
 
 

Influence of Transverse Reinforcement on Bridge 
 

Column Resistance against Blast Loads 
 
 
 

 

Amir Hossein Kavousifard 
 
 
 
 
 

 

A Thesis 
 

in 
 

The Department 
 

of 
 

Building, Civil and Environmental Engineering 
 
 
 
 
 

 

Presented in Partial Fulfillment of the Requirements 
 

for the Degree of Master of Applied Science (Civil Engineering) at 
 

Concordia University 
 

Montreal, Quebec, Canada 
 
 
 
 
 
 
 

 

June 2018 
 

 

© Amir Hossein Kavousifard, 2018 



 

CONCORDIA UNIVERSITY 
 

School of Graduate Studies 
 

 

This is to certify that the thesis prepared 
 
 
By: 

 
 
Amir Hossein Kavousifard 

 
 
Entitled: 

 
 
Influence of Transverse Reinforcement on Bridge Column Resistance 

against Blast Loads 

 

and submitted in partial fulfillment of the requirements for the degree of 
 

Master of Applied Science (Civil Engineering) 
 
complies with the regulations of the University and meets the accepted standards with respect to 
originality and quality. 
 
Signed by the final Examining Committee: 
 

 

Chair   
DR. A. M. ZSAKI 

 
Examiner   

DR. A. BHOWMICK 

 
Examiner   

DR. R. GANESAN 

 
Supervisor   

DR. L. LIN 

 

 

Approved by   
Chair of Department or Graduate Program Director 

 

 

June 21, 2018   
Dean of Faculty 



 

ABSTRACT 

 

 

Influence of Transverse Reinforcement on Bridge 

 

Column Resistance against Blast Loads 

 

 

Amir Hossein Kavousifard 

 

 

 

 

 

After the terrorist attacks of September 11
th

, 2001, blast load resistance of infrastructure 

has been of great concern to structural engineers, and government institutions in the United 

States have provided guidelines to mitigate these risks. The focus of these guidelines has been on 

buildings, and measures to protect infrastructure such as bridges have not received similar 

attention. However, data on terrorist attacks show that bridges are often targeted, and the 

majority of these attacks are on non-landmark bridges, such as highway bridges. 

 

With the threat of global terrorism, it is required to understand the behavior of bridges in 

Canada under blast loads. Specifically, bridge columns are often targeted and they represent a 

critical structural function as their failure can lead to collapse of the entire bridge. Transverse 

reinforcement is the key element in design of reinforced concrete (RC) bridge columns against 

blast, and it is also the key element in design for seismic loads. A generic two-span bridge 

located in Toronto, Ontario; Vancouver, British Columbia; and Victoria, British Columbia, is 

designed using the Canadian Highway Bridge Design Code (CHBDC). The three cities are 

chosen to represent low, high, and extremely high seismic hazard levels, respectively. The bridge  
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columns are designed according to the required seismic detailing of the different hazard levels 

with a focus on spacing, bar size, and type of transverse reinforcement. The finite element 

software LS-DYNA is used to model the bridge columns and simulate the application of blast 

loads at different charge heights for various charge weights and standoff distances. 

 

Analysis of the simulation results concentrates on the performance of columns with 

respect to concrete failure mechanisms, behavior and stress patterns of steel reinforcement, and 

displacement curves. The results of this study indicate that for equivalent blast loads, a charge 

closer to the base of the column is more critical than a charge at mid-height. Moreover, charge 

weight has more of an impact than standoff distance in a columns ability to resist blast. The 

results also indicate that seismic detailing is extremely important in blast load resistance of 

columns. Specifically, columns with smaller spacing of transverse reinforcement, as well as 

bigger bar size, demonstrate an ability to successfully resist blast and allow a column to carry the 

required structural loads. Moreover, columns with spiral transverse reinforcement perform better 

than columns with tied transverse reinforcement. 
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Chapter 1: Introduction 
 

1.1 Motivation 

The structural engineering communities' challenge in protecting infrastructure against attacks has 

been one that goes back decades. The first major example was the failure of the Alfred P. Murrah 

Federal Building in Oklahoma City, Oklahoma, due to a bomb explosion at the ground level in 

April of 1995 (National Research Council, 1995). Safety of government buildings has become a 

considerable concern after the collapse of the Twin Towers of the World Trade Center on 

September 11
th

, 2001. In the past, several design guidelines for protecting structures from 

accidental explosions, such as military and petrochemical compounds, were available. These 

include, Structures to Resist the Effects of Accidental Explosions (Department of the Army, 

1990) and Design of Blast Resistant Buildings in Petrochemical Facilities (ASCE, 1997; 2010). 

After the attacks of September 11
th

, 2001, the United States government released new guidelines 

in order to improve blast load resistance of structures, e.g., Unified Facilities Criteria: DoD 

Minimum Antiterrorism Standards for Buildings (Department of Defense, 2002); Reference 

Manual to Mitigate Potential Terrorist Attacks against Buildings (FEMA, 2003; 2011); and 

Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and 

Major Modernization Projects (GSA, 2003). 

It should be noted that the current guidelines are mainly for buildings. However, it has been 

reported that infrastructure such as bridges are being targeted more and more by terrorists as the 

potential site for an attack (FTA, 2001). It is not surprising that landmark bridges are an 

attractive target for terrorists. For example, the US Federal Bureau of Investigation has thwarted 
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planned attacks on the Golden Gate Bridge and the Brooklyn Bridge since the beginning of the 

21
st
 century. If these incidents would occur, they would have a very negative socioeconomic 

impact as reported in Mahoney (2007). In addition to landmark bridges, Jenkins and Gersten 

(2001) reported that based on statistical data between 1980 and 2001, 58% of attacks on bridges 

were on non-landmark bridges. This indicates that highway bridges might also be at risk.  

Explosives can be placed anywhere on a bridge, but the preferred target, and the area that is 

of the most importance to structural engineers, is columns. In the last decade, research on the 

effects of blast loads on bridge columns has significantly advanced due to experimental work, 

which was not previously available, and advancements in finite element modelling for blast loads 

in software such as LS-DYNA (LSTC, 2016a). The results from experimental tests and 

analytical studies have clearly shown that blast loads could cause severe damage to bridge 

columns, which in turn will jeopardize the structural integrity of the entire bridge system. 

Accordingly, there is an urgent need to prepare guidelines for blast resistance for design of new 

bridges and retrofitting techniques for old bridges. It is necessary to mention that the majority of 

research that has been conducted is focused on bridges in the United States, which were designed 

in accordance with the requirements specified by the American Association of State Highway 

and Transportation Officials (AASHTO). Considering that terrorist attacks are becoming a global 

threat, it is important to understand the behaviour of Canadian bridges under blast loads, which 

will help the code authority to improve the requirements for bridge column design and the 

emergency-response agencies to prepare for rescue plans. 

1.2 Objective and Scope of Study 

The main objective of this study is to examine the influence of transverse reinforcement in 

terms of type (tied or spiral), diameter, and spacing on the blast load resistance of reinforced 
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concrete columns of typical highway bridges located in different cities in Canada. These cities 

are selected to represent the seismic hazard from low to extremely high across Canada for the 

design of bridges against earthquake load as one of the lateral loads. The behaviour of these 

earthquake-protected columns will help to understand the contribution of seismic detailing to the 

blast load resistance. This is due to the fact that both earthquake load and blast load are 

categorized as dynamic load and applied laterally on bridge columns. In this study, both 

qualitative failure mechanisms and quantitative measurements (e.g., column displacement and 

strain in the steel bars) with regards to time are examined.  

Accordingly, the following tasks are carried out in this study: 

 Design a reinforced concrete (RC) column in a two-span continuous bridge according to 

CHBDC 2006. Three locations are considered, namely Toronto, Ontario; Vancouver, British 

Columbia; and Victoria, British Columbia, which are used to represent low, high, and 

extremely high seismic hazard regions in Canada, respectively, for the design of bridges for 

earthquake loads. In total, eight columns are examined, two (one tied column and one spiral 

column) in Toronto, two in Vancouver, and four (two tied columns and two spiral columns) 

in Victoria.  

 Model bridge columns subjected to blast loads in LS-DYNA. 

 Examine the effects of equivalent scaled standoffs for blast loads to determine the 

importance of charge weight and standoff distance. 

 Compare the behaviour of columns reinforced with two types of transverse reinforcement, 

i.e., ties and spirals.  

 Investigate the effects of charge height on the performance of RC bridge columns. 
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1.3 Outline of the Thesis 

This thesis is organized into the following seven chapters.  

Chapter 1 briefs the motivations of the study. 

Chapter 2 provides detailed information on blast loads including the definition and 

classification of blast loads and structural performance due to blast loads. This chapter also 

summarizes past studies related to the objective of this study, along with their major findings. 

Chapter 3 describes the design of columns used in the study. A typical two-span continuous 

RC highway bridge located in each of the following locations, i.e., Toronto, Vancouver, and 

Victoria, were designed according to the CHBDC 2006.  

Chapter 4 presents details on the techniques for modeling the designed columns in LS-

DYNA, such as types of elements used, properties of materials (concrete and steel), and 

simulation of blast loads.  

Chapter 5 and Chapter 6 summarize the qualitative and quantitative results from LS-DYNA. 

Finally, Chapter 7 presents the main observations and conclusions from the study. 

Recommendations are also included in this chapter.  
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Chapter 2: Literature Review 
 

2.1 Introduction 

 

There are several types of explosion categories, each of which is associated with different 

wave phenomena mechanisms. In addition, several parameters to classify blast loads have been 

developed based on air blast tests performed in the 20
th

 century, and they have been implemented 

in finite element analysis software to simulate blast loads. Dynamic characteristics of blast loads 

are another concern for the assessment of blast load resistance of bridges. Both simplified and 

advanced methods have been developed as knowledge on blast loads has increased. Specifically, 

the simplified methods are mainly used to conduct preliminary assessments of blast load 

resistance of bridges, while the advanced methods are used to evaluate the performance of 

specific bridges (i.e., important bridges) under blast loads. Due to the lack of guidelines for 

design of bridges against blast loads, comprehensive research is underway. It is well accepted by 

the engineering community that the design requirements for blast loads will be based on those 

for seismic loads, given that both explosions and earthquakes are treated as extreme events that 

apply lateral loads onto the structure.  

2.2 Blast Loads 

2.2.1 Blast Loads and Shock Wave Phenomena 

 

A blast, which is often attributed to a bomb explosion, can be classified as a sudden and 

violent release of energy. More specifically, blast loads are considered as dynamic loads whose 

impact lasts an extremely short amount of time, usually in milliseconds. However, it can produce 

very high pressures in the order of hundreds of Megapascal. The waves of pressure expand 

radially from the charge source, and the pressure decays as distance from the source increases. 
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As waves travel, they create what is known as a shock front, which is the foremost wave layer to 

expand away from the source of the charge. When the wave passes through the ambient 

atmosphere, it compresses the air in its path and creates an overpressure, which is the excess 

pressure relative to the ambient atmosphere. When the shock front has passed through, the 

pressure (i.e., positive pressure) then drops below the ambient pressure, and this creates suction 

pressure (i.e., negative pressure). Figure 2.1 schematically shows the positive and negative 

pressures vs time. It can be seen in the figure that negative pressure is extremely small compared 

to positive pressure. Therefore, the effect of the negative pressure phase is normally ignored in 

the analysis as recommended by Williams and Williamson (2011). The area under the time-

pressure curve represents impulse, which is the total energy available from the blast. 

 

Figure 2.1 Time-pressure curve for free air explosions (Department of the Army, 1990). 

 

 Currently, the positive pressure phase is calculated using the Friedlander equation (Baker, 

1973), i.e., Equation 2.1, while the impulse is the integration of the pressure as expressed in 

Equation 2.2. The two equations were used by the US Army Corps of Engineers to develop the 
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Conventional Weapons (ConWep) code for blast load analysis (US Army Corps of Engineers, 

2001). Furthermore, they are adopted by most of the finite element analysis software including 

LS-DYNA in order to determine pressure due to blast.  

                                 
                                                                          (2.1) 

                                                                                               (2.2)                                                         

 

Where, 

          Ps0 = Peak overpressure from shock front, 

           tA = Arrival time of shock front, 

           t0 = Duration of positive pressure phase, 

           b = Rate of pressure decay coefficient. 

 

2.2.2 Types of Explosions and Effect on Waves  

 

The Department of the Army (1990) classifies explosions based on whether the explosion 

is confined or unconfined. Confined explosions occur in enclosed areas such as buildings while 

unconfined explosions occur in open space areas. Blast loads on bridge columns due to bombs 

fall into the category of unconfined explosions. Unconfined blasts are divided into three 

categories, such as free air burst, air burst, and surface burst, as presented in Fig. 2.2. For the free 

air burst and the air burst, the center of the charge is located above ground, and for the surface 

burst, the charge is located on the ground. The major difference for a charge above ground (Figs. 

2.2a and 2.2b) is that the shock front from a free air burst reaches the target unimpeded, whereas 

the shock front from an air burst reaches the ground first and is then reflected upwards to reach 

the structure (dashed lines in Fig 2.2b). When these waves bounce off the ground, they then 

move through the hot compressed air left behind by the shock front and catch up to the incident 
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wave, which will be the first wave layer to reach the structure. This creates a super positioning of 

waves, known as the Mach front, and it drastically amplifies the effect of the blast and can cause 

severe damage (Winget et al., 2005a). With respect to the surface burst, since the charge is 

placed on the ground, the waves propagate upwards as they cannot reflect off the ground.  

 

Figure 2.2 Components of blast loads: (a) free air burst, (b) air burst, and  

              (c) surface burst, adopted from Karlos and Solomos (2013). 

 

2.3 Classification of Blast Loads 

 

There are several categories to classify explosions based on factors such as charge weight 

and charge location. Furthermore, experimental work has been conducted in order to identify 

major parameters for blast load classifications. It should be noted that the immediate and 

resulting pressures on a structural member depend greatly on the explosion category.  

In the past decades, the US Department of the Army conducted hundreds of tests to study 

the parameters that would affect the positive pressure phase of blast loads. Based on observations 

from the test results, several parameters were identified and were correlated to the positive 

pressure phase of the blast. As show in Fig. 2.3, the Department of the Army (1990) reported that 

the parameters that can be correlated empirically with each other from the positive pressure 

phase are peak incident pressure (Pso), reflected pressure (Pr), incident impulse (is), reflected 

impulse (ir), time of arrival of peak incident pressure (ta), duration of positive pressure phase (to), 
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shock front velocity (U), and scaled wavelength of positive pressure phase (Lw). These 

parameters follow the Hopkinson-Cranz scaling law, which was developed in the beginning of  

 

Figure 2.3 Blast wave parameters during the positive phase  

      of blast (Department of the Army, 1990).  

 

the 20th century and is defined by scaled standoff (Z), charge weight (W), and distance from 

charge to the target (R). Figure 2.3 shows the value of these parameters (vertical axis) vs scaled 

standoff (horizontal axis). Scaled standoff (Z) can be calculated using Equation 2.3, and as 

reported in Conrath et al. (1999), the same blast effect can be created with different charge 

weights and standoff distances. In addition, Equation 2.3 has been coded into finite element 
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analysis software like LS-DYNA through the ConWep code (US Army Corps of Engineers, 

2001) to quantify the effects of the positive pressure phase. It is necessary to mention that the 

scaled standoff Z, its corresponding reflected pressure, and impulse are crucial to the level of 

column damage regardless of column properties such as mass or stiffness (Shi et al., 2007). 

Given this, scaled standoff Z is used as a major parameter in this study. 

                                                                                                             (2.3) 

          Where, 

                       Z = Scaled standoff (m/kg
1/3

)    

                       R = Standoff distance (m), measured from the center of the charge to the target    

                              structure 

                       W = Equivalent weight of TNT charge (kg) 

                       

 

TNT had been the explosive of choice for hundreds of experimental tests, and it was used 

to validate Equation 2.3, which is also referred to as the Hopkinson-Cranz scaling law or cube 

root scaling law. But terrorist attacks have shown that TNT is not always the explosive of choice. 

Table 2.1 lists typical explosives along with the pressure and impulse of each as compared to the 

equivalent pressure and impulse of TNT.  

Due to the fact that the ConWep code in finite element analysis software such as LS-

DYNA is based on scaled standoff (i.e., parameter Z in Equation 2.3), equivalent mass factors 

were created for different types of explosives. All explosives other than TNT can be converted to 

an equivalent mass of TNT, and can then be used in Equation 2.3. Table 2.2 presents these 

equivalent mass factors with a range between 0.50 and 1.42. 
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Table 2.1 Equivalent TNT pressure and impulse for various  

        explosives (Department of the Army, 1990). 

 
 

Table 2.2 Equivalent TNT mass factor for various explosives (Dusenberry, 2010). 

 

 

2.4 Dynamic Structural Response to Blast Loads 

 

 Figure 2.4 presents the methods that are used for blast load analysis. It can be seen in the 

figure that the methods are divided into two primary categories, i.e, uncoupled analysis and 

coupled analysis. Uncoupled analysis describes the case where wave propagation from the blast 

and the structural response are analyzed separately. More specifically, the blast load is first 
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calculated and is then applied onto the structural member. In this case, the entire load is being 

applied onto the member at once. Given the very short duration of blast loads, energy dissipation 

from structural failure cannot be accounted for as reported in Williamson (2010). Therefore, this 

method tends to overestimate structural damage. The coupled analysis method describes the case 

where wave propagation from the blast and the structural response are considered together as 

they interact over time. Although these results are more realistic compared to the results from 

uncoupled analysis, this method requires advanced knowledge of dynamic analysis and finite 

element modeling. Furthermore, this method significantly increases computational time. Due to 

uncertainties in the characteristics of blast loads such as charge weight, shape of charge, position 

of charge, etc., the effort and complexity required for this method is not always warranted 

(Biggs, 1964). 

 

Figure 2.4 Typical blast loads analysis methods adopted from Winget (2003). 

 

Like wind and earthquake loads, blast loads can also be considered as an equivalent static 

load for design purpose. However, this might lead to tremendously inaccurate results. Blast loads 

are unpredictable, and there is no verifiable historical data for the virtually unlimited scenarios 
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that can occur (Bounds, 1998). As a result, there are no applicable equations to find an 

equivalent static load. Given these facts, dynamic analysis is the most common method presently 

used for blast loads analysis.  

It is well known that an equivalent single degree of freedom system (SDOF) can be used 

instead of a multiple degree of freedom system (MDOF) to estimate some parameters of building 

response (e.g., roof displacement) due to earthquake loads (Fajfar, 2000). However, this method 

has not been validated for blast loads. Before the 1990’s, analysis was conducted using the 

uncoupled static SDOF method. With ground-breaking advancements in programming codes that 

can accurately simulate complex blast loads, the coupled dynamic method with MDOF analysis 

has been adopted in the most powerful blast load analysis software such as LS-DYNA.  

Damping is usually ignored when dealing with blast loads as velocity damping is 

extremely small compared to the energy dissipated through plastic hinging (Williams, 2009). 

Material strain rate due to blast is another factor that will affect structural response. Ngo et al. 

(2007) reported that blasts produce the highest strain rate in materials such as concrete and steel, 

ranging from 10
2 

s
-1

 to 10
4 

s
-1

, as compared to other types of loads including earthquake (Fig. 

2.5). The experimental work on both concrete and steel has shown that these materials can  

Figure 2.5 Range of strain rates for various types of loadings (Ngo et al., 2007). 

experience an increase in strength due to blast. This is because the rate of loading from a blast is 

so rapid that these materials cannot respond quickly and show deformation (Tedesco et al., 
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1999). For example, blast loading would increase concrete compressive strength for flexure by 

approximately 25% and approximately 10% for shear as compared to static loading. The yield 

strength of steel bars during blast tests was increased by about 23% in flexure and 10% in shear 

as compared to static loading (Department of the Army, 1990). This perceived increase in 

strength has been quantified from experimental testing and is given by Dynamic Increase Factor 

(DIF) values, which represent the ratio of material strength during dynamic loading to that 

during static loading. Some studies have reported that concrete in compression could obtain a 

DIF as high as 4 (Grote et al., 2001).  

2.5 Previous Studies 

After the attack of September 11
th

, 2001, terrorist attacks on infrastructure became a 

serious concern and bridges were no exception. During that year, the Conventional Weapons 

(ConWep) code was developed by the US Army Corps of Engineers and allowed for basic 

simulation of blast loads on bridges. Ray et al. (2003) investigated the effects of blast loads on a 

highway bridge due to a bomb placed below its deck. This study was focussed on assessing the 

difference between programming codes available for blast load simulations, such as ConWep, 

Blast-X (Britt et al., 1998), and SHAMRC (Crepeau, 2001), with respect to pressure and 

impulse. Baylot et al. (2003) listed some issues about blast load analysis on bridges for military 

and civilian purposes. For example, regarding the effect of charge, the military tends to focus on 

missiles and the charge shape is modelled as a cylinder. However, for civilian analysis the 

concern is hand placed and vehicle delivered bombs; therefore, the charge shape is spherical. 

Moreover, the military focuses on above deck explosions while civilian research focuses on 

underneath deck explosions. In addition, Baylot and his fellows modelled and examined the 

effects of blast on I-beams and found the importance of web thickness and beam depth in 
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preventing failure. Their beams were further examined by Islam and Yazdani (2008). They 

reported that below deck explosions could cause girder failure due to pressure build-up in 

confined areas between girders, which, in turn, led to large negative moment, crushing and 

shearing after the uplifting and dropping down of the deck. They also concluded that girder 

failure was mainly due to shear not flexure. Winget et al. (2005a) examined a two-span bridge 

with AASHTO girders and a three-column bent. They assumed a vehicle delivered bomb and 

modelled the resulting blast at different locations of the bridge. Results from their study showed 

that below deck explosions are more severe than above deck explosions. The main failure 

mechanisms for the columns observed in the study are crushing, spalling, and shear at the base. 

In addition, recommendations were made in Winget et al. (2005b) on how to better protect 

highway bridges against blast loads. This includes physical security and layout measures such as 

barriers around columns to increase standoff, and elimination of vegetation that could be used for 

hiding. They also found that circular columns had better performance than square columns. 

Pressure waves can go around circular geometries but not square geometries that have flat 

surfaces. As such, pressure can accumulate on the front face of square columns and the energy is 

not able to dissipate. Furthermore, the results showed that columns that are pinned at the top had 

satisfactory performance with regards to shear resistance. A pinned boundary condition allows 

rotation which can decrease shear failure. Fujikura et al. (2008) tested the performance of 

quarter-scale concrete filled steel tube (CFST) columns with fixed-pined boundary conditions. 

Their work showed that steel tubes could prevent spalling and breaching of the concrete core. 

Ductile failure was observed during the tests. Very recently, Wang et al. (2017) tested CFST 

columns under blast loads and found that, although mid-height deflection of columns was 

reduced by 67%, the columns could still carry 60% of the required axial load. Fujikura and 
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Bruneau (2010) investigated the benefits of using steel jacketing, which is commonly used to 

retrofit columns for seismic loads, against blast loads. The concept of steel jacketing is the same 

as that of CFST columns, except steel jacketing is discontinuous at the top and bottom of the 

column. It was found that the performance of a steel-jacketed column was very similar to that of 

a CFST column. However, the steel-jacketed columns experienced brittle failure from shear due 

to the discontinuity of the steel jacket at the top and bottom boundaries.  

Williamson et al. (2011a) conducted a very comprehensive experimental study on bridge 

columns subjected to blast loads. In total, ten half-scale circular and square columns with 

different cross sectional dimensions were tested. These columns were designed according to the 

seismic provision specified in AASHTO LRFD (2007) and design manuals in eleven states 

issued by their respective Department of Transportation in the United States. The goal of the 

study was to evaluate the effects of column characteristics, such as shape of the cross section, 

type of the transverse reinforcement (i.e., ties and spirals), reinforcement ratio, and the location 

of lap splices. Their results showed that circular columns had better wave clearance, especially at 

the base, compared to square columns. More specifically, it was noticed that significant pressure 

was accumulated at the front face of square columns as the waves could not clear the free edges, 

while this is not the case for circular columns. Accordingly, larger impulse was developed at the 

front of the square columns. They also found that spiral reinforcement was better than ties to 

resist blast loads even though ties are preferred in practice due to ease of construction. For the 

same column-blast scenario, spirals experienced extensive damage but no brittle failure was 

observed in the tests. With respect to the ties, the test results showed that the minimum hook 

length required by both AASHTO LRFD (2007) and CHBDC (2006) was not sufficient for blast 

load resistance. The hooks open up and the tie reinforcement is pulled out. Similar observations 
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were reported in Bae and Bayrak (2008). Another point of interest was reinforcement ratio, and 

results showed that by increasing volumetric reinforcement by one-and-a-half times the 

requirement, columns performed much better. In terms of lap splicing, mechanical splicing was 

preferred in order to avoid the separation of longitudinal reinforcement. Based on the test results 

mentioned above, several recommendations were made in Williamson et al. (2011b). For 

example, three categories were developed for scaled standoffs. For each category, the preferred 

type of transverse reinforcement and location of lap splices were recommended. The failure 

mechanism of spalling of concrete side cover was also highlighted in Williamson et al. (2011b). 

Side spalling of circular columns, in addition to spalling at the back of the columns, was 

observed. It should be noted that side spalling of concrete cover was not considered as a failure 

mechanism in the requirements for blast load analysis issued by the Department of Defense 

(2002, 2008). This failure mechanism occurs when blast waves penetrate the front face of the 

column and travel to the back face, which causes contraction in the cross section. While these 

waves hit the back face and travel back towards the front face, the cross section experiences 

expansion. This expansion then causes spalling on the side of the column. Side spalling will 

reduce the cross section of a column, which will in turn decrease its load-carrying capacity. 

When analyzing bridges with regard to failure mechanisms from blast and seismic loads, there 

are a total of fourteen possible failure modes, and nine of them are common to both seismic and 

blast loads as reported by Yi et al. (2013a). The failure modes that do not occur from an 

earthquake but do occur from blast are related to the characteristics of the external loads. Seismic 

loads only act laterally and vertically, whereas blast loads are radially distributed. In general, 

both seismic and blast loads can cause failure modes related to erosion, shearing, rebar breakage, 

plastic hinging, and breakage of the column. 
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In parallel with the advancement of numerical and experimental work, modelling and 

simulation of blast loads in structural analysis software have tremendously improved these days. 

Although the ConWep code was developed in 2001, it is still used as a primary tool to examine 

the effects of blast. Recently, improved methods such as the Multi-Material Arbitrary 

Lagrangian Eulerian (MM-ALE) method were introduced. According to MM-ALE, the charge is 

explicitly modeled with an explosive burn equation, which can vary between programs, and the 

air domain between the charge and the structure is modelled as Eulerian elements. It has been 

noted that the MM-ALE method significantly increases the accuracy of the results. However, 

MM-ALE requires advanced knowledge of finite element modelling and extremely long 

computation times (Slavik, 2010). Yi et al. (2013b) proposed a hybrid method to couple the 

ConWep code and MM-ALE in order to use it in the commercial software LS-DYNA, which is 

the most popular program for structural analysis of blast loads on bridges. According to Yi et. al. 

(2013b), the blast pressure is modelled using empirical equations embedded in the ConWep 

code, i.e., the charge is not explicitly modelled, while the Eulerian air domain is modelled around 

the vicinity of the structural member under examination. Furthermore, the air domain does not 

span from the center of the charge to the structure, it only surrounds the immediate area around 

the structure. Yi et al. (2013a) reported that this hybrid combination could save tremendous 

computation time and effort while keeping accuracy of the results. Liu et al. (2015) compared the 

failure mechanisms of a typical three-column bent based on ConWep, MM-ALE, and the 

coupling of ConWep and MM-ALE. They found that ConWep alone did not represent all wave 

reflections, and it could not demonstrate extreme failure mechanisms unless relatively heavier 

charges were used in the modelling. In addition, they suggested that the air domain should be 

modelled explicitly in order to include the effects of wave reflection and confinement for decks, 
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bents, girders, and abutments. It is necessary to mention that the latest ConWep code in LS-

DYNA can account for wave reflection on the ground and can be used for analysis of 

unobstructed columns. 

Currently, LS-DYNA is the most popular software for modelling blast loads on bridges 

and has been used in numerous studies, including those mentioned above. More specifically, the 

major advantages of LS-DYNA are: 

 Modelling techniques for applying blast pressure have been validated. 

 Material models and program codes have been created specifically for blast load 

analysis of bridges. 

 Providing detailed information from output files, including concrete failure, 

reinforcement stress, and displacement of columns. 
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Chapter 3: Design of Bridge Column 
 

3.1 Bridge Description  

 For the purpose of this study, a generic bridge (Fig. 3.1) located in each of the following 

cities was designed, i.e., Toronto, Vancouver, and Victoria. These locations were selected to 

represent the low, high, and extremely high seismic hazard zones in Canada.  

                                                                      Elevation 

 

Section I-I 

 
Figure 3.1 Geometric configuration of the bridge (units: mm). 
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It is a two-span continuous reinforced concrete bridge with each span of 48.5 m. The length of 

the wing wall on the east and west abutments is 8.7 m. The total width of the deck is 11.96 m. 

The wearing surface is 90 mm. The superstructure consists of a two-cell post tensioned cast-in-

place concrete box girder with an overall thickness of 2.0 m, in which the depths of the top and 

the bottom flange are 175 mm and 225 mm, respectively. The box girder is supported by two 

columns, and each column has a diameter of 1.3 m and a height of 6.5 m. A shallow foundation 

is used for the pier and the abutments. Expansion bearings are used on the abutments, and fixed 

bearings are used on the pier. It is necessary to mention that the geometry of the bridge is the 

same for all three cities. 

3.2 Bridge Column Design  

 The three-dimensional bridge model was developed using the commercial software CSI 

Bridge (CSI, 2015a), as illustrated in Fig. 3.2. More specifically, the superstructure was 

modelled as an area object while the columns were modelled as beam elements. The abutment at 

each end was simplified as a roller according to the recommendation made by Aviram et al. 

(2008). The foundation was considered fully rigid, i.e., all six degrees (three rotations and three 

translations) were restrained. Reduction factors for the flexural moment of inertia of slabs and 

columns were 0.70 and 0.35, respectively, while no reduction was made to other properties 

including torsional moment of inertia, shear area, axial stiffness, etc. (Caltrans, 2004).  

The traffic load applied on the bridge deck is the CL-625 loading defined in CHBDC. 

The number of design lanes specified in the modelling was three with a multilane loading factor 

of 0.8 applied to both truck and lane loads. The seismic responses were determined by 

conducting response spectrum analysis.  
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Figure 3.2 Finite element model of the bridge: (a) 3D extruded view,  

                                        (b) cross section at pier, (c) line model. 

                    

 Figure 3.3 shows the design spectra for Toronto, Vancouver, and Victoria for the 

probability of exceedance of 10% in 50 years for soil type I (stiff soil) according to CHBDC 

(2006). It is necessary to mention that the 2006 edition of CHBDC was used instead of the latest 

2014 edition as the objective of this research is to evaluate the performance of existing bridges. 

(a) 

(b) 

(c) 
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Table 3.1 summarizes the design forces used for the design of columns in each location, 

including axial force, shear force, and bending moment. 

 
             Figure 3.3 Seismic design spectra for Toronto, Vanouver, Victoria,                                            

5% damping, 10%/50years, soil type I. 

                

          Table 3.1 Summary of column design forces. 

 

 Column design was conducted to satisfy the requirements specified in Section 4 (Seismic 

Design) and Section 8 (Concrete Structures) of CHBDC. In total, eight columns were designed in 

the study. More specifically, there is one tied column and one spiral column designed for 

Toronto and Vancouver, giving a total of four columns in these two cities. A total of four 

columns (two are tied, two are spiral) were designed for Victoria. The difference between the 

two designs of columns for Victoria is the bar size for the transverse reinforcement and its 
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spacing, i.e., smaller bar diameter and smaller spacing vs larger bar diameter and larger spacing. 

The tied and spiral columns that have smaller bar diameter and smaller spacing are named as the 

Set 1 design, and the tied and spiral columns that have larger bar diameter and larger spacing are 

named as the Set 2 design. Note that for all of the eight columns, the plastic hinge length is the 

same (i.e., 1.3 m). Table 3.2 presents information on the reinforcement of the eight columns that 

were designed. For illustration, Fig 3.5 shows the reinforcement in the Vancouver tied column. 

Detailed reinforcement design of all the columns is given in Appendix A. 

 

Table 3.2 Summary of column reinforcement design. 

 

Plastic hinge Non-plastic hinge

tied 27 - 25M @ 132 mm 15M @ 150 mm 15M @ 200 mm

spiral 27 - 25M @ 132 mm 20M @ 150 mm 20M @ 150 mm

tied 27 - 25M @ 132 mm 25M @ 100 mm 25M @ 200mm

spiral 27 - 25M @ 132 mm 25M @ 150 mm 25M @ 150 mm

Set 1, tied 27 - 25M @ 132 mm 25M @ 80 mm 25M @ 80 mm

Set 1, spiral 27 - 25M @ 132 mm 25M @ 80 mm 25M @ 80 mm

Set 2, tied 27 - 25M @ 132 mm 30M @ 100 mm 30M @ 100 mm

Set 2, spiral 27 - 25M @ 132 mm 30M @ 125 mm 30M @ 125 mm

Vancouver

Victoria

Transverse reinforcement
Location Column Longitudinal reinforcement

Toronto
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Figure 3.4 Reinforcement details for the Vancouver tied column (units: mm). 
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Chapter 4: Finite Element Modelling                                      

n                  of Blasts in LS-DYNA 
 

4.1 Introduction 

 

The major steps for finite element modelling of blast loads in LS-DYNA in this study are 

as follows: 

 Define materials: this includes selecting the type of elements and the constitutive 

model used for concrete and steel. 

 Model reinforcement: transverse and longitudinal steel bars are modelled. 

 Model concrete: concrete mesh is created to represent the bridge column. 

 Couple concrete and steel reinforcement: this is to assure the two materials act 

together. 

 Define boundary conditions: some of the nodes on the top and bottom of the column 

need to be restrained to represent the initial condition of the column at both ends. 

 Apply blast loads: the blast loads need to be defined and applied to the appropriate 

elements of the column. 

 

4.2 Element Types Used in Modelling Concrete and Steel 

  

Solid elements in LS-DYNA can be used to model different shapes, such as hexahedrons, 

tetrahedrons, and pentahedrons. In this study, concrete is modelled as 8-node hexahedron 

elements. There are two choices for defining these elements depending on whether the elements 

are integrated or not integrated, i.e., element form 1 (ELFORM 1, LS-DYNA notation) and 

element form 2 (ELFORM 2). As illustrated in Fig. 4.1, ELFORM 1 is a single point un-
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integrated element in which there is a single point located at the center of the element to measure 

stress and the corresponding strain. This can lead to a major shortcoming when using ELFORM 

1. In LS-DYNA, when an element is experiencing stress, the resulting strain will be recorded. 

However, if the stress has not reached the single point in the center of the element, the software 

could interpret that no strain occurred. This case is referred to as the hourglass effect and is 

reported in LSTC (2006). Furthermore, Erhart (2011) addressed that hourglass stabilization was 

required and attention should be given on choosing an appropriate hourglass method if ELFORM 

1 is used. In addition, the double precision solver might be required to create stability instead of 

the standard single precision solver, and this tremendously increases computational time (LSTC, 

2016b). To overcome the disadvantages of ELFORM 1, the integrated ELFORM 2 was 

introduced and has more than one integration point within a single element, as illustrated in Fig. 

4.1b. In scenarios where the elements have poor aspect ratios, integrated elements can become 

too stiff, which is known as volumetric locking (LSTC, 2006). In this study, poor aspect ratios 

are not concerning since the elements are uniform and optimized for size. Even though 

computational time for ELFORM 2 is greater than for ELFORM 1, the former is chosen in the 

study to avoid the hourglass effect. 

  (a)                                           (b) 

 

 

Figure 4.1 Solid elements in LS-DYNA (Erhart, 2011): (a) ELFORM 1, (b) ELFORM 2.    
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Steel reinforcement was modelled as beam elements with three options available, namely 

the Belytschko beam, the Hughes-Liu beam, and the Warped beam. Among these three types of 

beams, the Hughes-Liu beam was the first model implemented in LS-DYNA and is the primary 

beam model used for steel reinforcement in blast load analysis on columns. This model is well 

accepted as it is effective and requires less computational time (Schwer, 2014). More 

specifically, the beam is modelled as an 8-node hexahedron solid element with a single 

integration point (i.e., ELFORM 1) as there is no hourglass effect for this beam element 

according to LSTC (2006).  

4.3 Material Models  

4.3.1 Constitutive Concrete Model 

 

There are several models available in LS-DYNA to simulate the behaviour of concrete. 

Four of them can be used to represent nonlinearity of concrete due to blast loads, and they are:  

 Material 72: The MAT_CONCRETE_DAMAGE model, known as the Karagozian and 

Case model (KCC), has three shear failure surfaces. It was originally developed to model 

buried reinforced concrete elements subjected to impulsive loadings. Recently, the third 

revision of this model (MAR_CONCRETE_DAMAGE_REL3) became available. 

 Material 84: The MAT_WINFRITH_CONCRETE model, known as the Winfrith 

concrete model, is a smeared crack and smeared rebar model developed by Broadhouse 

and Neilson in 1987. It should be noted that this model uses a single integration point; 

therefore, double precision is required to reduce instability. 

 Material 111: The MAT_JOHNSON_HOLMQUIST_CONCRETE model, known as the 

Holmquist-Johnson-Cook model (HJC), was designed to simulate concrete that 
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experiences large strain under high pressure and the model takes permanent crushing into 

account. 

 Material 159: The MAT_CSCM_CONCRETE model, known as the Continuous Surface 

Cap Concrete model (CSCM), has a smooth surface and is mainly used for solid 

elements. In this model, the failure criterion can be modified. 

  

Among the four models described above, the two that can be considered for this study are the 

KCC and CSCM models for the following reasons:  

(i) The KCC model has extensive options for user inputs to include different variables 

such as pressure hardening coefficients, damage scaling factors, and hardening 

modulus. Before releasing the third version of this model, all of these user inputs 

were required and some of them must be validated with experimental data. However, 

this process has been simplified significantly in the third version that requires more 

general inputs such as concrete compressive strength. On the other hand, the CSCM 

model, which was developed for the US Federal Highway Administration, is able to 

properly simulate impact loads on reinforced concrete structures (FHWA, 2007a; 

2007b). In addition, it requires fewer and more basic user inputs as compared to the 

KCC model.   

(ii) The KCC and CSCM models are the only two models that allow for failure criteria. 

One of the differences between the two models is that the KKC model requires a 

separate keyword to assign the appropriate failure criterion, while the CSCM model 

has a built-in failure criterion in the form of concrete element erosion. In addition, the 

KCC model requires an equation of state that is necessary to accurately determine the 
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hydrostatic behavior of the material based on density and energy. The CSCM model 

does not require an equation of state and calculates behavior based only on the 

volumetric strain of the material.  

(iii) The KCC and CSCM models are the only two models that account for strain rate 

sensitivity and a Dynamic Increase Factor (DIF), which was described in Chapter 2. It 

was reported by Wu et al. (2012) that the KCC model performed better than the 

CSCM model in situations where confinement could have significant impact on 

failure since its strain rate effects were better calibrated. The KCC model requires the 

user to define a property curve that accounts for the DIF, which can be obtained from 

experimental tests or literature. However, the CSCM model has an option to activate 

and include strain rate effects that is already implemented in the program, i.e., no 

user-defined curve is required, and strain rate effects are automatically calculated 

based on properties such as concrete compressive strength.  

By considering the advantages and disadvantages of the two models, the CSCM model 

was chosen to represent the material model for concrete. It is isotropic and demonstrates elastic 

behaviour of concrete before cracking. Once concrete enters plasticity, its yielding is defined by 

a three dimensional surface, as illustrated in Fig. 4.2. More specifically, if the stress on the 

element is below the yielding surface, the material is in an elastic state. Otherwise, it is in the 

plastic stage. In addition, the model has a damage predictor criterion in which the base value is 1 

and represents the onset of cracking. Any value larger than 1 indicates that the element is eroded 

and it will be deleted from the simulation (Murray et al., 2007). With respect to the strain rate 

effects, LS-DYNA uses the CEB-FIP model to take the Dynamic Increase Factor (DIF) into 
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account for both compression and tension (Euro-International Committee for Concrete, 1990; 

Brannon and Leelavanichkul, 2009).  

 

Figure 4.2 Schematic illustration of concrete yielding surface (FHWA, 2007a). 

  

4.3.2 Constitutive Steel Model 

 

The most commonly used model for steel reinforcement in LS-DYNA is Material Type 

24, denoted as MAT_PIECEWISE_LINEAR_PLASTICITY, which has been validated with 

experimental work from blasts. It is an elasto-plastic model and considers plastic deformation, 

strain rate effects, and member failure (LSTC, 2016b). The required user inputs for the model are 

material density, Poissoin ratio, modulus of elasticity, tangent modulus, and yield stress. It is 

necessary to mention that the DIF for this model must be defined manually with steel stress-

strain property as suggested by Schwer (2014). 

 

4.4 Modelling of Reinforced Concrete Column 

 

The modelling is carried out following the steps outlined below, 

 

Step 1: Modelling of Reinforcement  

Two sets of reinforcements are modelled separately in this study in which one set is for 

the transverse reinforcement and the other set is for the longitudinal reinforcement. As an 
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example, Figure 4.3 illustrates the LS-DYNA model for the reinforcement of the Vancouver tied 

column before and after element generation. The element generator is then used to create 

elements for each set. Finally, the keyword SET_PART_LIST is applied to combine the 

transverse and longitudinal reinforcement into a single part in order for them to act together. 

                                (a)                                        (b)   

 

 

Figure 4.3 Model of reinforcement in the Vancouver tied column:  

                      (a) before element generation, (b) after element generation. 

 

Step 2: Modelling of Concrete 

 

The concrete mesh used for the circular column is based on a cylinder with solid 

elements where the radius and height of the column are defined. In order to create elements, LS-

DYNA assigns the number of elements along the circumferential direction and along the height 

of the column based on the selected mesh size, followed by the application of element 
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generation. For illustration, Fig. 4.4 shows the LS-DYNA model generating concrete in the 

Victoria Set 1 tied column.  

                        (a)                                               (b)     

 

   Figure 4.4 Model of concrete in the Victoria Set 1 tied column:  

                              (a) before element generation, (b) after element generation. 

 

Step 3: Application of Sections and Materials 

 

After the elements for reinforcement and concrete are created, the next step is to assign 

the section and material properties for each element. For reinforcement, SECTION_BEAM is 

used to assign beam properties. The diameter of the transverse and longitudinal reinforcement is 

also specified. Finally, the keyword MAT_PIECEWISE_LINEAR_PLASTICITY is applied to 

define the properties of steel. For concrete, SECTION_SOLID is used to identify the concrete 

mesh as solid elements, and the ELFORM 2 option is selected to assign element form 2 
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properties. The keyword MAT_CSCM_CONCRETE is used to define the concrete material. It is 

necessary to mention that an erosion parameter was assigned with a value greater than 1, and 

strain rate effects from DIF are activated from the IRATE key card. Lastly, the keyword PART is 

used to combine the elements and materials to both concrete and reinforcement. 

 

Step 4: Coupling of Concrete and Steel Reinforcement  

 

Steel reinforcement needs to be merged to the concrete in order for them to work 

simultaneously. Two methods are available in LS-DYNA to achieve this goal, which are the 

smeared method and the explicit method.  

  For the smeared method, the total volume of reinforcement is divided by the total volume 

of concrete, which gives a volume fraction coefficient. This fraction is used to give a weight to 

the properties of concrete and steel. Accordingly, a composite material property is created 

(Schwer, 2014). This method works well within the elastic range, but it is not a good option for 

elements that could undergo significant plastic deformation, as is the case for blast loads (LSTC, 

2006). For the explicit method, there are two options: the shared nodes and constraint methods. 

The shared nodes method involves connecting the common nodes of concrete and reinforcement 

(Tavarez, 2001). This can be extremely long and tedious, especially as element size decreases. 

Therefore, the preferred method is the constraint method in which the concrete mesh and 

reinforcement elements are modelled separately in LS-DYNA and a system is automatically 

developed to restrain the motion of the two based on relative geometry (Schwer, 2014). The 

keyword that applies this concept is CONSTRAINED_LAGRANGE_IN_SOLID, where the 

concrete mesh is considered as the master and the reinforcement is treated as the slave. 
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Step 5: Boundary Conditions  

 

In both experimental and modelling work, boundary conditions of highway RC bridge 

columns are assumed to be fixed to the footing and pinned at the top, which is a critical case for 

blast load analysis and the configuration of the bridge in this study. In the modelling, a set of 

nodes is created for the nodes at the top and another set is created for nodes at the bottom of the 

column using the command SET_NODE. Then, the translational and rotational constraints that 

are applied to the set of nodes are defined through the BOUNDARY_SPC_SET keyword. For 

illustration, Fig. 4.5 shows the constrained nodes at the top of the Toronto spiral column. 

 

Figure 4.5 Constrained nodes at the top of the Toronto spiral column. 

 

4.5 Mesh Size and Sensitivity Analysis 

 

The two critical parameters for meshing of circular columns considered in this study are 

the number of elements along the circumferential direction and along the height of the column. 

For the purpose of sensitivity analysis, the Toronto tied column was taken under examination as 
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it is expected to be the worst performing column of this study. In this study, simulations for the 

blast will run for 80 milliseconds (ms) in order to observe all major failure mechanisms. Based 

on LS-DYNA’s internal conversion of bytes to words of memory and the computer core used for 

this analysis, it is found that the maximum memory for running an input file is 900 million words 

of memory. As illustrated in Table 4.1, the 887 million words of memory from a concrete mesh 

size of 30 mm is very close to the maximum memory that is available. Accordingly, this is used 

as a minimum mesh size in the sensitivity analysis. It should be noted that the solver removes 

deleted nodes and elements that have failed from the simulation. This process increases 

computational time and the real time that is required to run simulations is drastically longer than 

the approximate time given by LS-DYNA’s solver at the beginning when it reads the input file. 

As an example, when testing the 55 mm mesh, the approximated simulation time given by the 

solver was 8,060 seconds (about 2.2 hours). The actual time that was required for completion of 

the simulation was 19,908 seconds (about 6 hours), which represents an incredible increase of 

about 250% from the original estimate due to significant erosion that occurred during simulation. 

The results in Table 4.1 indicate that convergence and optimization occur for a mesh size of 55 

millimeters. 

Table 4.1 Mesh sensitivity analysis results of the Toronto tied column for 80 ms simulation. 

Mesh size (mm) 
Number of 

elements 

Memory words 

required (million) 

Approximate simulation run 

time (seconds/hours) 

70 39093 32 1774/0.5 

60 155073 110 14651/4.1 

55 99194 54 8060/2.2 

50 98527 70 11379/3.2 

45 131781 94 14113/3.9 

30 1231105 887 265237/7.4 
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Figure 4.6 illustrates the mesh sizes of the six examined cases, ranging from 30 mm to 70 

mm. It can be seen clearly in the figure that the shapes of the cross sectional elements vary along 

the radial direction since LS-DYNA automatically configures the elements along the radial 

length, such that the column’s transverse reinforcement would fall within the first element that is 

at the exterior surface of the column. LS-DYNA optimizes the number of elements in the radial 

direction based on the number of elements along the circumferential direction and along the 

height of the column. Given this, the 55 mm mesh was chosen because there is a clear element at 

the exterior surface of the column and transverse reinforcement is embedded into the second 

element that is moving away from the surface of the column. This will better emulate the 

concrete clear cover that a real column has, and accordingly this provides better simulation 

results. Furthermore, 20 mm elements for both transverse and longitudinal reinforcement are 

selected based on observations by Williams (2009). Therefore, the concrete mesh size is chosen 

as 55 mm elements and reinforcements are chosen as 20 mm elements. 

 
   70 mm             60 mm             55 mm               50 mm               45 mm              30 mm 

Figure 4.6 Visual representation of mesh sizes of the six examined cases. 
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4.6 Modelling of Blast Loads   

 

There are three methods used to model blasts in LS-DYNA, which are the Conventional 

Weapons (ConWep) method, the Multi-Material Arbitrary Lagrangian Eulerian (MM-ALE) 

method, and a hybrid coupling method that combines the two above-mentioned methods.  

The ConWep code was developed by the U.S. Army Corps of Engineers in 2001 based 

on data from hundreds of air blast tests to create empirical equations. This method applies 

pressure from the positive phase of the blast onto the structural element. The air between the 

charge and the structural element is not modelled explicitly in this method. Therefore, when the 

pressure from the shock front reaches the structural element, it only propagates through the 

element if there are solid elements in its path. As a result, if elements become eroded, the 

pressure disappears along with those elements. Furthermore, since the air domain is not 

explicitly modelled, wave reflections are not accounted for and accordingly, the effects of 

confinement are ignored (Schwer, 2010).  

The MM-ALE method is more accurate than the ConWep method as both the explosive 

charge and air domain are explicitly modelled, and this overcomes the drawbacks of the ConWep 

method. However, this method requires tremendous expertise and computational effort. For 

example, for the same simulation parameters, the time for the MM-ALE method is about 340 

times greater than that of the ConWep method, as reported by Slavik (2010). In order to reduce 

computational time and keep the accuracy of MM-ALE modelling, attempts have been made to 

modify the Eulerian air domain. Traditionally, the air between the charge and the structure is 

modelled as a single Eulerian domain that works well for building structures with multiple 

stories in the vertical direction. Since bridges span horizontally, they do not require a large 
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vertical domain like buildings. One of the improvements that have been made to MM-ALE 

modeling for bridges is that the one big Eulerian air domain is replaced by several small 

domains, such that a specific domain is deleted when the pressure from the blast leaves that 

domain. By using this approach, it has been found that the computational time could be reduced 

by 40%-60% as compared to having one big domain (Pan, 2012). 

The hybrid coupling method that combines ConWep and MM-ALE has drawn attention 

over the last few years due to its high efficiency in keeping the accuracy of the results and 

decreasing computational time. In this method, the blast pressure is based on the ConWep code, 

and the charge is not explicitly modelled with a burn equation like it is with the MM-ALE 

method. The burn equation is a user-defined function that controls explosive behavior, including 

density and rate of explosion. Moreover, the Eulerian air domain does not cover the entire area 

between the charge and the structure. Instead, the air domain only covers the immediate area 

surrounding the structure in question. Therefore, both wave reflection and confinement around 

the structure are taken into consideration while the computational time is reduced as an air 

domain is not needed between the charge and areas that do not immediately surround the 

structure. It was reported by Schwer (2010) that computational time for the coupling method 

could be less than half than that of the MM-ALE method.  

Generally, the ConWep method is not appropriate for scenarios involving pier-bents and 

larger scale models (e.g., modeling of an entire bridge) since wave reflection and confinement 

will have significant effects on failure (Yi et. al, 2013a). However, Liu et al. (2015) recently 

showed that the ConWep method can still be used if the weight of the charge is increased in 

order to compensate for the lack of wave reflection and still allow for severe failure mechanisms 

to occur. Moreover, in this study where only a column is modelled, the charge has a clear and 
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unobstructed view of the column. Therefore, the only reflections that will occur are from the 

waves that hit the ground and bounce up to join the incident wave, which in turn creates a Mach 

front. A Mach front is created when there is a super positioning of waves due to reflection, and 

this creates a powerful wave that can significantly increase damage. For this study, these 

reflections can be considered using the keyword LOAD_BLAST_ENHANCED in LS-DYNA, in 

which the user has to input values for equivalent charge weight of TNT, distance of the charge 

from the column, and height of the charge above ground. In order to activate the ground wave 

amplification factor and account for the Mach front, a node residing on the ground is identified 

using the DEFINE_VECTOR keyword, where a vector perpendicular to the ground is created. 

This allows the LOAD_BLAST_ENHANCED function to know where the ground resides. Once 

the blast load has been created, the segments of column elements that will receive the positive 

phase pressure are identified using LOAD_BLAST_SEGMENT_SET. These segment element 

sets are those that have a clear view of the blast and will absorb the initial pressure (LSTC, 

2016b). With regards to the coupling method, there are a number of uncertainties for the air 

domain (e.g., thickness of the Eulerian air domain mesh, wavelength, initial density of the air, 

etc.) that would affect the results, as explained in Schwer (2010), Marburg (2002), Han and Liu 

(2015). Given that this study focuses solely on columns (i.e., not a large scale model) and wave 

reflections can be accounted for, the ConWep method was selected for modelling in this study.  

4.7 Validation of LS-DYNA Modelling 

 

As reported in Williams (2009), the maximum displacement of columns from Single 

Degree of Freedom (SDOF) analysis is commonly used to validate LS-DYNA modelling. 

Following this practice, in this study, the software RCBlast (Jacques, 2014) is selected to 

determine the maximum displacement of a column as a SDOF. It is necessary to mention that 
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RCBlast is designed specifically for modelling of singular columns against blast loads and has 

been validated with experimental work at the Shock Tube Test Facility at the University of 

Ottawa (Jacques, 2012).  

For the purpose of validation of the LS-DYNA models developed in the present study, 

the Vancouver tied column, whose reinforcement detailing is illustrated in Fig. 3.4 (Chapter 3), 

is chosen for comparison of maximum displacement. The SDOF analysis is performed for Case 

I, which is one of three blast load cases examined in this study, and the blast is placed at mid-

height of the column. Figure 4.7 illustrates the Graphic User Interface for SDOF analysis of the 

examined column in RCBlast along with some typical results such as the pressure vs time curve 

and the displacement-time history. 

 

Figure 4.7 Graphic User Interface of SDOF results for the Vancouver tied column in RCBlast. 
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Chapter 5: Analysis and Results –                   

g                  Charge Height X1                      
 

5.1 Introduction  

 

Due to the sensitive nature of blast loads on public infrastructure, specific details of the 

simulations including charge weight, charge height, and standoff distance will not be revealed in 

this thesis. The eight columns located in Toronto, Vancouver, and Victoria, as described in 

Chapter 3, are examined for two charge heights (X1 and X2). They represent the cases where a 

charge is located at mid-height of the column (X1) and close to the base of the column (X2), 

respectively. Charge height X2 is within range of the target location for hand placed or vehicle 

delivered bombs recommended by the Department of Defense. However, the exact location will 

not be revealed. For each charge height, three cases, namely Case I, Case II, and Case III, are 

tested. The results from Case I, with a specific charge weight and standoff distance, are 

considered as a reference for the purpose of comparison. In Case II, the charge weight is 

increased by 12% as compared to Case I, while in Case III the standoff distance is 12% closer to 

the column than in Case I. The factor of 12% was chosen as experimental work has shown that it 

is within a range of factors that can lead to significant impact on structural performance 

(Williamson et al., 2011a). It is necessary to mention that the scaled standoff for Case I, Case II, 

and Case III are the same in order to assess the effect of charge weight and standoff distance on 

the performance of the column, i.e., which parameter dominates the behaviour of the column. In 

total, 48 simulations (= 8 columns x 3 cases x 2 column heights) are performed in this study. 
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For a better understanding of the results, both qualitative and quantitative results are 

recorded from LS-DYNA for each set of simulations. Qualitative results include concrete failure 

mechanisms such as concrete crushing and spalling, while quantitative results include parameters 

such as when the steel bars yield and when the column reaches maximum displacement. 

 

5.2 Analysis of Results for Charge Height X1 (mid-height) 

5.2.1 Case I (reference case) 

5.2.1.1 Toronto columns 

 

Concrete failure mechanisms 

Figure 5.1 illustrates the effective plastic strain in concrete in the Toronto columns at 5 

ms, 15 ms, and 30 ms. Effective plastic strain is the total plastic strain acting on the surface of an 

element and indicates that the element is actively yielding, and the element fails when the scalar 

value of plastic strain reaches 1 (LSTC, 2006). As expected, the results in Fig 5.1 show that 

tension is developed on the columns back surface when the shock front makes contact with the 

column. It can also be seen in Fig. 5.1a that the tied column has already experienced breakage by 

the 15 ms mark, and more core concrete is eroded around mid-height as time goes on. More 

importantly, attention should be given to the pattern of erosion at the boundaries of the column, 

which can be used to explain the effects of boundary conditions on blast load resistance. The 

results in Fig. 5.1a clearly show that as the simulation progresses, erosion at the boundaries of 

the column slightly increases. In addition, the erosion at the top boundary mainly occurs outside 

of the concrete core, i.e., there is little penetration into the core of the concrete. However, at the 

base, erosion occurs on the entire circumference of the column, and it has penetrated into the 

concrete core. This pattern is due to the fixed-pinned boundary condition at the ends of the 
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column. Pinning the column at the top reduces shear but allows for larger flexural deformation, 

as reported in Winget et al. (2005b). 

            (a) tied column                                             (b) spiral column 

 
            5 ms         15 ms        30 ms                             5 ms          15 ms       30 ms 

Figure 5.1 Contour of the effective plastic strain in Toronto columns, Case I, X1.  

 

The boundary conditions also affect crack propagation patterns. For example, in the 

plastic hinge region at the top of the column (pinned connection), cracks propagate in a 

horizontal manner due to flexure, while at the bottom of the column (fixed connection), the crack 

line propagates at 45 degrees, which is indicative of shear cracking.  By comparing the results 

between the tied column (Fig. 5.1a) and spiral column (Fig. 5.1b), it is found that the spiral 

column performs better in terms of concrete erosion. Strain occupies a large area on the back of 

the tied column, which causes significant erosion. The strain is concentrated in a smaller area for 

the spiral column and it experiences less erosion overall. The spiral column experiences more 

erosion at the boundaries compared to the tied column because the spiral column is better at 

resisting flexural deformation, and as a result the boundaries experience greater erosion. Both the 

tied and spiral columns experience breakage. 
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Reinforcement stress and behaviour 

Reinforcement stresses of 400 MPa, 450 MPa, and 500 MPa are used to examine the 

nonlinearity of the steel bars during the simulation, in which 400 MPa represents the yielding 

stress, 500 MPa represents the maximum stress, and 450 MPa represents the average. Severe 

reinforcement deformation is defined as the state where the reinforcement has experienced 

plastic deformation which has led to permanent curvature of the bar even after the positive 

pressure phase has ended.  

The effects of the blast on the reinforcement are assessed from the following aspects: (i) 

yielding of the transverse and longitudinal reinforcement; (ii) failure mechanisms in the 

reinforcement. For the tied column, the ties around mid-height never surpass yield stress as the 

concrete absorbs the majority of deformation through erosion, while the ties near the boundaries 

do reach yield stress. Moreover, there is pullout of several ties near the point of maximum 

displacement. This finding is very similar to the one reported in Williamson et al. (2011a) 

through their experimental work. With respect to the longitudinal reinforcement, the bars reach 

yield stress and surpass 450 MPa, but this only occurs after breakage of the column. During the 

positive pressure phase, the highest stress levels for the longitudinal bars are on the back of the 

column, which is experiencing tension. Furthermore, the longitudinal reinforcement around mid-

height experiences severe deformation at the time of column breakage, as illustrated in Fig. 5.2.  
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Figure 5.2 Deformation of longitudinal bars in the Toronto tied column, Case I, X1. 

For the spiral column, it was found that the spirals around mid-height yield almost 

instantly after the shock front makes impact. Most importantly, almost all the spirals throughout 

the height of the column, both on the front and back sides, have surpassed yield stress right 

before breakage of the column. On the other hand, the longitudinal reinforcement surpasses yield 

stress after breakage of the column. The highest level of stress in the reinforcement is on the 

tension side of the column. As deflection starts to occur, the stress on the tension side of the 

column starts to shift towards the top, and at the top, the stress on the front side of the column 

starts to shift down. This can clearly be seen in Fig. 5.3, showing axial force on longitudinal bars 

at three time marks at 9.29 ms, 9.89 ms, and 11.29 ms. For example, at 9.29 ms, the highest axial 

force, which is directly proportional to stress, is on the tension side of the column around mid-

height. At 9.89 ms, the stress on the tension side has slighted shifted up and the stress on the 

front has shifted down; at this point, they have converged to the same area. At 11.29 ms, the 

stress on the tension side shifts further up, and as time goes by it reaches the top of the column. 

This mechanism does not occur at the bottom of the column where the boundary is fixed and it 

only occurs at the top boundary, which is pinned, and allows for greater rotation.  
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Figure 5.3 Axial force on longitudinal bars for the Toronto spiral column, Case I, X1. 

Displacement curves  

The displacement curves for the Toronto tied and spiral columns are presented in Fig. 

5.4a and 5.4b, respectively. For ease of understanding, the failure mechanisms observed in the 

simulation are marked on the curve with regards to time of occurrence and the corresponding 

lateral displacement of the column. It can be seen in Fig. 5.4 that both columns experience the 

following 4 failure modes: erosion at boundaries (outside/inside core), crushing (outside/inside 

core), spalling (outside/inside core), and breakage of column. Additionally, the tied column 

experiences severe rebar deformation (deformation which has led to permanent curvature of the 

bars). Maximum displacement, steel stress of 400 MPa (i.e., yielding stress) and 450 MPa (i.e., 

average stress after yielding) are also shown. Based on the results, it can be concluded that both 

the tied and spiral columns fail to resist the blast. There are two parameters on the displacement 

curves which show that the spiral column better resisted the blast compared to the tied column. 

The first parameter is yield stress, and when comparing the two columns, it is noted that the 

reinforcement of the spiral column experienced yield stress approximately 12 ms sooner than the  
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the back as the front has dissipated the energy. The back of the column is critical as it 

experiences tension and can cause column failure, and there is rarely any column failure due to 

crushing. Therefore, the spiral column is more adequate than the tied column in its ability to 

resist blast. Moreover, the slight difference in the shape of the displacement curves between the 

columns is a result of reinforcement yielding in the spiral column. The tied column reaches 

maximum displacement at the end of the 80 ms simulation, whereas greater reinforcement 

yielding in the spiral column allows it to reach its maximum displacement earlier in the 

simulation time. 

 

5.2.1.2 Vancouver columns 

 

Concrete failure mechanisms 

As discussed in the previous section, Toronto columns experienced severe breakage. 

However, this failure mode was not observed in the Vancouver columns. Even though the tied 

column would not be able to support the required axial load, full breakage does not occur. 

Figures 5.5a and 5.5b illustrate the effective plastic strain distribution in concrete at the time of 5 

ms, 15 ms, and 30 ms for the Vancouver tied and spiral columns. The different reaction of the 

two columns to the blast load can clearly be seen in the two figures. For example, for the tied 

column, the majority of the concrete core on the back face has been eroded. 

For the spiral column (Fig. 5.5b), the concrete core around mid-height remains mostly 

intact at 30 ms and there is not a significant increase in damage at the end of the simulation. 

Crushing at the face of the column does not penetrate the core, and on the back face spalling only 

slightly penetrates the core. Moreover, there is almost no crushing or spalling of concrete in the 

plastic hinge zones. When erosion of concrete occurs in the plastic hinge zones, there is limited 
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           (a) tied column                                               (b) spiral column 

 
            5 ms         15 ms        30 ms                             5 ms          15 ms       30 ms 

Figure 5.5 Contour of the effective plastic strain in Vancouver columns, Case I, X1. 

 

penetration inside the core. It is also interesting to compare the Toronto spiral column with the 

Vancouver spiral column. Both columns have the same transverse reinforcement spacing of 150 

mm along the entire height of the column, but the Vancouver column uses 25M spirals and the 

Toronto column uses 20M spirals. Therefore, the bar size of the spirals has had an impact on 

concrete erosion as the Toronto column breaks but the Vancouver column successfully resists the 

blast. 

Reinforcement stress and behaviour 

The results from the Vancouver columns show that reinforcement has significant effects 

on blast load resistance. For the tied column, the ties (both on the tension and compression side) 

have surpassed yield stress before maximum displacement has occurred, and some ties exceed 

stresses of 500 MPa after maximum displacement. The pattern of stress distribution starts at 

charge height and then stress occurs in the plastic hinge regions. Longitudinal reinforcement also 

surpasses yield stress right before maximum displacement has occurred. In addition, some bars 
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sustained severe deformation near mid-height of the column on the tension side. For the spiral 

column, the spirals surpass yield stress before maximum displacement and exceed stresses of 450 

MPa after maximum displacement. Longitudinal reinforcement also yields before maximum 

displacement, and a distinct comparison can be made with other columns.  

                                     (a)                                                   (b)         

 
 

    Figure 5.6 Stress distribution on longitudinal bars of the Vancouver spiral column, Case I, X1:        

                      (a) at the maximum displacement, (b) at the first rebounding peak. 

 

For Toronto columns, the stress on longitudinal reinforcement shifted from mid-height to 

the top of the column, and stress from the top of the column shifted down (Fig. 5.3). For the two 

Vancouver columns, the stress accumulates at mid-height and shifts sideways instead of shifting 

up and down. This mechanism, where stress on the reinforcement shifts between the back and 

front of the column, is due to the rebounding phenomena. Rebounding occurs in all columns that 

demonstrate some ability to resist blast. After maximum displacement has occurred, a column 

will slightly move back towards its initial position. The column can then move back the other 

way towards maximum displacement, which creates rebounding as the column moves back and 
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forth. From the results of this study, it is concluded that the more a column rebounds after its 

maximum displacement, the greater its ability to resist blast. Figure 5.6 is an example of this 

mechanism as it happens for the Vancouver spiral column. The column starts its deflection until 

the point of maximum displacement and stress is at mid-height on the back side. The column 

rebounds and moves back the other way towards its original position, and stress gets shifted to 

the front of the column and maximum stress occurs at the first rebounding peak. 

 

Displacement curves 

As mentioned in the previous section, rebounding creates a pendulum effect where the 

column moves back and forth after maximum displacement. The shape of the displacement curve 

will function like a wave that eventually reaches steady state. Rebounding can cause additional 

failure, especially concrete erosion, after the positive pressure phase. When the column reaches 

maximum displacement and rebounds, the front face of the column that was originally 

experiencing compression is now suddenly experiencing tension. The results of this study 

indicate that failures that occur as a result of rebounding are extremely minor as the majority of 

failure occurs during the positive pressure phase before the column reaches maximum 

displacement.  

The Vancouver tied and spiral column both experience rebounding during this 

simulation. As an example, it can be seen in Fig. 5.7 that both columns (tied and spiral) 

experienced crushing that penetrated the core after maximum displacement, and this is attributed 

to rebounding. Compared to the tied column, the spiral column experiences a higher degree of 

rebounding. It can also be noticed that the spiral column does not experience severe rebar 

deformation, which occurred for the tied column. Both tied columns in Toronto and Vancouver 

experience severe rebar deformation, but the spiral columns for both cities do not. 
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5.2.1.3 Victoria columns 

 

Concrete failure mechanisms 

The Victoria columns performed noticeably better than the columns for Toronto and 

Vancouver. Figures 5.8a and 5.8b present the effective plastic strain in concrete at 5 ms, 15 ms, 

and 30 ms for the Victoria Set 1 columns (Transverse reinf. 25M@80 mm) and Fig. 5.9a and 

5.9b present the effective plastic strain in concrete at 5ms, 15ms, and 30ms for Set 2 columns 

(30M@100 mm for tied, 125 mm for spiral). The design for Set 1 has smaller transverse 

reinforcement bar size and smaller spacing of transverse reinforcement, while the design for Set 

2 has bigger transverse reinforcement bar size and larger spacing of transverse reinforcement. As 

mentioned in Chapter 3, the two sets of column designs for Victoria were considered in order to 

investigate the effects of spacing and diameter of transverse reinforcement on blast load 

resistance. The results in Fig 5.8 and Fig. 5.9 show that all four columns performed extremely 

well in resisting erosion of core concrete. They also performed well with regards to crushing and 

spalling of concrete outside the core. Generally speaking, crushing of the front face is more 

desirable than spalling at the back (i.e., tension side) since concrete is stronger in its ability to 

resist compression compared to tension. Therefore, the crushing failure mechanism, especially 

when it does not penetrate the core, is preferred. It is also noticed that after maximum 

displacement, rebounding caused some erosion in the columns. However, this is not a major 

concern since the majority of erosion on the front face occurred before the column reaches its 

maximum displacement. 

As illustrated in the figures, for the tied columns, the Set 1 design has more erosion at the 

base while the column of Set 2 has more erosion at the top. Furthermore, Set 1 has less core 

penetration from spalling than Set 2, and this penetration is due to rebounding and occurs after 
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the column reaches maximum displacement. Although the difference is minor, due to the fact 

that crushing is preferred compared to spalling, the advantage is given to the Set 1 design as it 

experiences less concrete erosion from spalling. Overall, the tied column of Set 1 was better able 

to resist blast during the positive pressure phase than that of Set 2.  

           (a) tied column                                               (b) spiral column 

 
             5 ms         15 ms        30 ms                            5 ms         15 ms        30 ms 

Figure 5.8 Contour of the effective plastic strain in Victoria columns, Set 1 design, Case I, X1. 

           (a) tied column                                               (b) spiral column 

 
             5 ms        15 ms       30 ms                              5 ms         15 ms        30 ms 

Figure 5.9 Contour of the effective plastic strain in Victoria columns, Set 2 design, Case I, X1. 
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With respect to the spiral columns, it can be seen in the figures that the spiral column of 

Set 2 experiences more spalling and core erosion at the boundaries than that of the Set 1 column. 

This indicates that the Set 1 spiral design was superior, but both columns are able to resist the 

blast load for Case I. The results demonstrate that once the seismic design requirements for the 

transverse reinforcement are satisfied, the two types of columns would both survive the blast, 

and there is no significant advantage between the different designs, i.e., smaller spacing vs larger 

spacing, and smaller bar size vs larger bar size for shear reinforcement. Given the detailing of 

design with respect to the seismic loads, the columns in Victoria did not experience major failure 

modes like those observed in columns for Toronto and Vancouver. Moreover, breaching of the 

core from crushing does not occur for any of the Victoria columns, while it occurred for all of 

the Toronto and Vancouver columns. 

Reinforcement stress and behaviour 

In general, the behaviour of reinforcement for the two Victoria tied columns is similar to 

the Vancouver tied column. The ties go to the plastic stage before the column reaches its 

maximum displacement. Furthermore, the stress in the Set 1 ties exceeded 450 MPa before the 

first rebound occurred. The stress due to the blast load was primarily in the mid-height region, as 

well as on the tension side near the boundaries. The stress at the base of the columns on the front 

side reached the yield stage since the boundary condition is fixed. The performance of the two 

Victoria spiral columns is similar with regards to the time where they reach yield stress and their 

stress distribution pattern. The only difference is that yield stress exceeds 450 MPa in the Set 1 

column a few milliseconds earlier than in the Set 2 column.  
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Displacement curves 

Figures 5.10 and 5.11 present the displacement curves for the Victoria columns for Set 1 

and Set 2, respectively. The results in Fig. 5.10 show that for Set 1, the spiral column 

experiences failures slightly earlier than the tied column, but the difference is not significant. 

Furthermore, the reinforcement of the spiral column reaches yield stress much quicker than the 

tied column. 

The displacement curves for the Set 2 columns are very similar to Set 1 columns. 

Moreover, the spiral column for Set 2 experiences failure mechanisms at a quicker rate, and this 

includes the reaching of yield stress. The spiral column of Set 2 reaches yield stress of 450 MPa 

at the same time as when the column reaches the peak of the first rebounding cycle, which occurs 

on the front side of the column. Although the front was originally in compression, it is now in 

tension as the column is inching closer to its original position. In addition, none of the Victoria 

columns experienced severe rebar deformation. 
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5.2.1.4 Comparison of results for all the columns of Case I 

 

Qualitative comparison 

In order to give a comprehensive qualitative summary, all columns are assessed for the 

failure mechanisms that occurred and when these failures occurred as compared to points in time 

that are of interest. For concrete, the failure mechanisms that are observed are erosion at the 

boundaries, crushing, spalling, and breakage of column. For the reinforcement, the mechanisms 

that are observed are stresses of 400 MPa, 450 MPa, 500 MPa, and severe reinforcement 

deformation.  

Table 5.1 Summary of failure mechanisms for all columns, Case I, X1. 

Tied Spiral Tied Spiral Set 1,Tied Set 2, Tied Set 1, Spiral Set 2, Spiral

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High Low Medium Medium Medium Medium Low Medium

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High Low Low No No No No

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High High Medium Low Low Low Low

Yes No Yes No No No No No

Yes Yes No No No No No No

400 Mpa After Before Before Before Before Before Before Before

450 Mpa After After After After After No After After

500 Mpa No No After No No No No No

Toronto Vancouver Victoria

Steel Stress

Erosion at 

boundaries 

Failure mechanism

Crushing

Spalling

Severe rebar deformation

Breakage of column

 

Erosion at the base, crushing, and spalling are first judged based on whether they 

occurred or not, and the occurrence is based on being outside of the core. If these mechanisms 

penetrate inside the core, they will be judged based on the level of severity, which includes low, 

medium, and high. For severe reinforcement deformation and column breakage, it will simply be 

described as having occurred or not having occurred. For steel reinforcement, occurrence of the 

three different stress levels (i.e., 400 MPa, 450 MPa, and 500 MPa) will first be based on 

whether or not they occurred. If they did occur, the two time points of interest are maximum 
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displacement and/or breakage of the column. The stresses will be marked as having occurred 

before or after maximum displacement and/or breakage of the column, whichever occurs first. 

The results are summarized in Table 5.1, and it can be noticed that the Toronto columns 

experienced severe failure, including very high crushing inside the core, severe spalling, and 

erosion at the base. The Vancouver columns are the first columns to show ability in resisting the 

blast for Case I, and they are important as a baseline for comparison. The Vancouver columns 

had success due to the spacing of transverse reinforcement. For Toronto columns, spacing 

requirements govern for transverse reinforcement design, but for the Vancouver columns, 

confinement and the amount of transverse reinforcement in the plastic hinge regions governs for 

design. All Victoria columns perform extremely well and have low levels of spalling inside the 

core. Notably, the Set 1 spiral column experiences the least amount of boundary erosion inside 

the core. 

Comparison of maximum displacements 

Table 5.2 provides the maximum column displacement observed during the simulation. 

In the literature, the absolute value for maximum displacement is commonly used in studies 

related to blast load on bridge columns to determine their ability to successfully resist blast. 

However, comparison of the Vancouver tied column and the Toronto spiral column shows that 

peak displacement is not always a governing factor in determining whether or not a column 

successfully resisted blast. The difference in maximum displacement between these two columns 

is only about 0.6 mm, but the transverse reinforcement in the Vancouver tied column allowed for 

rebounding to occur and prevented breakage of the column. It is also noted that the Vancouver 

spirals column obtains a maximum displacement that is very similar to the well performing 

Victoria columns.  
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Table 5.2 Maximum displacement for all columns, Case I, X1. 

Location

Set 1, tied 29.5

Set 2, tied 28.8

Set 1, spiral 29.2

Toronto

Vancouver

Victoria

Column Maximum displacement (mm)

tied 39.9

spiral 36.3

tied 35.6

spiral 31.4

Set 2, spiral 29.4  

Comparison of displacement curves 

Figure 5.12 shows the displacement curves for all 8 columns examined. The Toronto tied 

and spiral columns both fail and never rebound. Rebounding occurs in columns that have 

successfully resisted blast to a certain degree. Rebounding does not guarantee that a column 

successfully resists blast but it is usually a strong indication.  With respect to the Toronto spiral 

column, a few bars start yielding as soon as the shock front hits the front surface, but the 

majority of bars experience yielding right before column breakage. Although breakage of the 

column occurs, the overall resultant displacement is limited by the fact that yielding occurred 

before breakage. For the Toronto tied column, the majority of yielding only occurs after the 

column breaks, and this is allows it to obtain greater displacement than the Toronto spirals 

column. 

As illustrated in Fig. 5.12, the displacement curve of the Vancouver spiral column is very 

close to those of the Victoria columns. Moreover, the displacements attained for valley peaks 

during rebounding for the Vancouver spiral column are approximately the same as the two 

Victoria tied columns. In conclusion, spiral columns perform much better than tied columns in 

resisting blast loads.   
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5.2.2 Case II (Charge weight is 12% heavier than Case I) 

5.2.2.1 Toronto columns 

 

Concrete failure mechanisms 

The charge weight of Case II is 12% heavier than that of Case I, and the impact of using a 

heavier charge in ConWep modelling of blast loads becomes apparent as the damage is 

significantly worse than Case I. Figure 5.13 shows the effective plastic strain in concrete at 5 ms, 

15 ms, and 30 ms for the Toronto tied and spiral columns.  

           (a) tied column                                                (b) spiral column 

 
             5 ms        15 ms       30 ms                              5 ms         15 ms        30 ms 

Figure 5.13 Contour of the effective plastic strain in Toronto columns, Case II, X1. 

 

For the Toronto tied column concrete failure mechanisms occur much quicker than they 

did for Case I. Moreover, although there was severe erosion at the base for Case I, the base did 

not completely shear off. However, in this case, the severe blast caused complete shearing of the 

base, as can be seen Fig. 5.14. The Toronto spiral column also experiences erosion and breakage 

much faster than it did in Case I. Similar to Case I, the yielding of reinforcement allowed this 

column to obtain maximum displacement within the 80ms time frame. 
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Figure 5.14 Complete erosion of concrete the base of the Toronto tied column, Case II, X1. 

 

Reinforcement stress and behaviour 

The Toronto tied column experiences tie pullout and severe deformation of transverse 

reinforcement. In addition, severe deformation of longitudinal reinforcement is observed at both 

the front and the back of the column (Fig. 5.15). For the spiral column, severe deformation of  

 

Figure 5.15 Deformation of longitudinal bars for the Toronto tied column, Case II, X1. 
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Figure 5.16 shows the displacement curves for the Toronto tied and spiral columns. It is 

noted that concrete failure mechanisms occur faster and are more severe in Case II than in Case 

I, while yielding of steel reinforcement occurred later in Case II than in Case I. For example, in 

Case I, the reinforcement of the tied column surpassed 450 MPa around 19 ms, whereas in Case 

II it happened around 43 ms. Since the Case II blast is more severe in than the Case I blast, both 

transverse and longitudinal reinforcement were not as effective in resisting the blast. Although 

breakage of the column occurred in both cases, yielding of steel reinforcement prevented further 

damage to the column. 

5.2.2.2 Vancouver columns 

 

Concrete failure mechanisms 

Both Vancouver columns experienced greater concrete failure in Case II as compared to 

Case I. In the Case II simulation, the severe blast causes an amplification of the rebounding 

effect, and this will affect concrete failure mechanisms after maximum displacement has 

occurred. Figure 5.17 shows the effective plastic strain in concrete at 5 ms, 15 ms, and 30 ms for 

the tied and spiral columns. It is seen clearly that the tied column experienced crushing of 

concrete on the front face near the base. This is due to the fact that out of all the columns, the 

Vancouver tied column has the largest difference in spacing between the plastic and non-plastic 

hinge regions. Given that the base boundary is fixed, the reinforcement allows for more crushing 

due to compression rather than spalling. The most important observation regarding the 

Vancouver tied column is that for Case II, the column experienced breakage, while this did not 

occur in Case I. With respect to the spiral column, although there is an increase in concrete 

erosion and maximum displacement, but the blast is still not severe enough to cause breakage of 

the column (Fig. 5.17b).  
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           (a) tied column                                               (b) spiral column 

 
             5 ms         15 ms        30 ms                            5 ms          15 ms        30 ms 

Figure 5.17 Contour of the effective plastic strain in Vancouver columns, Case II, X1. 

 

Reinforcement stress and behaviour 

The pattern of stress distribution for both longitudinal and transverse reinforcement of the 

two Vancouver columns is the same as the pattern obtained for Case I. In Case II, the tied 

column experiences severe deformation of longitudinal reinforcement, but this does not occur for 

the spiral column. In this study, it has been found that the spirals in the plastic hinge regions 

reach yield stress at a much faster pace than the ties. The transverse reinforcement of the spiral 

column reaches yield stress faster than the tied column, and yielding in the spirals occurs in both 

the front and back of the column. 

Displacement curves 

It is necessary to point out that the displacement curve (Fig. 5.19a) of the Vancouver tied 

column clearly shows a minor form of rebounding. For Case I, rebounding occurred if there was 

no breakage of the column. However, for Case II, breakage of the Vancouver tied column occurs 

after the column has reached its maximum displacement and the reinforcement has achieved 
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stress greater than 500 MPa. Theoretically, this would imply that the concrete core remained 

mostly intact before the column reached maximum displacement, and rebounding caused the 

remaining concrete to fail. This phenomenon has been approved in the results shown in Fig. 

5.18. Furthermore, rebounding caused more erosion to occur at the back boundaries of the 

column. Rebounding for the Vancouver tied column had more of an impact for Case II than it did 

for Case I. In Case I, penetration of the concrete core during the positive pressure phase was 

limited. Therefore, there was enough core concrete remaining that the impact of rebounding was 

minimal. In Case II however, rebounding caused the remaining core concrete to erode since there 

had already been a significant enough breach of the core during the positive pressure phase. 

Given this, rebounding can have a noticeable impact if there has been significant core concrete 

damage that has occurred during the positive pressure phase. 

                                             (a)                               (b) 

 

Figure 5.18 Back view of the Vancouver tied column, Case II, X1:  

                                (a) at maximum displacement, (b) at the first rebounding peak. 
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sufficient transverse reinforcement was used in the Vancouver spirals column. The Vancouver 

spiral column has successfully resisted the blast in Case II. 

 

5.2.2.3 Victoria columns 

 

Concrete failure mechanisms 

As a general remark, all of the Victoria columns, including both tied and spiral columns, 

perform extremely well and have successfully resisted the blast in Case II. Similar to Case I, the 

discussion will focus on the effects of the two sets of designs on blast load resistance. Figures 

5.20 and 5.21 show the effective plastic strain in concrete at 5 ms, 15 ms, and 30 ms for the 

columns of Set 1 (Transverse reinf. 25M@80 mm) and Set 2 (30M@100 mm for tied, 125 mm 

for spiral), respectively. It is found that there is more concrete failure in the Case II columns as 

compared to the Case I columns, but the damage is very limited. In addition, the overall 

performance of the columns in the two cases is almost the same. The results show that the Set 1 

tied column perform better than the Set 2 tied column with regards to concrete erosion. 

Furthermore, the spiral column of Set 2 shows more erosion and core penetration from spalling 

than that of the Set 1 scolumn. Therefore, it can be concluded that the design of Set 1 is better 

than that of Set 2. 

It is also interesting to compare the performance of the tied columns and the spiral 

columns. This comparison is conducted with respect to concrete erosion. As illustrated in Fig. 

5.20, both tied and spiral columns experience the same erosion patterns; however, the two spiral 

columns sustain less concrete erosion before they reach their maximum displacement. The 

results also show that the spiral columns experience a bigger rebounding distance than the tied 

columns. Generally speaking, the spiral columns better resist blast during the positive pressure 

phase and there is minor damage due to rebounding.  
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           (a) tied column                                               (b) spiral column 

 
             5 ms         15 ms        30 ms                            5 ms          15 ms        30 ms 

Figure 5.20 Contour of the effective plastic strain in Victoria columns, Set 1 design, Case II, X1. 

 

           (a) tied column                                               (b) spiral column 

 
             5 ms         15 ms        30 ms                            5 ms          15 ms        30 ms 

Figure 5.21 Contour of the effective plastic strain in Victoria columns, Set 2 design, Case II, X1. 

 

Reinforcement stress and behaviour 

The stress distribution in the reinforcement in Case II is consistent with Case I. However, 

the transverse and longitudinal reinforcement of the Victoria columns do experience higher 
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stresses in Case II than in Case I. As an example, the reinforcement of the Set 1 tied column 

experiences stresses above 500 MPa, while it did not occur in Case I. More importantly, the 

positive effect of transverse reinforcement can be seen in the timing of reinforcement yielding. 

For the Toronto and Vancouver columns, the reinforcement in Case II yielded later than in Case 

I and caused greater energy dissipation through concrete erosion. In this case, the reinforcement 

of the Victoria columns yielded at approximately the same time as it did in Case I, and this 

ensured that concrete erosion was not significantly greater in Case II as compared to Case I.  

 

Displacement curves 

The displacement curve for the Victoria Set 1 tied column is shown in Fig. 5.22a. It was 

found that the failure mechanisms occurred faster in Case II than in Case I, but the difference 

was very minor compared to the scenarios for the Toronto and Vancouver columns. It is 

necessary to mention that the stress in the reinforcement exceeds 500MPa due to the larger blast 

load applied in Case II.   

When comparing the displacement curve for the Set 1 spiral column (Fig. 5.22b) to Case 

I, it is noted that the column experiences slightly faster concrete failure mechanisms and higher 

reinforcement stress in Case II, which is also observed in the Set 2 spiral column. In addition, the 

reinforcement of the Victoria Set 1 spiral column reaches stresses of 450MPa after the second 

rebounding, while this occurred before the first rebounding cycle in Case I. This is not 

concerning as the columns are adequately reinforced.  
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performed similarly to the spiral column for Set 1. A minor difference is that the reinforcement 

surpassed stresses of 450 MPa approximately 8 ms later than the Set 1 column. For Case I, the 

two spiral columns experienced failure mechanisms faster in time than the two tied columns. For 

Case II, the difference in the timing of failure mechanisms between the two tied and spiral 

columns is not as noticeable, and the performance of the spiral columns is slightly better than the 

tied columns. 

 

5.2.2.4 Comparison of results for all columns of Case II 

 

Qualitative comparison 

Table 5.3 summarizes the qualitative results for the failure mechanisms of the eight 

columns examined. When comparing the results to Case I (Table 5.1), both Toronto columns and 

the Vancouver tied column performed significantly worst in Case II. The Vancouver spiral 

column and all Victoria columns performed similarly to Case I, indicating that for charge height 

X1, these columns are adequately reinforced to resist the blast load. The Toronto spiral column 

and the Vancouver spiral column have the same spacing of transverse reinforcement, and the 

difference between the two columns is the Vancouver column has bigger transverse 

reinforcement bars (Toronto: 20M; Vancouver: 25M, Table 3.2). The performance between these 

two columns is more noticeable in Case II than it was in Case I. It can be concluded that as the 

blast becomes more severe, bigger transverse reinforcement bar size is more effective in 

reducing damage to the column, but for lower levels of blast, it might not be efficient to use a 

bigger bar size as the difference will not be very noticeable. Lastly, the results of Table 5.3 

indicate that for all four Victoria columns, the best performance is for the Set 1 spiral column.    
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Table 5.3 Summary of failure mechanisms for all columns, Case II, X1. 

Tied Spiral Tied Spiral Set 1,Tied Set 2, Tied Set 1, Spiral Set 2, Spiral

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High Low High Medium Medium Medium Low Medium

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High High Low No No No No

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High High Medium Low Low Low Low

Yes Yes Yes No No No No No

Yes Yes Yes No No No No No

400 Mpa After Before Before Before Before Before Before Before

450 Mpa After After After After After After After After

500 Mpa No No After No After No No No

Toronto Vancouver Victoria

Steel Stress

Erosion at 

boundaries 

Failure mechanism

Crushing

Spalling

Severe rebar deformation

Breakage of column

 

Comparison of maximum displacements 

The maximum displacement of the columns examined in Case II is about 10%-19% 

larger than in Case I (Table 5.2). Similar to Case I, the Toronto tied column did not reach its 

maximum displacement within the 80 ms simulation time. It is necessary to mention that the 

Table 5.4 Maximum displacement for all columns, Case II, X1. 

Location Percent difference from Case I

18.0%

18.9%

10.7%

11.3%

10.3%

10.4%

10.7%

10.8%

Set 1, tied 32.7

Set 2, tied 32.0

Set 1, spiral 32.5

Toronto

Vancouver

Victoria

Column Maximum displacement (mm)

tied 47.9

spiral 43.8

tied 39.6

spiral 35.1

Set 2, spiral 32.7  

 performance of the Vancouver tied column in Case II is very different than in Case I even 

though the difference in maximum displacement between the two cases is not significant (i.e., 

only 11%). This is because the column experienced breakage in Case II and breakage did not 

occur in Case I. For the Victoria columns, it can be concluded that the Set 1 columns performed 
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damage that occurred after maximum displacement. As a result of their strong performance 

during the positive pressure phase, rebounding has less of an effect on Victoria. 

5.2.3 Case III (Charge distance is 12% closer than Case I) 

5.2.3.1 Toronto columns 

 

Concrete failure mechanisms 

Figure 5.25 shows the effective plastic strain in concrete at 5 ms, 15 ms, and 30 ms for 

the Toronto tied and spiral columns. The tied column experiences significant breakage in Case 

III, and as a result, the tied column is not able to resist blast. It can also be seen in the figure that 

the shear surface failure follows a 45 degree line for both the top and bottom plastic hinge 

regions. Note that the pattern discussed above was also observed in Case I and Case II. 

           (a) tied column                                               (b) spiral column 

          
             5 ms         15 ms        30 ms                            5 ms          15 ms        30 ms 

 

Figure 5.25 Contour of the effective plastic strain in Toronto columns, Case III, X1. 

 

Similar to the tied column, the Toronto spiral column also experiences breakage. Fig. 

5.24 shows noticeable crushing of concrete on the front face of the plastic hinge zone at the base 

due to resistance from the transverse reinforcement. Although the column breaks, its ability to 
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resist blast is better in this case than in Case I and Case II, which indicates standoff distance has 

less effect on column performance than charge weight. 

Reinforcement stress and behaviour 

Unlike Case I and Case II, the Toronto tied column in Case III does not experience 

pullout of ties, and the reinforcement reaches yield stress right before breakage of the column has 

occurred. Generally speaking, in the first two cases, columns that experienced breakage had a 

mechanism where stress in the longitudinal bars shifted up at the back of the column while the 

stress in the top of the column shifted down on the front side, which is shown in Fig. 5.3. 

Columns that were able to successfully resist the blast and have rebounding had a mechanism 

where stress shifted back and forth at mid-height, as illustrated in Fig. 5.6. However, the stress 

distribution observed in the tied column of Case III is a combination of those in Case I and Case 

II. More specifically, stress in the longitudinal reinforcement starts to shift upwards, similar to 

Fig. 5.3, but does not get to the top of the column; instead, it accumulates at mid-height and 

shifts back and forth, similar to Fig. 5.6. The tied column breaks but it showed more resistance in 

Case III than in Cases I and II. 

The reinforcement for the Toronto spiral column also shows more resistance in Case III 

than in Cases I and II. Similar to the other two cases, the spirals reached yield stress earlier than 

the ties. In addition, the reinforcement stayed in stress ranges above 400 MPa much longer in 

Case III than in Cases I and II, which indicates that a longer period of yielding allowed for 

greater energy dissipation. The spiral column experiences breakage, but a very minor form of 

rebounding is observed. 
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breakage and progressively reaches higher levels of stress as the column reaches maximum 

displacement. The Toronto spiral column experiences boundary erosion inside the core at 

approximately the same time as the column breaks (Fig. 5.26b), and this occurs for all three 

cases. However, erosion inside the boundary core is less than in Cases I and II. Moreover, the 

total maximum displacement of this model is reduced by about 45% when compared to Case I. 

5.2.3.2 Vancouver columns 

Concrete failure mechanisms 

The Vancouver columns perform better in Case III when compared to Case I and Case II. 

For Cases I and II, only the spiral column demonstrated an ability to successfully resist blast. In 

this case, both the tied and spiral column demonstrates the ability to resist the blast. Figure 5.27 

shows the effective plastic strain in concrete at 5 ms, 15 ms, and 30 ms for the Vancouver tied 

and spiral columns. It was found that the concrete in the tied column sustained less core 

penetration than the first two cases. There is noticeably more crushing on the front base of the  

           (a) tied column                                               (b) spiral column 

 
             5 ms         15 ms        30 ms                            5 ms          15 ms        30 ms 

Figure 5.27 Contour of the effective plastic strain in Vancouver columns, Case III, X1. 
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column as compared to Case I and Case II, which shows the contribution of reinforcement to 

blast load resistance. The reduction is spalling on the tension side is not as noticeable, and shows 

that greater reinforcement would be required to optimize the columns performance. 

Figure 5.28 shows the front view of the Vancouver spiral column at the end of simulation 

for Case I, Case II, and Case III, and it is clear that no penetration of core concrete occurred for 

Case III. It can also be seen in Fig. 5.28 that the column sustains more erosion at the base in Case 

III than in Case I and Case II. As a column shows more resistance to blast, erosion at the front of 

the column prevents spalling at the back. Since the Vancouver spiral column showed more 

resistance to the blast in Case III than in previous cases, it experienced slightly more erosion at 

the front of the column. The spiral column does not experience crushing that penetrates the core, 

which has not been seen in the previous two cases. 

 
                                           Case I                     Case II                   Case III      

Figure 5.28 Front view of the Vancouver spiral columns at the end of simulations, X1. 
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Reinforcement stress and behaviour 

The effects of scaled standoff on column response can clearly be seen in the Vancouver 

columns for Case III. The tied column experiences lower stresses in Case III than in the previous 

cases. Severe deformation of longitudinal reinforcement occurs at the peak of the first 

rebounding cycle in Case III, while it occurred during the positive pressure phase in Case I and 

Case II, which is not desirable. Furthermore, the stress of the reinforcement did not exceed 500 

MPa in Case III; however, it did in the previous two cases. In terms of the spiral column, the 

spirals yielded, but the longitudinal reinforcement did no yield; however, in Case I and Case II, 

the stress in the longitudinal reinforcement did yield. The reinforcement of both the tied and 

spiral columns only experience stresses above 450 MPa during rebounding and not during the 

positive pressure phase. 

Displacement curves 

Figure 5.28 illustrates that the failure mechanisms for the tied column in Case III occur 

much later than in Case I (Fig. 5.7a) and Case II (5.19a), and they occur slightly earlier before 

the column reaches its maximum displacement. For both Case I and Case III, severe deformation 

of longitudinal reinforcement occurs at the peak of the first rebounding cycle. The tied column 

only experiences crushing inside the core after the positive pressure phase. For the Vancouver 

spiral column, erosion at the boundaries that penetrates the core occurs as a result of rebounding 

and not as a result of the positive pressure phase. Moreover, the spiral column experiences 

limited spalling that penetrates the core during the positive pressure phase. When considering 

failures for erosion at boundaries, crushing, and spalling, the Vancouver spiral column 

experienced extremely limited concrete failure during the positive pressure phase, and some of 
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5.2.3.3 Victoria columns 

 

Concrete failure mechanisms 

In general, all four Victoria columns performed well against the scaled standoff blast 

defined in Case III. Although the failure mechanisms from Case I and Case II are still observed 

in this case, they are mainly due to rebounding and not from the positive phase pressure. Figures 

5.29 and 5.30 show the effective plastic strain in concrete at 5 ms, 15 ms, and 30 ms for the 

Victoria Set 1 and Set 2 columns, respectively. It has been noticed that concrete erosion is 

extremely similar for all four columns. There was more of a difference in concrete erosion 

between the four Victoria columns in the last two cases where the blast loads were quite high. 

Even with the relatively lighter blast load of Case III, the Victoria columns still experience minor 

spalling at the back of the columns. Therefore, the Victoria columns, which have the most 

adequate reinforcement of all columns, experience spalling for all three cases of blast at mid-

height.  

As explained in the previous sections for the results from Case I and Case II, all Victoria 

columns experienced crushing outside the core before reaching maximum displacement. In Case 

III, crushing outside the core occurred after the columns reached maximum displacement and 

this failure mechanism was not observed during the positive pressure phase. Furthermore, the 

overall core penetration of concrete is less for Set 1 columns than for Set 2 columns. The 

difference in overall core penetration between Set 1 and Set 2 is more obvious for the spiral 

columns than the tie columns, and this was also the scenario for Case I and Case II. Therefore, 

with regards to concrete erosion and core penetration, the Set 1 spiral column performs better 

than the Set 2 spiral column for all three cases of blast at mid-height. 
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          (a) tied column                                                (b) spiral column 

 
            5 ms         15 ms         30 ms                            5 ms         15 ms        30 ms 

Figure 5.29 Contour of the effective plastic strain in Victoria columns, Set 1 design, Case III, X1. 

          (a) tied column                                                (b) spiral column 

 
             5 ms         15 ms         30 ms                            5 ms         15 ms        30 ms 

Figure 5.30 Contour of the effective plastic strain in Victoria columns, Set 2 design, Case III, X1. 

Reinforcement stress and behaviour 

As the stress distribution of the Victoria models is similar to the other cases, the 

discussion is focussed on the time when the reinforcement exceeds stresses of 450 MPa, as stress 

in the reinforcement never exceeds 500 MPa. For both the tied and spiral columns for Set 1, the 



89 

 

reinforcement exceeds 450 MPa right at the peak of the first rebounding cycle. For the tied 

column of Set 2, it occurred before the peak of the first rebounding cycle, while for the spiral 

column of Set 2, it occurred much later.   

 

Displacement curves 

The displacement curve for the Victoria Set 1 tied column (Fig. 5.31a) illustrates that 

except spalling, any erosion into the core occurs as a result of rebounding. For Case I and Case 

II, there was penetration into the core with mechanisms other than spalling. The Set 1 spiral 

column experiences concrete failure mechanisms at a faster rate than the tied column, which has 

been in previous cases. It is also concluded that the spiral columns reach higher stress levels later 

in time compared to the tied columns.  

The Set 2 tied column is extremely similar to the Set 1 tied column in terms of timing for 

failure mechanisms. The reinforcement of the Set 1 tied column experiences stresses above 450 

MPa right at the first rebounding peak. The displacement curve for the Victoria Set 2 spiral 

column (Fig. 5.32b) shows that the reinforcement reaches 450 MPa well past 30 milliseconds 

into the simulation.  

The discussion is further focussed on the time when the reinforcement exceeds stress of 

450 MPa, which is the maximum stress level developed. For both the tied and spiral columns of 

Set 1, it occured right at the peak of the first rebounding cycle. For the tied column of Set 2, it 

occurred before the peak of the first rebounding cycle, and the Set 2 spiral column is the last of 

all Victoria columns to surpass stresses of 450 MPa. In summary, the results of concrete erosion 

and reinforcement analysis indicate that the Set 1 columns (both tied and spiral) performed better 

than the Set 2 columns. 
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core should be avoided in order for the column to carry the required axial loads and to prevent 

progressive collapse of the bridge. For Case III, even though the core concrete is penetrated in 

some columns, the penetration occurs much later in time as compared to Case I and Case II, and 

it occurs mostly as a result of rebounding and not from the positive pressure phase. With regards 

to reinforcement, Case III is the only case where all columns experienced yield stress before 

maximum displacement and/or breakage of the column. In the first two cases, the Toronto tied 

column was the only column to not experience yield stress before maximum displacement and/or 

breakage. 

The final results from Table 5.5 indicate that both Vancouver columns and all Victoria 

columns successfully resisted the blast. The Vancouver tied column is the first example in Case 

III showing a satisfactory performance of a tied column against blast load. It is necessary to 

mention that this column did not break in Case I but was not considered successful due to 

excessive concrete erosion, and the column experienced complete breakage in Case II. 

Table 5.5 Summary of failure mechanisms for all columns, Case III, X1. 

Tied Spiral Tied Spiral Set 1,Tied Set 2, Tied Set 1, Spiral Set 2, Spiral

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core Low Low Medium Medium Low Medium Medium Medium

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High Low No No No No No

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High High Medium Low Low Low Low

Yes No Yes No No No No No

Yes Yes No No No No No No

400 Mpa Before Before Before After Before Before Before Before

450 Mpa After After After After After After After After

500 Mpa No No No No No No No No

Toronto Vancouver Victoria

Steel Stress

Erosion at 

boundaries 

Failure mechanism

Crushing

Spalling

Severe rebar deformation

Breakage of column
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Comparison of maximum displacements 

Table 5.6 shows that the greatest reduction in maximum displacement for Case III as 

compared to Case I is about 45% for the Toronto spiral column. For the Vancouver and Victoria 

columns, the average reduction is about 35% and 37%, respectively. Furthermore, Case III is the 

only case for charge height X1 where all columns reached peak maximum displacement within 

the 80 millisecond simulation time. 

Table 5.6 Maximum displacement for all columns, Case III, X1. 

Location Percent difference from Case I

-37.4%

-44.9%

-35.2%

-36.9%

-36.3%

-36.2%

-35.2%

-35.5%

Toronto

Vancouver

Victoria

Column Maximum displacement (mm)

tied 27.4

spiral 23.0

tied 25.0

spiral 21.6

Set 2, spiral 20.5

Set 1, tied 20.4

Set 2, tied 20.0

Set 1, spiral 20.5

 
 

Comparison of displacement curves 

It is found in this study that all columns in Case III have experienced some degree of 

rebounding, which was not observed in the two previous cases including both Toronto columns 

Furthermore, it is observed that the spiral column experiences greater rebounding than the tied 

column. It is interesting to note that the Victoria Set 1 columns experienced a bigger rebounding 

deflection than the Set 2 columns, which indicates that they better resisted blast during the 

positive pressure phase. The Set 1 and Set 2 columns have similar concrete failures and 

reinforcement stress patterns at the end of the simulations, and accounting for the displacement 

curves, it is concluded that the Set 1 columns performed better than the Set 2 columns during the 

positive pressure phase. 
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Chapter 6:  Analysis and Results –                   

g                   Charge Height X2                      
 

6.1 Introduction 

Charge height X2 is compatible with the range of location for hand placed or vehicle 

delivered bombs recommended by the Department of Defense (Winget et. al, 2005a). The value 

of scaled standoff for Case I, Case II, and Case III remains the same as the simulations for charge 

height X1. Since charge height X2 is closer to the base of the column, attention was given to the 

fixed boundary condition at the base in order to determine its impact on the column’s ability to 

resist blast. Following the same evaluation procedures presented in Chapter 5, both qualitative 

and quantitative results will be recorded from LS-DYNA for charge height X2. In the end, the 

analysis results from charge height X2 are compared with charge height X1 in order to identify 

which case is critical for blast load analysis. 

   

6.2 Analysis of Results for Charge Height X2 (close to the ground) 

6.2.1 Case I (reference case) 

6.2.1.1 Toronto columns 

 

Concrete failure mechanisms 

Figure 6.1 shows the effective plastic strain in concrete at 5 ms, 15 ms, and 30 ms for the 

Toronto tied and spiral columns. The results show that failure of the tied column is very severe in 

this case and occurs within the first few milliseconds of simulation. During the simulation, it has 

been found that when the shock front makes contact with the columns front surface at 

approximately 3 ms, strain occurs on the tension side around the height of the blast. At the front  
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          (a) tied column                                                (b) spiral column 

 
            5 ms         15 ms         30 ms                            5 ms         15 ms        30 ms 

Figure 6.1 Contour of the effective plastic strain in Toronto columns, Case I, X2. 

 

of the column, a 45 degree shear crack starts to occur in the plastic hinge region of the base. At 

11 ms, core concrete has been eroded and the column has lost any ability to carry axial load. The 

results indicate that the Mach front has had a severely negative impact on the column. As 

explained in Chapter 2, a Mach front is a super positioning of waves due to reflection that causes 

greater damage to the structure. The Mach front was not noticeably concerning for charge height 

X1, but it is having a severely negative impact for charge height X2.  Moreover, the ability of the 

tied column to resist blast is affected by its seismic design. The column is not adequately 

reinforced in the plastic hinge regions and it shows no ability in resisting the blast in at the base. 

As illustrated in Fig. 6.2, the tied column experiences breakage along a 45 degree shear line and 

at 38 ms the column experiences complete erosion of the base. 
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Figure 6.2 Erosion at the base of the Toronto tied column at 38 ms, Case I, X2. 

The spiral column also experiences a distribution of strain that covers a large area on the 

tension side of the column (Fig. 6.1b). The column experiences breakage at approximately 10ms 

due to 45 degree shearing in the plastic hinge region at the base, and by the end of the simulation 

there is complete erosion at the base. The spiral column experiences greater crushing in the front 

of the plastic hinge region at the base as compared to the tied column. As mentioned in the 

analysis of results for charge height X1, crushing from compression at the front is more desirable 

than spalling from tension at the back. Similar to the results for X1, this crushing pattern 

demonstrates that spiral columns show greater resistance to blast than tied columns in the plastic 

hinge region at the base.  
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Reinforcement stress and behaviour 

The tied column experiences stress on the front and back of the ties in the bottom plastic 

hinge region as the shock front arrives. Stress also occupies the back of ties in the non-plastic 

hinge region around charge height. Figure 6.3 illustrates that axial force in ties at the base, which 

is directly proportional to stress, occurs in a 45 degree pattern, indicating high shear stress. This 

pattern starts at charge height and moves down into the back of the bottom plastic hinge region. 

As pressure continues to increase, all of the ties below mid-height of the column experience yield 

stress. At 11 ms, which is critical as core concrete has been eroded and the column has lost any 

ability to carry axial load, some ties experience severe deformation while others experience 

pullout, and the majority of ties below mid-height experience stress above 400 MPa. After 11ms, 

the ties at the top plastic hinge region are also yielding. For charge height X1, stress in 

reinforcement dissipated by the end of the simulation for the tied column, while for this charge 

height X2, the ties are actively yielding until the end of the simulation. 

 

Figure 6.3 Axial force on ties of the Toronto tied column, Case I, X2. 
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The behavior of longitudinal reinforcement for this column is similar for both charge 

height X1 and X2. It first experiences stress at blast height and the stress then shifts to the top of 

the column. The longitudinal reinforcement does not yield during this process, i.e., the first time 

yielding occurs is after breakage of the column. As illustrated in Fig. 6.4, the reinforcement 

experiences severe deformation in a 45 degree shear pattern starting at the front of the column 

and continuing into the bottom plastic hinge region. As presented in Chapter 5 for Case I, 

deformation of longitudinal reinforcement occurred in a horizontal pattern, which indicates 

flexural failure. 

 

Figure 6.4 Deformation of longitudinal bars for the Toronto tied column, Case I, X2. 

With respect to the spiral column, the transverse reinforcement of the spiral column 

yields almost instantaneously and stress in the spirals exceeds 450 MPa before 10 ms. The stress 

distribution pattern is the same as the tied column, i.e., it first starts at charge height and the 

bottom plastic hinge region. The stress then spreads in a 45 degree shear pattern. Similar to the 

tied column, yield stress only reaches the spirals in the top plastic hinge region after it has 
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engulfed the rest of the column. The blast is so severe that spirals experience severe deformation 

at approximately 26 ms. Stress in the longitudinal reinforcement starts at blast height and shifts 

towards the top plastic hinge region without yielding. The longitudinal reinforcement only yields 

in the bottom plastic hinge region after breakage of the column. 

Displacement curves 

The displacement curves for the tied and spiral columns are presented in Fig. 6.5a and 

6.5b, respectively. The tied column experiences reinforcement yielding only after the column has 

experienced breakage, which indicates that the majority of energy was dissipated through 

concrete erosion. For charge height X1, this column experienced crushing at the front of the 

column after breakage for this case. But this mechanism occurs before column breakage. Since 

charge height X2 is closer to base, the majority of crushing at the front occurs in the bottom 

plastic hinge region. The tied and spiral columns both experience erosion at the boundaries 

inside the core after column breakage, which also occurred for these columns for charge height 

X1. For the reinforcement, when compared to charge height X1, the spiral column yielded later 

in time and experienced high levels of stress for longer periods of time. The reinforcement of this 

column exceeds stress of 500 MPa, but the column for X1 did not. 
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6.2.1.2 Vancouver columns 

Concrete failure mechanisms 

For the simulations of this case at charge height X1, the Vancouver tied column failed to 

resist the blast and the spiral column did resist the blast. However, both columns performed 

poorly for charge height X2 compared to charge height X1. Figure 6.6 shows the effective plastic 

strain in concrete at 5 ms, 15 ms, and 30 ms for the Vancouver tied and spiral columns. The 

results indicate that the tied column performed better than the spiral column, which is surprising. 

More specifically, concrete in the plastic hinge region of the base remains fairly intact for the 

tied column but the spiral column experiences significant erosion (Fig. 6.6). Furthermore, 

           (a) tied column                                                 (b) spiral column 

 
            5 ms         15 ms         30 ms                            5 ms         15 ms        30 ms 

Figure 6.6 Contour of the effective plastic strain in Vancouver columns, Case I, X2. 

 

results in Fig. 6.6 show that both columns experience shearing in a 45 degree pattern; however, 

the shear does not penetrate the core of the bottom plastic hinge region for the tied column. The 

tied column experiences breakage at mid-height, which is similar to the results for charge height 

X1. The spiral column experiences breakage along the 45 degree shear line that penetrates the 
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base. In addition, Fig 6.7 shows that the tied column experiences crushing not spalling into the 

core on the front base of the column due to insufficient transverse reinforcement This mechanism 

is not observed for the spiral column. 

 
                                               Tied                            Spiral 

 
Figure 6.7 Side view of the Vancouver spiral columns at the end of simulations, Case I, X2. 

 

One of the conclusions described in Chapter 5, for charge height X1 simulation where the 

blast was located at mid-height, was the spiral column performed better. This is mainly because 

the spacing of transverse reinforcement in the spiral column outside the plastic hinge region is 

smaller than the tied column. However, for charge height X2 where the blast is closer to the base, 

the spiral column performs poorly because spacing inside the plastic hinge region is larger than 

the tied column. In addition, it is interesting to compare the behavior of the Vancouver spiral 

column with the Toronto spiral column since both have the same transverse reinforcement 

spacing (150 mm) but the Vancouver column uses a bigger bar size of 25M (20M for Toronto). 

The results from charge height X1 (Chapter 5) revealed that the bar size had a major impact on 
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the resistance as the Toronto spiral columns failed and the Vancouver spiral columns succeeded 

in resisting blast. But this observation was not achieved in this case, i.e., the bigger bar size did 

not have a noticeable impact on the Vancouver spiral columns ability to resist blast.  

Reinforcement stress and behaviour 

The tied column experiences breakage, but the ties yielded before maximum 

displacement and prevented further deflection. Before reaching maximum displacement, stress in 

ties is concentrated in the bottom plastic hinge region and at blast height. Note that blast height is 

slightly above the bottom plastic hinge region. Ties in the top plastic hinge region only 

experience noticeable stress afterwards. There is pullout of ties near blast height during the 

positive pressure phase. Stress in the longitudinal bars begins at the back of the column around 

blast height and starts to shift up before accumulating at mid-height. When longitudinal 

reinforcement is able to limit displacement, the stress accumulates at mid-height and does not 

shift up to the top of the column. The longitudinal reinforcement of the tied column experiences 

severe deformation in a horizontal pattern around mid-height and not in a 45 degree shear pattern 

near the base. The reinforcement of the spiral column experiences similar stress patterns as the 

Toronto spiral column. Stress starts at charge height and penetrates into the bottom plastic hinge 

region. The spirals reached yield stress within a few milliseconds of pressure impacting the 

column, but there is not enough reinforcement to prevent failure through concrete erosion.  

Displacement curves 

                It can be seen in Fig. 6.8a that the tied column only experiences crushing inside the 

core during rebounding, but the spiral column experienced this mechanism during the positive 

pressure phase. Both columns experience breakage after maximum displacement, which 

indicates that there was severe damage during the positive pressure phase that rebounding caused  
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It is necessary to mention that both the tied and spiral columns experienced multiple 

rebounding cycles for charge height X1 (Figs. 5.7a and 5.7b), but neither column completes a 

full rebounding cycle for this case. 

6.2.1.3 Victoria columns 

 

Concrete failure mechanisms 

The severity of the blast at charge height X2 does not have a significant impact on the 

Victoria columns. Figures 6.9 and 6.10 show the effective plastic strain in concrete at 5 ms, 15 

ms, and 30 ms for the Victoria Set 1 (Transverse reinf. 25M@80 mm) and Set 2 columns 

(30M@100 mm for tied, 125 mm for spiral), respectively. When the strain on the back of the 

Victoria columns shifts up from charge height it does not go to the top of the column and instead 

accumulates around mid-height. The area of this strain is small when compared to the Toronto 

and Vancouver columns, which results in limited concrete erosion on the Victoria columns. 

Moreover, as concrete erosion occurs mostly at mid-height and not at the base, a portion of 

concrete erosion is attributed to the shifting of tension from the back of the column to the front as 

a result of rebounding. 

For the two tied columns, Figures 6.9a and 6.10a show that they perform similarly for 

erosion at the boundaries and crushing, except the Set 1 column has more spalling at the back. 

Therefore, it can be concluded that the tied column of Set 2 performed better than the Set 1 

column.  For the spiral columns illustrated in Figs. 6.9b and 6.10b, the noticeable difference is 

also for spalling at the back of the column. The Set 1 spiral column has more spalling compared 

to Set 2. With closer examination, it is noticed that although the Set 1 spiral column experiences 

more spalling overall, it experienced less spalling during the positive pressure phase compared to 

the Set 2 column. It is desirable that spalling is reduced during the positive pressure phase rather 
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than it occurring as a result of rebounding. Accordingly, the Set 1 spiral column performs better 

than the Set 2 column. 

           (a) tied column                                                 (b) spiral column 

 
             5 ms         15 ms        30 ms                             5 ms         15 ms       30 ms 

Figure 6.9 Contour of the effective plastic strain in Victoria columns, Set 1 design, Case I, X2. 

 

           (a) tied column                                                 (b) spiral column 

 
             5 ms         15 ms        30 ms                             5 ms         15 ms       30 ms 

Figure 6.10 Contour of the effective plastic strain in Victoria columns, Set 2 design, Case I, X2. 
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In all of the simulations for charge height X1, the Victoria columns experienced spalling 

at the back that penetrated the core. In this case (charge height X2), spalling only occurs outside 

the core, and not inside the core. This is a rare example where the fixed boundary condition 

prevented severe spalling at the back of the column.  The fixed boundary does not allow rotation 

and increases shear failure, but this decreases flexural failures like spalling. Since the Victoria 

columns are adequately reinforced and and there is no shear or spalling inside the core. 

Reinforcement stress and behaviour 

As discussed above, at the end of the 80 ms simulation, the reinforcement of the Toronto 

and Vancouver columns were still experiencing augmented levels of stress. However, the level 

of stress in the reinforcement of the Victoria columns is significantly lower by the end of the 

simulation. For example, the reinforcement of the two tied columns surpasses stresses of 400 

MPa before the occurrence of maximum displacement. The two spiral columns also experience 

similar stress patterns, which is consistent with the finding from the results for charge height X1, 

i.e., high stress levels stayed longer in spirals than in ties. It should be noted that the Victoria 

columns are the only columns in Case I (neither Toronto nor Vancouver columns) to experience 

the rebounding effect. As a result, their longitudinal reinforcement experienced the shift in 

tension from the back to the front of the column as rebounding occurred.   

 

Displacement curves 

Figures 6.11 and 6.12 illustrate the displacement curves for the Victoria Set 1 and Set 2 

columns, respectively. The Set 1 tied column first experiences crushing slightly before maximum 

displacement. The Set 1 spiral column experiences no form of crushing before maximum 

displacement, and crushing outside the core only occurs after maximum displacement and as a 

result of rebounding. The Set 2 tied column experiences crushing before maximum displacement 
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The reinforcement of the two spiral columns reaches yield stress at approximately the 

same time as the two tied columns. This is different to the findings for charge height X1, where 

the reinforcement of the two spiral columns reached yield stress much faster than the tied 

columns. From all four Victoria columns, the reinforcement of the Set 2 spiral column is the last 

to reach stresses of 450 MPa. Therefore, for spiral columns, the reinforcement of the Set 1 

column had more of a positive impact in resisting the blast. In summary, it is concluded that the 

Set 2 design demonstrates better blast resistance for tied columns and the Set 1 design 

demonstrates better blast resistance for spiral columns.  

6.2.1.4 Comparison of results for all Columns of Case I 

 

Qualitative comparison 

The qualitative results for charge height X2 are presented in Table 6.1. It can be seen that 

the blast load has caused severe damage to all of the Toronto and Vancouver columns. 

Specifically, the Vancouver spiral column is the most underperforming column, especially in 

terms of concrete erosion. The four Victoria columns have successfully resisted the blast.  

Table 6.1 Summary of failure mechanisms for all columns, Case I, X2. 

Tied Spiral Tied Spiral Set 1,Tied Set 2, Tied Set 1, Spiral Set 2, Spiral

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High Medium Medium Medium Medium Medium Medium

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High High High No No No No

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High High High No No No No

Yes Yes Yes Yes No No No No

Yes Yes Yes Yes No No No No

400 Mpa After Before Before Before Before Before Before Before

450 Mpa No Before After After After After After After

500 Mpa No After No No No No No No

Toronto Vancouver Victoria

Steel Stress

Erosion at 

boundaries 

Failure mechanism

Crushing

Spalling

Severe rebar deformation

Breakage of column
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Comparison of maximum displacements 

The average maximum displacement values (charge height X2) in Table 6.2 are 13% 

greater than those from the same case of charge height X1 (Table 5.2). This demonstrates that 

charge height X2 is more critical for maximum displacement than charge height X1 (mid-

height). This is the first time that both Toronto columns (tied and spiral) do not reach their peak 

maximum displacement within the 80 ms simulation, which did not occur for the simulations of 

charge height X1. The average maximum displacement for the Victoria columns increased by 

about 10% when compared to charge height X1. 

 

Table 6.2 Maximum displacement for all columns, Case I, X2. 

Location

Set 1, tied 32.6

Set 2, tied 32.1

Set 1, spiral 32.4

Toronto

Vancouver

Victoria

Column Maximum displacement (mm)

tied 48.5

spiral 42.7

tied 37.4

spiral 38.2

Set 2, spiral 32.8  
 

Comparison of displacement curves 

Figure 6.13 illustrates the displacement curves for all of the columns. For the Toronto 

columns, the spiral column performed best and shows limited displacement compared to the tied 

column. The Vancouver columns start the rebounding process but never complete a full cycle. 

The Vancouver tied column experiences better deflection recovery from the blast as compared to 

the spiral column. However, the results from charge height X1 suggest the opposite, i.e, the 

Victoria columns are the only columns to experience at least one full rebounding cycle, which 

indicates that the Vancouver tied column has a more desirable curve than the spiral column. 
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           (a) tied column                                                 (b) spiral column 

 
             5 ms         15 ms        30 ms                             5 ms         15 ms       30 ms 

Figure 6.14 Contour of the effective plastic strain in Toronto columns, Case II, X2. 

 

Reinforcement stress and behaviour 

The tied column experiences pullout of ties at 7ms, which is the fastest time recorded for 

this mechanism in all of the simulations of this study. Furthermore, the reinforcement reaches 

yield stress at a faster pace compared to Case I, and the reinforcement retains these high stress 

levels for longer periods of time. The longitudinal reinforcement experiences deformation in a 45 

degree pattern which starts at the front of the column near charge height and penetrates into the 

plastic hinge region at the base. Severe deformation of longitudinal bars, as shown in Fig 6.4, 

occurs at 15 ms, which is the fastest time recorded in this study. The spiral column experiences 

the same stress distribution and severe deformation of reinforcement as it did in Case I; however, 

all indicators of stress and failure occur much faster in time. Both the spirals and longitudinal 

reinforcement of this column experience severe deformation, which was unexpected. 
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column breakage, and reinforcement surpassed stresses of 450 MPa, which did not occur for 

Case I. Comparing the slope of the displacement curve for the tied and spiral columns, it is found 

that the increase in displacement is not as steep for the spiral column. Therefore, the spiral 

column shows more resistance than the tied column for the most severe blast case. 

6.2.2.2 Vancouver columns 

 

Concrete failure mechanisms 

Figure 6.16 shows the effective plastic strain in concrete at 5 ms, 15 ms, and 30 ms for 

the Vancouver tied and spiral columns. Throughout the height of the column, the tied and spiral 

column experience similar levels of concrete erosion, except at the bottom plastic hinge region. 

The tied column does not experience a lot of erosion near the base due to smaller spacing of 

transverse reinforcement in that region.  

           (a) tied column                                               (b) spiral column 

 
             5 ms         15 ms        30 ms                             5 ms         15 ms       30 ms 

Figure 6.16 Contour of the effective plastic strain in Vancouver columns, Case II, X2. 
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Figure 6.17 shows both columns at the end of simulation. It can be seen in the figure that 

the tied column does not experiences breakage along a 45 degree shear line, while the spiral 

column does and it penetrates the bottom plastic hinge region. 

 
                                               Tied                            Spiral 

Figure 6.17 Side view of the Vancouver columns at the end of simulations, Case II, X2. 

 

Reinforcement stress and behaviour  

The transverse reinforcement of the tied column experiences the same stress distribution 

pattern as it did in Case I, but there is a difference for the longitudinal reinforcement. For Case I, 

when pressure from the blast impacted the column, stress on longitudinal bars shifted upwards 

without yielding. In this case, stress on longitudinal bars shifts up and yielding does occur. 

Severe deformation of longitudinal bars occurs at the back of the column around mid-height, 

which is similar to Case I. 
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For the spiral column, the spirals experience severe deformation before the occurrence of 

maximum displacement. The longitudinal bars at the front of the bottom plastic hinge region 

experienced high yield stress, which did not happen in Case I. In addition, severe deformation of 

bars occurs along a 45 degree pattern into the bottom plastic hinge region, similar to Case I (Fig. 

6.4). This is the most severe pattern for deformation of longitudinal reinforcement.  

Displacement curves 

The displacement curves for the Vancouver columns are shown in Figure 6.18. The 

reinforcement of the tied column experiences stress of 450 MPa and severe deformation after 

maximum displacement. However, in Case I, these mechanisms occurred before column 

breakage. In this case, the reinforcement of the tied column dissipated less energy than it did in 

Case I, and as a result, the column experienced greater concrete erosion. For this case, these 

mechanisms occurred after column breakage as concrete eroded at a much faster pace and the 

reinforcement did not have the same positive impact on the columns ability to resist blast. The 

displacement curve of the spiral column indicates that it experienced no form of rebounding. In 

this study, this is the only simulation where the Vancouver spiral column experienced no 

rebounding. In Case I, this column experienced maximum displacement before column breakage. 

However, in this case, the column experiences maximum displacement after breakage. 
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6.2.2.3 Victoria columns 

 

Concrete failure mechanisms 

All Victoria columns successfully resist the blast, which demonstrates that they are 

adequately reinforced to resist the worst possible scenario considered in this study. Figures 6.19 

and 6.20 show the effective plastic strain in concrete at 5 ms, 15 ms, and 30 ms for the Victoria 

Set 1 and Set 2 columns, respectively. The two sets of tied columns perform similarly, except 

that the Set 2 column experiences less erosion of concrete. Therefore, it design is considered to 

be more favorable than Set 1. For spiral columns, the distinguishing failure mechanism is 

spalling. The spiral column for Set 2 experiences spalling at the back of the bottom plastic hinge 

region which penetrates the core, which was not observed for Set 1. Therefore, the spiral column 

for Set 1 has superior design for this blast case.  

          (a) tied column                                                (b) spiral column 

 
             5 ms         15 ms        30 ms                             5 ms         15 ms       30 ms 

Figure 6.19 Contour of the effective plastic strain in Victoria columns, Set 1 design, Case II, X2. 
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          (a) tied column                                                (b) spiral column 

 
            5 ms         15 ms        30 ms                             5 ms         15 ms        30 ms 

Figure 6.20 Contour of the effective plastic strain in Victoria columns, Set 2 design, Case II, X2. 

Reinforcement stress and behaviour  

The reinforcement for all Victoria columns performs similarly to Case I. The level of 

stress in the reinforcement of the columns is reduced to relatively minimum levels by the end of 

the simulations. Moreover, the time at which the columns reach stresses of 400 MPa and 450 

MPa is similar to Case I. For the four Victoria columns, the reinforcement of the Set 2 spiral 

column is the last to reach stresses of 450 MPa. The sooner reinforcement yields, the more 

energy it can dissipate and prevent concrete erosion. 

 

Displacement curves 

The displacement curves for the Victoria Set 1 and Set 2 columns are shown in Figs 6.21 

and 6.22, respectively. For the tied columns, it is worth mentioning that the reinforcement for the 

Set 2 design experiences yielding stress sooner than the Set 1 design, which is beneficial for the 

columns to dissipate energy from the blast and reducing concrete erosion. The reinforcement of 

the two spiral columns yielded faster than the tied columns, which has also been noted in 
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performances than Case I, and only the Victoria columns successfully resisted the blast. The 

column that underperformed most as compared to Case I is the Vancouver spiral column. 

Table 6.3 Summary of failure mechanisms for all columns, Case II, X2. 

Tied Spiral Tied Spiral Set 1,Tied Set 2, Tied Set 1, Spiral Set 2, Spiral

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High Medium High Medium Medium Medium Medium

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High High High No No No No

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High High High No No No Low

Yes Yes Yes Yes No No No No

Yes Yes Yes Yes No No No No

400 Mpa After Before Before Before Before Before Before Before

450 Mpa After Before After After After After After After

500 Mpa No No No No No No No No

Toronto Vancouver Victoria

Steel Stress

Erosion at 

boundaries 

Failure mechanism

Crushing

Spalling

Severe rebar deformation

Breakage of column

 

Comparison of maximum displacements 

The Vancouver spiral column performs extremely worst in terms of the maximum 

displacement. Table 6.4 shows that the Vancouver spiral column experiences the greatest 

percentage increase in displacement when compared to the Case I simulations. The Vancouver  

Table 6.4 Maximum displacement for all columns, Case II, X2. 

Location Percent difference from Case I

18.1%

11.9%

10.1%

20.6%

10.1%

9.5%

9.6%

10.0%

Set 1, tied 36.1

Set 2, tied 35.3

Set 1, spiral 35.7

Toronto

Vancouver

Victoria

Column Maximum displacement (mm)

tied 58.2

spiral 48.1

tied 41.4

spiral 47.0

Set 2, spiral 36.2  
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6.2.3 Case III (Charge distance is 12% closer than Case I) 

6.2.3.1 Toronto columns 

 

Concrete failure mechanisms 

Figure 6.24 shows the effective plastic strain in concrete at 5 ms, 15 ms, and 30 ms for 

the Toronto tied and spiral columns. The tied column shows minor improvement compared to 

Case I (Fig. 6.1a) and Case II (6.14a) as concrete failure mechanisms occurred later in time. The 

column still experiences breakage, and more importantly, the column breaks along the 45 degree 

shear line that penetrates the bottom plastic hinge region. The column experiences complete 

erosion at the base. 

          (a) tied column                                                (b) spiral column  

 
            5 ms          15 ms         30 ms                           5 ms          15 ms        30 ms 

Figure 6.24 Contour of the effective plastic strain in Toronto columns, Case III, X2. 

 

The spiral column experiences breakage from a different pattern than for Case I (Fig. 

6.1b) and Case II (Fig. 6.14b). More specifically, in Cases I and II, the column broke along a 45 

degree shear line that penetrated the bottom plastic hinge region. However, in Case III (Fig. 

6.24b), the breakage line for this case is horizontal and occurs slightly above mid-height. As seen 
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in the results of charge height X1, horizontal failure around mid-height is indicative of flexural 

failure. Therefore, failure of this column was not due solely to shear, and flexural failure 

occurred as well. The results in Fig. 6.25 show that the column did not experience complete 

erosion at the base, which is only observed in Case III, and not in Cases I and II. 

 
                                Case I                       Case II                       Case III 

Figure 6.25 Side view of the Toronto spiral columns at the end of simulations, X2. 

 

Reinforcement stress and behaviour  

Although the pressure of the Case III blast is the lowest among the three cases 

considered, the tied column still experiences pullout of ties and severe deformation of 

longitudinal reinforcement. It is also noted that yielding and severe deformation of reinforcement 

occurs before column breakage, which is opposite to the finding in Cases I and II. Furthermore, 

stress in the reinforcement of the spiral column is much less than in the first two cases, and stress 

decreases towards the end of the simulation. Moreover, severe deformation of longitudinal bars 

in the spiral column occurs before breakage of the column. However, this occurred after column 
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It can be seen in Fig. 6.26 that both the tied and spiral column are able to reach peak 

maximum displacement within the 80 ms simulation time and experience a very minor form of 

rebounding, which was not observed for Cases I and II. In addition, the spiral column 

experiences a rebounding pattern that is more noticeable than the tied column. It is interesting to 

point out that the reinforcement of both tied and spiral columns experience yielding stress and 

deformation before breakage, which reduced concrete erosion. 

6.2.3.2 Vancouver columns 

 

Concrete failure mechanisms 

The greatest improvements in blast resistance for Case III are for the two Vancouver 

columns. It can be seen in Fig. 6.27 that there is no crushing of concrete that penetrates the core 

for both the tied and spiral column, which occurred in Cases I and II. Moreover, this is the only 

case for charge height X2 where the Vancouver tied and spiral columns do not experience 

breakage.  

         (a) tied column                                                 (b) spiral column 

 
            5 ms         15 ms         30 ms                            5 ms          15 ms        30 ms 

Figure 6. 27: Contour of the effective plastic strain in Vancouver columns, Case III, X2. 
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As illustrated in Fig. 6.28, the spiral column of Case III does not experience the 45 

degree shear crack inside the bottom plastic hinge region. Most of the eroded concrete is around 

mid-height, which suggests that the erosion was due more from flexure rather than shear. The 

spiral column slightly outperforms the tied column, and this did not occur in Cases I and II. From 

the results of all three cases for charge height X2, it is concluded that as the blast gets more 

severe, the inefficiencies of the spiral column, due to insufficient spacing of transverse 

reinforcement in the plastic hinge region, becomes more apparent.    

 
                                     Case I                       Case II                        Case III 

Figure 6.28 Side view of the Vancouver spiral columns at the end of simulations, X2. 

Reinforcement stress and behaviour   

Similar to the first two cases, stress in the reinforcement of the tied column started at 

charge height and shifted towards mid-height and accumulated in that area. The accumulated 

stress at mid-height dissipated as time went on. Severe deformation of longitudinal 

reinforcement did occur as shown in Fig. 6.4, but fewer bars were affected as compared to the 
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first two cases. The behavior of the longitudinal reinforcement of the spiral column is different 

than the first two cases. In Case I and Case II, stress started at charge height and shifted to the 

top of the column. In this case, the stress accumulates at mid-height and gradually dissipates as 

time went on. Moreover, this is the only case for charge height X2 where the longitudinal 

reinforcement of the spiral column did not experience severe deformation. When comparing the 

behavior of reinforcement for both columns, the spiral column slightly better than the tied 

column.  

Displacement curves 

The shape of the displacement curve for the tied column (Fig. 6.29a) is similar to the 

previous two cases. More specifically, crushing only occurs outside the core after the occurrence 

of maximum displacement, which implies that it is a result of rebounding and not from the 

positive pressure phase. The spiral column experiences crushing outside the core and boundary 

erosion inside the core after maximum displacement, which is due to rebounding. For concrete 

erosion, the spiral column performs better resisted the blast during the positive pressure phase. 

With respect to the reinforcement, the spiral column is able to dissipate greater energy and 

experience no severe deformation of longitudinal reinforcement. The shape of the displacement 

curve (Fig. 6.29b) demonstrates that the spiral column experienced more rebounding cycles and 

was able to dissipate more energy. In conclusion, the spiral column presents a better performance 

than the tied column for the major qualitative observations. 
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noticeable crushing on the front face before the occurrence of maximum displacement. When 

crushing does occur, it is outside the core and it is a result of rebounding. Erosion inside the core 

concrete also occurs as a result of rebounding after maximum displacement. 

          (a) tied column                                                (b) spiral column 

 
            5 ms         15 ms         30 ms                            5 ms          15 ms        30 ms 

Figure 6.30 Contour of the effective plastic strain in Victoria columns, Set 1 design, Case III, X2. 

 

          (a) tied column                                                (b) spiral column 

 
            5 ms         15 ms         30 ms                            5 ms          15 ms        30 ms 

Figure 6.31 Contour of the effective plastic strain in Victoria columns, Set 2 design, Case III, X2. 
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It is difficult to make a distinction regarding the performance of the Victoria columns. 

Generally speaking, when the blast load is severe, inefficiencies in column design (e.g., 

insufficient transverse reinforcement) become apparent, which is what happened to the 

Vancouver spiral column. However, because the pressure of the Case III blast is low, the 

Victoria columns perform extremely similarly with regards to concrete erosion. By comparing 

the concrete erosion, it is found out that the tied columns of Set 2  and spiral columns of Set 1 

perform better. Moreover, the spiral column for Set 2 is the only Victoria column to experience 

spalling inside the core, which is a minor indication that it is inferior to the Set 1 spiral column. 

Reinforcement stress and behaviour 

  The transverse reinforcement of all four Victoria columns reach yield stress before the 

occurrence of maximum displacement, but the longitudinal reinforcement of all four columns 

does not reach yield stress, which is different from Case I and Case II. The relatively low level of 

the blast was not sufficient to generate enough flexural pressure on the column for the 

longitudinal reinforcement to sustain significantly high levels of stress. On the contrary, when 

the transverse reinforcement of the Victoria columns experience stresses above 450 MPa, it 

occurs at the time when the rebounding peak arrives after maximum displacement. This is due to 

the shift in stress from the back to the front of the column as it is rebounding back and forth. 

Displacement curves 

The displacement curve of the Set 1 tied column (Fig. 6.32a) illustrates that the column 

sustains all major mechanisms after the occurrence of maximum displacement such as crushing 

outside the core, reinforcement stress above 450 MPa, and erosion at boundaries inside the core, 

occur at the peaks of rebounding cycles. This occurs for all four of the Victoria columns, as 

several failure mechanisms occur at the peaks of rebounding cycles. The Set 2 spiral column is 







137 

 

Vancouver spiral column represents a drastic improvement in its ability to resist the blast load, 

even though it still experiences high levels of spalling inside the concrete core. The Victoria 

columns are the only columns to have successfully resisted the blast, but the Vancouver columns 

performed well enough to be a starting baseline for adequate transverse reinforcement design. 

This conclusion is based on overall erosion of concrete, reaction of reinforcement, and 

displacement curve shape with regards to rebounding, as discussed above. 

Table 6.5 Summary of failure mechanisms for all columns, Case III, X2. 

Tied Spiral Tied Spiral Set 1,Tied Set 2, Tied Set 1, Spiral Set 2, Spiral

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High Medium Low Low Low Low Low Low

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High Medium No No No No No No

outside core Yes Yes Yes Yes Yes Yes Yes Yes

inside core High High High High No No No Low

Yes Yes Yes No No No No No

Yes Yes No No No No No No

400 Mpa Before Before Before Before Before Before Before Before

450 Mpa No Before After After After After After After

500 Mpa No After No No No No No No

Toronto Vancouver Victoria

Steel Stress

Erosion at 

boundaries 

Failure mechanism

Crushing

Spalling

Severe rebar deformation

Breakage of column

 

Comparison of maximum displacements 

The columns for Case III experience an average reduction of about 31% for maximum 

displacement when compared to Case I. Moreover, this is the only case for charge height X2 

where all columns were able to obtain peak maximum displacement in the 80 ms simulation. As 

shown in Table 6.6, the greatest improvements are for the Toronto tied and Vancouver spiral 

columns. Specifically, the Toronto and Vancouver columns experienced a reduction of about 

48% in maximum displacement when compared to Case II, i.e., the worst case scenario. On the 

other hand, the Victoria columns experienced a reduction of about 39% when compared to Case 
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II. Therefore, the maximum displacement of the Toronto and Vancouver columns is more 

dependent on the severity of the blast as compared to the Victoria columns, which do not 

experience drastic increases in maximum displacement with different blast loads. 

Table 6.6 Maximum displacement for all columns, Case III, X2. 

Location Percent difference from Case I

-36.6%

-24.8%

-33.3%

-35.8%

-30.0%

-29.6%

-30.1%

-30.6%

Set 1, tied 24.1

Set 2, tied 23.8

Set 1, spiral 23.9

Toronto

Vancouver

Victoria

Column Maximum displacement (mm)

tied 33.5

spiral 33.3

tied 26.8

spiral 26.6

Set 2, spiral 24.1  
 

Comparison of displacement curves 

The results of the displacement curves (Fig. 6.34) reveal that the Toronto tied and spiral 

columns follow almost identical curves, which indicates that they have similar performance. 

Such a result is not surprising. The conclusion from the analysis in all previous cases suggest that 

as the blast load becomes more severe, the spiral column performs significantly better than the 

tied column. However, if the blast load is relatively low (i.e., not severe), the advantage of spirals 

becomes hidden. 

The displacement curves of the Vancouver columns (Fig. 6.34) show that the spiral 

column performs better than the tied column. Although the tied column has smaller spacing of 

transverse reinforcement in the plastic hinge regions, this does not reveal a strong advantage for 

this case, and the type of reinforcement (i.e., ties or spirals) is more important. In summary, for 

the Vancouver columns, when the blast is relatively severe, such as in Cases I and II, the spacing 

of transverse reinforcement has more effect on the resistance than the type of reinforcement. 
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along a 45 degree line that penetrated the bottom plastic hinge region (e.g., Fig. 6.25, Case I and 

Case II), which is an indication of shear failure and is not desired. In this study, it is found that 

there are more columns that experience shear breakage for charge height X2 (42%) than charge 

height X1 (29%). In addition, the breakage line is dependent on the amount of transverse 

reinforcement in the plastic hinge region. 

It is also noticed in this study that there is strong correlation between concrete erosion 

and transverse reinforcement in the column, such as the spacing, bar size, and type of 

reinforcement (i.e., ties or spirals). The impact of these parameters depends on the severity of the 

blast and charge height. As an example, the Toronto columns fail in all three cases (Cases I, II, 

and III) of both charge heights (X1 and X2), which indicates that spacing of reinforcement, bar 

size, and type of reinforcement need to be improved regardless of the severity of blast and charge 

height. To the contrary, the performance of the Vancouver columns depends on severity of the 

blast and charge height rather than spacing, bar size, and type of reinforcement. As illustrated in 

Fig. 6.35, the performance of the Vancouver spiral column is significantly different for the Case 

II blast at different charge heights X1 and X2. More specifically, for height X1, the column 

successfully resists the blast, while for height X2, the column breaks due to shear. The two sets 

of Victoria columns were designed to measure the difference between the three reinforcement 

parameters, namely bar size, spacing, and type of transverse reinforcement. The results show that 

because both sets of designs have high reinforcement ratios in the column, small changes in 

spacing and bar size, as well as type of reinforcement, do not have significant impact on blast 

resistance. The severity of the blast and charge height did not have significant impact on the 

performance of the Victoria columns. Generally speaking, smaller spacing of transverse 

reinforcement, bigger bar size, and spirals will reduce concrete erosion and improve blast 



141 

 

resistance of columns, but in certain cases their impact can be minimal based on severity of the 

blast and charge height. For columns that are adequately designed (i.e., Victoria columns) and 

can resist different severities and locations of blast, cost-benefit analysis and ease of construction 

should govern design rather than spacing, bar size, and type of reinforcement. 

                                   X1                            X2 

 

Figure 6.35 Side view of the Vancouver spiral column at the end of simulations, Case II. 

 

6.3.2 Comparison of Reinforcement Stress and Behaviour 

Results from this study show that, for charge height X2, the transverse reinforcement of 

columns yielded faster and maintained yield stress for longer periods of time as compared to 

columns for charge height X1. Specifically, yield stress of ties and spirals in the plastic hinge 

regions remained for longer periods of time for charge height X2. There were also more 

instances of tie pullout and severe deformation of both ties and spirals for charge height X2. 
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The longitudinal reinforcement experienced similar stress distribution patterns for both 

charge height X1 and X2. Stress on longitudinal bars of columns that did not successfully resist 

blast shifted towards the top of the columns. The longitudinal reinforcement of columns that 

successfully resisted the blasts experienced accumulation of stress on the tension side around 

mid-height and the stress then shifts back and forth due to rebounding.  

There is a difference in the failure pattern of longitudinal reinforcement for the two 

charge heights. For charge height X1, deformation of longitudinal reinforcement occurs along a 

horizontal line in the top half of the column. For charge height X2, deformation occurs along a 

45 degree line that penetrates the bottom plastic hinge region. In summary, it was observed that 

29% of columns experienced severe deformation of longitudinal reinforcement for charge height 

X1 and 46% for charge height X2. 

 

6.3.3 Comparison of Maximum Displacement 

Table 6.7 illustrates the total maximum displacements that were obtained for the three 

examined cases (Cases I, II, and III) and two charge heights (X1 and X2). The total maximum 

displacement is calculated by adding the maximum displacement values of all eight columns for 

each case and respective charge height. It can be seen in the table that for Cases I and II, the 

columns of charge height X2 have bigger maximum displacements, but the difference between 

the two charge heights is exactly the same at 13%. To the contrary, columns of Case III 

experienced a 19% difference for maximum displacement between charge height X1 and X2. 

This result indicates that for severe blasts (i.e., Cases I and II), some columns have such little 

resistance to blast that adequate reinforcement will not reduce their displacement. For relatively 
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lower blast levels, such as Case III, the reinforcement has greater impact in reducing 

displacement.  

Table 6.7 Summary of total maximum displacement for all cases. 

Cases Charge height X1 Charge height X2 Difference

Case I 260 mm 297 mm 13%

Case II 296 mm 338 mm 13%

Case III 178 mm 216 mm 19%
 

6.3.4 Comparison of Displacement Curves 

The difference in the various types of displacement curves of the columns for charge 

heights X1 and X2 is well noticeable with the Vancouver spiral column. As seen in Figure 6.36, 

the displacement curve of this column is desirable for X1 cases because it experiences many 

 

       Figure 6.36 Displacement curves for all Vancouver spiral columns. 

rebounding cycles, but it does not experience notable rebounding for X2 cases. Specifically, the 

shape of the displacement curve of this column for Case II at charge height X2 is not desirable as 
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it is similar to the poorly performing Toronto columns. Generally speaking, the shape of the 

displacement curves for the Toronto and Victoria columns remained the same for the different 

cases and charge heights. The Vancouver columns, especially the spiral column, experienced 

many different displacement curve shapes based on severity of blast and charge height. 
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Chapter 7: Conclusion 
 

7.1 Conclusion 

  

The main objective of this research was to examine the impact of transverse 

reinforcement, such as type of the transverse reinforcement (tie and spiral), diameter, and the 

spacing, on the ability of reinforced concrete bridge columns to resist blast loads. Three cities 

with different seismic hazard were chosen: Toronto (low seismic hazard), Vancouver (high 

seismic hazard), and Victoria (extremely high seismic hazard). A hypothetical two-span 

continuous highway bridge was designed according to 2006 CHBDC. Blast load analyses on the 

columns were carried out for three cases using the advanced finite element software LS-DYNA. 

Among the three cases, the scaled  standoffs were kept the same while the charge weight and the 

scaled distance were treated as variables in order to assess the impact of each on blast load 

resistance. In each case, simulations were run for two scenarios for the charge height, i.e., one is 

at mid-height of the column while the other is closer to the base of the column. Based on the 

simulation results, qualitative observations and quantitative recordings were made in order to 

assess the effect of transverse reinforcement on blast load resistance. 

The major conclusions of this study are summarized as follows: 

 The columns located in high (Vancouver) and extremely high (Victoria) seismic zones 

would be able to resist the blast loads while the columns located in the low seismic zone 

(Toronto) would fail. This indicates that satisfying the requirements for seismic design 

will not assure that a column survives in a blast attack. More specifically, attention 

should be given to those columns located in low seismic zones if a potential attack 

becomes a concern.   
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 For columns that perform poorly under blast loads, the type of the transverse 

reinforcement has no noticeable effect on the behaviour, i.e., both tied and spiral columns 

make no difference.   

 For columns having satisfactory performance, the effects of the transverse reinforcement 

on blast load resistance depend on charge height. For the charge at mid-height of the 

column, using spirals as transverse reinforcement could be a better choice while ties are 

preferred if the charge is close to the ground.  

 For the design of the transverse reinforcement, it is better to consider smaller bar size and 

smaller spacing if possible in order to achieve acceptable performance of columns against 

blast loads.   

 

7.2 Recommendations  

Due to limitations of this study, the following recommendations are made for future studies:  

 The current study examined the performance of columns at only two charge heights. 

Therefore, more charge heights should be considered, including a broad range of hand-

placed bombs, in order to define the most critical bomb location. 

 Detailed studies should be conducted to develop a methodology for incorporating seismic 

design into blast load design. This will protect columns located in low seismic hazard 

zones (e.g., Toronto, Montreal, etc.) and stable zones (e.g., Edmonton, Winnipeg, etc.) 

from failure due to blasts.       

 Research on optimization of the diameter and the spacing of transverse reinforcement 

might bring some interesting findings. 
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 Considering the development of guidelines for blast load design are still at the early 

stages, a critical blast load for the bridge design should be defined, which can be 

examined in the future studies.      
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APPENDIX A: Column Reinforcement         

h                         Design 
 

Preliminary Information for Column Design 

1) In the design, concrete compressive strength is fc' = 30 MPa, and the yield strength of steel 

reinforcement is fy = 400 MPa. 

2) From Table 4.1: Site coefficient, site class I (very dense soil and soft rock) will be used. 

3) From Table 4.1: Seismic performance zones, the Peak Horizontal Acceleration (PHA) 

associated with lifeline bridges is used. 

4) From National Resources Canada (NBCC, 2005), hazard values of 10% probability of 

exceedance in 50 years give the following results: 

 Toronto: PHA= 0.081g, making it Seismic Performance Zone 3. 

 Vancouver: PHA= 0.242g, making it Seismic Performance Zone 4. 

 Victoria: PHA= 0.337g, making it Seismic Performance Zone 4. 

 

5) All three locations are in Seismic Performance Zone 3 or Seismic Performance Zone 4. 

Therefore, design will follow Clause 4.7.4: Seismic Performance Zones 3 and 4. As a result, the 

Response Modification Factor, R, is used to reduce elastic loads. From Table 4.5: Response 

modification factor,        for the category of “Multiple-column bents, Ductile reinforced 

concrete”. The loads acting on the columns of the bridge model in CSI Bridge 2015 are modified 

as follows:  

 Axial load: From Clause 4.7.4, there is no reduction for axial load; therefore,      .   
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 Shear load: From Clause 4.7.4, there is no reduction for shear load; therefore,      .   

 Moment load: From Clause 4.7.4, the elastic moment is reduced with      .   

With the adjustments of the Response Modification Factor, the following loads are used in the 

design of the columns for each bridge: 

Table A1 Summary of design forces. 

 

 

Longitudinal Reinforcement Design 

 

Clause 4.7.4.1: General 

 

1) The clear height of the column is 6.5 m and the diameter of the column is 1.3 m. The ratio of 

clear height to maximum dimension is 5.0, which is greater than 2.5 and classifies the structure 

as a column. 

2) Gross cross sectional area of the column is:                  

 

Clause 4.7.4.2.2: Longitudinal reinforcement 

 

1) Longitudinal reinforcement in the column has to be between 0.8% and 6% of gross cross 

sectional area. Maximum center-to-center spacing of longitudinal rebar cannot be more than 200 

mm. 

2) In reference to Clause 8.8.5.6: Reinforcement limitations, for circular arrangements, the 

minimum number of longitudinal reinforcement bars is 6 bars. The maximum spacing of 

Design forces Toronto Vancouver Victoria

Pf (kN) 9717 9717 9717

Vf (kN) 808 3222 6463

Mf (kN·m) 551 1992 4406
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longitudinal reinforcement from Clause 8.8.5.6 is 300 mm. Furthermore, the minimum available 

bar size is 15M. 

3) The requirement for minimum longitudinal reinforcement in the column is as follows: 

 
          ; therefore,                      (governs as maximum) 

  
           ; therefore,                

  
                ; therefore,                      (governs as minimum) 

 From the requirements for    , the reinforcement ratio is                  
                                                                        

4) Based on the criteria of Clause 4.7.4.2.2 and Clause 8.8.5.6, the following results are 

obtained:  

 The design will use 25M longitudinal rebar. The governing minimum 

reinforcement is                       . From Clause 8.8.5.6, at least 27-

25M bars have to be provided. 

 From Table 8.5: Minimum concrete cover and tolerances, for “environmental 

exposure of no de-icing chemicals and no marine spray” with “components (7) to 

(9)” and “cast-in-place concrete with reinforcing steel”, at least 60 mm of clear 

cover has to be provided. In the design, 60 mm of clear cover is provided.  

 From Clause 8.14.3: Transverse reinforcement for flexural components, stirrups 

are 10M when longitudinal bars are 30M or smaller. This design will uses 25M 

longitudinal rebar; therefore, preliminary stirrups need to be at least 10M and the 

final size will be determined during shear design. Based on these requirements, 

after placement of longitudinal bars, it is noticed that it in order to provide a 
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maximum of 200 mm spacing, there need to be at least 18-25M bars, which is 

less than the requirement of Clause 8.8.5.6 

 From the governing minimum reinforcement ratio, 25M longitudinal rebar, 10M 

stirrups, and a 60 mm clear cover, and the spacing of longitudinal bars is 

calculated to be 132 mm: 

 

                                                    

 

  

 

Clause 4.7.4.2.3: Flexural resistance 

 

1) To validate resistance of longitudinal reinforcement, the combined effects of axial and flexure 

loads are accounted for on CSA interaction diagrams. On the CSA interaction diagrams, the 

material resistance factors are         and        . In CHBDC, Table 8.1: Material 

resistance factors, these values are given as         and        . To get an accurate 

assessment of the columns moment-axial capacity, custom interaction diagrams are created using 

SAP 2000’s Section Designer (CSI, 2015b). The interaction curves will have unique values for  ,   ,   ,    ,   , and   :    
 

2) For 25M longitudinal bars and 10M stirrups, the following factors are calculated: 

                                                                   

Therefore,                           
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 Vancouver:        ; therefore, minimum reinforcement ratio governs and 27-25M 

longitudinal bars are provided with a spacing of 132 mm. 

 Victoria:        ; therefore, minimum reinforcement ratio governs and 27-25M 

longitudinal bars are provided with a spacing of 132 mm. 

 

Transverse Reinforcement Design 

 

Clause 8.8.5.4: Maximum factored axial resistance 

 

For tie reinforcement           and for spiral reinforcement           

 

The following calculations are made for the requirements of Clause 8.8.5.4: 

 

                                                                                           

 

                                                                                                             

 

 

Therefore, for ties:                                         

Finally, for spirals:                                         

 

The spiral reinforcement fulfills the requirement, and the difference in error for ties is 2.87% and 

as such it will be neglected. 

 

Clause 4.7.4.2.4: Column shear and transverse reinforcement  

  

The length of the plastic hinge region for transverse reinforcement is the greatest of the 

following three requirements: 
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i.                 

ii. 
            

iii.        

 

Therefore, the governing length of the plastic hinge region at the top and bottom of the columns 

is 1300 mm.   

 

Clause 4.7.4.2.4: Column shear and transverse reinforcement and Clause 8.9.3: Sectional 

design model 

 

1) From Clause 4.7.4.2.4, the amount of transverse reinforcement provided in the plastic hinge 

region will not be less than the minimum amount provided by Clause 8.9.3.  

2) In the Plastic hinge regions, if                 , then    is specified in Clause 8.9.3. 

                                                     

                     Therefore,                  

 

As a result, the value of    is the same for the plastic and non-plastic hinge regions. The design 

for    is determine from Clause 8.9.3 for both plastic and non-plastic hinge zones. 

 

Clause 8.9.3.2: Required shear resistance states that      . Moreover, Clause 8.9.3.3: 

Factored shear resistance states states that          

 

Clause 8.9.1.2: Regions requiring transverse reinforcement 

Transverse reinforcement is provided where                   
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The following calculations are made to determine the requirements of Clause 8.9.1.2: 

 Clause 8.9.3.4 requires that             :                                 

Therefore,             in the design 

 

 From Clause 8.9.1.5: Effective shear depth,    is taken as the greatest of 0.72h or 0.9d. 

Assuming 10M transverse reinforcement for preliminary design, the following apply: 

i.                            

ii.                                             

Therefore, 1084 mm governs for    

 

 From Clause 8.9.1.6: Effective web width,             for solid circular sections 

Therefore,            

 

 From Clause 8.9.1.2, the following calculation is made:                                                            

In summary,                         

 

 

 From Table A1, the following conclusions are drawn: 

 Toronto:           , which is greater the           

 Vancouver:             , which is greater the           
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 Toronto:             , which is greater the           

 

Therefore, for all three cities, transverse reinforcement is required and will be provided. 

 

Clause 8.9.3.4: Determination of Vc 

The requirements for Clause 8.9.3.4 are:                   , where             

 

   and   are given in Clause 8.9.3.6: Determination of   and   for non-prestressed 

components (simplified method). Columns in this design are not prestressed and not 

subjected to axial tension. Moreover,           , and            

 

Therefore,       from the requirements of Clause 8.9.3.6 

Assuming that minimum transverse reinforcement,        

 

The following calculation is made:                                                                                 
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Clause 8.9.3.5: Determination of    for ties: 

                  

 

For transverse reinforcement,    , based on optimization of design, some Vancouver and Victoria 

columns will use 25M transverse reinforcement bars and others will use 30M bars. The Toronto 

columns will use 15M bars. 

  

The requirement for shear reinforcement will be applied such that minimum transverse 

reinforcement is provided based on         . The minimum spacing of transverse 

reinforcement,  , is determine for each city: 

 

 Toronto:                       

Calculation of    is not required as      , and reinforcement will be provided based on 

governing spacing requirements and not minimum transverse reinforcement for plastic 

and non-plastic hinge regions. 

 

 Vancouver:                            is required and needs to be calculated: 

                            ; therefore,              

 

i. Using 25M bars: 

                                                                                 

 

Therefore, the spacing of ties in both the plastic and non-plastic hinge regions for 

25M bars needs to be less than 255 mm. 
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ii. Using 30M bars:  

                                                                                  

 

Therefore, the spacing of ties in both the plastic and non-plastic hinge regions for 

30M bars needs to be less than 357 mm. 

 

 

 Victoria:                            is required and will have to be determined 

                            ; therefore,              

i. Using 25M bars: 

                                                                    

             

 

Therefore, the spacing of ties in both the plastic and non-plastic hinge regions for 

25M bars needs to be less than 87 mm. 

 

ii. Using 30M bars:  

                                                                     

              

 

Therefore, the spacing of ties in both the plastic and non-plastic hinge regions for 

30M bars needs to be less than 123 mm. 
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Clause 8.9.3.5: Determination of    for spirals: 

 

Determination of transverse reinforcement,    , for a circular column will not follow the CHBDC 

formula used for ties. The formula used in ACI 318 and CALTRANS (Caltrans, 2004) is more 

appropriate: 

            

Where           

                                                 

 

Based on optimization of design, some Vancouver and Victoria columns will use 25M transverse 

reinforcement bars and others will use 30M bars. The Toronto columns will use 20M bars. The 

minimum spacing of transverse reinforcement,  , is determine for each city: 

 

 Toronto:                       

Calculation of    is not required as      , and reinforcement will be provided based on 

governing spacing requirements and not minimum transverse reinforcement for plastic 

and non-plastic hinge regions 

 

 

 Vancouver:                            is required and will have to be determined 

                           , therefore             

 

i. Using 25M bars: 
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Therefore, the spacing of spirals in both the plastic and non-plastic hinge regions 

for 25M bars needs to be less than 278 mm. 

 

ii. Using 30M bars: 

                                                         

 

Therefore, the spacing of spirals in both the plastic and non-plastic hinge regions 

for 30M bars needs to be less than 389 mm. 

 

 

 Victoria:                            is required and will have to be determined 

                           , therefore             

 

i. Using 25M bars: 

 

                                                       

 

Therefore, the spacing of spirals in both the plastic and non-plastic hinge regions 

for 25M bars needs to be less than 96 mm. 

 

ii. Using 30M bars: 

                                                         

 

Therefore, the spacing of spirals in both the plastic and non-plastic hinge regions 

for 30M bars needs to be less than 134 mm. 
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Clause 4.7.4.2.5: Transverse reinforcement for confinement at plastic hinge regions 

 

1) For tied transverse reinforcement in plastic hinge zones, the total cross-sectional area of 

required reinforcement,     , will not be less than the greater of: 

                                         AND                                                  
 

where                        

 

In this design:                            ; therefore, it will be assumed to be 1 

 

Furthermore,                                      

                                                           
 

Therefore, the minimum tied transverse reinforcement requirement is calculated as:                                                                                          

                                                                           
 

Therefore,            governs 

 

Based on the assumption of providing minimum reinforcement in Clause 8.9.3.4, the maximum 

spacing of transverse reinforcement,  , is given by: 

 

i. Using 25 M bars:                                  

Therefore, the spacing of ties in the plastic hinge regions for 25M bars needs to be 

less than 94 mm. 

 

ii. Using 30M bars:                                    
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Therefore, the spacing of ties in the plastic hinge regions for 30M bars needs to be 

less than 132 mm. 

 

 

 

2) For spiral transverse reinforcement in plastic hinge zones, the total cross-sectional area of 

required reinforcement,    , will not be less than the greater of the requirement of Clause 

8.14.4.2 and the    calculated below: 

 

                                 
 

where                        

In this design:                              ; therefore, it will be assumed to be 1 

                                                            

 

 

Based on the calculation, the maximum spacing of transverse reinforcement, given by the   , is: 

 

i. Using 25 M bars:                                                    
Therefore, the spacing of spirals in the plastic hinge regions for 25M bars needs to 

be less than 188 mm. 

 

ii. Using 30M bars:                                                     
 

Therefore, the spacing of spirals in the plastic hinge regions for 30M bars needs to 

be less than 263 mm. 
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Clause 4.7.4.2.6: Spacing of transverse reinforcement for confinement region 

 

There center to center spacing of transverse reinforcement in plastic hinge regions should not 

exceed the following criteria: 

 

i.                                          

ii.                                                  

iii. 150 mm 

 

Therefore, the governing requirement for maximum spacing of ties (both 25M and 30M bars) 

and spirals (both 25M and 30M bars) is 150 mm in plastic hinge zones 

 

 

Clause 8.9.1.3: Minimum amount of transverse reinforcement: 

 

This clause applies to the Toronto columns, which use 15M and 20M bars, to ensure minimum 

reinforcement. Unlike the Vancouver and Victoria columns, the design of transverse 

reinforcement for the Toronto columns is governed by spacing and not minimum reinforcement. 

The minimum transverse reinforcement,    , is given by: 

                    

 

Maximum spacing of transverse reinforcement,  , is calculated as: 

 

i. Using 15M bars:                                                                   

ii. Using 20M bars:                                                                   

                                     

 

Therefore, the governing requirement for maximum spacing of the Toronto tied column is 256 

mm for 15M ties. The governing requirement for maximum spacing of the Toronto spiral column 

is 385 mm for 20M spirals. 

 

 

Clause 8.14.3: Transverse reinforcement for flexural components 

 

The spacing of transverse reinforcement for flexure components will not exceed the following 

three criteria: 
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i.                            

ii.                                          

iii. 300 mm 

 

Therefore, the governing requirement for maximum spacing is 300 mm in non-plastic hinge 

zones. 

 

 

Clause 8.14.4: Transverse reinforcement for compression components 

 

 Clause 8.14.4.3: Ties 

 

For tied transverse reinforcement, the spacing requirement needs to meet the requirements of 

Clause 8.14.3; therefore, the governing requirement for maximum spacing of ties is 300 mm 

in non-plastic hinge zones 

 

 

 Clause 8.14.4.2: Spirals 

 

1) For spiral transverse reinforcement, the maximum center-to-center of spacing in non-

plastic hinge zones will not exceed the following two criteria: 

 

i.                           

ii. 150 mm 

 

Therefore, the governing requirement for maximum spacing of spirals is 150 mm in non-

plastic hinge zones (applies to Clause 4.7.4.2.5 for plastic hinge zones) 

 

 

2) For spirals, the minimum clear spacing in non-plastic hinge zones will not exceed the 

following criteria: 

 

i. 25 mm 

ii. 1.33           = 27 mm (assuming 20 mm aggregate) 
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Therefore, the governing requirement for minimum spacing of spirals is 25 mm in non-

plastic hinge zones (applies to Clause 4.7.4.2.5 for plastic hinge zones) 

 

3) For spirals, the ratio of spiral reinforcement is not to be less than the following: 

                                                                                                                                               

 

 

Based on this, the maximum clear spacing, given by the   , will not be greater than the 

following: 

 

 

i. Using 30M bars:                                                    

Therefore, the governing requirement for maximum spacing of spirals is 365 

mm for 30M bars in non-plastic hinge zones 

 

ii. Using 25M bars:                                                    

Therefore, the governing requirement for maximum spacing of spirals is 261 

mm for 25M bars in non-plastic hinge zones 

 

iii. Using 20M bars:                                                    

Therefore, the governing requirement for maximum spacing of spirals is 156 

mm for 20M bars in non-plastic hinge zones 
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Final Column Design 

From governing clauses of flexural and shear design of longitudinal and shear reinforcement, 

Table A2 illustrates a summary of the reinforcement design in each column. 

Table A2 Summary of reinforcement design for columns. 

 

 

 

 

Plastic hinge Non-plastic hinge

tied 27 - 25M @ 132 mm 15M @ 150 mm 15M @ 200 mm

spiral 27 - 25M @ 132 mm 20M @ 150 mm 20M @ 150 mm

tied 27 - 25M @ 132 mm 25M @ 100 mm 25M @ 200mm

spiral 27 - 25M @ 132 mm 25M @ 150 mm 25M @ 150 mm

Set 1, tied 27 - 25M @ 132 mm 25M @ 80 mm 25M @ 80 mm

Set 1, spiral 27 - 25M @ 132 mm 25M @ 80 mm 25M @ 80 mm

Set 2, tied 27 - 25M @ 132 mm 30M @ 100 mm 30M @ 100 mm

Set 2, spiral 27 - 25M @ 132 mm 30M @ 125 mm 30M @ 125 mm

Vancouver

Victoria

Transverse reinforcement
Location Column Longitudinal reinforcement

Toronto


