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Abstract

Fault Prediction and Localization with Test Logs

Anunay Amar

Software testing is an integral part of modern software development. However, test runs produce

1000’s of lines of logged output that make it difficult to find the cause of a fault in the logs. This

problem is exacerbated by environmental failures that distract from product faults. In this thesis we

present techniques that reduce the number of log lines that testers manually investigate while still

finding a maximal number of faults.

We observe that the location of a fault should be contained in the lines of a failing log. In contrast,

a passing log should not contain the lines related to a failure. Lines that occur in both a passing and

failing log introduce noise when attempting to find the fault in a failing log. We introduce a novel

approach where we remove the lines that occur in the passing log from the failing log.

After removing these lines, we use information retrieval techniques to flag the most probable lines

for investigation. We modify TF-IDF to identify the most relevant log lines related to past product

failures. We then vectorize the logs and develop an exclusive version of KNN to identify which logs

are likely to lead to product faults and which lines are the most probable indication of the failure.

Our best approach, FaultFlagger finds 89% of the total faults and flags only 0.5% of lines

for inspection. FaultFlagger drastically outperforms the previous work CAM. We implemented

FaultFlagger as a tool at Ericsson where it presents daily fault prediction summaries to testers.
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Chapter 1

Introduction

Large complex software systems have 1000’s of test runs each day leading to 10’s of thousands of test

log lines [51, 35, 32]. Test cases fail primarily due to two reasons during software testing: a) fault in

the product code and b) issues pertaining to the test environment [78]. If a test fails due to a fault

in the source code, then a bug report is created and developers are assigned to resolve the product

fault. However, if a test fails due to a non-product issue, then the test is usually re-executed and

often the test environment is fixed. Non-product test failures are a significant problem. For example,

Google reports that 84% of tests that fail for the first time are non-product or flaky failures [51]. At

Microsoft, techniques have been developed to automatically classify and ignore false test alarms [32].

At Huawei researchers have classified test failures into multiple categories including product vs

environmental failure to facilitate fault identification [35].

In this work we focus on the Ericsson team that is responsible for testing cellular basestation

software. The software that runs on these base stations contains not only complex signalling logic

with stringent real-time constraints, but also must be highly reliable, providing safety critical services,

such as 911 calling. The test environment involves specialized test hardware and RF signalling that

adds additional complexity to the test environment. For example, testers need to simulate cellular

devices, such as when a base station is overwhelmed by requests from cell users at a music concert.

To identify the cause of a test failure, software testers go through test execution logs and inspect

the log lines. The inspection relies on a tester’s experience, expertise, intuition, past run information,

and regular expressions crafted using historical execution data. The process of inspection of the

failed test execution log is tedious, time consuming, and makes software testing more costly [72].

Discussions with Ericsson developers revealed two challenges in the identification of faults in a

failing test log: 1) the complex test environment introduces many non-product test failures and

2) the logs contain an overwhelming amount of detailed information. To solve these problems, we
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mine the test logs to predict which test failures will lead to product faults and which lines in those

logs are most likely to reveal the cause of the fault. To assess the quality of our techniques we use

two evaluation metrics on historical test log data: the number of faults found, FaultsFound, and

the number of log lines investigated to find those faults, LogLinesFlagged. An overview of the four

techniques are described below.

1. CAM: TF-IDF & KNN
CAM was implemented at Huawei to categorized failing test logs [35]. Testers had manually

classified a large sample of failing test logs into categories including product and environment failures.

CAM runs TF-IDF across the logs to determine which terms had the highest importance. They

create vectors and rank the logs using cosine similarity. An unseen test failure log is categorized, e.g.,

product vs environment failure, by examining the categories of the K nearest neighbours (KNN).

Although CAM categorizes logs, it does not flag lines within a log for investigation. The logs at

Ericsson contain hundreds of log lines making a simple categorization of a log as fault or product

unhelpful. Our goal is to flag the smallest number of lines while identifying as many faults as possible.

When we replicate CAM on Ericsson data only 47% of the faults are found. Since the approach

cannot flag specific lines within a log, any log that is categorized as having a product fault, must be

investigated in its entirety.

2. SkewCAM: CAM with EKNN

Ericsson’s test environment is highly complex with RF signals and specialized base-station test

hardware. This environment leads to a significant proportion of environmental test failures relative

to the number of product test failures. In our study we found that the data was highly skewed

because of the significant proportion of environmental failures. Teams of testers exclusively analyze

log test failures each day. They want to ensure that all product faults are found. We modify the

standard K Nearest Neighbour (KNN) classification approach to act in an exclusive manner. With

Exclusive K Nearest Neighbour (EKNN ), instead of voting during classification, if any past log

among K neighbours has been associated with a product fault, then the current log will flagged as

product fault. SkewCAM, which replaces KNN with EKNN , finds 88% of FaultsFound with 28% of

the log lines being flagged for investigation.

3. LogLiner: Line-IDF & EKNN

SkewCAM accurately identifies logs that lead to product faults, but still requires the tester to

examine 1/3 of the total log lines. Our goal is to flag fewer lines to provide accurate fault localization.

The unit of analysis for SkewCAM is each individual term in a log. Using our abstraction and

cleaning approaches, we remove run specific information and ensure that each log line is unique.

We are then able to use Inverse Document Frequency (IDF) at the line level to determine which

lines are rare across all failing logs and likely to provide superior fault identification for a particular
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failure. LogLiner, Line-IDF & EKNN , can identify 84% of product faults while flagging only 3%

of the log lines. There is a slight reduction in FaultsFound found but a near 10 fold reduction in

LogLinesFlagged for inspection.

4. FaultFlagger: PastFaults ∗ Line-IDF & EKNN
Inverse Document Frequency (IDF) is usually weighted by Term Frequency (TF). Instead of

using a generic term frequency for weight, we use the number of times a log line has been associated

with a product fault in the past. The result is that lines with historical faults are weighed more

highly. FaultFlagger, identifies 89% of FaultsFound while only flagging 0.5% of the log lines.

FaultFlagger finds the same number of faults as SkewCAM, but flags less than 1% of the log

lines compared to SkewCAM’s 27%.

The thesis is divided into the following chapters. In Chapter 2, we conduct a background literature

review that covers both broad testing topics and the specific literature on which this thesis is based.

The topics include the types and purposes of testing, the challenges in software testing and research

into software fault localization, statistical fault prediction, log processing and abstraction, and

categorization of test failures. In Chapter 3, we provide the background on the Ericsson test process

and the data that we analyze. In Section 3.1, we detail our methodology including our log abstraction,

cleaning, diffing, and classification methodologies. In Section 3.2, we describe our evaluation setup.

In Chapter 4, we provide the results for our four log prediction and line flagging approaches and

discuss threats to validity. In section 4.5, we discuss how the best approach was implement as a tool

at Ericsson. In Chapter 5, we contrast the approaches based on the number of FaultsFound and

LogLinesFlagged for inspection. In Chapter 6, we position our work in the context of the existing

literature, and provide a concluding discussion of our novel contributions.
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Chapter 2

Background Literature Review

We break the related work into the following categories:

• Types and purposes of testing

• Challenges in software testing

• Research into software fault localization

• Research into statistical fault prediction

• Research into log processing and abstraction

• Research into categorization of test failures

2.1 Types and purpose of testing

Software testing is a technique to ensure the quality of a software product. The testing process

checks whether a software product is working correctly often with respect to set standards and

requirements [78]. Any deviation shown by a software product in its behaviour implies a bug and

can lead to a software failure [48]. A software system can fail primarily due to two reasons, a) bug in

source code or b) a bug in software environment [78].

To catch software bugs, we perform testing at different levels [78]. For example, we conduct

unit-testing to test individual software components, integration testing to test a group of software

components, and system testing to test the entire software product. We also use different testing

strategies based on the testing requirements [48, 1, 24]. For example, we perform structural testing

to test the internal structure of the software product, whereas we use requirement testing to test the

external behaviour of the software product.
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According to a survey carried out by Ng et al. [58], the most popular testing activities are test

case design, documentation of test results, regression testing to test changed code, creation of test

objectives, and updating test plans according to new requirements and specifications. In summary,

testing is a complex task and involves many different activities.

2.2 Challenges in software testing

Software testing is a complex activity as a result there are many challenges that we face during

software testing. One of the most important challenges is to improve the number of bugs found

during software testing [6]. To partially solve this problem Hutchins et al. suggested a test selection

technique that is quite effective in detecting faults and uses criteria like code coverage, control-

flow, and data-flow [34]. The problem can also be ameliorated with the help of exhaustive testing.

However, performing exhaustive testing on a software system is usually prohibitively expensive [44].

Consequently, Kuhn et al. suggested a technique to perform pseudo-exhaustive testing by exhaustively

testing a small subset of parameters that causes software failures. Basili et al. performed a study and

suggested that different factors like testing technique, software type, fault type, tester experience,

and any interaction among these factors affects the efficiency of the testing system [5]. Consequently,

we should take both product and process factors into account to improve the test effectiveness.

Test size and automation

Large and complex software systems further increase the complexity faced during software testing [6].

For example, it becomes quite hard to find the correct order of class integration when we perform

the integration and the testing of object-oriented system [9]. Several researchers have suggested

techniques to reduce the complexity faced during software testing [10, 59, 76]. Complexity involved

in software testing can be ameliorated using test automation. However, completely automating

the testing system has its own challenges [6]. To solve this challenge, Godefroid et al. suggested a

technique called DART (Directed automated random testing) that can perform a fully automated

unit-testing on any software product that compiles [25]. DART automatically generates the test

driver that performs random testing. DART also performs dynamic analysis and generates new test

inputs to achieve maximum test coverage. The technique can successfully detect standard errors like

program crash, assertion violation, and non-termination etc. Another unit test automation technique

called PUT (Parameterized unit tests) was proposed by Microsoft researchers Tillman et al. [73]. In

this technique, symbolic execution is used to construct parameterized unit test cases that provides

maximum code coverage.
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Generating tests and mutants

An approach that theoretically identifies additional faults is mutation testing [61, 18]. Mutation

testing is a fault-based technique that helps testers in creating the test cases that detect well-defined

class of faults. Mutants are simple faults present in a software program. When a test case detects a

mutant, the mutant is killed. Dead mutants are not executed by later test cases. To perform test

case minimization, a mutation score is calculated for different sets of test cases, where mutation score

denotes the ratio of total killed mutants to the total killable mutants. During test case minimization,

a minimal set of test cases is selected that generates the highest mutation score. Fuzz testing builds

upon mutation testing. In traditional fuzz testing, random mutations are applied to well-formed

inputs and the resulting values are evaluated for faults. Whereas, in whitebox fuzz testing, new

inputs are calculated with the help of old inputs and various conditional constraints faced by the old

input. A whitebox fuzz testing approach was suggested by Godefroid et al. [26] to quickly detect

security vulnerabilities. This approach calculates the new input so that we can maximize the code

coverage, and test and uncover security vulnerabilities in additional code statements.

Test cost and reprioritization

Software testing is expensive and it is estimated that testing consumes more than 50 percent of

the entire software development budget [6]. To reduce the cost of software testing several approaches

have been suggested. Biffl et al. proposed a value-based software engineering approach that uses test

manager’s knowledge to select tests to reduce the overall cost [8]. Herzig et al. [31] developed a tool

called THEO that uses past test execution data to determine how effective a test is in finding the

bugs. Ineffective tests are skipped based on a cost function. THEO skips the test without affecting

the quality of the software product by ensuring that at a predefined point all tests will be run. To

reduce the cost during regression testing, Kim et al. [41] proposed a test prioritization technique

that uses historical execution data. According to the prioritization technique, test cases that are

historically better at uncovering the software faults are selected first. Each test cases are assigned a

probability that decides when the test will be selected. These probabilities are calculated using a

exponential weighted moving average, and the past execution performance of the test. To save cost,

Elbaum et al. [20] applied a test selection and prioritization technique during continuous integration

and development cycle. The technique uses historical execution data to perform test selection and

prioritization. The technique uses a time window to track how recently test suites have been executed

and revealed failures.
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2.3 Research into software fault localization

Software testing helps in finding faults in a software product. Although a test failure indicates a

problem in the system, the actual location of the fault can be difficult to find. Identifying the location

of the fault has historically been a manual, tedious, and time consuming task. Furthermore, the

success of manual fault localization relies on the software developer’s experience and judgment [80].

There has been substantial research to facilitate and automate the fault localization process.

As traditional fault localization testing is not effective in finding software faults, many advanced

software fault localization techniques have been suggested. Some of the popular fault localization

techniques are: program slicing-based techniques, program spectrum-based techniques, statistics-based

techniques, program-state based techniques, machine learning-based techniques, and information-

retrieval based techniques [80].

Slice-Based Techniques

Program slicing based fault localization technique was first introduced by Weiser et al. [77]. It

is a technique that helps in uncovering all the statements in a program that directly or indirectly

affect a particular variable that produces the wrong output. Many different variants of program

slicing based fault localization techniques have been suggested [45, 81, 17]. For example, Shinji et al.

suggested a static program slicing to locate the software fault. Whereas, Franz et al. suggested a

dynamic program slicing to locate the software faults. Dynamic program slicing, has a advantage

over static program slicing as dynamic program slicing takes program execution into account while

calculating the number statements that affects the variable of interest, and consequently flags fewer

number of suspicious statements. To further reduce the number of suspicious statements, DeMillo

et al. used dynamic program slicing along with mutation-based testing. Mutation-based testing is

a technique that helps in determining the adequacy of a test set against a collection of mutant

programs. Nevertheless, all slicing based technique suffers from a common disadvantage. The number

of suspicious statements flagged by these techniques is overwhelmingly large and forces software

testers to look at huge chunks of code to identify the software fault [80].

Program Spectrum-Based Techniques

Different variants of a popular ESHS (Executable Statement Hit Spectrum) based technique called

Tarantula were suggested by researchers for the purpose of fault localization [13, 37, 16]. ESHS is a

technique that indicates which part of the program under testing has been covered during the test

execution. With the help of the above information one can identify the statements involved during a

software failure. Tarantula is a ESHS based technique that calculates the suspiciousness of a program

statement with the help of coverage information and execution result i.e. success or failure.
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Statistics-Based Techniques

Chilimbi et al. suggested a statistics-based fault localization technique that uses path profiles [12].

Path profiles are collected during test execution and are assigned importance score. Finally paths

with top scores are presented as a root cause of the software fault.

Program State-Based Techniques

Program state-difference-based fault localization technique was proposed by Zeller and Hilde-

brandt [85, 86]. In this technique, states of successful test and failed test are compared using their

memory graphs. Memory graph is a data structure that represents the state of the program [87].

The Memory graph contains all the variables and values present in the program, edges of the graph

denotes different operations like pointer dereferencing, variable access etc.

Machine Learning-Based Techniques

Some researchers even applied sophisticated machine learning techniques like SVM, KNN to

locate software faults [69, 57, 11, 21]. For example, Neuhaus et al. used SVM and KNN to identify

vulnerable software components. They trained their model on the patterns that frequently occur in

vulnerable software components. Similarly, Brun et al. [11] used SVM and decision tree, and trained

their models on properties of erroneous programs and fixed version of them. Using this technique

they were able to identify the program properties that indicate errors.

2.4 Research into statistical fault prediction

Predicting software faults is an active research field. Most fault prediction techniques predict whether

a given software module, file, or commit will contain faults. Some of the most popular and recent fault

prediction techniques uses statistical regression models and machine learning models to predict faults

in software modules [23, 52, 60, 2, 39, 40, 15, 43, 70, 49, 39, 50, 42]. Many of these fault prediction

techniques uses similar data metrics and classification techniques to train their fault prediction

model. For example, Ghotra et al. [23] train their model with the help of statistical techniques

like Naive Bayes and simple logistic regression. The measure in these models include like Lines of

Code (LOC), cyclomatic complexity, measures of behavioural and structural design properties of

classes, objects, and the relations between them. Moeyersoms et al. used data features like LOC,

McCabe [68] and Halstead [3] metrics to train their Random Forest and SVM based fault prediction

technique. Similarly, Okutan et al. [60] used a Bayesian networks prediction model and trained

it on metrics including LOC, lack of code quality (LOCQ) for source code, number of developers

(NOD), coupling between objects (CBO), weighted method per class (WMC), and lack of cohesion of

methods (LCOM). To predict faults in commits, Kamei et al. [38] suggested a statistical bug model
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that measures the risk associated with changing a set of files. The model uses information like the

number of changes, change size, history of changes, and developer experience to measure the risk

involved in a commit. Herizg [30] performed preliminary work combining the measures such as code

churn, organizational structure, and pre-release defects with pre-release test failures to predict the

defects at the file and Microsoft binary level.

2.5 Research into log processing and abstraction

Traditional fault localization techniques include the use of program logs, assertions, breakpoints in a

debugger, and profilers [19, 63, 14, 4]. For example, logging statements are inserted into software

code to monitor the program behaviour. If a program shows an unusual behaviour then a tester

manually inspects the log to identify the problem. However, manually inspecting the test log is

tedious and time consuming. Consequently, there is a need for better alternative to find software

faults.

Test logs contain a plethora of useful information. We can use the information provided by

the logs to perform debugging, detection of security threats, anomaly detection, and many other

tasks [55]. However, performing log analysis on huge unstructured log files is tedious and difficult.

Furthermore, the size of logs at large companies quickly makes it impossible to store more than a few

months of log data. As a result, there has been a several researches done in the field of log processing,

so that we can reduce the size of the log file, find important patterns, and present the log messages

in a structured format. We divide the research into different categories: clustering-based techniques,

AI-based techniques, rule-based techniques, event-based techniques, graph-based techniques, and

event abstraction based techniques.

Clustering-Based Log Processing and Abstraction Techniques

Several clustering-based log processing techniques were suggested by researchers [64, 46, 71, 53, 56].

Salfner et al. proposed a technique that assigns unique identifiers to log messages on the basis of

Levenshtein’s edit distance, clusters similar message sequences, and applies a statistical noise filtering

algorithm to remove the noise from the clusters [64, 46].

Vaarandi et al. [74] proposed a clustering-based log processing algorithm called Simple Log File

Clustering Tool (SLCT) that finds frequent patterns in the log file. They build a frequency table

that contains the number of times a word occurs in a particular position in the log line. Then to

cluster log line and to find important patterns, frequent words from the frequency table are searched

in a given log line.

To differentiate between the static and the dynamic parts of the log messages, Nagappan et al. [53]

suggested a log abstraction technique that leverages the algorithm used in a Simple Log Clustering
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Tool (SLCT). They use the algorithm to clusters static and the dynamic part of the log lines. The

advantage of this log abstraction technique is that this algorithm can be used in a scenario where

we do not have access to the source code. Jiang et al. [36] suggested a technique that uses both the

source code and log file to perform log abstraction. Their technique involves the following steps: a)

anonymization uses heuristics to recognize the dynamic parts in the log lines, b) tokenization puts

the anonymized log lines into groups based on the number of words and estimated parameters in

each log line, and c) categorization compares the log lines in each group and abstracts them to their

corresponding execution events. Jiang et al.. use source code during log abstraction and thereby

outperform Nagappan et al..

To perform log analysis and a comparison between logs that are generated during the execution of

large-scale cloud applications, Shang et al. [66] extended the technique suggested by Jiang et al. [36].

First, they do log abstraction. Second, they recover the execution sequences of the abstracted log

events. Finally, they perform a comparison between the pseudo and large-scale cloud deployments.

In all these previous works, the logs under analysis were execution logs [53] and load testing log

[36, 66]. In this work, we have adapted the log abstraction approaches to work on test logs.

AI-Based Log Processing Techniques

Many log processing techniques use AI algorithms like neural network, decision tree, and Bayesian

network to find patterns in the log file [33, 27, 47, 67, 79]. For example, Wei et al. perform log parsing

and source code analysis to detect the structure of the log messages. Then they use algorithms

like PCA and decision trees to make the log messages more readable for the log operators [82].

Another AI-based algorithm was used by Kenji et al. where they use Hidden Markov Model to detect

correlated events and anomalous events [84]. Kenji et al. use Hidden Markov Model to represent the

behavior of dynamic syslog. Finally they calculate an anomaly score for the series of messages using

test statistics and if the anomaly score exceeds the threshold then an alarm is raised.

Rule-Based Log Processing Techniques

Log processing can also be performed using rule-based techniques [22, 28, 75]. In rule-based

techniques, domain experts use their system knowledge, and construct regular expressions to identify

important log messages. The disadvantage of rule-based technique is that it is tedious and requires

substantial effort and must be constantly maintained an updated manually.

Event-Based Log Processing Techniques

Another popular log processing technique was proposed by Hellerstein et al. [29]. In this technique,

they perform pattern discovery with the help of event bursts, periodic events, and mutually dependent

events. Where event burst happens when some critical element fails, periodic events happen at
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regular intervals, and mutually dependent events co-occur.

Graph Theory-Based Log Processing Techniques

Graph theory based log processing technique was proposed by Nagappan et al. where they use

acyclic directed graphs to detect the pattern of repetitive log lines [54]. Nagappan et al. first remove

the dynamic content from the log file and identify different events. Finally, they represent each event

as nodes in a graph, where the number of transitions between the events represents the weight of the

edges.

2.6 Research into categorization of test failures

Large complex systems involve complex test environments that lead to failures that are not product

faults. These “false alarms” have received attention because successful classification of false test

alarms saves time for testing teams. False alarms can also slow down the development team when

test failures stop the build. Herzig et al. [32] tackle this issue at Microsoft by automatically detecting

false test alarms. They use association rules to classify test failures into false test alarms. The

association rules use test failure patterns to perform the classification task. Instead of having two

outcomes for a test failure, CAM [35] uses an information retrieval technique to classify test failures

into seven categories at Huawei. They train on a large corpus of manually categorized test logs. In

our work, we use historical test logs to find specific log lines that tend to be associated with product

faults. This allows us to not only ignore false alarms, but to provide likely log line location of the

failure.

2.7 Our proposed work

Software testing is a large and a diverse field of study. We focus on using test logs to identify specific

log lines that are likely to lead to faults. We know that performing log analysis on huge unstructured

logs is difficult. As a result, our initial step is to reduce the size of the log file. We reduce the size of

the log file by performing log abstraction, a technique suggested by Shang et al. [66]. The size of the

failed test log is further reduced by removing all the log lines that also occur in passing test log.

In the next step, we use the historical bug reports, and the occurrence frequencies of the log lines

in the past test failures to perform the following tasks: a) flag suspicious log lines in the current

failing test log b) predict whether the test failed due to product fault or environmental problem.

We introduce three variants for fault identification:SkewCAM, LogLiner, and FaultFlagger.

SkewCAM and LogLiner rely on occurrence frequencies of the log lines to carry out their tasks.

Whereas, FaultFlagger technique uses both historical bug reports and occurrence frequencies.
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Finally, we carry out a comparative study between our CAM, SkewCAM, LogLiner, and

FaultFlagger. We evaluate each technique with the help of FaultsFound and LogLinesFlagged,

where FaultsFound denotes the percentage of total faults found using a given technique, and

LogLinesFlagged denotes the percentage of log lines that were flagged as a suspicious statement.
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Chapter 3

Ericsson Background and Study

Methodology

3.1 Methodology

Discussions with Ericsson developers revealed two challenges in the identification of faults in a failing

test log: 1) the complex test environment introduces many non-product test failures and 2) the logs

contain an overwhelming amount of detailed information. To overcome these challenges, we perform

log abstraction to remove contextual information, such as run date and other parameters. Lines that

occur in both failing and passing logs are unlikely to reveal a fault, so we perform a log diff with

the last passing log to remove lines that are not related to the failure. Finally, we extract the rarest

log lines and use information retrieval techniques to identify the most likely cause of a fault. We

elaborate on each step below.

Listing 3.1: An example of log abstraction. With # representing concrete values that have been

abstracted.

1 . S u c c e s s f u l l y connects to s t a t i o n

2 . Latency at #, above normal

3 . No o f connect ion #, h igher than normal

4 . Perform loadba lanc ing

5 . Latency at #, normal range

6 . Test ing on # f o r r e l i a b i l i t y
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3.1.1 Log Abstraction

Logs at Ericsson tend to contain a large number of lines, between 1300 and 5800 with a median of

2500 lines. The size makes it difficult for developers to locate the specific line that caused a fault.

Log abstraction reduces the number of unique lines in a log. Although the logs do not have a specific

format, they contain static and dynamic parts. The dynamic run specific information, such as the

date and test machine, can obscure higher level patterns. By removing this information, abstract

lines contain the essence of each line without the noisy details.

For example, in Figure 1, the log line “Latency at 50 sec, above normal” contains static and

dynamic parts. The static parts describe the high-level task, i.e. an above normal latency value.

The latency values, are the dynamic parts of the log line, i.e. “50" seconds. In another run, we may

obtain a “Latency at 51 sec, above normal”. Although both logs contain the same high-level task,

without log abstraction these two lines will be treated as different. With log abstraction, the two log

lines will record the same warning.

We adapt Shang et al.’s [66] log abstraction technique, our approach has the following steps:

Anonymization: During this step we use heuristics to recognize the dynamic part of the log

line. We use heuristics like StaticVocabulary to differentiate between the static and the dynamic part

of the log line. For example, the test source code contains the log line print “Latency at %d sec,

above normal”, latencyValue. We wrote a parser to find the static parts of the test code, which

we store as the StaticVocabulary. With the help of StaticVocabulary, we replace the dynamic parts of

a log with the # placeholder. In our example, the output of log abstraction would be “Latency at #

sec, above normal”.

Unique Event Generation: Finally, we remove the abstracted log lines that occur more than

once in the abstract log file. We do this because duplicate log lines represent the same event.

3.1.2 DiffWithPass

The location of a fault should be contained in the lines of a failing log. In contrast, a passing log

should not contain the lines related to a failure. Lines that occur in both a passing and failing log

introduce noise when attempting to find the fault in a failing log. We introduce a novel approach

where we remove the lines that occur in the passing log from the failing log. In our example, in

Figure 1, the failing log contains an above normal latency. However, the passing log also contains

this warning, so it is unlikely that the failure is related to latency. In contrast, the line “Power below

10 watts" occurs only in the failing log, indicating the potential cause for the failure.

Performing a set difference operation with all the previous passing logs is computationally

expensive and grows with the number of test runs, O(n). Over a six months period there are 74,621
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Figure 1: DiffWithPass stages: First, the logs are abstracted. Second a diff operation is performed

between the passing and failing logs. Third, only the lines present in the failing log are kept.

passing and 6,106 failing test runs. For each failure we have to compare with the tests previous

passing runs, which would lead to over 455 million comparisons. The number of passes makes

comparison impractical. To make our approach scalable, we note that a passing log represents an

acceptable state for the system. We perform a diff of the current failing log with the last passing log.

Computationally, we perform one diff comparison, O(1). This novel approach reduces the number of

noisy lines in a log and reduces the storage and computational requirements.

3.1.3 Frequency of test failures and faults

Tests with similar faults should produce similar log lines. For example, when a test fails due to a low

power problem it produces the following abstract log line: “Power below # watts.” A future failure

that produces the same abstract log line will likely have failed due to a low power problem.

Unfortunately, many of log lines are common and occur every time a test fails regardless of the

root cause. These noisy log lines do not help in identifying the cause of a specific test failure. In

contrast, log lines that are rare and that occur when a bug report is created are likely more useful in
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fault localization. Our fault location technique operationalizes these ideas by measuring the following:

1. LineFailCount: the count of the number of times a log line has been in a failing test.

2. LineFaultCount: the count of the number of times a log line has been associated with a reported

fault in the bug tracker.

After performing log abstraction and DiffWithPass, we store a hash of each failing log line in

our database. In Figure 2, we show how we increment the count when a failure occurs and a bug

is reported. We see that lines that occur in many failures have low predictive power. For example,

“Testcase failed at #” is a common log line that has occurred 76 times out of 80 test failures. In

contrast, “Power below #” is a rare log line that occurs 5 times out of 80 failures likely indicating a

specific fault when the test falls.

Not all test failures lead to bug reports. As we can see the generic log line “Testcase failed at #"

has only been present in 10 failures that ultimately lead to a bug report being filed. In contrast, when

the log line “Power below #” occurs, testers have filed a bug report 4 out 5 times. When predicting

future potential faults this latter log line clearly has greater predictive power with few false positives.

3.1.4 TF-IDF

In this section, we give a background about TF-IDF, a popular numerical statistics widely used in

information retrieval techniques. We discuss about TF-IDF as it is used by CAM to classify test

failures.

Identifying faults based on test failures and bug reports is too simplistic. We use Term Frequency

by Inverse Document Frequency (TF-IDF) to calculate the importance of a term to a document, i.e.

log, in a collection [65]. The importance of a term is measured by calculating TF-IDF:

TF − IDF t,d = ft,d ∗ log
N
Nt

(1)

Where ft,d denotes the number of times term t occurred in document d, N denotes the total

number of documents in the corpus, and Nt denotes the number of documents that contains the term

t [65] [35].

We have discussed in earlier sections that rare log lines are strong indicator of faults. We use IDF

(Inverse document frequency) to calculate the importance of a log line to a test log. IDF is defined as:

IDF l,d = log
N
Nl

(2)

Where N denotes the total test logs in our system, and Nl denotes the total number of test logs

that contains the log line l.
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Figure 2: The mapping between the log line failure count and bug report count. Logs lines that have

been associated with many bug reports have high predictive power.

17



Figure 3: Pictorial representation of vector generation from test logs

3.1.5 Log Vectorization

To find similar log patterns that have occurred in the past we transform each log into a vector. Each

failed log is represented as a vector and the log lines in our vocabulary denotes the features of these

vectors. For example, if we have N failed logs in our system then we would generate N vectors, a

vector for every failed log. The dimension of the vectors is determined by the number of unique log

lines in our corpus. If we have M unique log lines then the generated vectors would be M-dimensional.

Figure 3 shows the pictorial representation of the entire process.

Many techniques exist to assign values to the features1 of the vectors. In our experiment, we use

two techniques. The first technique assigns value to the feature of a vector �L1 with the help of log

line IDF (Inverse document frequency) as shown in the following formula:

Featurei,FailedLog1 = log
N
Ni

(3)

Where, �L1 denotes the feature vector of FailedLog1, Featurei,F ailedLog1 denotes the ith feature

of FailedLog1, N denotes the total number of failed logs, and Ni denotes the number of failed logs

that contains the Featurei (log line).

The second technique assigns a value to the feature of a vector �L1 with the help of log line IDF
1Feature represents a unique log line
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and LineFaultCount as shown in the following formula:

Featurei,FailedLog1 = (LineFaultCounti + 1) ∗ log
N
Ni

(4)

Where LineFaultCounti denotes the number of bug reports associated with a feature Featurei

(log line).

3.1.6 Cosine Similarity

To find similar logs and log lines to predict faults we use cosine similarity. It is defined as[65] [62]:

similarity = cos θ =
�L1 · �L2

‖L1‖2‖L2‖2
(5)

Where L1 and L2 represent the feature vectors of two different test logs. We represent each past

failing log and current failing log as vectors, and compute the cosine similarity between the vector of

current failing log and the vectors of all the past failing logs.

During the calculation of cosine similarity we only take top N log lines (features) from the vector

of current failing log. Since our prediction is based only on these lines we consider these N lines to

be flagged for further investigations. We are able to predict not only which log will lead to product

faults, but also which lines are most likely the cause of those faults.

3.1.7 Exclusive K Nearest Neighbours (EKNN )

To determine whether the current log will lead to a bug report, we modify the K nearest neighbours

(KNN) approach as follows. For the distance function, we use the cosine similarity of the top N

lines as described above. For the voting function, we need to consider the skew in our dataset. Our

distribution is highly skewed because of the significant proportion of environmental failures. We

adopt an extreme scheme whereby if any of the K nearest neighbours has lead to a bug report in the

past, we predict that the current test failure will lead to a bug report. If none of the K neighbours has

lead to a past bug report, then we predict no fault. This approach is consistent with our overriding

goal of finding as many faults as possible, but may lead to additional log lines being flagged for

inspection.

To set the value of K, we examine the distribution of test failures and measure the performance

of different values of K from 1 to 120.
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Figure 4: Historical logs are used to predict future log failures.

3.2 Evaluation Setup

Ericsson testers evaluate test failures on a daily basis. We run a simulation to show how accurate our

daily prediction would have been. Figure 4 shows the incremental framework that we use to train

and test each fault location technique [32, 35, 83, 7]. Our simulation period runs for 6 months from

February 2017 to July 2017. We train and test the approaches on the nightly software test runs for

day D =0 to D =T. To predict whether a failure on day D =t will reveal a product fault, we train

on the historical data from D =0 to D =t-1 and test on D =t. Similarly, to predict on day D =t +

1, we train on the historical data from D =0 to D =t. We repeat this training and testing cycle for

each nightly run until we reach D =T.

Figure 5 shows how our technique trains and predicts product faults. The fault prediction

technique uses historical test data to predict whether the current test failure is due to a product

fault or an environmental fault.

Our goal is to capture the maximum number of product bugs reported while inspecting the

minimum number of log lines. We operationalize this goal by calculating the percentage of FaultsFound

and the percentage of LogLinesFlagged. We define FaultsFound and LogLinesFlagged as the following:

FaultsFound =
TotalPredictedFault

TotalActualReportedFault ∗ 100 (6)

LogLinesFlagged =
TotalLogLinesFlagged

TotalLogLinesInAlllogs ∗ 100 (7)
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Figure 5: A pictorial representation of fault prediction

3.3 Ericsson Test Process and Data

At Ericsson there are multiple levels of testing from low level developer run unit tests to expensive

simulations of real world scenarios on hardware. In this thesis, we focus on integration tests at

Ericsson. Testers are responsible for running and investigating integration test failures. Our goal is

to help these testers quickly locate the fault in a failing test log.

Integration testing is divided into test suites that contain individual tests. In Figure 6, we

illustrate the integration testing at Ericsson. There are multiple levels of integration testing. The

passing builds are sent to the next level of integration tests. For each integration test case, TestID,

we record the TestExecutionID which links to the result LogID and the verdict. The log contains

the runtime information that is output by the build that is under test. For each failing test, we

store the log and also store the previous passing run of the test for future comparison with the

failing log. Failing tests that are tracked to a product fault are recorded in the bug tracker with a

TroubleReportID. Environmental and flaky tests do not get recorded in the bug tracker and involve

re-testing once the environment has been fixed. We study a six month period from Feb 2017 to July

2017.
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Figure 6: The Ericsson integration test process. We study the integration testing stage. Testing has

already gone through earlier developer testing stages (N-1) and will continue to later integration

stages (N+1). The ID, e.g., TestID, show the data entities that we extract.
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Chapter 4

Results and Tool: Fault Prediction

and Localization

Discussions with Ericsson developers revealed two challenges in the identification of faults in a failing

test log: 1) the complex test environment introduces many non-product test failures and 2) the logs

contain an overwhelming amount of detailed information. To solve these problems, we mine the

test logs to predict which test failures will lead to product faults and which lines in those logs are

most likely to reveal the cause of the fault. In the previous chapter, we discussed the background on

the four techniques: CAM, SkewCAM, LogLiner, and FaultFlagger. We also described our

evaluation metrics: the number of faults found, FaultsFound, and the number of log lines investigated

to find those faults, LogLinesFlagged. In this chapter, we present our results.

Table 1: CAM: TF-IDF & KNN

K % FaultCaught % LogLineFlagged % CorrectlyFlaggedProductFaults
Execution Time

(mins)

1 47.30 4.13 67.04 420

15 50 4.38 66.10 444

30 47.23 4.36 67.60 458

60 47.14 4.07 67.47 481

120 47.43 4.23 68.10 494
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Table 2: SkewCAM: CAM with EKNN

K % FaultCaught % LogLineFlagged % CorrectlyFlaggedProductFaults
Execution Time

(mins)

1 47.13 4.21 67.04 190

15 86.65 21.18 27.09 199

30 88.64 27.71 18.77 204

60 90.84 38.10 16.40 223

120 90.84 43.65 14.66 253

Table 3: LogLiner: Line-IDF & EKNN

K N % FaultCaught % LogLineFlagged % CorrectlyFlaggedProductFaults
Execution Time

(mins)

1 1 47.23 0.06 75.23 30

15 1 67.48 0.14 42.55 46

30 1 68.22 0.16 38.14 52

60 1 68.22 0.17 36.01 68

120 1 68.22 0.17 35.67 91

1 10 47.27 0.56 77.47 39

15 10 82.35 2.39 33.54 85

30 10 84.60 2.98 25.85 90

60 10 86.05 3.92 21.15 98

120 10 86.05 4.26 19.50 127
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Table 4: FaultFlagger: PastFaults ∗ Line-iDF & EKNN

K N % FaultCaught % LogLineFlagged % CorrectlyFlaggedProductFaults
Execution Time

(mins)

1 1 53.10 0.06 81.50 36

15 1 87.33 0.33 23.82 49

30 1 88.88 0.42 18.52 54

60 1 90.41 0.54 15.35 83

120 1 90.41 0.58 14.38 119

1 10 63.00 0.80 72.79 48

15 10 88.45 3.23 25.12 88

30 10 89.20 3.99 19.28 103

60 10 90.84 5.39 15.41 124

120 10 90.84 6.04 13.89 185

4.1 Result 1. CAM: TF-IDF & KNN

CAM has successfully been used at Huawei to categorize test logs [35]. We re-implement their

technique and perform a replication on Ericsson test logs. We discussed the data processing steps in

Section 3.1. We then apply TF-IDF to the terms in each failing log. Cosine similarity is used to

compare the current failing log with all past failing logs for a test. CAM then calculates a threshold

to determine if the current failing log is similar to any of the past logs. The details can be found

in their paper and we use the same threshold value of similarity at t = .7. If the value is below

the threshold, then KNN is used for classification. CAM sets K = 15 [35], we vary the number of

neighbours from K = 1 to 120.

Table 1 shows that the direct application of CAM to the Ericsson dataset only finds 50% or fewer of

the product faults. We also see that increasing the value of K neighbours does not increase the number

of FaultsFound. For example, at K = 15 the CAM finds 50% of the product faults. However, when

we increase K to 30 it only captures 48% of the product faults. The table also shows the percentage

of total flagged logs that were correctly predicted as product faults, CorrectlyFlaggedProductFaults.

We noticed that increasing the value of K does not lead to a significant increase in the percentage of

CorrectlyFlaggedProductFaults. The percentage varies between 66% and 68% for K = 1 to 120.

CAM is also computationally expensive and on average it takes 7 hours to process the entire

dataset. There are two main factors that contribute to this computational cost. First, the CAM

performs word based TF-IDF which generates large feature vectors and then calculates the cosine

similarity between the vector of current failing log and the vectors of all the past failing logs. The
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time complexity is O(|V | · |L|). Second, the algorithm computes a similarity threshold using the past

failing logs that increases computational time by O(|V | · |l|). Where V denotes the vocabulary of

terms present in the failing test logs, L denotes the total number of failing test logs, and l denotes a

smaller set of failing test logs used during the calculation of similarity threshold.

CAM finds 50% of the total faults. CAM flags the entire failing log for investigation.

4.2 Result 2. SkewCAM: CAM with EKNN

Ericsson’s test environment involves complex hardware simulations of cellular base stations. As a

result, many test failures are environmental and do not lead to a product fault. Since the data is

skewed, we modify KNN. In Section 3.1.7, we define Exclusive KNN (EKNN ) to predict a fault if

any of the K nearest neighbours has been associated with a fault in the past.

We adjust CAM for skewed data. Like CAM, SkewCAM uses TF-IDF to vectorize each log

and cosine similarity to compare the current failing log with all previously failing logs. However, we

remove the threshold calculation as both the study on CAM [35] and our experiments show that it

has little impact on the quality of clusters. Instead of using KNN for clustering SkewCAM uses

EKNN . We vary the number of neighbours from K = 1 to 120.

Table 2 shows that more neighbours catch more product faults but also flags many lines. At

k = 30, SkewCAM catches 89% of the all product faults, but flags 28% of the total log lines.

Interestingly as we increase K to 120 the number of faults found increased to only 91%, but the lines

flagged increases to 44%. Table 2 also shows the percentage of total flagged logs that were correctly

predicted as product faults, CorrectlyFlaggedProductFaults. We noticed that as we increase the value

of K to 120, the percentage of CorrectlyFlaggedProductFaults reduces drastically. At K = 30, only

19% of the total flagged logs were correctly predicted as product faults.

Adjusting CAM for skewed data by using EKNN allows SkewCAM to catch most product faults.

However, the improvement in the number of FaultsFound comes at the cost of flagging many more

lines for inspection. Testers must now face the prospect of investigating many log lines.

Despite removing the threshold calculation, SkewCAM is still computationally expensive because

like CAM it applies word based TF-IDF. Hence, it has a time complexity of O(|V | · |L|).

SkewCAM finds 89% of the total faults, but flags 28% total log lines for inspection. It is

also computationally expensive.
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4.3 Result 3. LogLiner: Line-IDF & EKNN

SkewCAM can accurately identify the logs that lead to product faults, however it flags a large

number of suspicious log lines that need to be examined by testers.

To effectively identify product faults while flagging as few log lines as possible, we developed

novel technique called LogLiner. LogLiner uses the uniqueness of log lines to predict product

faults. We calculate the uniqueness of the log line by calculating the Inverse Document Frequency

(IDF) for each log line. Before calculating IDF, we remove run-specific information from logs by

performing data processing as explained in Section 3.1.

IDF is used to generate the vectors for the current failing log and all of the past failing logs

according to the equation below. For each unique line in a log we calculate its IDF score according

to the following:

IDF(Line) = log
TotalNumLogs

FrequencyOfLogLine (3)

In order to reduce the number of flagged log lines, we perform our prediction using the top IDF

scoring N lines from the current failing log. We then apply cosine similarity and compare with the

K neighbours using EKNN to predict whether the current failing test log will lead to fault.

During our experiment, we varied K from 1 to 120, N from 1 to 10, and studied the relationship

between the number of neighbours (K), top N lines with highest IDF score, percentage FaultsFound,

and percentage LogLinesFlagged.

Table 3 shows the impact of changing these parameters. Low parameter values N = 1 and K = 1

lead to FaultsFound at 47% with only < 1% of LogLinesFlagged. By using the top line in a log and

examining the result for the top neighbour, we are able to perform at similar levels to CAM. CAM

and SkewCAM use all the log lines during prediction. With this setting LogLiner finds 88% of

the faults, but flags 29% of the lines, a similar result to SkewCAM.

Setting LogLiner to more reasonable values, K = 30 and N = 10, we are able to find 85% of

the faults by flagging 3% of the log lines for inspection. Drastically increasing K = 120 and keeping

N = 10 we find 86% of the faults but flag 4% of the lines.

The table also shows the percentage of total flagged logs that were correctly predicted as product

faults, CorrectlyFlaggedProductFaults. For, N = 1 and N = 10, we noticed that increasing the value

of K leads to a significant reduction in the percentage of CorrectlyFlaggedProductFaults. At K = 30

and N = 10, LogLiner is only to correctly predict 26% of the total flagged logs.

LogLiner finds 85% of the total faults while flagging only 3% of the total log lines for

inspection.
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4.4 Result 4. FaultFlagger: PastFaults ∗ Line-IDF & EKNN

LogLiner flags fewer lines, but drops slightly in the number of FaultsFound. We build on LogLiner

with FaultFlagger which incorporates faults into the line level prediction.

IDF is usually weighted. Instead of using a generic weight, such as term frequency, we use the

number of times a log line has been associated with a product fault in the past. We add 1 to this

frequency to ensure that the standard IDF of the line is applied if a line has never been associated

with any faults. We weight line-IDF with the Fault Frequency (FF) according to the following

equation:

FF-IDF(Line) = (LineFaultCount + 1) ∗ IDF (Line)

= (LineFaultCount + 1) ∗ log
TotalNumLogs

FrequencyOfLogLine

(8)

As with the previous approaches, we vary the number of neighbours from K = 1 to 120 and

the number of top lines flagged with N = 1 and 10. Table 4 shows that the value of N has little

impact on the number of faults found. Furthermore, the number of FaultsFound increases only

slightly after K ≥ 15. As a result, we use N = 1 and K = 30 for further comparisons and find that

FaultFlagger find 89% of the total faults with 0.5% of total log lines flagged for inspection.

In Table 4, we can see the percentage of total flagged logs that were correctly predicted as

product faults, CorrectlyFlaggedProductFaults by FaultFlagger. The percentage of Correct-

lyFlaggedProductFaults shows a similar pattern as SkewCAM and LogLiner as the percentage

of CorrectlyFlaggedProductFaults reduces drastically with the increase in the value of K. However,

FaultFlagger performs comparatively better than CAM, SkewCAM and LogLiner at K = 1

and N = 1, and was able to correctly predict 82% of the total flagged logs.

Compared to SkewCAM, FaultFlagger finds the same number of faults, but SkewCAM flags

28% of total log lines compared FaultFlagger < 1%. Compared to LogLiner, FaultFlagger

finds 4 percentage points more faults with 2.5 percentage points fewer lines flagged.

FaultFlagger finds 89% of the total faults and flags only 0.5% of lines for inspection.

4.5 Implementing the FaultFlagger Tool at Ericsson

We implemented our best fault identification algorithm, FaultFlagger, as a tool for Ericsson

testers. The tool uses historical test logs and bug reports to perform predictions on the test failures

on a daily basis. In Section 4.5.1, we briefly describe the architecture of the tool. The features of the

tool has been demonstrated in Section 4.5.2.
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Figure 7: Architecture diagram

4.5.1 Architecture

During software testing various test cases are executed periodically to validate the quality of the

software product. During these executions test cases produce test execution logs. We use these test

execution logs and predict whether a test failed due to a product fault or an environmental fault.

Figure 7 shows the architecture diagram of our tool. With the help of the architecture diagram,

we can see that our foremost step is the preprocessing of the execution log. During the preprocessing

step we clean the log and compute the following things:

1. LineFailCount: the count of the number of times a log line has been in a failing test.

2. LineFaultCount: the count of the number of times a log line has been associated with a product

fault.

After processing the log, we store the processed log, LineFailCount, LineFaultCount and other

meta-data in the database. Later we apply our fault identification algorithm that uses Inverse-

Document-Frequency (IDF), LineFaultCount, Cosine Similarity, and KNN on the processed logs and

predicts whether a test failed due to a product fault or an environmental fault. The aforementioned

steps take place periodically with the help of a python script and a Linux cron job.

In the architecture diagram, we can also see a web tool which is a client server application. With

the help of the web tool a client (software developers and testers) can find out whether a given failure

is due to a product fault or an environmental fault. The web tool also flags the potential log lines that

carry crucial information about the test failure. In the following section we delineate the features of
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our web tool.

4.5.2 Tool Features

Daily Fault Prediction Summary

At Ericsson, testing teams execute a bundle of test cases every night on the nightly build. On the

subsequent day, testers manually examine all the failed test cases and their corresponding execution

logs. The manual inspection of the test log helps in identifying the actual reason behind the test

failure, which could either be a product fault or an environmental fault. If the reason behind the test

failure is a product fault then a TR (Trouble Report/Bug Report) is generated by a tester. The entire

process relies heavily on the manual inspection of the test log which takes a considerable amount of

time, and consequently increases the cost of software testing.

To save testers time and reduce software testing cost, we created a tool that automatically predicts

whether a test has failed due to a product fault or an environmental fault. The tool displays a daily

fault prediction summary on its home page, which can be easily accessed by a tester via a web

browser.

The daily fault prediction summary contains a list of all the failed test cases that were executed

during the testing of a nightly build. In Figure 8, we can see the home page of our tool, where

DAILY TROUBLE REPORT FORECAST section of the home page shows a daily fault prediction

summary. The prediction summary contains the following columns:

1. STP is an identifier of the equipment where the test was executed.

2. JOB ID is an unique identifier that represents the test execution id.

3. TR VERDICT shows the prediction result. If a test case is anticipated to have failed due to a

product fault then it displays TR as a verdict, otherwise it shows NO_TR

4. TEST CASE displays the name of the failed test case.

We use the TR Verdict column to sort the rows present in the fault prediction summary. Rows

that have TRs come before the rows that do not have TRs (NO_TR). This improves the usability of

the tool by allowing a tester to quickly identify all the test cases that could lead to an actual TR

(Trouble Report).

The daily fault prediction summary also helps software testers in prioritizing their daily work.

The testers can use the summary to start their inspection from those test cases for which the tool

has predicted a TR.
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Figure 8: Tool home page

Test Log With a TR

Test logs are overwhelming large. To solve this problem we customized the test execution log and

added information that would help the developers/testers in quickly identifying the cause of the test

failure. We added LineFailCount and LineFaultCount values in our customized test execution log.

These values are represented as a ratio of LineFaultCount and LineFailCount. Each ratio tells us

how many times does a log line has lead to a TR(fault) in the past and how often does it occur in

a failing test log. Using this ratio a developer can identify important log lines that carry crucial

information about the test failure. For example, using LineFaultCount, developers can identify log

lines that frequently occur when a test fails due to a product fault. Furthermore, developers can use

LineFailCount to identify those log lines that occur rarely or has occurred due to an unseen product

fault.

Our tool highlights the N most important log lines in the test execution log that carry crucial

information about the test failure. Important log lines are identified with the help of our fault

identification algorithm. The algorithm uses IDF score and LineFaultCount to identify the important

log lines.

Figure 9 shows the log lines generated during the test failure. The highlighted lines shown in the

figure represent the top N lines that our algorithm has identified as most likely to indicate the cause of

the fault. The ratio in the left margin shows the LineFaultCount over the LineFailCount. For example,

we can see that the generic line “Reconnecting to base-station on IDZ23781 at 2017031182947” has a

ratio of 0/21. This means that when this line is present in a failed log there were zero trouble reports
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Figure 9: Customized execution log when the prediction is a TR

filed in 21 test failures. Clearly this line has little predictive power. Interestingly, although this line

is abstracted when making the prediction, the run specific information such as “201731182947” is

displayed in the tool to further help developers in identifying the specific, for example, node that was

running the test.

In contrast, we can see that there is a line “Device Power off failed” which has a ratio of 28/30.

This ratio implies that the line was present 30 times in the test failures, and out of 30 times, 28 times

there was trouble report filed against the test failure. This ratio shows a strong relationship between

trouble report and test failure, and as a result the corresponding log line is considered as a potential

reason behind the test failure. Similarly, “Deleting PECOs” also has a high LineFaultCount over

LineFailCount ratio and is flagged as a potential reason behind the test failure.

For ease in the navigation between highlighted log lines we have also provided a next and previous

buttons.

Test Log Without a TR

In this section we would learn how we represent a failed test log in the scenario when our algo-

rithm predicts that the failure is due to an environmental fault i.e. when TR_VERDICT for the

corresponding failed test case is NO_TR.

When our algorithm predicts that the test has failed due to an environmental fault, we show

a customized test execution log to the developers for manual inspection. The customization is

performed by adding ratios of LineFaultCount and LineFailCount to the execution log. As explained

in the previous section, we add these ratios because LineFaultCount and the LineFailCount help

developers in identifying important log lines that carry crucial information about the failure.

In Figure 10, we can see a customized test execution log which is generated when a test fails and

our tool predicts that the failure is due to an environmental fault.
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Figure 10: Customized execution log when the prediction is not a TR

Miscellaneous Filters

To improve the usability of our tool we provided filters. Figure 8 shows the filters: a) Date Filter b)

STP Filter c) Site Filter d) Testcase Filter.

If a developer wants to look at the test cases that failed on a specific date then the developer can

select a date from the Date filter to get the result. To find out all the failed test cases that were

executed on a specific equipment, developer can use the STP filter. Similarly, to find out all the test

cases that were executed at specific location, we can use the Site filter. Finally, if a developer wants

to look at all the test executions of a particular test case then he can use the Testcase filter.
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Chapter 5

Discussion and Threats

5.1 Discussion

Our discussion revolves around the number of correctly identified test failures that lead to faults,

FaultsFound in Figure11, and the number log lines used to make the prediction, i.e. the lines that are

flagged for manual investigation, LogLinesFlagged, in Figure 12. Testers want to catch a maximal

number of faults while investigating as few flagging lines as possible.

CAM technique: We re-implemented CAM [35] and evaluated it on a new dataset. CAM is

based on a popular information retrieval technique. The technique uses simple word based TF-IDF to

represent failed test log as vectors. Then it ranks the past failures with the help of their corresponding

cosine similarity score. Finally, it uses KNN to determine whether the current test failure is due to a

product fault and presents its finding to the testers. CAM has two major limitations. First, CAM

does not flag individual log lines that are the likely cause of the fault. Instead it only categories

test failures into, for example, product vs environmental failure. As a result, CAM forces testers to

manually examine the entire log file to find the important log lines that carry crucial information

about the test failure. The second limitation is that CAM performs poorly on the Ericsson dataset,

see Figure 11 and 12. We can see that even when we increase the number of K neighbours, the

number of FaultsFound does not increase and stays around 50%. CAM performs poorly because

the Ericsson data is highly skewed due to the significant proportion of environmental failures, which

reduces the effectiveness of voting in KNN.

SkewCAM technique: We modify CAM for skewed datasets. SkewCAM uses an exclusive,

EKNN , strategy that we designed for skewed data. If any of the nearest K neighbours has had a

fault in the past, SkewCAM will flag the log as a product fault. Figure 11 shows that SkewCAM

finds 89% of the product faults solving the first limitation of CAM. SkewCAM’s major limitation
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Figure 11: FaultsFound with varying K. SkewCAM and FaultFlagger find a similar number of

faults.

35



● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50 60

0
10

20
30

40
50

Number of Neighbors (K)

Pe
rc

en
ta

ge
 o

f t
ot

al
 li

ne
s 

fla
gg

ed

●

●

●

●

●

●

●

●

●

●
●

●
●

0 10 20 30 40 50 60

0
10

20
30

40
50

Number of Neighbors (K)

Pe
rc

en
ta

ge
 o

f t
ot

al
 li

ne
s 

fla
gg

ed

●
●

● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50 60

0
10

20
30

40
50

Number of Neighbors (K)

Pe
rc

en
ta

ge
 o

f t
ot

al
 li

ne
s 

fla
gg

ed

● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50 60

0
10

20
30

40
50

Number of Neighbors (K)

Pe
rc

en
ta

ge
 o

f t
ot

al
 li

ne
s 

fla
gg

ed

CAM
SkewCAM
LogLiner (N=10)
FaultFlagger (N=1)

Figure 12: LogLinesFlagged with varying k. SkewCAM flags an increasing number of lines, while

FaultFlagger remains constant around 1% of total log lines.
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is that it flags 28% of all log lines in making its fault predictions. As a result, testers must manually

examine many log files to identify the cause of the failure. Figure 12 also shows that as the number

of K neighbours increases so too does the number of LogLinesFlagged. Like CAM, SkewCAM uses

the entire failed log in its prediction providing poor fault localization within a log.

LogLiner technique: To reduce the number of LogLinesFlagged, we introduce a novel technique

called LogLiner. LogLiner makes a novel modification to TF-IDF by employing IDF at the line

level. The IDF score helps to identify rare log lines in the current failing log. Our conjecture is

that rare lines are indicative of anomalies, which in turn, indicate faults. LogLiner selects top N

most rare log lines in the current failing log. These N lines are vectorized and used to calculate the

similarity with past failing test logs. Since only N lines are used in the prediction, only N lines are

flagged for investigation by developers drastically reducing the manual effort in fault localization.

LogLiner identifies 85% of the faults by flagging only 3% of the lines. In Figure 12 we see that

LogLiner flags many fewer lines than SkewCAM, 27% LogLinesFlagged, and that the number of

lines flagged remains nearly constant with changes in K. However, Figure 11 shows that LogLiner

finds slightly fewer product faults than SkewCAM, 89% FaultsFound. While we have reduced the

number of lines flagged from 27% to 3%, LogLiner has reduced the fault finding effectiveness from

89% to 85%.

FaultFlagger technique: To improve the number of FaultsFound and reduce the number of

LogLinesFlagged, we suggest a novel technique called FaultFlagger that uses the association

between log lines and LineFaultCount. FaultFlagger uses LogLiner’s line based IDF score and

LineFaultCount to represent log files as vectors. We then select the top N log lines that are both

rare and associated with the most historical faults. Our experimental result shows that the log line

rarity and its association with fault count is a strong predictor of future product faults. Figures 11

and 12 show that FaultFlagger finds 89% of the faults while flagging only 0.5% of the total log

lines for investigation. This is an improvement compared to LogLiner’s 3% LogLinesFlagged. In

comparison to SkewCAM, FaultFlagger finds the same number of faults, but SkewCAM flags

27% of the lines compared to the less than 1% flagged by FaultFlagger.

5.2 Performance and Log Storage

In this section we compare the performance and storage overhead associated with CAM, SkewCAM,

LogLiner, and FaultFlagger. Table 1, Table 2, Table 3, and Table 4 shows the execution time

of CAM, SkewCAM, LogLiner, and FaultFlagger respectively. We can see that both CAM

and SkewCAM are computationally more expensive than LogLiner and FaultFlagger. At

K = 30, CAM, SkewCAM, LogLiner (N=10) and FaultFlagger (N=10) take 458 minutes, 204
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minutes, 90 minutes, and 54 minutes respectively to analysis six months worth of log files. CAM

and SkewCAM are slower as they both perform word based TF-IDF which generates large feature

vectors as a result they have a time complexity of O(|V | · |L|), where V denotes the vocabulary of log

lines present in the failing test logs, and L denotes the total number of failing test logs. In contrast,

LogLiner and FaultFlagger line based IDF which uses a small subset of the total log lines as

a result LogLiner and FaultFlagger have a time complexity of O(|v| · |L|), where v denotes a

small subset of the vocabulary V .

Performing log analysis on huge log files is tedious and expensive. CAM, SkewCAM, LogLiner,

and FaultFlagger all requires historical test logs for fault prediction and localization. As a result,

we are required to store the test logs for a long period of time which increases the storage overhead. To

ameliorate the storage overhead, we reduce the size of the raw log files by performing log abstraction

and set-difference. Over a one month period, we calculate the amount of reduction in the overall log

storage size. We found that with log abstraction we can reduce the log storage size by 78%. When

we employ both log abstraction and set-difference we were able to reduce the log storage size by 94%.

This reduction drastically reduces the storage requirements and allows companies to store longer test

logs for a longer time period.

5.3 Generalizing to Other Organizations

Our techniques, FaultFlagger and LogLiner can be generalized and applied to test data generated

by other organizations. FaultFlagger uses historical test data to perform fault prediction and

localization. As a result, we need the following information to apply our fault prediction and

localization technique to different test datasets. First, we need a history of trouble reports/bug

reports. The report should be correctly linked to test failures caused by product faults. Second,

FaultFlagger uses historical test logs to perform the prediction and analysis. As a result, we also

need the organizations to store the test execution log for several months. Storing test logs can be

costly for organizations as the logs are huge in size. However, we can overcome this problem by

applying log abstraction technique that drastically reduces the size of the log file. Third, as our log

processing technique performs a set difference operation between a current failing log and the most

recent passing log, we also require the organizations to store the most recent passing log.

5.4 Threats to Validity

In our case study at Ericsson, the test failure data is highly skewed because of the significant

proportion of environmental failures. As a result, we use large number of neighbours, K = 30. If the
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technique were applied to other projects, the historical distribution of product faults to test failures

would need to be calculated. It is then simple to adjust the value of K based on the number of faults

that lead to bug reports. Further study is necessary to determine the efficacy of the technique on

other projects with different failure distributions.

Our fault identification techniques use log abstraction to pre-process the log files. During the log

abstraction process, we lose run-time specific information from the test log. Though the run-time

specific information can help in the process of fault identification it adds substantial noise and

increased log size. We reduce the size of the log and increase the fault localization by performing log

abstraction. However, we leave the run specific information in when the tester views the log in the

FaultFlagger tool so that they can find, for example, which specific node the test has failed upon.

Although we can find 89% of all faults, we cannot predict all the product faults because the reason

for all failures is not contained in the log, i.e. not all run information is logged. Furthermore, when

a test fails for the first time we cannot calculate a line IDF score or calculate the cosine similarity

with previously failing neighbours. We found that predicting first time test failures as a product

fault leads to many false positives at Ericsson. As a result, in this work, a first test failure has no

neighbours and so we predict that there will be no product fault. This parameter can easily be

adjusted for other projects.
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Chapter 6

Conclusion

6.1 Related Work

In this section, we position our work in the context of the literature on log abstraction and categorizing

test failures.

6.1.1 Log Processing and Abstraction

The size of logs at large companies quickly makes it impossible to store more than a few months of log

data. Log abstraction finds the dynamic and the static part of the log and converts the log lines into

unique events. Conversion of logs into unique events leads to a significant reduction in the overall size

of the log file. Nagappan et al. [56] suggested a log abstraction technique that leverages the algorithm

used by a popular Simple Log Clustering Tool (SLCT). They use the algorithm to clusters static

and the dynamic part of the log lines. The advantage of this log abstraction technique is that this

algorithm can be used in a scenario where we do not have access to the source code. Jiang et al. [36]

suggested a technique that uses both the source code and log file to perform log abstraction. Their

technique involves the following steps: a) anonymization uses heuristics to recognize the dynamic

parts in the log lines, b) tokenization puts the anonymized log lines into groups based on the number

of words and estimated parameters in each log line, and c) categorization compares the log lines in

each group and abstracts them to their corresponding execution events. Jiang et al. use source code

during log abstraction and thereby outperform Nagappan et al..

To perform log analysis and a comparison between logs that are generated during the execution of

large-scale cloud applications, Shang et al. [66] extended the technique suggested by Jiang et al. [35].

First, they do log abstraction. Second, they recover the execution sequences of the abstracted log

events. Finally, they perform a comparison between the pseudo and large-scale cloud deployments.
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We adapt Jiang et al.’s technique to abstract Ericsson test log. In all these previous works, the logs

under analysis were execution logs [56] and load testing log [36, 66]. In this work, we have adapted

the log abstraction approaches to work on test logs.

6.1.2 Categorizing Test Failures

Large complex systems involve complex test environments that lead to failures that are not product

faults. These “false alarms” have received attention because successful classification of false test

alarms saves time for testing teams. False alarms can also slow down the development team when test

failures stop the build. Herzig et al. [32] tackle this issue at Microsoft by automatically detecting false

test alarms. They use association rules to classify test failures into false test alarms. The association

rules use test failure patterns to perform the classification task. In contrast, we use historical test

logs to find specific log lines that tend to be associated with product faults. This allows us to not

only ignore false alarms, but to provide likely log line location of the failure.

Instead of having two outcomes for a test failure, CAM [35] uses an information retrieval technique

to classify test failures into seven categories at Huawei. They train on a large corpus of manually

categorized test logs. Our work could be extended to other categories provided that Ericsson developer

classified logs at a finer granularity than product and environmental fault.

6.2 Concluding Remarks

We have developed a tool and technique called FaultFlagger that can identify 89% of the faults

while flagging less than 1% of the total log lines for investigation by developers. While developing

FaultFlagger we make three major novel contributions.

First, previous works attempted to reduce the size of the log files and find potential fault patterns

using log abstraction techniques [36, 56, 66]. In contrast, we diff the the current failing log with the

last passing log. Our observation is that the location of a fault should be contained in the lines of

a failing log, while the last passing log should not contain the lines related to a failure. Lines that

occur in both a passing and failing log introduce noise when attempting to find the fault in a failing

log. As a result, we remove the lines that occur in the passing log from the failing log. There are

three advantages to our DiffWithPass technique. (1) we only need to store the failing log and the

most recent passing log, (2) diffing further reduces the size of the failed test log which makes storing

logs easier and cheaper, and (3) the technique reduces the noise present in the failed test log because

all the lines in the last pass are removed.

Second, our initial discussion with testers revealed that they want to find the most faults while

fewest log lines possible. We evaluate each technique on the basis of FaultsFound and LogLinesFlagged.
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Previous works can only classify test failures based on logs and do not flag specific log lines as

potential causes [36]. Testers must manually go through the entire log file to identify the log lines

that are causing the test failure. In order to predict product fault and locate suspicious log lines, we

introduce a novel approach where we train our model on a subset of log lines that occur in current

failing test log. FaultFlagger identifies the most specific lines that have lead to past faults, i.e.

PastFaults * Line-IDF + EKNN . In our Ericsson tool, FaultFlagger highlights the flagged lines

in the log for further investigation.

Third, FaultFlagger drastically outperforms the state of the art, CAM [35]. CAM finds 50%

of the total faults. CAM flags the entire failing log for investigation. When CAM is adjusted for

skewed data, SkewCAM, it is able to find 89% of the total faults, as many FaultFlagger, however,

it flags 28% of the log lines compared to the less than 1% flagged by FaultFlagger.
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Chapter 7

Appendix

In this appendix we show the results for larger variations in K and N as well as precision and recall

instead of FaultsFound and LogLinesFlagged.

Total log files flagged:

Table 5 shows the percentage of total log files flagged by CAM, SkewCAM, LogLiner, and

FaultFlagger. The result shows that the number of neighbours K has a little effect on CAM.

For K = 1 to 120, CAM flags 4.2% of the total log files as product faults. Whereas, the number

of log files flagged as product faults by SkewCAM, LogLiner, and FaultFlagger increase

drastically with the increase in the value of K. For K = 1 to 120, LogLiner and FaultFlagger

flag comparatively smaller number of log files than SkewCAM. In contrast, when we compare

LogLiner with FaultFlagger, we noticed that for K = 1 to 120, LogLiner always flags fewer

log files as product faults.

Correctly flagged log files:

In Table 6 we can see the percentage of log files that were correctly flagged as product faults by

CAM, SkewCAM, LogLiner, and FaultFlagger. For K = 1, FaultFlagger (N=1) flags the

highest percentage of correctly flagged log files as product faults. We noticed that increasing the

value of K leads to a significant reduction in the percentage of correctly flagged log files as product

fault by SkewCAM, FaultFlagger (N=1), and FaultFlagger (N=10). In contrast, CAM does

not vary much with K, and staying around 67%.

Median precision and recall:

Table 7 and Table 8 show the median precision and recall of fault prediction techniques, namely,

CAM, SkewCAM, LogLiner, FaultFlagger. We use median precision and median recall instead
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of precision and recall because prediction performance of the technique can vary with test cases. For

some specific test cases, precision and recall are 100% and for other they are 0%. As a result, we use

median precision and median recall.

Unique faults found:

Some product faults appear more than once and as a result they are always linked with the same

trouble report. In table 9, we show the percentage of unique faults found by CAM, SkewCAM,

LogLiner, FaultFlagger (N=1), and FaultFlagger (N=10). We noticed that for SkewCAM,

LogLiner and FaultFlagger the percentage of unique faults found increase with the increase in

the value of K. In contrast, the percentage of unique faults found by CAM does not vary much with

the value of K, and stays in the range of 59.01% and 62%. We also noticed that FaultFlagger at

K = 30, finds the maximum number of unique product faults and is 91.66%.

Table 5: Percentage of Total Log Files Flagged by CAM, SkewCAM, LogLiner (N=10), Fault-

Flagger (N=1) and FaultFlagger (N=10)

K CAM SkewCAM LogLiner

(N=10)

FaultFlagger

(N=1)

FaultFlagger

(N=10)

1 4.26 4.26 2.26 2.42 3.23

5 4.27 8.53 5.46 7.71 7.69

10 4.27 11.59 7.81 11.44 10.92

15 4.41 13.84 9.67 13.61 13.07

20 4.42 16.93 11.03 15.40 14.68

25 4.40 18.27 11.92 16.82 16.04

27 4.41 19.44 13.65 16.98 16.13

30 4.22 20.37 12.70 17.90 17.23

35 4.21 21.29 13.45 18.92 18.25

40 4.26 22.03 14.12 19.84 19.24

45 4.21 22.73 14.70 20.48 20.05

50 4.21 22.71 15.16 20.97 20.64

55 4.20 22.73 15.61 21.44 21.26

60 4.23 22.36 15.87 21.87 21.79

120 4.22 26.46 17.22 23.44 24.42
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Table 6: Percentage of Correctly Flagged Log Files by CAM, SkewCAM, LogLiner (N=10),

FaultFlagger (N=1) and FaultFlagger (N=10)

K CAM SkewCAM LogLiner

(N=10)

FaultFlagger

(N=1)

FaultFlagger

(N=10)

1 67.04 67.04 77.47 81.50 72.79

5 66.17 42.14 53.94 38.20 40.26

10 66.18 32.23 40.57 27.70 29.35

15 66.10 27.09 33.54 23.82 25.12

20 66.81 22.34 29.78 21.33 22.37

25 67.37 20.86 27.55 19.53 20.71

27 67.54 19.63 25.21 19.53 20.65

30 67.60 18.77 25.85 18.52 19.28

35 68.10 18.02 24.69 17.55 18.39

40 67.98 17.46 23.51 16.73 17.45

45 68.16 17.37 22.83 16.39 16.74

50 67.72 16.91 22.14 16.01 16.27

55 67.10 16.95 21.51 15.66 15.79

60 67.47 16.40 21.15 15.35 15.41

120 68.10 14.66 19.50 14.38 13.89
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Table 7: Median Precision Percentage of CAM, SkewCAM, LogLiner (N=10), FaultFlagger

(N=1) and FaultFlagger (N=10)

K CAM SkewCAM LogLiner

(N=10)

FaultFlagger

(N=1)

FaultFlagger

(N=10)

1 50.00 50.00 55.55 50.00 50.00

5 50.00 28.99 33.33 17.64 21.98

10 50.00 18.06 28.57 15.89 15.76

15 50.00 13.63 20.00 13.30 13.63

20 50.00 13.69 20.00 12.12 12.23

25 55.55 12.13 15.38 11.73 11.76

27 55.55 12.04 15.38 11.76 11.76

30 55.05 11.76 15.38 10.90 11.76

35 68.10 10.63 15.38 10.52 11.47

40 55.01 10.10 15.38 9.83 10.86

45 55.01 9.83 14.70 9.83 10.10

50 58.33 9.83 14.28 9.30 10.00

55 60.41 9.83 14.28 8.92 9.83

60 52.72 9.42 14.28 8.92 9.83

120 60.41 8.92 14.28 8.92 8.92
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Table 8: Median Recall Percentage of CAM, SkewCAM, LogLiner (N=10), FaultFlagger

(N=1) and FaultFlagger (N=10)

K CAM SkewCAM LogLiner

(N=10)

FaultFlagger

(N=1)

FaultFlagger

(N=10)

1 60.00 60.00 60.00 66.66 66.66

5 55.55 77.55 75.00 75.00 75.00

10 55.55 86.60 77.77 85.71 86.60

15 55.55 87.50 77.77 87.50 87.50

20 55.55 87.41 77.77 87.50 88.88

25 59.09 87.50 77.77 87.50 88.88

27 59.09 87.90 80.00 87.50 88.88

30 59.45 88.88 80.00 88.88 88.88

35 55.05 88.88 80.00 88.88 88.88

40 63.06 88.88 80.00 88.88 88.88

45 57.32 88.88 80.00 88.88 88.88

50 60.00 88.88 80.00 88.88 88.88

55 59.23 88.88 80.00 88.88 88.88

60 55.05 88.88 80.00 88.88 88.88

120 57.46 88.88 80.00 88.88 88.88
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Table 9: Unique Faults Found Percentage of CAM, SkewCAM, LogLiner (N=10), FaultFlagger

(N=1) and FaultFlagger (N=10)

K CAM SkewCAM LogLiner

(N=10)

FaultFlagger

(N=1)

FaultFlagger

(N=10)

1 62.00 62.00 52.77 58.33 63.88

5 63.32 76.88 72.22 80.55 86.11

10 63.33 84.28 75.00 84.21 88.88

15 63.68 86.01 75.00 86.40 88.88

20 61.23 86.01 77.77 86.40 88.88

25 61.23 87.34 77.77 86.40 88.88

27 60.00 87.34 77.77 88.88 88.88

30 60.00 88.88 77.77 88.88 91.66

35 60.00 88.88 77.77 88.88 91.66

40 59.01 88.88 77.77 88.88 91.66

45 59.01 88.88 77.77 88.88 91.66

50 59.01 88.88 77.77 88.88 91.66

55 59.01 88.88 77.77 88.88 91.66

60 59.01 88.88 77.77 88.88 91.66

120 59.01 88.88 77.77 88.88 91.66
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