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ABSTRACT

Surrogate based Optimization and Verification of Analog and Mixed

Signal Circuits

Ibtissem Seghaier, Ph.D.

Concordia University, 2018

Nonlinear Analog and Mixed Signal (AMS) circuits are very complex and expen-

sive to design and verify. Deeper technology scaling has made these designs susceptible

to noise and process variations which presents a growing concern due to the degrada-

tion in the circuit performances and risks of design failures. In fact, due to process

parameters, AMS circuits like phase locked loops may present chaotic behavior that

can be confused with noisy behavior. To design and verify circuits, current industrial

designs rely heavily on simulation based verification and knowledge based optimization

techniques. However, such techniques lack mathematical rigor necessary to catch up

with the growing design constraints besides being computationally intractable. Given

all aforementioned barriers, new techniques are needed to ensure that circuits are ro-

bust and optimized despite process variations and possible chaotic behavior. In this

thesis, we develop a methodology for optimization and verification of AMS circuits

advancing three frontiers in the variability-aware design flow. The first frontier is a

robust circuit sizing methodology wherein a multi-level circuit optimization approach

is proposed. The optimization is conducted in two phases. First, a global sizing phase

powered by a regional sensitivity analysis to quickly scout the feasible design space

that reduces the optimization search. Second, nominal sizing step based on space

mapping of two AMS circuits models at different levels of abstraction is developed for
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the sake of breaking the re-design loop without performance penalties. The second

frontier concerns a dynamics verification scheme of the circuit behavior (i.e., study the

chaotic vs. stochastic circuit behavior). It is based on a surrogate generation approach

and a statistical proof by contradiction technique using Gaussian Kernel measure in

the state space domain. The last frontier focus on quantitative verification approaches

to predict parametric yield for both a single and multiple circuit performance con-

straints. The single performance approach is based on a combination of geometrical

intertwined reachability analysis and a non-parametric statistical verification scheme.

On the other hand, the multiple performances approach involves process parameter

reduction, state space based pattern matching, and multiple hypothesis testing pro-

cedures. The performance of the proposed methodology is demonstrated on several

benchmark analog and mixed signal circuits. The optimization approach greatly im-

proves computational efficiency while locating a comparable/better design point than

other approaches. Moreover, great improvements were achieved using our verification

methods with many orders of speedup compared to existing techniques.
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Chapter 1

Introduction

“If the digital designers did verification the way analog designers do verification,

no chip would ever tape out.”

Sandipan Bhanot, President and CEO of Knowlent.

1.1 Motivation

Analog and Mixed Signal (AMS) circuits hold a great compromise for use in many

applications such as automotive electronics, communications, sensor networks, and

portable electronics [1]. It is an indispensable block of today’s microprocessors and

embedded system designs. Indeed, it relates the design to the real world through

communicating the analog external world signals to the discrete-valued internal design

signals. Therefore, analog circuits perform typical functions that cannot be overtaken

by their digital counterparts (e.g., Digital to Analog Converters (DAC), Analog to

Digital Converters (ADC), amplification, filtering and clock generation) [2].

In the microelectronics industry, getting to market early with robust and efficient

designs is a key aspect to stay competitive. This can be achieved through innovative
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tools which on one hand, select optimal topologies and geometries and on the other

hand, rigorously verify the design adherence to specifications. Nevertheless, AMS

integrated circuits are posing serious bottlenecks in both design and verification. The

main challenges stem from the following reasons:

• The fundamental differences of the digital and analog components operating

modes. Owing to the nonlinearity of analog circuits, their performance highly

depends on circuit parameters and operating conditions.

• The large design space coupled with the high complexity of the circuit dynamics,

the various design imperfections that worsen circuit behavior and the increasing

tight design constraints (i.e., power, area, speed).

• The trend towards more functionalities makes AMS designs extremely complex

and thereby very expensive to design and verify. An enormous amount of time,

effort and cost from the overall VLSI design effort are spent in analog parts as

shown in Table 1.1 [3].

• The lack of adequate and mature commercial analog CAD tools that are basi-

cally limited to some clones of SPICE simulator [4].

Table 1.1: The gap between analog and digital productivity

Analog Digital
Time Cost 85% 15%
Design Effort 80% 20%
Occupied Area 10-20% 80-90 %
Added Value 90 % 10 %

With the aggressively scaled semiconductor devices, the AMS design task is addition-

ally burdened with the increasingly inevitable process-induced variability owing to the

limitation in the lithography and fabrication process. Process variation refers to the
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difference between the intended and obtained voltage and process parameters prior

and post-fabrication of the circuit. It substantially affects circuit parameters such

as the channel length (L), the gate width (W ), the threshold voltage (Vth) and the

oxide thickness (Tox). On the other hand, AMS designs are known for the high depen-

dency of their performance on the circuit geometries, initial conditions and operating

points [5]. Hence, even the smallest deviation in the circuit can be large enough to

violate the desired circuit performance and consequently results in yield loss. Process

variation is, therefore, emerging as a real reliability concern in the realm of AMS de-

signs that hinders more technologies scaling due to the difficulty of fabricating smaller

transistor structures [6]. The aforementioned hurdles have hindered the advancement

of AMS circuits design and verification methodologies. It is hence not sufficient to

design the AMS circuit for solely nominal parameters nor convenient to verify whether

the specifications are met for few possible design points.

The AMS circuit design procedure generally consists of the topological-level

design and parameter-level design (also called circuit sizing). In this thesis, we are

more interested in parameter-level design. The circuit sizing is formulated akin to an

optimization procedure wherein optimum circuit parameters are selected with regard

to desired performance constraints. Existing approaches for circuit optimization can

be broadly classified based on the abstraction level of the design model into two

main categories: Simulation-based and equation-based techniques. At transistor level,

simulation-based techniques are used to evaluate the circuit performances based on

its fully detailed transistor model using SPICE circuit simulator. Thus, very high

accuracy can be achieved. However, these techniques are time-consuming since they

are purely numerical and need several iterations to converge to a solution. In short,

such techniques are yet accurate but tedious and very resource-intensive.

3



At behavioral level, equation-based optimization techniques are deployed. These

techniques model the circuit performance as a set of analytical equations of the cir-

cuit variables. Despite their offered speedup over simulation-based techniques, these

techniques suffer from a limited accuracy due to the limited amount of details avail-

able at high-level circuit models. Consequently, a new mixed optimization approach is

much needed, which on one hand would offer better accuracy than the equation-based

techniques and on the other hand, would leverage the designers’ intent to guide the

simulation-based technique quickly to the optimal parameters solution.

Once the circuit is optimized, there is no guarantee that it will fulfill its spec-

ification in the presence of nonidealities such as Process, Volatge and Temperature

(PVT) variations and noise. In fact, the variation in the geometrical and electrical de-

vice parameters can compromise the circuit’s performance (e.g., PLL locking, circuit

stability, etc.) and consequently can lead to design failures. Subsequently, ensuring

correct circuit operation is an essential requirement that dictates careful verification

of the AMS circuit under consideration of process variation. Experiments showed that

in specific operation conditions (i.e., circuit parameter, initial conditions, and input

signals) even remarkably simple AMS circuits are capable of exhibiting a chaotic mode

of operation [7]. For instance, the discovery of chaos has been followed by its detection

in many circuits such as PLL [8], Colpitts Oscillator [9], and Σ-∆ modulator [10].

The irregular, seemingly random and unpredictable but deterministic behavior

of chaos makes it resemble noise. However, when an irregularity is observed in an AMS

design output, designers intuitively assume that the circuit exhibits stochastic noise,

which is stubbornly present in such designs. Nevertheless, such behavior could emerge

from a purely deterministic circuit. Because noise detection is a contentious issue for

designers and there is a lack of efficient noise verification tools for AMS designs, a
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chaotic circuit could be considered erroneously noisy. Therefore, it is fundamental

to investigate circuit dynamics thoroughly and intuitively enough to append the real

source of any aberrant circuit behaviors.

Verifying functional properties (i.e., chaotic, noisy, ideal behaviors) to detect

inappropriate circuit behaviors is not sufficient to commit optimal analog ICs to the

foundry. As mentioned earlier, process variation threatens to worsen overall circuit be-

havior and impair its performance which culminates in circuit failures and hence yield

loss. Therefore, verifying circuit robustness to process variation is an extremely impor-

tant step in the AMS design flow. Ensuring a robust operation of the AMS designs in

light of process variation disturbance is an essential requirement that dictates careful

verification. Verification techniques of process verification effect become the frontier

research topic in recent years for design and manufacturing of high-performance VLSI

circuits. Traditionally, Monte Carlo (MC) simulation techniques [11] are used to verify

circuits as well as behavioral models of analog designs. Based on repetitive simula-

tions, Monte Carlo simulation permits the evaluation of substantive design properties

based on a statistical estimation of circuit parameters. To do so, this approach needs

a pre-specified underlying distribution, mainly uniform, normal, or log-normal to de-

scribe the random variables of process variation effects. Hence, a wrong distribution

assumption leads to a possibility of outright wrong results [12]. In addition, because

the accuracy of this method is directly related to the number of simulation runs, this

method results in long simulation times. Therefore, empowering designers with new

tools and techniques in order to tape out circuits that withstand process variation

while meeting strict specifications is imperative.
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In this thesis, we present a surrogate based optimization and verification method-

ology for AMS circuits. Our proposed methodology tackles the limitations of multi-

level optimization approaches. It also efficiently assesses circuit reliability, both qual-

itatively and quantitatively, in light of process variations. More details about the pro-

posed methodology will be given in Section 1.3. We next provide a critical overview

of the state-of-the-art optimization and verification techniques for AMS circuits.

1.2 State-of-the-Art

In this section, we briefly review some relevant literature in the area of circuit optimization-

based sizing, dynamical behavior verification as well as circuit robustness verification

in terms of yield estimation techniques which are closely related to this thesis.

1.2.1 Analog Circuit Optimization

For a given circuit topology, optimization refers to finding the optimal circuit param-

eters that result in the best circuit performance with respect to given specifications

and constraints. A detailed survey of existing AMS circuit optimization techniques

can be found in [13]. According to the abstraction level of the design model on which

the optimization is conducted, optimization techniques can be broadly classified into

two main categories: Equation-based and simulation-based techniques.

• Equation-based Optimization

At the behavioral level, equation-based approaches use analytical equations

from large and small signal analysis of the circuit topology to relate the cir-

cuit’s performance to the design variables [14]. These performance equations

are evaluated at every iteration of the design space exploration in order to guide
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the optimization towards the design specification. Early work [15] defines the

optimization problem as a constrained nonlinear optimization problem. In this

technique, the circuit performance equations are extracted from its SPICE mod-

els and DC operating point constraints which are then solved using sequential

quadratic programming. This technique has a convergence problem as the op-

timization circuit parameter solution might entrap in local minima. To ensure

a global minima design solution, the optimization problem is cast as a convex

problem which can be then solved very efficiently by numerical algorithms like

geometric programming [16]. However, modeling the design objective and the

constraints as convex functions of the design variables is not always possible.

For instance, when the design objectives involve optimizing large-signal or tran-

sient characteristics, it is extremely difficult to manually derive equations that

capture all design characteristics in a convex equation form. A breakthrough in

automatic generation of optimization equations has been made with the advent

of symbolic simulation techniques [17]. These techniques automatically generate

small signal transfer functions for any chosen topology and process technology.

However, they suffer from major scalability and accuracy drawbacks. For in-

stance, the complexity of exact symbolic solutions scales exponentially with

the circuit size. The heuristic simplifications and approximations introduced

in the analytic equations make this approach inaccurate especially for complex

circuits [18].

• Simulation-based Optimization

At the circuit level, simulation-based optimization techniques have been pro-

posed. In contrary to the equation-based approach, these techniques do not

rely on analytical equations but on a detailed circuit level model, e.g., SPICE

7



model. At each optimization step, the circuit performance is simulated for a

set of design parameters. Although the idea of optimizing AMS circuits us-

ing simulation dates back to at least 1969 [19], it is only recently that this

approach became popular due to the availability of powerful computers and ad-

vances in numerical algorithms. In the literature, optimization procedures were

conducted using different global nonlinear optimization algorithms such as sim-

ulated annealing [20], stochastic pattern search [21], geostatistics algorithm [22],

evolutionary algorithms [23] or a combination of these algorithms [24]. Despite

their high accuracy and ability to handle a broad class of circuits, commercial

circuit simulators are not designed to be extensively invoked [25]. Hence, a large

number of design variables and consequently the large design space make the

optimization task extremely difficult even for advanced computational systems.

From the above discussion, it is obvious that a good compromise lies somewhere

between these two main optimization approaches. An early attempt for a mixed

equation-simulation approach was the ASTRX/OBLX tool [26]. In this tool, the

circuit performance is simulated using asymptotic waveform evaluation which is a

model reduction technique, to evaluate circuit objectives and performances. However,

this technique is only applicable to linear circuits. In this thesis, we propose a novel

mixed optimization approach for nonlinear circuits that reduces the simulation time

while maintaining accuracy.

1.2.2 Circuit Dynamics Verification

Once the circuit is optimized, techniques that ascertain its intended functionality/behavior

in light of process variations and initial conditions uncertainties are essential. In par-

ticular, probing chaotic from noisy dynamics in analog circuits is of a great concern
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for designers. In fact, chaotic and noisy behaviors present the same salient features

of long term unpredictable irregular behavior and broad band spectrum making their

distinction far from straightforward. The study of chaotic features in AMS circuits

is the subject of an extensive research (e.g., [27, 28]). Available techniques for circuit

verification, like spectral analysis, fail to discriminate chaotic from random circuit

outputs since both of them have continuous broadband power spectra [29]. Periodic

Steady State (PSS) analysis is used in [30] to discriminate periodic from chaotic be-

havior. A periodic behavior is detected when the obtained convergence norm is equal

or less than unity. Conversely, a chaotic behavior is reported when the Spectre simu-

lator [31] does not converge and the PSS analysis fails to find any periodicity in the

circuit output. Nevertheless, non-periodic behavior could be due to noise and not to

chaos. Moreover, the Newton algorithm used by the PSS method requires the com-

putation of the Jacobian matrix of the output. This seriously limits the scalability

of this technique. Moreover, PSS Spectre analysis does not work under an unknown

oscillation frequency. Lyapunov Exponent measure [32] is another paradigm that has

been adopted to quantify chaos. It indicates the average rates of convergence or di-

vergence of circuit behaviors for close initial conditions. A positive exponent implies

divergence and is indicative of chaotic dynamics while a negative one implies conver-

gence and is said to be periodic. Lyapunov Exponent is defined as a limit when time t

approaches infinity (see Equation (1.1)), one encounters fundamental difficulties using

it for circuits simulated for a limited time.

λi = lim
t→∞

1

t
ln|σi(t)|, ∀i ∈ [1, .., n] (1.1)

{σi}ni=1 are the eigenvalues of the Jacobian matrix of the circuit. This technique is

hampered by technical issues related to the signal length and its contamination by

noise (known as Perron effects) [33]. Hence, a positive Lyapunov exponent is neither
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necessary nor sufficient proof of chaos [34].

In spite of the above-mentioned approaches, a clear differentiation between

chaotic and stochastic processes seems to be rather problematic. In this thesis, a

novel approach to precisely probe the underlying circuit dynamics at an early stage

and so assess qualitatively the observed circuit behavior (deterministic or stochastic)

is proposed.

1.2.3 Yield Estimation

Yield analysis and estimation for AMS designs have been greatly debated and have

become an appealing area of research in recent years [35, 36]. We review hitherto

existing techniques for analog circuits parametric yield analysis.

State of the art parametric yield estimation techniques for AMS designs can

be roughly divided into two categories: parameter domain and performance domain

techniques. While parameter domain techniques are based on the characterization of

a yield boundary defined by the design specification, performance domain techniques

rely upon extensive Monte Carlo simulations.

• Parameter domain techniques

These methods try to extract an analytical relation between the underlying

process parameters and the circuit performances/specifications. To aid design

exploration in a large process variation space, a number of performance mod-

eling methods have been proposed. For instance, response surface modeling

has been adopted to approximate the performances of interest as polynomial

functions of process parameters in order to substitute expensive SPICE sim-

ulations [37]. Most of the existing response surface modeling techniques rely

on linear approximations. However, this would sacrifice accuracy for speedup
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particularly in large scaled process variations where a great number of AMS cir-

cuit performances are strongly nonlinear. As demonstrated in [38], the resulting

accuracy might be unacceptable with an absolute error of 9%. To enhance the

accuracy, a quadratic response surface modeling has been used [39] but at the

cost of a much more difficult yield estimation. For instance, by mapping the

performance constraints dictated by the circuit specifications to a feasible space

in the process parameter space, such a mapping becomes nonlinear with a non-

convex or even discontinuous feasible space. Hence, the parametric yield which

is defined as the integral of the probability density function over the feasible

space becomes extremely difficult to compute. Other existing methods rely on

a surface boundary, which is the separation between the success and failure re-

gions in the yield estimation. The yield is so estimated using a local search [40]

or global search [41] by computing the volume of the failure region without the

need for circuit simulation. Nevertheless, such methods suffer from scalability

issues with no more than three process parameters.

• Performance domain techniques

Monte Carlo (MC) [11] is the most widespread performance domain yield es-

timation technique thanks to its extreme simplicity and general applicability.

However, an MC analysis of large-sized circuits is highly inefficient and time

consuming since it requires a large number of simulations leading to lengthy

analysis time. Several speed-up techniques have been proposed to improve the

primitive MC time efficiency and applicability. Quasi-Monte Carlo (QMC) [42]

is a variance reduction technique in which Low Discrepancy Sequences (LDS) are

utilized to generate more homogeneously distributed process parameters samples

rather than purely-random samples. Hence, QMC techniques are able to provide
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better integration errors compared to primitive MC. Yet, QMC has a limited

performance improvement with a convergence rate that is asymptotically supe-

rior to MC only for circuits with a moderate number of process parameters [43].

Furthermore, MC and QMC can estimate only the gross effect of process vari-

ation on the circuit performance/yield and hence do not provide information

regarding the most influential components/parameters on the yield loss. While

aforementioned yield analysis methods present a panoply of approaches to speed-

up and enhance the yield estimation accuracy, there are still many limitations

that need to be addressed. For instance, they use greedy sole performance yield

estimation or perform several independent single parametric yields. Neverthe-

less, this might significantly compromise the accuracy (i.e., under-estimate the

yield) especially in the case of correlated circuit performances.

In summary, nonlinear AMS circuits optimization and verification techniques

still lag in providing a unified methodology that is general (i.e., handles single and

multiple performances optimization as well as verification problems with correlated

performances), accurate in sizing circuits and verifying their robustness, and also

scalable with respect to process variations.

1.3 Thesis Methodology

The main goal of this thesis is to develop a means to design high-quality analog and

mixed signal designs for which specification requirements are satisfied in the most

robust manner. To this end, we have brought together an efficient sizing method

formulated akin to an optimization algorithm that replaces the labor intensive pa-

rameter tuning process as well as rigorous verification techniques that ensure sized

circuit adherence to design specifications in the most robust manner.
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model. The output of this optimization step is a set of nominal circuit parameters

that satisfy the specification constraints and give the best circuit performance in ideal

conditions (i.e., does not consider process variations, operating conditions, and noise

disturbances). The next step in our methodology is to ensure a robust operation

of the AMS circuit for the computed nominal parameters in the presence of process

variation disturbance. To do so, we adopt two different verification approaches. The

first approach is a surrogate based dynamics verification technique that aims to qual-

itatively investigate the circuit dynamics for the computed set of so-called optimal

design parameters. More specifically, it verifies whether the circuit may drift into a

chaotic behavior for the computed optimal parameters. However, since chaos resem-

bles noise and noise is omnipresent in AMS circuits, we propose a novel method that

statistically discriminates chaos from noisy circuit dynamics. If it fails, the computed

nominal circuit parameters are eliminated from the feasible design space and changed

with a new optimal circuit parameters solution. Once these new nominal parameters

pass the surrogate based verification, the circuit will be further evaluated in terms of

yield. The second verification approach is a surrogate based robustness verification

technique. It consists of two verification methods, which ensure that the desired prop-

erties of the circuit are satisfied in the most robust manner. The first is an intertwined

reachability analysis technique. It is a time domain verification technique for a sin-

gle circuit performance. It is based on an intertwined forward/backward reachability

analysis approach. Next, a single hypothesis testing technique is performed on the

obtained reachable sets in order to estimate the system parametric yield caused by

the deviation from the nominal/optimal parameter values due to process variation.

The second method is statistical runtime verification approach. It is a state space

domain verification approach that handles multi-performances yield rate estimation.

14



It adopts a global sensitivity analysis to reduce and prioritize the process variation

space. Thereafter, the acquired sensitivity results are efficiently embedded in a joint

recurrence verification scheme for a state space transient circuit behavior verifica-

tion. Lastly, the multi-performance yield estimation problem is cast into a multiple

hypothesis testing problem under the limiting conditions retrieved from the design

specifications.

We demonstrate the effectiveness of each part of our methodology on various

nonlinear analog and mixed signal circuits. Some of the nonlinear circuits used for this

purpose include analog amplifier, Σ-∆ modulator, phase locked loops, ring oscillator,

Colpitts oscillator and tunnel diode oscillator. We provide an in-depth analysis of our

experimental results and justify the use of every approach proposed in this method-

ology. All models, methods and applications described in this thesis are implemented

in the MATLAB environment, on a Windows 10 operating system with an Intel Core

i7 CPU processor running at 2.8 GHz with 24 GB of RAM.

1.4 Thesis Contributions

The primary contribution of this thesis is on the development of a methodology to in-

duct nonlinear AMS circuits sizing and verification using surrogates. It presents new

approaches for multi-objective optimization for analog sizing and multi-performances

verification of both functional and non-functional properties. It combines mixed simu-

lation/equation based optimization techniques using a state space equivalence scheme,

statistical proofs by contradictions, global sensitivity analysis, and nonlinear systems

dynamical theory. In the sequel, we list the main contributions of this work along

with references to related publications provided in the Publications section at the end

of the thesis document.
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• The development of surrogate based AMS modeling formalisms for circuit sizing,

design space exploration, and circuit debugging and verification. It proposes an

initiative towards developing a unified language standards for modeling and

defining AMS circuit assertions in a more formal way [Cf3, Cf5].

• The elaboration of a novel multi-level optimization technique that reduces the

runtime of the equation based optimization approaches while maintaining the

SPICE accuracy in a single technique. The technique is able to ensure an

exhaustive coverage of the design search space and outputs better design points

than other techniques [Jr2].

• The implementation of a surrogate based dynamics verification method to ascer-

tain functional properties. It particularly studies apparently stochastic behavior

that at a deeper level could present chaos. The proposed method provides an

efficient scheme in detecting chaos over Lyapunov Exponent (LE) method for

Gaussian noise [Cf5]. We extended the surrogate based dynamics verification

method with a novel test statistic to uncover noisy behavior with non-Gaussian

distribution and for hyperchaotic regime [Cf1].

• An intertwined reachability analysis approach is implemented to reduce wrap-

ping effect in the forward only scheme [Cf3, Tr1]. In particular, we extend

the forward reachability analysis approach developed in [Cf7] to reduce over-

bounding.

• The implementation of yield estimation methodology that handles multiple per-

formances constraints and that also opts for a simultaneous yield analysis rather
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than multiple single-performance yield estimation. The proposed multiple per-

formance yield estimation scheme prevails over Monte Carlo techniques in ac-

curately assessing the yield with significant speed-up [Jr1, Cf2].

• The genesis of a library of state space yield estimation is developed. A method

called Cross Recurrence Verification inspired from pattern matching in DNA

sequences is introduced. The main advantage of the proposed methodology is

robustness, providing more meaningful quantification of circuit failures and its

suitability for verification automation [Cf4].

• A method for non-parametric statistcal runtime verification of AMS circuits is

developed. It is a variant of the Monte Carlo method with more effective sam-

pling scheme and variation free distribution. The developed approach provides

sound verification results (i.e., good accuracy with a reduced error margin) and

so can be used in lieu of the Monte Carlo method [Cf5].

1.5 Thesis Organization

The remainder of this thesis is organized as follows: In Chapter 2, we provide some

introductory concepts of the techniques and the basic mathematical methods applied

throughout this thesis. Then, in Chapter 3, we describe the proposed surrogate-

based optimization methodology in details. We explain how we reduce the feasible

parameters search space and how the design centering is performed on the obtained

reduced search space. The efficiency of the proposed optimization methodology is

demonstrated on two circuits, namely a ring oscillator and a two stage amplifier.

Thereafter, the optimized circuit is verified qualitatively and quantitatively. Chapter

4 is devoted to the qualitative verification of the circuit dynamics. We present the
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surrogate-based core algorithm involved in discriminating the different behaviors that

the circuit might exhibit in the presence of process variation. Then, in Chapter 5, we

detail the quantitative time domain verification approach for single performance yield

estimation. We explain the proposed intertwined reachability analysis approach that

reduces the high reachability overbounding of the forward scheme. We also provide

applications results which prove that the proposed method reduces the verification

bias while accounting for a wide range of circuits disturbances/variations. Moreover,

in Chapter 6, we present our multiple performances yield estimation wherein we an-

alyze the circuit transient behavior under the effect of process variations. We report

experimental results for the verification of two analog benchmark circuits, namely a

five stage ring oscillator and a phase-locked loop. Moreover, we illustrate the appli-

cation of the thesis overall methodology on a three stage ring oscillator to prove its

effectiveness on achieving the stated thesis objectives of surrogate based optimization

and verification. Finally, in Chapter 7, we conclude the thesis by summarizing the

main contributions and list some possible future directions.
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Chapter 2

Preliminaries

The primary goal of this chapter is to give some background concepts that are needed

for the foundation of this thesis. We first provide an overview of the surrogate based

circuit modeling. Then, we explain the Sobol-Hoeffding Decomposition (SHD) pro-

cedure that will be used later for global sizing during the optimization stage and for

process parameter prioritization during the statistical runtime verification. We also

present the classical hypothesis testing procedure to statistically verify AMS circuit

properties. Finally, we introduce some relevant notions regarding AMS circuits yield

rate estimations.

2.1 Surrogate based Circuit Modeling

Surrogate based circuit modeling is a macromodeling technique based on mathemat-

ical foundations that capture the actual circuit behavior [44]. It is a fundamen-

tal block of any analog optimization and/or verification algorithm at early stage in

the VLSI design flow. The generated surrogate models the generic dynamic behav-

ior/characteristic of the circuit for a set of initial conditions and input voltages. In
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general, it should comply with the following conditions:

• maintain a certain level of conformance to the real circuit dynamics with appro-

priate speed/accuracy tradeoff.

• cope with the complexity of the AMS design yet easily amenable to sizing as

well as verification approaches.

In this section, we describe in some detail the basic concepts and formulations of

the surrogate based modeling techniques used in this thesis, namely Extended-System

of Recurrence Equation (E-SRE) and Systems of Stochastic Recurrence Equation

(SSRE).

2.1.1 Extended-System of Recurrence Equation

Analog and mixed-signal designs contain both analog and digital modules that are

interconnected and interrelated. Therefore, it is not appropriate to model these mod-

ules separately. For instance, the continuous (analog) signals and the discrete (digital)

signals have to be described using the same approach in order to capture the interre-

lationships between the two. The behavior of analog circuits can be mathematically

modeled by Ordinary Differential Equations (ODEs). Since a closed-form solution

for these ODEs is not always obtained, a numerical approximation is needed. Using

a System of Recurrence Equations (SREs) [45], it will be possible to handle contin-

uous behaviors like those of currents and voltages in discrete time intervals which

can be done for a non-trivial class of analog circuits. An SRE is a set of relations

between consecutive elements of a sequence. It is mathematically defined as a system

consisting of a set of equations of the form:

xi(nt) = fi(xj(nt − δ)), ∀nt ∈ Z (2.1)
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where xi(nt) ∈ R is a state variable with i, j ∈ 1, .., k and nt ∈ Z, and δ ∈ N represents

the delay. On the contrary, digital designs are described using various frameworks

such as Finite State Machines (FSMs) and Petri nets. To alleviate the modeling gap

between the digital and analog models, we propose the notion of so-called Extended

SRE for interleaving the two [46]. Extended SREs offer a means of modeling more

abstracted AMS designs which will significantly speed up the verification execution

time. The notion of Extended-SREs (E-SREs) is mathematically defined as follows:

Let K be a numerical domain (B,N,Z,Q or R), a generalized If-formula is one of the

following:

• A variable xi(n) or a constant C ∈ K.

• Any arithmetic operation ♦ ∈ (+,−,×,÷) between variables xi(n) ∈ K.

• A logical formula: any expression constructed using a set of variables xi(n) ∈ B

and logical operators : not, or, and, nand, nor, etc.

• A comparison formula: any expression constructed using a set of xi(n) ∈ K and

comparison operators α ∈ (<,=, >,<>).

• An expression If(x, y, z), where x is a logical formula or a comparison formula

and y, z are any generalized If-formula. Here, If(x, y, z) : B × K × K → K

satisfies the axioms:

If(True, x, y) = x

If(False, x, y) = y
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2.1.2 System of Stochastic Recurrence Equation

Due to the statistical behavior that AMS circuits exhibit in the presence of uncertain-

ties (such as noise and parameter variability), we are interested in modeling AMS cir-

cuits transient behavior as a System of Stochastic Recurrence Equations (SSRE) [47],

which is a formalism that allows capturing the statistical properties of the system in a

unified discrete-time description. In what follows, we explain the SSRE notations and

detail the conversion process of circuit equations to SSREs. A system of recurrence

equations is a set of relations between consecutive elements of a sequence. A stochas-

tic recurrence equation can be generated for the case of continuous systems using the

discrete version of their Stochastic Differential Equation (SDE) [48]. SDEs have been

used in [49] to model non-idealities in analog/RF circuits. However, a closed-form

solution cannot be solved explicitly. In the following, we briefly present the SSRE

theory. An SSRE is a set of system recurrence equations with stochastic processes.

We consider the Euler scheme to define the SSRE. Let us consider the following Itô

process {Xt, 0 ≤ t ≤ T} SDE:

dXt(ω) = f(Xt(ω))dt+ σ(Xt(ω))dWt(ω) (2.2)

where the stochastic variable Wt is a Brownian motion [50] (see Definition 2.1.1 ) and

σ denotes the diffusion coefficient.

Definition 2.1.1 (Brownian Motion) A scalar standard Brownian process, or stan-

dard Wiener process over [0,T] is a random variable Wt that depends continuously on

t ∈ [0, T ] and satisfies the following conditions:

Condition 1 W (0) = 0 with probability 1.

Condition 2 For 0 ≤ s < t ≤ T the random variable given by the increment Wt−Ws
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is normally distributed with mean zero and variance (t−s) (Wt−Ws ∼
√
t− sN (0, 1)).

Condition 3 For 0 ≤ s < t < u < v ≤ T the increments Wt −Ws and Wv −Wu are

independent.

By integrating in Equation (2.2) between s and s+∆s, we will have:

dXs+∆s(ω) = Xs(ω)+

∫ s+∆s

s

f(Xs+∆s(ω))dt+

∫ s+∆s

s

fσ(Xs+∆s(ω))dWs+∆s(ω) (2.3)

The Euler scheme [51] consists in approximating the integral Equation (2.3) by the

following iterative scheme:

X̄s+∆s(ω) = X̄s(ω) + f(X̄s(ω))∆s+ σ(Ws+∆s(ω)−Ws(ω)) (2.4)

2.2 Sobol-Hoeffding Decomposition

Considering process variation and noise, the circuit dynamics can be lumped in the

form of a System of Stochastic Recurrence Equations (SSRE) given in Equation (2.4)

for t ∈ [0, T ]
.
= τ .

X̄s+∆s(ω) = X̄s(ω) + C(X̄s;P )∆s+ σ(X̄s;P )(Ws+∆s(ω)−Ws(ω)) (2.5)

where W is a Wiener process which reflects the random circuit behavior due to un-

certainties, C is the drift function, and σ is the diffusion coefficient. The process

variation effect is represented as a random variable P with known probability law

(extracted from the technology library) in both the drift and diffusion coefficient.

The circuit behavior can be seen as a function of W and P : Xs+∆s = X(s,W, P ).

Thus, we want to investigate the respective impact of the circuit uncertainty ω(t) and

the parameters uncertainties P on the circuit performances. In the sequel, we recall

the Sobol-Hoeffding Decomposition (SHD).
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Definition 2.2.1 (L2 functions) L2(Ud) is the space of real-valued squared integrable

functions over the d-dimensional hypercube U :

X : p ∈ Ud → X(p) ∈ R,

X ∈ L2(Ud)⇔
∫

Ud

X(p)2dp <∞ (2.6)

L2(Ud) is equipped with the inner product < ., . >:

∀X, Y ∈ L2(Ud),

< u, v > :=

∫

Ud

X(p)Y (p) dp (2.7)

The weighted space L2(A, ρ) is an extension of L2 where:

P ∈ A = A1 × A2 × · · · × Ad ⊆ Rd,

ρ : P ∈ A → ρ(P ) ≥ 0,

ρ(P ) = ρ1(p1)× · · · × ρd(pd)

Here, ρ denotes the probability density function of the circuit parameters random

vector P with mutually independent components.

Theorem 1 Any X ∈ L2(A, ρ) (see Definition 2.2.1) admits a unique hierarchical

orthogonal decomposition. Let P = (p1, · · · , pd) in Rd, the decomposition consists in

writing the X(P ) as the sum of increasing dimension functions [52]. The expansion in
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Equation (2.9) exists and is unique under one of the following orthogonality conditions:

∫
Xu(pu)dρPi

= 0 ∀i ∈ u, u ⊆ {1, · · · , d}

or
∫

Xu(pu)Xv(pv)dρP =< Xu, Xv >= 0 ∀u, v ⊆ {1, · · · , d}, u 6= v

The independence of the inputs and the orthogonality property in Equation (2.9)

ensure the global variance decomposition of the output X(P ) as follows:

V[X(P )] = E[(X(P )−X0)
2]

= E[(
∑

{i1,··· ,id}⊂{1,··· ,d}
Xi1,··· ,id(Pi1,··· ,Pid

)2 ]

=
∑

{i1,··· ,id}⊂{1,··· ,d}
E[(X2

i1,··· ,id(Pi1,··· ,Pid
)]

=
∑

i 6=∅,i⊆D
V[Xi], V[Xi] =< Xi, Xi >

V[Xi] is interpreted as the contribution to the total variance V[X(P )] of the inter-

action between parameters pi∈D. Hence, the Sobol-Hoeffding variance decomposition

provides a very useful and rich means of analyzing the respective contributions of indi-

vidual or set of parameters to the circuit output variability. For instance, it partitions

the output variance amongst the uncertain factors of the circuit model. Given the

structure of the circuit model described in Equation (2.5), the hierarchical orthogonal

Sobol-Hoeffding Decomposition (SHD) of X gives:

X(ω, P ) = X̄ +Xω(ω) +XP (P ) +Xω,P (ω, P ), ∀t ∈ τ

V[X] = V[Xω] + V[XP ] + V[Xω,P ]
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+
d∑

i=1

d∑

j=i+1

d∑

k=j+1

Xi,j,k(pi, pj, pk) + . . .+X1,...,d(p1, . . . , pd)

2.2.1 Parametric Sensitivity Analysis

Consider x as a set of d independent random parameters which follow a certain dis-

tribution on Ud, and f(x) a circuit performance depending on these parameters. It is

assumed that f is a second order random variable f ∈ L2(U
d). Therefore, the circuit

performance of interest f has a unique Sobol-Hoeffding decomposition. Because of

the orthogonality of the Sobol-Hoeffding decomposition, the variance of the circuit

performance can be decomposed as:

V [f ] =

i 6=∅∑

i⊆D

V [fi], V [fi] =< fi, fi > (2.10)

where V [fi] stands for the contribution to the total variance V [f ] of the interaction

between the parameters xi. Therefore, the Sobol-Hoeffding decomposition is a rich

means of analyzing the respective contribution of individual or sets of parameters to

circuit performance variability. However, a more abstract characterization is required

to replace the 2d − 1 actual contributions which lead to an intractable number of

contributions as d increases.

2.2.2 Sensitivity Indices

To facilitate the prioritization of the respective influence of each parameter xi, the

partial variances V [fi] are normalized by V [f ] to obtain the sensitivity indices:

Si(f) =
V [fi]

V [f ]
≤ 1,

i 6=∅∑

i⊆D

Si(f) = 1 (2.11)

The order of the sensitivity indices Si is equal to |i| = Card(Si).
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2.3 Statistical Hypothesis Testing

Hypothesis testing [53] uses statistics to make decisions about the acceptance or the

rejection of some properties based on data from random samples. In this technique,

the property of interest is formulated as a null hypothesis (H0) which is tested against

an alternative hypothesis (H1). If we rejectH0, then the decision to acceptH1 is made.

Definition 2.3.1 Given the property P within the ambit of a null hypothesis H0, a

significance level α, and a test statistic T , hypothesis testing is the process of verifying

whether a system C satisfies H0 with a probability greater than or equal to α (i.e.,

C |= Pr(T ) ≥ α).

There are two approaches for making this statistical decision regarding a null hy-

pothesis. The first approach is the rejection region approach and the second is the

probability value approach (a.k.a. p-value approach). Regardless of the approach

adopted, the conclusions drawn from the two approaches are exactly the same. The

prior steps to conduct hypothesis testing:

1- Setting up null and alternative hypotheses.

2- Stating the level of significance α.

3- Calculating the appropriate test statistic.

Depending on the number of null hypotheses to be tested, hypothesis testing

techniques can be classified to single hypothesis testing approach and multiple hy-

pothesis testing approach.

2.3.1 Single Hypothesis Testing

Hypothesis testing of a single null hypothesis H0 is discussed in this section. As

depicted in Figure 2.2, single hypothesis testing can be one or two sided. The one
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side test is classified into:

• Upper test when a large value of the test statistic provides evidence for rejecting

H0 (see Figure 2.2 (b)).

• Lower test when a small value of the test statistic shows proof of H0 rejection

(see Figure 2.2 (c)).

The two sided test (shown in Figure 2.2 (a)) is determined by a bounded region [x1, x2]

as follows:

H0 : P (x1 < X < x2) = P (X < x2)− P (X < x1) = 1− α (2.12)

The hypothesis testing procedure can be summarized as follows:

1. Elucidate the property to be verified and formulate it as H0 and H1.

2. Specify the appropriate level of significance α and determine the type of the

test, namely, upper test, lower test or two sided test.

3. Select the appropriate test statistic.

4. Compute the critical region or p-value of the test statistic.

5. Compute the test statistic of the observed value for the original data.

6. Make the decision of accepting or rejecting the null hypothesis H0. If the com-

puted test statistic falls in the critical region, then the null hypothesis is rejected,

otherwise H0 is accepted.

The decision is drawn with certain probability of error for a specific confidence level

as summarized in Table 2.1. Basically, the performance criteria of this approach is

related to two types of errors:
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Figure 2.2: Hypothesis testing concept

Type I error (α) or false positive, the null hypothesis H0 is true but the decision

based on the testing process erroneously rejected it. In other words, it represents

the probability of accepting H0 when H1 holds.

Type II error (β) or false negative, the null hypothesis H0 is false but the testing

process concludes that it should be accepted. In other words, it corresponds to

the probability of accepting H1 when H0 holds.

In Table 2.1, we define T and V as the probabilities of Type I and Type II errors,

respectively.
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Table 2.1: Outcomes classification for single hypothesis testing

Passed Failed
Good Circuit X T

Defective Circuit V X

2.3.2 Multiple Hypothesis Testing

Amultiple hypothesis testing enables to avoid the problem of multiple tests that would

arise if we test the effect of different variables on different properties separately. In

the sequel, we detail the multiple hypothesis testing procedure.

Definition 2.3.2 (Null Hypotheses) In order to cover a broad performance veri-

fication problems, we define m null hypotheses in terms of a collection of acceptance

region for certain performances metric with distribution κ.

Apj ⊆ Ap, j = 1, · · · ,m

The m null hypotheses are defined as H0j ≡ I(k ∈ Apj) and the corresponding alter-

native hypotheses denoted by H1j ≡ I(k /∈ Apj) are the opposite, complementing H0j .

Thus, H0j holds, i.e., H0j = 1, if K ∈ Apj and is rejected otherwise.

Multiple hypothesis testing is based on a simultaneous statistical inference of the

probability that a set of properties G are satisfied with a certain level of confidence α.

When conducting the hypothesis testing, the number of null hypotheses, m, is known

in advance and corresponds to the number of properties of interest G. However, the

number of true null hypotheses H0j m0 and false null hypotheses m1, respectively with

m = m0 + m1, have to be determined. Table 2.2 summarize the possible outcomes

when verifying m hypotheses simultaneously. A failure to compensate for multiple

verifications can result in two types of erroneous inferences denoted by Type I error

and Type II error. As shown in Table 2.2, we define T and V as the probabilities of
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Table 2.2: Possible outcomes classification for m hypotheses testing

Passed Failed Total
Good Circuit X T m-R
Faulty Circuit V X R

Total m0 m−m0 m

Type I and Type II errors, respectively.

V = P (Type I error) = P (reject H0i |H0i true) (False Positive)

T = P (type II error) = P (reject H0i |H1i true) (False Negative)

Type I and Type II errors are correlated and in direct competition with each other.

For instance, computing a subset R ⊆ H of hypotheses to reject that has fewer Type

I errors usually results in more Type II errors.

2.4 Yield Estimation

Yield is a measure of integrated circuit (IC) failure referring to the fraction of in-

tegrated circuits which survive through the manufacturing line. In other words, it

represents the ratio of fully functional circuits that comply with specification and

standards to the total number of manufactured ICs. It can be classified based on the

failure type taxonomy to [54]:

- Catastrophic yield loss caused by functional failures such as open or short cir-

cuits which cause the circuit to not work at all.

- Parametric yield loss caused by a variation in one or a set of circuit parameters

due to process variations. The circuit, in this case, is functional but it violates

certain power and/or performance criteria.
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Figure 2.3: Illustration of the process variation effect on circuit yield

For analog and mixed-signal circuits, parametric yield loss is significant and represents

the dominant part of the total yield loss. Hence, in this thesis, we are mainly concerned

with the parametric yield loss for both single and multiple-parametric yield loss.

Figure 2.3 summarizes the process variation concept and visualizes the relationship

between process variation and the yield loss.

Given a circuit topology, the circuit performances of interest g (e.g., gain of

an amplifier, oscillation frequency of an oscillator, etc.) are functions of the circuit

responses which are in turn functions of the circuit parameters. The performance

constraints can be expressed in the following standard form:

gi(R(p)) ≤ 0 i = 1, 2, · · · ,m (2.13)

where p ∈ Rn stands for the circuit parameters, R : Rn → Rm is the circuit response

vector, m is the total number of performance constraints, gi is the i -th performance

metric. Without loss of generality, any performance constraints can be reformulated in
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the standard form given in Equation (2.13). For instance, gi(R(p)) ≤ C, gi(R(p)) ≥ C,

gi(R(p)) ∈ [Cmin, Cmax] can be expressed as: gi(R(p)) − C ≤ 0, C − gi(R(p)) ≥ 0,

(gi(R(p))− Cmin ≤ 0 & Cmax − gi(R(p)) ≥ 0), respectively.

Given the performance constraints in Equation (2.13), each element of gi has

a certain tolerated lower and/or upper bound. Hence, in the statistical parameter

space, certain part of the performance distribution will be cut off wherein a part of

the circuit parameter variation falls out of the acceptance region bordered by the

specification limits set by the designers given in Equation (2.13). The fraction of

the distributions which are within the performance specification is called acceptance

region Ap and it is mathematically defined as follows:

Ap = {p | gi(R(p)) ≤ 0, i = 1, 2, · · · ,m} (2.14)

Figure 2.4 is an illustration of the acceptance region for a single performance metric

in a two-dimensional parameter space (p = 2). The remaining circuit performance

regions in red represent the failure regions, i.e., the regions of the parameters space

where the performances are not satisfied.

Parametric yield is the percentage of circuits that satisfy the performance specifi-

cation considering statistical parameter variations. In other words, it is the probability

of satisfying the parametric requirements, i.e., the parameters p∗ lead to acceptable

performance and so belong to the acceptability region Ap.

Y (x) = P{p ∈ Ap} =
∫

Rn

φp(p)fp(p, x)dp = Ep{φp(p)} (2.15)

where P{.}, φp(p), and Ep{.} denote the probability, an indicator function, and the

expectation w.r.t random variable p, respectively. The indicator function φ is de-

termined by the performance specification and its corresponding acceptance function

described as:
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Figure 2.4: Geometrical illustration for 2-D space parameter and a single circuit
performance

φ(p) =





1 (Pass) if p ∈ Ap

0 (Fail) otherwise

The n-dimensional integration in Equation (2.15) has a canonical form and can be

numerically approximated to:

YMC =
1

N

N∑

k=1

φξ(ξ) (2.16)

where YMC stands for Monte Carlo (MC)-based yield estimator, ξ are independently

drawn random samples from the parameter uncertainty domain and N is the MC sam-

ple size. The yield estimation formulated in Equation (2.15) is for a single performance

metric. A generalization of the yield expansion in the case of multiple performances

m-Dimension yield probability is defined as follows:
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Y ield = P (p ∈ (
m⋃

i=1

Ai
p)) (2.17)

By applying the inclusion-exclusion principle [55] to Equation (2.17), the total yield

for m performance merits is expressed as:

Y ield =
m∑

i=1

P (p ∈ Ai
p)− Poverlap (2.18)

Poverlap = −
∑

i<j

P (Ai
p ∪ Aj

p) +
∑

i<j<l

P (Ai
p ∪ Aj

p ∪ Al
p)

− · · ·+ (−1)m−1P (p ∈ (
m⋂

i=1

Ai
p)

Calculating the yield is equivalent to calculating the failure probability Pfailure (a.k.a.

yield loss). They are related by the following relationship:

Pfailure = 1− Y ield (2.19)

Typically the yield should be high and therefore the failure probability should be low

for faster time to profit.
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Chapter 3

Surrogate based Optimization

In this chapter, we focus on analog nominal sizing. It equally denotes the performance

maximization problem in nominal conditions. Nominal sizing is a standpoint of circuit

sizing which in turn is a main step in the analog IC flow. This is a critical design

stage that aims at determining circuit geometry, namely transistor width (W ) and

length (L), and resistor, capacitor, and inductor nominal values. Circuit sizing is

mostly done using either knowledge based or optimization based approaches. This

chapter mainly focuses on optimization based circuit sizing. Particularly, we present

a mixed equation-based and simulation-based optimization methodology. It has the

advantage to allow a flexible sizing procedure between different abstraction levels. We

demonstrate the feasibility and flexibility of the proposed method on a ring oscillator

and a two stage operational amplifier.

3.1 Space Mapping based Circuit Sizing

We assume that the circuit topology has been selected. The proposed analog opti-

mization methodology for circuit sizing is shown in Figure 3.1. As it can be noticed,
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parameters and thereby the performance of the circuit is studied only locally in

the design space.

3. Global sensitivity explores the entire possible range of the design space while

accounting for interactions between the different circuit parameters without de-

pending on the stipulation of a single circuit parameter feasible solution.

Once the sensitivity analysis is performed, the feasible design sub-regions are classified

into promising and non-promising design sub-spaces in order to facilitate the search

for the optimal design parameters. The second step is the nominal circuit parameters

selection on the retrieved promising feasible design sub-spaces. The nominal circuit

sizing is typically done using knowledge based approaches based on the design ex-

perience and expertise. It basically consists of deriving analytical circuit equations

that relate circuit performances to device characteristics and parameters. Although

this approach worked well for old technologies, it is no more suitable for nano-scale

modern technologies. For instance, the modeling of short channel effects makes the

circuit equations for large and small signal analysis extremely difficult to derive. Con-

sequently, using simplified equations thereof yields to design solutions that are far

from the actual optimal ones. Hence, an optimization based approach is adopted

in this thesis. It transforms the circuit sizing procedure to a general optimization

problem. The circuit performances are cast to a cost function, and the promising fea-

sible design sub-spaces are explored automatically by an optimization engine in the

search of optimal design parameters. If the extracted design point does not fullfil the

accuracy requirement, the optimization is repeated until it accomplishes a stopping

criterion (i.e., all design specifications have been met). In this case, the design point

is considered optimal and the sizing procedure runs are stopped.
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3.1.1 Optimization based Circuit Sizing

The task of sizing an analog circuit can be formulated as an optimization problem

to substitute a design plan. The circuit optimization corresponds to the process of

searching for the circuit parameters value under which the best circuit performance is

expected with respect to the desired specifications. Mathematically, this process can

be formulated as a nonlinear constrained optimization problem for n variables with

m constraints as follows:

min
x

f(x) x = (x1, x2, ..., xn)

such that ci(x) ≤ 0 i = 1, ...,m (3.1)

hi(x) = ht i = 1, ..., n

xl ≤ x ≤ xu i = 1, ..., n

where f(x) represents the performance function to be optimized according to n circuit

parameters xi, h is the equality constraint which mainly refers to Kirchhoff’s Current

Law (KCL) and Kirchhoff’s Voltage Law (KVL) equations. x stands for the feasible

design space vector of dimension n, and xl and xu are its lower and upper bounds,

respectively. The vector ci(x) refers to design constraints such as gain, phase margin

and slew rate. Table 3.1 summarizes all possible conflicting sizing rules.

For the sake of generality, it is assumed that the optimization problem corre-

sponds to the minimization of the performance function. For example, the objective of

the optimization is to determine the sizing of all devices (e.g., transistors width, capac-

itors, etc.) such that the power consumption is the smallest possible while satisfying

all design constraints (e.g., slew rate constraints). However, many challenges arise

when optimizing an AMS circuit because its objective function can be very expensive
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Table 3.1: Sizing rules and constraints

Geometrical Electrical

Transistor Length/Width
Design works at the expected region.
(e.g., saturation region)

Functional Robustness

Operate the desired analog
function
(e.g., transistors working
on saturation)

Define the design margins
in order to decrease the sensitivity
to process variation and operation conditions.
It closely depends on the technology node.
(e.g., min length/width/area)

Equality Inequality
Matching constraints.
Design parameters have
the same values
in symmetric designs.
(e.g., L1 = L2)

Upper and lower bounds of the electrical or
geometrical circuit quantities
(e.g., VDS ≥ VGS − Vth

for transistors in saturation)

to extract, evaluate, and is most of the time non-differentiable. Indeed, the extraction

of the equation capturing the behavior of the circuit topology is very complex and

prohibitive. Furthermore, the simplification required to obtain a closed-form solution

of the optimization problem compromise the accuracy and completeness of the sizing

problem. Conversely, simulation based techniques rely on simulation to evaluate the

circuit performance during the optimization process offering good accuracy, general-

ity, and ease of use. Clearly, a good compromise lies in mixing both techniques. It

is also worth mentioning that a wide feasible design space enables the optimizer to

find a better circuit, but the convergence is very slow, thus the time required to find

optimal circuit parameters can be very long. It is therefore important to limit the

optimization search on sub-regions of the design space where potential global circuit

parameters exist. The question that arises is, “ how to shrink the feasible design space

and locate the promising design subspaces?”
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3.1.2 Global Circuit Sizing

The aim of the global circuit sizing is to confine the sizing search to promising de-

sign subspaces and thereby to cut off non-promising parts from the overall feasible

design space. These promising design subspaces will be used thereafter to prevent

the optimization approach from entering unrewarding regions in the design space. In

other words, it guides the circuit optimization procedure to focus on regions promising

optimal design solutions.

The approach is summarized in Algorithm 3.1. It is based on transient regional

sensitivity analysis [56] which is a variant of the global sensitivity analysis theory.

Algorithm 3.1 Global Circuit Sizing

Require: Dinit, F , S
1: Di

0 ← Divide search space (S)
2: ΩoT = F
3: ΩnoT = ∅
4: for all i← 1 to S do
5: while stopping criteria is unsatisfied do
6: Initialize p∗i = center(Di

0), f
min
i , fmax

i

7: [dn,no, pvalue]← Run Kolmogorov-Smirnov method (F,Di
0)

8: [Ωoi ,Ωnoi ] ← Identify potential promising sub-regions (dn,no, p −
value, pthreshold)

9: return ΩoT = ∪Si=1Ωoi , ΩnoT = F ∩ Ωc
oT

Dinit is the initial feasible design space, F the set of objective functions, S the number

of sub-regions. The global circuit sizing procedure starts by subdivising the feasible

design space into S sub-regions (line 1). An illustration of the proposed global sizing

feasible design space subdivision is shown in Figure 3.2 for two iterations. It can be

noticed that the design space subdivision is performed in such a way that previous

sensitivity analysis is at the center of the new sub-regions. Thereafter, a regional

sensitivity analysis based on Kolmogorov-Smirnov is conducted (line 7) wherein high
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In what follows, we denote by (Ωo = pi|Ro) the circuit parameter pi region that

leads to an optimal design sub-region and (Ωno = pi|Rno) the circuit parameter pi

region that leads to a non-optimal design sub-region, respectively. A conceptualization

of this sub-region categorization is depicted in Figure 3.3. The Kolmogorov-Smirnov

method is statistically formulated as follows:

H0 : fΩo
(pi | Ro) = fΩno

(pi | Rno) (3.2)

H1 : fΩo
(pi | Ro) 6= fΩno

(pi | Rno)

where f are probability density functions and Ωo ∪ Ωno = ΩT is the total design sub-

region under analysis. The distance between the empirical cumulative distribution

functions for both promising and non-promising sub-regions provides an index for

the sensitivity of the design parameter pi on the desired circuit performances. This

sensitivity index is defined as follows:

dn,no(pi) = supy ‖ Fn(pi | Ro) = Fno(pi | Rno) ‖ (3.3)

where F is the marginal cumulative probability function.

Figure 3.4 illustrates schematically the regional sensitivity index of the opti-

mal and non-optimal design sub-regions for circuit parameter value pi. The result

of the Kolmogorov-Smirnov test is two measures, the sensitivity index dn,no (a.k.a.

D-statistic) and the p-value. dn,no quantifies the distance between the two marginal

cumulative probability functions Fn and Fno, whereas the p-value defines the signifi-

cance level of the differences of the latter. The sensitivity index dn,no varies between

0 and 1 and the lower its values is, the less influential parameter pi. In particular, if

dn,no = 0, then pi has no influence on the circuit performance.

These two measures exhibit an inverse relationship. In fact, a large dn,no (or equiva-

lently a small p-value) indicates an important design point in the predefined feasible
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complex model and a behavioral surrogate model. The essence of this method is to

use the behavioral model to gain information about the detailed circuit model and

to apply this in the search for an optimal solution of the latter. The capability to

switch between the two circuit models helps to harness the best features of each of the

circuit model. By doing so, our space mapping based optimization method eliminates

the need for sequential optimization of each AMS model separately and so breaks the

re-design loop and so reduces it by jointly optimizing the two circuit models while

maintaining the accuracy in a single step. Besides the runtime and accuracy benefits

of the proposed technique, the hierarchical sizing is more in line with the industry

practice and how a designer would tackle the sizing of large AMS circuits. Figure 3.7

shows the underlying proposed space mapping based nominal sizing methodology. As

it can be seen, it is broadly comprised of four steps:

1. Behavioral circuit model optimization

2. Detailed model parameter simulation

3. Space mapping function refinenment

4. Detailed model circuit parameters sizing

First, the behavioral model is optimized through the search in the optimal design

space ΩoT computed in the previous global circuit sizing step. Then, the resulting

optimal parameters of the behavioral model x∗
b are mapped into their corresponding

detailed level parameters xd. xd and xb are mapped using a space mapping function

P : Xd → Xb which is defined by:

xb = P (xd) (3.4)

such that

‖Rd(xd)−Rb(xb)‖ ≤ ε (3.5)
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process continues iteratively until the satisfaction of the termination condition:

‖Rb(x
∗
b)−Rc(x

(mj+1)
d )‖ ≤ ε (3.7)

Upon termination, x∗
d = x

(mj+1)
d is set as the optimal circuit level design solution for

the circuit parameters.

Algorithm 3.2 Space mapping function computation

Require: xb, xd, Rd, Rb, j
1: n← Compute size (xd)
2: if j=1 then
3: A = I(n, n)
4: else
5: for i← 1 to n do
6: ai ← Compute mapping coeifficient(xb(i), Rd(xd(i)))
7: Update A

8: [C,D]← Define new base(xb, Rd(xd))
9: W ← Compute weighting matrix(A,D)(xb, Rd(xd))
10: AT

j = (DTW TWD)−1DTW TWC
11: P = AT

j

12: return P

3.2 Applications

In this section, we present the results of the application of our surrogate based circuit

optimization method on the example of a ring oscillator. We also test the efficiency

of the proposed method for multi-objective optimization on a two-stage operational

amplifier circuit. The detailed circuit models are designed and simulated in TSMC’s 65

nm CMOS technology with BSIM4 transistor models. The behavioral circuit models

and the proposed optimization based circuit sizing methodology are implemented

in MATLAB R2013a [59]. In order to generate a solution in reasonable time, the

maximum number of allowable simulation for our method is set to 300.
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where ID is the drain current flowing through the inverter stage, CTot is the total

capacitance, Cox is the oxide capacitance per unit area, and VDD is the supply voltage.

The length of all PMOS and NMOS transistors are set to 65 nm (L = 65 nm) as

per technology file. Thus, the optimization problem will consist in computing the

appropriate transistors widths. Applying the symmetry constraints, we will have

Wp2 = Wp4 = Wp6 and Wn1
= Wn3

= Wn5
. After performing the space mapping

optimization method, the obtained optimal transistors widths are Wpi = 3 µm and

Wni
= 2.5 µm.

In order to evaluate the performance of our proposed sizing methodology, we

compare our results with other optimization based methods, namely Genetic Algo-

rithm (GA) [60] and ANFIS [61] methods.

Table 3.2: Comparison with other techniques in terms of number of iterations

Optimizer Obtained frequency

HSpice 3.207
GA [60] 3.06
ANFIS [61] 3.15
Our method 3.206

The obtained oscillation frequency performances are reported in Table 3.2. The per-

formance of the sized circuit is also confirmed using Spice simulation. It can be

observed that our method gives the best operating frequency compared to the other

optimization methods with a very close figure to the Spice simulation based approach.

It can be inferred that our mixed equation/simulation based optimization approach

offers a superior accuracy to equation based methods while being very close to HSpice

figures.

In Table 3.3, a comparison in terms of required number of iterations, runtime,

speed-up, and relative error between the different above-mentioned methods is shown.

52



As it can be observed, our sizing scheme is found to be highly efficient. For instance,

it significantly reduces the number of optimization iterations needed to converge to

an optimal design solution compared to the ANFIS method. In addition, it offers

a large speed-up gain of almost 12.5X compared to the HSpice simulation approach

while having only 0.031% relative error in the computed oscillation frequency fosc.

Therefore, the gains of our proposed methodology are reflected not only in the good

performances attained but also with a significant runtime saving. It is hence a good

alternative to the existing optimization approach while integrating HSpice accuracy.

Table 3.3: Optimization results for ring oscillator

Optimizer
Total number
of iterations

Runtime
[h]

Speed-up
Ratio

Relative Error
(%)

HSpice – 12.33 – –
GA [60] – 7.12 1.74X 4.58
ANFIS [61] 173 2.56 4.8X 1.77

Our method 68 0.58 12.62X 0.031

3.2.2 Two stage Operational Amplifier

As a second application, we consider a two-stage amplifier (op-am) as depicted in

Figure 3.9. The circuit consists of eight transistors {Mi}8i=1, compensation and load

capacitance and a reference bias current. The length of all transistors is set to 1µ m.

In order to illustrate the design and optimization of the operational amplifier circuit,

the list of specifications is summarized in Table 3.4. It is known that one of the main

amplifiers performance characteristics is their gain. It follows that the aim of the

optimization scheme for this application is to maximize the open-loop gain.

The Least Square Support Vector Machine SVM toolbox interfaced with MAT-

LAB was employed for the behavioral circuit model using multivariate SVM regressor
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Table 3.5: Feasible design space

Circuit parameter Parameter range

W1 = W2 [1µ, 100µ]
W3 = W4 [1µ, 50µ]

W5 [1µ, 100µ]
W7 [1µ, 100µ]
Cc [5pF, 20pF ]

Table 3.6: Optimization results for the two stage operational amplifier circuit

Performance
metrics

HSpice SVM Our method

Gain (dB) 65.27 60.12 64.98
Bandwidth (MHz) 83.7 80 83
Slew Rate (V/µs) 71.4 63.07 70.2

The outcomes of the runtime comparison between the HSpice, SVM, and our

proposed method is shown in Table 3.7. It can be seen that our proposed method can

achieve significantly better speed-up than both HSpice and SVM based optimization

method. This is mainly thanks to the global sizing procedure wherein the regional

sensitivity analysis pruned the feasible design space avoiding unnecessary nominal

optimization. In summary, both SVM and Spice methods can find design solutions

Table 3.7: Efficiency of the proposed method

Optimizer Runtime (h) Speed-up
HSpice 17.18 –
SVM 5.51 3.11X
Our method 3.22 5.33X

that meet the design specifications. However, our method is the only one that reached

a good trade-off between the accuracy and runtime. Indeed, it offers a spice like

accuracy in significantly less runtime.
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3.3 Summary

In this chapter, we presented a methodology for determining optimal design solution

using a space mapping scheme. It is based on a coupled simulation/equation based

optimization approach. The optimization is formulated as a mapping function be-

tween two models of the circuit and the optimization problem is translated to finding

the inverse of this mapping function. The proposed scheme is an alternative to classi-

cal optimization based analog sizing techniques with better convergence and superior

performance with respect to direct optimization techniques. We present two appli-

cations that illustrate how the proposed methodology can be applied to the design

and optimization of representative analog blocks. From the experimental results, it

is established that our proposed methodology is Spice accurate while being up to

12.5X faster. In addition, it can successfully handle single as well multi-objective op-

timizations. Nevertheless, in real life, designers are facing inevitable variations in the

structural and electrical circuit parameters due to environmental and physical factors.

In the next chapter, we will focus on verifying the circuit behavior due to parametric

variation as it is becoming a major concern that significantly impacts not only the

yield but also the dynamics and so the functionality of analog circuits.
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Chapter 4

Surrogate based Verification

Given the set of so-called optimal design parameters computed in Chapter 3, this

chapter is concerned with the verification of possible aberrant circuit dynamics. The

verification methodology is based on a statistical proof by contradiction technique

to probe deterministic from stochastic circuit dynamics. It combines a surrogate

generation scheme with a statistical hypothesis testing procedure. We demonstrate

the feasibility and efficiency of the proposed methodology on several AMS circuits,

namely a Colpitts oscillator, a first and a third order Σ-∆ modulators, and a phase

locked loop.

4.1 Circuit Dynamics Verification

Figure 4.1 details our surrogate based methodology to statistically probe determin-

istic from stochastic dynamics of AMS circuits. Given a sized circuit topology, a

design specification and a technology library, the AMS circuit behavior is modeled

as Extended-System of Recurrence Equations (E-SREs) that describes its behavior

with and without noise. The methodology starts by conducting transient simulations
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If(true, x, y) = x

If(false, x, y) = y

In this thesis work, we are considering only thermal noise excitation that adheres to

a Gaussian distribution with mean m, and standard deviation σ.

Definition 4.1.1 (Chaos) The absence of a precise mathematical definition of the

chaos phenomena makes it very challenging to be distinguished from circuit noisy

behavior. Nevertheless, chaotic behavior can be characterized by the following features:

1. It is aperiodic but bounded.

2. It exhibits exponential sensitive dependence on initial conditions. Therefore, a

very small initial condition discrepancy will exponentially change the behavior

of the system over time which is known as the Butterfly Effect [62].

3. It is governed by one or more control parameters, a small change in which can

cause the chaos to appear or disappear.

4. It has an unpredictable long-term behavior despite emerging from deterministic

system.

5. It exhibits a complicated behavior wherein trajectories converge to a strange at-

tractor that has a fractal dimension.

First, we perform transient simulation of the obtained E-SRE AMS design model for

specific environment constraints, namely the initial values of the voltage and current

state variables and the simulation parameters (such as the total simulation time and

the simulation step size). Thereafter, a dynamics regeneration method is adopted for
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a phase-space verification of the circuit dynamics. In phase-space domain, the circuit

state variables are displayed against each other, i.e., it leaves time as an implicit

dimension not explicitly graphed. The subset of this phase-space domain toward which

the circuit tends to evolve regardless of the initial conditions is called an attractor.

This attractor is used to predict the chaotic behavior of an AMS circuit in order

to consider them in the surrogates generation later. The non uniform embedded

window [63] and the false nearest neighbor method [64] are used to establish optimal

embedding parameters (de, τ) for the attractor reconstruction.

Next, we elucidate the property of interest (P) that the circuit should comply

with. The property to be verified is phrased as follows: “Is the observed random like

behavior of the AMS design due to noisy or chaotic behavior?”. Hence, we define a

null hypothesis, denoted by H0, which assumes that the circuit exhibits stochastic

noise and an alternative hypothesis H1 that assumes the circuits to be purely de-

terministic, i.e., chaotic. To verify the above-mentioned hypotheses, the idea is to

generate artificial circuit outputs (called surrogates) which are realizations of what

the circuit output would be if it was consistent with the property P . Hence, these

surrogates serve as a useful null model against which the real circuit output is verified.

They are constructed from the circuit output so they are free from any chaotic process

while preserving some features of the circuit output.

Thereafter, we determine the noise radius ρ which is the amount of noise that

will obliterate the attractor of the surrogates. The best selection of this parameter

is very important for the accuracy of the results. ρ is computed according to the

suggestions in [65]. The parameters (de, τ , ρ) together with the hypothesis H0 are

then passed to a Surrogate Generation Method (SGM). A number of surrogates NS is

then generated using this method (more details will be given later in Section 4.1.1).
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Those surrogates must preserve some deterministic features of the real output (such

as periodicity) while satisfying the null hypothesis H0. Therefore, chaotic behavior

by fine scale dynamics will be altered by random noise with level ρ.

Finally, a single hypothesis testing technique is employed to verify the actual

AMS circuit behaviors in order to verify the noisy behavior expressed with the null

hypothesis H0. If H0 is rejected, significant differences between the original output

and its surrogates in terms of Gaussian Kernel (GK) or Lempel-Ziv Complexity (LZC)

measures (see Sections 4.1.2 and 4.1.3 for more details) are deduced depending on the

noise distribution (i.e., Gaussian/non-Gaussian). The rejection of H0 consequently

implies the acceptance of the alternative hypothesis H1 that the circuit behavior

exhibits chaotic dynamics.

4.1.1 Surrogate Generation Method

We extend the surrogate data method, developed first in [65] to study the dynamics of

human electrocardiogram (ECG), to verify AMS circuits behavior. It is a statistical

proof by contradiction method to verify whether or not data belong to a particular

class of system. Our surrogates generation procedure is summarized in Algorithm

4.1. The proposed algorithm requires: E-SREs model of the circuit for the state

variables X with/without thermal noise in some or all circuit components denoted

by E-SRE(X), the noise radius ρ, the embedding dimension de, the embedding lag τ ,

and the number of surrogates to be generated NS. The algorithm begins with state

space reconstruction of the circuit dynamics (line 4). It consists of representing the

dynamical features of the circuit output E-SRE(X) in an alternative domain namely

an Euclidian space Rde where de is the embedding dimension. By doing so, the points

in Rde form an attractor A (line 5) that gives intuition about the circuit dynamics.
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Algorithm 4.1 Surrogate Generation Algorithm

Require: E-SRE(X), ρ, de, τ , NS

1: N ← length (X);

2: Ñ ← N − (de − 1)τ ;
3: dw ← deτ − 1;
4: {Zt}Ñt=1 ← embed (E-SRE(X), de, τ);

5: A = {zt/ t = 1, 2, ..., Ñ};
6: for k = 1→ NS do
7: for j = 1→ N − dw do
8: i← 1;
9: s1 ∈ A;
10: while i < n do
11: dj = ‖si − zj‖;
12: ωj = e−

dj

ρ ;
13: pj ← ωj/

∑
k ωk;

14: P (si+1 = zt) ∝ pj;
15: si+1 = zj;
16: i← i+ 1;

17: {(st)k} ≡ {(s1)k, (s2)k, ...., (sN)k};

Thereafter, the embedding points of neighboring trajectories in the obtained attractor

are used to create a new attractor with noisy trajectories (lines 10-17). The algorithm

chooses an initial condition s1 randomly from the reconstructed attractor A (line

9). For the following noisy attractor point, a near neighbor zj ∈ A is then chosen

with a probability commensurate to the noise radius ρ (line 14). The introduction

of this dynamical noise by the surrogate generation algorithm will obliterate any

deterministic dynamics of the circuit while preserving periodicity. Hence, chaotic and

stochastic circuit dynamics lead to distinct trends of their surrogates produced by this

method.

4.1.2 Gaussian Kernel Test Statistic

Correlation dimension is an extension of the usual notion of dimension to objects

with a fractional dimension. Hence, a correlation dimension between two and three
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would represent an object which occupies more space than a plane, but less space

than a sphere. Because strange attractors have a fractional dimension, correlation

dimension is used as test statistic in the hypothesis testing. We use the Gaussian

Kernel (GK) [66] test to measure the dimension dc of the circuit attractor A. GK is

mathematically defined by Equation (4.2). It uses the Gaussian kernel function, given

in Equation (4.3), that is more convenient for calculating the effect of Gaussian noise.

dc = lim
h→0

lim
N→+∞

log T̂m(h)

log h
(4.2)

T̂m =
1

N

∑

i

∑

j 6=i

(
1

N − 1
e

‖xi−xj‖
2

4h2 ) (4.3)

where h denotes the bandwidth, and N represents the number of estimation points.

Our choice for this test can be justified by the fact that it has been proven to provide

a rigorous estimation of correlation dimension even for a noise level that is 50% higher

than an ideal signal [66].

4.1.3 Lempel-Ziv Complexity Test Statistic

The Lempel-Ziv Complexity (LZC) method, first defined in [67], is a nonparametric

measure of complexity in the sense of Kolmogorov. It is able to capture randomness,

i.e., the degree of redundancy (or patterns) that are similar in a signal without making

any assumption about its distribution. Unlike the Gaussian Kernel (GK) test statistic

described in the previous section, this measure has the advantage of handling stochas-

tic circuit behaviors that do not follow a Gaussian distribution. It objectively and

quantitatively estimates system complexity through the change process of inherent

system structure.

Consider a circuit output X = (x1, x2, ..., xN) of length N that takes its values
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in an alphabet A of finite size α = |A|:

Si =





0 if xi < Td

1 if xi ≥ Td

The upper limit of the complexity counter is given by:

c(N) <
N

(1− εN) logα(N)
(4.4)

where α is the number of alphabets in the circuit output under verification (it is

independent of the length of the output under verification N) and εN is given by the

following equation:

εN = 2
1 + logα(logα(αN))

logα(N)
(4.5)

The normalized LZC CLZ is defined as:

CLZ(N) =
c(N)

b(N)
(4.6)

where b(N) is given by the following equation:

b(N) =
N

logα(N)
(4.7)

Ziv proved in [68] that if X is the infinite length output from an ergodic source with

entropy rate h, then lim supn−→∞ CLZ(n) = h.

4.2 Applications

In this section, we report the results of the application of the proposed surrogate based

dynamics verification approach on a Colpitts oscillator, a third order Σ-∆ modulator,

and a PLL circuit. The type of hypothesis testing used is the one tailed test with the

level of significance α = 5%.
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4.2.1 Colpitts Oscillator

A Colpitts oscillator is a combination of a transistor amplifier and an LC circuit

as shown in Figure 4.2. The Colpitts circuit behavior has been reported to exhibit

chaotic behavior [69].

Figure 4.2: Colpitts oscillator

We model its behavior by the following E-SREs:

iB(n) = if(VBE > Vth,
VBE(n)− Vth

RON

, 0)

ic(n) = if(true, βiB(n), 0)

VCE(n+ 1) = if(true, VCE(n) + δt
iL(n)− ic

C1

, 0) (4.8)

VBE(n+ 1) = if(true, VBE(n)−
δt
C2

(
VEE + VBE(n)

REE

+ iL + iB)), 1)

iL(n+ 1) = if(true, iL(n) + δt(VCC − VCE(n) + VBE(n)− iL(n)RL), 0)

Table 4.1 summarizes the simulation and surrogate generation parameters for the Col-

pitts circuit. Figure 4.3 illustrates both the original and reconstructed attractor of the

Colpitts oscillator behavior using the embedding dimension (de, τ) given in Table 4.1.

The similarity of both attractors demonstrates the appropriate choice of embedding

parameters.
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Table 4.1: Simulation parameters of the Colpitts circuit

Parameter Value Parameter Value

REE 0.904 RL 35
C1, C2 54e-9 REE 400
RON 100 VCC 5
VEE -5 Vth 0.75
β 94 de 2
τ 3 ρ 0.003
NS 100 N 3600

The importance of an adequate selection of the noise radius ρ is shown in Figure 4.4.

For instance, if ρ is too large (ρ = 0.01), the surrogate generation algorithm will intro-

duce too much randomization and the surrogates will no longer resemble the circuit

output VCE (see Figure 4.4(c)). This resemblance can be measured using a pattern

matching technique [70]. Conversely if ρ is too small (ρ = 0.001), the algorithm will

introduce insufficient randomization, and surrogates will be identical to the output as

shown in Figure 4.4(b).
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Figure 4.3: Original attractor of Colpitts output (a), reconstructed attractor (b)
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Figure 4.4: The VCE output and its surrogate for different noise radius ρ

Figure 4.5 depicts the Gaussian Kernel correlation dimension dc of the VCE

output (dashed line) and its corresponding 100 surrogates (dotted line). It can be

observed that our approach successfully probes the chaotic behavior of the Colpitts

circuit. For instance, the dc(VCE) is significantly different from those of the surrogates

and so falls in the rejection region (see Figure 4.5). This leads to the rejection of

the noisy dynamics hypothesis and consequently proves the chaotic circuit dynamics.

Using our circuit dynamics verification technique, we were able to detect chaotic

dynamics in the Colpitts oscillator with a confidence level of 95%.
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4.2.3 Phase Locked Loop

PLLs are widely used as modulators and demodulators in communication systems.

In this section, we verify a third order PLL that serves as FM demodulator [73]. In

this PLL, a multiplier Phase Detector (PD) and a resonant Low Pass Filter (LPF)

are deployed as shown in Figure 4.9.

Figure 4.9: Conventional PLL block diagram

The PLL dynamics are governed by the following E-SREs:

ϕ(n+ 1) = if(true, ϕ(n) + δt fn, 0)

Ψ(n+ 1) = if(true, Ψ(n) − δt m fn sin(ϕ(n)), π)

x(n+ 1) = if(true, x(n) + δt (Ωn − kn z(n)), 0) (4.10)

y(n+ 1) = if(true, y(n) + δt (sin(x(n) − Ψ(n)) +

(g − 2) y(n) − g − 1

g
z(n)), 0)

z(n+ 1) = if(true, z(n) + δt (g y(n) − z(n)), 1)

where the state variables ϕ, Ψ, x, y, and z stand for modulating signal, frequency

of modulation, phase difference between PLL input and VCO output, PD output,

and LPF output, respectively. As the control parameter m changes, the dynamic

of the PLL changes and at the end culminating to a chaotic regime. For instance,
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Table 4.2: Simulation parameters of the PLL circuit

Parameter Value Description

fn 0.904 normalized frequency of the modulating signal
m 10 modulating index
Ωn 1.2 normalized detuning
de 5 embedding dimension
kn 0.6511 normalized loop gain
g 1.728 filter gain
τ 10 embedding lag
ρ 0.0170 noise radius
NS 100 number of surrogates

the circuit output. Consequently, the proposed methodology was able to successfully

distinguish the noise like behavior exhibited by deterministic chaotic circuit from the

stochastic noisy PLL.

4.2.4 Comparison with Lyapunov Exponent Method

In order to demonstrate the efficiency of the proposed methodology, the Lyapunov

Exponent (LE) measure was carried out for the previously analyzed circuits under

the same simulation conditions and for the same circuits outputs. The results of

chaos verification and simulation time are recapitulated in Table 4.3.

The obtained results using our approach are in good agreement with those ob-

tained with the LE technique for the Colpitts circuit and Σ-∆ Modulator. However,

a failure to discriminate the noisy behavior of PLL has been detected (see Table 4.3);

Thermal noise in the VCO creates sensitivity to initial conditions of the PLL design

that triggered the finding of a positive Lyapunov exponent. In fact, a maximum ex-

ponent λ = +0.0154 has been obtained while the circuit exhibits thermal noise in the

VCO and not chaotic behavior. Moreover, a simulation time acceleration is found
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if the gain α is in the range ]1, 2]. However, if α ≤ 1, instead of chaos, the circuit

exhibits a normal operation (i.e., the quantized output will be approximately equal to

the input signal). We performed the verification of this circuit under two regimes: (1)

chaotic regime with α = 1.14; (2) noisy regime by introducing non Gaussian flicker

noise to a non-chaotic output for α = 0.5. The results of the application of our circuit

dynamics verification methodology to the first order Σ-∆ modulator are recapitulated

in Table 4.4. In the chaotic regime, both the Gaussian Kernel (GK) test statistic and

LZC test statistic reject the null hypothesis H0 of noisy circuit behavior.

Table 4.4: Results of verifying the first order Σ-∆ modulator

GK test statistic LZC test statistic
Chaotic regime Reject H0 Reject H0

Noisy regime Reject H0 Accept H0

Nevertheless, in the case of noisy regime, the GK test statistic falls short to

discriminate the noisy behavior emanating from flicker noise which does not adhere

to a Gaussian distribution while the LZC test statistic successfully discriminates it.

Indeed, the null hypothesis H0 is found consistent with the noisy assumption whereas

the GK test statistic fails to do so. Consequently, our dynamics verification method-

ology presents two test statistic measures that are able to detect different types of

noise depending on their distributions.

4.3 Summary

From a verification perspective, this chapter presented a methodology for the verifica-

tion of analog circuit dynamics. More precisely, the proposed methodology serves to

statistically assess chaos from noise in analog and mixed-signal designs. The circuit is
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modeled using Extended System of Recurrence Equations. The verification approach

is based on the univariate hypothesis testing and a surrogate generation method to de-

cide whether to reject or accept the hypothesis that an unpredictable circuit behavior

is emerging from noise. Depending on the type of noise, two test statistic measures,

namely Gaussian Kernel and Lempel-Ziv Complexity, are proposed. The experimen-

tal results on several circuits show the robustness and effectiveness of the proposed

methodology. Nevertheless, in reliability analysis, designers are more concerned about

the failure probability (i.e., yield) of the circuit due to fabrication imperfections. To

respond to this concern, we propose in the next chapters yield estimation techniques

to verify compliance of the circuit performances to their desired specifications in light

of process variation.

77



Chapter 5

Single Performance Yield

Estimation

As stated in Chapter 1, a crucial step in the VLSI design flow is the verification of

the circuit robustness to process variation. Upon ensuring that the circuit fulfills its

intended behavior for the computed nominal process parameters, we propose in this

chapter a semi-formal reachability analysis technique to estimate the yield rate for a

single circuit performance. In contrast to methods that use solely forward reachability,

our reachability analysis approach is carried out in an intertwined forward/backward

manner in order to reduce wrapping effect. Subsequently, the circuit failure rate is es-

timated using a hypothesis testing based approach. We demonstrate the effectiveness

of our proposed verification methodology on a Tunnel diode oscillator and a Phase

Locked Loop (PLL) circuits.
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5.1 Reachability Analysis based Yield Estimation

An overview of the proposed methodology for single performance yield assessment us-

ing intertwined forward/backward reachability analysis is shown in Figure 5.1. Given

a nonlinear AMS circuit topology, a surrogate model of the circuit in the form of

an SSRE (see Section 2.1.2) is generated. The proposed SSRE formalism features a

sound treatment of noise. It actually allows a consistent consideration of the noise

effect to which the circuit is incurred during the reachability analysis process. Then,

parameter values from a certain distribution of the parameter space are derived using

the efficient LHS technique.

Next, reachability bounds of the AMS circuit behavior for a continuous set of

initial conditions, and under the derived circuit parameters are generated using first a

forward reachability analysis technique. Then, the obtained forward reachable sets are

corrected using a backward reachability scheme in order to reduce the over-bounding

of the forward scheme. Then, an univariate hypothesis testing procedure is performed

on the reachable bounds outputted from the backward reachability analysis.

The intertwined forward/backward reachability is computed using SSRE circuit

model with parameters selected by the LHS procedure and for initial conditions that

are defined within intervals (n-cubes) is based on multivariate global optimization

methods. The SSRE is not solved for every initial condition value but it employs the

reachability analysis algorithm to optimize the search for the global extremum. The

output of this step is a refined reachability set generated from the backward reacha-

bility correction that includes all possible actual behaviors (trajectories) of the circuit

transient behavior. The main advantage of the proposed verification scheme is its

generality and scalability. In fact, it does not make any assumption about the nature
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5.1.1 Latin Hypercube Sampling

To study parameter variation effects on the AMS circuits behavior, an optimal ex-

ploration of the parameter variation domain is very important in order to achieve a

good accuracy and avoid non-informative verification runs. Traditional sampling tech-

niques (e.g., Pseudo Random Sampling (PRS) [74], Fractional Factorial [75], Central

Composite [76], etc.) only arrange parameter values at some specific corners in the

parameter space and cannot handle multivariate stochastic parameters especially in

terms of correlation. Consequently, when performing the verification, it cannot mimic

the circuit behavior in a global circuit parameter space. We first look at PRS as ap-

plied in the estimation of circuit failure in order to justify the use of Latin Hypercube

Sampling (LHS). It has been demonstrated that the LHS technique gives samples

that could reflect the integral distribution more effectively with a reduced samples

variance [77]. Figure 5.2 illustrates the differences while using Uniform Monte Carlo

PRS and Gaussian Monte Carlo LHS of a random normal parameter of transistor

width for 1000 trials. As it can be seen, the PRS approach has a poor space filling.

Indeed, there are regions of the transistor width space that are not sampled enough

and other regions that are heavily sampled; On the contrary, the LHS approach ade-

quately samples the entire transistor width variation domain. The generated samples

follow more closely the actual Gaussian distribution.

In the sequel, we explain the Latin Hypercube Sampling (LHS) main steps to

generate a sample size N from n AMS circuit parameter variables ξ = [ξ1, ξ2, . . . , ξn]

with the probability distribution function fξ(.). The approach starts by the partition-

ing of the range of each circuit parameter variable into N nonoverlapping intervals

on the basis of equally probability size 1
N
. One value from each interval is randomly

selected w.r.t. the conditional probability density in the variation interval defined by
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5.1.2 Intertwined Forward-Backward Reachability Analysis

The proposed intertwined reachability analysis approach is shown in Figure 5.3. The

reachability analysis is conducted by iteratively applying a propagation algorithm

which computes the next reachable set at time t+∆t based on the current reachable

set at time t.

Definition 5.1.1 (Reachability Analysis) Reachable set (or bounds) is the collection

of all possible trajectories or states of the AMS circuit transient behavior originated

from an interval of initial conditions. Mathematically, this can be defined as follows:

XReachable set = {x ∈ RNx | XL ≤ x ≤ XU} (5.2)

where XL is the lower reachable bound of the reachable set (or region) and XU is the

upper bound of the reachable set.

First, the forward reachability analysis trajectories are calculated starting from the

initial condition uncertainty region (in this case it has rectangular geometrical form) at

each time step and projected to a reachable set as depicted in Figure 5.3 (a). Second,

the backward reachable set is computed wherein the obtained forward reachable set is

considered as the initial region of uncertainty. Trajectories starting from all points in

the final backward reachable set is simulated in reverse time for the sake of screening

out erroneous over-approximated reachable sets as illustrated in Figure 5.3 (b). The

definition of reverse time dynamics of the SSRE model allows the forward/backward

reachability exchange.

The detailed implementation of the intertwined reachability analysis approach

is summarized in Algorithm 5.1. Given an interval system of stochastic differential

equations (an SSRE whose initial conditions are intervals), the algorithm defines the

region of uncertainty of the circuit output as a hypercube (n-cube) at time t0 (lines
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Figure 5.3: Intertwined reachability analysis concept

3 and 18). Hence, the reachability analysis problem at a given simulation time point

t∗ for each circuit output (or state space) is equivalent to finding the maximum and

minimum bounds of the SSRE model. In the proposed algorithm, the reachability

analysis problem is so cast into a constrained multivariable nonlinear global opti-

mization problem. It was proven that under continuity condition, it is sufficient to

compute the evolution of the external surface of the uncertainty region [79]. This

means that to calculate the reachable bounds, it is sufficient to compute the trajec-

tories emanating from the external surface of the region of the uncertainty region.

The extreme functions (Max and Min) at a specific time t∗ of the system equations

SSRE(t∗, j, Xext), ∀j = 1, . . . , Nx, which bound the circuit behavior, are first com-

puted using the forward reachability analysis. We use the MATLAB Optimization

solver [80] based on trust regions (lines 1 to 15) to obtain these extreme functions

of SSRE(t∗, j, Xext), ∀j = 1, . . . , Nx by fixing the time variable to t∗ and constrain-

ing the circuit transient behavior to evolve over the external uncertainty region (line
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Algorithm 5.1 Intertwined Forward/Backward Reachability Analysis

Require: SSRE : AMS Circuit Model, X0 : Interval of Initial Conditions, P : Circuit
parameters, Nx : Number of state variables, t0 : Initial time, tf : Final time

1: for t∗1 ← t0 to tf do
2: for j ← 1 to Nx do
3: Xext(t

∗
1) = Generate(X0) . external surface of the uncertainty region

4: Xmax(t
∗
1, j) = −∞

5: Xmin(t
∗
1, j) =∞

6: for each state variable Xext(j) ∈ Xext do
7: Const = UpdateConstar(j, SSRE, P,Xext)
8: Grad = UpdateGrad(j, t∗1, SSRE, P,Xext))
9: [Xmax(t

∗
1), Xmin(t

∗
1)] = Global Opt(SSRE, j, t0, t

∗
1, P,Xext), Grad, Constr)

10: BLForward
(t∗1)← Xmin(t

∗
1)

11: BUForward
(t∗1)← Xmax(t

∗
1)

12: update forward(t∗1,∆t)

13: for t∗2 ← tf to t0 do
14: for j ← 1 to Nx do
15: Xext(t

∗
2) = Generate(BLForward

(t∗2), BUForward
(t∗)) . external surface of the

approximate reachability bounds
16: Xmax(t

∗
2, j) = BUForward

(t∗2, j)
17: Xmin(t

∗
2, j) = BLForward

(t∗2, j)
18: for each state variable Xext(j) ∈ Xext do
19: Const = UpdateConstarB(j, SSRE, P,Xext)
20: Grad = UpdateGradB(j, t

∗
2, SSRE, P,Xext))

21: [Xmax(t
∗
2), Xmin(t

∗
2)] = Global OptB(SSRE, j, tf , t

∗
2, P,Xext), Grad, Constr)

22: BLcorrected
(t∗2)← Xmin(t

∗
2)

23: BUcorrected
(t∗2)← Xmax(t

∗
2)

24: update backward(t∗2,∆t)

7). The computed optimization point is then passed to the SSRE model, which uses

Xext as initial conditions and generates a partial derivatives (gradient) values that

are used to control the stability of the reachability analysis (line 8). The algorithm

terminates if the optimization method considers SSRE(t∗, j,Xext), ∀j = 1, . . . , Nx as

an extremum which is the solution returned by the solver; Otherwise the gradient

values are used to select new points from the external uncertainty region Xext and the

above described steps are repeated. Although this step guarantees the completeness
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of the reachability set, the upper and lower obtained reachable sets are highly over-

bounded due to the wrapping effect. One way to tighten the reachability space is to

conduct a backward reachability (lines 16 to 30). Starting from the final computed set

(line 18), the backward optimization algorithm is now performed on the AMS circuit

SSRE reversed in time in order to compute backward the reachability bounds and

consequently, correct the overbounded forward reachability set.

5.1.3 Monte Carlo-Jackknife Statistical Technique

In the sequel, we describe Monte Carlo-Jackknife (MC-JK) technique that we de-

veloped in [81]. This technique will be used later on in Section 5.2 to compare the

results of the yield estimation and to show the attractable advantages of the proposed

reachability analysis based yield estimation.

The Jackknife technique [82] was originally developed as a nonparametric way

to estimate and reduce the bias of an estimator of a population parameter. The

bias of an estimator is defined as the difference between the expected value of this

estimator and its true value. The Jackknife procedure works as follows: First, remove

d (a parameter set by the designer) data points and calculate the statistic of interest.

Second, calculate the pseudo-values according to Equation (5.3). Then, repeat this

process, leaving out d data points at a time to build a distribution of the statistic.

Finally, use that distribution to estimate the statistic and its uncertainty. For an

estimator S, the ith pseudo-value Jackknife of S was calculated as follows:

psi = NS − (N − 1)Si (5.3)

where Si is the estimator value for the sample with the ith data point deleted. The

Jackknife Confidence Interval (CI) of this estimate for 95% confidence level is then

given by:
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CIJ = p̄s± 2

√
σJ

N
(5.4)

where σJ =
∑ (psi−p̄s)2

N−1
, p̄s =

1

N

∑
psi

Hence, Jackknife reduces the bias of parameter estimates as well as the variance.

The detailed procedure for Monte Carlo-Jackknife (MC-JK) based hypothesis testing

technique for AMS circuits is illustrated in Algorithm 5.2, where Vout represents the

observed circuit output with process variation, M denotes the number of MC-JK

samples, d is a parameter for the Delete Jackknife Method [83], α a chosen significant

Algorithm 5.2 Monte Carlo-Jackknife Verification Algorithm

Require: Vout, Tobs, α, test, M , d
1: N ← length(Vout)
2: for i ← 1 to N do
3: θ ← Delete Jackknife Method (d, Vout)
4: TJK(i) ← Measure Test Statistic (θ)

5: while test = ”upper tail test” do
6: CV = quantile (TJK , 1− α)
7: if CV ≥ Tobs then
8: Accept H0

9: else
10: Reject H0

11: while test = ”lower tail test” do
12: CV = quantile (TJK , α)
13: if CV ≤ Tobs then
14: Accept H0

15: else
16: Reject H0

17: while test = ”two tailed test” do
18: CVL = quantile (TJK ,

α
2
)

19: CVU = quantile (TJK ,
1−α
2
)

20: if CVL ≥ Tobs or CVU ≤ Tobs then
21: Reject H0

22: else
23: Accept H0

level and test stands for the type of test to be performed. The algorithm starts with

drawing M samples from the circuit output Vout of size N by leaving out d samples of
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the output at a time (line 3). The deviation between the output and H0 is computed

using a test statistic estimation TJK for each Jackknife pseudo-sample.

Next, the Monte Carlo quantile procedure [84] is employed to measure the crit-

ical value by type of test: For an upper tail test (line 5)/lower tail test (line 11), the

1−α/α quantiles of the empirical distribution, respectively. In the case of two tailed

test, both 1− 1
α
and α

2
quantiles define the lower and upper critical values (lines 18-

19). Once the critical value is determined, the monitor decides about the satisfaction

or violation of H0.

5.2 Applications

As applications for our proposed methodology, we consider two circuits, namely a

ring oscillator, a tunnel diode oscillator and a phase locked loop. In what follows, we

estimate the parametric yield through carrying out the proposed method in light of

process variation, jitter and initial conditions uncertainties. The obtained yield rates

are compared with the MC-JK method and a forward only reachability scheme.

5.2.1 Tunnel Diode Oscillator

Oscillators are integral parts of today’s Integrated Circuits (ICs) which require a

time reference (clock). One main salient feature of a perfect oscillator is its ability to

provide an accurate time reference even in an imperfect environment. A Tunnel Diode

Oscillator (TDO) circuit is shown in Figure 5.4. It exhibits an oscillatory behavior

when operating in the negative resistance region of the diode V-I characteristic (see

Figure 5.5). It was reported that its oscillation property is affected by the temperature,

the conductance G = 1/R and the initial conditions [85].

Our goal is to verify the oscillation property in the presence of process variation in
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Figure 5.4: Tunnel diode oscillator schematic

G = 1/R, L, and C and under a range of initial conditions X0 = [X0min
, X0max

] lying

in a specic continuous range of values at a nominal temperature (T = 200K). The

component values R, L and C and the input voltage and current values have been

chosen from [85]. The metric of interest in this experiment is the oscillation property

with frequency fosc. The desired specification for the TDO is:

H0 : Oscillation ∧ fosc ∈ [71, 74] MHz (5.5)

H1 : Lock up ‖ fosc /∈ [71, 74] MHz

The circuit was simulated for different conductance values G. Figure 5.6 depicts

the output voltage Vc variation in the case of G = 5mΩ−1. It can be seen that the

circuit, in this case, generates a periodic signal between 0V and 0.5V (Figure 5.6

(a)). Moreover, the state space representation given in Figure 5.6 (b) confirms the

successful oscillatory behavior of the TDO circuit. Nonetheless, for a conductance

value of G = 4.13mΩ−1, the TDO circuit fails to start-up and sustain oscillation

(see Figures 5.6 (c),(d)). The voltage output actually settles to a fixed value which

causes the circuit lock-up and hence violates the desired property given in Equation

(5.5). Figure 5.7 shows a state space representation of the reachable set as well as
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Figure 5.5: Tunnel diode V-I characteristic

the corrected backward reachable set in the case of lock up (G = 4.13mΩ). As it

can be noticed, the resultant state space reachable bounds settle to a fixed region

which holds up the free stable oscillatory behavior. This confirms the results shown

in Figures 5.6 (c),(d). The oscillation verification performance constraint is therefore

violated and the verification fails in this case. The TDO is first verified using a variant

of the Monte Carlo technique called Monte Carlo- Jackknife (MC-JK) [81], where the

failure probability of the TDO property (see Equation (5.5)) is verified under process

variation uncertainties. For the process variations in the circuits parameter, 1000

samples were drawn using LHS from the parameters space.

For a fair comparison, these same parameters points were passed to both the

MC-JK method and our intertwined forward/backward reachability analysis method.

The results of the yield rate estimation are summarized in Table 5.1 in the case of

(G = 5mΩ).

It can be noticed that our proposed methodology gives better yield estimation by

detecting failures that were not detected by the Monte Carlo-Jackknife (MC-JK)
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Figure 5.6: Tunnel diode oscillator output for different conductance G

Table 5.1: TDO yield estimation comparison with Monte Carlo-Jackknife method

MC-JK [81]
(%)

Our method
(%)

Relative Error
(%)

IC Variation Only 92.1 87.7 4.4

PV & IC Variations 88.6 83.3 5.3

Jitter & IC Variations 82.5 76.1 6.4

Jitter & PV & IC Variations 79.9 72.8 7.1

technique [81]. In this sense, the obtained parametric yield rates are over-estimated

with up to 7% relative error in light of jitter, process variation and initial conditions

uncertainties. In Table 5.2, we present the results of yield estimation for the same

scenarios as in Table 5.1 yet for a forward only reachability scheme. The results

show the better verification coverage offered by our proposed intertwined reachability

technique.
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Figure 5.7: Intertwined reachability analysis in the lock-up case

Table 5.2: TDO yield estimation comparison with forward only reachability method

Forward RA [86]
(%)

Our method
(%)

Relative Error
(%)

IC Variation Only 86.1 87.7 1.6

PV & IC Variations 80.8 83.3 2.5

Jitter & IC Variations 73 76.1 3.1

Jitter & PV & IC Variations 68.1 72.8 4.7

5.2.2 PLL Frequency Synthesizer

The PLL based frequency synthesizer is a basic and essential block of modern com-

munication systems. It is basically a feedback circuit that tries to reduce the phase

error between the input and the reference signals. In this case study, we consider a

simple frequency synthesizer, that generates an output signal whose frequency is N

times the frequency of the reference signal. We consider for this application a Sine

wave reference signal with a frequency of ω0, the PLL output is a Cosine wave signal

with frequency N × ω0. Figure 5.8 shows a block based description of a second order

PLL based frequency synthesizer. It consists of a reference oscillator, a Charge Pump

(CP), a Low Pass Filter (LPF), and a Voltage Controlled Oscillator (VCO). In order
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Figure 5.8: PLL design block diagram

to model this PLL using SSREs notation, we need to model each block separately and

then link them according to the PLL architecture in Figure 5.8. The noise consid-

ered in this case study is the random temporal variation of the phase in the reference

oscillator and the VCO block. It is well-known that jitter is the most dominant and

critical noise metric in PLL because large jitter can modulate the oscillator signal both

in frequency and amplitude. These modulation effects can cause a deviation in the

phase from targeted locking range and hence results in a design failure. The efficient

verification of PLL for a certain design specification has always been a challenge for

circuit designers. We apply the proposed methodology to verify the locking property

of the second order PLL design shown in Figure 5.8. The lock time property is a

safety property that expresses how fast the frequency synthesizer switches from one

frequency to another. The verification of this property is achieved by checking that

the PLL reaches the proper DC value within the lock time parameter range which
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is ∈ [0.002, 0.0024] seconds. This property is defined within the ambit of an SSRE

model in Equation (5.6), where the SSRE concatenation operator (∧) indicates that

the two Boolean expressions hold simultaneously.

Property PLL = If(Filter out(Lock timemin + n) ∈ DC level range ∧ (5.6)

Filter out(Lock timemax − n) ∈ DC level range, true, false)

The verification property is “For a given confidence level α, and N Monte Carlo trials,

what is the probability that the PLL meets the lock-time requirement?”.

In this case, the PLL has been designed with a lock-time in the range of [0.002, 0.0024]

sec. Hence, the null hypothesis H0 and the alternative hypothesis H1 of Property (5.6)

can be, respectively, expressed as:

H0 : lock time ∈ [0.002, 0.0024]

H1 : lock time /∈ [0.002, 0.0024]

Figure 5.9: PLL output with and without jitter

Figure 5.9 depicts a comparison between the locking property of the PLL design whose

parameter values are listed in Table 5.3 with and without jitter.
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Table 5.3: PLL circuit parameters

Loop parameters Value Unit
VCO gain ( KV CO) 4π/5 rad.MHz/V
Loop Filter resistance (R) 10 KΩ
Loop Filter capacitor (C) 10 nF
Charge time parameter 1.0001 –
Divider Ratio (N) 2 –
Natural frequency 1 MHz
VCO operating frequency 1 MHz
Damping Ratio (ξ) 0.05 –
Charge Pump current (ICP ) 0.25 mA
LPF DC level 2.5 V
Supply voltage (Vc) 5 V

A comparison of the same reachability algorithm without backward refinement [86]

for the PLL design is given in Table 5.5. It can be remarked that in the case of jittery

PLL (red dotted line in Figure 5.9), the low pass filter outputs do not stabilize to the

tolerated DC level and keep fluctuating outside the tolerated range. As a result, the

PLL locking property is violated and the verification fails.

From the above discussion, it becomes clear that the verification of the PLL with

consideration of jitter is very important when performing reachability analysis. Now,

we validate our proposed intertwined forward/backward reachability technique on the

jittery PLL design for an entire range of initial conditions and with consideration

of parameter variations. The derived forward and backward reachable bounds are

shown in Figure 5.10, in which the forward reachability bound is painted in red and

the backward reachability bound in green.

In the forward iteration, the reachable set is highly over-approximating the PLL

behavior. By performing the backward correction, we were able to tighten up this

over-approximation and trace back the circuit dynamics down to the initial condition.
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Figure 5.10: Intertwined forward/backward reachability analysis of PLL under jitter

The results of the PLL yield estimation using the Monte Carlo-Jackknife (MC-

JK) [81] and our proposed intertwined reachability technique are summarized in Table

5.4. It is worth mentioning that our technique converges in one iteration only while

Monte Carlo technique requires thousands of runs. From Table 5.4, it can be noticed

that our proposed method finds a lower yield percentage compared to the statistical

Monte Carlo scheme in [81]. This can be explained by the fact that our verification

approach can weed out PLL locking failures that were not covered in [81]. In addition,

the presence of combined jitter, initial conditions and process variations (columns

8− 10) have substantially decreased the PLL yield, meaning the PLL presents more

probability of lock failure.

The presence of jitter alone has shown a lower yield rate. This can be justified

by the high sensitivity of the VCO block to jitter. The failure of the PLL is not due

to lock up (non oscillation) of the VCO but, due to either an “ugly” (i.e., fluctuates

outside the tolerated region) or delayed oscillation. The Relative Error (RE) between

our proposed approach and the MC technique (columns 4, 7 and 10) becomes more
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Table 5.4: Verification results for the PLL lock-time property

Jitter Only Parameter Variation Only Jitter & P.V

N= [81] Our method RE [81] Our method RE [81] Our method RE

Yield (%) Yield(%) (%) Yield(%) Yield (%) (%) Yield (%) Yield (%) (%)

82.4 74.1 8.3 84.7 79.2 5.5 80.6 71.5 9.1

1000 83.3 71.7 11.6 80.9 76.3 4.6 78.2 68.9 9.3

81.7 69.8 11.9 79.2 72.7 6.5 77.5 67.3 10.2

83.6 73.1 10.5 85.8 81.6 4.2 81.8 72.3 8.7

5000 80.2 72.3 7.9 81.9 77.8 4.1 78.2 70.1 8.9

79.8 70.8 9 80.7 74.4 6.3 78.2 68.6 9.6

81.7 69.9 11.8 83.6 79.7 3.9 80.2 66.1 14.1

10000 79.6 67.1 12.5 80.3 74.4 6.1 78.1 62.6 15.3

78.1 65.9 12.2 81.9 71.8 10.1 76.8 60.1 16.7

RE: Relative Error

pronounced when the number of Monte Carlo trials is increased due to the high MC

sampling variance. As stated before, we also performed a comparison between our

proposed intertwined reachability analysis technique and the forward solely scheme in

[86]. The results of the comparison for different uncertainty scenarios are summarized

in Table 5.5. It can be seen that the yield estimate is the lowest under the combined

jitter and process variation effects (columns 7-9 in Table 5.5). This confirms the

importance of including jitter in the modeling and verification plan of the PLL design.

As demonstrated, the proposed approach provides roughly 5% better accuracy in PLL

parametric yield estimation, unlike the forward only reachability approach that highly

over-approximates the reachable bounds and thus the yield rate.

Table 5.5: Comparison between reachability analysis schemes

Jitter Only Parameter Variation Only Jitter & P.V

Forward [86] Our method RE Forward [86] Our method RE Forward [86] Our method RE

Yield (%) Yield(%) (%) Yield(%) Yield (%) (%) Yield (%) Yield (%) (%)

69.9 74.1 4.2 76.9 79.2 2.3 66.1 71.5 5.4

67 71.7 4.7 74.5 76.3 1.8 63.3 68.9 5.6

64.5 69.8 5.3 70.1 72.7 2.6 61.2 67.3 6.1
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5.3 Summary

We have presented a novel methodology for modeling and verification of nonlinear

analog and mixed-signal circuits by computing reachable sets of possible state-space

trajectories in the presence of uncertainties. In contrast to methods that use solely

forward reachability, the refinement of the reachable state space is carried out in an

intertwined forward/backward manner. The resulting set, which contains all periodic

and aperiodic time bounded behaviors of the circuit under parameter variation and

initial condition disturbance, can be used to verify critical properties such as bounds

on voltages, currents, and cycle time (frequency) of embedded designs. Statistical

verification based on hypothesis testing is then conducted on the resultant corrected

reachable sets for an accurate parametric circuit failure estimation. Experimental re-

sults show that our intertwined forward/backward reachability analysis can succeed

in accurately estimating the circuit failure rate (a.k.a. yield) by reducing the high

over-approximation of the forward scheme in the presence of noise and process vari-

ations. However, the proposed method does not handle yield estimation for multiple

correlated circuit performances. In the next chapter, we present a multi-yield estima-

tion approach that performs in a high dimensional process parameters space within a

reasonable simulation time.
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Chapter 6

Multiple Performance Yield

Estimation

In this chapter, we focus on verifying multiple transient properties of analog and mixed

signal circuits with dynamics described by a system of stochastic recurrence equations

(SSREs). A critical yet challenging problem of yield estimation is to account for

multiple circuit performance and environmental corners. Unlike the previous chapter

where the verification is performed in the time domain, the yield estimation is carried

out in the state space domain using a technique developed in the context of nonlinear

dynamical system theory.

6.1 Statistical Runtime Verification

An overview of our proposed framework for parametric yield estimation is depicted

in Figure 6.1. It comprises a structural verification scheme for yield assessment that

consists of two major functional phases:

- After modeling the circuit as a System of Stochastic Recurrence Equation (SSRE)
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(that has the form of Equation 2.4), the first phase runs a transient global sensitivity

analysis routine. It aims to quantify the impact of process variability on circuit per-

formances as well as to identify critical circuit parameters variation driving the circuit

failure. It is conducted in two steps. In the first step, a parameter screening method

is adopted to determine which circuit parameters have little impact on the desired

performance metrics, such parameters are called non-influential parameters. Hence,

a better verification coverage with a lower cost can be achieved through screening

out non-influential parameters by setting their values to nominal ones. In the second

step, a parameter prioritization method is employed. It is based on a variance based

sensitivity analysis wherein sensitivity indices for the influential circuit parameters

are derived. Based on the derived sensitivity indices, a prioritized list of influential

parameters is generated. Using this prioritized circuit parameters list, we can improve

the predictive capability of the yield estimation scheme by using this knowledge of

how sensitive is the circuit performance to the variation in their parameters.

- The second phase is the statistical yield estimation scheme. The circuit performance

verification is performed through a Joint Recurrence Verification (JRV) scheme. A

novel verification metric is developed to score how close is the circuit behavior to

the ideal one. The verification is conducted in the state space domain which allows

simultaneous multiple performance/outputs verification. The yield rate is thereafter

estimated based on a multiple hypothesis testing procedure on the derived perfor-

mance quality metrics from the JRV scheme.

6.1.1 Transient Sensitivity Analysis

When dealing with the problem of large process variation spaces, a natural verification

strategy is to first reduce the parameter variation space by some selection (screening
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that have a significant impact on these performances should be considered for the

yield estimation [89]. The key idea in this preliminary step is to relate the individual

impact of parameter variations to the circuit performances variations and subsequently

reduce the process parameters space by screening out the non-influential parameter

variations in the desired circuit performance. The detailed procedure for Morris based

process parameters screening of AMS circuits is given in Algorithm 6.1. The first step

of the algorithm is to generate a hyperspace identified by a d -dimensional l -level grid

of the parameter variation intervals pi = [lb(i), ub(i)]∀i ∈ [1, d], where d is the number

of process parameters. The distance between two consecutive levels is given by ∆ (line

1). This hyperspace process parameter is then discretized through the scaled random

sampling matrix referred to as the orientation matrix C (line 6) where J(d+1,d) is a

(d + 1) × d matrix with all ones, As is a (d + 1) × d sampling matrix defined for

process parameters in the hypercube [0, 1]d, D∗ is a d -dimensional diagonal matrix

with elements ±1 and finally, Pr∗ is a d × d random permutation matrix, in which

each column contains one element equal to 1 and all the others equal to 0, with no

more than one ones columns in the same position. The influence of the parameter ps

is then evaluated by performing N∗ times runs, where we only change a single process

parameter at a time between two successive runs of the circuit performance gk. This

process generates a trajectory of N∗ points in the parameter space for which several

elementary effects at the different randomly selected values ps are computed. Then,

the Elementary Effect (EE), of the process parameter, ps, on the circuit performance

gk, is calculated for each s ∈ [1, d] (lines 5-8). Owing to the randomness of EE, we then

characterize them using the mean µ∗ and standard deviation σ statistics. Based on

these statistics, the algorithm computes sensitivity indices (referred to as the Global

Indices (GI)) in order to classify the parameters according to the Euclidian distance
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Algorithm 6.1 Process parameters screening flow

Require: P (d), G(m), l, LB, UB,N∗

1: Compute the step size ∆ : ∆ = l
2(l−1)

2: Compute starting process parameter vector p∗ = LB
3: for s = 1→ d do
4: for all gk ∈ G do
5: repeat
6: Calculate the sampling matrix C as follows:
7: C = J(d+1,1)LB + As(D(UB − LB)) with As = J(d+1,d)p

∗ + ∆
2
[(2A −

J(d+1,d))D
∗ + Jd+1,d]p

∗

8: Compute the Elementary Effects: E(s,k) =
gk(Ci)−gi(Cj)

∆

9: until r = N∗

10: µ∗
k =

1
N∗

∑N∗

r=1 | E(s,k) |
11: σ2

k = 1
N∗−1

∑N∗

r=1(E(s,k) − µ)2, where µ = 1
N∗

∑N∗

r=1 E(s,k)

12: GIs = max
k=1,...,m

(
√

µ2
k + σ2

k)

13: [P n, P i] = Assess parameter influence (GIs)

14: return P n, P i

(line 12). Finally, the algorithm classifies the process parameter ps (line 13) according

to their influence on the desired circuit performance:

- Non-influential parameters having negligible effects on the circuit performances that

exhibit a low sensitivity score GI.

P n = {pn1 , · · · , pnd̂r} ⊂ P = {p1, · · · , pd} (6.1)

- Influential parameters having large linear/non-linear effects with/without interac-

tions on the circuit performances that exhibit a high sensitivity score GI.

P i = P − P n (6.2)

The proposed screening method will allow the removal of statistically insignificant

process parameters (i.e., non-critical to the yield estimation) and thereby will reduce

the yield analysis problem by the following ratio:

d− d̂r
d

(6.3)
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6.1.1.2 Parameter Prioritization

In this section, we aim to assess how the variation in the circuit performance can

be apportioned to the different sources of variations in both electrical and physical

circuit parameters that were identified in the parameter screening step as influential

parameters. To this end, novel measures should be introduced to quantify the circuit

process parameters and the correlation thereof according to their influence on the

AMS circuit output/performance. Consider P i the set of d̂p = d− d̂r influential pro-

cess parameters which follow a certain distribution, and f(x) a circuit performance

of interest depending on these parameters. It is assumed that f is a second order

random variable f ∈ L2(U
d̂p). Therefore, f has a unique Sobol-Hoeffding decompo-

sition as detailed in Section 2.2. Owing to the orthogonality of the Sobol-Hoeffding

decomposition, the variance of the circuit performance can be decomposed as:

V (X) = VX +

d̂p∑

i=1

Vi +
∑

1≤i≤j≤d̂p

Vij + . . .+ V1,2,...,d̂p
(6.4)

where Vi, Vij, . . . , V1,2,...,d̂p
denotes the partial variance w.r.t a subset of the circuit pa-

rameters of the Sobol-Hoeffding circuit performance decompositionXi, Xij, . . . , X1,2,...,d̂p

(defined in Equation 2.9), respectively.

Vi = V (E(X|pi))

Vij = V (E(X|pi, pj))− Vi − Vj

Vijk = V (E(X|pi, pj, pk))− Vij − Vik − Vjk − Vi − Vj − Vk

... (6.5)

V1,...,d̂p
= V (f)−

d̂p∑

i=1

Vij −
∑

1≤i≤j≤d̂p

Vij − . . .−
∑

1≤i1<...<i
d̂p−1

≤d̂p

Vi1,...,id̂p−1

Therefore, the Sobol-Hoeffding decomposition is a rich means of analyzing the respec-

tive contribution of individual or sets of parameters to circuit performance variability.
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From the decomposition in Equation 6.4, sensitivity indices (Si, Sij, . . . , S1,...,d̂p
) can

be naturally derived by normalizing the partial variances by V (X) to get the relation:

1 =

d̂p∑

1

Si +
∑

1≤i≤j≤d̂p

Sij + . . .+ S1,2,...,d̂p
(6.6)

where the order of the sensitivity indices Si is equal to |i| = Card(i). Whereas, a more

abstract characterization is required to replace the 2d̂p − 1 contributions defined in

Equation 6.6 which leads to an intractable number of contributions as d̂p increases. To

facilitate the characterization and hierarchization of the respective influence of each

parameter pi, we introduce new sensitivity indices: the main effect (also called first

order term) and the Total Sensitivity Indices (TSI). The TSI of a parameter i, denoted

by TSIi, is defined as the sum of all sensitivity indices including all interactions effects

involving parameter i.

TSIi = Si + S(i,∼i) = 1− S∼i (6.7)

where S∼i is the sum of all the S1,2,...,d̂p
associated to the different process parameters

excluding the parameter pi. Thus, the circuit parameter variations priorities are

defined according to their importance through their TSI values. As a rule of thumb,

parameters with TSI greater than 0.8 are considered as “very high priority”, between

0.5 and 0.8 “high priority”, and between 0.5 and 0.3 “less priority” in the next yield

analysis stage [90]. The circuit influential process parameters set (P i) is therefore

weighted according to the process parameters total sensitivity indices and denoted as

weighted process parameters:

Pw = {wipi | w(i) =
TSI i

∑d̂p
j=1 TSIj

} (6.8)
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6.1.2 Transient Verification

In the previous stage of the methodology, we have performed transient sensitivity

analysis to characterize Pw as a set of weighted process parameters reflective of the

influence of the process parameters in the circuit performances of interest. The ob-

jective of this stage is to verify the circuit transient behavior in order to estimate the

yield in light of the joint effect of the weighted process variation and initial condition

fluctuation. We make use of the defined weighted process variation parameters to

generate a short and purposeful sampling scheme from the process variation space.

6.1.2.1 Joint Recurrence Verification

Recurrence Quantification Analysis (RQA) is a technique developed by the nonlinear

dynamic theory community to verify complex nonlinear systems [91]. In this section,

we propose a variant from RQA technique called Joint Recurrence Verification (JRV)

technique for the multi-performances verification of AMS circuits influenced by process

variation.

6.1.2.1.1 Joint Recurrence Verification Concept

A conceptualization of this technique is shown in Figure 6.2. It aims to find recurrent

patterns between an ideal/golden circuit output and multiple non-ideal outputs due to

process variation by verifying their occurrence in their respective state space domains.

Thus, it permits to develop recurrence quantifiers for both temporal and frequency

domain properties of the circuit. Unlike frequency domain analysis, JRV takes into

account the initial conditions variation of the circuit. It also handles different natures

of circuit behavior like transient and invariant behaviors. Moreover, it can detect state

changes in drifting circuits without necessitating any constraining assumptions on the
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output signal stationarity nor statistical distribution. It basically depicts the different

Non-ideal circuit behavior Ideal circuit behavior

State-Space Regeneration

(de,τ)

Joint Recurrence Verification

(ε)

JRV Quality Metrics

Nominal circuit 
parameters

Weighted process 
variation parameters

Figure 6.2: Joint recurrence verification scheme

occasions when similar circuits states are attained even at distinct times. Given the

SSRE circuit model, we simulate the circuit under nominal design parameters and

for the weighted process parameters in order to get a set of ideal/non-ideal circuit

responses. Since the verification is conducted in the state space, we will need to

regenerate the dynamics of both circuit responses in the state domain. These dynamics

are thereafter verified using the JRV technique for a given radius threshold (ε); A

distance matrix (called joint recurrence map), which represents the closeness of all

possible state vectors pairs is then computed. The main advantages of the proposed

approach upon existing quality matching techniques is its ability to automatically

handle horizontal offset, frequency offset, and start-up delay.

6.1.2.1.2 Joint Recurrence Verification Implementation

The implementation of the JRV technique is summarized in Algorithm 6.2.
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Algorithm 6.2 Joint Recurrence Verification based method

Require: Pw, pnominal, G, IC
1: xideal ← SSRE(pnominal,mean(IC))
2: Xnon−ideal ← SSRE(Pw, IC)
3: (τ i, die)← Embedding dimension(xideal)
4: State space representation
5: yideal ← Delay vector(xideal, d

i
e, τ

i)
6: Ynon−ideal ← Delay vector(Xnon−ideal, d

ni
e , τni)

7: Joint Recurrence matrix computation
8: JR(i, j) ← Θ(ε − ‖yideal(i) − Ynon−ideal(j)

1‖) · . . . · Θ(ε − ‖yideal(i) −
Ynon−ideal(j)

k‖), ∀k ∈ Rd̂wp

9: JRV metrics computation
10: pε(l)←∑Nc

m,n=1{(1− JRm−1,n−1) · (1− JRm+1,n+1)
∏l−1

k=0 JRm+k,n+k}
11: RR = 1

N−k

∑
j−1=k JR(i, j)

12: Lmax = Max(pε(l))
13: RP = − 1

ln(Tmax)

∑Tmax

t=1 Ynon−ideal(t)ln(Ynon−ideal(t))
14: return JRVmetrics

From the transient sensitivity stage of the proposed methodology, the circuit process

parameters are associated with different weights according to their TSI. Therefore, a

sampling procedure that draws appropriate samples from this weighted process param-

eter set Pw is developed. It aims to minimize the simulation effort while achieving full

coverage of the uncertain parameters space. Afterwards, non-ideal output sequences,

denoted Xnon−ideal, are generated from the drawn process parameter samples (line 2).

Given these non-ideal circuit state space vectors Ynon−ideal and the ideal state space

vector yideal, we study the similarities/dissimilarities (i.e., recurring properties and

patterns) of these two circuit outputs. To do so, a tolerance parameter called thresh-

old radius ε is defined. This tolerance parameter specifies the maximum allowable

deviation difference in terms of Euclidean distance between the two circuit outputs to

be considered recurrent. The matching quality between these two sequences are then

derived using the JRV technique. The circuit outputs are first generated in the multi-

dimensional state space domain (lines 4-6). The embedding lag τ and the embedding
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dimension de are computed using the Mutual Information function [92] and the False

Nearest Neighbours function [64], respectively. Thereafter, the algorithm reconstructs

the different state space circuit responses according to Taken’s theorem [93] for the

computed embedding dimensions. Next, the joint recurrence matrix (lines 7-8) is gen-

erated. It is computed as the Hadamard product of the recurrence matrix of the ideal

circuit response and the recurrence matrix of the non-ideal circuit response in light of

process variation (line 8). The recurrence matrix can be described by the following

equation:

Θ(i, j) =





1 if ‖yideal(i)− Y k
ideal(j)‖ < ε

0 else

(6.9)

where Θ represents the Heaviside function. The obtained JR matrix locates the re-

current points whenever a similar state space behavior jointly occurs on both circuit

output sequences xideal and Xnon−ideal. In other words, it checks if the state space

trajectories yideal(i) at time i and Ynon−ideal(j) at time j fall within the predefined

threshold radius ε. The patterns between the two output sequences are revealed by

recurrence points and diagonal lines in the JR matrix. The closer the two outputs are,

the more diagonal lines occur in the recurrence matrix. Subsequently, the frequency

distributions of the diagonal lines lengths in JR are computed for each diagonal par-

allel to the main diagonal JR(i− j = r) for r equal to a constant (line 10). Finally,

the interplay between the circuit outputs is characterized by the following measures

(lines 11-13):

- The recurrence rate RR which reveals the percentage of matching (i.e., the proba-

bility of the occurrence of similar state) in both circuit outputs.

- The maximum joint sequence Lmax that is the longest uninterrupted period of time

that both circuits stay attuned.
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- The Recurrence periodicity RP which reflects the periodicity of the circuit in the

state space.

6.1.2.1.3 Radius Selection

How much recurrence we get in the JRV scheme depends on the value of the threshold

parameter ε. If the selected ε is too small, there may be almost no recurrence points

and the verification more likely fails. Conversely, if ε is selected too large, this will

entail a large number of false recurrence points due to the tangential motion (i.e.,

counting every coordinate in state space as recurrent) and so the verification will be

biased. Hence, the question that arises is, “which values of ε one should consider?”.

To this end, Algorithm 6.3 is proposed to determine the optimal ε value for any circuit

output.

Algorithm 6.3 JRV threshold radius computation

1: O ← Compute Centroid(yideal)
2: Distances =

√
(yideal(:, 1)−O1)2 + (yideal(:, 2)−O2)2

3: [maxRadius,maxRadiusIndex] = Max(Distances)
4: εoptimal = 0.05 ∗maxRadius;
5: return εoptimal:Optimal Threshold Radius

The centroid is first computed using Green’s theorem [94]. The threshold radius ε is

then chosen 5% of the maximum possible distance from the centroid of the circuit

output attractor up to the boundary of that attractor (coordinates of the farthest

point from centroid) as recommended in the literature [91].

6.1.2.2 Multiple Hypothesis Testing

The goal of this step is to estimate the total yield rate for multiple performances in

terms of the generated JRV metrics. On the one hand, the generated joint recurrence
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verification quality metrics (RR, Lmax, RPDE) gives an idea of how close the circuit

behavior to the ideal one, yet, each metric reflects a different circuit performance. On

the other hand, the JRV measures are correlated and clearly a separate verification

of these measures is not adequate as demonstrated in Equation 2.18 (i.e., Poverlap

fraction will be omitted and so the yield rate is over-estimated). Therefore, we use a

statistical inference procedure and extend the statistical runtime verification scheme

proposed in [49], which regards the verification as a single hypothesis testing problem.

Our approach is based on a simultaneous statistical inference of the probability

that a set of circuit performance specifications are met in the presence of process vari-

ation and/or initial conditions fluctuations with a certain level of confidence α. With

such an approach, we do not need to estimate the overlay in an acceptance region

expressed in the overlap yield Poverlap. Hence, the total estimated yield rate will be

directly assessed. Furthermore, the proposed simple yet elegant multiple hypothesis

scheme allows a direct accurate multiple performance yield computation in a conve-

nient way by controlling the trade-off between computational burden and accuracy.

In the sequel, we detail the proposed multiple hypothesis testing procedure.

When conducting the yield estimation, the number of null hypotheses, m, is known

in advance and corresponds to the number of performance metrics of interest G.

However, the number of true and false null hypotheses H0j , m0 and m1, respectively,

have to be determined (see Table 2.2). When estimating the yield, Type II errors

are not as disastrous as Type I errors. More importantly, when pursuing multiple

performances verification, there is a potential increase in the chance of committing

Type I errors (1 − α)m < (1 − α) since α ∈ [0, 1]. Hence, to guarantee an accurate

yield estimation, the control of this type of error is needed. Also, the test statistics

(formulated as JRV metrics) are dependent and correlated. Thus, we devise a scheme
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which minimizes V while accounting for correlations between the tests. To do so, we

implemented a hypothesis testing scheme based on controlling the errors committed

by falsely rejecting null hypotheses H0i denoted by False Discovery Rate (FDR) [95]:

FDR = E[
V

R
| R > 0]Pr(R > 0) (6.10)

where V is the number of false positive, and R is the total number of rejected H0i .

The detailed FDR based AMS circuits yield estimation procedure is summarized

in Algorithm 6.4.

Algorithm 6.4 FDR controlling procedure for yield rate computation

Require: JRVmetrics, G, α, type test
1: H ← set hypothesis(G, JRVmetrics)
2: Nfailure ← 0
3: for i = 1→ m do
4: for j = 1→ N do
5: µi ← mean(JRVmetrics(j, i))
6: σi ← standard deviation (JRVmetrics(j, i))

7: Tobs(i)← compute test statistic(JRVmetrics(:, i), µi, σi)

8: for j = 1→ N do
9: for all Hi ∈ H do
10: (A(j), R(j))←HT(Tobs, type test, JRVmetrics, α)

11: R =
∑

R(j) = V + S
12: pi ← compute p-value (Hi)
13: P ← sort(pi)
14: l ← max{pi : P (i) ≤ i

m
α∑m

i=1
1/i

)}
15: for all k = 1→ l do
16: H0i ←reject hypothesis H0k

17: Rcorrected(j)← R− l
18: if Rcorrected(j) ≥ 1 then
19: Nfailure ← Nfailure + 1

20: pfailure =
1
N

∑N
k=1 Nfailure

21: Y ield← 1− pfailure

First, we retrieve the metrics generated on the JRV stage. They are then used to define

the null hypotheses that link them to the specification (line 1). This is followed by the

computation of the standard score to determine the observed circuit JRV metric test
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statistic Tobs (loop between lines 3 and 7) for each performance metric gi ∈ G. The

next step is the nonparametric FDR procedure as p-value adjustment repeated for

N trials (loop between lines 8 and 19). We choose the p-value adjustment procedure

because adjusted p-values permit a direct interpretation against a chosen significant

level α and so eliminate the need for lookup tables or knowledge of complex hypothesis

rejection rules. The adjustment procedure starts by defining the acceptance and

rejection regions under the assumption of H0i ∈ H being true according to the type

of test statistic (line 10). Then, the decision regarding whether each of the null

hypotheses H0i holds or not is made. Thereafter, the FDR procedure is carried out

in order to compute the false discovery proportion l. Afterwards, the number of

actual rejections is corrected (line 17). Upon the rejection of one hypothesis H0i (i.e.,

violation of its corresponding performance metric gi), we increment the probability

of failure counter Nfailure. Finally, the probability that the desired performances are

satisfied in the presence of parameters variation is estimated as the percentage of

samples with successful hypothesis over the total number of simulation runs. The

parametric yield rate is thus defined in line 21 in terms of the probability of circuit

failure.

6.2 Applications

In this section, we demonstrate the efficiency of the proposed parametric yield estima-

tion approach described in this chapter on two benchmark circuits: A five stage-ring

oscillator and a Phase Locked Loop (PLL).
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6.2.1 Five Stage Ring Oscillator

We consider verifying a five-stage ring oscillator circuit as shown in Figure 6.3. The

node voltages of each of the five inverters have been designed to oscillate at an operat-

ing frequency fnom = 4.5GHz. The performance metrics of interest are the oscillation

frequency and the start-up delay time measured using transient simulation (specifica-

tions are listed in Table 6.1).

C C C C C

VDD

x1 x2 x3 x4
x5

Figure 6.3: Five stage CMOS ring oscillator

The circuit performances are affected by process parameters as well as the op-

erating conditions (VDD and initial conditions). We consider process variations in the

parameters of each NMOS and PMOS transistor. In addition, we take into account

Table 6.1: Specifications for five stage ring oscillator

Performance metric Specification

Oscillation frequency fnom ± 2%
Start up time τstart up ≤ 35 ns
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distribution with mean m fixed to nominal value and 3σ variation is considered for

each process parameter while a uniform distribution with 10% variation is adopted

for initial condition variations. The Morris screening method was carried out for

l = 10 and N∗ = 30 to assess the sensitivity of the ring oscillator behavior to the

above-mentioned process parameters. The highest mean µ∗ value identifies the most

important process parameters. The order of importance is considered through the µ∗

ranking. In Figure 6.5, a graphical representation of the (µ, σ) Morris elementary

effects is depicted to show the results for one of the five inverters process parameters.

It can be observed in Figure 6.5 that the Morris elementary effects identified five im-

portant parameters out of eight for each inverter, which reduces the yield estimation

problem from 46-D to 31-D (i.e., 5× 5 + 5+ 1). Therefore, only these selected 31 pa-

rameters are chosen for the scoring scheme using the Sobol variance based sensitivity

analysis and later on for the statistical transient verification scheme to estimate the

yield rate. We carried out a Sobol global sensitivity analysis to relate the reduced set

of parameter variations to the circuit performances variations.

Figure 6.5: Process parameters screening for ring oscillator
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For illustration purposes, we show in Figure 6.6 the main and total Sobol sensi-

tivity indices on the ring oscillation frequency for one inverter parameters of the ring

chain.

Wn Wp Ln Lp Vth
0

0.1

0.2

0.3

0.4

0.5
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Se
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vi
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main effects
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Figure 6.6: Process parameters prioritization for ring oscillator

The sensitivity analysis results are in good agreements with the Morris sensitivity in

Figure 6.5. In fact, the variation in the sizes (width (W), and length (L)) of both

PMOS and NMOS transistors and the threshold voltage (Vth) have an impact on the

circuit oscillation frequency. To score the importance of each of these circuit param-

eters, the amount of variation that is explained by the main Sobol indices near one

indicates that these parameters are more influential. Among all possible sources of

process variations, the length gate L and threshold voltage Vth are the dominant pa-

rameters with the highest sensitivity indices 0.36 and 0.18, respectively. This can be

justified by the random dopant effect [96]. Furthermore, a high correlation between

parameters can be noticed through the gap between main and total effect indices.

This is not surprising as the transistor threshold voltage fluctuation is directly related

to the size of a transistor according to the following relation: σVth ∝ k√
WL

. The ob-

tained indices will be used to guide the sampling selection in the JRV scheme in order

to focus the verification on the parameters that affect the most the yield rate. The
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Figure 6.9: Lmax variation with the
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confidence levels α = 0.05 and for initial conditions following a uniform distribution

model. The primitive Monte Carlo is considered as the base for the comparison in

terms of speed-up and relative error. From Table 6.2, the results of the comparison

show that the performance of the MC variants do not achieve significant improvement

when compared to the primitive Monte Carlo analysis method. Indeed, QMC is able

to reach the MC golden result with a 2.26 speedup, while the LHS-MC method is

1.93X faster than MC with approximately the same yield rate. This is due to the bad

exploration of the process variation space during the sampling trials.

Table 6.2: Yield estimation results for ring oscillator

IC ranges
xi = 0.01, ∀i = 1, · · · , n

x5 ∈ [0, 0.5] x5 ∈ [0.5, 1]
Yield
rate

Error
‖.‖

Speedup
ratio

Yield
rate

Error
‖.‖

Speedup
ratio

MC 0.887 – 1× 0.891 – 1×
LHS-MC 0.884 0.003 1.93× 0.889 0.002 1.98×
QMC 0.889 0.002 2.26× 0.896 0.005 2.32×
Our
method

0.911 0.024 8.81× 0.925 0.034 9.76×
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Moreover, the ignorance of the high correlation effect between process parameters

results in the ignorance of some special worst case combined effects. It can also be

observed for the case of x5 ∈ [0.5, 1] (columns 5-7) that our proposed method reduces

the runtime up to 9.76× in comparison with the conventional MC analysis, with no

more than 3% relative error in estimated yield. It is also interesting to see that when

the initial states get farther away from the equilibrium states, the circuit is subject

to more failures and consequently, lower yield rates are obtained (columns 2-4). This

can be explained by the direct dependency of the start-up time performance metrics

on the initial conditions of the ring oscillator. For instance, when varying the initial

conditions on the node voltages, the oscillation takes a longer time to settle when the

initial conditions are too far from their DC values which is in good agreement with

the results shown in Figure 6.4.
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transient and invariant performance requirements given in Table 6.3 to avoid yield

loss.

Table 6.3: Specifications for PLL design

Performance metric Specification

Lock-time tlock ≤ 1.5 ms
Period jitter Jperiod ≤ 5.62 ns
Stability ∆v ± 0.05 V

Apart from process variations, PLL circuits are also susceptible to the external

(environmental) noise. Environmental noise sources (e.g., substrate or shot noise)

seriously degrade the performance of a PLL circuit by inducing timing jitter and

increasing the limit cycle. In this application, we consider the most dominant noise

in PLL designs stemming from shot noise in the VCO block and manifesting itself as

accumulation jitter (a.k.a. FM jitter) [99]. The noisy VCO output due to the intrinsic

jitter is afflicted according to the following Equation:

OutV CO = A cos(ω0t+KV

∫ t

0

OutLPF (τ)

1 + JθKV OutLPF

2π

dτ + φ0) (6.11)

where J stands for the jitter deviation, KV is the VCO gain, OutLPF is the filter

output, φ0 is the initial phase, and θ a zero mean unit-variance Gaussian random

process. We performed our JRV method on the PLL application for an embedding

dimension de = 3 and an embedding lag τ = 15.

Table 6.4: PLL yield estimation results for α = 0.05

Case I: without jitter Case II: with VCO jitter
Yield
rate

Error
‖.‖

Speedup
ratio

Yield
rate

Error
‖.‖

Speedup
ratio

MC 0.9531 – 1X 0.8972 – 1X
LHS-MC 0.9543 1.2e-3 1.78X 0.8985 1.3e-3 1.82X
QMC 0.9547 1.6e-3 2.23X 0.8980 1.8e-3 2.46X
Our
method

0.9559 2.1e-3 9.87X 0.8998 2.6e-3 11.53X
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Figure 6.13: Recurrence periodicity for different damping factors

Table 6.5: PLL yield estimation results for α = 0.01

Case I: without jitter Case II: with VCO jitter
Yield
rate

Error
‖.‖

Speedup
ratio

Yield
rate

Error
‖.‖

Speedup
ratio

MC 0.9386 – 1X 0.98806 – 1X
LHS-MC 0.9403 1.7e-3 1.58X 0.8825 1.9e-3 1.72X
QMC 0.9405 1.9e-3 2.17X 0.8826 2e-3 2.23X
Our
method

0.9413 2.7e-3 9.16X 0.8817 2.9e-3 10.94X

Figure 6.13 plots the recurrence periodicity (RP) for different damping factors

(ξ1 = 0.1, ξ2 = 0.5, and ξ3 = 0.707, respectively). It can be noticed that a longer

settling time is required for the PLL to achieve a lock while increasing ξ. This can

be also seen through our JRV RP measure. In fact, for ξ3 = 0.707 (red line in Figure

6.13) higher RP values are attained than those for ξ1 = 0.1 and ξ2 = 0.5. This means

that the PLL presents less periodic outputs. In fact, the closer its value to 0, the

closer the PLL is from its ideal behavior. In addition, the variation of the VCO jitter

with the recurrence periodicity shows an exponential increase for values greater than

5.62ns.
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The resulting JRV metrics are employed in the multiple hypothesis testing

scheme for different confidence levels α = 0.05 and α = 0.01. In this application,

the three JRV metrics (RR,Lmax, and RP ) are employed in the multiple hypothesis

testing scheme for different confidence levels α = 0.05 and α = 0.01. The obtained

parametric yield results are shown in Tables 6.4 and 6.5 and compared to the MC

method and its variants in light of process variation and jitter uncertainty. The pres-

ence of process variation alone has shown higher yields. However, the yield rates

incorporating both jitter disturbance and process variations have shown lower rates

(columns 5). It is obvious that the combined process variation/jitter effects will result

in more PLL failures to satisfy its desired specifications due to the high sensitivity of

the VCO to noise disturbances. The yield comparison for different confidence levels

showed a slight dependency of the yield assessment results on the confidence level α.

However, the yield accuracy would change to a very small degree (less than 0.003%)

For instance, in the case α = 0.01, slightly lower yield rates are obtained compared

to those reported for α = 0.05. In short, the hypotheses tests results can be slightly

different for different confidence intervals and the accuracy would be compromised if

the confidence level is too high or too low. Lower confidence level would increase the

rejection; Higher confidence level, on the other hand, would increase the error margin

and degrade the accuracy. A significant simulation-time saving (more than 10X reduc-

tion) resulting from using our proposed methodology has been remarked. The savings

come from two distinct mechanisms. First, the sensitivity analysis approach (a) re-

duces the process parameters dimension space by fixing the non-influential parameters

on the desired circuit performances to their nominal values; (b) prioritizes the param-

eter variation selections according to their influence on circuit performances; and (c)

reveals hidden worst performances due to interactions between different parameters
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variations. Second, the multi-performances yield estimation scheme is conducted si-

multaneously through a multiple hypothesis testing procedure. On the contrary, mul-

tiple single performances simulations runs are performed using primitive MC which

results in an over-estimated yield due to the correlated PLL performances wherein

rejection regions overlap. The relative yield estimation error with respect to the num-

ber of simulation runs of the primitive MC and the proposed method are compared

in Figure 6.14. The relatively small number of the required simulations runs shows

the efficiency of our approach, by which it was possible to have at least a 9 times

computational cost gain without paying in terms of accuracy.

6.2.2.1 Discussion

To corroborate the process parameter reduction results obtained using the Morris sen-

sitivity method, we perform a MC simulation on the reduced and non-reduced process

parameters set. The aim of this experiment is to confirm that the non-significant pa-

rameters identified through the Morris method does not actually significantly affect

the yield results.

Figure 6.14: Effectiveness of our proposed approach
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Figure 6.15: Effectiveness of the proposed screening method

Figure 6.15(a) compares the yield rate estimate using primitive MC simulations before

and after process parameter reductions for ring oscillator and PLL design. The ob-

tained yield analysis fully confirms the Morris results, since for both applications the

estimated yield rate accounts for less than a maximum of 2% error rate. Hence, this

confirms the capability and effectiveness of our proposed process parameters screening

approach in identifying the actual non-significant parameters variation on the circuit

performances of interest which substantially reduces the computational time. This

is confirmed by Figure 6.15(b) wherein a notable simulation-time saving resulting

from our parameter screening scheme is observed by removing redundant non statis-

tically significant simulations as compared to the primitive MC without considering

the reduction for both PLL and ring oscillator circuits.
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where x1, x2, and x3 stand for the state variables of the ring oscillator model that rep-

resent the node voltages in each inverter and Vout is the circuit output. The functions

In and Ip model the nonlinear current generated by the NMOS and PMOS transis-

tors, respectively, based on their gate, drain and source voltages. The verification is

performed in the presence of process variation in transistor widths (both PMOS and

NMOS) and threshold voltage. The surrogate based dynamics verification is applied

on the three stage ring oscillator using the Gaussian Kernel correlation dimension dc

as test statistic of the hypothesis testing procedure. Figure 6.17 depicts the attractor

of the circuit in the case of the optimal circuit parameters.

Figure 6.17: Attractor of the optimized ring oscillator circuit

We computed the embedding window, mainly the correlation dimension de = 2 using

the false nearest neighbor (FNN) method and the embedding lag τ = 6 using mutual

information (MI) method, respectively. The result of the verification is shown in Fig-

ure 6.18 for 100 surrogates of the circuit outputs. An acceptance region (shown as the

white region in Figure 6.18) and a rejection region (red region of Figure 6.18) of the

noisy/chaotic dynamics are then defined from the obtained correlation dimensions dc
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Table 6.6: Single performance verification of the three stage ring oscillator

Intertwined
Reachability Analysis

Monte
Carlo

Relative
Error

Initial Condition Variations 92.78% 94.61% 1.83%
Process Variation 86.13% 89.82% 3.69%
Jitter 83.52% 87.70% 4.18%
Process Variation and Jitter 79.84% 85.17% 5.33%
Process Variation, Jitter and
Initial Conditions Variations

77.26% 84.35% 7.09%

hence gives more accurate yield estimation of the frequency of oscillation metric.

However, Monte Carlo has a poor coverage and so fails to detect some cases where

the required performance metric is not met. This results in a lower probability of

failure and consequently higher yield. It can also be observed that in the presence of

jitter, process variation, and initial condition uncertainties, the circuit presents the

lowest yield.

We also verified the three stage ring oscillator in the case of two performance con-

straints using our statistical runtime verification technique based on the JRV method.

The yield estimation results are depicted in Table 6.7.

Table 6.7: Multiple performances verification of the three stage ring oscillator

Statistical
Runtime Verification

Monte
Carlo

Relative
Error

Initial Condition Variations 90.94% 93.31% 2.37%
Process Variation 84.76% 89.22% 4.46%
Jitter 81.83% 87.61% 5.79%
Process Variation and Jitter 76.02% 83.13% 7.11%
Process Variation, Jitter and
Initial Conditions Variations

74.21% 82.17% 7.96%

We validated the obtained yield against 1000 Monte Carlo simulation trials. It can be

remarked that the proposed method for multiple performance constraints presents a
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lower yield when compared to the yield estimated for a single performance constraint

as shown in Table 6.6. Moreover, it can be noticed that the presence of jitter affects

most the oscillation period and rise times. For instance, the estimated yield for jittery

circuit is 5.81% less than the one estimated in the presence of process variation.

6.3 Summary

A critical yet challenging problem of yield estimation is to account for multiple circuit

performances. In this chapter, we proposed a novel nonparametric statistical verifi-

cation methodology to efficiently estimate the parametric yield for multi-performance

constraints. Our proposed approach exploits the fact that circuit parameters variation

has different impact on the circuit performance. Hence, a global sensitivity analysis

classifies the circuit parameters according to their influence on the desired circuit

performances. Based on this classification, an efficient Joint Recurrence Verification

technique is performed on the most critical design parameters. The verification is

conducted in the state space domain where new verification metrics are defined. A

multiple hypothesis testing procedure is then performed based on the computed met-

rics. It enables a simultaneous yield analysis rather than multiple single-performance

yield estimation with less run-time overhead. Experimental results showed that our

methodology prevails over Monte Carlo technique in yield rate assessment. It has

demonstrated up to 11.53X computational reduction capability while retaining accu-

racy.
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Chapter 7

Conclusions

7.1 Conclusions

In contrast to the widely automated digital design flow, analog design is still predom-

inantly manual relying on the designer’s experience and expertise. Analog and mixed

signal circuits verification is not automated at all, whereas the sizing step is partly

automated in practice. For instance, although few commercial optimization tools ex-

ist, they are used only as a support tool, for example to fine tune a certain parameter

of an already designed AMS circuit. The main encountered challenges are the follow-

ing: the optimization was shown to be an NP-hard problem, the wide feasible design

space whereof an exhaustive coverage of the design search space is unattainable, and

therein the accuracy of the design solutions is not guaranteed. Furthermore, exist-

ing verification and yield estimation techniques rely mainly on simulation which is

prohibitively expensive and a time consuming process. The aforementioned reasons

show the need for robust tools that would automate the sizing and verification part

of the analog design flow. The goal is to maximize the number of fabricated circuits

whose performance satisfies a set of acceptability constraints dictated by the desired
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specifications.

In the course of pursuing successful tape-out with sufficient design-for-manufact-

urability AMS design, this thesis proposes a novel methodology for nonlinear AMS

circuit optimization and verification as well as the subtleties to implement it in prac-

tice. We proposed different new methods and algorithms to bypass certain limitations

of existing methods.

The first contribution of this thesis is the development of a nominal sizing proce-

dure that ensures an exhaustive coverage of the design space and outputs guaranteed

optimum design solutions. To this end, we proposed a formally coupled equation

based and simulation based approach inspired from equivalence checking technique.

Given the circuit topology and the specification properties, the feasible design space

is defined. Thereafter, a global sensitivity based approach is adopted to scout the de-

fined design space and constrain the design space to regions where promising solutions

might be expected to be found. Subsequently, these prominent design subspaces are

passed to the nominal sizing step. The underlying nominal sizing approach employs

a space mapping scheme between a surrogate and a detailed AMS circuit model to

find the optimal design solution.

The second contribution of this thesis is the development of a typical qualitative

verification approach to verify whether the circuit well-behaves in light of process

variation. More importantly, the developed approach ensures that even the possible

deviations in the circuit parameters do not drive the circuit into inappropriate dynamic

(e.g., chaotic behavior). It is on a new verification strategy denoted by surrogate based

method based on statistical proof by contradiction. The proposed method is robust

and successfully discriminates noisy from chaotic behavior for different types of noise

while traditional techniques such as Lyapunov Exponent method fail to do so.
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The third contribution is the elaboration of a qualitative verification approach

that enhances the capability to predict parametric yield estimation for nonlinear ana-

log and mixed-signal circuits. Prior to performing multiple performances yield calcula-

tion, a single performance scheme is proposed based upon a geometrical computation

of the reachable states using an intertwined forward/backward reachability analysis

method. A non-parametric univariate hypothesis testing approach is then conducted

on the resultant reachable behavioral bounds to assess the yield. Furthermore, a

multi-performances yield estimation approach that combines the advantages of tran-

sient sensitivity analysis, joint recurrence verification, a method inspired from DNA

matching, and multiple hypothesis testing techniques is developed.

In order to show the relevance in practice of the approaches presented in this

thesis, we applied them on several analog and mixed signal circuits benchmarks,

namely amplifier, oscillators, and phase locked loops. Comparisons of the obtained

results with the existing approaches have demonstrated a significant computational

reduction capability while retaining robustness in applicability. In summary, the

proposed nonlinear AMS circuits optimization and verification methodology can be

seen as a first step for a semi-formal optimization and verification approach and a

basis for automatic analog designs generation. It offers a promising solution to reduce

design cycle time while maintaining accuracy.

7.2 Future Work

This thesis lays the ground for a promising framework for the early optimization and

verification of analog and mixed signal designs. Building on the proposed methodology

and experimental results presented in this thesis, several enhancements and directions

of further research can be explored and pursued. More features can be incremented
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to scale and strengthen the capabilities of the proposed methodology in order to

handle complex designs with a multitude of real imperfections and more stringent

performances. In the sequel, we outline some future research directions:

• In its present form, the methodology considers only process variation. This

spatial unreliability effects can be immediately detected right after fabrication.

However, temporal unreliability effects vary with the time and the operating

conditions (e.g., the operating voltage, temperature, switching activity). Con-

sequently, they are extremely hard to detect and cannot be fixed nor recov-

ered. An interesting extension of this work can be the integration of transient

faults uncertainty such as aging effects (Negative-Bias Temperature Instability

(NBTI)) [100] and transient effects (Single Event Transients (SET) [101], and

of particular concern, Single Event Upsets (SEU) [102]).

• Another possible direction for future work refers to the improvement of the im-

perfections models by deriving them directly from transistor/layout level sim-

ulations as well as the integration of multi-stage nonparametric verification of

multiple circuit performances. In addition, novel approaches from the nonlinear

dynamical theory can be adopted to discriminate simple chaos from hyperchaos

which have different application domains.

• Other global sensitivity analysis scheme such as Fourier amplitude sensitivity

testing method can be explored for the class of linear AMS circuits. The re-

search direction is to incorporate different transient sensitivity analysis methods

based on the circuit classes in the Spice simulator in order to guide the selection

process of Monte Carlo instances and consequently remove statistically insignif-

icant parameters. By doing so, a significant reduction in the computational cost
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through avoiding unnecessary simulation iterations as well as improvement in

the simulation accuracy for a fixed number of runs can be achieved.

• In our circuit sizing methodology, we only consider optimization of circuit perfor-

mances. However, analog IC designers not only call for optimized sized topolo-

gies but also need high robustness and yield in light of Process, Voltage, and

Temperature (PVT) variations. This limitation can be addressed through: (1)

extending the global sizing approach to handle regional sensitivity analysis to

the circuit yield; (2) integrating design centering strategy in the space map-

ping procedure used for nominal sizing. In this case, the optimization process

seeks the values of circuit parameters which not only optimize the circuit perfor-

mance but also maximize the probability of satisfying the design specifications

(i.e., both parametric and catastrophic yield maximization) in an integrating

manner avoiding costly re-design iterations.

• Finally, it would be interesting to generalize the circuit surrogate models to han-

dle more severe process variations. Of particular concern, local process variation

(a.k.a mismatch) can be combined with global process variation. Subsequently,

both process variation uncertainties can be considered to ensure that the AMS

circuit under verification is still robust.
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