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ABSTRACT

p-adic modular forms
Simone Maletto

The aim of this thesis will be introducing an analogue of the classical modular
forms that can work in the p-adic environment.

To do so, we will first try to make sense of a modulo-p concept of modular
forms. As the classical object is defined over the complex number there is not an
immediate way to make this reduction. In order to do so, we have to utilize the
q-expansion principle to obtain an “integral” object (we use the quote-on-quote
to remind that the q-expansion of a modular from lives in the localization of Z
at a prime). So the first idea will be to work with those object, to do so we will
follow [8].

Once speaking of modular forms modulo p, and modulo pn makes sense,
we will start talking about the p-adic theory as described in [6]. This first
construction will be quite easy, but it will have important consequences on the
notion of weight of a modular form.

While the approach described above is quite natural and efficient in order
to have something to work with (we will end up with q-expansion of modular
forms automatically), to retrive the geometrical nature of those object will be
much harder if we proceed on this path. Therefore we look at the theory of
modular forms as section of the sheaf of invariant differential on the modular
curve, following [3].

In the end we will end up with two different definitions, one which gives us
objects that are easier to grasp (and to compute), the other which has a more
clear geometric nature (which is the reason why we study modular forms in
first place). The last section of this thesis show the relation between those two,
proving that we can recover one object in the first form by object defined in the
second way and vice-versa.
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Please call me back,
I lost a flip flop
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1 Background

Before we start with the p-adic theory, let us talk a little about the well
known case of classical modular forms and their relation with elliptic curves.

Definition 1. let H be the Poincaré half-plane and let f : H → C be a holo-
morphic function on H, then f is said to be a modular form of weight k if, for

any γ =

[

a b
c d

]

∈ SL2(Z) acting on H via γz = az+b
cz+d , one has

f(γz) = (cz + d)kf(z) .

Moreover we require fto be “holomorphic at ∞”, namely that it admits limit
when the imaginary part diverges. A modular form is said to be a cuspidal form
if the value of such limits is 0.

Is easy to see that the only odd-weighted modular form is the 0 function
and, even more easily, that the space of modular forms holomorphic at ∞ of a
given weight k is a complex vector space (which can be proved to be of finite
dimension for any k). Such is classically denoted as M(1, k). Since the limit
commutes with the vector space operations the set of cuspidal modular forms
is actually a subspace of M(1, k), denoted with S(1, k).

To have a little bit more of a grasp on those function let us recall some facts.

Fact 1. [2]
The space M(1, k) is of finite dimension for any k and its dimension over C

is

• 0 for any k odd;

• 1 + b k12c if k is not congruent to 2 modulo 12;

• b k12c otherwise .

Moreover, if we callM =
⊕

k

M(1, k) the C-algebra of modular forms of level

1 (with point-wise multiplication), and E4, E6 the (normalized) Eisenstein series
of weight 4 and 6 respectively. One has M ∼= C[E4, E6] as algebras over C

Fact 2. The q-expansion principle:
Let f be a modular form in the variable z, via the change of variable q = e2πiz

one obtain a unique expression of f as a Fourier series

f(q) =

∞
∑

n=0

anq
n

To see this, note that by the modularity condition, applied to the matrix

γ =

[

1 1
0 1

]
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one must have
f(z) = 1f(z) = f(γz) = f(z + 1)

so that all modular forms are periodic and therefore admit an expression as
Fourier series

One of the most important reason to study modular forms is their relation
with the theory of elliptic curves.

Recall that an elliptic curve over the complex numbers can be always be seen
as a quotient C/Λ where Λ is a full rank lattice in the complex plane. Given any
lattice Λ one can show that such is homothetic via an element of SL2(Z) with
the action described above (note that elements of SL2(Z) give isomorphism of
lattices) to a lattice of the form Λτ = Z⊕τZ. Thus to give a lattice is equivalent
to give a point in the fundamental domain of the action of SL2(Z), so that each
elliptic curve is equivalent to a point in the quotient Y = H/ SL2(Z), and its
compactification (to a sphere) X := Y q {∞} is a moduli space for the elliptic
curves and is called the modular curve.

Clearly the definition of modular form seems to have some chance to translate
to functions on the modular curve. The naive intuition would lead us, given a
modular form f , to assign to an elliptic curve E the value f(τ) where (1, τ) is
a basis of a lattice Λτ such that E = Eτ := C/Λτ , but this approach would not
work, as we can actually have a bijection (and therefore give an alternative and
more geometric definition of modular form).

Definition 2. A modular form f is an assignation rule (compatible with iso-
morphism) that associates to a couple (E,ω) formed by an elliptic curve E and
a generator of its sheaf of invariant differentials ω, a complex number f((E,ω))
with the following property

• given any λ ∈ C f(E, λω) = λ−kf((E,ω))

• f is holomoprhic as a function on the fundamental domain H/ SL2(Z)
under the association τ 7→ Eτ 7→ E .

Clearly, given a modular form in the meaning of Definition 1, one can easily
find a modular form in the sense of Definition 2 setting f((Eτ , dz)) = f(τ)
for dz being the push forward of the canonical differential on C. Conversely
given any modular form f of weight k as in Definition 2, one can immediately
define a function from the fundamental domain to C setting f(τ) = f(Eτ , dz).
For any τ ′ ∈ C if τ ′ doesn’t belong to our fundamental domain it must exists a

γ =

[

a b
c d

]

∈ SL2(Z) and a τ in the fundamental domain such that τ ′ = γτ , and

hence Eτ = E′τ so we can extend our definition above setting f(τ ′) = f(τ ′, dz′),
the question is whether or not such is a modular form. Now notice that, as
Eτ = E′τ

f(τ ′) = f((Eτ ′ , dz′)) = F (Eτ ′ , (cτ+d)−1dz) = (cτ+d)−(−k)f((Eτ , dz)) = (cτ+d)kf(τ)

which shows modularity and thus the equivalence of the definitions.
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The goal of this work will be define in two different ways p-adic modular form
using the approaches of Serre (which focuses on the q-expansion principle) and
Katz (which bases is definition on the more geometric Definition 2) respectively
and show that again we end up with the same mathematical object.

One can actually parametrize elliptic curves with extra structure, called en-
hanced elliptic curves or elliptic curves with a level-n structure. To do so one
consider a particular subgroup Γ(n) of SL2(Z), called the principal congruence
subgroup of level n, defined as the kernel of the projection
π : SL2(Z) → SL2(Z/nZ). The quotientH/Γ(n) is a moduli space that parametrizes
triplets (E,P,Q), where E is an elliptic curve and P,Q ∈ nE which generates

nE such that the Weil pairing en(P,Q) = e
2πi
n .

Naturally one can talk about modular forms for those subgroups, just by
restricting the definition to the elements of Γ(n), to get results about the dimen-
sion about this vector space is now more complicated, as we need to introduce
the concept of cusps.

Definition 3. Let Γ(n) be the principal congruence subgroup of level n for
SL2(Z), a cusp for Γ(n) is an equivalence class of elements of P1(Q) for the
action of Γ given by the rule

[

a b
c d

]

(m : n) = (am+ b : cn+ d)

This concept (that might puzzle at first glance) is just the generalization of
the role that has the infinity in the case of SL2(Z) in compactifying the modular
curve. If we now denote SL2(Z)∞ as the stabilizer of infinity under the action,
and for any cusp [t] we choose a representative t and call γt an element of SL2(Z)
that realizes γt∞ = t. Then we can describe the stabilizer of the cusp in Γ(n) as
Γt(n) = Γ(n) ∩ γt SL2(Z)∞γ

−1
t . Moreover we get immediately an isomorphism

with the subgroup H[t] = γ−1t Γ(n)γt ∩ SL2(Z)∞ of SL2(Z). In order to find out
the dimension of our spaces of modular forms one needs to associate to each
cusp c a number h(c), called the height of the cusp.

Fact 3. [2, Section 3.2]
Let H be a subgroup of SL2(Z)∞ of finite index, then H is one of the

following

•

〈[

1 h
0 1

]〉

•

〈[

−1 h
0 −1

]〉

•

〈[

−1 0
0 −1

]

,

[

1 h
0 1

]〉

Definition 4. Let c be a cusp, Hc the stabilizer of c in Γ(n) seen as a subgroup
of SL2(Z)∞ then, the height hc of c is the h obtained in the fact above.

3



If our modular curve admits at least one regular cusp (we won’t define what
being regular actually means, as it would take more time than needed, but such

condition holds whenever

[

1 h
0 1

]

belongs to Hc.) we can find an upper bound

on the space of modular forms in the form of the following

Fact 4. If Γ(n) has at least one regular cusp, k ∈ Z≥0, let ¯Γ(n) be the im-
age of Γ(n) under the projectivization map SL2(Z) → PSL2(Z), Then one has
dim(Mk(Γ(n))) = 1 +

⌊

k
24 [PSL2(Z) : Γ̄(n)]

⌋

.

One can actually find more precise formulas in [2]
As one can imagine, reducing our subgroup (and trying to parametrize ob-

jects with more structure) will give us “bigger” curves, in particular the com-
pactification of the quotient H/Γ(n) (i.e. the object we get when we add the
cusps) will still be a Riemann surface of (potentially) larger genus, which will
be given, for N = p ≥ 5 a prime, by the formula:

g =
1

24
(p+ 2)(p− 3)(p− 5) .

1.1 Elliptic curves over finite fields

We want to recall few properties about elliptic curves, especially in the case
of elliptic curves over a finite field Fpn . First of all we quote the following
classical result (on which we will base the definition of elliptic curve at the
beginning of Section 3).

Fact 5. [7, Proposition 3.4]
Let E be an elliptic curve then the map E → Pic0(E) defined by P 7→ [P ]−[0]

allows us to recover the group structure of E by looking at its Picard group
(this “justifies”) the definition of elliptic curve over a scheme that we will give
in section 4.

In the category of elliptic curves the morphism are given by isogenies which
are morphisms (as algebraic varieties) that respect the group structure.

Fact 6. [7, pp 70]
Let φ : E1 → E2 be an isogeny between two elliptic curves, then Im(φ) = 0

or φ is surjective

Note that we have, given any non-trivial isogeny φ, an injective map of fields

φ? : K̄(E2) → K̄(E1)

form this one can define the degree of the isogeny deg(φ) and the separable
and inseparable degree, denoted by degs(φ) and degi(φ) respectively by the
corresponding notion for the associated extension of fields K̄(E1)/φ

?(K̄(E2)).
We set deg[0] = 0 by convention.

As elliptic curves are algebraic groups we have that the set End(E) of en-
domorphisms of E is a group, moreover we can endow it with a ring structure

4



by using composition as multiplication law. With this structure End(E) can
be proven to be of characteristic 0 (note that most of the times, if E is defined
over a ring of characteristic 0, End(E) ∼= Z and we say that an elliptic curve
has complex multiplication when the endomorphism ring is larger than Z).

Definition 5. Given an isogeny φ : E1 → E2 we have an induced map at the
level of Pic0, namely φ? : Pic0(E2) → Pic0(E1), and from what we have said in
Fact 5 we can define the dual isogeny φ̌ via the composition

E2 → Pic0(E2)
φ?

−→ Pic0(E1) → E1 .

Let us now move to the case of finite characteristic.

Definition 6. Let E be an elliptic curve over Fpn (or any perfect field of positive
characteristic) and let φr be the isogeny induced on E by the r-th power of the
Frobenius endomorphism. Then E is said to be supersingular if one of the
following equivalent conditions holds:

• prE = 0 for all r ≥ 1;

• φ̌r is (purely) inseparable for r = 1 (which implies its inseparable for all
r ≥ 1);

• [p] : E → E is purely inseparable and j(E) ∈ Fp2 ;

• the formal group Ê of E has height 2.

If those do not hold we have prE ∼= Z/prZ for all r ≥ 1 and Ê has height 1,
in such case we will say that E is ordinary.

Proof. We only prove the equivalence between the first two conditions.
Let K be a field of positive characteristic p, r ≥ 1 and call φr : E → E(pr)

the r-th power of Frobenius and φ̌r : Ep
r

→ E the dual isogeny, we want to
show that prE = {0} if and only if φ̌r is purely inseparable.

As the Frobenius map φ is purely inseparable and [p] = φ̌ ◦ φ, one has

degs(φ̌r) = degs([p
r]) = (degs([p]))

r = (degs(φ̌))
r

As #φ−1(0) = degs(φ) we have #prE = degs(φ̌r) = (degs(φ̌))
r and we are

done

To conclude this part let us introduce the concept of Hasse invariant of an
elliptic curve and prove that the supersingular elliptic curves are exactly those
for which such vanishes. Let p > 2, then we have the following

Theorem 1. Let K be a finite field of characteristic p and let E be an elliptic
curve defined over K with Weierstrass equation y2 = f(x), where f(x) ∈ K[x]
is a cubic polynomial with distinct roots in K̄. Then E is supersingular if and

only if the coefficient of xp−1 in (f(x))
p−1
2 (namely, the Hasse invariant) is 0

5



Proof. Let q = #K, and let χ : K? → {±1} be the unique non-trivial character
of order 2 (namely, the Legendre symbol) and extend it toK by setting χ(0) = 0,
then χ can be used to count the K-rational points of E by the formula

#E(K) = 1 + q +
∑

x∈K

χ(f(x))

Since K? is of order q − 1, for any z ∈ K we have χ(zeta) = z
q−1
2 , hence

#E(K) = 1 + q +
∑

x∈K

f(x)
q−1
2 .

As K? is cyclic we have

∑

x∈K

xi =

{

0 if q − 1 - i

−1 if q − 1 | i
.

Since f(x) has degree 3 the only non-zero term of the sum must come form the

q − 1 degree term of f(x)
q−1
2 . Call Aq the coefficient of xq−1 in f(x)

q−1
2 then

#E(K) = 1 +Aq .

(Note that this equality holds in K and therefore is, in some sense, an equality
modulo p).

On the other hand call φ the q-th power Forbenius endomorphism, we have

#E(K) = deg(1− φ) = 1− a+ q

(deine a := 1+q−deg(1−phi) and we have [a] = φ+ φ̂) so that clearly Aq = −a
in K. Since a is an integer we have now shown that Aq = 0 if and only if a ≡p 0.

But φ̂ = [a]−φ so we have that a ≡p 0 is equivalent to φ̂ being inseparable and
hence E being supersingular.

This proves that Aq = 0 if and only if E is supersingualr, we have now to
prove that Aq = 0 if and only if Ap = 0, to do so we write

f(x)
pr+1

−1
2 = f(x)

pr−1
2 (f(x)

p−1
2 )p

r

and equate the coefficients (recall that f(x) has degree 3), obtaining

Apr+1 = Apr +Ap
r

r

which gives us the result by inducing over r.

One can actually prove that the number of supersingular elliptic curves over
a field of characteristic p ≥ 3 is finite and is given by the number

b
p

12
c+ εp

where ε3 = 1 and for p ≥= 5, εp = 0, 1, 1, 2 for p respectively congruent to
1, 5, 7, 11 modulo 12.

6



1.2 The Tate curve

In the first section of this introduction we heavily used the identification
between an elliptic curve E over C and a quotient of C by a lattice Λ. In the
case of local fields there is no reason to suppose we would be able to do the
same, as it might quite probably be that a local field K has no discrete additive
subgroups. Luckily we can solve this problem by noting that the exponential
map z 7→ q = e2πiz on C sends a lattice to a subgroup of C? and this seems way
more promising, as the multiplicative group of a local field K? has actually a
lot of discrete subgroups (namely, those of the form qZ where q is any element
with valuation different form 1). For example the protagonist of this subsection
is the curve over Z[[q]], called the Tate curve given by

Tate(q) : y2 + xy = x3 + a4x+ a6 ,

where the coefficients are

a4 = −5
∑

n≥1

n3
qn

1− qn
; a6 =

−1

12

∑

n≥1

(7n5 + 5n3)
qn

1− qn
.

Note that, over the power series ring Z[[q, u]] this curve has the point (x, y)
given by the formulas

x = x(q, u) =
∑

n∈Z

qnu

(1− qnu)2
− 2

∑

n≥1

nqn

1− qn

y = y(q, u) =
∑

n∈Z

q2nu2

(1− qnu)3
+

∑

n≥1

nqn

1− qn
.

Now we can note that this makes sense if q and u are elements of the mul-
tiplicative group K?, provided that the valuation of q is less then 1. In other
words, those power series will, under this condition, always converge in the
natural metric, hence we get an uniformization:

φ : K?/qZ → Tate(q)(K)

u 7→ (x(q, u), y(q, u)) .

More generally the power series above will converge for any u ∈ K̄ so that
we have an induced map

φ : K̄?/qZ → Tate(q)(K̄) .

(Note that such algebraic closure is not complete, but it suffices to work to
the finite extension K(u), or alternatively with the completion of the algebraic
closure, which will turn out to be still algebraically closed). As the action of the
absolute Galois group GK is continuous φ is an isomorphism of GK-modules,
so it can lead to arithmetic deductions.

We have the following result, due to Tate (although he never published it).

7



Theorem 2. (Tate)
Let K be a field, complete with respect to a discrete valuation v.

• for every q ∈ K?, such that |q|v < 1, the map

φ : K̄?/qZ → Tate(q)(K̄)

described above is an isomorphism of GK modules.

• For every j0 ∈ K?, with |j0|v < 1, there is a q ∈ K? such that the
elliptic curve Tate(q)/K has j-invariant j0. Tate(q) is characterized by
j(Tate(q)) = j0 and the fact that has split multiplicative reduction at v
(Note that j(Tate(q)) = 1

q + . . . and we can take q = q(j) its inverse

function).

• Let R be the ring of integers of K. Then under the isomorphism Tate(q)(K) ∼=
K?/qZ we have identifications

(Tate(q))0(K) ∼= R? and (Tate(q))1 ∼= {u ∈ R? : u ∼= 1 mod v} .

Where we denote with Et the specialization of an elliptic curve E : y2 +
a1xy + a3y = x3 + a2x

2 + a4x+ a6 at t, meaning the elliptic curve given
by the equation obtained by evaluating the coefficients ai at t.

• Let E/K be an elliptic curve with non-integral j-invariant which does not
have split multiplicative reduction. Then there is a q ∈ K? such that
j(E) = j(Tate(q)), and therefore a unique quadratic extension L/K such
that E ∼= Tate(q) over L.

In section 3 we will use the existence of the Tate curve (and of the canonical
differential on it given by dq

q ) to recover a notion of q-expansion for modular
forms when defined following Katz’s approach.

8



2 Modular Forms modulo p and p-adic modular
forms à la Serre

Before we start with the mathematics, let us introduce a bit of context to
the theory, at least in the form of a motivation for our study, we start with
recalling a (potentially) unexpected result, due Ramanujan, on the coefficients
of modular forms. Let ∆ be the discriminant modular form of weight 12 for
SL2(Z), and denote Gk the Eisenstein series of weight k, then we know that

Gk = ζ(1−k)
2 +

∞
∑

n=1
σk−1(n)q

n. Analogously define τ(n) by ∆(q) =
∑∞
n=1 τ(n)q

n,

then we have

G12(q) =
691

65520
+ q + . . .

∆(q) = 0 + q + . . .

Therefore, the q-expansion of the difference (seen with coefficients in Z(691)) is

given by 691
65520+0q+. . . . When we reduce modulo 691, such q-expansion becomes

0 + 0q + . . . , and since we started with a 2-dimensional vector space we have
that the only modular form of level 1 and weight 12 whose q-expansion starts
with two 0 coefficients is the trivial form. Hence it must be σ11(n) ≡691 τ(n),
and up to the localization above ∆ ≡691 G12. This result seems quite surprising
considering what we know about modular forms, so we try to ask ourself what
does it mean for two modular forms over Z, f ∈ Mk, g ∈ Mk′ to be congruent
modulo a prime number p.

Let now f, g be two Eisenstein series over Z of weight k and k′ respectively,
if we suppose that f ≡p g then, as f, g are modular, it must be dk−1 ≡p d

k′−1

for all d. This means that dk−k
′

≡p 1 which means that k − k′ annihilates
F?p, i.e. p − 1|k − k′. Moreover, we have the following interesting result due to
Kummer[4, pp 48-49]: p

2ζ(2 − p) is congruent to 1 modulo p. If we normalize
properly our Eisenstein series, calling Ek = 2

ζ(1−k)Gk we have

Ep−1 =
2

ζ(2− p)
Gp−1 = 1 +

∞
∑

n=1

2

ζ(2− p)
σp−1(n)qn ≡ 1 mod p .

Before we go further with the modulo p theory, let us recall some result
and introduce notation. From now on we will write (following Ramanujan)
R := E6, Q := E4 and P := E2, note that P is not a modular form on its own
but satisfies very similar functional equations. Now we recall that we have a
differantial θ := q ddq on the space of modular form and that, if f ∈Mk we have

(12θf − kPf) ∈Mk+2. This follows by the identities:

3θQ− PQ = −R, 2θR− PR = −Q2;

12θP − P 2 = −Q, θ∆− P∆ = 0.

So that, in the terms of the operator ∂ := 12θ− kP acting on modular forms of
weight k, what we have just said can be rewritten as:

9



Fact 7. ∂ is a derivation on the graded algebra of modular forms such that
∂Q = −4R and ∂R = −6Q2

We know that the space M of the modular forms is obtained as the direct
sum of the spaces Mk of modular forms of weight k, and that the element
of those are of the form

∑

anq
n, so that we can define M̃k ⊂ Fp[[q]] as the

space obtained by the reduction modulo p of the coefficients, and hence we can
consider M̃ , the Fp−algebra of modular forms modulo p, to be the direct sum
of those spaces. Now we would like to have a more explicit description of this
space.

Recall that M ≡ Z[Q,R], so that any element of M can be written as a
polynomial φ(Q,R) and any modular form f ∈ Mk admits a unique writing
as an isobaric polynomial φf (Q,R). Thus each element of M can be seen as a
unique finite sum of isobaric polynomials φk1(Q,R)+ · · ·+φkn(Q,R). Moreover
this identifications clearly extends to Fp, so that we can express the image ofMk

as the set {φ̃f (Q̃, R̃)|f ∈Mk} (where the tilde represents the reduction modulo
p).

Hence, in the end we want to study the ring homomorphism

M
ψ
−→ Fp[[q]]

as its image is our space M̃ of modular forms modulo p. Now define A := Ep−1
and B := Ep+1, then we have the following

Theorem 3. [8]
Let p ≥ 5, then

1. Ã(Q̃, R̃) = 1 and B̃(Q̃, R̃) = P̃ ;

2. ∂Ã(Q̃, R̃) = B̃(Q̃, R̃) and ∂B̃(Q̃, R̃) = −QÃ(Q̃, R̃);

3. Ã(Q̃, R̃) has no repeated factor and is prime to B̃(Q̃, R̃);

4. CoKer(ψ) = Fp[Q̃, R̃]/(Ã(Q̃, R̃)− 1)

Proof. 1. We already explained Ã(Q̃, R̃) ≡ 1. Since d ≡p d
p, we have σ1(n) ≡

σp(n) for all n, and hence P̃ ≡p B̃(Q̃, R̃).

2. Since Ã(Q̃, R̃) ≡ 1, θÃ(Q̃, R̃) = 0, so that we have

∂Ã(Q̃, R̃) = P̃ Ã(Q̃, R̃) = P̃ = B̃(Q̃, R̃) .

and also

∂B̃(Q̃, R̃) = (12θ − P̃ )B̃(Q̃, R̃) = (12θ − P̃ )P̃ = −Q̃.

A similar argument shows that ∂B̃(Q,R) = −QÃ(Q,R).

10



3. Suppose now that it exists an n ≥ 1 such that (Q3−cR2)n divides exactly
Ã for some c algebraic over Fp. Since Ã(0, 0) 6= 0 and (Q3 −R2)(0, 0) = 0
c must be different form 1, so that we have

∂(Q3 − cR2) = 12(c− 1)Q2R .

Which is prime to Q3 − cR2. Now, since we proved ∂Ã = B̃, we have
that (Q3− cR2)n−1 divides exactly B̃ and therefore, if n ≥ 2 we have that
(Q3 − cR2)n−2 divides exactly Ã, which is absurd. A similar argument
works for powers of Q and R, hence Ã has no repeated factors, and its
simple factors do not divide B̃

4. Let a = Ker(Fp[Q,R] → Fp[[q]]) obtained by substitution, we proved

that (Ã(Q,R) − 1) ∈ a. As the codomain is an integral domain, a

must be a prime ideal, containing Ã(Q,R) − 1, now we see that a can-
not be maximal, as this would imply that Q,R are algebraic over Fp.

So that a has height 1, and if we prove that Ã − 1 is prime we are
done. Seeking for a contradiction, we assume the thesis to be false, and
write φ(Q,R) for an irreducible proper factor of Ã − 1, let φ(Q,R) =
φn(Q,R) + φn−1(Q,R) + · · · + 1 be the decomposition of φ(Q,R) in iso-
baric polynomials, were the subindex indicates the respective weight, and
let ν ∈ µp−1(Fp) primitive. Then Ã(ν2Q, ν3R) = Ã(Q,R) and hence

φ(ν2Q, ν3R) is also a factor of Ã(Q,R) − 1, and it is different form
φ(Q,R) and hence prime to it, so that the product of the two must divide
Ã(Q,R) − 1. Now, φn(Q,R)φn(ν

2Q, ν3R) = φn(Q,R)
2 and must divide

Ã(Q,R) as those are the isobaric component of maximum degree in the
expressions, but this is absurd by what we have just proved.

2.1 Modular forms (for level 1) à la Serre

Following [6] ,now that we have made some sense of what is a modular form
modulo p, we want to define p−adic modular forms, as the whole purpose of
this thesis will be understanding what those are. To do so we can follow two
main approaches, based on two big concepts related to modular forms: the q-
expansion principle and the relation between modular forms and elliptic curves.
In order to provide a more linear argument, we start with Serre’s take on the
question, based on the q-expansion principle.

We define a valuation on Z[[q]] by setting vp(f) = inf
n
vp(an). This valuation

defines a norm on Z[[q]] in the usual way, and we define a p-adic (integral)
modular form to be an element of the completion of Z[[q]] (or even Zp[[q]]) with
respect to this p−norm. Now we want to show that we can recover a notion of
“weight” for those object, but before we do so let us point out something more
about the structure of the Fp-algebra M̃ of modular forms modulo p.

By Theorem 1 we have that the map given by multiplication by Ã(Q,R) on
Fp[Q,R] induces the identity map on M̃ , so that we can decompose this algebra

11



as the union of p−1 components M̃α :=
⋃

k≡p−1α

M̃k so that M̃ ∼=
⊕

[α]∈Z/(p−1)Z

M̃α

where α varies in a family of representatives for Z/(p − 1)Z. One can actually
prove that M̃0 and M are both Dedekind domains, fact that we will (partially)
use in the proof of the following

Theorem 4. Let p ≥ 3 and m ≥ 1 be an integer, and let f, f ′ be modular
forms for SL2(Z) over Q of weights k and k′ respectively and assume f 6= 0 and
vp(f − f ′) ≥ vp(f) +m.

Then we have k′ ≡ k modulo (p− 1)pm−1

Proof. Note that, up to scalar multiplication, we can assume vp(f) = 0 and
hence we can rewrite the hypothesis as f ≡ f ′ mod pm so that, if the coefficients
of f and f ′ are p−integers, we have f̃ = f̃ ′ 6= 0 and, if p ≥ 5 f and f ′ belongs
to the same M̃α and k ≡ k′ mod p − 1. Now we have to prove the case p = 3.
Assume m ≥ 2 and set h = k′ − k, up to replacing f ′ with f ′Epn(p−1) for n big
enough we can assume h ≥ 4, so that the Eisenstein series Eh is a modular for
of weight h, and as p− 1 divides h one has Eh ≡p 1. Now fix r := vp(h) + 1, we
claim that r ≥ m. Once more, we assume the thesis to be false, so that m < r,
then we have fEh − f ′ = f − f ′ + f(Eh − 1), but we know that f ≡pm f ′ and
Eh − 1 ≡pr 0 so that fEh − f ′ ≡pr 0 and hence

p−r(fEh − f ′) ≡p p
−rf(Eh − 1) .

By Clausen-Von Staudt, we can decompose p−r(fEh − f ′) = λφ where

φ =
∞
∑

n=1
σh(n)q

n and λ is prime to p, so that the congruence above gives us

fφ ≡p g

where g is the modular form (λpr)−1(fEh−f
′) of weight k′. Since f̃ is nonzero,

we can write φ̃ = g̃/f̃ and while φ̃ belongs (a-priori) to the field of fractions of
M̃ , as g̃ and f̃ are modular forms of the same weight we have that ˜phi must
belong to the fraction field of M̃0. Now we can consider ψ̃ = φ̃− φ̃p with

ψ̃ =
∑

(p,n)=1

σh−1(n)q
n .

One can easily verify that

ψ = θh−1(

∞
∑

n=1

σ1(n)q
n)

To arrive to the contradiction we note that, as p = 3 we have that ψ̃ = ∆̃, by the
congruences of τ(n) modulo 6. Now M̃ ∼= Fp[∆̃] and the equation x − x3 = ∆̃

is irreducible on Fp(∆̃), so we have a contradiction. If p ≥ 5 one has

ψ̃ = −
1

24
θh−1(P̃ ) = −

1

24
θh−2(Ẽp+1)
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and hence ψ̃ belongs to M̃0 by it being integrally closed. We have a filtration
on the spaces M̃k, given by

Fili(M̃k) = {f ∈ M̃k|f ≡ f ′, f ′ ∈ M̃k−i(p−1)} .

For f ∈k, set β(f) = min{i ∈ N|f ∈ Fili(M̃k)}, then if β(f) = i, it must be
β(θf) = (p + 1)i and therefore β(ψ̃) = (h − 1)p + 1 + p − 1 = h(p + 1), but as
ψ ∈ M̃0 it must be β(ψ̃) = hp which is absurd and we are done.

Now we can construct the group of weights of p−adic modular forms. Con-
sider a cauchy sequence of modular forms {fi} converging to a p-adic modular
form f , call wi the sequence of weights, we have just shown that this sequence
is cauchy in the projective limit

X = lim
←

Z/pn(p− 1)Z ∼= lim
←

Z/pnZ× Z/(p− 1)Z ∼= Zp × Z/(p− 1)Z .

X is Lie, p-adic and of dimension 1, moreover the canonical morphism
Z → X is injective and identifies Z with a dense subgroup of X. We want to
see the elements of X as (p-adic) characters on the group Z?p of p-adic units.
More precisely, let Vp be the set of continuous endomorphism of Z?p endowed
with the topology of uniform convergence, then the map Z → Vp extends to to
a continuous bijection ε : X → Vp (this only holds for p 6= 2).

Denote now the action of an element k ∈ X on v by vk. Clearly we can write
k = (s, u) where s ∈ Zp and u ∈ Z/(p − 1)Z and let v = v1v2 where vp−11 = 1
and v2 ≡ 1 mod p, then one has vk = (v1v2)

k = vk1v
k
2 = vu1 v

s
2. Moreover we can

define a concept of being of even weight, considering the torsion part. Namely
k ∈ X will be said to be even if (−1)k = 1 i.e. if and only if u ∈ 2Z/(p− 1)Z.
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3 Modular forms à la Katz

In this section we follow [3, Chapter 2 (parts), Chapter 4]. While Serre’s
approach to p-adic modular forms revolves more on immediately preserving
the q-expansion principle, Katz’s point of view is based on the relation between
modular forms and elliptic curves, first of all let’s recall an (alternative) classical
definition of elliptic curve.

Definition 7. an elliptic curve over a scheme S is a triplet (E, p, s) where E is
a scheme, p : E → S is a proper smooth morphism with geometrically connected
fibers which are curves of genus 1, and s is a section of p.

Definition 8. With the notation of the above we denote by ωE/S the sheaf
p?(ΩE/S) which is canonically isomorphic (by Serre’s duality) to the sheaf
R1p?(OE).

Now we can define modular forms of level 1, generalizing the classical relation
with elliptic curves over the complex numbers.

Definition 9. A level 1 modular form of weight k is a rule f that associates to
a couple (E, s) an element f((E, s)) ∈ Γ(S, (ωE\S)

⊗k) such that

• f depends only on the isomorphism class of E;

• f commutes with arbitrary base-changes, namely for each base extension

S
g
−→ S′, one has f(ES′/S′) = g?(f(E/S)).

We will denote the Z-module of such forms with M !(Z, 1, k)

Note that in the affine case S = Spec(R) and ωE\S free over R with basis ω
this definition can be rewritten using the relation

f(E/Spec(R)) = f(E/R, ω)ω⊗kE\S

where the right-hand-side makes sense in the meaning of the following

Definition 10. With the notation above a level 1 modular form of weight k
is a rule f that associates to a couple (E/Spec(R), ω), composed by an elliptic
curve E and a basis of its associated sheaf ω, an element f(E/Spec(R), ω) ∈ R
such that

• f depends only on the isomorphism class of (E/Spec(R), ω)

• for each λ ∈ R?, f(E, λω) = λ−kf(E/Spec(R), ω)

• for any g : R→ R′ one has f(ER′/ Spec(R′), ωR′) = g(f(E/Spec(R), ω)).

If we restrict ourselves to the case of schemes over a fixed ground-ring R0

we automatically get the notion of modular forms of weight k and level 1 over
R0, the R0-module of which will be denoted as M !(R0, 1, k).

To recover the concept of q expansion we note that a modular form
f ∈M !(R0, 1, k) can always be evaluated on the couple (Tate(q), ωcan) composed
by the Tate curve and the canonical differential on it, considered over the ring
Z((q))⊗Z R0 (note that such is not R0((q))).
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Definition 11. Given a modular form f ∈ M !(R0, 1, k) its q-expansion is the
finitely-tailed Laurent series f((Tate((q)), ωcan)R0) ∈ Z((q))⊗Z R0, we will say
that f is holomorphic if f((Tate((q)), ωcan)R0

) ∈ Z[[q]]⊗ZR0 and we will denote
the R0-module of those forms with M(R0, 1, k).

Note that Z((q)) ⊗Z R0 ⊂ R0((q)) so that f((Tate((q)), ωcan)R0
) is a finite

R0-linear combination of elements of Z((q)) (this implies, for example, that if
R0 is the fraction field of a discrete valuation ring, then the q-expansion of f
has bounded denominators).

We now want to introduce the concept of modular forms of level n. For
any integer n ≥ 1, we will denote by nE the group-scheme given by the kernel
of the multiplication by n endomorphism of E, such group scheme is finite,
flat, commutative and of rank n2 over S and it is étale over S if and only if
n ∈ Γ(S,OS)

?, id est if and only if S is a scheme over Z[ 1n ].

Definition 12. A level n structure on an elliptic curve E over S is an isomor-
phism

αn : nE → (Z/nZ)2

Note that such isomorphism cannot exists if n 6∈ Γ(S,OS)
?, conversely, when

n ∈ Γ(S,OS)
? it must exists an étale covering S′ of S on which ES′ admits

a level n structure. Moreover, if a E/S admits one level n structure and S is
connected, then the set of all level n structure on E is homogeneous principal
under GL(2,Z/nZ) = Aut((Z/nZ)2).

Now we can give the following

Definition 13. A modular form of level n and weight k is a rule f that as-
sociates to a couple (E/S, αn) (Where E/S is an elliptic curve and αn is an
level n structure on it) an element f(E/S, αn) ∈ Γ(S, ω⊗kE/S) which commutes

with arbitrary base change. Using the identification as before we can define
M !(R0, n, k).

If f is a modular form of level n and weight k over the ground ring R0

and both 1
n , ζn ∈ R0 we can evaluate f on the triplet (Tate(qn), ωcan, αn)R0

composed by the Tate curve, its canonic differential and any level n structure, all
defined over Z((q))⊗R0 (Note that all the points of nTate(q

n) are rational over
Z((q))⊗R0 as those are the canonical images of ζinq

j for Gm and therefore they
lie in Z((q))⊗ Z[ζn,

1
n ]. One can also show that the non-constant q-coefficients

of their (x,y)-coordinates lie in Z[ζn] by the Jacobi-Tate formulas).
Using this fact we can again define the q-expansions of f as the finitely-tailed

Laurent series f((Tate(qn), ωcan, αn)R0
) ∈ Z((q))⊗R0 obtained by varying the

level structure αn. One can immediately notice that, while it makes sense to talk
about modular forms of level n for any ring R0, we can define its q-expansion
only if ζn,

1
n ∈ R0.

Definition 14. A modular form f of level n and weight k is said to be holomor-
phic at∞ if its base-change on R0[

1
n , ζn] has all q-expansions in Z[[q]]⊗R0[ζn,

1
n ].
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Definition 15. Using the same approach we call a modular form of weight k
and level n for Γ0(p) a law that associates to a quadruple (E, s, αn, H) where
the new object H is a finite, flat subgroup-scheme of E of rank p an element
f(E, s, αn, H) ∈ Γ(S, ω⊗kE/S) such that, as always, this assignation depends only

on the isomorphism class of the quadruple and it commutes with arbitrary base-
changes.

When we have that ζn,
1
n ∈ R0, we can make sense of a concept of q-

expansion also for those modular form by evaluating f on the usual triplet
where we add a canonical subgroup of E of rank p. More precisely we have the
following

Definition 16. Let f be a modular form of level n and weight k for Γ0(p) for
some prime p, then we call “the q-expansion of f at the unramified cusps” the
finitely-tailed Laurent series f((Tate(qn), ωcan, αn, µp)R0) obtained by varying
the level n structure αn. Analogously we call “the q-expansion of f at the ram-
ified cusps” the finitely-tailed Laurent series f((Tate(qnp), ωcan, αn, {q

n})R0
),

where {qn} is the rank p flat subgroup-scheme of the Tate curve generated by
(the image of) qn.

We say that f is holomorphic if all its q-expansions lie in Z[[q]]⊗R0.

For n ≥ 3 one has that the functor that associates to a scheme the isomor-
phism classes of elliptic curves over such scheme endowed with level n structure
is representable. It is represented by Mn which is an affine smooth curve over
Z[ 1n ]. Such is finite and flat of degree equal to the cardinality of PGL2(Z/nZ)
over the j-line Z[j, 1

n ] and it’s étale on the open set of the affine j-line where j
and j − 1728 are invertible. The normalization of the projective j-line P1

Z[ 1n ]
in

Mn is a proper and smooth curve M̄n over Z[ 1n ], and Γ(M̄n,OM̄n
) ∼= Z[ζn,

1
n ].

The curve Mn⊗Z[ 1n ] Z[
1
n , ζn] (respectively M̄n⊗Z[ 1n ] Z[

1
n , ζn]) is a disjoint union

of ϕ(n) affine (respectively proper) smooth and geometrically connected curves
over Z[ 1n , ζn] where the partition is given by the ϕ(n) n-th roots of unity oc-
curring as values of the Weil pairing on the basis of nE specified by the level n
structure.

The scheme M̄n \ Mn is finite and étale over Z[ 1n ] and, over Z[ζn,
1
n ], is

a disjoint union of schemes, called the cusps of M̄n, which are in a natural
way the set of isomorphism classes of the Tate curve Tate(qn) viewed over
Z((q)) ⊗Z Z[ζn,

1
n ]. The completion of M̄n ⊗ Z[ζn,

1
n ] along any of the cusp is

isomorphic to Z[ζn,
1
n ][[q] and the completion of the projective j-line P1

Z[ζn,
1
n ]

along ∞ is itself isomorphic to Z[ζn,
1
n ][[q]] via the formula

j(Tate(q)) =
1

q
+ 744 + . . . .

The endomorphism of Z[ζn,
1
n ][[q]] arising from the projection M̄n → P1 is

just given by q 7→ qn. In fact, for each cusp, the inverse image of the universal
elliptic curve with level n structure (E/Mn, αn) over (the spectrum of) Z[ζn,

1
n ]
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(viewed as a punctured disc around the cusp) is isomorphic to the inverse im-
age over Z[ζn,

1
n ]((q)) of the Tate curve Tate(qn) with the level n structure

corresponding to that cusp.
There is a unique invertible sheaf ω on M̄n whose restriction to Mn is

ωE/Mn
(where (E/Mn, αn) is the universal elliptic curve with level n structure),

and whose sections over the completion Z[ζn,
1
n ][[q]] at each cusp are precisely

the Z[ζn,
1
n ][[q]]-multiples of the canonical differential of the Tate curve. The

Kodaira-Spencer style of isomorphism

(ωE/Mn
)⊗2 ∼= Ω1

Mn/Z[
1
n ]

extends to an isomorphism

(ω)⊗2 ∼= Ω1
Mn/Z[

1
n ](log(M̄n −Mn))

and in fact, over Z[ 1n ][[q]], the “square” of the canonical differential ωcan of

Tate(qn) corresponds to ndqq .

Example 1. Consider the complex case, and let σ =

[

a b
c d

]

∈ SL2(Z), then

we compute d(σz)
dz .

d(σz)

dz
=
d(az+bcz+d )

dz
=

−c(az + b) + a(cz + d)

(cz + d)2
=

ad− bc

(cz + d)2
= (cz + d)−2

hence, if f ∈M !(1, 2) (one can take f = E2, to be even more concrete), the
differential defined by f(z)dz is invariant by the action of σ, as we have

f(σz)d(σz) = (cz + d)2f(z)(cz + d)−2dz = f(z)dz .

It follows that a modular form of level n and weight k, holomorphic at ∞
and defined over any ring R0 where n is invertible is just a section of (ω)⊗k on
M̄n⊗Z[ 1n ]R0, or equivalently a section of the quasi-coherent sheaf (ω)⊗k⊗

Z[ 1n ]R0

on M̄n

3.1 The q-expansion principle

Definition 17. Given a Z[ 1n ] module K, a modular form of level n and weight
k holomorphic at ∞, with coefficients in K is an element of
H0(M̄n, (ω)

⊗k ⊗
Z[ 1n ] K). At each cusp, such modular form has q-expansion in

K ⊗
Z[ 1n ] Z[ζn,

1
n ]⊗Z Z[[q]].

Theorem 5. Let n ≥ 3 and let K be a Z[ 1n ]-module, f a modular form of level n
and weight k. Suppose that on each of the ϕ(n) components of M̄n⊗Z[ 1n ]Z[ζn,

1
n ],

there is at least one cusp at which the q-expansion of f vanishes identically, then
f = 0.
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Before we prove this theorem, let us state the main corollary:

Corollary 1. (q-expansion principle) Let n ≥ 3, K a Z[ 1n ]-module, let L be a
submodule of K and suppose that f is a modular form of level n and weight
k, holomorphic at ∞ with coefficients in K. If on each of the ϕ(n) connected
components of M̄n ⊗

Z[ 1n ] Z[ζn,
1
n ] there is at least one cusp at which all the

coefficients of f lie in L⊗
Z[ 1n ]Z[ζn,

1
n ], then f is a modular form with coefficients

in L.

Proof. (of corollary)
As L is a submodule of K we have the short exact sequence

0 → L→ K → K/L→ 0

which gives us the exact sequence of sheaves

0 → L⊗ (ω)⊗k → K ⊗ (ω)⊗k → K/L⊗ (ω)⊗k → 0

and hence we get, in cohomology

0 → H0(M̄n, L⊗ (ω)⊗k) → H0(M̄n,K ⊗ (ω)⊗k) → H0(M̄n,K/L⊗ (ω)⊗k).

If we now apply the theorem to the image of f in H0(M̄n,K/L⊗ (ω)⊗k) we
deduce the thesis by the exactness of the cohomology sequence.

Proof. (of Theorem)
By passing to the ring of dual numbers D(K) = Z[ 1n ] ⊕K we may assume

thatK is a ring over Z[ 1n ], furthermore, as cohomology of quasi-coherent sheaves
commutes with inductive limits we may assume that K is finitely generated and
then that K is local and noetherian. Since taking completion is faithfully flat,
we can now reduce to the case where K is a local and complete noetherian ring
and by Grothendieck’s comparison theorem for cohomology and quotients that
is artinian and local.

By Krull’s intersection theorem f induces the 0-section of (ω)⊗k over an open
neighborhood of a cusp on each connected component of M̄n⊗K⊗Z[ζn,

1
n ] hence

a open and dense subset of M̄k⊗K. If f is non zero, it exists a non-void closed
subset Z of M̄k ⊗ K, containing no maximal points of M̄k ⊗ K (by density),
on which f is supported. Over the local ring in M̄k ⊗K of any maximal point
z of Z f becomes non-canonically a section of OM̄k⊗K,z which is supported on
the closed point, id est, for any g ∈ mz ⊂ OM̄k⊗K,z it exists an m such that
gmf = 0 and therefore any element of mz is a zero-divisor, meaning that z is a
point of depth 0. As M̄n ⊗K is smooth over K which is artinian and local and
hence is Cohen-Macaulay, which implies that only maximal points have depth
0, thus z is maximal in M̄n ⊗K and we have a contradiction, so that f must
be 0.
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3.2 Hecke Operators

We now want to recover a notion of Hecke operators for our newly-built
modular forms. To do so we start with a prime l which is invertible in our
base ring R and doesn’t divide the level n of our modular form. Under those
hypothesis the subgroups scheme lE of an elliptic curve E defined over R is finite
and étale, moreover it exists an étale cover R′ on which lE is (non-canonically)
isomorphic to (Z/lZ)2, thus ER′ has l + 1 finite and flat subgroup-schemes or
rank l. Let H be one of those, π : ER′ → ER′/H be the projection map and
π̌ : ER′/H → ER′ be its dual (which is still étale and of degree l). Then we
have that π ◦ π̌ = l· on ER′/H and π̌ ◦ π = l· on ER′ .

If ω is a non-vanishing differential on ER then π̌?(ωR′) = Trπ(ωR′) is a
never-vanishing differential over ER′/H. Let αn :n E → (Z/nZ)2 be a level n
structure on E/R, then it exists a unique level n structure π(αn) on ER′ such
that the following diagram commutes

(Z/nZ)2

nER′

αn

::

πind //
n(ER′/H)

π(αn)
ff

Given a modular form of level n and weight k with coefficients in R , for
each triplet (E,ω, αn) we can consider the sum

∑

H

f((ER′ , π̌?(ω), π(αn)))

(such lies in R and is independent by the choice of the étale covering R′).
Normalizing the sum by a factor lk−1 we get

(Tlf)(E,ω, αn) := lk−1
∑

H

f((ER′ , π̌?, π(αn)))

as definition of the Hecke operator Tl.
We can ask ourselves how the operator Tl acts on the q-expansion of f . The

l-division points of the Tate curve Tate(qn) over Z((q))⊗ZZ[
1
nl ] become rational

over Z((q1/l))⊗Z Z[ζnl,
1
nl ] and we can now identify the l + 1 subgroup as

{

µl = 〈ζl〉

Hi = 〈(ζil q
1/l)n〉 for i = 0, 1, . . . , l − 1 .

For the subgroup µl, the quotient Tate(qn)/µl is Tate(qnl) and the dual
isogeny consists on dividing Tate(qnl) by the subgroup generated by ql. The
isomorphism is obtained by the extension of scalars φl : Z((q)) → Z((q)) defined
by q 7→ ql.

For the subgroupsHi the quotient Tate(q
n)/Hi is Tate((ζ

i
l q

1
l )n) and the dual

isogeny consists in dividing the curve by its own subgroup µl. Here the isomor-
phisms are given (over Z[ζnl,

1
nl ]) by the scalar extensions φi : Z[ζnl,

1
nl ]((q

1
l )) →

φi : Z[ζnl,
1
nl ]((q

1
l )) defined via q

1
l 7→ ζil q

1
l
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Thus, for µl we have that π̌?(ωcan) = ωcan on Tate(qnl) and for the Hi

π̌?(ωcan) = l(ωcan) on Tate((ζil q
1
l )n). Denote with α′n the unique level n struc-

ture on Tate(qn) such that φ?l (α
′
n) = πl(αn) (where πl(αn) is the image of the

level n structure αn under the projection map). We have

f((Tate(qn)/µl, π̌
?(ωcan), πl(αn))) = f((Tate(qnl, ωcan, φ

?
l (α
′
n))))

= φl(f((Tate(q
n), ωcan, α

′
n))).

To do the same for the Hi we denote with πi the projection and then we get
immediately the relation πi(αn) = φ?i (π0(αn)). Call α′′n the level n structure
i?l (π0(αn)) on Tate(q

n
l ) obtained by the scalar extension (which is actually a

ring isomorphism) il : Z[ζnl,
1
nl ]((q

1
l )) → Z[ζnl,

1
nl ]((q)) defined by q

1
l 7→ q. We

get

f((Tate(qn)/Hi, π̌i
?(ωcan), πi(αn))) = f((Tate((ζil q

1
l )n), lωcan, π0(αn)))

= φi(f((Tate(q
n
l ), lωcan, π0(αn))))

= φi ◦ (il)
−1(f((Tate(qn), ωcan, α

′′
n)))

=
1

l
φi ◦ (il)

−1(f((Tate(qn), ωcan, α
′′
n)).

From those we get a formula for Tl. Let f be a modular form of weight k
and level n with coefficients in R, and let l be a prime not dividing n, invertible
in R. Then suppose the q-expansion of f is given by

f(Tate(qn), ωcan, αn) =
∑

i>−∞

ai(αn)q
i

Then we have, form what we have said,

(Tlf)(Tate(q
n), ωcan, αn) =

∑

i>−∞

bi(αn)q
i

where the bi are defined by the formula

bi(αn) = lk−1a i
l
(α′n) + ali(α

′′
n)

with the usual convention that a i
l
(α′n) = 0 when l - i.

Form the formula we immediately get the following

Corollary 2. The operator Tl maps modular forms holomorpic at∞ in modular
forms holomorphic at ∞ and cuspidal forms in cuspidal forms.

To convince ourselves that this definition of Hecke operators makes sense (if
still needed) we have a nice proposition

Proposition 1. Let n ≥ 2 and k ≥ 2. Given a prime l - n and any Z[ 1n ] −
module K it exists one and one only endomorphism of M(K,n, k) which action
on the q-expansions is given by the formula above.
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Proof. By base-change we can assume K = Z[ 1n ] and given a modular form with
coefficients in Z[ 1n ], while (Tlf) has a-priori coefficients in Z[ 1

nl ] those must lie
in Z[ζn,

1
n ]. Uniqueness is obvious

Corollary 3. Let k ≥ 2, given any l and any Z-module K it exists a unique
endomorphism of S(K, 1, k) whose effect on the q-expansion is given by the
previous formulas.

Proof. Let us choose n,m ≥ 3 such that n,m, l are all prime one to the other
we can recover H0(M̄n, ω

⊗k ⊗ (K ⊗ Z)) as the pull-back of the diagram

H0(M̄n, ω
⊗k ⊗ (K ⊗ Z[ 1n ]))

++
H0(M̄mn, ω

⊗k ⊗ (K ⊗ Z[ 1
mn ]))

H0(M̄m, ω
⊗k ⊗ (K ⊗ Z[ 1m ]))

33

Therefore we get Tl for the forms of level 1 by considering the operator
defined uniquely by this fibered product, which we just constructed for the
spaces of level n, m and nm.

3.3 The Hasse invariant as a modular form

Let R be an Fp-algebra and let E be an elliptic curve over R. The absolute
Frobenius map Fabs is a p-linear additive endomorphism of OE and therefore
induces a p-linear endomorphism on the R-module H1(E,OE). Let ω be a basis
of ωE/R, such determines the dual basis η of H1(E,OE) and define the Hasse
invariant A(E,ω) as the number that realizes the identity

F ?abs(η) = A(E,ω)η

Now we can immediately notice that passing form ω to λω (for λ ∈ R?) induces
the transformation η 7→ 1

λη at the level of dual basis. If now we apply F ?abs we
have

F ?abs(λ
−1η) = λ−pF ?abs(η) = λ−pA(E,ω)η = λ1−pA(E,ω)λ−1η = λ1−pA(E,ω) .

Which shows that the Hasse invariant A is a modular form of level 1 and
weight p− 1 with coefficients in Fp.

With more intrinsic point of view one can look at F ?abs as the R-linear ho-
momorphism

F ?abs : (H
1(E,OE))

⊗p → H1(E,OE)

and therefore as a section of (ωE/R)
⊗p−1 (as we have Hom((H1(E,OE))

⊗p, H1(E,OE)) ∼=
Hom((H1(E,OE))

⊗p ⊗ (H1(E,OE))
⊗−1,OE). In terms of ω, this section is

A(E,ω)ω⊗p−1. To notice that A is holomorphic at ∞ one can see that the Tate
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curve over Fp((q)) is the restriction of a plane curve C defined over Fp[[q]] and its
canonic differential ωcan is the restriction to a basis over Fp[[q]] of the dualizing
sheaf of C. Hence ωcan defines the dual basis ηcan of H1(C,OC) as Fp[[q]]-
module and A(Tate(q), ωcan) is the representative matrix of F ?abs on H

1(C,OC)
with respect to η. In particular we have A(Tate(q), ωcan) ∈ Fp[[q]]. An alter-
native way to get holomorpy at ∞ comes form the following fact: if E/R is an
elliptic curve H1(E,OE) is the tangent space of E in the origin, which is the R-
module of all the derivations which are invariant under the translations of E/R.
As R is an algebra over Fp the action of F ?abs on H1(E,OE) consists in taking
the p-th iterate of an invariant derivation. Now we utilize the existence of a local
parameter t on the completion of the Tate curve along the identity section in
terms of which ωcan = dt

t+1 . Let D be the invariant derivation obtained as dual
of ωcan, then D(t) = 1 + t and therefore it must be D(1 + t) = D(D(t)) = 1 + t
so that Dn(t) = 1 + t for all n ≥ 1. Over Fp D

p is an invariant derivation and
coincides with D on ωcan, thus D

p = D, leading us to F ?abs(η) = η and hence
A(Tate(q), ωcan) = 1.
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4 p-adic modular forms à la Katz and the rela-
tion with Serre’s definition

Let q = pr, call WN (K) the ring of Witt vectors of length N over a perfect
field K ⊂ Fq and let SN be a flat, affine scheme with normal, irreducible and
reduced generic fiber defined over WN (K). Furthermore we assume that SN
admits an endomorphism ϕ which induces the q-th power map on the special
fiber. Note that such is always true if SN is affine and smooth.

Theorem 6. We have an equivalence between the category of free, finiteWn(K)-
modules with a continuous action of πét

1 (SN ) (Note that those are representa-
tions of πét

1 (SN ) on the ring of Witt vectors endowed with the discrete topology)
and the category of the couples (H,F ) formed by a locally free sheaf H of finite
rank on SN and an isomorphism F : ϕ?(H) → H.

Proof. Given a representation M of πét
1 (SN ), let TN be a finite and étale SN -

scheme such that the representation factors through Aut(TN/SN ) (as such is
finite). As TN is étale over SN there is a unique ϕ-linear endomorphism which
induces the q-th power endomorphism of TN ×WN (K) K, let us call it ϕT . By
uniqueness ϕT commutes with the action of Aut(TN/SN ), let then HT be the
Tn-moduleM⊗WN (Fq)OTN

and let FT be the ϕT -linear endomorphism ofHT de-
fined by FT (m⊗f) = m⊗ϕT (f). For g any automorphism of SN we can define an
action of Aut(TN/SN ) on (HT , FT ) by setting g(m⊗f) = g(m)⊗(g−1)?(f). By
descent we have a one to one correspondence between Aut(TN/SN )-equivariant
sheaves on TN (and the corresponding map) and sheaves on SN . Therefore it
exists a unique couple (H,F ) defined on SN such that its inverse image on TN
is Aut(TN/SN )-isomorphic to (HT , FT ).

The rule M 7→ (H,F ) defines a functor, that we will prove give us the
equivalence in the theorem. Notice that we can recover M as the fixed points of
FT acting on the module of global sections HT as a ϕ-linear endomorphism, so
that our functor is fully faithful. What is left to (not effortlessly) show in order
to get the equivalence is that each (H,F ) arises in this way. More concretely we
must now prove that given any (H,F ), there exists a finite and étale covering
TN of SN over which H admits a basis of F -Fixed points.

Suppose N = 1. Then S1 = S is a scheme over K and (H,F ) is a couple
composed by a locally free S-module H of finite rank and a ϕ-linear endomor-
phism of H which induces an isomorphism F : H(q) → H. Given any S-scheme

T call HT the inverse image of H on T and FT : H
(q)
T → HT the induced

morphism.
Recall that the functors of S-schemes

X(T ) = global sections of HT

Y (T ) = bases of HT

Z(T ) = bases of HT consisting of FT -fixed points
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are all representable, the first by SpecS(Symm(Ȟ) see [1, 9.4.4,9.4.5], to have
an idea of why note that S is affine and we may assume that H ∼= e1OS ⊕
· · · ⊕ erOS so that Symm(H) ∼= OS [ě1, . . . , ěr] and give a T -point of is relative
spectrum is just to give an r-uple of scalars ti ofOT (T ) which defines the element
t1e1 + . . . trer. The second by the open subset of the r = rank(H)-fold product
Xr/S = X ×S X ×S · · · ×S X over which the map (OXr/S ) → HXr/S is an
isomorphism, the third by the closed subscheme of Y over which the universal
basis is fixed by FY .

We must show that Z is finite and étale over S. As this problem is local on
S we may assume that H is free and S is affine. Let h1, . . . , hr be a basis of H
and let (aij) be the invertible matrix obtained by F writing

F (hi) =
∑

ajihj .

Consider the functor of S-schemes Y ′(T ) = sections of HT fixed by FT . Such
is representable by a finite and étale scheme of rank qr over S, because a section
∑

Xihi of H is fixed if and only if
∑

XjHj =
∑

i

(Xi)
q
∑

ajihj , thus Y
′ is the

closed subscheme of ArS defined by the equations

Xj =
∑

i

aji(Xi)
q for j = 1, . . . , r .

Since the matrix (aij) is invertible, if we denote by (bij) its inverse, the
equations can be rewritten as

(Xi)
q =

∑

j

bijXj for j = 1, . . . , r ,

which define a finite étale S-scheme of rank qr.
The scheme Z is the open subscheme of Y ′(r/S) where the universal r-tuple

of F -fixed sections forms a base of H, hence Z is étale over S.
We now want to show that Z is proper over S. By the valutative criterion,

we must show that for any valuation ring V over S, any F -fixed basis of Hk

(where k is the fraction field of V ) extends to a F -fixed basis of HV . Since the
scheme Y ′ of fixed points is finite over S, each basis element extends uniquely
to a F -fixed section of HV . To see that the associated map V r → HV is an
isomorphism we can look at its determinant, thus reducing ourselves to the case
where HV is of rank 1. Now the matrix of F is just given by F (h1) = ah1 for
some invertible element a of V , and a F -fixed basis of Hk is a vector λh1, with
λ ∈ k, satisfying λ = aλp. As a is in V , such λ must also be an element of V ,
so that λh1 “is” a F -fixed basis of HV .

To finish the base of this induction we have now left to prove that Z is not
empty. As the construction of Z commutes with base changes we can reduce to
the case in which S = Spec(L) for some algebraically closed field L. We note
that a finite dimensional vector space over an algebraically closed field with a
q-linear automorphism is always generated by is fixed points (see appendix, B)
and the set of fixed bases is a GLr(Fq)-torsor. Thus Z is finite, étale, of rank
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= #GLr(Fq) over S and the action of GLr(Fq) on Z (induced by its action
on the F -fixed basis) makes Z itself not a GLr(Fq)S-torsor. The cohomology
class of this torsor is an element into H1

ét(S,GLr(Fq)) = Hom(πét
1 (S),GLr(Fq))

which is (at last) the desired representation.
Now that the basis of the induction is done, we can now move to the inductive

step.
Suppose the result known for N − 1. Then we have a finite étale covering

TN−1 of SN−1 = SN ×WN (K) WN−1(K) on which H/pN−1H admits a basis
of F -fixed points. There is a unique finite étale covering TN of SN such that
TN ×SN

SN−1 is TN−1, and replacing SN by Tn we may assume that H/pN−1H
admits a basis of F -fixed points. Let h1, . . . , hr be a basis of H which lifts to
an F -fixed basis of H/pN−1H (remember that SN is affine). If we write w for
the column vector whose entries are the hi, we have

F (w) = (1 + pN−1∆)w .

In order for (1 + pN−1C)w to be an F -fixed basis we must have

(1 + pN−1ϕ(C))(1 + pN−1∆)w = (1 + pN−1C)w .

Which is equivalent to
ϕ(C) + ∆ ≡p C

as SN is flat over WN (K). This is a set of r2 Artin-Schreier equations

(cij)
q − cij = −∆ij

over S1 = SN ×WN (K) K and on a finite étale cover T1 of S1 those admits
solution, and therefore on the unique étale covering TN of SN such that

TN ×SN
S1 = T1

the module HTN
admits a F -fixed basis.

As S1 is normal, reduced and irreducible a representation of πét
1 (SM ) =

πét
1 (S1) is just a suitable representation of the Galois group of the function

field of S1 which is unramified outside a fixed set of places. Thus if we take a
nonempty open U ⊂ SN the restriction functor Rep(πét

1 (SN )) → Rep(πét
1 (U))

is full and faithful, and therefore the equivalent functor (H,F )SN
→ (H,F )U is

fully faithful too.
Let now p ≥ 3 a prime not dividing n and q a power of p congruent to 1

modulo n. Let us now fix an isomorphism µn → Z/nZ over W (Fq) (i.e. we

choose a primitive n-th root of unity ζ) and let SζN (respectively S̄ζN ) the open
subset of Mn ⊗ WN (Fq) (respectively of M̄n ⊗ WN (Fq)) where the following
conditions hold:

• the Eisenstein series Ep−1 is invertible;
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• the Weil pairing of the basis of nE has value ζ (which means that det(αn)
is the chosen isomorphism).

The schemes SζN (respectively S̄ζN ) are smooth and affine (respectively proper)
over WN (Fq) with geometrically connected fibers. One has

Mn(WN (Fq), 1) =
⋃

ζ primitive

SζN

and the analogue identity holds for the projective closures.
Let σ be the Frobenius endomorphism of WN (Fq), we have σ(ζ) = ζp and

therefore Sζ
p

N = (SζN )(σ). The endomorphism φ of M̄n(WN (Fq), 1) defined by

the quotient by the canonical subgroup doesn’t preserve the SζN but sends SζN
in Sζ

p

N (modulo p the canonical subgroup is just the kernel of the absolute

Frobenius morphism). As we noticed SζN
∼= (SζN )(σ) we can look at φ like a σ-

linear endomorphism of each SζN which, modulo p, induces the p-th power map.
Analogously, the endomorphism φ of the invertible sheaf ω⊗k on M̄n(WN (Fq), 1)
defined by

φ(f)(E,ω, αn) = f(E/H, π̌?(ω), π(αn))

where H is the canonical subgroup can be seen as a φ-linear endomorphism of
ω⊗k|

S̄
ζ
N

for each primitive root of unity ζ.

Note that ω⊗k is generated by φ(ω⊗k) as sheaf; given a local section f of

ω⊗k, from its q-expansion we can find that φ(f) ≡ fp

Ek
p−1

from which φ(f) is an

invertible section if and only if f is.
We now would like to know which representation of πét

1 (S̄ζN ) in a WN (Fp)-
module of rank 1 corresponds, via the equivalence in theorem 5, to the couple
(ω⊗k, φ) on S̄ζN . It is enough to do so in the case k = 1. We have a favorite

candidate, which is the representation of πét
1 (SζN ) on the étale quotient of the

kernel of pN on the universal elliptic curve E. Note that, if we call
π : E → E(φ) = E/H the projection map on the canonical subgroup, the

iterated πN : E → E(φN ) induces an isomorphism of the étale quotient

pNE/pnÊ = pNE/ ker(πN )
∼
−→ ker(π̌)N .

For this to work we need the following

Lemma 1. The representation of πét
1 (SζN ) on ker(π̌N ) extends to a representa-

tion of πét
1 (S̄ζN ), id est such representation is unramified at ∞.

Proof. As the étale topology cannot distinguish between S̄ζN and S̄ζ1 is equivalent

to prove that the representation of πét
1 (Sζ1 ) on ker(V N ) extends to a represen-

tation of πét
1 (S̄ζN ) on ker(V N ).

Let K be the fraction field of S̄ζ1 we have to show that the inertia group

of Gal(Ksep/K) acts trivially on ker(V N ) in E
(pN )
K (Ksep). We can replace K
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with is completion at each cusp which is just K((q)) and the inverse image
of E via this completion is the Tate curve Tate(qn)/K((q)). Following this

transformation the curve Ep
n

becomes Tate(qnp
N

) and (π̌)N is the map

Tate(qnp
N

) → Tate(qn)

given by the “division by the subgroup generated by qn”. As this subgroup
consist only of rational points the inertia group (and also the decomposition
group) acts trivially on each cusp.

Theorem 7. The representation ρ of πét
1 (S̄ζN ) on ker(π̌)N (which is isomorphic

to the quotient of ker(pN ) on the universal curve) corresponds, via the equiva-
lence in theorem 5, to the couple (ω, φ).

Proof. It suffices to show this over SζN . Let T be a finite étale cover of SN which
trivializes the representation (we adjoin the coordinates of a point of ker(π̌)N

of order exactly pN ). Over T each point of ker(π̌)N gives a morphism

(Z/pNZ)T
∼
−→ (ker(π̌)N )

Whose Cartier dual is a morphism (note that ker pN is in Ê)

(ker(πN ))T → (µpN )T ↪→ (Gm)T .

The inverse image of the invariant differential dtt on (Gm)T gives an invariant

differential on ker(pN ) in Ê. As T is killed by pN , the first neighborhood of the
identity section of E lies in ker(pN ) in Ê there is a unique invariant differential
of E whose restriction to ker(pN ) in Ê is the given one. Thus we have

(ker(π̌))NT → ωT .

Moreover, if x is a point of (ker(π̌))NT of order precisely pN the map

(Z/pNZ)T → (ker(π̌))NT

is an isomorphism, and therefore its Cartier dual is an isomorphism too, meaning
that the inverse image of dtt is nowhere vanishing on Ê.

Thus the induced map

(ker(π̌)N )T ⊗Z/pNZ OT → ωT

is an isomorphism of invertible sheaves on T . This map commutes with the
action of Aut(T/SN ) which is defined as follows (at least locally on S, where
we can assume (ker(pN ))T in Ê to have coordinate ring free on the coordinates

1, x, . . . , xp
N−1). A point P of ker((π̌)N )T gives us a map on µpN defined by

f(x) =
∑

ai(P )x
i which corresponding differential is ωp = df

f , and for any

g ∈ Aut(T/SN ) we have ai(g(P )) = g(ai(P )).
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Thus the sheaf above is Aut(T/SN )-equivariant and therefore it descends to
SN . Thus we have constructed an isomorphism between ω and the invertible
sheaf on SζN associated to the étale quotient of pNE.

It remains to show that this isomoprhism commutes with the φ-linear en-
domorphism. Tensoring one with the inverse of the other we obtain a φ-linear
endomorphism of OSN

and we have now to show that it respects the identity
(in other words, that carries 1 to 1).

In order to see this it suffices to show it on a“punctured disc at ∞” over
WN (Fq)((q)) when we look at the Tate curve Tate(qn). The morphism

π̌ : Tate(qnp
N

) → Tate(qn)

has kernel generated by qn, which is a rational point of ker(π̌)N , and the cor-
responding differential is the canonical differential on the Tate curve ωcan = dt

t .
As qn is a rational point, the section [qn] ⊗ 1 of ker(π̌)N ⊗Z/pNZ O is fixed by
the canonical F and the corresponding section ωcan of ω is fixed by φ (as it
q-expansion is “identically 1”). Hence our isomoprhism respects the φ-linear
endomorpshim on a punctured disc around ∞ implying that it respects it ev-
erywhere and we are done.

In order to begin to “round things up” we still need some results, namely
the following theorems (due to Igusa)

Theorem 8. The morphism

πét
1 (S̄ζN ) → Aut(ker(π̌)NT ) ∼= (Z/pNZ)?

is surjective, and for any non-void open subset U ⊂ S̄ζN the morphism obtained

by the precomposition with the map πét
1 (U) → πét

1 (S̄ζN ) is still surjective.

Proof. Is enough to prove that, if we denote withK the fraction field of SζN×WN (Fq)

Fq, the morphism

Gal(Ksep/K) → Aut(ker(V N ) in E(pN )(Ksep))

is surjective.
We will actually prove that the inertia group of Gal(Ksep/K) at any super-

singular curve maps surjectively.
Let P be a closed point of Sζ1 where Ep−1 vanishes, by replacing Fq with is

algebraic closure we may assume that P is rational. The completion of Sζ1 ⊗ F̄q
at P is isomorphic to Spec(F̄q[[A]]) and the inverse image of the universal elliptic
curve on F̄q[[A]] admits a nowhere vanishing invariant differential ξ such that
Ep−1(E, ξ) = A as the Hasse invariants admits only simple zero (as seen in
section 2).

Now we have just to prove the following
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Theorem 9. Let (E, ξ) be an elliptic curve on F̄q[[A]] with Hasse invariant
A. Then the extension of F̄q((A)) obtained by adding the points of kerV N is
totally ramified of degree pN−1(p− 1) with Galois group canonically isomorphic
to Aut(Z/pNZ).

Proof. As kerV N is cyclic of order pN over F̄sepq the first claim implies the
second. In terms of a normalized parameter x for the formal group (meaning
that [ζ](x) = ζx for any p − 1-th roots of unity ζ ∈ Z?p) the endomorphism [p]
look like

[p](x) = V (xp) = Axp + αxp
2

+ . . .

for some α ∈ F̄p[[A]]
? (note that modulo A we must have, by hypothesis a

supersingular curve, and therefore a formal group of height 2). Thus, as the
map V N given by the composition

E(pN ) V (pN−1)

−−−−−→ E(pN−1) V (pN−2)

−−−−−→ . . .
V (p)

−−−→ E(p) V
−→ E,

we can look at the expression of V (pν), which is

V (pν)(x) = Ap
ν

x+ αp
ν

xp + . . . .

A point of kerV N with values in K((A))sep of order precisely pN can be now
seen as a sequence y0, . . . , yN−1 of elements of the maximal ideal of F̄p((A))

sep

which satisfy the successive equations:























0 = V (y0) = Ay0 + α(y0)
p + . . .

y0 = V (p)(y1) = Apy1 + αp(y1)
p + . . .

...

yN−2 = V (pN−1)(yN−1) = Ap
N−1

yN−1 + αp
N−1

(yN−1)
p + . . . .

If we look at the Newton’s polygons of those equation we notice that the orders
of y0, . . . , yN−1 are given by the following (we denote with ord the normalized
order such that ord(A) = 1)























ord(y0) =
1
p−1

ord(y1) =
1

p(p−1)

...

ord(yN−1) =
1

pN−1(p−1)

Proposition 2. Let k be an integer, and N ≥ 1, then the following are equiv-
alent:

1. k ≡ 0 modulo (p− 1)pN−1 for a prime p 6= 2;
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2. the k-th tensorial power of πét
1 (S̄ζN ) on the étale quotient of pNE is trivial;

3. the sheaf ω⊗k on S̄ζN admits a nowhere vanishing F -fixed section;

4. it exists a nonempty open U of S̄ζN on which ω⊗k admits a nowhere van-
ishing F -fixed section;

5. over S̄ζN , ω⊗k admits a section which q-expansion at one of the cusps of

S̄ζN is identically 1;

6. it exists a nonempty open U of S̄ζN containing one cusp on which ω⊗k

admits a section which q-expansion is identically 1.

Moreover, if 1 holds, any section satisfying either 4 or 6 extends uniquely
to a section on the whole S̄ζN satisfying respectively 3 or 5, and such section is
actually the k

p−1 -th power of Ep−1

Proof. As we have showed πét
1 (S̄ζN ) surjects onto (Z/pNZ)? and therefore is a

group of exponent pN−1(p− 1) and hence 1 is equivalent to 2. The equivalence
between 2 and 3 is a direct consequence of Theorem 7 and the one between
3 and 4 is exactly the remark we have made about the restriction being full
and faithful. Using the explicit formula for φ and the q-expansion principle one
immediately gets the equivalences between 3 and 5, and 4 and 6.

If 1 holds the statement about uniqueness comes from restriction to U being

a full and faithful operation while the fact that the form is (Ep−1)
k

p−1 comes
from the q-expansion principle.

Corollary 4. Let fi for i = 1, 2 elements ofM(W (Fq), n, ki) such that k1 ≥ k2,
assume that the q-expansions f1 and f2 are congruent modulo pN at at least one
cusp of M̄(W (Fq), 1) and that f1(q) 6= 0 modulo p on such cusp. Then k1 ≡ k2
modulo pN−1(p − 1) and if such holds on at least one cusp in each irreducible
components of M̄(W (Fq), 1), then

f1 ≡ f2(Ep−1)
k1−k2
p−1 modulo pNM(W (Fq, n, k2)).

Proof. It suffices tho show the congruence between the weights, as everything
else follows from the q-expansion principle. If we reduce the problem modulo pN

we have, by hypothesis, that each fi is a section of ω⊗ki on S̄ζN , both invertible

on a non-void open subset U of S̄ζN , therefore the quotient f2
f1

is an invertible

section of ω⊗(k2−k1) on U , whose q-expansion is identically 1 on the cusps of
S̄ζN , by the proposition we have that k2 − k1 ≡ 0 modulo pN (p− 1).

Corollary 5. Let f be a “true” modular form of level n and weight k for
Γ0(p), holomorphic at the unramified cusps and defined on the fraction field K
of W (Fq). Assume that at each unramified cusp the q-expansion of f has all its
non-constant coefficients in W (Fq). Then the constant term of the q-expansion
lies in p−mW (Fq) where m is the biggest integer such that ϕ(pm) = #(Z/pmZ)
divides k.
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Proof. For N large enough, pNf is a “true” modular form of level n and weight
k for Γ0(p) defined on W (Fq). Therefore it exists a g ∈ M(W (Fq), n, k) whose
q-expansions are the one of pNf at the unramified cusp. If we denote with −m0

the minimal order of the constant term of those q-expansion, then g is divisible
by pN−m0 in M(W (Fq), n, k). Thus g = pN−m0h for some h ∈ M(W (Fq), n, k)
which hat the same q-expansion of pm0f at the corresponding unramified cusps.
Therefore the q-expansions of h are integral and at least one of them is congruent
to a unit of W (Fq) modulo pm0 (by minimality). Multiplying f by the inverse
of such unit we have a modular form with q-expansion congruent to 1 modulo
pN . By the weight of 1 being 0 we immediately get k ≡ 0 modulo pm0(p− 1).

4.1 Modular forms of weight χ

Let χ ∈ End(Z?p), then, for each power pN of p, χ induces an endomorphism
of (Z/pmZ)?. For each n-th primitive root of unity ζn, and for each representa-

tion ρ of πét
1 (S̄ζnN ) on a free Z/pNZ-module of rank 1 we can define ρχ = χ ◦ ρ.

If we take ρ to be the representation on the étale quotient of pNE we denote
(ωχ, φ) the invertible sheaf with φ-linear endomorphism corresponding to ρχ.

By varying N we obtain some compatible sheaves ωχ on S̄ζnN .

Definition 18. A (p-adic) modular form of weight χ and level n holomorphic
at ∞, defined over W (Fq) is a compatible family of sections of the ωχ as above.

If χ = k ∈ Z ⊂ End(Z?p) we obtain (with this new definition) the elements
of M(W (Fq), n, k). For p 6= 2 Z is dense in End(Z?p) and one can describe
the endomorphisms as End(Z?p) = lim

←
Z/ϕ(pm)Z. Thus, for each χ, the couple

(ωχ, φ) is isomorphic to (ωkN , φ) on S̄ζN for each kN ≡ χ modulo ϕ(pN ). More-
over, for what we have said, the isomorphism between two couples (ωkN , φ),

(ωk
′

N , φ), where k′N ≥ kN is given by multiplication by (Ep−1)
k′

N−kN
p−1 . As this

isomorphism doesn’t actually affect the q-expansions modulo pN , we have that a
p-adic modular form of weight χ and level n, holomorphic at ∞ with coefficients
in W (Fq), has q-expansion defined in W [[q]] at each cusp, and for a given χ, f
is uniquely determined by its q-expansion.

Theorem 10. Let χ ∈ End(Z?p), f a modular form of weight χ, level n, holo-
morphic at ∞ and defined over W (Fq). Then it exists a sequence of integers
0 ≤ k1 ≤ k2 ≤ . . . which satisfies kN ≡ χ modulo φ(pN ) and a corresponding
sequence of modular forms fi, where fi has weight ki, holomorphic at ∞, defined
over W (Fq) such that fN ≡ f in q-expansion modulo pN .

Conversely, let {kN}N≥1 a sequence of integers and suppose we have a se-
quence {fN}, where fN ∈M(W (Fq), n, kN ) are p-adic modular forms of integer
weight kN for each N , such that fN ≡ fN+1 modulo pN in q-expansion at
each cusp. Then kN → χ in End(Z?p) and it exists a unique modular form
f = ” lim ”{fN} of weight χ, level n holomorphic at ∞, defined over W (Fq)
such that, for all integers N , fN ≡ f modulo pm in q-expansion.
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Proof. The first statement of the theorem follows directly form the definition of
modular form of weight χ.

For the second part we may reduce ourselves to the case in which the fm
are true modular forms just by (eventually) multiplying fm by (Ep−1)

(pn−1Nm)

for a suitable Nm, therefore we may assume km ≥ 0 and the new modular form
f ′m has the q-expansion of a true modular form (modulo pm). Up to choosing
the Nm to have them increasing sufficiently fast with m we have the claimed
hypothesis reduction. Let us now consider the limit q-expansion. We may work
on each irreducible component of M̄n⊗W (Fq) separately. If on one component
the limit q-expansion is identically 0 at a cusp, then we have shown that is 0 at
each cusp.

If the limit q-expansion is non-zero, it must exists an m0 such that the
limit q-expansion is not divisible by pm0+1 at each cusp. Thus, for m > m0,
fm ≡ pm0gm where gm is a true modular form with non trivial q-expansion
modulo p. Hence, by replacing the original sequence by the sequence {f ′m},
where f ′m = gm0+m we may then assume that each fm has non-zero q-expansion
modulo p. Thus, the congruence at the level of q-expansion fm+1 ≡ fm modulo
pm, implies the congruence km+1 ≡ km modulo ϕ(pm) between the weights

and the congruence of forms fm+1 ≡ fm(Ep−1)
km+1−km

p−1 modulo pm. Thus
χ = lim km is a character in End(Z?p) and the sequence of the fm modulo pm

defines a compatible family of sections of ωχ on S̄ζN .

We can now finish with our last instance of the q-expansion principle

Corollary 6. If a collection of elements of W [[q]] is the set of q-expansions of a
p-adic modular form f of weight χ ∈ End(Z?p), then both f and χ are uniquely
determined.

32



A The étale fundamental group

In this appendix we want to clarify the construction of the étale fundamental
group of a scheme, in order to do so we need to introduce the following concept

Definition 19. A couple (C, F ) composed by a category C and a fundamental
functor F : C → Sets is said to be a Galois category if

• C has terminal object TC and pull-backs;

• C has finite coproducts;

• each arrow in C has epi-mono factorization and every monomorphism in
C is a direct addend;

• F (TC) = TF (C) and F preserves pull-backs;

• F commutes with finite sums, sends epimorphisms to epimorpshims and
commutes with the quotients by the action of finite groups of automor-
phisms.

• F reflects the isomorphism

Let C be a Galois category with fundamental functor F .

Definition 20. An automorphism of F is a natural isomorphism F → F

We have a natural inclusion Aut(F ) ⊂
∏

X∈Ob(C)

SF (X), where SF (X) is the

symmetric group on F (X) endowed with the discrete topology, using this inclu-
sion we can rewrite Aut(F ) as follows

Aut(F ) = {(σX) ∈
∏

X∈Ob(C)

SF (X)|σZF (f) = F (f)σY for any f : Y → Z} .

This tells us that Aut(F ) is closed and therefore is profinite. Let X be
an object in C then Aut(F ) acts continuously on F (X), we therefore obtain
a structure of Aut(F )-set H(X) on F (X). for f ∈ homC(Y, Z) F (f) is an
Aut(F )-morphism, hence we can define a functor H : C → Aut(F )-Sets such
that F = U ◦H where U is the forgetful functor.

Fact 8. [5]
One has that

• H is an equivalence of categories.

• If π is a profinite group and there is an equivalence of categories π-Sets ∼= C
such that U ◦ π ∼= F then there is a canonic isomorphism π ∼= Aut(F ).

• If F ′ is another fundamental functor on C F ′ ∼= F
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• If π is a profinite group such that C ∼= π-Sets we have that π ∼= Aut(F )
up to an element of Inn(Aut(F )).

We want to look at the category FEtX of finite étale covers of a fixed scheme
X. We note that clearly 1X is the terminal object and the fibered product of
étale coverings is still an étale covering, proving that our category has pull-
backs. As finite disjoint union of étale coverings is still an étale covering we
have that FEtX has finite coproducts. To see that our category has epi-mono
factorization take f : Y → Z a morphism of coverings, we can factorize f as an
epimorphism on a cover Z1 followed by a monomorphism Z1 ↪→ Z where we set
Z = Z1 t Z0 and define Z0 := {z ∈ Z|[Y : Z](z) = 0}. We will not prove (and
leave it as a fact) that FEtX is closed for finite quotients.

In order to define a fundamental functor on FEtX we start with a algebrically
closed field Ω, we then have the functor J̃ : ΩSAlg → Sets defined by taking the
set of morpshisms B 7→ HomΩ(B,Ω), so that we immediately get the functor
J : FEtSpec(Ω) → Sets. We now can take the base-change induced functor
FEtX → FEtSpec(Ω) and set F to be the composite.

Definition 21. With the notation above we call étale fundamental group of a
scheme X the group πét(X) := Aut(F ).

In order to give an easier way to look at the fundamental group we have to
introduce the concept of a Galois object.

Definition 22. Let A be a finite étale cover of X, we say that A is Galois
if A/Aut(A) ∼= 1X , which is equivalent to ask that the action of Aut(A) is
transitive (and therefore that #Aut(A) ≥ #F (A)).

One can actually show Hom(A,B) ↪→ F (B) from which we get that, if A
is Galois #F (A) = #Aut(A). We will now build a couple (A, a) composed
by a Galois covering A such that HomC(A,X) → F (X) is a bijection and an
element a ∈ F (A). To do so start with Y = BF (B) =

∏

F (B)

B and let a ∈

F (Y ) = F (B)F (B) such that the b-th coordinate is b for b ∈ F (B) and let A the
connected component of Y for which a ∈ F (A), then we have

A −→ Y
pb
−→ B

from which Hom(A,B) → F (B) is surjective (one can show that A is Galois
by using the point a to keep track of the connected component we are consid-
ering, to see this one can refer to [5, pp 40-41]).

From this we can build πét
1 (Z) by setting J = {(A, a)} as above, then J is

cofinite in FEtX . As F ∼= HomFE tX(A,−). If (A, a) ≥ (B, b) we have, for all σ

A
f //

σ

��

B

τ

��
A

f
// B
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From which F (τ)(b) = F (fσ)(a) form which σ 7→ τ defines a projective system
and we have

π = lim
←J

Aut(A).
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B The “Lang’s trick”

In order to get the equivalence in Theorem 5 we use that a finite dimen-
sional vector space over an algebraically closed field K endowed with a q-linear
automorphism φ is generated by the fixed points of φ.

Proposition 3. Let φ be a q-linear endomorphism of a finite dimensional vector
space V over a separably closed field K of positive characteristic.

Call V 1−φ = ker(1−φ) the Fq vector space of fixed points of φ, then one has

V ∼= V 1−φ ⊗Fq
K .

Proof. Let e be a K-basis of V and write

φ(e) = Ae

for some A ∈ GL(n,K). Call

F : GL(n, k) → GL(n, k)

the map given by “elevating coordinates at the q-th power”. Then, for g ∈
GL(n, k), ge is a basis of V of φ-fixed points if and only if we have

F (g)Ag−1 = 1 .

Call K̄ the algebraic closure of K. We define an action of the group GL(n, K̄)
on itself (seen as an algebraic variety) by setting

gA = F (g)Ag−1 .

For each fixed A the map g 7→ F (g)Ag−1 is étale (one can see this just by
computing the tangent map) and hence the orbits of our action must be open.
As GL(n, K̄) is irreducible it must have only one orbit, which means nothing
more that the map g 7→ F (g)g−1 is surjective. As this is étale too and K is
separably closed the restriction to GL(n,K) must be surjetcive as well, meaning
that V admits a basis of φ-fixed points. It is now clear (by q-linearity of φ) that
all φ-fixed points are in the Fq-vector space generated by a basis of φ-fixed points
of V , which proves the statement.
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C Newton Polygons

Let f(x) = 1+ a1x+ . . . asx
s be a polynomial ˆ̄Qp[x], and consider the set of

points of R2 given by P = {(n, ordp(an))}1≤n≤s ∪ (0, 0) for ai 6= 0 (in such case
we can think of the point as if it was ”infinitely” far above the horizontal axis).

Definition 23. The Newton polygon of f is the convex hull of the set P , id
est the highest convex polygonal line such that any point in P lies either on the
polygonal line or above it.

To construct such polygon one simply start from the origin and draws the
line passing from (0, 0) and the point α1 in P which is the first we encounter
by moving counter-clockwise on the sheaf of lines through (0, 0), if such line
hits more than one point at the same time we take the furthest one. Then we
repeat this process centering the lines in α1 = (n1, ordp(an1

)), considering now
P1 = {α = (n, ordp(an)) ∈ P |n > n1} and so on. As the coefficients of the
polynomial are finite this process ends and we get the desired polygon.

Definition 24. We call vertexes of a Newton polygon the points in P that lies
on the polygon, we refer to slope of the segment joining to vertexes as the slope
of the segment in the usual way and we call length of a slope the distance on
the horizontal axis of the points it connects

The reason to study those arises from the following

Lemma 2. Let f ∈ ˆ̄Qp[x] =
s
∏

i=1

(1− x
bk
). Let λk = ordp(

1
bk
), then if λ is a slope

of the newton polygon of f of length l, exactly l of the λk are equal to λ

Meaning that the slopes of the newton polygons are exactly (counting mul-
tiplicity) the p-adic ordinals of the reciprocal roots of f .

Proof. We may assume λ1 ≤ · · · ≤ λs, furthermore we may assume that the
first r of the λk are the same and strictly less than λr+1 for some 1 ≤ r ≤ s.

We claim that the first segment of the Newton polynomial associated to f
connects (0, 0) to (r, rλ1). Recall that ai can be expressed as (−1)i times the
evaluation of the i-th symmetric polynomial in s variables at the 1

bk
. Therefore

the ordinal of such is at least iλ1, therefore the point (i, ordp(ai)) is either above
or lies on the line (i, iλ1), proving this first claim.

Consider now ar. There is exactly one product of r of the 1
bk

having valuation
exactly rλ1, namely the product of the first r, while all others have strictly bigger
ordinals. Thus, ar is the sum of something of ordinal rλ1 and something having
strictly bigger ordinal. Hence ordp(ar) = rλ1. As ordp(ar + 1) > rλ inducing
this argument we get the thesis.

Although this result is quite powerful, it is not enough for what we want to
do in section 4, as we are dealing with some formal groups and therefore with
power series, therefore we need to introduce an analogous concept for those
objects.
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Definition 25. Let f = 1 + a1x + a2x
2 + · · · ∈ ˆ̄Qp[[x]] be a power series with

constant term 1 and non-0 radius of convergence. Let fn = 1 +
n
∑

i=1

aix
i, then

we define the Newton polygon of f as the limit of the Newton polygon of the
fn.

Although this definition might seem difficult the way to construct this re-
mains the same (at least “algorithmically” if you want). The issue and that
having to deal with an infinite set of points reflects in the possibility of few
pathological behaviors. This time our ”output” can be one of the following:

1. An infinite number of segments of finite length (e.g f(x) = 1 +
∑

pi
2

xi)

2. A polygonal line that ends with a half-line, meaning that our procedure
hits simultaneously a set of points which lie arbitrarily far out. (e.g.
f(x) = 1 +

∑

xi)

3. The strangest possibility happens when we pass from a situation in which
we have not yet encountered any point to extend our polygon to a con-
figuration in which our line would be above some of the points we still
have not hit, in this case we prolong our polygon with slope equal to
the upper bound of the slopes such that no point is beneath them (e.g.
f(x) = 1 +

∑

pxi)

Note that the third case can degenerate if the first step is the one when this
behavior appears, in such a case one can prove that f has radius of convergence
0, so we avoid this problem just by requiring a non-trivial radius of convergence.

We now have two results (before to get to what we really care about) that
we will only quote. For a proof of those see [4, pp 101-103].

Lemma 3. Let B be the least upper bound of all slopes of the Newton polygon of
f(x). Then the radius of convergence of f(x) is pB (if B is infinite f converges
on the whole space).

Lemma 4. Suppose that λ1 is the first slope of the Newton polygon of f(x). Let

c ∈ ˆ̄Qp be of ordinal λ ≤ λ1. Suppose that f(x) converges in D(pλ) (Note that
by the previous lemma this holds automatically if the inequality above is strict).

Let now
g(x) = (1− cx)f(x) .

Then the Newton polygon of g(x) is obtained by connecting (0, 0) to (1, λ) and
then translating the newton polygon of f(x) by 1 to the right and by λ upwards.
To picture this, just imagine to glue the Newton polygon of f(x) to the new
segment (which is the Newton polygon of 1 − cx). Moreover if f(x) has last
slope λf , then f converges in D(pλf ) if and only if g(x) does.

We end this appendix with the result we are interested in, namely the fol-
lowing
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Lemma 5. Let f(x) ∈ 1+x ˆ̄Qp have Newton polygon with first slope λ1. Suppose
that f(x) converges on the closed disc D(pλ1), and assume also that the line
through (0, 0) with slope λ1 passes through a point of the form (i, ordp(ai)) (Note
that both of those hold if the polygon has more than one slope). Then it exists
a t such that ordp(t) = −λ1 and f(t) = 0

Proof. We start by proving the case in which λ1 = 0. In such case we have
ordp(ai) ≥ 0 for all i and the sequence of the ordp(ai) → ∞ when we let i
diverge. Let N be the greatest i such that ordp(ai) = 0 (if the polygon is not
just a horizontal line this N is the length of the first segment of slope λi = 0).

Let now fn(x) =
n
∑

i=1

aix
i. By Lemma 2, for n ≥ N fn(x) has exactly N

roots tn,1, . . . , tn,N such that ordp(tn,j) = 0. Set tN = tN,1 and for n ≥ N call
tn+1 any of the tn+1,j such that |tn+1,j − tn|p is minimal. We claim that the
sequence {tn} is Cauchy and that, calling t = lim

n→∞
tn has the desired properties.

For n ≥ N call Sn the set of roots of fn(x) (counting multiplicity). Then
for n ≥ N one has

|fn+1(tn)− fn(tn)|p = |fn+1(tn)|p =
∏

t∈Sn

|1−
tn
t
|p =

n
∏

i=1

|1−
tn

tn+1,i
|p =

N
∏

i=1

|tn+1,i − tn|p ≥ |tn+1 − tn|
N
p .

Therefore

|tn+1 − tn|
N
p ≥ |fn+1(tn)− fn(tn)|p = |an+1t

n+1
n |p = |an+1|p .

And therefore the sequence {tn} is Cauchy as lim
n→∞

|an+1|p = 0. Call now

t = lim
n→∞

tn, then as f = lim fn one has

|fn(t)|p = |fn(t)− fn(tn)|p = |t− tn|p|

n
∑

i=1

ai
ti − tin
t− tn

|p ≤ |t− tn|p

as we have that |ai|p ≤ 1 and |
ti−tin
t−tn

|p = |ti−1 + ti−2tn+ · · ·+ tti−2n + ti−1n |p ≤ 1.
Hence f(t) = lim

n→∞
fn(t) = 0, proving the statement for λi = 0.

For the general case, we have λ1 = ordp(π) for some π ∈ ˆ̄Qp. Now call
g(x) := f( xπ ), then g(x) has a Newton polygon with λ1 = 0, so that we can
apply what we have just shown, ending up with a t0 such that ordp(t0) = 0 and
g(t0) = 0. Call t = t0

π , we have that ordp(t) = −λ1 and f(t) = f( t0π ) = g(t0) =
0, finishing the proof.
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