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Highlights

• A novel thread-level architecture for ontology classification with shared-
memory

• Implemented with an atomic global half-matrix data structure to avoid
race conditions and conflicts

• Using flexible plug-in reasoner for deciding satisfiability and subsump-
tion

• There are two division strategies implemented for classification process-
ing

• Testing a set of real-world ontologies demonstrates good scalability
resulting in a speedup linear to the number of available cores
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Abstract

The Web Ontology Language (OWL) is a widely used knowledge represen-
tation language for describing knowledge in application domains by using
classes, properties, and individuals. Ontology classification is an important
and widely used service that computes a taxonomy of all classes occurring in
an ontology. It can require significant amounts of runtime, but most OWL
reasoners do not support any kind of parallel processing. We present a novel
thread-level parallel architecture for ontology classification, which is ideally
suited for shared-memory SMP servers, but does not rely on locking tech-
niques and thus avoids possible race conditions. We evaluated our prototype
implementation with a set of real-world ontologies. Our experiments demon-
strate a very good scalability resulting in a speedup that is linear to the
number of available cores.

Keywords: ontology classification; parallel computing;

1. Introduction

Description logics [1] are a family of logic-based knowledge representa-
tion formalisms, which describe a domain in terms of concepts (classes),
roles (properties), and individuals. OWL can be considered as a syntactic
variant of a very expressive description logic. In this paper we focus on typ-
ically supported concept inference services such as concept satisfiability and
subsumption that form the basis for implementing classification [2].

Email address: z_qua@encs.concordia.ca, haarslev@encs.concordia.ca (Zixi
Quan and Volker Haarslev)
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High performance computing (HPC) methods can offer a scalable solution
to speed up OWL reasoning. Our HPC approach is based on parallel rea-
soning techniques for OWL classification. Compared with sequential OWL
reasoners, such as Racer [3], FaCT++ [4], and HermiT [5], parallel OWL rea-
soners work concurrently and distribute the whole task into smaller subparts
to speed up the process. A few OWL reasoners integrated parallelization
techniques; Konclude [6] is highly performant but its concept classification is
sequential; ELK [7] supports parallel concept classification but is restricted to
the very small EL fragment of OWL. Moreover, some other parallel descrip-
tion logic reasoning methods have shown promising results in the past few
years such as the first parallel approach for concept classification [8] using a
shared-tree data structure, merge classification [9, 10, 11] implementing par-
allel divide-and-conquer approaches, and [12] proposing a parallel framework
for handling non-determinism caused by qualified cardinality restrictions.

Tableau-based methods (see Section 2) are widely used in ontology rea-
soners for implementing the above-mentioned inference services. In order to
speed up reasoning and improve the effectiveness of reasoners, it is neces-
sary to develop efficient and optimized reasoning techniques to implement
inference services. OWL ontology reasoning is known to be N2EXPTIME-
complete (NEXPTIME-complete if the property hierarchy can be translated
into a polynomially-sized nondeterministic finite automaton) [13]. Although
most OWL reasoners are highly optimized quite a few real-world ontologies
exist that cannot be classified within a reasonable amount of time.

Our work is motivated by previous parallel approaches and also expands
ideas presented in [14] to parallel processing. Our HPC approach is imple-
mented with a shared-memory architecture, atomic global data structures,
and new strategies for parallel subsumption testing. In order to keep our
architecture universal, we use OWL reasoners as plug-ins for deciding sat-
isfiability and subsumption. Currently we use HermiT, but it could be re-
placed by any other OWL reasoner. Our evaluation demonstrates a promising
speedup for ontologies of different sizes and complexities that is linear to the
numbers of cores.

2. Description Logics

We briefly introduce the description logic ALCH, which is a subset of
OWL and extends ALC [15] with role hierarchies. We describe its syntax and
semantics, selected inference services, and a tableau reasoning algorithm.
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2.1. Syntax and Semantics

To formally define an ALCH knowledge base, we denote with NC a set of
concept names of domain elements with common characteristics, NR a set of
role names representing binary relationships between domain elements, and
NO a set of individual names within the represented domain.
ALCH concept expressions are >,⊥, C, CtD,CuD, ∃R.C,∀R.C, where

C,D ∈ NC are arbitrary concepts, R ∈ NR, >,⊥ the top and bottom con-
cepts, u,t represent conjunction and disjunction, and ∃ represents qualified
existential and ∀ universal restriction. The semantics of ALCH is defined by
an interpretation I = (∆I , .I), consisting of a non-empty set ∆I called do-
main and an interpretation function .I . The interpretation function .I maps
every individual a to an element aI ∈ ∆I , every concept A to a subset AI of
∆I and every role R to a subset RI of ∆I ×∆I .

The semantics of concept expressions is defined as >I = ∆I , ⊥I = ∅,
CI ⊆ ∆I , (C t D)I = CI ∪ DI , (C u D)I = CI ∩ DI , (∃R.C)I = {x ∈
∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI} and (∀R.C)I = {x ∈ ∆I | ∀y ∈ ∆I :
(x, y) ∈ RI ⇒ y ∈ CI}.

Satisfiability. A concept C is satisfiable if there exists an interpretation I
such that CI 6= ∅, i.e., there exists an individual x ∈ ∆I which is an instance
of C, x ∈ CI . Otherwise, the concept C is unsatisfiable.

Subsumption. A concept D subsumes a concept C (denoted as C v D) iff
CI ⊆ DI for all models I of T , i.e., every instance of C must be an instance
of D. Subsumption can be reduced to satisfiability, i.e., subsumes(D,C)
⇔ ¬sat(¬D u C) and C v ⊥ ⇔ ¬sat(C).

TBox. Terminological axioms include role inclusion axioms, which have the
form R v S where R, S ∈ NR, and general concept inclusion axioms (GCI),
which have the form C v D where C,D are concept expressions. A TBox
consists of a finite set of terminological axioms. A TBox T is satisfiable if
there exists an interpretation I that satisfies all the axioms in T , i.e., for
every axiom C v D (R v S) CI ⊆ DI (RI ⊆ SI) must hold. Such an
interpretation I is called a model of T and T is called consistent. A concept
equality axiom of the form C ≡ D is an abbreviation for the axioms C v D
and D v C.
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Table 1: The completion rules for ALCH
u-Rule If C uD ∈ L(v) and {C,D} * L(v)

then add C and D to L(v)

t-Rule If C tD ∈ L(v) and {C,D} ∩ L(v) = ∅
then add X to L(v) with X chosen from {C,D}

∀-Rule If R ∈ L(〈v, v′〉), ∀R.C ∈ L(v) and C /∈ L(v′)
then add C to L(v′)

∃-Rule If ∃R.C ∈ L(v), no v′ exists with R ∈ L(〈v, v′〉), C ∈ L(v′)
then create v′, add R to L(〈v, v′〉) and C to L(v′)

H-Rule If R ∈ L(〈v, v′〉), R v∗S, and S /∈ L(〈v, v′〉),
then add S to L(〈v, v′〉)

v∗ denotes the reflexive, transitive closure of v

Classification. The classification of a TBox results in a subsumption hier-
archy (or taxonomy) of all named concepts, with > as the root. If two named
concepts A,B have a subsumption relationship, e.g., A v B, then B is called
an ancestor of A and A is a descendant of B. In case there exist no concepts
A′, B′ such that A v B′ and B′ < B or A < A′ and A′ v B, then B (A) is
called a predecessor (successor) of A (B).

Additional Description Logic Constructors. ALC can be extended by
various constructors that are denoted in the logic’s name: H for role hierar-
chies, + for transitive roles (S stands for ALC+), I for inverse roles, R for
role chain axioms (R includes H+), O for nominals, Q for qualified cardinal-
ity restrictions, N for cardinality restrictions, and (D) for using datatypes.
For instance, OWL is a syntactic variant of the description logic SROIQ(D)
and EL is a subset of ALC supporting only u and ∃.

2.2. Tableau Algorithm

A tableau algorithm decides the satisfiability of a given concept C by
constructing a completion graph for C. A complete and clash-free completion
graph for C is interpreted as C being satisfiable. A model is represented
by a tableau completion graph, where concept descriptions are built using
boolean operators (t, u, ¬), universal restriction (∀), and existential (∃)
value restriction on concepts. The tableau completion graph for ALCH is a
labeled graph G = 〈V,E, L〉, where each node x ∈ V is labeled with a set
L(x) of concepts, and each edge 〈x, y〉 ∈ E is labeled with a set L(〈x, y〉) of
roles. A completion graph G contains a clash, if {A,¬A} ⊆ L(x) for some
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atomic concept A, or ⊥ ∈ L(x). The completion rules for ALCH are shown
in Table 1. If no completion rule can be applied to the graph G, then it is
complete. Example 2.1 illustrates how the tableau algorithm determines the
satisfiability of concept C defined as C v ∃R.Au ∀S.¬A where R and S are
rules with R v S and A is concept name.

Example 2.1.
First we create a, add C and its definition to L(a), and apply the u-Rule:
L(a) = {C, ∃R.A, ∀S.¬A}
The only applicable rule is ∃-Rule and we obtain
L(〈a, b〉) = {R}, L(b) = {A}
Then we can apply the H-Rule and obtain
L(〈a, b〉) = L(〈a, b〉) ∪ {S}
The ∀-Rule is applied because S ∈ L(〈a, b〉),¬A /∈ L(b) and we obtain
L(b) = L(b) ∪ {¬A}
Finally, there is a clash because {A,¬A} ⊆ L(b). Therefore C is unsatisfiable
because no model I for C can be found.

3. Parallel TBox Classification

Our goal is to parallelize the computation of subsumption taxonomies
consisting of a large number of concepts and speed up the process of TBox
classification. In order to reuse information from (non-)subsumption tests,
our method implements a parallel framework and a shared-memory global
data structure to record all binary subsumption relationships occurring in
an ontology (or TBox) O. A set P contains all possible subsumees that
every concept could have and a set K represents all subsumees found from
known subsumption relationships or subsumption tests. For example, if O
entails B v A (denoted as O |= B v A), then we insert B into KA and
delete B from PA. Since the classification of O tests all pairs of concept
subsumptions, we use the concepts remaining in possible subsumee sets to
reflect the amount of work that still needs to be done until P becomes empty.
We use the predicate subs?() to test subsumption relationships for each pair
of concepts in P . The call of subs?(B ,A) returns true if B subsumes A and
false otherwise. Before testing, it is necessary to know the satisfiability of
each concept, e.g., by testing subs?(⊥,A).

After loading an ontology O, a set NO contains all concepts occurring in
O. For each concept X ∈ NO, our method initializes PX , which contains all
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Figure 1: The Architecture of Parallel TBox Classification Approach

possible subsumees of X and an initially empty KX to contain all the known
subsumees derived from subsumption tests. For instance, let us assume three
concepts {A,B,C} ⊆ NO. After initialization, we get PA = {B,C}, PB =
{A,C}, PC = {A,B} and KA = KB = KC = ∅. Since NO contains all
concepts from O, in the following phases we use NO as a global parameter
for classifyingO in parallel. We use the predicate subs?() to test subsumption
relationships for each pair of concepts in P . The call of subs?(B ,A) returns
true if B subsumes A and false otherwise. Before testing, it is necessary to
know the satisfiability of each concept. For example, if we have the four
concepts A, B, C and F , subsumption (and indirectly satisfiability) for the
pairs below are computed using subs?():

{〈⊥, C〉, 〈A,C〉}, {〈⊥, F 〉, 〈B,F 〉}.

The results are {A,C} ⊆ NO, O |= C v A and {B,F} ⊆ NO, O |= F v B.
The changes to P and K are as follows:

PA = {B, C, D, E, F} KA = {C}
PB = {A, C, D, E, F} KB = {F}
PC = {A, B, D, E, F} KC = ∅
PD = {A, B, C, E, F} KD = ∅
PE = {A, B, C, D, F} KE = ∅
PF = {A, B, C, D, E} KF = ∅

In order to guarantee the soundness and completeness of our algorithm, a
complete possible set for each concept is created in NO before any possible
subsumees could be removed from P . In addition, we use a set RO containing
each concept X ∈ NO if PX 6= ∅.

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 1: parallelTBoxClassification(P,K)

Input: P,K - sets of possible and known subsumees
Output: H - the whole ontology taxonomy
NO ← generateNodeSet(O)
T ← createWorkerPool()
LO ← getRandomOrder(NO)
G← randomDivision(LO)
for each group Gi ∈ G do

Ti ← getAvailableThread(T )
Ti → randomDivisionSubsTest(Gi)

RO ← generateRemainingPossibleSet()
G← groupDivision(RO)
while RO 6= ∅ do

for each group GX ∈ G do
Ti ← getAvailableThread(T )
Ti → groupDivisionSubsTest(GX)

X ← computeTopConcept()
while KX 6= ∅ do

Ti ← getAvailableThread(T )
HX ← (Ti → buildPartialHierarchy(KX))
if HX 6= ∅ then
H ← buildOntologyTaxonomy(HX)

X ← getKnownSubsumees(KX)
return H

The TBox classification process is implemented in three parallel phases.
In each phase we use different parallelization strategies. As a global pa-
rameter w we specify the maximum number of parallel threads (or workers)
available for classification. The architecture of our approach is shown in
Figure 1. In the first phase, we randomly partition the set of all named
concepts into disjoint sequences having almost identical sizes obtained by
dividing the total number of named concepts by w. In the second phase,
we find all concepts X with PX 6= ∅ using a group division strategy with
round-robin scheduling for the worker thread pool in order to finish the clas-
sification process. In the final phase, we implement a parallel divide-and-
conquer framework. Partial hierarchies are generated in the divide part for
all concepts X with KX 6= ∅. In the conquer part the whole ontology is
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constructed based on the existing partial hierarchies where HX 6= ∅. The
algorithm parallelTBoxClassification(P,K) is shown in Algorithm 1.

3.1. Ontology Classification

In the classification phase, we use two strategies, the random and the
group division strategy. In our algorithm, we use for each concept global sets
containing possible (P ) and known (K) subsumees. In that way we keep track
of the changes caused by the pool of worker threads during classification.
Each thread tests subsumption relationships and removes as many concepts
from P as possible. TBox classification terminates once P has become empty
for all concepts in NO.

Definition 1. With reference to NO, the set RO =
⋃

X∈NO
PX contains all

remaining possible subsumees PX of each concept X.

3.1.1. Random Division Strategy

According to the number of threads and total number of concepts occur-
ring in O, we divide all concepts into different groups with almost the same
size. In order to make the best use of all idle threads, the number of threads
is identical to the number of groups for testing subsumption relationships for
all concepts in NO. Our method first generates an unordered sequence LO
which includes all concepts. Then we partition LO into w different groups,
where w is the number of available threads. Then we test subsumption re-
lationships between all pairs 〈Y,X〉 with Y,X ∈ NO for each group Gi by
calling randomDivisionSubsTest(Gi) (see Algorithm 2). We use sat?() to test
concept satisfiability and tested() to check whether the subsumption between
two concepts has already been tested.

Example 3.1. Assume there are three threads available to perform sub-
sumption tests. The algorithm first shuffles all concepts in NO = {A,B,C,D,
E,F} and returns the first cycle sequence L1

O = (A,C,E,D,B, F ). Then
each group Gi contains two possible subsumees, such as G1 = {A,C},
G2 = {E,D}, and G3 = {B,F} for subsumption testing. For each thread Ti

the results are : T1 : C v A; T2 : D 6v E; T3 : F 6v B.
The second cycle sequence is L2

O = (C,D,A, F,B,E). The divisions of
each group are G1 = {C,D}, G2 = {A,F} and G3 = {B,E}. For each
thread, the results are : T1 : D v C; T2 : F v A; T3 : E v B.

Therefore, after applying the changes to P and K we get:

8
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Algorithm 2: randomDivisionSubsTest(Gi)

Input: Gi - random division group
Output: K - sets of known subsumees

P - sets of remaining possible subsumees
for each concept pair 〈X, Y 〉 ∈ Gi do

if ¬tested(X, Y ) then
satX ← sat?(X)
satY ← sat?(Y )
if ¬satX then

PX ← ∅
delete X from PY

else if ¬satY then
PY ← ∅
delete Y from PX

else
if subs?(X, Y ) then

insert Y into KX

delete Y from PX

PA = {B, C, D, E, F} KA = {C,F}
PB = {A, C, D, E, F} KB = {E}
PC = {A, B, D, E, F} KC = {D}
PD = {A, B, C, E, F} KD = ∅
PE = {A, B, C, D, F} KE = ∅
PF = {A, B, C, D, E} KF = ∅

Since our process to generate random divisions currently ignores already
discovered subsumptions, there is a possibility that a pair of concepts occurs
in a division more than once in different cycles. Therefore, we use tested() to
avoid redundant tests. We consider the runtime for each thread as almost the
same and the waiting time can be neglected right now. Currently, our results
also show that the runtime differences for each thread can be neglected when
compared with the total execution time.

If RO is not empty after random division phase testing, possible sub-
sumees are left in P . We use a group division strategy to divide all re-
maining possible subsumees in RO into different groups to continue testing
subsumption relationships until P becomes empty.

9
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Algorithm 3: groupDivisionSubsTest(GX)

Input: GX - group division of concept X
Output: K - sets of known subsumees

P - sets of remaining possible subsumees
for each concept Y ∈ GX do

if sat?(Y ) and ¬tested(X, Y ) then
if subs?(X, Y ) then

insert Y into KX

delete Y from PX

3.1.2. Group Division Strategy

For each concept X in NO a group GX = PX is generated according to the
remaining set RO which is defined in Definition 1. The groups GX define the
input to groupDivisionSubsTest(GX) (see Algorithm 3), which determines
what elements of GX are subsumed by X. Each group is assigned to a
different idle thread until all groups have been classified. During the process,
we apply round-robin scheduling to ensure a good use of all threads.

Example 3.2. According to the results from the random division phase (see
Example 3.1), let us assume the following six groups are generated:

GA = {B,D,E}, GB = {A,C,D}
GC = {A,B,E, F}, GD = {A,B,C,E, F}
GE = {A,B,C, F}, GF = {A,B,C,D,E}

In the following we assume all concepts are satisfiable, the group schedul-
ing is shown in Figure 2 and the results of each thread are shown as follows.

T1(GA) :B v A,D v A,E v A;

T2(GB) :A 6v B,C 6v B,D 6v B;

T3(GC) :A 6v C,B 6v C,E 6v C,F v C;

T ′3(GD) :A 6v D,B 6v D,C 6v D,E 6v D,F 6v D;

T ′1(GE) :A 6v E,B 6v E,C 6v E,F 6v E;

T ′2(GF ) :A 6v F,B 6v F,C 6v F,D 6v F,E 6v F ;

Since P becomes empty and RO = ∅, all subsumption relationships be-
tween all concepts occurring in O have been tested. The classification of O
terminates.

10
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Timeline

T1 GA GE

T2 GB GF

T3 GC GD

Figure 2: Scheduling results for Example 3.2

3.2. Ontology Taxonomy

In order to find the direct subsumees of each concept and build the whole
subsumption hierarchy, we use a concept hierarchy strategy which is imple-
mented by a parallel divide-and-conquer method to construct the taxonomy
of O. When RO becomes empty, all known subsumees of a concept X are
members of KX . First we find the top concept A and traverse all the con-
cepts X ∈ KA. Then we build the partial hierarchy HX for each concept X
by computing the transitive closure to reduce the known set KX . For each
concept in KX , we compute all the direct subsumees of X and insert them
into HX . Finally, the whole taxonomy of the ontology O is constructed based
on the partial hierarchy of each concept.

In the divide phase, the algorithm begins with KX where X is the top
concept. For each concept Yi ∈ KX and i = 1, 2...n, if KYi

6= ∅ and X ∈ KYi
,

then Yi ≡ X; if X 6∈ KYi
, Zi ∈ KYi

and Zi ∈ KX , then Zi is deleted
from KX . The method continues with the next concept Yi+1 ∈ KX until
all the concepts in KX have been traversed. The remaining concepts in KX

are the direct subsumees of X which are inserted into HX . The algorithm
buildPartialHierarchy(KX) is shown in Algorithm 4. For each concept X
with KX 6= ∅ its partial hierarchy is built in parallel. The process terminates
once all partial hierarchies have been built. In the conquer phase, after the
partial hierarchy of each concept has been built, all the partial hierarchies
are merged into the whole taxonomy from top to bottom (for more details
see Example 3.3 in [16]).

4. Optimization

Due to the possibly large size of ontologies and the cost of subsumption
tests, we propose a modified half-matrix data structure that uses less memory
and requires less computation. We also apply an improved group division
strategy (see Section 4.2) to get a better performance especially for some
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Algorithm 4: buildPartialHierarchy(KX)

Input: KX – set of known subsumees of concept X
Output: HX – the partial hierarchy of concept X
if KX 6= ∅ then

for each concept Y ∈ KX do
if KY 6= ∅ then

if X ∈ KY then
delete X from KY

setEquivalentConcept(X, Y )
else

for each concept Z ∈ KY do
if Z ∈ KX then

delete Z from KXHX ← KX
return HX

complex ontologies and the transitivity of subsumption relations to find as
many subsumption relationships as possible without subsumption testing.

4.1. Optimized Data Structure

In order to remove potential non-possible or known subsumees from the
Possible list, our algorithm uses a half-matrix to represent all possible rela-
tions for each concept. If a concept C from O is satisfiable, mark it with a
unique index IC . Each concept A with a smaller index IA contains the pos-
sible relationships with concept B with a bigger index in PA. Therefore the
set P contains all possible relationships which could be possible subsumers
or subsumees. For each concept its known set contains all its subsumees.
Possible relations for each pair of concepts are only represented once. For
instance, suppose we find that C 6v A and A 6v C, if the index of the possible
subsumee C is bigger than the index of the current concept A, then we delete
C from PA; otherwise we delete A from the possible set PC .

Our algorithm computes subsumption tests symmetrically for every pair
of concepts. Assume the ontology O computes the pairs 〈C,A〉 and 〈F,B〉,
then subs?(A,C), subs?(C,A) and subs?(B,F ), subs?(F,B) are tested. The
results are O |= C v A, O |= A 6v C and O |= F 6v B, O |= B 6v F . Using
the half-matrix, since IA < IB < IC < ID < IE < IF , the changes to P and
K result in the following sets:
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Timeline

T1 GA GE GF1

T2 GB GF2

T3 GC GD GF3

Figure 3: Improved scheduling results for Example 3.2

IA = 1 PA = {B, C, D, E, F} KA = {C}
IB = 2 PB = {C, D, E, F} KB = ∅
IC = 3 PC = {D, E, F} KC = ∅
ID = 4 PD = {E, F} KD = ∅
IE = 5 PE = {F} KE = ∅
IF = 6 PF = ∅ KF = ∅

Therefore, there are two results from testing the relations between every pair
of concepts. This ensures that there will be changes in P and K for every
two symmetrical tests until all concepts in P have been tested.

4.2. Improved Division Strategy

In the Group Division Phase (see Section 3.1.2) we apply round-robin
scheduling. However, in our tests we encountered some difficult ontologies
where the runtime of subsumption tests is not uniform, especially some on-
tologies using QCRs (see Section 5.2 and [16, Section V.B ]). The division
strategy from Section 3.1.2 does not have a specific solution for this kind
of ontologies. In Example 3.2, a queue Q = {GA, GB, GC , GD, GE, GF} of
pending tasks is used. Suppose only three threads are available and each
thread receives a task from Q. When a task is finished, an idle thread gets
another task assigned based on the sequence of tasks in Q. However, one
can observe that when the second set of tasks (GD,GE) is finished for T1 and
T3, T2 is still working on GF and, thus, leaves threads T1 and T3 idle until
classification terminates (see Figure 2).

To improve the performance of our method and ensure a more efficient
use of multiple threads for these difficult ontologies, we applied the Fork/Join
framework for the improved group division strategy. Currently, our strategy
to divide a task into smaller subtasks depends on the size of the ontology
and the number of available threads. If a running thread has still pending
subsumption tests and idle threads are available, our improved algorithm will
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Algorithm 5: improveScheduling(Q)

Input: Q - A queue of unclassified groups
Output: K - sets of known subsumees
while ¬isEmpty(Q) do

Gi ← deQueue(Q)
while Ti ← getAvailableThread(T ) do

Ti → groupDivisionSubsTest(Gi)
for each thread Ti ∈ T do

if Ti is busy with Gj then
for each sub-group Gjk do

Gjk ← splitSubtask(Gj)
add Gjk to sub-queue Qs

improveScheduling(Qs)

divide the subsumption tests among the currently idle threads. In the case
of Example 3.2, since there are three threads available, the task GF will be
divided into three subtasks GF1, GF2, GF3 that are added to sub-queue QF .

During execution, if idle threads are waiting in the thread pool, the work
stealing strategy is applied to steal tasks from other threads that are still
busy using the sub-queues created for each concept. Accordingly, the sub-
tasks GF1, GF2, GF3 are assigned to idle threads (see Figure 3). Although we
cannot guarantee that all the threads will finish at the same time, the run-
times and speedup factors have been improved, especially for some difficult
ontologies, and the overhead has been significantly reduced. Therefore, both
the total running time for the Group Division Phase and the waiting time
of idle threads can be improved by applying the improved group division
strategy. The algorithm improveScheduling(Q) is described in Algorithm 5.

4.3. Optimized Parallel Phase

In order to shrink the set P by using less subsumption tests, we use
known results from subsumption tests to prune untested possible concepts in
P without subsumption testing. Given the results from Example 3.2, assume
concept B ∈ PA will be tested for a subsumption relationship with A. The
following steps perform changes to P and K before new divisions are created
for an idle thread.

Situation 1. If both concepts are unsatisfiable, their set P is empty; The
changes to P and K are PA = ∅, PB = ∅, KA = ∅ and KB = ∅.
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Figure 4: An Example for Situation 2.3.1 and 2.3.2

Situation 2. If both concepts are satisfiable, test the subsumption relation-
ships between them.

Definition 2. If the index of A is smaller than B, i.e., IA < IB, the position
of concept B in PA is defined as: B.position = PA.position[IB − IA − 1].

Situation 2.1. If concept B ∈ PA and tested(A,B) is true, which means B
has been tested, then we continue with the next concept C ∈ PA to test its
subsumption relationships with A; otherwise continue with Situation 2.2.

Situation 2.2. The subsumption relationships are tested in a symmetrical
way by subs?(B,A) and subs?(A,B). If both results are true, then the two
concepts are equivalent to each other; otherwise continue with Situation 2.3.

Situation 2.3. If only one of the results is true, i.e., O |= B v A but
O |= A 6v B, the changes to both sets P and K are PA = {B, C, D, E, F},
KA = {B,C, F} and we continue with Situation 2.3.1; otherwise continue
with Situation 2.4.

Situation 2.3.1. Delete all concepts Y ∈ KB from PA and KA. Due to
O |= B v A and KB = {E}, all the subsumees of B are subsumees of A but
not the direct subsumee of A as shown in Figure 4. Therefore, all concept
Y ∈ KB are deleted from PA without subsumption tests. In the example,
concept E ∈ KB but E /∈ KA is deleted from PA. The changes of P are PA

= {B, C, D, E, F} and we continue with Situation 2.3.2.

Situation 2.3.2. For all concepts Y ∈ KB delete A from PY . Due to O |=
B v A and KB = {E}, all the subsumees of B are subsumees of A and
concept A is not a subsumee of all concepts Y ∈ KB as shown in Figure 4.
Therefore, concept A is deleted from PY with Y ∈ KB. Since only concept
E ∈ Y and IE > IA in our example, there are no changes to both P and K.
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Figure 5: Counter examples for ‘delete all concepts X ∈ KA from PB ’

We also consider situations such as ‘delete all concepts X ∈ KA from PB’.
Since KA = {B,C, F}, we know that concepts C and F are in KA and the two
concepts could not have subsumption relationships with B. However, there
are some counter examples which indicate possible relationships between B
and C, F such that O |= C v B in Figure 5(a) and O |= F v B in Fig-
ure 5(b). Therefore, we cannot assume subsumption relationships between
〈B,C〉 and 〈B,F 〉 without performing subsumption tests.

Situation 2.4. If both concepts are not subsumed by each other such that
O |= A 6v B and O |= B 6v A, then both sets P and K remain unchanged.

According to this condition, we try to find some situations which allow
us to shrink P in an efficient way without performing subsumption tests.
However, we identified some counter examples as shown in Figure 6 where
the dashed lines indicate possible relationships between pairs of concepts.
Below we describe two scenarios.

• Delete all concepts X ∈ KA from PB and Y ∈ KB from PA. For
example as shown in Figure 6(a), there is a concept C ∈ KA, C ∈ PB,
O |= A 6v B and O |= B 6v A , but A and B are both known subsumers
of C. The possible relationship between C and B could exist before C
is deleted from PB; there is a concept E ∈ KB, E ∈ PA, O |= A 6v B
and O |= B 6v A, but concept E is a subsumee of both A and B.
Therefore, the relationships of the pairs 〈B,C〉 and 〈A,E〉 need to be
tested before deleting C from PB and E from PA.

• For all concepts X ∈ KA delete B from PX and all concepts Y ∈ KB

delete A from PY . In the example shown in Figure 6(b), there is a
concept F ∈ KA, F ∈ PB (IF > IB), O |= A 6v B and O |= B 6v A, but
concept B is a known subsumee of F . In Figure 6(c), there is concept
E ∈ KB, E ∈ PA, O |= A 6v B and O |= B 6v A, but concept A is
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Figure 6: Counter Examples for Situation 2.4

a subsumee of E. Therefore, relationships between the pairs of 〈B,F 〉
and 〈A,E〉 need to be tested before deleting F from PB (IB < IF ) and
E from PA (IA < IE).

Algorithm 6 correctly deals with all the situations illustrated above.

Example 4.1. For random division tests, we apply the random division
strategy and use the same random division results from Example 3.1. The
first random division cycle results in:

T1 : C v A,A 6v C; T2 : E 6v D,D 6v E; T3 : F 6v B,B 6v F

The results of the second random division cycle are:

T1 : D v C,C 6v D; T2 : F v A,A 6v F ; T3 : E v B,B 6v E

After finishing the random division tests, the changes to P and K result in:

IA = 1 PA = {B, C, D, E, F} KA = {C, F}
IB = 2 PB = {C, D, E, F} KB = {E}
IC = 3 PC = {D, E, F} KC = {D}
ID = 4 PD = {E, F} KD = ∅
IE = 5 PE = {F} KE = ∅
IA = 6 PF = ∅ KF = ∅

For each random division cycle, we apply the above-mentioned optimized
techniques. Since O |= C v A and concept D ∈ KC , concept D is deleted
from PA and the remaining sets P become : PA = {B, E}, PB = {C, D}, PC

= {E, F}, PD = {F}, PE = {F}.
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Algorithm 6: pruneNonPossible(A,B)

Input: A,B - two concepts from NO
Output: K - sets of known subsumees

P - sets of possible subsumees
if sat?(A) then

if sat?(B) then
if ¬tested(B,A) and ¬tested(A,B) then

result1 ← subs?(A,B)
result2 ← subs?(B,A)
if result1 and result2 then

return A ≡ B
else if result1 then

for each concept Y ∈ KB do
delete Y from PA and KA

delete A from PY

else if result2 then
for each concept X ∈ KA do

delete X from PB and KB

delete B from PX

else
PB ← ∅

else
PA ← ∅

We assume that three threads are available and all concepts in RO are
divided up by the group division strategy resulting in GA = {B, E}, GB =
{C, D}, GC = {E, F}, GD = {F}, GE = {F}. The threads applied the above
mentioned optimized techniques with the following results:

T1(GA) : B v A, A 6v B (E v A, A 6v E)

T2(GB) : B 6v C, C 6v B, B 6v D, D 6v B

T3(GC) : E 6v C, C 6v E, F v C, C 6v F

T1(GD) : D 6v F, F 6v D

T2(GE) : E 6v F, F 6v E

Since T1 derives the subsumption relationship O |= B v A, concept
E ∈ KB can deleted from PA without further testing by applying Situation
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2.3.1 and the results E v A, A 6v E (listed above in brackets) can be inferred
without testing.

Therefore, the remaining possible set RO will be pruned significantly due
to the many relationships found among the concepts. The classification ter-
minates when P has been emptied.

5. Evaluation

Our parallel classification architecture is implemented as a shared-memory
program using the Java concurrency framework and HermiT 1.3.8 as OWL
plug-in reasoner. We performed our experiments on a HP DL580 Scientific
Linux SMP server with four 15-core processors (Gen8 Intel Xeon E7-4890v2
2.8GHz) and a total of 1 TB RAM (each processor has 256 GB of shared
RAM and its 15 cores support hyper-threading).

In order to test the scalability of our classification architecture we selected
(i) from the ORE 2014 [17] repository a set of 6 real-world ontologies con-
taining up to 7,000 axioms and 967 qualified cardinality restrictions (QCRs),
which are used to constrain the number of values of a particular property
and type and are considered to be an important parameter in testing the
complexity factors of our approach; (ii) from the ORE 2015 [18] repository
a set of 6 real-world ontologies containing up to 13,000 concepts and 33,000
axioms. The metrics of these ontologies are shown in Tables 2+3 (see Section
2.1 about naming description logics).

For benchmarking we ensured exclusive access to the server in order to
avoid that other jobs affect the elapsed time of our tests. For tests with a
smaller set of threads we ran several jobs in parallel but jobs exceeding 60
threads were run exclusively. Currently, we mainly focus on the size and
complexity of the selected ontologies.

5.1. Reasoning Scalability

In order to assess the scalability of our architecture we conducted a series
of experiments, where the number of workers/threads available for classifi-
cation varied between 1 (sequential case) and 300 to find out the maximum
speedup for the tested ontologies. Due to the hardware limitations of our test
environment we restricted the maximum number of threads to 300. We com-
puted the speedup as the ratio of the runtime (sum of runtimes of all threads)
divided by the elapsed time. Each individual experiment was repeated three
times and the resulting average was used to determine its runtime and elapsed
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Table 2: Metrics of the used ORE 2015 OWL ontologies
Ontology Concept Axiom SubClassOf Expressivity
WBbt.obo 6785 19138 12347 EL
EHDA#EHDA 8341 33367 8339 EL
actpathway.obo 7911 25314 17402 EL
lanogaster.obo 10925 16567 5641 EL
CLEMAPA 5946 16864 10916 EL
EMAP#EMAP 13735 27467 13732 EL
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Figure 7: Speedup factors for ontologies from Table 2 with an increasing number of con-
cepts (n = number of concepts)

time. In this subsection we mainly focus on EL ontologies, which usually
cause subsumption tests that are almost uniform in their runtime due to the
tractability of EL. The 6 ontologies can be roughly divided into two groups
of similar sizes measured by their number of contained concepts. The goal
of the conducted tests was to determine the maximum speedup that can be
achieved in our test environment using our current classification architecture.

Figure 7(a) shows small-sized and Figure 7(b) large-sized ontologies. Both
figures show a similar speedup increase. This is due to bigger partition sizes
where the size of the partition allocated to of each worker is roughly n

w
(n is

the number of concepts in an ontology and w the number of workers) and
reduced overhead. For the small-sized the peak is reached around 140-200
workers and large-sized around 200-280 workers. With a growing ontology
size, a better speedup can be reached by increasing the number of workers.
Therefore, we are expecting a similarly good or even better performance for
much bigger ontologies (number of concepts up to 800,000).
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Table 3: Metrics of the used ORE 2014 OWL ontologies (with QCRs)
Ontology Expressivity Concept Axiom SubClass EquivClass DisjointClass QCRs ∃ ∀
nskisimple functional SRIQ(D) 1737 4775 2234 50 84 43 533 27
ncitations functional SROIQ(D) 2332 7304 2786 269 115 47 659 54
ddiv2 functional SRIQ(D) 1469 4080 1832 56 75 48 388 27
rnao functional SRIQ 731 2884 1235 385 61 446 774 2
jectOWLDL2 functional ALN 482 1093 325 156 0 425 0 480
bridg.biomedical domain SROIN (D) 320 6347 295 5 37 967 0 0

5.2. Ontology Complexity

There are other factors that can affect our experiments such as the com-
plexity of an ontology and the efficiency of HermiT, the selected plug-in
reasoner, which is also implemented in Java. For most of the used ontologies
we observed that the runtimes of individual subsumption tests performed by
HermiT are rather uniform but for ontologies with a higher expressivity it
is well known that just a few subsumption tests may require a significant
amount of the total runtime. Furthermore, the plug-in reasoner might be
more or less efficient depending on the expressivity of the test ontologies.

In order to test the performance of our architecture for complex ontolo-
gies, we used the same experimental environment and selected six smaller
real-world ontologies with a logic of high expressivity as shown in Table 3,
which lists for each ontology its expressivity, number of concepts, axioms,
subclasses, equivalent classes, disjoint classes, QCRs, existential and univer-
sal restrictions.

Since the maximum number of concepts for these ontologies is 2332, we
conducted experiments where the number of available workers range from 1
to 100. We computed the speedup as the ratio of runtime divided by elapsed
time. Each experiment was repeated three times and the resulting runtime
and elapsed time averages were used to calculate the speedup. We roughly
divided the six ontologies into two groups based on their number of QCRs
and speedup. Moreover, in order to better understand how the performance
of the plug-in reasoner and thus the runtimes of individual subsumption tests
affect our results, we collected for the six tested ontologies statistics about
subsumption test runtimes (in milliseconds) such as minimum, maximum,
average, median, and deviation (see Table 4).

In Figure 8(a), the number of QCRs in the first group ranges between
40-446. Since we try to select reasonable partition sizes, we used up to 100
threads to compute the speedup factors for all four ontologies. As the num-
ber of threads is increased, a better speedup is observed and the maximum is
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Table 4: Time metrics of OWL ontologies with QCRs using 10 workers (in milliseconds)
Ontology Concept Thread Min.Time Max.Time Average.Time Median.Time Deviation.Time
nskisimple functional 1737 10 18.23 440.29 39.86 195.29 108.34
ncitations functional 2332 10 17.54 711.58 27.95 176.14 251.25
ddiv2 functional 1469 10 10.66 300.89 27.35 19.59 44.64
rnao functional 731 10 17.18 206.96 66.47 92.49 144.15
jectOWLDL2 functional 482 10 0.004 231.56 0.033 0.09 36.90
bridg.biomedical domain 320 10 0.004 357.62 0.036 0.95 48.71

0

5

10

15

20

25

30

35

1 4 10 18 24 32 40 52 66 80 100

SP
EE
DU

P

NUMBER	OF	WORKERS	/	THREADS

nskisimple_functional,	n=	1737,	q	=	43
ddiv2_functional,	n=1469,	q	=	48
ncitations_functional,	n=2332,	q	=	47
rnao_functional,	n=731,	q	=	446

(a) q ∈ {43, 47, 48, 446}

0

2

4

6

8

10

12

14

16

18

20

1 4 10 18 24 32

SP
EE
DU

P

NUMBER	OF	WORKERS	/	THREADS

bridg.biomedical_domain,	n=320,	q	=	967
jectOWLDL2_functional,	n=482,	q	=	425
improved-bridg.biomedical_domain
improved-jectOWLDL2_functional

Applied	Improved	Group	Division	 Strategy

(b) q ∈ {425, 967}

Figure 8: Speedup factors for ontologies with QCRs from Table 3 (q = number of QCRs)

reached with 60-100 threads except for the one with q = 446, which has small-
sized concepts and reached its maximum speedup around 40 threads. Table
4 shows that average runtimes are similar but deviation is several orders of
magnitude higher than the average, which does not affect the experimental
results significantly. From these results we also can see that if the subsump-
tion tests become more complex, i.e., they take longer, our optimized method
can also achieve a good speedup for ontologies of smaller sizes. The speedup
is even better compared to a similarly sized ontology such as obo.PREVIOUS
(see Table IV and Figure 9(a) in [16]).

In Figure 8(b), the number of QCRs is reaching 425 (n=482) and 967
(n=320), which indicates the difficulty of ontology classification. Due to
the complexity and limitations of HermiT, these two ontologies show the
best performance for four workers and afterwards the speedup factor remains
around 4. As we observed, these ontologies include some difficult QCRs,
which cause several subsumption tests to take much longer than others (as
indicated in Table 4 by a very high deviation), therefore their speedup does
not always increase.

In order to improve the performance for these complex ontologies, we used
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the Fork/Join framework already mentioned in the improved group division
strategy (see Section 4.2) to reschedule tasks which require a significantly
longer runtime for subsumption tests. The old and improved results are
shown in Figure 8(b). Because of dividing bigger tasks into smaller ones by
using work stealing, compared with the old results a continuously increasing
speedup factor can be achieved until the maximum with around 20 workers
has been reached.

As expected, in general the results show that our method has a speedup
linear to the number of threads. Due to the new group division strategy, the
scheduling of idle threads achieves a better load balancing.

6. Conclusion

We presented a novel parallel OWL ontology classification architecture.
We applied parallel techniques to create a thread pool for each task working
on an independent processor. Compared to existing sequential classifica-
tion methods and the limitations of recently proposed parallel classification
approaches, our method is the first in using a random division strategy to
achieve a better scalability for ontologies of larger sizes and applying a group
division strategy to finish TBox classification. Furthermore, due to the de-
sign of our shared atomic data structures we avoid possible race conditions
for updates of shared data.

Currently, our method relies on the sequential OWL reasoner HermiT. We
observed that for difficult ontologies our method can outperform the stand-
alone version of HermiT. However, due to processor and reasoner restrictions,
not all ontologies could be tested on the current platform within a reasonable
amount of time. More thorough experiments on the speedup and ratio factors
of our parallel framework are planned.

From our current results, we believe that we can apply our approach to
ontologies of larger sizes to get a better performance compared to existing
sequential methods. Moreover, due to the limitations of our current exper-
imental environment, we plan to run our experiments with larger and more
complex ontologies with proper parallel techniques integrated. Finally, we
will further extend our reasoner with enhanced optimizations to reduce the
number of subsumption tests (besides the ones we described in Section 4)
and hope this work will result in improving ontology classification perfor-
mance. Overall, our parallel TBox classification method shows promising
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results that makes us believe it could be used to achieve an improved run-
time and a better speedup for ontologies that are complex or have a much
larger size.

7. Future Work

Currently, our architecture has an architecture partially similar to the
openMP framework. We plan to integrate openMP in our next version with
an improved parallel OWL classification method. Moreover, due to the limi-
tations of current experimental environment, we plan to run our experiments
with larger and more complex ontologies and for proper distributed systems
the MPI framework could be integrated too. Finally, we plan to further ex-
tend our reasoner and hope this work will be applied to improving ontology
classification performance for large-sized ontologies.
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