Login | Register

Nano-Integrated Suspended Polymeric Microfluidics (SPMF) Platform for Ultra-Sensitive Bio-Molecular Recognition of Bovine Growth Hormones

Title:

Nano-Integrated Suspended Polymeric Microfluidics (SPMF) Platform for Ultra-Sensitive Bio-Molecular Recognition of Bovine Growth Hormones

SadAbadi, Hamid and Packirisamy, Muthukumaran ORCID: https://orcid.org/0000-0002-1769-6986 (2017) Nano-Integrated Suspended Polymeric Microfluidics (SPMF) Platform for Ultra-Sensitive Bio-Molecular Recognition of Bovine Growth Hormones. Scientific Reports, 7 (1). ISSN 2045-2322

[thumbnail of Packirisamy-Nature Scientific Reports-2018.pdf]
Preview
Text (application/pdf)
Packirisamy-Nature Scientific Reports-2018.pdf - Published Version
Available under License Creative Commons Attribution.
6MB

Official URL: http://dx.doi.org/10.1038/s41598-017-11300-2

Abstract

The development of sensitive platforms for the detection of biomolecules recognition is an extremely important problem in clinical diagnostics. In microcantilever (MC) transducers, surface-stress is induced upon bimolecular interaction which is translated into MC deflection. This paper presents a cost-effective and ultra-sensitive MC-based biosensing platform. To address these goals, the need for costly high-resolution read-out system has been eliminated by reducing the cantilever compliance through developing a polymer-based cantilever. Furthermore a microfluidic system has been integrated with the MC in order to enhance sensitivity and response time and to reduce analytes consumption. Gold nanoparticles (AuNPs) are synthesized on the surface of suspended microfluidics as the selective layer for biomolecule immobilization. The biosensing results show significant improvement in the sensitivity of the proposed platform compared with available silicon MC biosensor. A detection limit of 2 ng/ml (100pM) is obtained for the detection of bovine growth hormones. The results validated successful application of suspended polymeric microfluidics (SPMF) as the next generation of biosensing platforms which could enable femtomolar (fM) biomolecular recognition detection.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Mechanical, Industrial and Aerospace Engineering
Item Type:Article
Refereed:Yes
Authors:SadAbadi, Hamid and Packirisamy, Muthukumaran
Journal or Publication:Scientific Reports
Date:2017
Funders:
  • Concordia Open Access Author Fund
  • NSERC
  • Concordia Research Chair grants
Digital Object Identifier (DOI):10.1038/s41598-017-11300-2
ID Code:983981
Deposited By: Krista Alexander
Deposited On:26 Jun 2018 15:16
Last Modified:26 Jun 2018 15:16

References:

Arlett, J., Myers, E. & Roukes, M. Comparative advantages of mechanical biosensors. Nature nanotechnol. 6, 203–215 (2011).

Thundat, T., Oden, P. & Warmack, R. Microcantilever sensors. Microscale. Therm. Eng. 1, 185–199 (1997).

Moulin, A., O’shea, S. & Welland, M. Microcantilever-based biosensors. Ultramicroscopy. 82, 23–31 (2000).

Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science. 288, 316–318 (2000).

Lavrik, N. V., Tipple, C. A., Sepaniak, M. J. & Datskos, P. G. Enhanced chemi-mechanical transduction at nanostructured interfaces. Chem. Phys. Lett. 336, 371–376 (2001).

Hwang, K. S. et al. Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers. Appl. Phys. Lett. 89, 173905–173903 (2006).

Kim, S. & Kihm, K. Effect of adsorption-induced surface stress change on the stiffness of a microcantilever used as a salinity detection sensor. Appl. Phys. Lett. 93, 081911–081913 (2008).

Wu, G. et al. Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc.Natl. Acad. Sci. USA 98, 1560–1564 (2001).

Waggoner, P. S. & Craighead, H. G. Micro-and nanomechanical sensors for environmental, chemical, and biological detection. Lab. Chip. 7, 1238–1255 (2007).

Chen, G., Thundat, T., Wachter, E. & Warmack, R. Adsorption‐induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys. 77, 3618–3622 (1995).

Rinaldi, G., Packirisamy, M. & Stiharu, I. Dynamic synthesis of microsystems using the segment Rayleigh–Ritz method. J. Microelectromech. S. 17, 1468–1480 (2008).

Thundat, T., Wachter, E., Sharp, S. & Warmack, R. Detection of mercury vapor using resonating microcantilevers. Appl. Phys. Lett. 66, 1695–1697 (1995).

Thundat, T., Chen, G., Warmack, R., Allison, D. & Wachter, E. Vapor detection using resonating microcantilevers. Anal. Chem. 67, 519–521 (1995).

Etayash, H., Jiang, K., Azmi, S., Thundat, T. & Kaur, K. Real-time Detection of Breast Cancer Cells Using Peptide-functionalized Microcantilever Arrays. Scientific reports 5 (2015).

Cha, B. H. et al. Detection of Hepatitis B Virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. Biosens. Bioelectron. 25, 130–135 (2009).

Ilic, B., Yang, Y. & Craighead, H. Virus detection using nanoelectromechanical devices. Appl. Phys. Lett. 85, 2604–2606 (2004).

Hansen, K. M. et al. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal. Chem. 73, 1567–1571 (2001).

McKendry, R. et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc.Natl. Acad. Sci. USA 99, 9783–9788 (2002).

Su, M., Li, S. & Dravid, V. P. Microcantilever resonance-based DNA detection with nanoparticle probes. Appl. Phys. Lett. 82, 3562–3564 (2003).

Wu, G. et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature. biotechnol. 19, 856–860 (2001).

Lee, J. H. et al. Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens. Bioelectron. 20, 2157–2162 (2005).

Backmann, N. et al. A label-free immunosensor array using single-chain antibody fragments. Proc.Natl. Acad. Sci. USA 102, 14587–14592 (2005).

Burg, T. P. & Manalis, S. R. Suspended microchannel resonators for biomolecular detection. Appl. Phys. Lett. 83, 2698–2700 (2003).

Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 442, 381–386 (2006).

Dextras, P., Burg, T. P. & Manalis, S. R. Integrated measurement of the mass and surface charge of discrete microparticles using a suspended microchannel resonator. Anal. Chem. 81, 4517 (2009).

Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature. 446, 1066–1069 (2007).

von Muhlen, M. G., Brault, N. D., Knudsen, S. M., Jiang, S. & Manalis, S. R. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal. Chem. 82, 1905–1910 (2010).

Burg, T. P. et al. Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. J. Microelectromech. S. 15, 1466–1476 (2006).

Kara, V. et al. Nanofluidics of Single-crystal Diamond Nanomechanical Resonators. Nano Lett. 15, 8070–8076 (2015).

Jahangir, I. & Koley, G. Dual-channel microcantilever heaters for volatile organic compound detection and mixture analysis. Scientific Reports 6 (2016).

Lee, J., Shen, W., Payer, K., Burg, T. P. & Manalis, S. R. Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Lett. 10, 2537–2542 (2010).

Gupta, A., Akin, D. & Bashir, R. Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 84, 1976–1978 (2004).

Talukdar, A. et al. Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy. Nat. Commun. 6 (2015).

Agarwal, D. K., Maheshwari, N., Mukherji, S. & Rao, V. R. Asymmetric immobilization of antibodies on a piezo-resistive micro-cantilever surface. RSC Adv. 6, 17606–17616 (2016).

SadAbadi, H., Badilescu, S., Packirisamy, M. & Wuthrich, R. PDMS-Gold Nanocomposite Platforms with Enhanced Sensing Properties. J. Biomed. Nanotechnol. 8, 539–549 (2012).

SadAbadi, H., Badilescu, S., Packirisamy, M. & Wüthrich, R. Integration of gold nanoparticles in PDMS microfluidics for lab-on-a-chip plasmonic biosensing of growth hormones. Biosens. Bioelectron. 44, 77–84, doi:10.1016/j.bios.2013.01.016 (2013).

Wagner, J. & Köhler, J. Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett. 5, 685–691 (2005).

Beecroft, L. L. & Ober, C. K. Nanocomposite materials for optical applications. Chem. Mater. 9, 1302–1317 (1997).

Liu, M., Sun, J., Sun, Y., Bock, C. & Chen, Q. Thickness-dependent mechanical properties of polydimethylsiloxane membranes. J. Micromech. Microeng. 19, 035028 (2009).
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top