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ABSTRACT 

Energy performance analysis through the ongoing commissioning of houses in northern Canada 

Behrad Bezyan 

Ongoing commissioning of buildings is used for the analysis the energy performance and 

operation of the heating ventilating and air conditioning (HVAC) systems, based on the 

measurements of physical variables in an existing building. Prediction of heating energy demand, 

detection of abnormal energy performance and operation conditions, identifications of variables 

that affect the normal operation and performance are the goals of ongoing commissioning of 

buildings, as covered in this thesis. 

This thesis proposes the development of benchmarking models to be used for the ongoing 

commissioning of the energy performance of heating system in two semi-detached houses of 

Inuvik, NWT, Canada. The scope is the comparison of the recorded measurements with the 

benchmarking models` predictions to detect changes in the energy performance. This is the first 

step in the ongoing commissioning, which is normally followed up by the identification of causes 

of such a change. This study compares the quality of predictions when the benchmarking model 

uses the static and augmented window techniques for retraining. On the average, over a longer 

prediction time interval, the measurements of total heating energy demand are close with the 

predictions of the benchmarking model that uses the static window technique. When the 

benchmarking models are retrained by using the augmented window technique, their predictions 

are useful for the comparison with measurements over shorter time intervals. The comparison 

between measurements and predictions as well as the analysis of information extracted from the 
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daily signature of heating energy demand reveal more significant changes in the operation of 

heating system of house A compared with house B. 

Another section of this thesis presents the application of the Principal Component Analysis 

(PCA) for the definition of the threshold of normal operation of the heating system in two houses, 

the detection of outliers in the PC-based space of the heating system operation, and the 

identification of those system variables which are the source of outliers. This case study uses 

measurements collected in December 2014 as the training data set, which is then applied to 

measurements of February 2015 as the application data set. The temperature of supply and return 

water temperature for heating one house are the major sources of outliers identified from data of 

February 2015. The identification by the PCA of variables with abnormal values is validated by 

using of a modified data set. 
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1. INTRODUCTION  

Energy performance analysis of the buildings is an important issue for monitoring energy 

use and identifications of the malfunctions in the system. 

For analysis the energy performance of the buildings, two approaches are commonly used; 

(1) forward modeling, and (2) inverse modeling. Forward modeling is simulation and can be 

conducted by various software, and inverse modeling is data mining, which monitored values 

within a period of time are deployed for analysis. 

Energy performance analysis of the ongoing commissioning houses in this study is 

conducted using data inverse modeling. This study presents the analysis of energy performance of 

two units of a semi-detached houses located in Inuvik, Northwest Territories, Canada, from the 

measurements carried out from October 1, 2014 to September 30, 2015. Measurements at one-

minute time interval of the water and air temperatures, the water and air flow rates, and the monthly 

natural-gas usage were available from the Arctic Energy Alliance. The outdoor air temperatures 

were obtained from Environment Canada at 60 minutes time interval. 

The analysis is based only on the available measurements, without any additional inquiries 

or short-term measurements about the change in people’s energy-related behavior, the change in 

controls of heating and ventilation systems, or the integrity and accuracy of monitoring system. 

The remarkable scopes of analysis of the monitored data are; (1) development of 

benchmarking models using linear regression for prediction of heating energy demand, and (2) 

detection of variables which are the major sources of outliers, with application of PCA method. 
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Results are presented at different levels of time integration by using annual, monthly, daily 

and hourly values. 

This thesis proposes an approach for using the measurements recorded in these two houses 

for the ongoing commissioning process that consists in the comparison of measured data with 

predictions from benchmarking models as discussed in section 5. As an example, the daily 

signatures of space heating energy demand for houses A and B are developed using data in 

December 2014. Over the time period of January 1 to March 31, 2015 the house A has 7.8% less 

daily space heating energy demand than the predicted daily values. On the contrary, the house B 

has 3.6% more daily space heating energy demand than the predicted daily values. 

Another section of this thesis which is discussed in section 6 is application of Principal 

Component Analysis (PCA) method for outliers` detection and identification of the variables 

which are the main sources of outliers for space heating system. An ellipsoid threshold model in 

December 2014 is developed and it is applied in another data set in order to detect the outliers and 

variables in the data set. It was concluded that, supply and return temperature of water for space 

heating for house B, are the main sources of outliers in application data set (February 2015). 
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2. LITERATURE REVIEW 

Building sector is one of the principle source of energy consumption, approximately 30% 

of the total energy use of the world according to the key world statistics of 2017 [1]. Therefore, it 

is really important to analyze the energy performance of the buildings in order to save a great deal 

of energy and make them more efficient, and furthermore, schedule a suitable maintenance plan 

for equipment of the heating, ventilating and air conditioning (HVAC) systems. 

Energy performance analysis of the buildings are introduced in two approaches: (1) 

Forward modeling, and (2) Inverse modeling. Simulation using various simulation programs, such 

as e-QUEST [2], EnergyPlus [3], TRNSYS [4] etc. is forward modeling. In forward modeling, 

description characteristics of the building, such as geometry, roof, walls and windows 

specifications, spec of the HVAC system equipment and etc. are defined in the simulation program. 

Inverse modeling is analysis of energy performance of the building on the basis of monitored 

historical data, such as energy consumption of building and climatic data, such as outdoor air 

temperature. Energy signature and energy benchmarking models are the inverse modellings. In 

this thesis, inverse modeling using monitored values is studied. 

2.1. Benchmarking models  

The comparison of measurements in buildings and HVAC systems with the predictions of 

benchmarking models should be applied in all possible situations to detect deterioration of 

performance or unusual operation conditions. This comparison should be an integral part of the 

ongoing commissioning process. The benchmarking models can be developed from the 

measurements of existing systems in operation by using inverse or data driven models such as the 

black box or gray box. These models are easy to develop, train and retrain if sufficient data of good 
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quality are available, and then to apply for the prediction of target variables of interest [5]. Every 

building has a unique benchmarking model, and it cannot be applied for evaluation of the energy 

performance of other buildings [6]. 

The systematic development of whole-building energy performance models as 

benchmarking model was conducted for the building retrofitting [7]. Application of fuzzy linear 

regression technique in developing benchmarking models was proposed in [8]. The accuracy of 

predictions is decreased if the benchmarking models are used over the period with different 

weather conditions from training and testing data sets [9]. A benchmarking model was used for 

the ongoing commissioning of the refrigeration system of an indoor ice rink [10]. Multivariate 

linear regression analysis with principle component analysis to consider the multicollinearity risk 

with high dimensional dataset was applied for developing a benchmarking model in [11]. A 

benchmarking model was developed for heat recovery unit in a central plant [12]. 

Fumo and Biswas [13] concluded that simple and multiple linear regression models for the 

prediction of energy consumption of single family houses, by using hourly or daily data, are 

preferred compared to other statistical models. Multilinear regression models were used for the 

development of benchmarking models for the heating and cooling energy consumption of 

residential and commercial buildings [14-18]. The comparison of models` predictions with 

measurements indicated acceptable difference [19-21].  

Liu et al. [22] proposed the development of a dynamic energy benchmarks for office 

buildings with limited data available. Zhang et al. [23] studied various benchmarking models for 

prediction of hot water energy consumption in office building, by using the change-point 

regression model (CPR), the Gaussian process regression model (GPR), the Gaussian mixture 
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regression model (GMR), and the Artificial Neural Network model (ANN) with hourly and daily 

data. 

Abushakra and Paulus [24-26] concluded that hourly monitored data of two weeks in 

swinging season is sufficient for developing a benchmarking model of whole building energy use. 

The model predictions might become poorer if more data from extreme climate are added. 

Optimum length of the observation period, time or season of the observation, required variables 

and the technique which is effective and acceptable for the user, should be considered in order to 

predict long term energy use based on the short-term measurements. 

In this study, the benchmarking models of daily space heating energy demand of two semi-

detached houses of Inuvik, NWT, Canada, are developed by using the measurements of December 

2014, as the reference or initial training data set. The benchmarking models are the employed for 

the prediction of daily heating demand over the next three months from January 1 to March 31, 

2015. This study compares the quality of predictions of two retraining techniques, the static 

window and the augmented window. The difference between the predictions and measurements of 

the application time interval reveal changes in the heating energy demand. 

Li et al. [5] presented a review regarding different methods which are used in 

benchmarking building energy consumption as presented in Table 2.1. 
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Table 2.1: Energy benchmarking models 

Method Input 
Time resolution 

level 
Application 

B
la

ck
 b

o
x
 

Bin method 
Day of the week, hour of the 

day, weather data 

Multiple 

resolution 
Fault detection 

Linear regression 
Day type, weather data, 

historical data 

Multiple 

resolution 
Fault detection, load prediction  

Support vector 

regression 
Weather data 

Multiple 

resolution 

Prediction of cooling load, 

monthly utility bill split 

Gaussian process 

regression  

Weather data, other selected 

explanatory variables 

Multiple 

resolution 

Retrofit analysis, replacement 

of detailed simulation  

Artificial neural 

network  

Weather data, time, 

DHW/heating system and 

equipment properties, energy 

consumption patterns, dwelling 

characteristics 

Hourly 

Prediction of cooling load, hot 

water heating load, space 

heating load, total energy 

consumption, fault detection  

Decision tree  

Weather data, building type, 

ownership of electric appliance, 

building area 

Annually 
Electricity prediction, total 

energy prediction 

G
ra

y
 b

o
x
 Bayesian 

network  

Weather data, known 

parameters, prior distribution of 

unknown parameters, historical 

energy consumption data 

Daily Energy consumption estimation 

RC network  
Weather data, historical energy 

consumption data  
Hourly 

Building heating/cooling load 

prediction, demand control  

W
h

it
e 

b
o

x
 

Normative 
Weather data, simplified 

building design parameters 
Hourly, monthly 

Energy source planning, energy 

policy analysis, retrofit analysis 

Idealized model 

based 

Weather data, simplified 

building design parameters 
Hourly 

Energy consumption 

benchmark, optimal control  

Modified bin 

method 

Weather data, simplified 

building design parameters 
Hourly  Fault detection 

Detailed 

simulation  

Weather data, simplified 

building design parameters 
Sub-hourly 

Monthly utility bill split, fault 

detection, retrofit analysis, load 

prediction  

 

In this study, simple linear regression technique from black box method for developing the 

benchmarking models with application of static and augmented window methods are deployed for 

analysis of daily heating energy demand of semi-detached houses, located in Inuvik, NWT. 

Predicted values which are acquired by trained models in the benchmarking models are compared 

with the actual measurements in the prediction data sets and the accuracies of the models are 
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evaluated with Coefficient of determination (R2), application of Root-mean-square-error (RMSE) 

and coefficient of variance for root-mean-square-error CV(RMSE). 

Coefficient of determination (R2) is a measure for presentation the correlation of two 

variables to each other and evaluate the benchmarking model with using Equation 2.1 from 

reference [27]. Root-mean-square-error (RMSE) which quantifies the typical size of errors in 

prediction, and Coefficient of variance of the root-mean-square-error (CV(RMSE)) are the other 

parameters which are used in order to evaluate the quality of the fitting and prediction accuracy 

versus real measurements and calculated with Equations 2.2 and 2.3 from reference [27]. 

R2 = [1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖=1

] . 100                                                                                                       2.1 

RMSE = √
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛−1
 2.2 

CV (RMSE) = 
√

∑ (ŷi−yi)2n
i=1

n−1

y̅
 . 100 2.3 

R2 value varies between 0 and 100%. If R2 is zero, the variation of the variables has no 

impact on the predicted variables. If R2 is 100%, the model explains that, variation in variable has 

the highest impact on the predictions. R2 bigger that 75% has an acceptable relationship between 

energy demand and considered variable [9]. 

where: 𝑦𝑖 = the measured value 

 𝑦̂𝑖 = the predicted value 

 𝑦̅𝑖 = the average measured values 

 

n = the number of data which are used for the development of the benchmarking 

model 
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According to [28], the model predictions of the whole building energy consumption, when 

using hourly data, is acceptable if CV(RMSE) is less than 30%; and the model using monthly data 

is acceptable if CV(RMSE) is between 5 to 15%. Since the ASHRAE guideline 14 does not specify 

the acceptance criterion for the models using daily data, the maximum value of CV(RMSE) of 

30% is used in this study. 

2.2. Energy signature  

Energy signature is a graphical linear regression method which presents the actual energy 

performance of the building which is correlated with climatic variables [29-33]. Energy signature 

is used for comparison of actual consumption of a building with other results such as predictions 

or consumptions previous years, in order to compare the energy consumption calculations with 

actual performance. Also, it can be used as a pre-energy audit to remark the malfunctions or 

problems in energy consumption, which can be a suitable method for the customer awareness. 

Energy signature is made on a Cartesian plane, which x-axis represents external climatic parameter 

and y-axis presents energy performance. The weather-dependent energy signature is shown in 

Equation 2.4; 

E = a . TO + b                                                                                                                                     2.4 

where: E = is the energy use (demand) in MJ/m2 or kWh/m2 per unit or time, which can 

be per month, day or hour 

 𝑎 = the slope, in MJ/m2 or kWh/m2 per unit of temperature 

 TO = the average outdoor temperature in oC 

 b = the intersect in MJ/m2 or kWh/m2 
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There are three energy signature curves: (1) real energy signature, (2) design energy 

signature, (3) energy signature by law [31]. Real energy signature presents the real measured 

consumption or building energy performance over a period of time, and it is a linear regression of 

data, which, energy consumption is increased when outdoor air temperature is dropped. Analysis 

of energy consumption via energy signature, provides a determination of a design reference curve 

which is named design energy signature. As a case in point weekly data is compared with the 

developed curve to detect abnormal performances. Another proposed type of energy signature is 

called energy signature by law. If the building has a good thermal insulation, energy signature 

slope presents that, lower slope has lower heat loss. Belussi et al. [31] discussed that, with 

comparison of real energy signature with energy signature by law, energy consumption reduction 

regarding thermal resistance is compiled law. Moreover, the potential of enhancing houses envelop 

for energy consumption reduction, and cost effectiveness is determined via this comparison. 

A building energy performance is provided via comparison of design energy signature and 

real energy signature. If these two curves overlap, it shows that building performance meets the 

design stage analysis, and if they do not overlap and they have two different slopes, it is concluded 

that energy performance of the building varies from the design model. So, in this case, real energy 

signature will provide some signs of the reason for abnormal energy performance of heating 

system. Also, based on energy signature slope and heat transfer coefficient, response of the 

building envelop to climate change can be detected [34]. 

According to the energy signature, space heating energy consumption is increased as 

outdoor air temperature is dropped below a balance-point temperature. Heating balance-point 

temperature is a temperature at which, the heat is gained from internal occupants and equipment 

balance heat loss through the building envelope. Therefore, except the energy consumption for hot 
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water, no space heating is needed when outdoor air temperature is higher than balance-point 

temperature [35]. 

2.3. Principal component analysis (PCA)-based method  

Building commissioning is a process of measuring and evaluation of the energy 

performance of a building and HVAC system with respect to the design intent and standard 

performance [36]. Katipamula and Brambley [37] showed that 15% to 30% of the energy use in 

buildings is wasted due to the degradation of HVAC equipment, unsuitable scheduled maintenance 

and systems control. A high proportion of the energy waste can be avoided with proper 

maintenance by using automated fault detection and diagnosis (FDD). Several studies focused on 

the FDD of HVAC equipment by using different data driven models [38]. One practical problem 

related to the use of accurate and time-efficient FDD techniques comes from the large number of 

measurements of several variables over extended intervals of time, many of those variables being 

correlated. 

Principal Component Analysis (PCA) method is a multivariate technique, used in other 

fields [39, 40], that can mitigate this problem by transforming the original data set of j inter-

correlated variables into a smaller data set of k independent new variables, where k < j, known as 

Principal Components (PCs). 

The literature review of [6], which used PCA for FDDs applications, is expanded with the 

papers presented in this study. Xu et al. [41] concluded that the PCA gives useful residuals for 

sensor-fault detection, diagnosis, and estimation. However, the conventional PCA-based strategy 

that directly employs raw measurements is less efficient because of noises and dynamics embodied 

in the data, than the proposed strategy using wavelet analysis and PCA. 
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Hu et al. [42] developed a self-Adaptive Principal Component Analysis (APCA) method 

that can remove erroneous temperature measurements with absolute magnitude less than 1ºC, 

which increases the efficiency of fault detection. 

Cotrufo and Zmeureanu [43] proposed the use of PCA method for the fault detection of 

sensors and degradation in equipment performance of a system. 

Gajjar et al. [44] recognized that the PCA was widely used for process fault detection, 

however, the interpretation of the principal components (PCs) is a challenging task since each PC 

is a linear combination of the original variables. They applied the sparse-PCA by restricting some 

PC loadings to zero, which results in a clearer interpretation of results. 

Beghi et al. [45] used the PCA to identify anomalies from normal operation variability and 

isolated variables related to faults, without having any prior knowledge about abnormal 

measurements. They used Statistical Process Monitoring (SPM) approach to monitor the behavior 

of the system, and a simple diagnosis table, based on experts’ diagnosis rules, to identify the shifts 

from the nominal working conditions. 

Hu et al. [46] estimated the undetectable boundary of each sensor assigned in PCA model, 

and the fault detection efficiency of eight sensors installed in a chiller, for different severe levels 

of faults. Hu et al. [47] started from the observation that the results of any data-driven method are 

highly dependent on the quality of the training data. They developed a statistical training data 

cleaning strategy for PCA-based for FDD & Reconstruction method for chiller sensors. The 

method called SPCA uses the Euclidean distance to find out outliers in the measurement data set. 

Guo et al. [48] developed an enhanced sensor fault detection and diagnosis method for the 

variable refrigerant flow (VRF) system based on Savitzky-Golay (SG) method of the PCA. The 

SG method is used for data smoothing. They concluded that the SG-PCA method is efficient and 
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reliable for FDD under large fluctuations in the VRF operation. Guo et al. [49] proposed a 

modularized PCA method for FDD of the VRF system with different numbers of indoor units 

(IDUs), and which identifies which IDU is faulty. 

The previous studies concluded that different PCA-based methods can detect faulty 

measurements or performance degradation of the HVAC system. The identification of faulty 

sensors, however, still requires additional research. 

This study expands the approach of Cotrufo and Zmeureanu [43] for the use of PCA-based 

method for the identifications of the variables which cause the abnormal performance of space 

heating. The case study uses measurements of two houses, recently built in Inuvik, NWT, Canada. 

In the context of this paper, the term “abnormal performance” is not limited to faults; it might be 

the result of changes of the operation conditions. 
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3. DATA/INFORMATION PROVIDED BY THE ARCTIC ENERGY ALLIANCE 

This study presents the energy performance of two units of the Northern Sustainable 

Housing (NSH), House A and House B, located on Reliance Street, Inuvik, NWT, Canada. Inuvik 

is situated at 68.3oN latitude. The detailed description is available in [50]: 

The design thermal resistances of houses A and B are presented in Table 3.1, and exceeds 

the minimum requirement of the Model National Energy Code of Canada for Houses (MNECH-

1997) [51]. Thermal resistance of exterior walls in these houses is 8.1 m2K/W compared with 4.75 

m2K/W in MNECH, 14.1 m2K/W for roof compared with 10.6 m2K/W in MNECH and 9.3 m2K/W 

for floor compared with 8.1 m2K/W in MNECH. The air infiltration rate at 50 Pa pressure 

difference is about 50% of the maximum value of 4.55 ACH required by MNECH. 

Two houses are supported by space frame foundations which are proved to work well in 

permafrost conditions. Therefore, the floors are exposed to the outdoor air. 

Table 3.1: Design thermal resistance (m2K/W) of house envelope 

Component Inuvik house MNECH (1997) [51] 

Exterior walls 8.1 4.75 

Roof 14.1 10.6 

Floor 9.3 8.1 

Windows 

0.97 (rear windows); 2 % of 

window-wall ratio (WWR) 

0.74 (front windows); 5.6 % of 

WWR 

- 

Doors 0.98 - 

 

Figure 3.1 shows the schematic configuration of the total HVAC system of houses A and 

B. There is One gas-fired high efficiency condensing boiler of 141,000 Btu/h (41.3 kW), with a 

manufacturer rated AFUE efficiency of 96%, serves both houses A and B. The hot water is 
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supposed to be used for space heating through radiators, the pre-heating of outdoor air before 

entering the Heat Recovery Ventilator (HRV), and for the domestic hot water. Each house has a 

separate ventilation system that is composed of a pre-heating coil and a Heat Recovery Ventilator 

(HRV). The HRV is ENERGY STAR® rated with an apparent sensible effectiveness of 0.83 at 

0ºC and 0.89 at -25ºC. 

 

Figure 3.1: Schematic configuration of the HVAC system 

 

Two storage tanks connected in series are used for the preparation of the domestic hot water 

for both houses. The cold water from the city main enters first the pre-heating tank of 119 US gal 

(450 L), where the water is pre-heated by the solar energy captured by thermal solar collectors 

(four Enerworks TL glazed flat-plate of 11.5 m2). The pre-heated water enters the main storage 



15 
 

tank, where the water is heated by the hot water from the boiler. The cold water can also enter 

directly the main storage tank. 

The simulation with RETScreen predicted that two solar collectors per unit would save 

annual natural gas about 12.6 GJ per unit. 

The electricity use on each circuit in the house was monitored by Site Sages (formerly 

emonitor).  

Electricity is used for appliances, lights, plugs, fans of heat recovery ventilator, pump for 

heating system and furnace of hot water ant etc. 

Each house has eight 224 W Sharp photovoltaic modules oriented 35º east of south, 

installed on the roof at 75º tilt angle, for a total nameplate of 1,792 W per house. The photovoltaic 

panels are monitored using the Sunnyportal website. The electricity generated by the PV panels is 

supposed to be first used by loads within the house, and the excess generation sent into the grid. 

 

Measurements recorded in these two houses at 1-min time interval were made available to 

the authors for the processing and analysis of energy performance. The thermal energy demand 

for space heating and domestic hot water are calculated by using measurements from the 

temperature sensors and the water flow meters (Appendix A). The heat recovered through the Heat 

Recovery Ventilators is calculated by using the temperature sensors and air flow meters. The 

outdoor air temperature recorded at 1-hour time interval were obtained from Environment 

Canada’s weather file (climate.weather.gc.ca). The monthly recorded natural gas use was also 

available. 
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From the measurements recorded at 1-min time over one year, from October 1, 2014 to 

September 30, 2015, the hourly, daily, monthly and annual values of the variables of interest are 

calculated, analyzed and presented in the thesis. 

 

The preliminary analysis of measurements revealed:  

1. Missing data, and erroneous data from the pre-heating coils and the heat recovery ventilator 

of unit A. The HRV of house A was mostly unused, for the purpose of assessing the 

difference in energy usage between one house with HRV (house B) and one without HRV 

(house A).  

2. The solar energy was captured in the pre-heating tank, which increased the water 

temperature by a few degrees only. However, the pre-heated water was not transferred to 

the main domestic hot water tank. That storage tank heated the cold water from the city 

main up to the desired domestic hot water temperature by using the hot water loop from 

the boiler. 
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4. ANALYSIS OF MEASUREMENTS  

4.1. Annual energy demand, use and production  

The analysis is based on measurements from October 1, 2014 to September 30, 2015. The 

formulas used for the calculation of energy demand for space heating and domestic hot water, and 

of heat recovered from the solar loop are presented in Equations 4.1, 4.2 and 4.3. 

 

Q space heating demand = Σ ṁH∙c∙(T4-T5)                                                                                                                                     4.1 

 

Q DHW = Σ ṁDHW ∙c∙(T8-T6)                                                                                                                                    4.2 

where: Q = the heat flow rate of space heating demand (kJ) 

 ṁH = the heating water flow rate (kg/min) 

 c = the specific heat of water (kJ/kg∙ºC) 

 T4 = supply water temperature from the boiler (ºC) (Figure 3.1) 

 T5 = return water temperature to the boiler (ºC) (Figure 3.1) 

where: Q = the heat flow rate of domestic hot water (kJ) 

 ṁDHW = domestic hot water flow rate (kg/min) 

 

T6 = the cold-water temperature from the city main (ºC), since the pre-heated 

water is used in the DHW storage tank (Figure 3.1) 

 

T8 = the heated domestic water temperature from storage water tank to houses A 

and B (ºC) (Figure 3.1) 
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Q solar hot water = Σ ṁDHW∙c∙(T7-T6)                                                                                                                                    4.3 

The houses A and B have almost the same annual heating energy demand that must be 

delivered by the boiler: 98.1 kWh/(m2 year) for house A, and 101.7 kWh/(m2 year) for house B 

(Table 4.1); for a difference of about 3.7%. The total heating energy demand of these two houses 

is 99.9 kWh/(m2 year), where the floor area corresponds to both houses. Since the energy demand 

of pre-heating coils is zero, the heating energy demand corresponds only to the space heating by 

radiators. 

The total energy demand for space heating and domestic hot water is 122.4 kWh/(m2 year), 

with the space heating energy demand representing 81.6% of the total. 

The annual measured natural gas energy use, for both heating the space and domestic hot 

water, is 178.2 kWh/(m2 year). By assuming the ratio of 81.6% (calculated above for the space 

heating energy demand), the gas energy use for heating is estimated at 0.816∙178.2 = 145.5 

kWh/(m2 year). The annual average thermal efficiency of the gas-fired boiler is estimated as 

122.4/178.2 = 0.69. 

where: Q = heat flow rate added to the pre-heating DHW tank by the solar loop (kJ) 

 

T6 = the cold-water temperature from the city main to the pre-heating water tank 

(Figure 3.1) 

 

T7 = the pre-heated domestic water temperature in pre-heating water tank (Figure 

3.1) 
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The electricity use in house A (81 kWh/(m2 year)) is 2.7 higher than in house B (30 

kWh/(m2 year)), for the total of 101 kWh/(m2 year) for both houses A and B. That difference might 

be due to the difference in people’s energy-related behavior in those two houses. 

Total annual electricity produced by the PV panels of 10.5 kWh/(m2 year) is 19% of the 

annual electricity us of 55.5 kWh/(m2 year) (Table 4.1).  

Total annual solar hot water production of 1.7 kWh/(m2 year) is negligible (7.5%) 

compared with the annual domestic hot water energy demand of 22.6 kWh/(m2 year). 

Table 4.1: Annual energy demand, use, and production of the two houses A and B 

 Unit House A House B Houses A+B1 

Thermal energy demand  

Heating energy demand 
MJ/m2 year 

(kWh/m2 year) 

353 

(98.1) 

366 

(101.7) 

360 

(99.9) 

Domestic hot water energy 

demand  

MJ/m2 year 

(kWh/m2 year) 

70 

(19.4) 

93 

(25.8) 

82 

(22.6) 

Total energy demand: heating 

and domestic hot water 

MJ/m2 year 

(kWh/m2 year) 

423 

(117.5) 

459 

(127.5) 

441 

(122.4) 

Total natural gas energy use for space heating and DHW 

Natural gas energy use 
MJ/m2 year 

(kWh/m2 year) 
- 

641.4 

(178.2) 

Electricity use 

Total electricity use  kWh/m2 year 81 30 55.5 

Total energy use: natural gas and electricity 

Total energy use kWh/m2 year  233.7 

Electricity and thermal energy production 

Total photovoltaic (PV) 

production 
kWh/m2 year 10 11 10.5 

Solar hot water production 

A+B 

MJ/m2 year 

(kWh/m2 year) 
- 

6 

(1.7) 

Total energy production1 MJ/m2 year 

(kWh/m2 year) 
- 

81.6 

(12.2) 

                                                           
1 The energy demand, use and production of each house is calculated with reference to floor area of each house; 

while the total energy demand, use and production of the two houses A and B is calculated with reference to the 

total floor area on those two houses. 
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4.2. Comparison between the measured annual energy demand and simulated energy 

demand  

The annual measured gas energy use of 178.2 kWh/(m2 year) exceeds the expected annual 

energy use of 121.7 kWh/(m2 year), according to the simulation with HOT2000 program in [50]. 

The simulated value for annual electricity use is 67.1 kWh/(m2 year) which exceeds the 

measured value of 55.5 kWh/(m2 year). Such differences might come from differences between 

the as-built/as-operated house characteristics and the corresponding inputs in HOT2000 program. 

It is beyond the scope of this thesis to discuss the source of differences between the measured and 

simulated energy use. 

However, it was noticed that the heating setpoint temperature input in the HOT2000 

program was 21ºC, while the measured average indoor air temperature in the winter season 

(October to March) was 28ºC in house A and 24.6ºC in house B. Those significantly higher indoor 

air temperatures led to higher energy use for space heating. 

4.3. Comparison with energy performance of other houses from publications 

For comparison purposes, Table 4.2 shows that the two houses A and B in Inuvik with 

9,769 HDD (ºC-day) that use 145.5 kWh/(m2 year) of natural gas for space heating perform better 

than the two low-energy houses in Greenland with 8,276 HDD (ºC-day), which use 90 and 140 

kWh/(m2 year), respectively.  Those two houses in Greenland are in a “warmer” weather, with 

about 1,000 HDD (ºC-day) lower than in Inuvik. 

Table 4.3 shows that the two houses in Inuvik, with the measured space heating energy use 

of 145.5 kWh/(m2 year), perform better than some houses at warmer locations and lower latitudes; 
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for instance #4 (Vienna), #8 (Warsaw), #10-12 (Toronto, Fredericton, Montreal), #15 (Oulu), #16-

17 (Regina, Winnipeg). 

Figure 4.1, shows the annual heating energy demand of Inuvik houses, the measured 

heating energy demand of passive and low-energy houses, and average heating energy use of 

conventional houses in different locations around the world versus heating degree days (HDD). 

Table 4.2: Measured annual space heating energy use of passive and low-energy houses in cold 

climate regions 

 Country City 
Year of 

measurement 

HDD 

(ºC-day) 

Latitude 

(oN) 

 

Space heating 

energy use 

kWh/m2 yr 

(MJ/m2 yr) 

House 

type 

1 Latvia Riga [52] 2010 4,193 56.97 
26 

(93.6) 
Passive 

2 Norway Oslo [52] 2010 4,344 59.9 
18 

(64.8) 
Passive 

3 Lithuania Vilnius [52] 2010 4,361 54.63 
25 

(90) 
Passive 

4 Sweden Stockholm [52] 2010 4,409 59.65 
21 

(75.6) 
Passive 

5 Finland Hyvinkää [52] 2010 4,560 60.6 
18 

(64.8) 
Passive 

6 Estonia Tallinn [52] 2010 4,649 59.47 
25 

(90) 
Passive 

7 Canada 

Fredericton, 

New Brunswick 

[53] 

2013 4,692 45.87 
4.3 

(15.48) 
Passive 

8 Norway Tromso [52] 2010 5,567 69.68 
38 

(136.8) 
Passive 

9 Finland Jyväskylä [52] 2010 5,621 62.4 
38 

(136.8) 
Passive 

10 Finland Sodankylä [52] 2010 6,955 67.37 
53 

(190.8) 
Passive 

11 Greenland Sismiut [54] 2010 8,276 66.92 
90 

(324) 

Low-

energy 

12 Greenland Sismiut [55] 2006 8,276 66.92 
140 

(504) 

Low-

energy 

13 Finland Tapanila [56] 2000 8,740 60.32 
76 

(273.6) 

Low-

energy 

14 Canada Inuvik 2014-2015 9,769 68.3 145.5 (A+B)  
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Table 4.3: Average annual space heating energy use of houses in different regions 

 Country City 
Year of 

measurement 

HDD 

(ºC-day) 

Lat 

(oN) 

Space heating 

energy use 

kWh/m2 yr 

(MJ/m2 yr) 

1 Italy Rome [57] 2004 1,525 41.8 
86.7 

(312.12) 

2 Denmark Karup [57] 2003 2,430 56.3 
37.5 

(135) 

3 France Bourges [57] 2004 2,550 47.06 
130.5 

(469.8) 

4 Austria Vienna [57] 2004 2,752 48.2 
185.2 

(666.72) 

5 Canada Vancouver [58] 2011 2,932 49.2 
141.67 

(510) 

6 Germany Kassel [57] 2003 3,070 51.4 
150 

(540) 

7 UK Newcastle [57] - 3,244 55.04 
100 

(360) 

8 Poland Warsaw [57] 2004 3,539 51.1 
190 

(684) 

9 Norway Namsos [57] 2005 3,570 64.5 
97.9 

(352.44) 

10 Canada Toronto [58] 2011 4,108 43.86 
147.2 

(529.92) 

11 Canada Fredericton [58] 2011 4,692 45.87 
155.6 

(560.16) 

12 Canada Montreal [58] 2011 4,849 45.67 
169.4 

(609.84) 

13 Sweden Ostersund [57] 2003 5,050 63.2 
37.5 

(135) 

14 Canada Calgary [58] 2011 5,086 51.11 
177.8 

(640) 

15 Finland Oulu [57] 2005 5,130 65 
176.5 

(635.4) 

16 Canada Regina [58] 2011 5,707 50.43 
163.9 

(590) 

17 Canada Winnipeg [58] 2011 5,750 49.92 
163.9 

(590) 

18 Canada Inuvik 2014-2015 9,769 68.3 145.5 (A+B) 
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Figure 4.1: Comparison of measured space heating energy demand of Inuvik houses (A and B) 

with passive and low-energy houses measurements and average energy demand of houses in 

different locations around the world 
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4.4. Monthly energy demand, use and production 

The monthly thermal efficiency of the gas-fired boiler varies between 0.77 in March 2015 

and 0.43 in July 2015 (Table 4.4). The PV production of electricity is negligible in the winter 

months; it varies between 0 and 5% of the total electricity use between October 2014 and February 

2015, and is about 7% in September 2015. 

 

Table 4.4: Monthly energy demand, use, and productions in the two houses A and B from 

October 1, 2014 to September 30, 2015 
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Month House 
MJ/m2 

month 

MJ/m2 

month 

MJ/m2 

month 

MJ/m2 

month 
(-) 

kWh/m2 

month 

kWh/m2 

month 

October 2014 
A 25.58 6.88 

37.5 56 0.67 10.8 0.4 
B 31.39 11.1 

November 2014 
A 58.17 8.16 

63.3 85.3 0.74 13.8 0 
B 52.34 7.88 

December 2014 
A 55.14 6.42 

62.5 94.3 0.66 14.7 0 
B 54.84 8.6 

January 2015 
A 64.32 2.46 

69.3 99.4 0.70 9.5 0 
B 64.67 7.14 

February 2015 
A 46.06 5.63 

57.4 91.0 0.63 10.5 0.5 
B 56.46 6.58 

March 2015 
A 37.23 7.93 

52.3 67.8 0.77 10.7 2.6 
B 46.57 12.91 

April 2015 
A 25.25 6.83 

34.4 45.3 0.76 5.5 4.2 
B 28.09 8.54 

May 2015 
A 10.67 8.64 

17.0 27.8 0.61 6.3 5.1 
B 6.41 8.25 

June 2015 
A 3.53 3.95 

8.2 13.1 0.63 13.9 3.6 
B 1.26 7.66 

July 2015 
A 0.98 4.09 

4.3 9.9 0.43 7.0 2.7 
B 0 3.5 

August 2015 
A 5.76 4.37 

10.4 17.6 0.59 7.6 1.6 
B 6.03 4.69 

September 2015 
A 20.27 4.34 

24.2 33.7 0.72 8.9 0.6 
B 17.61 6.08 
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4.5. Monthly energy signature 

The energy signature is commonly used to relate the energy demand with the outdoor air 

temperature as explained in section 2.2 (Equation 2.4): 

 

E = a . TO + b                                                                                                                                     2.4 

 

 

The coefficients a and b are identified through the least-square method applied to the 

monthly data. The coefficient a represents the house effective heat loss through the envelope, 

including the air infiltration, and the efficiency of the heating system. The coefficient a indicates 

the sensitivity of the energy demand to the weather conditions, represented in this method by the 

outdoor air temperature. Higher is the coefficient a, higher is the sensitivity of the energy demand 

to the outdoor air temperature. 

 

 

 

 

 

where: E = energy demand in MJ/(m2 month);  

 a = The slope of the weather-dependent energy demand, in MJ/(m2 ºC month) 

 b = The intersect in MJ/(m2 month) 

 To = Monthly average outdoor temperature in oC.  
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The slopes a of energy signatures of houses A and B are almost equal, i.e., 1.56 MJ/(m2 

month) for house A, and 1.72 MJ/(m2 month), which indicate that the effectiveness of thermal 

envelopes, and of the heating systems of both houses are almost equal (Figure 4.2). 

The intersects b of the two houses A and B are almost equal, i.e., 20.48 MJ/(m2 month) and 

20.66 MJ/(m2 month), respectively, which indicates that at 0 ºC outdoor air temperature, the space 

heating energy demands of those houses are almost equal. 

The intersection of the energy signature with the OX axis indicates the value of the 

reference temperature at which the heating system turns on. The monthly signature shows that in 

both houses A and B, the heating system starts when the outdoor air temperature is around 12-

13ºC. 

 

Figure 4.2: Monthly signature of space heating energy demand from October 2014 to September 

2015 
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The monthly signature of energy demand for domestic hot water (Figure 4.3) revealed that 

the energy demand of house A is about three times less sensitive to the changes in outdoor air 

temperature than of the house B (a = 0.023 for house A versus 0.085 for house B). This could be 

due to the changes in the occupancy pattern (e.g., number of people, energy-related habits). 

 

 

Figure 4.3: Monthly signature of domestic hot water energy demand from October 2014 to 

September 2015 
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almost equal variation with the decrease of outdoor air temperature (Figure 4.4). There is however 

a significant difference between the intersects b = 6.3 MJ/(m2 month) for house A and 1.95 MJ/(m2 
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Figure 4.4: Monthly signature of electricity use for appliances, fans, pumps and others end-uses 

from October 2014 to September 2015 

 

The monthly signature of natural gas use is presented in Table 4.5 versus the monthly 

average outdoor air temperature. The slope a = 2.38 MJ/(m2 oC month) reflects the sensitivity of 

the natural use to the outdoor temperature. For each 1 oC of reduction in the average monthly 

outdoor air temperature, the heating gas use is increased by 2.38 MJ/(m2 oC month). 

When the monthly average outdoor air temperature is 0 oC, the monthly natural gas use is 

39.85 MJ/(m2 month).  
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Figure 4.5: Monthly signature of natural gas use by the boiler that serves both houses A and B, 

from October 2014 to September 2015 
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Figure 4.6: Photovoltaic production in houses A and B from October 2014 to September 2015 
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4.6. Daily energy demand, use and production 

The heating energy demand of house A has larger daily variation around the mean value, 

compared with the house B (Figure 4.7 and Figure 4.8). The heating system turns on when the 

outdoor air temperature is 13.6 ºC for house A, and 13.0 ºC for house B. 

 

 

Figure 4.7: Daily signature of space heating energy demand of house A from October 2014 to 

September 2015 
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Figure 4.8: Daily signature of space heating energy demand of house B from October 2014 to 

September 2015 

 

 

The daily signature of the domestic hot water demand shows a different pattern: the daily 
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Figure 4.9: Daily signature of domestic hot water energy demand of house A from October 2014 

to September 2015 

 

Figure 4.10: Daily signature of domestic hot water energy demand of house B from October 

2014 to September 2015 
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Figure 4.11 to Figure 4.16 show the daily total heating and hot water energy demand, 

electrical use, photovoltaic production and solar hot water energy production in houses A and B. 

Total daily heating and domestic hot water energy demand in house A in Figure 4.11 shows 

more dispersion of values around the average compare to house B (Figure 4.12). Total energy 

demand for space heating and domestic hot water in house B is more dependent on daily outdoor 

temperature according to 78% coefficient of determination. 

 

 

Figure 4.11: Total daily heating & domestic hot water energy demand in house A from October 

2014 to September 2015 
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Figure 4.12: Total daily heating & domestic hot water energy demand in house B from October 

2014 to September 2015 

 

Regarding the electrical use, daily signatures in Figure 4.13 and Figure 4.14 show house B is more 

temperature-dependent in electrical use compare to house A and more dispersions exist in house 

A (Figure 4.13). 
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Figure 4.13: Daily electrical use in house A from October 2014 to September 2015 

 

Figure 4.14: Daily electrical use in house B from October 2014 to September 2015 
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Figure 4.15: Daily PV production in houses A and B from October 2014 to September 2015 
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The solar hot water production is around 0.06 MJ/(m2 oC day) when outdoor temperature 

is 0 oC as shown in Figure 4.16. 

 

Figure 4.16: Daily solar hot water energy production in houses A and B from October 2014 to 

September 2015 
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The hourly signatures of space heating energy demand are presented in Appendix A for 

comparison with the monthly and daily signatures for both houses A and B. As noticed with the 

daily energy signatures, there is a larger variation of the hourly values for house A compared with 

house B, perhaps due to changes in occupancy, thermostat settings, assuming that the heating 

system works properly. 

For comparison purposes, Table 4.5 presents the slope (a) and intersect (b) of the monthly, 

daily and hourly energy demand of houses A and B. Among the two options (i.e., monthly versus 

daily values), the rest of this report will use the daily values that have less dispersion than the 

hourly data, and give more information than the monthly data. 

 

Table 4.5: Comparison of the coefficients of the monthly, daily and hourly energy signatures of 

houses A and B 

Energy signature 

Monthly Daily Hourly 

 a  

(MJ/m2 ºC) 

 b  

(MJ/m2) 

a  

(MJ/m2 ºC) 

b  

(MJ/m2) 

a  

(MJ/m2 ºC) 

b  

(MJ/m2) 

House A B A B A B A B A B A B 

Space heating 

energy demand 
-1.56 -1.71 20.48 20.65 -0.04 -0.05 0.65 0.66 0 0.02 0 0.02 

Domestic hot 

water energy 

demand 

-0.03 -0.08 5.64 7.25 0 0 0.17 0.22 0 0 0 0 

Energy demand 

for space heating 

and domestic hot 

water 

-1.6 -1.8 26.12 27.92 -0.04 -0.05 0.83 0.9 0 0.3 0 0.3 

Total electricity 

use  
-0.08 -0.1 6.51 1.96 0 0 0 0 0 0 0 0 

Total 

photovoltaic 

(PV) production 

A+B 

0.07 2.21 2.21 0 0 0 

Solar hot water 

production A + B 
-0.16 -1.37 -1.37 0.06 -0.03 0 
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4.7. Analysis of Heat Recovery Ventilator (HRV)  

In heat recovery ventilator, outdoor air is pre-heated by passing through heat recovery 

ventilator and it is heated up by means of exiting indoor air from inside of the house and passing 

through heat recovery ventilator. The schematic view of the heat recovery ventilator is illustrated 

in Figure 4.17. The sensible thermal effectiveness of the heat recovery ventilator (HRV) (ε) (-) is 

calculated with Equation 4.4. 

 

 

 

 

ε = 
T2−T1

T3−T1
 

4.4 

 

 

 

where: T1 = the air temperature that enters the heat recovery ventilator; in the absence of 

pre-heating process T1 = TO (outdoor air temperature) (ºC) 

 

T2 = the supply air temperature leaving heat recovery ventilator and entering the 

space (ºC) 

 

T3 = the inside air temperature leaving the space and entering the heat recovery 

ventilator (ºC) 

T3 

T2 

T1 

Exhaust Air 

Inside Outside 

Figure 4.17: Schematic view of the heat recovery ventilator 
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4.7.1. Sensible thermal effectiveness of Heat Recovery Ventilator of house B 

Since there are only a few measurements of HRV in house A, some of them with errors, 

this section presents only the sensible thermal effectiveness of the HRV of house B. Equation 4.4 

shows the calculation of the sensible effectiveness from the measurements. 

Monthly (Figure 4.18), daily (Figure 4.19) and hourly (Figure 4.20) thermal effectiveness 

signatures revealed that the sensible thermal effectiveness of the HRV does not vary with the 

outdoor air temperature. The average derived value is 0.71 (Figure 4.18) from monthly data, 0.72 

from daily data, and 0.73 (Figure 4.20) from hourly data. The hourly effectiveness shows a larger 

dispersion when the outdoor air temperature is above 6-8ºC, probably due to the uncertainty of 

measurements at smaller air temperature differences. The derived effectiveness of 0.72 is lower 

than the manufacturer’s specifications of 0.83 at 0ºC and 0.89 at -25ºC. 

 

Figure 4.18: Heat recovery unit effectiveness of house B versus monthly average outdoor 

temperature from October 2014 to September 2015 
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Figure 4.19: Daily signature of the sensible effectiveness versus daily average outdoor 

temperature in house B from October 2014 to September 2015 

 

Figure 4.20: Hourly signature of the sensible effectiveness versus Hourly average outdoor 

temperature in house B from October 2014 to September 2015 
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Considering Figure 4.20, by the time that outdoor temperature is negative from -30 oC to 0 

oC, hourly thermal effectiveness is more converged and the coefficient of determination (R2) is 

higher. 

When the outdoor temperature is positive, effectiveness points commence to disperse, since 

it can be seen for the values with outdoor temperatures of above 4 oC. So, the sensible thermal 

effectiveness of the heat recovery ventilator is less temperature-dependent when outdoor 

temperatures is above 0 oC. 
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4.8. Supply and return temperature of water from boiler 

In this section, monthly, daily and hourly supply and return temperature of water from 

boiler for space heating purpose is analyzed. Toward this approach, monthly (Figure 4.21), daily 

(Figure 4.22) and hourly (Figure 4.23) supply and return signatures disclosed that, supply and 

return temperature of the water is highly sensitive to the outdoor temperature. Approximately, at 

12 oC the boiler starts to heat the supply water in order to raise water temperature to about 29 oC. 

Boiler heats the water temperature around 0.7 oC by every 1 oC decrease in outdoor air temperature.  

The pick point of supply water temperature is 57 oC (Figure 4.22). 

 

 

Figure 4.21: Supply and return water temperature versus monthly average outdoor temperature 

in house B from October 2014 to September 2015 
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Figure 4.22: Daily supply and return water temperature versus daily outdoor temperature in 

house B from October 2014 to September 2015 

 

Figure 4.23: Hourly supply and return water temperature versus daily outdoor temperature in 

house B from October 2014 to September 2015 
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Supply and return temperatures of water in every month of a year from October 2014 to 

September 2015 are presented in Table 4.6, which reveals that the heating season starts in August 

with supply temperature of 29.14 oC but low heating is required and lasts by the end of May. The 

highest heating capacity of boiler is used in January when the monthly outdoor temperature is -23 

oC, and the boiler heats up the supply water temperature to around 51 oC. 

Table 4.6: Monthly supply and return water temperature for the space heating system in house B 

Month 

Supply 

temperature to 

space (oC) 

Return 

temperature to 

boiler (oC) 

Temperature 

difference (oC) 

Outdoor air 

temperature 

(oC) 

October 2014 39.46 34.73 4.73 -5.4 

November 2014 48 39.6 8.4 -16.81 

December 2014 49.33 40.47 8.86 -21.24 

January 2015 51.25 41.13 10.12 -23.25 

February 2015 50.78 43.52 7.26 -19.9 

March 2015 45.55 39.52 6.03 -17.36 

April 2015 38.3 34.47 3.83 -6.75 

May 2015 27.38 26.6 0.78 6.86 

June 2015 26.45 26.43 ≈ 0 11.68 

July 2015 28 28.2 ≈ 0 12.45 

August 2015 29.14 28.55 0.59 9.34 

September 2015 35.34 31.33 4.01 2.47 
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4.9. Carpet plot 

Hourly energy performance distribution through days of a month is illustrated in a graph 

called Carpet plot. Carpet plots for hourly space heating and domestic hot water energy demands 

and electrical use in 31 days of January for house A are plotted in Figure 4.24 to Figure 4.26, 

respectively. 

Hourly distribution of solar hot water and photovoltaic productions in July 2015 are plotted 

in Carpet plots as shown in Figure 4.27. 

Same Carpet plots regarding energy performance distribution in April 2015 are presented 

in appendix B. 

 

Figure 4.24: Hourly heating energy demand in House A in January 2015 
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The most heating energy demand during a day is between 4 P.M to 10 P.M as Figure 4.24 

presents. 

 

Figure 4.25: Hourly domestic hot water energy demand in House A in January 2015 

 

Domestic hot water energy demand is mostly between 10 A.M to 11 P.M, which the 

highest demand is at 10 A.M. 
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Figure 4.26: Hourly total electrical use in house A in January 2015 
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Figure 4.27: Hourly photovoltaic production in House A in July 2015 

 

Photovoltaic production in house A in July 2015 happens between 7 A.M to 10 P.M (Figure 

4.27). Between 9 A.M to 5 P.M the production range is high, and the maximum PV production 

happens between 11 A.M to 3 P.M. 

The scope of the Carpet plot is hourly analysis of energy demand and production through 

days of a month which can be helpful for the mechanical room operators in order to manage 

performance of the heating equipment system. For instance, in July or even in the months when 

sunlight is high, a great deal proportion of domestic hot water demand can be provided by pre-

heating via solar hot water system which in consequence the natural gas use will be diminished. 
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4.10. Discussion 

House B uses more natural gas for space heating and domestic hot water demands and has 

less electrical use compare to house A. 

Daily energy performance values are more suitable for further analysis, due to less 

fluctuations and dispersions compare to hourly values, and more values in a specific period 

compare to monthly values so it will give more information. 

Heat recovery unit effectiveness is about 70 to 72 % during heating season. 

Supply and return water temperature from boiler for space heating is highly temperature-

dependent. 
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5. ONGOING COMMISSIONING OF HEATING SYSTEMS 

This section proposes an approach for using the measurements recorded in these two semi-

detached houses, for the ongoing commissioning that consists in the comparison of measured data 

with predictions from benchmarking models. In this study, the comparison of the heating energy 

demand of the two semi-detached houses A and B can detect abnormally higher or lower heating 

energy demand, which might be due to faults or failures of equipment or sensors, change in 

controls or people’s energy-related behavior. Those findings should be communicated as warnings 

with appropriate comments to the house’ owner or maintenance team. 

For this purpose, a data set is selected from the measurements recorded at the beginning of 

the ongoing commissioning period, from which, the benchmarking model is developed. The model 

is then used to predict the heating energy demand for the following days, eventually until the end 

of heating season. 

Measurements of the heating water flow rate, and the supply and return hot water 

temperatures for each house have been recorded at 1-minute time step, from which the hourly and 

daily values of the heating energy demand are calculated. The values of daily heating energy 

demand are almost normally distributed. The outliers, which have values outside the range ӯ ± 2·σ, 

are removed, where, 𝑦̅ is the average value, and σ is the standard deviation. Thus, 95.5% of the 

available data remained in the analysis data set [59]. 

In this study, the benchmarking model has the form of daily signature of space heating 

energy demand (Equation 2.4). The daily signature was preferred instead of monthly signature, 

because it permits the prediction of daily heating energy demand, rather than the total monthly 
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value. It was also preferred instead of hourly signature to avoid the use of high dispersion of data 

that makes the model less reliable. 

5.1. Benchmarking models 

5.1.1. Training, testing and application data sets 

The data set of measurements of December 2014 is selected as the reference, and used for 

the initial development of benchmarking models. The data set is composed of (1) the training data 

set, which is used to identify the models` coefficients, and (2) the testing data set, which deploys 

the balance of data set to verify the models` accuracy. The models are initially trained with a data 

set of the first three weeks of December 2014 (i.e., December 1-21, and tested with a data set of 

the last week of December (i.e., December 22 to 31). The tested models are then used along with 

the application (prediction) data set to estimate the daily heating energy demand. 

Once the benchmarking models are tested, they can be used unchanged over the application 

time interval by using the static window technique, or the models can be retrained with new data 

from recent measurements by using the augmented window technique. In the first case, for instance 

the daily heating energy demand is predicted for the remaining part of the heating season from 

January 1 to March 31, 2015. In the second case, the trained data set is augmented every time with 

two weeks of data. After the model is re-trained, the second week of new data is used as a testing 

data set. For instance, the models are re-trained with a data set of five weeks (December 1, 2014 

to January 4, 2015), and are tested with a data set from the following week of January 5 to 11, 

2015. The new retrained models are then used for prediction of the daily heating energy demand 

from January 12 to March 31, 2015. 
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5.1.2. Quality of predictions of benchmarking models 

Three statistical indices are used: (1) the Coefficient of determination R2 (Equation 5.1) 

[28] for the models training, and (2) the Root Mean Squared Error RMSE (Equation 5.2) and the 

Coefficient of Variance of Root Mean Squared Error (CV(RMSE)) (Equation 5.3) for the models 

testing and predictions. 

R2 = [1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖=1

] . 100 5.1 

RMSE = √
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛−1
 5.2 

CV (RMSE) = 
√

∑ (𝑦̂𝑖−𝑦𝑖)2𝑛
𝑖=1

𝑛−1

𝑦̅
 . 100 5.3 

 

where 𝑦𝑖 is the measured value, 𝑦̂𝑖 is the predicted value, 𝑦̅𝑖 is the average measured value and n 

is the number of values. 

According to [28] the model predictions of the whole building energy consumption, when 

using hourly data, is acceptable if CV(RMSE) is less than 30%; and the model using monthly data 

is acceptable if CV (RMSE) is between 5 to 15%. Since the ASHRAE guideline 14 does not specify 

the acceptance criterion for the models using daily data, the maximum value of CV(RMSE) of 

30% is used in this study. 

5.1.3. Training and testing the benchmarking models 

The daily signatures of space heating energy demand of houses A and B, identified from 

the training data set of December 2014, are almost identical (Equations 5.4 and 5.5, and Figure 5.1 

and Figure 5.2). In the case of the static window technique, these models are not retrained when 
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new data become available. When the augmented window technique is applied, the models are 

retrained every time with a new training data set, in which the previous training data set is 

augmented with new data of two weeks. 

E = -0.069·To + 0.24  [MJ/m2 day] for house A 5.4 

E = -0.07·To + 0.25 [MJ/m2 day] for house B 5.5 

 

 

Figure 5.1: Daily signature of space heating energy demand as a benchmarking model of house 

A with static window technique from data set of December 1-21, 2014 
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Figure 5.2: Daily signature of space heating energy demand as a benchmarking model of house 

B with static window technique from data set of December 1-21, 2014 

The daily signatures for both static window and augmented window techniques are 

presented in Table 5.1, reveal important information that can be extracted from the daily signatures 

about the thermal performance of these two houses: 

a. The daily heating energy demand of house B is more sensitive to the changes in the outdoor 

air temperature, as indicated by the coefficient a. By assuming the same level of thermal 

insulation of both houses, this result can indicate differences in terms of air infiltration, and 

operation of heat recovery ventilators. 

b. The temperature Tref is estimated from the daily signature, and indicates the approximate daily 

average outdoor air temperature when the heating is required in the house. The low value of 

Tref = 3.5-3.6ºC indicates important heat gains in both houses in December due to the number 
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that the internal heat gains were smaller in the house A (Tref = 20.2ºC) than in the house B (Tref 

= 4.7ºC). 

c. The house A has a higher daily heating energy demand when the daily average outdoor air 

temperature is 0ºC, as indicated by the coefficient b, calculated at the daily average outdoor air 

temperature is 0ºC. This result also indicates that the internal heat gains were smaller in the 

house A. 

d. Most CV(RMSE) values listed in Table 5.1 are below the value of 30%, which indicate that 

the trained benchmarking models have an acceptable accuracy, and thus can be used for the 

prediction purposes. The last training period of house A and the training periods of Dec.1-

Feb.15 for house B that uses the augmented window technique are the exceptions, with 

CV(RMSE) of 45-46%. 

Table 5.1: Coefficients of the trained benchmarking models, and statistical indices of the 

difference between measurements and predictions over the testing period 

 Benchmarking model E = a·To + b 
Statistical indices over the 

testing period 

House Training period 

a 

(MJ/m2 ºC 

day) 

b 

(MJ/m2day) 

Tref 

(ºC) 

RMSE 

(MJ/m2 day) 

CV(RMSE) 

(%) 

Static window technique 

A 
Dec 1-21, 2014 

-0.069 0.24 3.5 0.51 29 

B -0.07 0.25 3.6 0.20 13 

Augmented window technique 

     A 

Dec 1-21 -0.069 0.24 3.5 0.51 29 

Dec 1-Jan 4 -0.054 0.64 11.9 0.46 23 

Dec 1-Jan 18  -0.044 0.89 20.2 0.38 21 

Dec 1-Feb 1 -0.042 0.92 21.9 0.16 8 

Dec 1-Feb 15 -0.042 0.91 21.7 0.44 33 

Dec 1-March 1 -0.053 0.62 11.7 0.56 45 

B 

Dec 1-21 -0.07 0.25 3.6 0.2 13 

Dec 1-Jan 4 -0.07 0.25 3.6 0.29 16 

Dec 1-Jan 18 -0.068 0.32 4.7 0.25 14 

Dec 1-Feb 1 -0.063 0.42 6.7 0.16 8 

Dec 1-Feb 15 -0.067 0.36 5.4 0.82 46 

Dec 1-March 1 -0.05 0.78 15.6 0.25 17 
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5.1.4. Comparison of the measurements and predictions over the application period  

The scope of using these benchmarking models is to detect differences between the 

measurements of daily space heating energy demand and the expected values that are predicted by 

the benchmarking models. Large difference might indicate changes in the operation of heating 

system, changes in the number of occupants and activities, and faults in sensors. This is the first 

step in the ongoing commissioning, which is normally followed up by the identification of causes 

of such a change. 

Figure 5.3 shows an example of such a comparison over the time interval from January 1 

to March 31, 2015, when trained model developed in December 2014 was used for the predictions, 

without retraining (i.e., static window technique). For instance, when the daily average outdoor air 

temperature is -20ºC, the daily space heating energy demand of house A is predicted to be 1.6 

MJ/m2 (red line in Figure 5.3). At the same daily average outdoor air temperature, the 

measurements show the daily space heating energy demand is between 1.1 and 1.8 MJ/m2. In most 

days, the measured space heating energy demand is lower in house A than the benchmarks. 
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Figure 5.3: Predictions of the daily heating energy demand of house A using static window, and 

measurements from January 1 to March 31, 2015 

 

Figure 5.4: Predictions of the daily heating energy demand of house B using static window, and 

measurements from January 1 to March 31, 2015 
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Two statistical indices, RMSE and CV(RMSE), are used to quantify the difference between 

the measurements of the daily space heating energy demand and the benchmarks of house A and 

house B (Table 5.2 and Table 5.3). In the case of House A, the CV(RMSE) values are higher than 

the corresponding values over the testing period, and also higher than the criterion of 30% that 

shows a significant variation, especially starting with January 26 (augmented window technique) 

and February 9 (static window technique). 

In the case of House B, the CV(RMSE) values over the application period are lower than 

30% (i.e., between 21 and 23%), however higher than the values over the testing period. The results 

indicate more significant changes in the operation of heating system of house A compared with 

house B. 

Table 5.2: Statistical indices of the difference between measurements and predictions over the 

application period, when using the static window technique 

House Application period 

Statistical indices over the 

application period 

RMSE 

(MJ/m2 day) 

CV(RMSE) 

(%) 

A 

Jan 1-March 31 0.42 27 

Jan 12-March 31 0.4 27 

Jan 26-March 31 0.4 28 

Feb 9-March 31 0.44 34 

Feb 23-March 31 0.44 36 

March 9-March 31 0.46 37 

B 

Jan 1-March 31 0.36 21 

Jan 12-March 31 0.37 21 

Jan 26-March 31 0.39 22 

Feb 9-March 31 0.4 24 

Feb 23-March 31 0.31 21 

March 9-March 31 0.25 17 
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Table 5.3: Statistical indices of the difference between measurements and predictions over the 

application period, when using the augmented window technique 

House Application period 

Statistical indices over the 

application period 

RMSE 

(MJ/m2 day) 

CV(RMSE) 

(%) 

A 

Jan 1-March 31 0.42 27 

Jan 12-March 31 0.41 28 

Jan 26-March 31 0.46 32 

Feb 9-March 31 0.50 38 

Feb 23-March 31 0.50 41 

March 9-March 31 0.47 37 

B 

Jan 1-March 31 0.36 21 

Jan 12-March 31 0.37 21 

Jan 26-March 31 0.37 21 

Feb 9-March 31 0.37 23 

Feb 23-March 31 0.29 20 

March 9-March 31 0.31 21 

 

5.1.5. Estimation of total heating energy demand of application period 

The benchmarking model can be used along with the outdoor air temperature bins to 

estimate the total heating energy demand [60] over a given application period (Equation 5.6). 

 

EP = ∑ (𝑎 · 𝑇𝑂 + 𝑏) · 𝐵𝐼𝑁(𝑇𝑂)𝑛
𝑖=1   [MJ/m2]  5.6 

  

where, EP is the predicted total energy demand based on the benchmarking model; a is the slope 

and b is the intersect of the non-weather dependent energy demand, both identified during the 

training phase (Table 5.1); 𝑇𝑂 is the daily average outdoor temperature (oC); and BIN(To) is the 

number of days of occurrence of the outdoor air temperature bin having 𝑇𝑂 as centre. Table 5.4 

shows an example of the temperature bins over three months of heating season. For each 

application period, a similar table was used. 
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Table 5.4: Outdoor air temperature bins at Inuvik from January 1st to March 31st, 2015 

Temperature BIN 

(C) 
To (oC) Number of days 

-33.5 , -32.5 -33 2 

-32.5 , -31.5 -32 - 

-31.5 , -30.5 -31 3 

-30.5 , -29.5 -30 1 

-29.5 , -28.5 -29 1 

-28.5 , -27.5 -28 4 

-27.5 , -26.5 -27 4 

-26.5 , -25.5 -26 4 

-25.5 , -24.5 -25 3 

-24.5 , -23.5 -24 4 

-23.5 , -22.5 -23 1 

-22.5 , -21.5 -22 5 

-21.5 , -20.5 -21 7 

-20.5 , -19.5 -20 5 

-19.5 , -18.5 -19 3 

-18.5 , -17.5 -18 4 

-17.5 , -16.5 -17 4 

-16.5 , -15.5 -16 5 

-15.5 , -14.5 -15 3 

-14.5 , -13.5 -14 1 

-13.5 , -12.5 -13 2 

-12.5 , -11.5 -12 6 

-11.5 , -10.5 -11 - 

-10.5 , -9.5 -10 5 

-9.5 , -8.5 -9 2 

-8.5 , -7.5 -8 1 

-7.5 , -6.5 -7 - 

-6.5 , -5.5 -6 - 

-5.5 , -4.5 -5 1 

-4.5 , -3.5  4 1 

-3.5 , -2.5 -3 - 

Total  - 82 

 

 

Tables 5.5 and 5.6 summarize the comparison of the predicted heating energy demand for houses 

A and B over different time intervals, by using the static and augmented techniques for training 

the benchmarking models, with the measurements. When the models are trained in December 2014 

and used for the prediction of rest of heating season from January to March (for static and 

augmented window techniques), the difference is 7.8% (house A) and 3.6% (house B). However, 



63 
 

this result indicates that, on the average over a longer prediction time interval, the measurements 

of total heating energy demand are close with the predictions. 

For both model training techniques and all application time intervals, the measurements of total 

heating energy demand of House A are lower than the predictions, while in the case of House B 

the measurements are higher than the predictions. There is a clear difference between the two 

houses when the augmented window technique is used: the benchmarking model of House A 

overestimates the measurements by 13.2% to 23.6%, while the benchmarking model of House B 

underestimates by 3.5% to 11.3%, except the last application period when it overestimates by 

12.5%. 

In this case study, the predictions by the benchmarking models, which are retrained with the 

augmented window technique, are useful for the comparison with measurements over shorter time 

intervals. 

 

The comparison between measurements and predictions reveal more significant changes 

in the operation of heating system of House A compared with house B, and thus converges to the 

same conclusion as presented in section 5.1.4. For instance, the measurements over the prediction 

time interval of March 2 to March 31 are lower than the predictions by 23.6% (House A) and 

12.5% (House B).  
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Table 5.5: Predicted versus measured heating energy demand for houses A and B with the static 

window technique 

Data sets 

Measured space 

heating demand 

(MJ/m2)  

Predicted space 

heating demand 

(MJ/m2) 

(Predicted –

Measured)/Measured  

(%) 

Training Prediction 
House 

A 

House  

B 

House 

A 

House 

B 

House  

A 

House  

B 

Dec 1- 

Dec 21, 2014 

Jan 1- March 

31, 2015 
136.26 156.08 147.84 150.56 7.8 -3.6 

Jan 12- 

March 31, 

2015 

113.56 133.78 126.88 129.22 10.5 -3.5 

Jan 26- 

March 31, 

2015 

96.17 116.66 101.02 102.9 4.8 -13.4 

Feb 9- 

March 31, 

2015 

67.06 84.21 73.38 74.76 8.6 -12.6 

Feb 23- 

March 31, 

2015 

43.87 55.09 49.45 50.4 11.2 -9.3 

March 2- 

March 31, 

2015 

27.7 33.87 31.15 34.8 11 2.7 
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Table 5.6: Predicted versus measured heating energy demand for houses A and B with the 

augmented window technique 

Data sets 

Measured space 

heating demand 

(MJ/m2)  

Predicted space 

heating demand 

(MJ/m2) 

(Predicted –

Measured)/Measured  

(%) 

Training Prediction 
House  

A 

House  

B 

House  

A 

House  

B 

House  

A 

House  

B 

Dec 1, 2014- 

Dec 21, 2014 

Jan 1- March 31, 

2015 
136.26 156.08 147.84 150.56 7.8 -3.6 

Dec 1, 

2014- Jan 4, 

2015 

Jan 12- March 

31, 2015 
113.56 133.78 134.11 129.22 15.3 -3.5 

Dec 1, 

2014- Jan 

18, 2015 

Jan 26- March 

31, 2015 
96.17 116.66 110.85 104.82 13.2 -11.3 

Dec 1, 

2014- Feb 1, 

2015 

Feb 9- March 

31, 2015 
67.06 84.21 82.58 76.84 18.8 -9.6 

Dec 1, 

2014- Feb 

15, 2015 

Feb 23- March 

31, 2015 
43.87 55.09 56.84 52.46 22.8 -5 

Dec 1, 2014- 

March 1, 2015 

March 2- March 

31, 2015 
27.7 33.87 36.25 38.69 23.6 12.5 
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5.2. Conclusions  

This section presented the development and use of the benchmarking models using static 

and augmented window techniques, from the measurements of space heating energy demand of 

two Inuvik houses from December 1, 2014 to March 31, 2015. The statistical indices over the 

testing period indicate that the trained benchmarking models have an acceptable accuracy, and 

thus can be used for the prediction purposes. 

The benchmarking models are used to detect differences between the measurements of 

daily space heating energy demand and the expected values that are predicted by the benchmarking 

models. Large difference might indicate changes in the operation of heating system, changes in 

the number of occupants and activities, and faults in sensors. This is the first step in the ongoing 

commissioning, which is normally followed up by the identification of causes of such a change. 

This section revealed that three weeks training data set of December 2014, using static 

window technique, provides an accurate benchmarking model of the daily space heating demand 

over the rest of heating season (January to March 2015). However, this result indicates that, on the 

average over a longer prediction time interval, the measurements of total heating energy demand 

are close with the predictions.  

On the other hand, the predictions by the benchmarking models, which are retrained with 

the augmented window technique, are useful for the comparison with measurements over shorter 

time intervals.  
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6. PRINCIPAL COMPONENT ANALYSIS (PCA) METHOD FOR OUTLIER 

DETECTION AND VARIABLE IDENTIFICATION  

6.1. PCA methodology 

The method consists in the transformation of observations (measurements) of j-variables 

from the Building Automation System (BAS) into a reduced set of k-variables (k < j), which are 

known as Principal Components (PC) [61]. In other words, the observations of j-variables are 

projected into a k-dimensional PC-based space. The transformed observations in the PC-based 

space are named scores. 

The matrix of training data set Xtr (i;j) is composed of  i observations for each j variable. 

The data normalization is performed by using (Equation 6.1): 

𝑧𝑋𝑗,𝑡𝑟 =  
𝑋𝑗,𝑡𝑟 − 𝜇𝑗,𝑡𝑟

𝜎𝑗,𝑡𝑟
 6.1 

 

 

The matrix (i, j) of normalized values is then transformed into the matrix (j × j) of 

coefficients (Q), by using the PCA transformation available in Matlab [62]. The first column of 

matrix Q, corresponds to the first principal component (PC), the second column corresponds to the 

where: 𝑧𝑋𝑗,𝑡𝑟 = the j-column of the normalized training data set 

 𝑋𝑗,𝑡𝑟 = the j-column of the original training data set 

 𝜇𝑗,𝑡𝑟 = the average value of the j-column of the original training data set 

 𝜎𝑗,𝑡𝑟 = the standard deviation of the j-column of the original training data 
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second PC, and so on. The first row corresponds to the first variable listed in the original training 

data set, the second row corresponds to the second variable, and so on. 

The matrix (F) of the projection of original measurements in the PC-based space, called 

scores, is created (Equation 6.2). 

𝐹𝑡𝑟 = 𝑧𝑋𝑗,𝑡𝑟 . 𝑄 6.2 

The scores corresponding to the normal operation conditions form a cloud of points, which can be 

surrounded by a threshold or frontier. Different 2D, 3D or n-dimensional models can be used to 

analytically define the threshold. This study uses an ellipsoid threshold model (Equation 6.3). 

Those scores outside the threshold correspond to abnormal performance (Equation 6.4). 

∑
𝑓𝑖𝑗

2

(𝑠𝑥𝑗)2
= 1

𝑘

𝑗=1

 6.3 

∑
𝑓𝑖𝑗

2

(𝑠𝑥𝑗)2
˃1

𝑘

𝑗=1

 6.4 

 

 

where: fij = the score of the i-observation along the j-principal direction 

 𝑠𝑥𝑗  = the ellipsoid semi-axis along the j-principal direction 

 𝑠𝑥𝑗  = 2.𝜎𝑗 

 𝜎𝑗= the standard deviation of the scores along the j-principal direction 
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6.2. Case study  

This case study uses the measurements from October 1, 2014 to September 30, 2015 in two 

houses A and B of Inuvik, NWT, Canada. The measurements are recorded at 1-minute time step, 

from which the hourly and daily values are calculated to eliminate the noise in data. 

Measurements of December 2014 (Table 6.1) related to the space heating and domestic hot 

water (DHW) are used as reference values for the training of the ellipsoid threshold model. The 

scope of this study is to identify those variables that might affect the heating and domestic hot 

water energy demands of February 2015 compared with the reference month of December 2014. 

Table 6.1: Measured variables of space heating and DHW for houses A and B 

System Variables Unit Symbol 

Space heating 

Water flow rate  

(House A) 
L/min FhA 

Water flow rate  

 (House B) 
L/min FhB 

Supply water temperature  

(House A) 
oC TsupplyA 

Return water temperature  

(House A) 
oC TreturnA 

Supply water temperature  

 (House B) 
oC TsupplyB 

Return water temperature  

 (House B) 
oC TreturnB 

Domestic hot 

water 

Water flow rate  

(House A) 
L/min FwA 

Water flow rate  

 (House B) 
L/min FwB 

Supply water temperature  

(House A) 
oC Tw_supplyA 

Return water temperature  

(House A) 
oC Tw_returnA 

Supply water temperature  

 (House B) 
oC Tw_supplyB 

Return water temperature  

 (House B) 
oC Tw_returnB 
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6.2.1. Transformation of observations 

After the data normalization of the hourly values, Qh matrix for space heating and Qw for 

domestic hot water are generated (Equations 6.5 and 6.6). 

Qh = 







































0180.04971.02074.00211.08371.00920.0

0152.06914.00648.04548.03690.04178.0

7255.00287.00714.04949.00202.04716.0

6789.00952.00627.05559.00184.04655.0

0332.02131.07311.03404.03625.04144.0

1053.04686.06398.03506.01762.04540.0

                                    6.5 

Qw = 







































4885.03381.05103.02311.01930.05440.0

3862.03446.05333.00025.06476.01681.0

5822.03877.03326.01345.02760.05530.0

4409.00801.05698.01587.06607.01135.0

1393.06028.01394.06184.01750.04299.0

2439.04969.00212.07218.00034.04150.0

                                    6.6 

 

where the rows correspond to the variables listed in Table 6.1, and the columns correspond 

to each principal component. For instance, Qh11 = 0.4540 is the coefficient of water flow rate for 

space heating of house A that is used by the first principal component. 

Previous studies [61, 63-65] suggested that the number of PCs should be selected in such 

a way to explain at least 75% to 90% of minimum cumulative variance in the initial data set. This 

study uses the first two PCs (k = 2) that contain about 89% of cumulative variance for the space 

heating (Figure 6.1) and around 70% of cumulative variance for domestic hot water, and also 

facilitates the 2D graphical representation of the PC-based space. 
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Figure 6.1: Cumulative variance in the initial data set of December 2014 versus the number of 

PCs for space heating 

 

 

Figure 6.2: Cumulative variance in the initial data set of December 2014 versus the number of 

PCs for DHW 
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6.2.2. Ellipsoid threshold model 

Figure 6.3 and Figure 6.4 show the scores distribution and the threshold model in the PC-

based space, for the space heating and domestic hot water of houses A and B, respectively, by 

using the first two PCs (PC#1 and PC#2). 

The scores inside the ellipsoid indicate the normal operation, while those outside the 

ellipsoid are identified as outliers that correspond to abnormal performance. Out of total number 

of 406 scores for space heating, there are 56 outliers or about 14% in the PC#1-PC#2 space, and 

out of 194 scores for DHW, there are 29 outliers (15%) in the PC#1-PC#2 space. 

 

Figure 6.3: Scores distribution in the PCs-based space (PC#1 and PC#2) for space heating of 

houses A and B in December 2014 
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Figure 6.4: Scores distribution in the PCs-based space (PC#1 and PC#2) for DHW of houses A 

and B in December 2014 

 

6.2.3. Variables identification  

Once the outliers are identified in the PC-based space, the next phase is the identification 

of those variables from Table 1 that might generate the outliers. 

For each variable in Table 1 the following steps are undertaken, using as an example, 

TsupplyB, which is the fifth variable in Table 1 and Qh matrix (Equation 6.5): 

(1) In the PC-based space (PC#1 – PC#2) (Figure 43), a line is drawn through the origin and the 

point P of coordinates; Qh51 = 0.4178 (i.e., for PC#1) and Qh52 = 0.369 (for PC#2); 

(2) The Euclidean distance between each outlier (e.g., point S) and the zero-value of TsupplyB axis 

is calculated (Equation 6.8). 
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(3) The Euclidian distance is then calculated for each outlier with respect to all other variables 

(Table 17) for space heating of houses A and B. 

(4) The variable with the highest Euclidean distance for each outlier indicate the variable that 

might have the highest impact on the abnormal performance. 

 

 

Figure 6.5: Euclidean distance of the outlier (S) from the zero-value of TsupplyB axis in the PC#1-

PC#2 space for space heating 
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The Euclidean distance 𝑆𝐶̅̅̅̅  of the outlier S is calculated as follows; 

𝑆𝐶̅̅̅̅ =  √(𝑥𝑠 − 𝑥𝑐)2 + (𝑦𝑠 − 𝑦𝑐)2 6.7 

 

where: 

 𝑥𝐶 =  (
𝑦𝑝

𝑥𝑝
 .  𝑥𝑠 −  𝑦𝑠) .  

𝑥𝑝 .𝑦𝑝

𝑥𝑝
2+ 𝑦𝑝

2 6.8 

𝑦𝐶 =  −
𝑥𝑝

𝑦𝑝
 . 𝑥𝑐 6.9 

 

 

The number of occurrences of the first highest Euclidean distance for each variable for 

space heating and domestic hot water (Tables 18 and 19) reveal that the measurements of the 

temperature of supply water for space heating of house A (TsupplyA), and of the return temperature 

of water for space heating for house B (TreturnB) are responsible for about 27% and 29% of outliers. 

Moreover, measurements of the flow rate of water for domestic hot water for house B is 

responsible for 31% of outliers, and each of return temperature of water for house A and supply 

temperature of water for house B are responsible for 24% of outliers. 

where: 𝑆𝐶̅̅̅̅  = the Euclidean distance 

 

𝑥𝐶 and 𝑦𝐶 = the coordinates of the projection of outlier S on the zero-value axis 

of variable 

 

𝑥𝑆 and 𝑦𝑆 = the coordinates of the outlier S in the PC#1 - PC#2 space 

𝑥𝑃 = (Q5,1) the coordinates of point P from the Q matrix 

𝑦𝑃 = (Q5,2) the coordinates of point P from the Q matrix 
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Table 6.2: Variables with the highest impact on the outliers for space heating for houses A and B 

in December 2014 

Case Variables  

December 2014 

1st highest Euclidean 

distance 

Space 

heating 

FhA 6 10.7% 

FhB 8 14.3% 

TsupplyA 15 26.8% 

TreturnA 5 8.9% 

TsupplyB 6 10.7% 

TreturnB 16 28.6% 

Total outliers 56 (100%) 

 

 

Table 6.3: Variables with the highest impact on the outliers for DHW for houses A and B in 

December 2014 

Case Variables  

December 2014 

1st highest Euclidean 

distance 

Domestic 

hot water 

FwA 3 10.3% 

FwB 9 31% 

Tw_supplyA 1 3.4% 

Tw_returnA 7 24.1% 

Tw_supplyB 7 24.1% 

Tw_returnB 2 6.9% 

Total outliers 29 (100%) 
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6.2.4. Application of the trained ellipsoid threshold model on new data set 

The trained ellipsoid threshold model developed with data of December 2014, considered 

to be the reference month, is now applied to measurements of February 2015, called the application 

data set. The normalized values of the new data set are calculated with Equation 6.106.10. 

𝑧𝑋𝑗.𝑎𝑝 =  
𝑋𝑗.𝑎𝑝 − 𝜇𝑗,𝑡𝑟

𝜎𝑗,𝑡𝑟
 6.10 

 

 

The F matrix of scores is calculated with Equation 6.11 and displayed in  

Figure 6.6. 

𝐹𝑎𝑝 = 𝑧𝑋𝑎𝑝. 𝑄 6.11 

 

 

where: 𝑧𝑋𝑗.𝑎𝑝 = the j-column of the normalized application data set 

 𝑋𝑗.𝑎𝑝 = the j-column of the new data set 

 

𝜇𝑗,𝑡𝑟 = the average value of the j-column of the training data set of December 

2014 

 

𝜎𝑗,𝑡𝑟 = the standard deviation of the j-column of the training data set of December 

2014 

where: 𝑄 = the matrix which is given in Equations 6.5 and 6.6 for the training data set 

of December 2014, for space heating and domestic hot water 



78 
 

 

Figure 6.6: Scores distribution in the PCs-based space (PC#1 and PC#2) for space heating of houses A 

and B in February 2015, compared with the trained ellipsoid threshold model from data of December 

2014 

 

Figure 6.7: Scores distribution in the PCs-based space (PC#1 and PC#2) for DHW of houses A 

and B in February 2015, compared with the trained ellipsoid threshold model from data of 

December 2014 
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Overall the measurements of February 2015 led to 94 outliers compared with only 56 in 

December 2014 for space heating, and 35 outliers in February respect to 29 in December 2014 for 

DHW. When the first Euclidean distance is considered (Table 6.4), the supply and return water 

temperature for space heating of house B (TsupplyB) and (TreturnB) are responsible for about 46% and 

37% of outliers, respectively. For DHW, water flow rate of house B (FwB) and return temperature 

of water for house A (Tw_returnA). The outliers could be generated by faults or by changes of the 

operation conditions due to changes of thermostat set point, or changes due to number and 

activities of people inside the house activities. 

Table 6.4: Variables with the highest impact of the outliers for space heating for houses A and B 

in February 2015 

Case Variables  

February 2015 

1st highest Euclidean 

distance 

Space 

heating 

FhA 3 3% 

FhB 11 12% 

TsupplyA 1 1% 

TreturnA 1 1% 

TsupplyB 43 46% 

TreturnB 35 37% 

Total outliers 94 (100%) 
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Table 6.5: Variables with the highest impact of the outliers for DHW for houses A and B in 

February 2015 

Case Variables  

February 2015 

1st highest Euclidean 

distance 

Domestic 

hot water 

FwA 2 5.7% 

FwB 11 31.4% 

Tw_supplyA 3 8.6% 

Tw_returnA 15 42.9% 

Tw_supplyB 1 2.9% 

Tw_returnB 3 8.6% 

Total outliers 35 (100%) 

 

6.3. Discussion  

The water temperatures TsupplyB and TreturnB for space heating and FwB and Tw_returnA for 

domestic hot water are identified by the PCA method as the variables that generated the outliers 

in the PC-based space in February 2015. The outliers identified by the PCA method are displayed 

on the graphs of hourly supply water temperature of house B (Figure 6.8) and return water 

temperature of house B (Figure 6.9) for space heating, and water flow rate of house B (Figure 

6.10) and return temperature of water (Figure 6.11) for domestic hot water. Those outliers are 

displayed at the border of the data clouds. The use of 2nd highest Euclidean distance in the PCA 

method might reveal other abnormal values. 
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Figure 6.8: Hourly supply water temperature for house B for space heating versus hourly 

outdoor temperature in February 2015 

 

Figure 6.9: Hourly return water temperature for house B for space heating versus hourly 

outdoor temperature in February 2015 
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Figure 6.10: Hourly water flow rate for house B for DHW versus hourly outdoor temperature in 

February 2015 

 

Figure 6.11: Hourly return water temperature for house B for DHW versus hourly outdoor 

temperature in February 2015 

0

20

40

60

80

100

120

140

160

180

-40 -35 -30 -25 -20 -15 -10 -5 0

W
at

er
 f

lo
w

 r
at

e 
(H

o
u
se

 B
) 

(L
/h

r)

Hourly outdoor temperature (C)

Measured values

Outliers

0

10

20

30

40

50

60

70

80

90

-40 -35 -30 -25 -20 -15 -10 -5 0

R
et

u
rn

 w
at

er
te

m
p

er
at

u
re

 (
H

o
u
se

 A
) 

(C
)

Hourly outdoor temperature (C)

Measured values

Outliers



83 
 

To validate the PCA results, a modified data set is derived in which the abnormal values 

of those two water temperatures, TsupplyB and TreturnB of February 2015, which are outside the range 

given by (Equation 6.12) are removed from the data file. Then, the modified application data set 

of February 2015 is used by the PCA method. 

𝜇𝑗,𝑡𝑟 − 2 · 𝜎𝑗,𝑡𝑟< 𝑋𝑗,𝑎𝑝𝑝 < 𝜇𝑗,𝑡𝑟 + 2 ∙ 𝜎𝑗,𝑡𝑟  6.12 

As a result of removing the abnormal values of TsupplyB and TreturnB for space heating, and 

FwB and Tw_returnA for domestic hot water, the number of outliers is reduced in the PC#1-PC#2 

based space (Table 6.6 and Table 6.7). This result proves that the two temperatures TsupplyB and 

TreturnB for space heating and FwB and Tw_returnA for DHW are the cause of the outliers identified by 

the PCA method. 

 

Table 6.6: Number of outliers for each variable of space heating in February 2015 with original 

and modified data sets 

Case Variables  

Original data set Modified data set 

1st highest 

Euclidean distance 

1st highest 

Euclidean distance 

Space 

heating 

FhA 3 3 

FhB 11 9 

TsupplyA 1 0 

TreturnA 1 1 

TsupplyB 43 5 

TreturnB 35 9 

Total outliers 94 27 
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Table 6.7: Number of outliers for each variable of DHW in February 2015 with original and 

modified data sets 

Case Variables  

Original data set Modified data set 

1st highest 

Euclidean distance 

1st highest 

Euclidean distance 

Domestic 

hot water 

FwA 2 0 

FwB 11 2 

Tw_supplyA 3 6 

Tw_returnA 15 5 

Tw_supplyB 1 3 

Tw_returnB 3 2 

Total outliers 35 18 

 

6.4. Conclusions 

The PCA-based method for the detection of outliers, and the identification of variables was 

applied in this study to the measurements from two houses, recently built in Inuvik, NWT, Canada. 

Measurements of December 2014 related to the space heating and domestic hot water are used as 

reference values for the training of the ellipsoid threshold model. The supply and return water 

temperatures for house B for heating energy demand, and for domestic hot water, water flow rate 

for house B, and return temperature of water for house A, were identified as the main sources of 

outliers in February 2015. The identification of variables with abnormal values were compared 

with two different approaches: the graphical representation of hourly values, and the use of a 

modified data set. The two approaches identified the water temperatures, TsupplyB and TreturnB for 

space heating, and FwB and Tw_returnA for domestic hot water as the main sources of outliers in 

February 2015 by the PCA method. 
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The PCA-based method for fault detection and identification should be implemented in the BAS 

for the ongoing commissioning of heating systems, to help the building operator to take timing 

actions. 
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7. CONCLUSIONS 

In this research, energy performance analysis of two semi-detached houses located in 

Inuvik, Northwest Territories of Canada was conducted with every one-minute measured values.  

The two houses A and B in Inuvik with 9,769 HDD (ºC-day) that use 145.5 kWh/(m2 year) 

of natural gas perform better in terms of space heating energy demand than the two low-energy 

houses in Greenland with 8,276 HDD (ºC-day), which use 90 and 140 kWh/(m2 year), respectively, 

because those two houses in Greenland are in a “warmer” weather, with about 1,000 HDD (ºC-

day) lower than in Inuvik. 

Total energy demand for space heating and domestic hot water of both houses, which must 

be supplied by the natural gas boiler, is 122.4 kWh/(m2 year), and the annual natural-gas energy 

use is 178.2 kWh/(m2 year). 

The annual average thermal efficiency of the boiler is 0.69, compared with manufacturer 

rated AFUE (Annual Fuel Use Efficiency) efficiency of 0.96. 

Total annual solar hot water production of 1.7 kWh/(m2 year) is negligible (7.5%) 

compared with the annual domestic hot water energy demand of 22.6 kWh/(m2 year). The 

reduction of total natural gas use can be achieved by increasing the contribution of solar system to 

the preparation of domestic hot water. 

Total annual electricity produced by the PV panels of 21 kWh/(m2 year) is 20.8% of the 

annual electricity use of 101  kWh/(m2 year). 

The sensible thermal effectiveness of the HRV has an average value of 0.72 from daily 

data, which is lower than the manufacturer’s specifications of 0.83 at 0ºC and 0.89 at -25ºC. 
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Daily energy performance values are more suitable for further analysis, due to less 

fluctuations and dispersions compare to hourly values, and more observations in a specific period 

compared with monthly values, therefore, it will give more information. 

In this thesis, the energy demand signatures were developed as benchmarking models of 

daily space heating energy demand in houses A and B, using daily values with static and 

augmented window techniques for retraining. The benchmarking model trained as a static window 

with three weeks of data in December 2014, was an acceptable model for the prediction of heating 

energy demand of the rest of heating season (Jan.1 to March.31, 2015). However, this result 

indicates that, on the average over a longer prediction time interval, the measurements of total 

heating energy demand are close with the predictions. The predictions by the benchmarking 

models, which are retrained with the augmented window technique, are useful for the comparison 

with measurements over shorter time intervals. 

This research expanded an approach proposed by Cotrufo and Zmeureanu [43] for the use 

of PCA-based method for the outliers` detection and identification of variables which are the main 

sources of outliers for space heating and domestic hot water systems. It was concluded that, supply 

and return water temperatures for house B for space heating system, and water flow rate of house 

B and return water temperature for house A in domestic hot water system, are the main sources of 

abnormal performance in February 2015.  
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7.1. Contributions  

After completion of this thesis, it is noteworthy to mention the following contributions: 

1. Development of benchmarking models with static and augmented window techniques 

using daily values of space heating energy demand in the ongoing commissioning of 

heating systems in houses within heating season for prediction of heating energy 

demand and detection of differences between measurements and expected predicted 

values. 

 

2. Estimation the accuracy of the static and augmented window techniques in training 

the benchmarking models. 

 

3. Verification of the use of PCA-based method for the identification of variables which 

are the major sources of abnormal performance in space heating and domestic hot 

water systems.   
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7.2. Future works 

The presented method in this study for development of benchmarking models revealed a 

good potential for prediction of heating energy demand through the ongoing commissioning 

houses in northern Canada. Therefore, for expanding and verification of the proposed approach in 

this study, it is recommended to apply this methodology to other buildings with complex HVAC 

systems in order to detect the differences between measured and expected predicted values. 

Another part of this study was expanding an approach for the application of PCA-based 

method for the identification of variables which are the main sources of outliers. Therefore, in 

future work it is recommended to focus on the verification of the proposed method for complex 

HVAC systems with many correlated physical variables, and the comparison of the identified 

faults with physical faults. 
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APPENDICES  

APPENDIX A: Hourly variation of heating energy demand versus outdoor air temperature 

 

Figure A. 1: Hourly heating energy demand in house A from October 2014 to September 2015 

 

Figure A. 2: Hourly heating energy demand in house B from October 2014 to September 2015 
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APPENDIX B: Carpet plots of heating energy demand, domestic hot water energy demand, 

electrical use, solar hot water energy production and PV production in April 2018 

 

Figure B. 1: Hourly heating energy demand in House A in April 2015 

 

The most heating energy demand period in April 2015 is between 7 to 11 A.M and 6 to 11 

P.M. 
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Figure B. 2: Hourly domestic hot water energy demand in House A in April 2015 

 

Demand for domestic hot water is between 8 A.M to 10 P.M. 
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Figure B. 3: Hourly total electrical use in House A in April 2015 

 

Electrical use in April is mostly between 4 to 11 P.M.  
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Figure B. 4: Hourly solar hot water energy production in House A in April 2015 

 

In April, solar hot water energy production starts roughly at 8 P.M till 5 P.M which the 

maximum production is between 12 and 1 P.M. 
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Figure B. 5: Hourly photovoltaic production in House A in April 2015 

 

Photovoltaic production in April 2015 is mostly between 10 A.M to 5 P.M, which between 

1 and 2 P.M is the pick point.   
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APPENDIX C: Daily signatures of daily heating energy demands with augmented window 

technique  

 

Figure C. 1: Daily signature of space heating energy demand as a benchmarking model of house 

A with augmented window technique from five weeks data set of Dec.1, 2014 to Jan.4, 2015 

 

y = -0.054x + 0.64

R² = 30%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

-34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2

H
ea

ti
n
g
 e

n
er

g
y
 d

em
an

d
 (

M
J/

m
2

d
ay

)

Daily average outdoor temperature (C)

Measurements for training (Dec.1-Jan.4) Measurements for testing (Jan.5-Jan11)

Trained model



106 
 

 

Figure C. 2: Predictions of the daily heating energy demand of house A using five weeks training 

data set with augmented window technique, and measurements from Jan.12 to March 31, 2015 
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Figure C. 3: Daily signature of space heating energy demand as a benchmarking model of house 

B with augmented window technique from five weeks data set of Dec.1, 2014 to Jan.4, 2015 
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Figure C. 4: Predictions of the daily heating energy demand of house B using five weeks training 

data set with augmented window technique, and measurements from Jan.12 to March.31, 2015 
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Figure C. 5: Daily signature of space heating energy demand as a benchmarking model of house 

A with augmented window technique from seven weeks data set of Dec.1, 2014 to Jan.18, 2015 
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Figure C. 6: Predictions of the daily heating energy demand of house A using seven weeks 

training data set with augmented window technique, and measurements from Jan.26 to 

March.31, 2015 
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Figure C. 7: Daily signature of space heating energy demand as a benchmarking model of house 

B with augmented window technique from seven weeks data set of Dec.1, 2014 to Jan.18, 2015 
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Figure C. 8: Predictions of the daily heating energy demand of house B using seven weeks 

training data set with augmented window technique, and measurements from Jan.26 to 

March.31, 2015 
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Figure C. 9: Daily signature of space heating energy demand as a benchmarking model of house 

A with augmented window technique from nine weeks data set of Dec.1, 2014 to Feb.1, 2015 
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Figure C. 10: Predictions of the daily heating energy demand of house A using nine weeks 

training data set with augmented window technique, and measurements from Feb.9 to March.31, 

2015 
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Figure C. 11: Daily signature of space heating energy demand as a benchmarking model of 

house B with augmented window technique from nine weeks data set of Dec.1, 2014 to Feb.1, 

2015 
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Figure C. 12: Predictions of the daily heating energy demand of house B using nine weeks 

training data set with augmented window technique, and measurements from Feb.9 to March.31, 

2015 

 

Table C. 6: Coefficients of the benchmarking model using augmented window technique with 
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Figure C. 13: Daily signature of space heating energy demand as a benchmarking model of 

house A with augmented window technique from eleven weeks data set of Dec.1, 2014 to Feb.15, 

2015 
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Figure C. 14: Predictions of the daily heating energy demand of house A using eleven weeks 

training data set with augmented window technique, and measurements from Feb.23 to 

March.31, 2015 
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Figure C. 15: Daily signature of space heating energy demand as a benchmarking model of 

house B with augmented window technique from eleven weeks data set of Dec.1, 2014 to Feb.15, 

2015 
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Figure C. 16: Predictions of the daily heating energy demand of house B using eleven weeks 

training data set with augmented window technique, and measurements from Feb.23 to 

March.31, 2015 

 

Table C. 8: Coefficients of the benchmarking model using augmented window technique with 

eleven weeks training data set, and statistical indices of differences between the measurements 

and models forecasts of daily heating energy demand in house B 
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Figure C. 17: Daily signature of space heating energy demand as a benchmarking model of 

house A with augmented window technique from eleven weeks data set of Dec.1, 2014 to 

March.1, 2015 
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Figure C. 18: Predictions of the daily heating energy demand of house A using thirteen weeks 

training data set with augmented window technique, and measurements from March 2 to March 

31, 2015 

 

Table C. 9: Coefficients of the benchmarking model using augmented window technique with 

thirteen weeks training data set, and statistical indices of differences between the measurements 

and models forecasts of daily heating energy demand in house A 
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Figure C. 19: Daily signature of space heating energy demand as a benchmarking model of 

house B with augmented window technique from eleven weeks data set of Dec.1, 2014 to 

March.1, 2015 
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Figure C. 20: Predictions of the daily heating energy demand of house A using thirteen weeks 

training data set with augmented window technique, and measurements from March 2 to March 

31, 2015 
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thirteen weeks training data set, and statistical indices of differences between the measurements 
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