0 . 0 ,

d u r a t i o n=dur / 1 0 0 0 . 0 ,

p o i n t s =c

from ( s e l e c t c . id ,

s t l e n g t h ( s t m a k e l i n e ( s t t r a n s f o r m ( s t s e t s r i d

( s t m a k e p o i n t ( l o n g i t u d e , l a t i t u d e ) , 4326) ,

32618) ) ) l ,

e x t r a c t ( epoch from ( max ( t )−min ( t ) ) ) dur ,

c o u n t ( 0 ) c

from ( s e l e c t u s e r i d , t , ord , l o n g i t u d e , l a t i t u d e

from t i i o r d e r by u s e r i d , t ) b ,

( s e l e c t * from s e g r o u t e l i s t ) c

where b . ord>c . s t a r t o r d and b . ord<c . e n d o r d

group by id , end ord , s t a r t o r d ) d

where a . i d=d . i d ;

””” )

conn . commit ( )

p r i n t ’ end f s i m p l e f e a t u r e ’ , d a t e t i m e . d a t e t i m e . now ( )

def f d e l e t e r e c o r d ( ) :

p r i n t ’ s t a r t f d e l e t e r e c o r d ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

d e l e t e from s e g r o u t e p a i r s where i p e r e !=1;

d e l e t e from s e g r o u t e p a i r s where l e n g t h <0.2 or p o i n t s <2;
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d e l e t e from s e g r o u t e p a i r s where modes=’ metro ’ and

l e n g t h <0.3;

d e l e t e from s e g r o u t e p a i r s where modes != ’ metro ’ and

p o i n t s <5;

−− segment d u r a t i o n s h o u l d n ’ t ex c e e d 2 hours (7200

s e c o n d s )

d e l e t e from s e g r o u t e p a i r s where d u r a t i o n >7.2

””” )

conn . commit ( )

p r i n t ’ end f d e l e t e r e c o r d ’ , d a t e t i m e . d a t e t i m e . now ( )

def f f e a t u r e i n b u f f e r ( ) :

p r i n t ’ s t a r t f f e a t u r e i n b u f f e r ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

a l t e r t a b l e s e g r o u t e p a i r s

add column p o i n t s f r e q r e a l ,

add column s e g s p e e d r e a l ;

up da t e s e g r o u t e p a i r s s e t

p o i n t s f r e q =l e n g t h / p o i n t s ,

s e g s p e e d=l e n g t h / d u r a t i o n ;

a l t e r t a b l e s e g r o u t e p a i r s

−− add column b l e n g t h r e a l ,

−− add column b d u r a t i o n r e a l ,

−− add column b p o i n t s i n t e g e r ,

add column d i s t r e a l ,

add column d i s t 3 d r e a l ,

add column r o u t e f r e q i n t e g e r ,

add column r o u t e d u r i n t e g e r ,
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add column r o u t e s p e e d r e a l ,

add column s t o p f r e q r e a l

””” )

conn . commit ( )

c u r . e x e c u t e ( ””” s e l e c t id , r o u t e i d , s t a r t o r d , e nd o r d from

s e g r o u t e p a i r s

””” )

s e g r o u t e l i s t = [ ]

f o r row in c u r :

s e g r o u t e l i s t . append ( l i s t ( row ) )

f o r row in s e g r o u t e l i s t :

c u r . e x e c u t e ( ”””

up da te s e g r o u t e p a i r s aaa s e t

−− b l e n g t h=l / 1 0 0 0 ,

−− b d u r a t i o n=dur / 1 0 0 0 . 0 ,

−− b p o i n t s =c ,

d i s t =bbb . a v g d i s t ,

r o u t e f r e q =bbb . r o u t e f r e q ,

r o u t e d u r=bbb . r o u t e d u r ,

r o u t e s p e e d=bbb . r o u t e s p e e d ,

s t o p f r e q =bbb . s t o p f r e q ,

d i s t 3 d =bbb . m i n a v g d i s t 3 d

from ( s e l e c t bb . id , bb . r o u t e i d , bb .

r o u t e f r e q , bb . r o u t e d u r , bb . r o u t e s p e e d ,

bb . s t o p f r e q , bb . l , bb . dur , bb . c , bb .

a v g d i s t , min ( bb . a v g d i s t 3 d )

m i n a v g d i s t 3 d
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f rom ( s e l e c t c . id , d . r o u t e i d , e . t r i p i d ,

d . r o u t e f r e q , d . dur r o u t e d u r , d .

r o u t e s p e e d , d . s t o p f r e q ,

s t l e n g t h ( s t m a k e l i n e (

s t t r a n s f o r m ( s t s e t s r i d (

s t m a k e p o i n t ( l o n g i t u d e ,

l a t i t u d e ) , 4326) , 32618) ) ) l ,

e x t r a c t ( epoch from ( max ( t )−min ( t ) )

) dur ,

c o u n t ( 0 ) c ,

avg ( s t d i s t a n c e ( d . t r a n s l i n e ,

s t t r a n s f o r m ( s t s e t s r i d (

s t m a k e p o i n t ( l o n g i t u d e ,

l a t i t u d e ) , 4326) , 32618) ) )

a v g d i s t ,

avg ( s t 3 d d i s t a n c e ( e . t r i p l i n e ,

s t m a k e p o i n t ( s t x ( s t t r a n s f o r m

( s t s e t s r i d ( s t m a k e p o i n t (

l o n g i t u d e , l a t i t u d e ) , 4326) ,

32618) ) , s t y ( s t t r a n s f o r m (

s t s e t s r i d ( s t m a k e p o i n t (

l o n g i t u d e , l a t i t u d e ) , 4326) ,

32618) ) , d a t e p a r t ( ’ hour ’ , t )

*3600+ d a t e p a r t ( ’ m i n u t e ’ , t )

*60+ d a t e p a r t ( ’ second ’ , t ) ) ) )

a v g d i s t 3 d
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f rom ( s e l e c t u s e r i d , t , ord ,

l o n g i t u d e , l a t i t u d e from t i i where

ord>{} and ord<{} o r d e r by ord ) b

,

( s e l e c t * from s e g r o u t e l i s t

where r o u t e i d ={}) c ,

( s e l e c t * from t r a n s i t r o u t e

where r o u t e i d ={}) d ,

( s e l e c t * from t r a n s i t t r i p where

r o u t e i d ={}) e

−− where b . ord>c . s t a r t o r d and b . ord<c .

e n d o r d and c . r o u t e i d =d . r o u t e i d and d . r o u t e i d =e

. r o u t e i d

group by c . id , d . r o u t e i d , e . t r i p i d ,

d . r o u t e f r e q , d . dur , d .

r o u t e s p e e d , d . s t o p f r e q ) bb

group by bb . id , bb . r o u t e i d , bb .

r o u t e f r e q , bb . r o u t e d u r , bb .

r o u t e s p e e d , bb . s t o p f r e q , bb . l , bb .

dur , bb . c , bb . a v g d i s t ) bbb

where aaa . i d=bbb . i d and aaa . i d ={};

””” . format ( row [ 2 ] , row [ 3 ] , row [ 1 ] , row [ 1 ] , row

[ 1 ] , row [ 0 ] ) )

conn . commit ( )

p r i n t ’ end f f e a t u r e i n b u f f e r ’ , d a t e t i m e . d a t e t i m e . now ( )

def f d e l e t e r e c o r d 2 ( ) :

p r i n t ’ s t a r t f d e l e t e r e c o r d 2 ’ , d a t e t i m e . d a t e t i m e . now ( )
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c u r . e x e c u t e ( ”””

−− d e l e t e p a i r s w i t h o n l y one p o i n t ( r o u t e c r o s s i n g

segment )

d e l e t e from s e g r o u t e p a i r s where p o i n t s =1;

−− d e l e t e i f d i s t 3 d i s empty !

d e l e t e from s e g r o u t e p a i r s where COALESCE( d i s t 3 d : : t e x t

, ’ ’ ) = ’ ’ ;

a l t e r t a b l e s e g r o u t e p a i r s

add column r o u t e t r e a l ,

add column s e g t r e a l ;

up da t e s e g r o u t e p a i r s a s e t

r o u t e t = r o u t e a v g t

from t r a n s i t r o u t e b

where a . r o u t e i d =b . r o u t e i d ;

up da t e s e g r o u t e p a i r s a s e t

s e g t =( d a t e p a r t ( ’ hour ’ , s t a r t t ) *3600+ d a t e p a r t ( ’

m i nu t e ’ , s t a r t t ) *60+ d a t e p a r t ( ’ second ’ , s t a r t t )+

d a t e p a r t ( ’ hour ’ , e n d t ) *3600+ d a t e p a r t ( ’ m i n u t e ’ ,

e n d t ) *60+ d a t e p a r t ( ’ second ’ , e n d t ) ) / 2 . 0

””” )

conn . commit ( )

p r i n t ’ end f d e l e t e r e c o r d 2 ’ , d a t e t i m e . d a t e t i m e . now ( )

def f f e a t u r e d i f f ( ) :

p r i n t ’ s t a r t f f e a t u r e d i f f ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

a l t e r t a b l e s e g r o u t e p a i r s

add column f r e q d i f f r e a l ,
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add column s p e e d d i f f r e a l ,

add column t d i f f r e a l ;

up da t e s e g r o u t e p a i r s s e t

f r e q d i f f =( p o i n t s f r e q −s t o p f r e q ) / p o i n t s f r e q ,

s p e e d d i f f =( s e g s p e e d−r o u t e s p e e d ) / s e g s p e e d ,

t d i f f =s e g t−r o u t e t

””” )

conn . commit ( )

p r i n t ’ end f f e a t u r e d i f f ’ , d a t e t i m e . d a t e t i m e . now ( )

def f f e a t u r e c o m b o ( ) :

p r i n t ’ s t a r t f f e a t u r e c o m b o ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

a l t e r t a b l e s e g r o u t e p a i r s

add column combo1 r e a l ,

add column combo2 r e a l ,

add column combo3 r e a l ,

add column combo4 r e a l ,

add column combo5 r e a l ;

up da t e s e g r o u t e p a i r s s e t

combo1=l e n g t h / d i s t ,

combo2=l e n g t h / d i s t 3 d ,

combo3=l e n g t h / abs ( t d i f f ) ,

combo4=l e n g t h / ( d i s t * abs ( t d i f f ) * abs ( f r e q d i f f ) ) ,

combo5=l e n g t h / ( d i s t 3 d * abs ( f r e q d i f f ) )

””” )

conn . commit ( )

p r i n t ’ end f f e a t u r e c o m b o ’ , d a t e t i m e . d a t e t i m e . now ( )
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def f f e a t u r e r a t i o ( ) :

p r i n t ’ s t a r t f f e a t u r e r a t i o ’ , d a t e t i m e . d a t e t i m e . now ( )

c u r . e x e c u t e ( ”””

a l t e r t a b l e s e g r o u t e p a i r s

add column l e n g t h r r e a l ,

add column d u r a t i o n r r e a l ,

add column p o i n t s r r e a l ,

add column d i s t r r e a l ,

add column d i s t 3 d r r e a l ,

add column f r e q r r e a l ,

add column s p e e d r r e a l ,

add column combo1 r r e a l ,

add column combo2 r r e a l ,

add column combo3 r r e a l ,

add column combo4 r r e a l ,

add column combo5 r r e a l ;

up da t e s e g r o u t e p a i r s aa s e t

−−m u l t i p l y by 1 . 0 t o g e t r e a l r e s u l t r a t h e r than

i n t e g e r

l e n g t h r =l e n g t h / l max ,

d u r a t i o n r =d u r a t i o n / dur max ,

p o i n t s r =1.0* p o i n t s / c max ,

d i s t r = d i s t / d min ,

d i s t 3 d r = d i s t 3 d / d3d min ,

f r e q r = f r e q d i f f / f r e q d i f f m i n ,

s p e e d r= s p e e d d i f f / v d i f f m i n ,

combo1 r=combo1 / combo1 max ,
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combo2 r=combo2 / combo2 max ,

combo3 r=combo3 / combo3 max ,

combo4 r=combo4 / combo4 max ,

combo5 r=combo5 / combo5 max

from ( s e l e c t b . id , max ( a . l e n g t h ) l max , max ( a .

d u r a t i o n ) dur max , max ( a . p o i n t s ) c max ,

min ( a . d i s t ) d min , min ( a . d i s t 3 d ) d3d min ,

min ( a . f r e q d i f f ) f r e q d i f f m i n , min ( a .

s p e e d d i f f ) v d i f f m i n ,

max ( a . combo1 ) combo1 max , max ( a . combo2 )

combo2 max , max ( a . combo3 ) combo3 max , max (

a . combo4 ) combo4 max , max ( a . combo5 )

combo5 max

from s e g r o u t e p a i r s a ,

s e g r o u t e p a i r s b

where a . s t a r t o r d <b . e n d o r d and b . s t a r t o r d <a .

e n d o r d and a . u s e r i d =b . u s e r i d

group by b . i d ) bb

where aa . i d=bb . i d

””” )

conn . commit ( )

p r i n t ’ end f f e a t u r e r a t i o ’ , d a t e t i m e . d a t e t i m e . now ( )

def f l e a r n i n g ( l e a r n i n g m e t h o d , n t r e e s , n i t e r a t i o n , v a r i a b l e s ) :

g l o b a l t r a i n , t e s t , t e s t a c c , t e s t a c c l e n , z , z l e n

p r i n t ’ s t a r t f l e a r n i n g ’ , d a t e t i m e . d a t e t i m e . now ( )
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p r i n t ” method :{} , i t e r a t i o n :{} , v a r i a b l e s :{} ” . format (

l e a r n i n g m e t h o d , n i t e r a t i o n , v a r i a b l e s )

c u r . e x e c u t e ( ””” s e l e c t u s e r i d , doy , c o u n t ( 1 ) n from

( s e l e c t * from s e g r o u t e p a i r s

−− where r o u t e i d <400 and c a s t ( s u b s t r i n g (

r o u t e , ’[0−9]+ ’) as i n t e g e r )<400

) a

−− where

−− i p e r e != ’99999 ’

−− and

−− modes=’ bus ’ or modes=’ metro ’

−− and

−− modes != ’ unknown ’

group by u s e r i d , doy””” )

u s e g = [ ]

f o r row in c u r :

u s e g . append ( l i s t ( row ) )

t r a i n a c c = [ ]

t e s t a c c = [ ]

t e s t a c c l e n = [ ]

f o r i t in range ( n i t e r a t i o n ) :

random . s h u f f l e ( u s e g )

# 80% o f s e g m e n t s as t r a i n s e t

t r a i n r a t i o =0 .8

t r a i n = [ ]

f o r i in range ( i n t ( t r a i n r a t i o * l e n ( u s e g ) ) ) :
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c u r . e x e c u t e ( ””” s e l e c t u s e r i d , id , modes , r o u t e ,

r o u t e i d , l e n g t h , {} , o u t p u t from s e g r o u t e p a i r s

where u s e r i d = ’{} ’ and doy={}””” . format (

v a r i a b l e s , u s e g [ i ] [ 0 ] , u s e g [ i ] [ 1 ] ) )

f o r j in c u r :

t r a i n . append ( l i s t ( j ) )

# Boolean

t r a i n y = [ a [−1] f o r a in t r a i n ]

t r a i n x = [ ]

# number o f p o i n t s , avg d i s t a n c e and p o i n t r a t i o as i n p u t

f o r row in t r a i n :

t r a i n x . append ( row [ 6 : −1 ] )

i f l e a r n i n g m e t h o d == ’ r f ’ :

model = R a n d o m F o r e s t C l a s s i f i e r ( n e s t i m a t o r s = n t r e e s ,

n j o b s =−1) . f i t ( t r a i n x , t r a i n y )

e l i f l e a r n i n g m e t h o d == ’ l o g i t ’ :

model = L o g i s t i c R e g r e s s i o n ( ) . f i t ( t r a i n x , t r a i n y )

d e l t r a i n , t r a i n x , t r a i n y

# 20% o f s e g m e n t s as t e s t s e t

t e s t = [ ]

f o r i in range ( i n t ( t r a i n r a t i o * l e n ( u s e g ) ) , l e n ( u s e g ) ) :

c u r . e x e c u t e ( ””” s e l e c t u s e r i d , id , modes , r o u t e ,

r o u t e i d , l e n g t h , {} , o u t p u t from s e g r o u t e p a i r s

where u s e r i d = ’{} ’ and doy={}””” . format (

v a r i a b l e s , u s e g [ i ] [ 0 ] , u s e g [ i ] [ 1 ] ) )

f o r j in c u r :
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t e s t . append ( l i s t ( j ) )

t e s t y = [ a [−1] f o r a in t e s t ]

t e s t x = [ ]

f o r row in t e s t :

t e s t x . append ( row [ 6 : −1 ] )

p re d = [ i f o r i in model . p r e d i c t ( t e s t x ) ]

acc = s k l e a r n . m e t r i c s . a c c u r a c y s c o r e ( t e s t y , pred ,

n o r m a l i z e =True )

c u r . e x e c u t e ( ”””

drop t a b l e i f e x i s t s u s e g a c c u r a c y ;

c r e a t e temp t a b l e u s e g a c c u r a c y ( i d i n t e g e r ,

s t a r t o r d i n t e g e r , e n d o r d i n t e g e r , r o u t e s m a l l i n t

, r o u t e i d s m a l l i n t , o u t p u t s m a l l i n t , pred

s m a l l i n t )

””” )

conn . commit ( )

f o r i in range ( l e n ( t e s t ) ) :

c u r . e x e c u t e ( ”””

i n s e r t i n t o u s e g a c c u r a c y s e l e c t id , s t a r t o r d ,

end ord , r o u t e , r o u t e i d , o u t p u t , {} f rom

s e g r o u t e p a i r s where i d ={}

””” . format ( p r e d [ i ] , t e s t [ i ] [ 1 ] ) )

conn . commit ( )

c u r . e x e c u t e ( ”””

drop t a b l e i f e x i s t s t i i a c c u r a c y ;
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c r e a t e t a b l e t i i a c c u r a c y ( ord i n t e g e r , gps geometry ,

t e s t boolean , t e s t l a g boolean , c o r r e c t boolean ,

c o r r e c t l a g boolean , l e n g t h r e a l , r o u t e s m a l l i n t ,

r o u t e i d s m a l l i n t , o u t p u t s m a l l i n t , pred s m a l l i n t )

;

i n s e r t i n t o t i i a c c u r a c y s e l e c t ord , s t t r a n s f o r m (

s t s e t s r i d ( s t m a k e p o i n t ( l o n g i t u d e , l a t i t u d e ) ,

4326) , 32618) , f a l s e , f a l s e , f a l s e , f a l s e , 0 , c a s t

( s u b s t r i n g ( r o u t e , ’ [0−9]+ ’) as i n t ) , 0 , 0 , 0 from

t i i ;

up da t e t i i a c c u r a c y a s e t

l e n g t h=l

from ( s e l e c t ord , s t d i s t a n c e ( gps , l a g ( gps ) ove r

( o r d e r by ord ) ) l from t i i a c c u r a c y ) b

where a . ord=b . ord ;

up da t e t i i a c c u r a c y a s e t

t e s t =t r u e ,

c o r r e c t = t r u e

from ( s e l e c t ord , c o u n t ( 1 ) n

from ( s e l e c t ord from t i i a c c u r a c y ) b ,

( s e l e c t * from u s e g a c c u r a c y ) c

where b . ord>c . s t a r t o r d and b . ord<c .

e n d o r d

group by ord ) d

where a . ord=d . ord ;

up da t e t i i a c c u r a c y a s e t

t e s t l a g =l a g
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f rom ( s e l e c t ord , l a g ( t e s t ) ove r ( o r d e r by ord )

l a g from t i i a c c u r a c y ) b

where a . ord=b . ord ;

up da t e t i i a c c u r a c y a s e t

c o r r e c t = f a l s e ,

r o u t e=e . r o u t e ,

r o u t e i d =e . r o u t e i d ,

o u t p u t=e . o u t p u t ,

pred=e . pred

from ( s e l e c t ord , r o u t e , r o u t e i d , o u t p u t , pred

from ( s e l e c t b . ord , b . r o u t e , c . r o u t e i d , c .

o u t p u t , c . pred , row number ( ) ove r (

p a r t i t i o n by b . ord o r d e r by c . o u t p u t des c )

as rnum

from ( s e l e c t ord , r o u t e from t i i a c c u r a c y

) b ,

( s e l e c t * from u s e g a c c u r a c y where

o u t p u t != pred ) c

where b . ord>c . s t a r t o r d and b . ord<c .

e n d o r d

) d

where rnum =1) e

where a . ord=e . ord ;

up da t e t i i a c c u r a c y a s e t

r o u t e=e . r o u t e ,

r o u t e i d =e . r o u t e i d ,

o u t p u t=e . o u t p u t ,

pred=e . pred
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f rom ( s e l e c t ord , r o u t e , r o u t e i d , o u t p u t , pred

from ( s e l e c t b . ord , b . r o u t e , c . r o u t e i d , c .

o u t p u t , c . pred , row number ( ) ove r (

p a r t i t i o n by b . ord o r d e r by c . o u t p u t des c )

as rnum

from ( s e l e c t ord , r o u t e from t i i a c c u r a c y

where c o r r e c t =True ) b ,

( s e l e c t * from u s e g a c c u r a c y where

o u t p u t=pred and o u t p u t =1) c

where b . ord>c . s t a r t o r d and b . ord<c .

e n d o r d

) d

where rnum =1) e

where a . ord=e . ord ;

up da t e t i i a c c u r a c y s e t

c o r r e c t = f a l s e where c o r r e c t =True and r o u t e !=

r o u t e i d ;

up da t e t i i a c c u r a c y a s e t

c o r r e c t = t r u e

from ( s e l e c t b . ord , c o u n t ( 1 ) n

from ( s e l e c t ord , r o u t e from t i i a c c u r a c y

where c o r r e c t = f a l s e ) b ,

( s e l e c t ord , r o u t e from t i i a c c u r a c y

where c o r r e c t = t r u e ) c

where abs ( b . ord−c . ord )<16 and b . r o u t e=c . r o u t e

group by b . ord

) d

where a . ord=d . ord ;
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up da t e t i i a c c u r a c y a s e t

c o r r e c t l a g =l a g

from ( s e l e c t ord , l a g ( c o r r e c t ) ov er ( o r d e r by ord

) l a g from t i i a c c u r a c y ) b

where a . ord=b . ord

””” )

conn . commit ( )

c u r . e x e c u t e ( ”””

s e l e c t sum ( ca se when c o r r e c t and c o r r e c t l a g t h e n

l e n g t h e l s e 0 end ) / sum ( case when t e s t and t e s t l a g

t h e n l e n g t h e l s e 0 end )

from t i i a c c u r a c y where t e s t = t r u e and t e s t l a g =

t r u e group by t e s t

””” )

f o r row in c u r :

t e s t a c c l e n . append ( l i s t ( row ) [ 0 ] )

p r i n t ’ t e s t a c c u r a c y ={} , s t d ={} ( l e n g t h ) ’ . format ( np . mean (

t e s t a c c l e n ) , np . s t d ( t e s t a c c l e n ) )

p r i n t ’ end f l e a r n i n g ’ , d a t e t i m e . d a t e t i m e . now ( )

f i n i t i a l i z e ( )

f t r a n s i t t r i p ( )

f t r a n s i t r o u t e ( )

f z o n e r o u t e ( )

f d a t a m o b i l e d a t a f e t c h ( )

f t i i c o r r e c t i o n ( )

f s e g r o u t e p a i r s ( )
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f u p d a t e o u t p u t ( )

f s i m p l e f e a t u r e ( )

f d e l e t e r e c o r d ( )

f f e a t u r e i n b u f f e r ( )

f d e l e t e r e c o r d 2 ( )

f f e a t u r e d i f f ( )

f f e a t u r e c o m b o ( )

f f e a t u r e r a t i o ( )

f l e a r n i n g ( ’ r f ’ , 100 , 10 , ’ r o u t e t y p e , l e n g t h , d i s t 3 d ,

p o i n t s f r e q , combo1 r , combo2 r , combo3 r , combo4 r , combo5 r ’

)
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