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Abstract

Computer-aided Detection of Breast Cancer in Digital Tomosynthesis Imaging Using Deep
and Multiple Instance Learning

Mina Yousefi, Ph.D.

Concordia University, 2018

Breast cancer is the most common cancer among women in the world. Nevertheless, early detec-

tion of breast cancer improves the chance of successful treatment. Digital breast tomosynthesis

(DBT) as a new tomographic technique was developed to minimize the limitations of conven-

tional digital mammography screening. A DBT is a quasi-three-dimensional image that is recon-

structed from a small number of two-dimensional (2D) low-dose X-ray images. The 2D X-ray

images are acquired over a limited angular around the breast.

Our research aims to introduce computer-aided detection (CAD) frameworks to detect early

signs of breast cancer in DBTs. In this thesis, we propose three CAD frameworks for detection

of breast cancer in DBTs. The first CAD framework is based on hand-crafted feature extraction.

Concerning early signs of breast cancer: mass, micro-calcifications, and bilateral asymmetry

between left and right breast, the system includes three separate channels to detect each sign.

Next two CAD frameworks automatically learn complex patterns of 2D slices using the deep

convolutional neural network and the deep cardinality-restricted Boltzmann machines. Finally,

the CAD frameworks employ a multiple-instance learning approach with randomized trees algo-

rithm to classify DBT images based on extracted information from 2D slices. The frameworks

operate on 2D slices which are generated from DBT volumes. These frameworks are developed

and evaluated using 5,040 2D image slices obtained from 87 DBT volumes. We demonstrate the

validation and usefulness of the proposed CAD frameworks within empirical experiments for

detecting breast cancer in DBTs.
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Chapter 1

Introduction

Breast cancer is the most common cancer among women in many countries and the third most

common cancer in Canada. According to the Canada breast cancer society, 26,300 women would

be diagnosed with breast cancer, which is 25% of all new estimated cancer cases in Canadian

women in 2017 [1]. Four major cancer types in Canada are lung, breast, colorectal and prostate

cancer. The lung cancer causes the most cancer deaths and breast cancer is the third most com-

mon cancer diagnosed. "Canadian females are more likely to develop breast cancer than any

other cancer, with 1 in 8 females expected to develop breast cancer in their lifetime."(Quoted

from [1]). All these figures show that more efforts are required to diagnose breast cancer at the

early stage of cancer.

Breast cancer as a disease is the result of uncontrolled cellular propagation that invades healthy

cells and forms tumors. The malignant tumors spread to other parts of the body and destroy

nearby tissues. Breasts are composed of fatty, fibrous and glandular tissues (See Figure 1.1).

Breast cancer is usually developed in the breast lobules (containing milk glands) or ducts, which

produce and carry the milk to the nipple.

Over 32,000 deaths from breast cancers have been avoided in Canada from 1988 to 2012. A

reason for the reduction of the mortality rate from breast cancer is breast screenings. The most

common breast imaging modalities are mammography, magnetic resonance imaging, ultrasound

breast imaging, breast computed tomography, and digital breast tomosynthesis. Among these

imaging modalities, two-dimensional (2D) X-ray screen-film, and full-field digital mammog-

raphy modalities have been widely used for cancer screening. These imaging modalities have
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FIGURE 1.1: Breast anatomy (Extracted from [82]).

FIGURE 1.2: The level of malignancy increases from left to the right following
the change of shape from circular to star (Extracted from [20]).

reduced breast cancer mortality rates over the course of 30 years [63]. Several significant cancer

cues appear at the early stage of breast cancer in X-ray images. These early signs of breast can-

cers include spiculated mass, micro-calcifications, bilateral asymmetry, and architectural distor-

tion. Among these four, in this thesis, we focus on the detection of masses, micro-calcifications,

and bilateral asymmetry in digital breast tomosynthesis images.

A mass is a central space-occupying lesion which has variable density. Masses with regular

shapes (circular and circumscribed oval) are benign cases. Malignant masses have shapes more

like the star shape (see Figure 1.2). A spiculated mass as the primary indicator of breast cancer

has been identified as a cluster of barbed tissue.

Calcium deposits such as calcite, aragonite, calcium, and apatite in the breast can be the early

sign of breast cancer. According to the size of breast calcifications in an X-ray image, there are
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FIGURE 1.3: Examples of the variety of shapes of micro-calcification clusters
mammograms (Extracted from the DDSM dataset [39]).

FIGURE 1.4: Example of the bilateral asymmetry between left and right breasts
(Extracted from [84]).

two types of calcium deposits macro-calcification, and micro-calcification. A macro-calcification

appear as large white dots (size > 500 µm), or dashes in an X-ray image and they are almost

harmless. Micro-calcifications are the tiny calcium dots (size < 500 µm), and they may ap-

pear nearby cells that very quickly separated. A cluster of micro-calcifications according to the

number of micro-calcifications and the shape of the cluster in radiography images may show the

early sign of breast cancer (see Figure1.3).

Bilateral asymmetry is the asymmetry between right and left glandular (the functional tissue

which includes lobules and ducts). The corresponding regions in a pair of normal tissues are

similar but not for a mass [57] (see Figure 1.4). Radiologists measure the bilateral asymmetry

by different factors to detect breast cancer in the early stage. [10]. There are two types of

bilateral asymmetry: the global, and the focal asymmetry. When a higher volume of glandular

tissues appeared in one breast compared to the same area in the other breast, it called as the

global asymmetry. The focal asymmetry is determined as the circumscribed area of asymmetry

in two views. The focal ones are the islands of healthy glandular tissues that are covered by the

surrounding adipose tissues.
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(a) (b)
FIGURE 1.5: (a) A mammogram image shows the subtle architectural distor-
tion (arrow). (b) A 2D slice of digital breast tomosynthesis image that shows a
delicate irregular mass with the related architectural distortion (Extracted from

[8]).

Architectural distortions are abnormal breast patterns. They occur due to the presence of abnor-

mal tissues such as non-visible masses (see Figure 1.5). They can be observed in invasive breast

carcinoma, or in radial scar condition.

The biopsy is the definitive method to assess the malignancy of breast tissue. In a breast biopsy,

the sample of suspicious tissue is removed surgically, or with a needle core sampling procedure.

Then the sample is processed to determine whether it is cancerous or benign. The breast imaging

modalities allow the display of the breast abnormalities for the improvement in breast diagnosis

and biopsy methods.

1.1 Breast Imaging Modalities

1.1.1 Magnetic Resonance Imaging (MRI)

The breast magnetic resonance imaging (MRI) device transmits radio frequency (RF) pulses into

the patient and provides a stack of 2D slices images of the breast. A typical MRI screening of a
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breast can show tissue with soft contrasts, cysts, enlarged ducts, hematoma, and ruptured breast

implants [41]. An MRI image of a breast usually is incapable to detect breast abnormalities or

tumors. So it is not a perfect tool for breast screening. This modality often is used with other

tests for patients who are at high risk for breast cancer.

1.1.2 Breast Ultrasound

Breast ultrasound is a non-ionising imaging modality that uses sound waves to obtain the image

from the breast. The sound waves with frequencies above the audible range reflect at breast

tissues and create echoes. A computer connected to the ultrasound tool records the obtained

echoes from breast tissues as an ultrasound image. The breast ultrasound images can show a

solid malignant cancerous tumor, but no micro-calcifications. Like MRI, the breast ultrasound

imaging is used as an additional breast screening tool.

1.1.3 Mammography

Mammography as a 2D X-ray radiographic imaging technique is the most common breast screen-

ing modality. A mammogram image is provided using a short-pulse X-rays whose frequency

ranges among (1.7-3.6) * 1018 hertz. A digital detector as the image receptor recodes mammog-

raphy images. An instance of a mammography system is given in Figure 1.6.

In a mammography test, the breast is pulled away from the body, compressed and placed between

two glass plates of the mammography machine. It includes two views: the top-down view taken

from above a horizontal compressed breast as cranial-caudal (CC), and the mediolateral oblique

(MLO) view that captured from the side of a diagonal compressed breast. Digital mammography

has the advantages of low cost and low dose x-ray radiation that make it the best suitable breast

screening for the broad population.

Despite the mammography advantages, e.g., low-dose X-ray energy usage, the ability to detect

early signs of breast cancer, the method suffers from some limitation. The high breast compres-

sion might hide many angular breast information, especially for dense breasts. A thick piece of

breast tissue might conceal the cluster of micro-calcifications. For instance, assume one line of
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FIGURE 1.6: The simulated structure for a mammography image (Extracted
from [11]).

calcification dots lies on the diameter of a cube in the breast, in digital mammography (DM) this

diameter has appeared as a single dot. The radiologist may miss a micro-calcification cluster as

an essential sign of breast cancer.

Providing a three-dimensional (3D) screening modality can resolve some current problems in

mammography breast screening.

1.1.4 Breast Computed Tomography (Breast CT)

The breast CT as an X-ray imaging modality was invented to reduce mammography limitations

by providing 3D X-ray images. This system takes hundreds of 2D X-ray images by spanning

360o of the X-ray tube around a breast, then a 3D reconstructed image of the breast is generated

from 2D X-ray images. Although the breast CT imaging removes the overlapping issue in the

2D X-ray images, it is an expensive test, and patients absorb high radiation dose (20-50 times

more significant than a mammography test radiation dose). Moreover, the spatial resolution size
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for a breast CT is much bigger than the one used for micro-calcifications detection. These are

disadvantages of the breast CT modality.

1.1.5 Digital Breast Tomosynthesis (DBT)

The DBT as a new X-ray based on the limited angle imaging modality was proposed in the U.S.

in 2003, and over the past decade, DBT has been developed in several researching labs. A high

resolution, 3D and low radiation X-ray dose make DBT as an attractive alternative to breast CT

[56].

Although there have been various DBT systems, they follow the same instruction for DBT

screening. Most available DBT systems are comprised of an X-ray tube, a mechanical moving

arm to shoot X-ray around the breast, compression paddle, an exposure control, a fixed image

detector, and an object-support table [41], [56].

The compression paddle is placed on top of the breast to compress the scanned breast for mini-

mizing the motion blur for the image. A DBT system provides a 3D reconstructed image from

the scanned breast, so the tight breast compression is not necessary. The detector is fixed on the

bottom of the breast. The tube path and the chest-side of the detector are set in the perpendicular

orientation to the detector [56]. During the test, the X-ray tube moves around the breast over the

limited angular ranges, acquires a series of projection views (PVs) like low-dose mammogram

images. The range of angles and the number of projections usually varies between 20o and 50o,

and 9 and 30, respectively. Figure 1.10 shows an example of a DBT system. A computer con-

nected to the scanning machine provides a 3D image from the PVs using the application of 3D

reconstruction techniques will be explained in chapter 2.

A DBT as quasi-3D mammography or an extension to the mammography modality allows doc-

tors to look through layers of breast tissues. Compared to breast computed tomography, DBT

can reduce mammography issues at an affordable cost. It also delivers much lower radiographic

radiation dose to the patient, in which it uses only a fraction of the mammogram dose X-ray

radiation to expose a projection-view of a breast, and the total dose remains equal to mammog-

raphy X-ray dose or a little more than it [62], [34]. In each DBT test, a few X-ray projection
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(a) (b)
FIGURE 1.7: (a) A digital mammogram shows a mass that obscured, (b) a 2D
slice from DBT that shows spiculated mass that is not obscured margin (Ex-

tracted from [8]).

views are provided that result in avoiding the risk of radiation-induced cancer for patients. Since

a DBT provides a semi 3D imaging modality, it can eliminate the overlapping tissue problem

of mammography tests, and facilitate visibility of malignant lesions. Moreover, the tight breast

compression is not necessary during a DBT test. Note that these benefits have been achieved in

DBT test by the radiation dose that remains in the range of mammography radiation dose. The

DBT screening often is superior to digital mammography to detect breast cancer (See Figure 1.7,

1.8).

Despite DBT advantages, the challenges are encountered by DBT imaging. Insufficient 2D PV

data causes the uncertainty in the reconstruction image. The processing time for providing DBT

is high for instance, the time for the reconstructed 3D image. Finding the optimal trade-off

between the X-ray dose that absorbed by the patient and image quality. In a DBT test, the

radiologist has to review 50 to 80 2D X-ray images for a DBT test instead of the four ones in

a mammography test. Thus developing new computer-aided detection (CAD) algorithms for

assisting radiologists in evaluating DBT is an essential task.

Automatic breast cancer detection in medical imaging has been the critical studied topic for

more than three decades. To develop the CAD framework for detecting breast tumors in medical

images numerous subtasks are required for an accurate detection (knowledge of tumor patterns,
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(a) (b)
FIGURE 1.8: (a) A cluster of calcifications in the mammogram, (b) the same

area in a 2D slice of a DBT (Extracted from [8]).

FIGURE 1.9: Some 2D slices of a DBT that show the breast cancer (the second
left image in the top row), while it is hidden in other slices (Extracted from [79]).
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FIGURE 1.10: The X-ray system to capture DBT images [72].

Cancer or non-cancer

FIGURE 1.11: A simple graphical overview of a CAD framework of breast can-
cer in DBT images.

image preprocessing, the region of interest extraction, classification). Many studies have shown

that the concurrent CAD framework in a DBT test can reduce the reading time by keeping the

accuracy [9]. Moreover, unlike computer systems, a human manual approach often results in

more unexpected errors; hence, the development of precise CAD systems plays an essential role

in the further diagnosis of DBT. Typically a CAD session comprises three steps (see Figure 1.11).

First, the radiologist looks into screens, then the CAD framework analyzes the image, and the

radiologist looks into the results provided by the CAD and makes the final decision.
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1.2 Contributions

In this dissertation, our work focuses on exploring novel CAD frameworks for detecting breast

cancer in DBT. We develop three different CAD systems for detecting masses in DBT. The first

method utilizes the hand-crafted features to capture information from images. The second and

third frameworks use deep deep cardinality-restricted Boltzmann machines and deep convolu-

tional neural networks to extract features from images automatically. All three CADs employe

the same multiple-instance learning method to classify DBT samples based on the obtained in-

formation from 2D slices. Moreover, we introduce two algorithms for detecting 1) clustered

micro-calcification, and 2) bilateral asymmetry in DBT.

• The core ideas in this study include:

◦ usage of the weakly supervised learning classification algorithm called multiple-

instance learning in CAD systems for mass detection in DBT;

◦ development of two deep learning models based on Cardinality restricted Boltzmann

machines and the convolutional neural network for representing features of DBT

slices;

◦ a weighting scheme based on the bank of Gabor filters for Initial mass detection in

2D slices;

◦ a reregistration algorithm in bilateral asymmetry detection algorithm on DBT.

• Implementation toolboxes for CAD frameworks based on the multi-layer tomosynthesis

images. Each CAD system has own and the separate toolkit that is the implemented in

Python and C++.

(1) The toolkit for speculated mass detection algorithms includes:

◦ implementation of practical and straightforward preprocessing methods for re-

moving quantum noise, artifacts, and pectoral muscles from DBT;

◦ the accurate method for extracting mass candidate regions on DBT slices, and

two segmentation algorithms;
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◦ feature extraction module includes some of the features are designed for this

study, and others are adopted from the published studies;

◦ data augmentation algorithms based on rigid and non-rigid techniques for deep

learning models;

◦ the deep cardinality restricted Boltzmann machines used in the second CAD

system for mass detection in DBTs;

◦ the deep convolutional neural networks used for detecting masses in the third

CAD system;

◦ multiple-instance learning algorithms include five classifications:

∗ the multiple-instance learning with randomized trees that combines the ad-

vantage of randomized trees classifiers and flexibility of multiple-instance

learning;

∗ four support vector machines-based multiple instance learning algorithms.

(2) The toolkit for bilateral asymmetric detection in DBT images includes:

◦ the accurate thin-plate spline registration algorithm;

◦ comparison algorithms to measure the similarity of aligned images from left and

right breast is estimated based on the intensity and feature values.

(3) The micro-calcifications detection toolkit includes:

◦ the Laplacian of Gaussian filter as the detecting kernel;

◦ the post constraint methods to apply constraints on the calcification candidates.

The work in this thesis has been published in the following papers:

• M. Yousefi, A. Krzyżak, and C. Y. Suen. Mass detection in digital breast tomosynthesis

data using convolutional neural networks and multiple instance learning. Computers in

Biology and Medicine, volume 96, pages 283 – 293, 2018. [104].
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• Y. Lu, M. Yousefi, J. Ellenberger, R. H. Moore, D. B. Kopans, A. Krzyżak, and C. Y.

Suen. 3D tomosynthesis to detect breast cancer. In Handbook of Pattern Recognition and

Computer Vision, chapter 2.10, pages 371–393. World Scientific, 5th edition, 2015 [58].

• M. Yousefi, Y. Lu, C. Y.Suen, and A. Krzyżak. Computer aided diagnosis images to

detect breast cancer. Computer Methods in Biomechanics and Biomedical Engineering

(CMBBE), Symposium, Montreal, Canada, 2015 [103].

• M. Yousefi, A. Krzyżak, and C. Y. Suen. Convex cardinality restricted boltzmann machine

and its application to pattern recognition. In Advances in Artificial Intelligence, volume

8436, pages 369–374, 2014 [102].

1.3 Structure of the Thesis

Chapter 2 presents an overview of different computer-aided detection (CAD) frameworks for

breast cancer detection in digital breast tomosynthesis images. This chapter presents a literature

review of 3D reconstruction algorithms on DBTs and a review of the available CAD frame-

works for detecting breast cancer in DBT. Chapter 3-4 are the main chapters which represent the

architectures of CAD frameworks for breast cancer detection in DBTs. Chapter 3 presents the

hand-crafted, feature-based CAD system, and two algorithms for bilateral asymmetry and micro-

calcification detection. We show the deep cardinality-restricted Boltzmann machines- and deep

convolutional neural networks-based frameworks in chapter 4. This chapter will is followed

by the representation of the multiple-instance-, random forest, support vector machines, based

classifiers. In chapter 5, we explain our dataset that we use throughout the thesis. The rest of

this chapter represents the results of experiments for three CAD frameworks with five different

multiple-instance learning are evaluated using different measurement techniques. In the final

chapter, the thesis ends with the discussion, conclusion and an outline of future work.
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Chapter 2

Literature Survey

The role of DBT as the primary screening modality has not be determined. The number of

issues must be addressed before popular using tomosynthesis for the primary clinical test. For

instance, the number PVs per image, angular spacing, the radial arc of the X-ray, and its dose

remain topics of research of the DBT device. The list of DBT units approved by the Food and

Drug Administration (FDA) for marketing use is provided in Table 2.1.

Although DBT is a 3D volume imaging technique and gives the dimensional information, the

complete 3D details on the breast cannot be reconstructed. So one of the major subjects for

DBT is the improvement of DBT image quality. One of the approaches to reduce current prob-

lems in DBT breast screening is the development of automatic detection techniques for assisting

the radiologists in diagnosis. Several research groups have developed CAD systems to detect

breast cancer and other breast diseases in DBTs. Based on the nature of DBT images, a CAD

framework can be developed either based on 2D data [70], [58], or on volume data [80], [92].

In this chapter, we first discuss the different significant drawbacks of DBT images that are in-

trinsic to the DBT design and how to eliminate them. Next, we provide a literature review of

existing CAD models for detecting breast cancers in DBT images.
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TABLE 2.1: DBT systems approved by FDA for marketing (Extracted from the
FDA homepage)

DBT systems Year
GE Senographe Pristina with Digital Breast Tomosynthesis 2017

Fujifilm ASPIRE Cristalle with Digital Breast Tomosynthesis
(DBT)

2017

Siemens MAMMOMAT Inspiration with Digital Breast To-
mosynthesis (DBT)

2015

GE SenoClaire Digital Breast Tomosynthesis (DBT) System 2014

Hologic Selenia Dimensions Digital Breast Tomosynthesis
(DBT) System

2011

2.1 Reconstruction Approaches in DBT

Reconstruction algorithms in DBT can impact the whole clinical DBT performance [80]. DBT

is a limited angle, cone beam breast CT imaging modality. Compared to breast CT, DBTs suffer

from incomplete projection views and data truncation, because the X-ray tube and the detector

do not rotate completely around the breast. The fundamental issue for reconstructing a DBT is

the null space problem. This problem is inherited from the nature of DBT image that limited PVs

are taken. In the DBT reconstruction process, only slices that are perpendicular to the direction

of the projection are obtained. So some regions in the reconstructed image are unknown [41]. To

address this issue, utilizing the anatomical priors in the reconstruction procedure may be helpful.

The reconstruction algorithms in breast CT imaging modality that are dependent on the com-

pleteness of data are not suitable for DBTs. So new reconstruction algorithms have been inves-

tigated for DBT images. Though many researchers have achieved the progress in this domain,

more efforts are required to solve this reconstruction problem. In this section, we review the

literature on DBT reconstruction approaches.



Chapter 2. Literature Survey 16

2.1.1 The Shift-and-add Reconstruction

The first DBTs have been provided by a clinical system called full-field digital mammograms

(FFDM) system. The FFDM acquired nine projections over an X-ray source angular of range

40o. The simple shift-and-add (SAA) algorithm reconstructed 3D DBT from projection views

images. The SAA algorithm shifts pixels that are parallel to the X-ray tube motion and adds

them in the reconstructed planes. This algorithm determines the geometry from projections using

radio-opaque fiducial points. With the improvement in DBT systems, DBTs acquired from more

projections, and these systems utilized more accurate reconstruction algorithms.

2.1.2 Reconstruction by Fourier Methods

The Fourier approach is the two-step reconstruction method, application of the Fourier transform

on the parallel projections from an object and reconstruction from the transform. One way of

providing the reconstructed image is the application of the direct Fourier method and the filtered

back-projection (FBP) on transformed images. This method suffers from the error that comes

from the nature of Fourier transform as the image points at higher frequencies become sparser.

The blurring-out filtered back-projection (FBP) reconstruction works like the Fourier transform

reconstruction, but it uses the ramp-filtered in the frequency domain. The FBP algorithm filters

out low frequencies and passes the high frequencies. So it oversampled the Fourier domain at

lower radial frequencies, resulting the blurring is minimized [60] [81] [56]. Micro-calcifications

visualize more clear in DBT images that reconstructed using the FBP algorithm when compared

with reconstructed images using the SAA algorithm.

2.1.3 Statistical Iterative Reconstruction Approaches

The maximum likelihood reconstruction algorithm offers a reconstruction model using photon-

counting signals [52]. The likelihood function is defined as the probability of the set of observing

projection views and the estimator of the reconstruction object. The posterior distribution is

determined using the Bays rule that combines the likelihood function and image prior. The
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FIGURE 2.1: A 3D reconstructed DBT image.

objective of the reconstruction algorithm is to find the optimal reconstruction estimator from

the obtained projections, in which the incident of the X-ray and the current image parameters

to maximize the posterior distribution. The likelihood function usually has been modeled using

Markov random field models. The maximum likelihood algorithm provides for mass and micro-

calcification visualizations better balance when compared with other reconstruction algorithms.

2.1.4 Algebraic Reconstruction Methods

The simultaneous algebraic and matrix-inversion tomosynthesis reconstruction algorithms are

used to reconstruct 3D DBT [92]. These models provide a series of linear equations from PVs as

the weighted sum of the incident and transmitted intensity. To reconstruct the image, these series

of equations simultaneously are solved to obtain the corresponding incident values for PVs. The

algebraic methods need fewer projections compared to FBP algorithm. These algorithms keep

the sharpness of micro-calcifications and improve the contrast-to-noise ratio. They can provide

3D DBTs faster than maximum likelihood algorithm with comparable image quality. These

models suffer from the significant computation time.
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2.2 Analysis of DBT X-ray Images

2.2.1 Breast Density in X-ray Images

Breast density is one of the most critical image-based measurements for risk of the breast cancer.

Usually, the higher density means, the higher breast cancer risk [4]. Radiologists approximate

the breast density from their visual assessment of the mammogram images. The X-ray has a

small range of wavelength (0.1pm to 10nm) with the corresponding energy (100 eV to 10 MeV).

The X-ray with shorter wavelength and higher energy can interpolate the most materials. The

amount of X-ray energy that used in a breast screening test varies for breasts with different den-

sity. The breasts consist of two component tissues: fibroglandular tissues, and fat. Fat has the

lower X-ray attenuation than fibroglandular tissues, so the regions of fat appear darker in X-ray

images [100]. For measuring the density of a breast, the difference between the appearance of the

fibroglandular, and adipose tissue compositions are calculated based on qualitative, and quanti-

tative factors. In an X-ray image, the brighter regions show the region of interests. For instance,

dense, fibrous, and glandular appear lighter than adipose tissue [41]. The fibroglandular tissues

appear as a shade of the gray to white, and fatty tissue appears darker [41]. One of the standard

classification scheme is used for breast density, represents the density of a breast by the percent-

age value. It measures the breast appearance dense with the number of glandular tissues. A huge

dense breast has the percentage of density value bigger than 75%. Using DBT images, we can

make much more sufficient accurate estimation of breast density than mammogram images. On

each slice separately the fatty tissues are segmented from the dense tissues, then the participation

of each slice image would be combined. Figure 2.2 shows some mammogram samples which

diagnosed spiculated mass with different density breasts from the mini-MIAS database [84].

2.2.2 DBT Image Quality

The quality of medical X-ray imaging can affect the performance of detection abnormalities

tasks. Two factors are considered to measure the quality of a medical image. How the image is

distinctive, and details of the object are visible in the image [41]. The quality of X-ray images
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(a) (b) (c)
FIGURE 2.2: Three samples diagnosed spiculated mass: (a) Fatty, (b) Fatty-

glandular; (c) Dense-glandular.

as an essential problem must be assessed and improved, before the application of any analytical

algorithms.

Noise in X-ray Images

Noise as a random signal can hide the signal with the useful information. So typically in the first

stage of image analysis procedure, the source of noise, and noise removal ways are investigated.

The basics principles of all X-ray images from breast are the same, so they have similar image

quality. Digital mammography includes the structure noise that it reduces in DBT and breast CT

images. However, these 3D image modalities include out-of-plane artifact noise.

Quantum Noise

In the process of generating X-ray imagining, photons randomly distributed within the image.

It means that the number of photons varies in various locations of the images. These randomly

distributed photons in X-ray images cause the various contrast of X-ray images in the different

area of the image. Increment X-ray radiation dose reduces the quantum noise, but the amount of

the absorbed X-ray radiation by patients in tests is an essential factor in medical imaging. Each

projection view for a DBT is generated using less than 1
6 of the dose of two DM exposures. So it
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FIGURE 2.3: The three-projected views (left), two slices after reconstruction

(right). (Inspired by the model in [41])

is expected the quantum noise in DBTs is more critical than in DMs. Hence, we should optimize

the trade-off between removal of quantum noises of DBTs and X-ray radiation dose.

Out-of-plane Artifacts

This noise has appeared as some low-contrast shadows in the plains. The DBT reconstruction

algorithm causes this noise. We can explain this noise with a simple reconstruction example

using the shift-and-add reconstruction algorithm. Assume we take three X-ray images of the

object which includes two patterns. As shown in Figure 2.3, the objects in reconstructed outputs

using the SAA algorithm are blurred, while these patterns are more visible in the plane of interest.

Stronger reconstruction algorithms can reduce out-of-plane artifacts in the reconstructed images

[15]. Figure 2.4 shows out-of-plane artifacts noise in DBT samples.
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FIGURE 2.4: There are horizontal lines on the three sample DBT images that
show the artifact noise on the DBT images.

2.3 Overview of Computer-aided Detection Frameworks on DBTs

Over the past two decades, many research groups have developed CAD systems for detecting

breast abnormalities in X-ray images. A CAD system as the automated tool can localize and

annotate lesions in images. The procedure of detecting breast tumors in medical images us-

ing automatic CAD systems typically comprises three steps (see Figure 2.5): lesion detection

and segmentation, feature-extraction of the lesion, and lesion classification [69], [30]. In the

feature-extraction stage usually, a group of hand-crafted features (e.g., statistical, morphology,

fractal, etc.) are extracted from mass candidate regions. Additionally, in the last few years, deep

learning-based frameworks have achieved outstanding performance in a variety of mammogram,
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FIGURE 2.5: Flowchart of CAD systems using the hand-crafted features and
deep learning approaches. Module (1): preprocessing, module (2): a CAD
method using feature extraction and false-positive reduction and module (3):
image classification and false-positive reduction using deep learning machine.

and DBT analysis approaches [22], [44], [85], [12], [76], [35]. These approaches extract natural

features from data through self-learning in deep architectures.

In this section, we present the literature review of some existing CAD frameworks for detecting

spiculated masses and micro-calcifications in DBTs.

2.3.1 Mass Detection Approaches in DBT Volumes

2.3.2 Hand-crafted Feature-based CAD Frameworks

Chan et al. [25] presented two CAD frameworks for mass detection on DBT volumes and PV

images. The information obtained from DBT volumes and PV images were merged to find 3D

mass likelihood scores in DBT images. The regions of interests were extracted from each slice

of the DBT image using the breast boundary detection algorithm. Then the volume of interests

(VOI) by a 3D region growing method was detected in which it uses the obtained areas from 2D

slices. In the next stage, three types of features morphological, gray level, and texture feature
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were extracted from VOIs. The linear discriminant analysis (LDA) classifier with the leave-one-

case-out re-sampling training technique was used to identify masses in DBT volumes. The CAD

framework on PV images, used the gradient filed algorithm to detect masses independently on

PVs, in which mass candidates were identified as locations with high gradient convergence. The

K means clustering approach was used to extract the object from the background. Three types

of features, morphological, Hessian, and texture, were obtained from ROIs. The LDA classifier

with stepwise feature selection technique was employed to detect masses. The mass likelihood

images derived from the PVs are back-projected to the breast volume to calculate mass likelihood

scores for 3D images. The averaging method merged two extracted mass likelihood from two

CAD frameworks to find the 3D mass likelihood scores in DBT images.

Palma et al. [65] proposed the CAD scheme that comprises two channels for masses and ar-

chitectural distortions detections in DBT volumes. In the mass detection channel, the fuzzy

connected filters were applied to the mass candidate detection stage. The adaptive thresholding

method extracted seeds from the fuzzy detection regions and conveyed them to the two-stage

segmentation approach. In the feature extraction stage, the authors extracted entropy, contrast,

homogeneity, etc. features. They used the support vector machine classification as the classifier.

In the second channel, convergences were detected using a contrario approach. The false posi-

tive reduction step was followed by the 3D aggregation step to take the 3D information. Then

statistical features were extracted, finally, the disjunctive fusion method merged two channels.

Wei et al. [95] represented a CAD framework that utilized the adaptive segmentation approach

for mass detection in DBT. Mass candidates were selected from DBT images by the 3D gradient

field approach. The 3D clustering approach was applied to mass candidates then it followed by

the 3D active contour segmentation to provide VOIs. Three features: morphological, gray level,

and texture features were extracted from VOIs. The LDA classifier was used to find the mass

likelihood scores.
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2.3.3 Deep Learning Based CAD Frameworks

Deep learning approaches especially, deep convolutional neural networks (DCNNs) have been

successful in classifying medical images Carneiro et al. [22], Fotin et al. [35]. In deep learning

approaches, the image patterns are recognized from the training data and incorporated into the

millions of parameters Samala et al. [76].

Samala et al. [76] designed the DCNN for mass detection in DBT images. They used the

transfer learning approach for pretraining the DCNN with four convolutional, and three fully

connected layers [76]. In the learning procedure, they used both mammogram and DBT images.

The augmented mammography ROIs data were utilized for pretraining the CNN model. After

training the model on mammogram data, the weights of the first three convolutional layers were

frozen; then the last convolutional layer and fully connected layers were trained using the DBT

training ROIs. The total number of ROIs after data augmentation for mammography training

data was 45,072, and for DBT training set was 37,450.

Fotin et al. [35] used the DCNN inspired by the AlexNet model [51] as a multi-layer archi-

tecture that consists of alternative convolutions and non-linearities which followed by the fully

connected layers and the softmax classifier. They applied the deep model on 3D extracted re-

gions of interests from DBT images to detect masses. They used the augmentation technique

using random shifting, rotation, and scaling to enlarge the data. The DCNN was trained on

patches sampled from mammography images including 1,864 suspicious tissues and 339 lesions

from slice-by-slice images of DBT volumes.

Kim et al. [47] proposed the DCNN based CAD system for detecting latent bilateral feature

representation of masses in DBT volumes. The DCNN includes four convolutional and four

subsampling layers and two fully connected layers. First, low-level features were extracted from

the ROIs and the corresponding ROIs through the convolutional layers separately. Then low-

level features have been combined in FC layers to represent the high-level bilateral features of

the masses.

As the significant limitation of these systems, I like to mention that these systems utilize super-

vised learning classifications. Consequently, their CAD models need the labels for whole data in
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datasets. Practically, this is a tough job for physicians to mark all ROIs of all slices from DBT

images. So we need to investigate the proper weakly supervised learning classifications that are

suited for DBT images.

2.3.4 Micro-calcifications Detection in DBT

There are several micro-calcification detection approaches can be categorized into CAD models

based on DBT volumes and 2D PV images.

Micro-calcification Detection Approaches on DBT Slices

Bedea et al. [7] developed a noise removal method using the noise mask subtraction approach

on 2D slices. In the micro-calcification process, a generated noise-mask was applied to the plane

which more likely includes micro-calcifications. The selected plane was projected for all tomo-

graphic angles that used onto the plane of the DBT image. These projected views reconstructed

a blurred image. Note that this blurred image was originated from the selected plane including

noise that forms the noise-mask. After subtraction the noise-mask from the plane of interest,

micro-calcification detection procedure took place on the de-noised slices.

Bernard et al. [14] introduced a method to measure the contrast of micro-calcifications using

Mexican hat wavelet responses on each DBT slice. The process was based on the assumption

that the spherical micro-calcification with radius R was placed in a breast of uniform attenuation

coefficient. The difference of the mean gray level between the inside the focus slice (crossing the

center of the sphere) and the neighborhoods of the slab was obtained by convolving the Mexican

hat wavelet with the focus slice. The background noise estimation, 3D connected component

algorithm to extract micro-calcifications, and 3D clustering of micro-calcifications also were

used in this framework.

Sahiner et al. [73] introduced a CAD system to detect micro-calcifications in the DBT volumes.

In the prescreening stage, DBT images were enhanced based on the contrast and their structures.

Using the global and the region growing methods micro-calcification candidates were identi-

fied on images. The potential micro-calcifications initialized the dynamic clustering algorithm
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within a 3D neighborhood. Then the rule-based classifier was used to reduce the number of false

positives (FPs).

Samala et al. [75] presented the CAD framework for detection of micro-calcifications in DBT

volumes. This system utilized multi-scale bilateral filter regularization to enhance DBT im-

ages during the reconstruction procedure. It improved micro-calcifications using the combined

multi-scale Hessian response with enhancement-modulated calcifications response. The iterative

thresholding method by the region growing was adapted to locate micro-calcification candidates.

The dynamic clustering formed the clusters, and some criterions based on the size, the number

of micro-calcifications and the contrast-to-noise ratio were applied to reduce the number of FPs.

Micro-calcification Detection Methods on Projection Views

Peters et al. [67] presented the projection views based approach for micro-calcifications detec-

tion in DBT. This method utilized the responses of PVs to the multi-scale wavelet filter to obtain

micro-calcifications candidates. The membership value for each candidate was calculated with

creating a fuzzy contour using the multi-level threshold process. A fuzzy particle map was used

for the segmentation, and the aggregation operator combined information over the complete set

of PVs. Then the results were mapped to 3D locations.

Reiser et al. [71] proposed a general micro-calcification detection algorithm. In this scheme,

each PV image was treated as a mammogram image. The morphologic de-nosing method was

followed by the difference-of-Gaussian (DoG) for detecting micro-calcification candidates. The

local thresholding approach was used for the segmentation. All segmented images were back-

projected into the 3D feature volume. The maximum-intensity projection approach identified

calcification candidates. Then 3D breast volumes were reprojected to PV images. Linear dis-

criminant analysis (LDA) and the round-robin method were used for micro-calcifications detec-

tion.

Wei et al. [96] developed a 2D approach for micro-calcifications detection using PV images.

Each PV image was enhanced using the contrast-to-noise ratio (CNR) filter. The iterative thresh-

olding method detected micro-calcifications candidates. Micro-calcifications were decomposed
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with Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) basis functions. The channelized

Hotelling model was trained to obtain the multichannel response for each micro-calcifications

on PV images. 2D responses were back-projected into the 3D volume by the coincidence count-

ing method. Finally, a dynamic clustering method identified micro-calcifications clusters in DBT

images.

Samala et al. [77] designed a DCNN to differentiate micro-calcifications from the planar PV

image. Because the image patterns were simple, the structure of the DCNN model was simple

with only two convolution layers, and a fully connected layer.

HO introduced the epipolar curves approach to detect micro-calcifications [41]. The cluster

of micro-calcifications in DBT that appeared as a single dot in the 2D coordinate frame was

called the epipolar curve. The clustering algorithm using the Hough transform was designed to

find all corresponding points which were generated from one micro-calcification. The detection

algorithm used Markov random fields and belief propagation to gather all the detection results in

PVs. The cluster of micro-calcifications was reconstructed from the detected micro-calcifications

in PVs.



28

Chapter 3

Hand-crafted, Feature-based CAD

Framework to Detect Breast Cancers

in DBTs

In this chapter, we introduce the hand-crafted, feature-based CAD framework that we developed

for DBT images. In this CAD model, we focus on the detection of three early signs of the

breast cancer: the presence of spiculated masses, clustered micro-calcification, and bilateral

asymmetric through the three-channels detection scheme. Figure 3.1 shows the overview of the

framework.

3.1 Methodology

Before the application of any analytical algorithms on images, a few problems related to im-

age contrast and image noise must be addressed in the preprocessing module. This module of

the CAD framework comprised of the noise removal, skin-line, and pectoral muscle removal

stages. We also provided the option of contrast enhancement using the histogram equalization

algorithm. Detection spiculated masses channel includes initial detection mass-like object using

the bank of Gabor filters, extraction regions of interests (ROIs), hand-crafted feature extraction,

and classification DBT images. In the micro-calcifications detection channel, we use Laplacian

of Gaussian filter as the primary technique in this model, besides the foreground extraction, and
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FIGURE 3.1: (1) The image preprocessing module, (2) mass detection channel,
(3) micro-calcifications channel, and (4) bilateral asymmetry analysis channel.

post-processing steps are applied to trim the detected micro-calcifications. The third channel

of this CAD framework is designed for identifying and analyzing bilateral asymmetry in DBT

images. To investigate the asymmetry of two breasts, we compare each 2D slice image from the

left breast by the same slice number from the right breast. This channel comprises the contour

detection, the fiducial points selection, the image registration, and region comparison stages.

3.2 Mass Detection Channel

3.2.1 Preprocessing

3.2.2 Image De-nosing

As mentioned before, DBT images are provided by low dose X-ray radiation, and X-ray images

are formed using the photon counting that follows the Poisson distribution given by:

P (Z = z|y) =
yze−y

z!
(3.1)
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where Z is a Poisson random variable with mean y and z that represents photon counts. The

signal-dependent quantum noise covers the DBT images. This noise that corrupts DBT image

has Poisson distribution with dependent mean and variance. Theoretically, any algorithms can

stabilize the variance of distribution will apply to eliminate noise. In this study, we employ the

combination of Anscombe variance-stabilizing transformation (AT) and adaptive Wiener filter

de-nosing method [93]. Anscombe showed that
√
z + 3

8 is the nearest constant variance trans-

formation for z with Poisson distribution [6]. The AT converts a random variable z with Poisson

distribution into the variable with Gaussian distribution with zero mean and unit variance. The

z variable is transformed using the AT given by:

f(z) = 2 ∗
√
z +

3

8
(3.2)

The AT transforms the random variable into the one with a Gaussian distribution. Then, the

adaptive Wiener filter is used to remove the noise in Gaussian distribution [45] from the trans-

formed data. Afterward, the inverse transform of AT is applied to the de-noised data D to return

the variance-stabilized and de-noised data in the original range. There are the variety of inverse

transformation approximations [59] that are listed below. In this study, we use the exact unbiased

inverse way to return the data to the original format.

• Numerical inverse:

IA(D) = f−1(D) = (
D

2
)2 − 3

8
(3.3)

• The adjusted inverse:

IB(D) = (
D

2
)2 − 1

8
(3.4)

• The exact unbiased inverse:

E{f(z)|y} = 2
∞∑
z=0

(

√
z +

3

8
.
yze−y

z!
) (3.5)

where E{z|y} = y ≥ 0 represents the true value of the signal.
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• Maximum likelihood (ML) inverse:

IML(D) = argmaxyp(D|y) (3.6)

p(D|y) =
1√

2πε2
e−

(D−E{f(z)|y})2

2ε2 (3.7)

where ε2 = E
{

(D − E {f(z)|y})2
}

• minimum mean square error (MMSE) inverse:

IMMSE(D, ε) = argmaxŷE((y − ŷ)2|D) (3.8)

ŷ =

∫∞
0 p(D|y)ydy∫∞
0 p(D|y)dy

(3.9)

3.2.3 Pectoral Muscle Removal

Since our data are prepared in the MLO view, pectoral muscles (PMs) appear on images with

the high intensity. The PMs are looking like a breast fibroglandular parenchyma (a breast tissue)

in X-ray images. As we know, the intensity of mass candidate regions in X-ray images is higher

than in normal breast tissues, and most mass candidate identification approaches utilize this

property in their procedures. So identification and removal of PMs are critical prior steps to

analyze DBTs. In this study, we use the Canny edge detector and the probabilistic Hough to

detect PMs boundary, and the thresholding kernel to filter out the muscle area in 2D slices (see

Figur 3.3).

3.2.4 Skin-line Removal

The skin-lines (boundary of the breast) always do not have any beneficial information for ana-

lyzing X-ray images. The intensity of these breast boundaries appear high, and they can affect

subsequent image processing. We use a simple thresholding approach to get rid of them from

images. In our dataset, image intensity values are distributed between 4,000 and 6,500, while

the background value of the image is zero. We use two thresholds the lower threshold 2,500,
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(a)

(a) (b) (c)
FIGURE 3.2: (a) The original image. (b) After application of the Canny edge
detection algorithm, and (c) the probabilistic Hough transform of the input image

in (a).

PM 
removal

FIGURE 3.3: The 2D slice image before and after the PM removal stage.

and the higher one 7,500 to eliminate the breast boundary and artifacts. The two binary masks

are dilated to remove the boundary and artifacts. We use the dilating element mask as disks with
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the of 15, and 30mm, respectively (see Figure 3.4). After the skin-line removal stage, Otsus

segmentation is applied on images to resize 2D slices to 256×256.

FIGURE 3.4: 2D sample image before, and after boundary and artifact removal.

3.2.5 Mass Regions Detection Approach

Initial Mass Detection

The regions of interest (ROI) are required to be specified for extracting features that identify

malignancy breast lesions. Given the morphological characteristic of spiculated masses, which

is a lump of tissue with spikes or points on the surface, we tend to detect objects with higher than

average intensity and spike-like shapes. We use the bank of Gabor filters with multi-frequency,

multi-orientation. Gabor filters are the promising filters for texture analysis. 2D Gabor filters

are defined as the product of a complex sinusoidal wave and Gaussian function 3.10. The idea

behind of using Gabor filters on our dataset is that a centered blob with the spike-like surface

responds strongly to a Gabor kernel with the specific frequency (frequency corresponds to the

spike frequency), and its rotating orientations kernels (see Figure 3.5). Thus, in a particular area
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of the image, if the response to a kernel and its rotating siblings are higher than the neighborhood

areas, it is highly possible that a spike-like blob object exists in this area. Specifically, a few steps

are involved in localizing the coordinate of suspicious spiculated mass: the first step is Gabor

transformation. In the second step, the voting procedure analyzes the filters responses. The vot-

ing procedure works based on a weighted sum of response magnitude and response orientation.

The magnitude vote of a pixel for a Gabor kernel is the summation of the pixel responses to all

orientations of the kernel. The orientation voting is calculated based on the ratio of a kernel ori-

entation response as follows: if the rate of the kernel response to the sum of all kernel orientation

responses of the image is higher than the threshold, the orientation parameter in the voting score

is increased by one. If the response to a Gabor kernel with the specific frequency (frequency

corresponds to the spike frequency), and its rotated siblings are highest in its neighboring areas,

and higher than the threshold, the area is kept as the mass candidate region (see Figure 3.6).

G(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y′2

2σ2
)exp(i(2π

x′

λ
+ ψ)), (3.10)

x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ

where λ, θ, ψ, σ and γ are the wavelength of the sinusoidal factor, the orientation of the normal

to the parallel strips, the phase offset, the standard deviation of the Gaussian envelope and the

individual ratio, respectively [101].

Mass Segmentation

To fully capture the properties of each ROI, we apply the interactive segmentation method to

ROIs. This segmentation algorithm utilizes a principled deep random field model and the graph

cut algorithm [49]. Using the standard pairwise Markov random field (MRF), we define the

segmentation approach for mass candidate regions. For an ROI, the MRF graph is the pairwise

(V , E) where V and E are sets of nodes (pixels of the image) and edges (adjacent pixels pairs),

respectively. The nodes of the graph are the binary variables in which the value of a binary

variable xi ∈ X is (1/0) depending on whether an image pixel belongs to the foreground or the
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FIGURE 3.5: The images in the top row are Gabor kernels with parameters
(number of orientations=4, scale, frequency, gamma). The corresponding re-

sponses to the Gabor kernels are in the bottom row.

background, respectively. The pairwise potential ψ(xi, xj) is defined on the neighboring binary

variable nodes of the graph. Then we set the objective of the segmentation approach so that it

finds the optimal X which maximizes the posterior distribution of the MRF field:

P(X|I) = 1

Z
e−E(X)

s.t. E(X) =
∑
i∈V

φ(xi) +
∑

(i,j)∈E

ψ(xi, xj),
(3.11)

where I , Z, φ(xi) are the image, the normalizing constant, and a unary potential function, re-

spectively. The unary potential function shows the likelihood score of the pixel i being in the

image foreground. For the optimization procedure, the energy function E(X) in e.q 3.11 is mini-

mized over X . Pairwise potential function in 3.12 penalizes different labels of neighboring pixels
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(a) (b) (c)

FIGURE 3.6: (b) Gabor kernel with 8 orientations applied on a sample image.
(c) Mass candidate patches from the image in (a) which produce responses to

Gabor filters in (b) higher than the threshold 16.4.

(4-neighbor or 8-neighbor pixels). This penalty encourages smooth segmentation and simulta-

neously discourages long object boundaries. Consequently, the short-boundary bias problem

appears in the segmented image. Since there are massive objects boundaries pixels which do

not share the same label as their neighbors, the short boundary bias is a major issue for medical

image segmentation. The cooperative graph cut approach addresses this problem, in which this

method replaces the domain of the pairwise potential in 3.12 by the diversity transitions between

boundary pixels, and their neighbor’s sets. In spite of massive objects boundaries pixels that do

not share the same label as their neighbors, the number of label transitions is constant, and the

diversity of changes between boundary pixels and their neighbors is limited.

E(X) =
∑
i∈V

φ(xi) +
∑
g∈G

Ψg(x)

s.t. Ψg(x) = F(
∑

(i,j)∈G

ψ(xi, xj))

(3.12)
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F function, and G are the nondecreasing concave function as the lower envelope of multiple

linear functions with matching templates in [49], and the diversity boundary object pixels set,

respectively.

As explained above, the boundary energy of the cooperative cut algorithm is a sum of thresholded

submodular functions, while the boundary energy in the graph cut is a sum of so fully modular

functions. Relaxing thresholds in a cooperative cut algorithm in the boundary energy make the

submodular functions. If we use many edges, a submodular over the edges of the corresponding

region gives us a discount on the cost of the long cut [43]. We provide a comparison example

that shows the outputs of the cooperate cut and graph cut algorithms on the ROI (see Figure 3.8).
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FIGURE 3.7: Image de-noising, PM removal, the region of mass candidate de-
tection, and segmentation stages on a sample image.

3.2.6 Feature Extraction

How to efficiently design the reliable features is the challenge for all the breast cancer re-

searchers. The extracted features should include critical information from images so that breast
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FIGURE 3.8: Schematic overview of the graph-cut segmentation and cooperative
cut segmentation.
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cancers are interpretable via them. For instance, the breast density, and texture information are

essential to analyze breast cancer. In this study, we extract three kinds of features from ROIs:

gray level intensity, gradient information, and morphological features. Besides some other fea-

tures such as fractal dimension features is also obtained from ROIs.

Morphological Features

We adopt a set of features to provide geometric information from the segmented objects. The

most basic features are central moments and perimeter. More advanced extracted features are

skewness and compactness.

Besides, we provide a group of features on the model rubber band straightening transform called

the RBST. These features are extracted from the surrounding mass areas, in which an area along

the contour of the segmented object (see Figure 3.9) is chosen and converted by the RBST into

a Cartesian coordinate system. The mass boundary area is transformed into a rectangular image.

The branches along the spiculated mass are captured in the rectangular transformed image. We

take the second order gradient of the RBST image for counting the number of branches. Table

3.1 reports some morphological features with their corresponding brief explanation.

TABLE 3.1: Some extracted morphological and texture features.

Features Explanation
Feature from an RBST image The features include short-run emphasis,

long-run emphasis, run-length nonuniformity
that are extracted in various angles.

Eccentricity The ratio of the long axis to the short axis on
an RBST image.

Perimeter No. of pixels on the ROI contour.
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FIGURE 3.9: The boundary mass areas from two samples.

3.2.7 Intensity-based Features

In a spiculated mass area, the average intensity decreases as the radius increases, and the standard

deviation increases with increasing the radius. We apply these ideas on the divided ROIs into

rings and circular sectors along their angles. First, each extracted ROI is divided into a set

of nested rings [r1, r2, ..., rn] along the radius. Then, the mean and standard deviation of the

intensity are calculated within each ring {mr
1, ...,m

r
n}, and {stdr1, ..., stdrn}. We derive the mean,

and the standard deviation vector including the minimum minrm, maximum maxrm, as well as

the average mean avgrm and standard deviation stdrm sets of all the rings. Besides, we use a

linear regression model to estimate the varying rate of the mean and standard deviation along a

radius.

This idea is applied on circular sectors of ROI, in which a ROI is divided into [s1, s2, ..., sm]

along the angle, and features are extracted from sectors. We drive the mean, and standard de-

viation vectors. Then, the minimum minsm, minsstd, maximum maxsm, maxsstd, average avgsm,
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TABLE 3.2: The intensity and gradient-based features which are extracted from
divided ROIs into rings, and circular sectors.

Ring based features Circular sector based features
minr

m mins
m

maxrm maxsm
minr

std mins
std

maxrstd maxsstd
avgrm avgsm
avgrstd avgsstd
stdrm stdsm
stdrstd stdsstd

FIGURE 3.10: Extracted sectors along the radius of a 2D sample.

(a) (b)

FIGURE 3.11: Extracted rings along the radius of a 2D micro-calcification sam-
ple in (a), and a mass sample image in (b).

avgsstd, and standard deviation stdsm, stdsstd are calculated of the mean, and standard deviation

vectors.
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3.2.8 Gradient-based Features

Again, we use the extracted rings from ROIs to derive gradient features. First, the gradient of

ROIs is calculated in each ring, then for each ring, the number of pixels with gradient magnitude

above the threshold as well as the direction of gradient parallel to radius are calculated. The

percentages of high magnitude pixels are determined for each ring and reported as its gradient

feature value. Moreover, we divided each ROIs into sectors and calculated the rate of pixels

where the gradient magnitude is above a threshold, and the gradient direction is perpendicular to

the radius.

3.2.9 Fractal Dimension Features

Several studies on biomedical frameworks have observed that the analysis of the fractal property

of self-similarity provides significant information from the insight of the biomedical system

under investigation. Fractal dimension (FD) as a non-integral dimension is dependent on the

complexity of the dimensionality of an object, in which it quantifies how the object fills the space.

The most common way to estimate FD of a digital image is the representing the characteristic

of the image using the function of the scale parameter. The log-log domain of the function is

drawn, then using the linear regression the slope of the straight line to the curve is calculated.

We estimate the fractal dimension from ROIs as another feature. The 2D power spectrum is

mapped to the radial (f, θ) space from the Cartesian coordinates (u, v) space. It is mapped using

the re-sampling by the weighted average of the four neighbors of each point for radial distances

ranging from zero to half of the sampling frequency over the angles of θ = [0, 179o]. Then, the

2D spectrum in the (f, θ) space is transformed into a 1D function S(f). The spectrum S(f) is

related to the radial frequency f by the S(f) ∝ ( 1
f )β formula. The slope β is estimated of the

fitted line to the curve in the log-log scale of S(f) using the linear regression using the linear

regression approach. The FD is determined as FD = 8−β
2 .
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Feature Selection

We provided various dimension reduction methods such as principal components analysis (PCA),

linear discriminant 2D projections, random trees embedding projection, and Hessian locally lin-

ear embedding [94].

A PCA approach is a linear transformation method. The goal of this method is to analyze data

for identifying pattern in which it reduces the dimensions of the data with minimal loss of in-

formation. In this method, we are interested to find the directions that maximize the variance

in the dataset. This approach uses the orthogonal transformation to convert the data correlated

variables into the linearly uncorrelated variables. These linearly uncorrelated variables are called

principal components. The resulting vectors are not correlated orthogonally, so the transformed

data has the lower variance than the original data.

Linear discriminative analysis 2D projection approach likewise a PCA method is a linear trans-

formation technique. This method aims to project a feature space onto a smaller subspace while

preserves the class-discriminatory information.

The random trees embedding projection as the space partitioning technique is adapted to the

intrinsic dimensionality of the data. It applies the k − d tree data structure to the data that

partitions hyper-rectangular cells, the splits along different directions with a binary tree caused

the leaves that contain individual cells. This method guarantees the reductions of the cells [28].

Recovering the low-dimensional data from the high dimensional with the assumption that the

data lie on the manifold M in which it is the sub-manifold of the Euclidean space. The Hessian

locally linear embedding method recovers a parametrization of data that lie on the manifold in

which it is locally isometric to the subset of the Euclidean space. The Hessian is defined using

the orthogonal coordinates on the tangent planes of the Euclidean space.

At the beginning of our study, we trained different classifiers on our data such as support vector

machines (SVM), and decision tree classifiers. For evaluating each classier, we used different

feature selection approaches. For example, for the SVM classifier, the random trees method was
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used. Figure 3.12 illustrates techniques that are applied to the extracted feature vectors to reduce

their dimensions.

For the multiple-instance learning classifier in our framework, we use the linear discriminant 2d

projection method [89] as the feature selection approach to select the best features within each

type of the extracted features.

FIGURE 3.12: Different dimensionality reduction approaches.
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3.3 Mass Classification

The classification stage aims to classify DBT using all derived features from ROIs. The multiple-

instance learning classifier annotates DBT images using the combination of extracted features

from all ROIs over the entire DBT. Our goal is to reduce the false positive detection rate and the

false negative rates

3.3.1 Multiple-instance Learning

Dietterich [31] introduced a weakly supervised learning framework called multiple instance

learning (MIL). In a MIL, we are given a training data which includes annotated bags whereas

a bag consists of a set of unlabeled instances [108]. In this model it is assumed that each in-

stance has a label (positive or negative); however, this label is not given in the training stage.

A bag is labeled positive if at least one of its instance is positive. In a MIL, we are given a

training set consisting of n bags B1, B2, ..., Bn instead of individual instances, where each bag

Bi = {xi1, ..., xik} consists of a varying number of instances, and it aims to learn instances and

bags labels:

h(xij) : X −→ [−1, 1] (3.13)

where h(.) represents the instance-level learning, and the bag-level learner is defined:

H(Bij) : Xm −→ [−1, 1] (3.14)

H(Bi) = max
j
{h(xij)} (3.15)

A binary MIL model usually uses the standard negative likelihood as the loss function during

the learning procedure [98]. The MIL framework has been used in various medical imaging

applications to perform medical image classification, learning features and image segmentation

[68], [109], [99]. There is also a rich literature of studies on the synergy of classification methods

and the MIL setting. These have been applied to medical images including cancer detection

techniques such as multiple cluster instance learning in [98] for colon cancer detection.
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MIL on DBTs

In the classification stage, our goal is to annotate DBT images using learned features from the

previous step. In this study, the multiple-instance learning strategy is used for the DBT classifi-

cation, which is supposed to mimic the same radiologists analyzing DBTs. A DBT is annotated

positive if at least a corresponding slice has an early sign of breast cancer. Consider the training

bag is a DBT image, and its 2D slices are the corresponding instances as shown in Figure 3.13.

The detail of the learning procedure will be given later in chapter 4.

Instance 

Instance …
..

Instance 

DBT

 MIL Set-UP

2D Slice 
Label

DBT 
Label

Bag

FIGURE 3.13: Schematic overview of the MIL setting on a DBT.

3.4 Micro-calcification Detection

The micro-calcification detection task either by radiologists or CAD frameworks is often a tricky

job. Micro-calcifications may be occluded by surrounding breast tissues or may be confused with



Chapter 3. Hand-crafted, Feature-based CAD Framework to Detect Breast Cancers in DBTs 48

other white noises in X-ray images. There are limitations in the visibility of micro-calcifications

in DBTs for some factors: large search space, lower signal-to-noise ratio, blurring, and recon-

struction using thick slice spacing [78].

In this study, we developed the separate channel in the CAD framework to detect micro-calcifications.

However, due to the insufficient micro-calcification data (2 DBT images), this framework serves

only as the first step for the future works. In this study, we developed the separate channel

in the CAD framework to detect micro-calcifications. However, due to the insufficient micro-

calcification data (2 DBT images), this framework serves only as the first step for the future

works. Micro-calcifications as an early sign of breast cancer could be visible as a cluster of

white dots in an X-ray image. Based on other studies, micro-calcifications absorb more X-ray en-

ergy when compared to other breast tissues, in which the intensity range for micro-calcifications

is among the top 30% of their surrounding tissues. By utilizing this knowledge that micro-

calcifications appear as high-intensity dots in X-ray images, we extracted the foreground from

the background. For the foreground extraction, we applied a sliding window, while the window

was shifted in an overlapping manner. All pixels with intensity of lower than the threshold of

30% were set to the background (see Figure 3.14). Then we applied the Laplacian of Gaussian

filter (LOG) as the kernel for detection calcify dotes on the images. The responses of images

were binarized. Moreover, a label connects filter was used for each calcification candidate to

label each calcify dot as an object and specify it with identification. The local density and the

size of each calcification blob are essential factors for micro-calcifications detection. We applied

these constraints to the suspicious calcifications recognized from the filtered images. We also

added the appearance of frequency within adjacent 2D slice constraint using the extracted 3D

information [103].

3.5 Bilateral Asymmetry Detection in DBT Images

Bilateral asymmetry is the lack of symmetry between medical images of the left and right breasts.

The asymmetry in a breast includes asymmetry in shape, surface, and architecture of a breast.
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FIGURE 3.14: The image region before and after foreground extraction.

(a) (b)
FIGURE 3.15: Colored ovals in (b) represent extracted micro-calcifications from

the image in (a).

The two breasts (left and right) are similar in 97% of healthy women. The appearance of asym-

metry may be caused by the developing masses or the poor image capturing process.

For the bilateral analysis in DBT, radiologists must compare all slices of both breasts. Thus, a
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CAD system for bilateral analysis in DBT can assists radiologists in reducing workload and also

allows them to examine the bilateral asymmetry of the breasts quickly, and precisely. The limited

study has been done to design these CAD bilateral analysis systems for breast cancer screening

on DBT images. The primary challenge in this task is finding the proper breast registration or

breast alignment approach.

We introduce the bilateral DBT images asymmetry detection scheme based on analyzing left-to-

right 2D slice images from corresponding DBT images. The system comprises three steps (see

algorithm 1). In the first step, the proper fiducial (control) points are extracted from the left and

the right 2D slices. Then, the registration algorithm is applied to the extracted fiducial points

from both slides images. Finally, using the variety of distant metrics, the alignment images are

compared. Our dataset contains 60 non-cancerous DBT images, and 27 cancerous cases. The

non-cancerous cases were obtained from 30 patients, in which images were taken from left and

right breasts. We do not have images with positive bilateral labels in our cancerous cases. So

for evaluation of the bilateral asymmetry approach, we can only use the non-cancerous DBT

images.

Before selecting the fiducial selection points from 2D images, the image is flipped pixels so that

the informative pixels start at the pixel in the (0, 0) coordinate. The integrated intensity value

chooses the side of the breast on the upper left corner.

Fiducial Points Extraction

The fiducial points prepare the critical piece of information in the process of image registration

on DBT images. In this study, we extract fiducial points that along the breast contour. We detect

the contour of the breast in the images with the simple thresholding way of taking advantage of

the data that background pixels have zeros. The contour is cleared up with the smoothing process.

Then we conduct a sampling step along the smooth contour to collect the fiducial points, and we

also obtain a set of points located on the left border of images (see Figure 3.16).



Chapter 3. Hand-crafted, Feature-based CAD Framework to Detect Breast Cancers in DBTs 51

FIGURE 3.16: The selected fiducial points from both sides of the breast images.

The Thin-plate Spline Registration

The breast registration is defined as the spatial mapping between the left and the right breasts.

Common developed breast registration methods are elastic body spline, B-spline, and thin-plate

spline-based methods [37]. The goal of breast registration is to find the optimal transformation

that aligns one image to another one.

The thin-plate spline interpolation called TPS was introduced in [17]. TPS has been used widely

in medical imaging as the registration or the deformation method [107]. This name refers to a

physical analogy that involves the bending of a thin sheet of metal. Likewise, the metal that has

rigidity, the TPS deformation resists the bending by implying the penalty including the smooth-

ness of the fitted surface. In the metal setting, the deflection is in the Z direction that is orthog-

onal to the plane. This idea has interpreted the lifting of the plate as the displacement of the

X or Y coordinates within the plate for the problems of the coordinates transformation. In this

study, we use the TPS interpolation method [18] on DBT slices. This registration function has

two terms the bending, and the affine term. Given a set of fiducial points, the displacements of

all other points in the image are determined by the bending term that defines the fiducial points,

and the affine term that establishes the mapping into the infinity:

f(x, y) = a1 + axx+ ayy +

k∑
1

wiU(|Fi − (x, y)|) (3.16)

where f(x, y), and Fi represent the displacement of an arbitrary 2D point (x, y), and the fiducial
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point, respectively, and a1, ax, ay, and wi are spline coefficients. The final summation term con-

trols the bending influenced by k fiducial points using a controlling function U(r) = r2 log(r),

where r is the Euclidean distance
√

((xi − x)2 + (yi − y)2 from the ith fiducial point to (x, y).

In fact, TPS defines a surface on fiducial points, while the function f(x, y) minimizes the bend-

ing energy with 42f = 0. The solution to the linear system is derived by solving the above

equation plugging the source and destination control points. The TPS algorithm results in aligned

images from source and destination images (see Figure 3.17).

FIGURE 3.17: The horizontally flipped right breast (on the left), the left breast
(in the middle), and the aligned right breast (on the right).
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Region Comparison

The last step of this procedure is exploring some distance metrics to measure the symmetric

between two aligned images. First, we crop the image into the fixed sized regions to create

objects for comparison. Note that the areas are cropped with an overlap of half the size so that

no boundary information is lost. We use two types of distance metrics in this study, the intensity-,

and the feature-based methods. The intensity-based techniques are computed based on intensity

values distribution divergence, cross-correlation of templates, etc. We are also interested in

geometric characteristic in pixels that in our case are the vascular structures, etc. In the feature-

based metrics, we use the representative features, such as principal components decomposition

and the nonnegative matrix factorization as the ways to extract principal vectors. Note that, we

only use the first few principal components for the comparison.

The image matrices are converted into one-dimensional arrays for comparing between the two

image regions based on the intensity metric. Then, we apply a few primary distances, such as Eu-

clidean, Manhattan, and Chebyshev. Also, more advanced distances like Pearson and Chi-Square

correlation are used for the comparison between cropped regions. Besides, we compare two ma-

trices of areas, in which we use the normalized SQDIFF, and the normalized cross-correlation

techniques:

R(x, y) =

∑
x′,y′(T(x′, y′)− I(x+ x′, y + y′))2√∑
x′,y′ T(x′, y′)2

∑
x′,y′ I(x′ + x, y′ + y)2

(3.17)

R(x, y) =

∑
x′,y′(T(x′, y′)I(x+ x′, y + y′))√∑

x′,y′ T(x′, y′)2
∑

x′,y′ I(x′ + x, y′ + y)2
(3.18)
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where T and I are regions of the template image (the destination), and the source image, respec-

tively.

Algorithm 1 Bilateral Asymmetry Detection.

Input: DBT images from the left, and the right breasts.
Output: Returns the asymmetry measurement images outputs from the input images.

1: SET k equals to No. of slices from the left DBT.
2: SET counter variable equals to zero.
3: for all Slices belong the left DBT image. do
4: Find the corresponding slice from the right DBT image.
5: Flip pixels of slices so that they appear on the same side of the image.
6: Find fiducial points from both 2D slices.
7: Apply the TPS registration algorithm to map the slice image from the right image onto

the left one.
8: for all Measurement algorithms do
9: Construct the empty result images from slices.

10: Crop the regions for images.
11: for all Regions in images do
12: Measure the symmetry between alignment breasts, with the parameter.
13: Change the result images pixel values with the measurement results.
14: end for
15: Save the resulting image for the measurement parameter.
16: end for
17: end for
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Chapter 4

Deep-learning based CAD frameworks

Most available CAD methods for detecting breast cancers rely on hand-crafted feature extraction

approaches. This dependency has limited these systems to what humans understand as inter-

pretable difference among the early signs of breast cancers and the healthy breasts in images.

Concerning noticeable internal and external observer variabilities that may affect these critical

image-based breast cancer risk measurements [50], we can imply these measurements cannot be

consistent.

Additionally, in the last few years, deep learning models have achieved notable performance in

various medical imaging tasks such as image analysis and classifications [44], [22], [97]. The

human brain’s architecture inspires deep learning models, in which they involved algorithms

with the structure of artificial neural networks that are inspired by the function of the brain. Deep

refers to the number of layers in the network. Deep learning models can represent an input at

many levels of abstraction when compared to the conventional machine learning algorithms with

the shallow designs. The deep architecture allows the algorithm to learn features automatically

without using hand-crafted features. The ability to determine the model pattern without using the

feature designing as the most challenging and time-consuming part of the learning algorithms

makes deep learning models extremely attractive in the field of medical imaging.

In this chapter, we introduce two deep learning based CAD frameworks (cardinality restricted

Boltzmann machines- and convolutional neural network-based systems) for detecting masses in

DBT images. For training these models, we used the enlarged dataset which will be discussed

in Chapter 5, The deep learning models in CAD frameworks provide the hierarchical 2D slices
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representations. These models comprise of different layers to represent low-to-high level features

from 2D slices, in which the layers that are adjacent to the input layer learn more generic, and the

layers adjacent to the output layer learn more specific features from images. The learned features

from 2D slices undergo the multiple-instance learning algorithm in the CAD frameworks for

classifying DBT images. The learned features are the instances, and DBT images are the bags

for the multiple-instance learning classifier.

4.1 Methodology

These CAD frameworks include the preprocessing, the deep learning based feature learning,

and the multiple-instance learning classification modules (see Figure 4.1). The input images

are the 2D slices from DBTs. The preprocessing approach is the same one used in the hand-

crafted feature-based CAD system in Chapter 3. The deep learning models learn features from

the images through the hierarchical structure automatically. Using the multiple-instance learning

(MIL) algorithm DBT images are classified based on the learned features from their correspond-

ing 2D slices. In this thesis, we use the synergy of multiple-instance learning and the random

forest (RF) and support vector machines (SVM). For the RF-based MIL, the RF is initialized

by training it on instances that inherited their labels from DBT images where they lie. Then at

an iteration of training procedure of the synergy of multiple-instance learning and RF, for each

tree, a pseudo label for each instance is drawn based on the probabilities that stored in the leaf

of trees from the previous iteration. Note that if we have a positive bag (DBT) with no positive

instance (2D slice), we assign the positive pseudo-label to the instance with the highest probabil-

ity of being positive. For SVM-based MIL classifiers, there are several ways to extend the SVM

optimization to the MIL one. For example, using the heuristic two-step algorithm in which first

the discriminative optimal is found based on the pseudo labels for 2D slices in positive DBTs.

Then, the labels for the 2D slices in positive bags are updated based on the optimal discrimina-

tive function. This two-step is continued until no more label changes for instances in positive

bags. In this study, we used four different SVM-based MIL classifications.
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FIGURE 4.1: Flowchart of deep learning based CAD frameworks.

4.2 Deep Belief Networks

This section provides the background information for the deep neural networks. We discuss

some prior learning representations in computer vision that are related to deep learning models.

4.2.1 Autoencoder models

Autoencoder is the most straightforward unsupervised neural network (NN) algorithm that can

extract features from the data automatically. An autoencoder approach as a type of feed-forward

NN that processes an input sample through a multiple-layer neural network to reconstruct the

input sample at the output of the network (see Figure4.2). Each layer of the NN comprises a

matrix of weights W , biases vectors b, and a form of nonlinearity function such as sigmoid,

tanh, or rectified linear unit [105]. The nonlinearity is applied to the input to provide the output

of each layer as:

h(v) = σ(Wv + b) (4.1)

where v, and σ are the input and the sigmoid function, but it could be any activation function in

an NN. The squared distance between the output of the last layer of the NN (h), and the targets (y)
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defines the object to be minimized in the learning procedure. Usually, the stack of autoencoders

is used as the deep autoencoder model. For training the stack of autoencoders, first all layers are

trained, then the entire NN is fine-tuned for reconstructing the input [105].

V0 V1 V2 V3

h0 h1 h2

W

FIGURE 4.2: The autoencoder takes the input v in the first layer, encodes it
through the weights W to get a set of feature responses which are mapped
through the nonlinearity to get activations in the hidden layer (middle layer). In
the output layer (the last layer) the reconstruction of the input as v̂ is provided.

4.2.2 Restricted Boltzmann Machine

A restricted Boltzmann machine (RBM) is an autoencoder model that was introduced in [40]. As

shown in Figure 4.3, an RBM is a particular type of Markov random field (MRF) with a hidden

layer and a visible one. Nodes of an RBM are connected to each other across layer nodes, but

no nodes that are in the same layer. The RBM is trained by minimizing the following energy

function:

E(v, h) = −vT bv − hT bh − vTWh (4.2)
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FIGURE 4.3: An RBM with four visible, and three hidden units.

where v ∈ {0, 1}Nv , h ∈ {0, 1}Nh , and θ = {bv ∈ <Nv , bh ∈ <Nh ,W ∈ <Nv×Nh} are the

bias vectors for the visible (input), and the hidden layer and the visible-to-hidden weight matrix,

respectively. The parameters of an RBM are learned by maximizing the probability of the joint

configuration {v, h} that is defined based on the energy function as:

P(v, h) =
1

Z
· exp(vT ·W · h + vT · bv + hT · bh) (4.3)

P(v; θ) =
1

Z(θ)
· exp(−E(v; θ)) (4.4)

where Z(θ) = Σve
−E(v;θ) is the normalizing constant. Using the maximum-likelihood (ML)

method, the parameters of an RBM are learned. The parameters of the RBM θ with the sample

data V = {v1, ..., vN} are computed by the gradient ascent [23]:

θt+1 = θt + η
∂L(θ; V)

∂θ
(4.5)

where η is the learning rate. The L is the average likelihood:

L(θ; V) =
1

N
ΣN
n=1logP (vn; θ) = −〈E(v; θ)〉0 − log(Z(θ)) (4.6)
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where 〈.〉0 is the average of the empirical distribution P0(v) = 1
NΣN

n=1δ(v − vn). Then we

should compute the:

δL(V; θ)

δθ
= −〈δE(V; θ)

δθ
〉0 + 〈δE(V; θ)

δθ
〉∞ (4.7)

where 〈.〉∞ is the average with respecting to the model distribution P∞(v; θ) = P(v; θ). In e.q

4.7, the first average is computable using the sample data V, but the second average includes

the Z(θ) partition function that we do not know the value of this partition function so it cannot

be computed efficiently 4.7. The standard method for approximation of the average over the

distribution is the Markov chain Monte Carlo approach. But this way takes a long time since

it requires the estimations of averages that have the expectational amount of terms, and also

it produces the large variance of the estimation of the gradient. Hinton [40] introduced the

contrastive divergence (CD) algorithm as the approximate ML learning algorithm. The ML

method minimizes Kullback-Leibler divergence:

KL(P0||P∞) = ΣvP0(v)log(
P0(v)

P (v; θ)
) (4.8)

The CD learning follows the estimated gradient of the objective function that is the difference

between two Kullback-Leibler divergences:

CDn = KL(P0||P∞)−KL(Pn||P∞) (4.9)

In the CD learning, the Markov chain is started at the data distribution, and the chain runs only

for a few steps. In comparison to the Markov chain Monte Carlo approach, in the CD method,

the computation and the variance of the estimation of the gradient are reduced per each gradient

step. Moreover, the CD learning yields good estimates for parameters, and it has been applied

successfully to various type of random fields. In training an RBM usually, the CD algorithm is

used for the maximum likelihood.
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The inference in an RBM is the single feed-forward encoding (see e.q 4.10):

h(v) = σ(Wv + bh) (4.10)

where

σ(x) =
1

1 + exp(−x)

σ is a logistic function. Selecting the sigmoid non-linearity can be justified based on that it is

equal to the expectation of the conditional distribution P (h|v) [86]:

σ(W T v + bh) = EP (h|v)[h] (4.11)

Typically a deep RBMs (DRBMs) model comprises a stack of RBMs. For training a DRBMs,

the stack is initialized using the greedy layer-wise pretraining process. We enter an RBM in

the empty stack and train it until a good representation of the input is obtained. Then, another

RBM is added on top of the first one, in which it takes the feed-forward activations from the

hidden layer of the lower RBM as its input. This procedure is continued for more RBMs in the

stack. Then, the stack of trained RBMs is converted into a feed-forward NN, and the entire NN

is fine-tuned with backpropagation technique.

The backpropagation is a way of computing gradients of expression using recursive application

of the chain rule. In an NN, gates get some inputs that can compute its outputs values and the

local gradient of data. These gates do these computational independently in the forward pass.

Once the forward pass is over, during the backpropagation, gates can learn about the gradient of

its output on the final layer of the entire network. Each gate takes this gradient and multiplies

it to all the local gradients for all its inputs. So choosing the proper non-linearity function for

activation neurons is the critical task in designing the NN since the gradient of the non-linearity

as the local gradient is multiplied to the gradient of this gate’s output for the whole objective. The

backpropagation identifies as the way for gates to communicate with each other in the network,

so that they make the final output value higher.
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Hinton [74] introduced another way to design a DRBMs. This model comprises a stack of

RBMs that are connected in the bidirectional fashion. The bidirectional connections between

RBMs help the model to be trained jointly instead of greedy layer-wise training.

4.3 Deep Cardinality Restricted Boltzmann Machines MIL CAD

Framework

Conventional CAD frameworks such as the proposed CAD framework in chapter 3 heavily rely

on the hand-crafted human features. Even though this approach is successful on the available

data; the classifier can be fooled by the feature extraction or other preprocessing stages failures

with additional clinical cases. So a method which relies on less prior processing such as deep

learning models is desirable. In this section, we introduce the deep cardinality restricted Boltz-

mann machine MIL CAD framework for detecting masses in DBT. As shown in Figure 4.5, the

DCaRBM-based CAD framework comprises the input, the DCaRBM, and the MIL classifica-

tion. The DCaRBM learns image patterns from 2D slices through a deep learning fashion, and

the MIL classifies DBT images based on the learned features from 2D slices.

4.3.1 Deep Cardinality Restricted Boltzmann Machine

An RBM often is used as a pre-training method in the deep belief networks (DBNs) models.

Using DRBMs, the performance of various machine learning tasks in different domains have

been promoted. However, the disconnection between the unsupervised nature of an RBM and

its final task where the learned features are used such as the classification task may decline the

task-specific performance of an RBM. One of the ways to improve the task-specific performance

of an RBM is to incorporate sparsity into the learned representation of the RBM [86]. A sparse

coding model aims to learn the over-complete set of basis functions for representing the input

data. So methods with a variety of tasks that use the sparse representations can achieve the

promising results.
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Sparse Coding

In the sparse coding model, an over-complete set of basis functions are learned [64]. Then

using the sparse distribution of coefficients or feature activations for each basis function, a small

number of the basis functions reconstruct the input data. For the learning procedure in a sparse

coding model, the cost function is given by:

C =
λ

2
‖Wz-x‖22 + ‖z‖1 (4.12)

where W, z, and x are the matrix of the basis functions, the feature activation, and the input

vector, respectively. The W is not a square matrix since it shows the over-complete basis func-

tions. As shown in e.q 4.12, the cost function comprises of two parts: the reconstruction term

and the weight matrix. The reconstruction part enforces the input reconstructed from the learned

features. The weight matrix of the cost function imposes the inferred feature maps to be sparse

in the `1-norm [90]. The aim of the sparse coding is minimizing the cost function over the en-

tire dataset. For optimizing the cost function, the gradient descent is employed on the W that

is shared between all input values to update it. Then, z is inferred for each input based on the

current value of the W.

The sparsity can provide the interesting features that are invariant to local transformation. How-

ever, with increasing the sparseness of the solution, the discriminative information is limited

to the few activations. So the sparsity usually is used as the part of the learning model. For

example, the combination of the hierarchical models with sparse coding that proved the robust

classifications with the ability to learn the different levels of features from the entire image [16].

DCaRBM as the Sparse Model for DRBM

We can apply sparsity by a direct sparse model or by an undirected way. The direct sparse

models impose the sparsity using a target sparsity penalty for activations and the sparse model

that separates activations into spike and slab units [36]. While in the undirected sparsity ways, the

sparsity is applied to the model by the hard sparsity constraints directly on the energy function.
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Authors in [88] proposed the method based on assigning the performance to counts over the

subset of binary variables called the cardinality potentials. The cardinality potentials are useful

for applying the undirected sparsity to approaches.

We use the sparse deep restricted Boltzmann machine (RBM) model called deep cardinality

RBM (CaRBM) [86]. This model uses the undirected way to apply the sparsity into the RBM.

Hard constraints are applied to the energy function of RBM using the cardinality potential func-

tion. The sparsity constraint is assigned to the energy function by restricting the number of

hidden units that decode the visible layer data. The probability of the joint configuration {v, h}

in CaRBM [86] is defined as:

P(v, h) =
1

Z
· exp(vT ·W · h + vT · bv + hT · bh · ψk(

Nh∑
j=1

hj)), (4.13)

s.t. ψk(c) = 1 if c ≤ k, otherwise ψk(c) = 0

Function ψk(
∑Nh

j=1 hj) in e.q (4.13) is the cardinality potential function with a constant parame-

ter k. The cardinality potential function implements the competition between hidden layer units.

This competition provides the sparsity in the model.

The deep CaRBM is the stack of CaRBMs that are considered as pretraining models for the

DBN model. The contrastive divergence algorithm is used as the learning procedure in the deep

CaRBMs. After several CaRBMs are trained in a greedy-layer wise manner, the network is

converted to the feed-forward NN. Note, the non-linearity function in the stack of CaRBM is not

the sigmoid function. The non-linearity µ(.) [86] is used in the stack of CaRBMs that satisfies

the equation:

µ(W T v + bh) = EP (h|v)(h), (4.14)

where P (h|v) is derived from e.q 4.13. Authors in [86] proved that this non-linearity exists and

they proposed the alternative method of multiplying by the Jacobian of µ(.) to backpropagate

through µ(.). In Figure 4.4 we demonstrate the reconstructions of sample input data from the
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first layer features maps of DCaRBM.

FIGURE 4.4: Image reconstructions in the 100 randomly selected hidden units
from the layer one of the DCaRBM on 2D slices samples.

Training the DCaRBM CAD Framework

The input data for the CAD framework includes the original data and the synthetic data that will

be discussed in Chapter 5. The preprocessing module is the same one in the pipeline of hand-

crafted feature-based CAD framework. The learning procedure for the DCaRBM-CAD system

consists of the two step-learning procedure. First, it used the DCaRBMs to learn features from

2D slices. Then using the multiple-instance random forests combines the learned information to

classify DBT.
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Here in this thesis, a stack of the three CaRBMs is trained in the greedy-layer wise fashion way.

Learning the global features via a small number of hidden units in the initial learning epochs that

causes other hidden units do not participate in the learning procedure yields the dead units issue.

The efficient way to address this problem is augmenting the log-likelihood with the Kullback

Leibler (KL) penalty (the negative of the KL divergence in e.q 4.15). The dead hidden units

problem appears in the initial learning epoch in the DCaRBM when parameters are initialized

randomly. We apply the KL penalty only during the unsupervised learning (training the stack

of DCaRBMs), following the model in [86]. The target sparsity is fixed to 10%, the strength of

the KL penalty is found so that the model achieves the average hidden unit population sparsity

without dead units. The following penalty term is applied to the logarithm object 4.13:

λ(p log qj + (1− p) log(1− qj)) (4.15)

s.t. qj =
1

N

∑
n

P (hj = 1|vn)

where p, λ, N , and n are the desired target expected sparsity, the strength of the penalty, the

normalization value, and the number of the visible units in the visible layer, respectively. For

training the DCaRM, the input 2D slices are divided into the mini-batch size of 100 samples.

The number of hidden nodes from the 1,000 nodes that can explain the visible vector data is

fixed to 10 nodes. The stack of DCaRBMs is converted to the feed-forward neural network.

The MIL classifier is trained on the learned features from 2D slice (the hidden units of the last

CaRBM). The learning procedures for the MIL methods which are common between three-CAD

frameworks will be discussed later in this chapter.
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FIGURE 4.5: Schematic overview of the DCaRBM-MIL framework, where V;
h; and P represent the visible unit, the hidden unit, and the cardinality poten-
tial function in each CaRBM block, respectively. The output layer shows the
prediction classes for inputs from M (spiculated mass) and B (benign) classes.

4.4 Convolutional Neural Networks Based CAD Framework on DBT

In this section, we introduce the third CAD framework for detecting masses in DBT images. This

framework same as the DCaRBM MIL CAD system comprises three components: the input, the

deep convolutional neural network, and the multiple-instance learning. The input data and the
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multiple-instance learning sections are like those in the DCaRBM MIL CAD framework, but

features learning section in the third CAD model is the deep convolutional neural networks.

4.4.1 Convolutional Neural Networks

Images display plenty of spatial relationships between neighboring pixels. A convolutional net-

work (CNN) can keep these spatial relationships between neighboring images pixels that should

not be affected by their location within the image. A CNN incorporates this characteristic of

image exhibition into the model by learning a set of N filters {f1, .., fN}. These filters are

convolved with the input data to provide 2D features maps [105]:

zk = fk ⊗ I (4.16)

fk ∈ {f1, .., fN}

where ⊗, fk, and I are the convolution operator, kth filter, and the input image, respectively.

The convolution operator is applied to the two inputs and results in the output like one of the

inputs that are smoothed or modulated by the other one. This operation provides the output

pixels in which they are the weighted sum of neighboring input pixels. If you are familiar with

the correlation operation, we like to mention that the convolution is similar to the correlation, but

one of the inputs is reversed. For instance, the correlation in 2D with a filter is the convolution

with the filter that is flipped up or down and left or right. For clarification of the convolution

operation, we expand the e.q 4.16 on the corresponding matrix of the image I as:

zk = (fk ⊗ I)(x, y) =

Nfrows∑
i=−Nfrows

fcols∑
j=N−fcols

fk(i, j)I(x− i, y − j) (4.17)

where (x, y) is the coordinate of the image pixel, and frows, and fcols represent number of

rows and columns of the fk, respectively.
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4.4.2 CNNs Architecture

CNNs are similar to other NNs: they are comprised of neurons with learn-able weights and

biases. Neurons are arranged in layers of the network, but unlike a regular NN, the neurons in

a CNN are organized in 3D fashion (width, height, and depth). The primary layers to design a

CNN are convolutional, pooling, and fully connected layers (see Figure 4.6). To form a CNN,

one or a few alternative convolutions and rectified linear units (ReLU) layers that are followed

by pooling layers are stacked, and this pattern is repeated until the input dimensionally to the

small size. These layers are followed by the fully connected layers leading into a softmax layer

that holds the output such as class scores for the classification task.

Input Convolutional Pooling Fully connected Output

FIGURE 4.6: A CNN model with a convolutional, a pooling, and a fully con-
nected layer.

Convolutional Layer and Its Spacial Arrangement

The convolutional layer computes the output of the neurons that are connected to the local areas

in the input image. The parameters in a convolutional layer are a set of the learn-able filters.

Filters in convolutional layers are typically small along width and height that extend through the

input volume. Each filter is convolved across the width and the hight of the input and computes

the dot production between the filter and input at any position. The response of each filter at
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every position is the 2D activation map. The stack of these 2D activation maps along the depth

dimension results in the output volume.

Neurons in each layer of CNN models are not connected to all neurons in the previous volume;

instead, each neuron is connected only to the local region of the input volume. The receptive

filed hyper-parameter is defined as the local region in the input space along width and height that

is affected by the particular feature of a CNN model. Note that this local connection is only along

the width and height but not along the depth of the input volume. For this spacial arrangement,

three other hyper-parameters are determined: the depth, stride, and zero padding. Depth value

is the number of filters that are used in the same section of the input. The amount of stride is

the number of pixels that we slide the filter when applying the convolution. Zero-padding value

is the number of zero pads that are added to the border of the image to control the size of the

output. The spatial extent of the output volume is defined as below:

Output width =
W − F + 2P

S
+ 1 (4.18)

Output height =
H − F + 2P

S
+ 1 (4.19)

where W and H represent width and height values of the input, and F , S, and P are the size of

the receptive field, the stride value, and the amount of the zero padding, respectively (see Figure

4.7). Note that depth value of the output is equal to the number of the filters are used in the

convolutional layer.

2 5 7 -6 -1

2 2 1 -3 1

1 2 -1

Output-layer

Input-layer

Receptive filed

0 0

2 2 1 -3 1

Input-layer with zero-pad

FIGURE 4.7: The receptive filed with the size of F = 3, the input size W = 5,
S = 1, and P = 1, resulting in the output of size 5.
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Pooling and Fully connected Layers

The responses of the convolutional are passed into a non-linearity activation function to produce

activation maps h. Typical non-linearity functions that are used in CNN architectures are: sig-

moid, tanh, and rectified linear units (ReLU). The activation function is followed by the pooling

layer that is responsible for providing invariance to slightly different in the input image. The

pooling layer operates down-sampling along the spatial dimension of the volume input. The

common pooling operations are average, and max. The former takes the mean of the elements,

while the max pooling selects the largest element in each region:

p ζ =
1

|ζ|
∑
i∈ζ

hi (4.20)

pζ = max
i∈ζ

hi (4.21)

where ζ, and i are the small spatial region of each map of activations and indexes the activations

in the pooling region, respectively. After convolutional and pooling layers, a CNNs model has

one or more fully connected layers. For the classification task, the softmax classifier follows the

last fully connected layer:

ŷi = softmax(hli) =
eh

l
i∑N

j=1 e
hlj

(4.22)

The entire network is trained with backpropagation technique of a loss function such as cross-entropy

[105]:

L = −
N∑
c=1

yclog(ŷc) (4.23)

where ŷc, yc, and N are the activations of the l−th layer of the model hl in e.q 4.22, the target

label for the input image, and the number of classes, respectively.
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Advantage of CNN Models

A CNNs model has several advantages:

• The input consists of images; this assumption helps us to encode specific properties in the

architecture.

• It is a shift and translational invariance model.

• Only some layers of a CNN contain learn-able parameters such as convolutional and fully

connected layers. The activation layers and pooling layers implement fixed functions.

However, the pooling, convolutional, and fully-connected may have additional hyper-

parameters. For instance, the receptive field is the hyper-parameter in a convolutional

layer.

• Each filter is replicated on the entire visual input, in which these units share the weight and

bias values. This property of CNN model is called the weight sharing. The assumption

that if one feature works well at some spatial positions on the image, the feature may be

useful in other areas of the image yields the weight sharing. This property reduces the

number of parameters for a CNNs architecture dramatically.

• The extension autoencoder models to the convolutional ones provided models with the

ability to encode the shift invariance into the model. Deep RBM was extended to the

convolutional model, using the 2D convolutions and the probabilistic form of the max-

pooling. This deep model capable of learning curves, and circles from pixels directly, and

discriminative features using it on top of scale-invariant feature transform vectors.

4.4.3 Other CNN Architectures

In the previous paragraphs, we described a CNNs architecture with convolutional, pooling,

ReLU, fully connected, and softmax layers. Typically, a CNNs architecture utilizes one or mul-

tiple of these layers as well as other layers such as cross-channel normalization, and dropout lay-

ers. For example, the CNNs in Figure 4.8 includes two convolutional, two pooling, one dropout,
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and two fully connected layers. This model uses the adaptive moment estimation (Adam) op-

timization algorithm [48] for updating the network weights in the training procedure. We will

explain the Adam algorithm in section 5.4.3. Figure 4.9 shows another CNNs architecture with

the variety of layers as convolutional, max-pooling, fully connected layers as well as normaliza-

tion, dropout, and deconvolutional layers.

Let us mention the most popular CNNs architectures. LeNe that was used to read zip codes [54].

AlexNet was applied to the ImageNet data [51], ZFNet that was the improvement on AlexNet

[106]. GoogLeNet that was the development of the inception module yielded the reduction of

parameters [87]. VGGNet that showed the depth of network is important to improve the perfor-

mance of the model [83]. ResNet skipped the heavy usage of batch normalization technique and

also missed fully connected at the end of the network [38].

4.4.4 Deep Convolutional Neural Network-MIL CAD Framework

In recent years, CNNs models have gained the population in the various domains of computer

vision [27], [51]. In addition to, a CNNs has made great advancements in medical image recog-

nition such as the analysis of DBT x-ray images [85], [76], [35], MRI images [66], and physio-

logical signals [3].

In this study, we developed the CAD framework that uses the CNNs as part of the system for

extraction features automatically from 2D slices of DBT. Compared to other deep learning mod-

els, using the CNNs gives us three main advantages of our dataset. First, it achieves rotation and

transformation invariance through the max pooling process. In the sub-sampling layer, the max-

imum is obtained over the neighboring pixels, so the one-pixel shifts cannot change the output

of the sub-sampling layer [53]. Since extracted mass candidates are not always centered, this is

critical in mass detection processes. Second, the spiculated masses respond strongly to Gabor

filters. Third, each neuron in a DCNN connects to a local region of the previous layer output,

so the CNN has fewer learn-able parameters when compared with other deep NNs. Together

these three factors have yielded dramatic improvements regarding the performance of the CAD

framework for detecting masses in DBT.
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FIGURE 4.8: The CNNs with two convolutional, two pooling, two fully con-
nected, and a dropout layers. This model utilizes the Adam optimizer for opti-
mizing the gradient descent. We used the visualization tool called TensorBoard

[2] to draw the CNN Tensorflow graph [2].



Chapter 4. Deep-learning based CAD frameworks 75

FIGURE 4.9: The graph of the CNN model.

We used the CNNs in the third CAD framework as the feature paradigm (see Figure 4.10) to

extract high-level feature representation from the input (256 × 256 resized image). The CNNs
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contains three convolutional and two fully-connected (FC) layers with the rectifier linear unit

(ReLU), max-pooling, and batch normalization layers. Three convolutional layers have 16, 32

and 64 filter kernels sized 5×5. Two fully-connected layers contain 1,024 and 2 neurons. All

convolutional layers are followed by a ReLU activation function, a max-pooling layer, and a

normalization layer. The max-pooling layer has kernels sized 3×3 and is overlapped with a

stride of 2 pixels in the max-pooling process. Each feature map is connected to the activation

function by the ReLU f(x) = max(x, 0).

As shown in Figure 4.10, the network includes batch normalization (BN) layer [42] right after

convolutional layer and before the ReLU. The BN technique allows the network to avoid the

activation distributions changing issue that is layer-by-layer input distribution variation in the

training process of deep learning models. Furthermore, BN facilitates the DCNN training pro-

cess. The BN transformation normalizes the result by the batch standard deviation,
√
σB + ε,

where the ε is the small constant. First, the xi value is transformed to the normalized one given

by:

x̂i = BNinitilize(xi) =
xi − µB√
σB + ε

(4.24)

where µB is the mean of the input batch. The BNinitilize transformation in 4.24 can restrict the

input to the activation function to a normal distribution so that it can limit the power of the layer

for representation. To address this problem, authors [42] multiplied the provided x̂i by the scale

γ, and shifted by the β:

BN(xi) = γ(x̂i) + β (4.25)

Dropout with probability 0.5 that means 50% of the elements are randomly dropped out in the

training procedure follows the first FC layer. The softmax layer follows the last FC layer to

provide predicted likelihood over labels for each input image. The prediction loss of the network

is measured by cross-entropy between the softmax output and ground truth distributions. Figure

4.10 illustrates the order of layers in the network.
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FIGURE 4.10: Schematic overview of the deep CNN-MIL CAD framework,
where C, P, N, and FC represent the convolution, the max-pooling, batch nor-

malization, and the fully-connected layers, respectively.

Details of Learning DCNN Parameters

The backpropagation algorithm is used for the training procedure for a CNNs similar to other

NNs. We utilize the Adam optimizer algorithm [48] to minimize the cross-entropy loss func-

tion. The Adam optimizer works based on the adaptive estimate of lower-order moments, and
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it requires only first-order gradient. This algorithm computes the adaptive learning rates for pa-

rameters of the loss function. Here, we initialize Adam optimizer algorithm with α = 0.001 (the

learning rate), β1 = 0.9, β2 = 0.999 (decay rates for the first- and second-moment estimators)

and ε = e−4 (small constant for numerical stability). The gradients of the stochastic objective

function f(θ) concerning the model parameters θ at the time t is given by:

gt = ∇θft(θt−1) (4.26)

The algorithm updates biased first-, and second-moment estimations using the past and past

squared gradients:

mt = β1mt−1 + (1− β1)gt (4.27)

vt = β2vt−1 + (1− β2)g2t (4.28)

where mt, vt are the estimations of the first-moment, and the second-moment of the gradients,

respectively. Then the bias-corrected first- and second-moment are estimated:

m̂t =
mt

1− βt1
(4.29)

v̂t =
vt

1− βt2
(4.30)

Afterward, the objective function parameters are updated:

θt+1 = θt − α×
m̂t√
v̂t + ε

(4.31)

where θt is the parameter of the objective function at tth iteration. This procedure continues until

the parameters are converged. The Adam optimizer algorithm is applied on 63 mini-batches of

2D sample slices. These samples are extracted randomly at each training iteration. Convolutional

layers weights are initialized using Gaussian kernels with a mean of 0 and a standard deviation of

0.1. The biases are initialized to 0 for all layers. DCNN is trained for 5,000 iterations. Training

takes around one day on an NVIDIA GTX 1080 11 GB GPU. The trained DCNN learns image

patterns through the kernels. The generality and levels of abstraction of the learned patterns
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differ across layers of the DCNN model, in which high-level features of the input are provided

via FC layers (see Figure 4.11). The outputs of the first FC layer is used as learned features from

2D slices. In DCNN models, the layers adjacent to the input image represent more generic and,

the layers adjacent to the output layer provide the more specific level of the input representations.

FIGURE 4.11: Hierarchical feature visualization of two slices via DCNNs. Each
column shows the slices from top to bottom, middle-level features and high-level

features extracted.
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4.4.5 Decision Process Using Multiple-instance Learning

After learning features of 2D slices from DBT images, the most challenging task of a CAD

framework through slice-based DBT analysis is how to define the integrated classifier to anno-

tated DBT images using the information derived from slices.

Multiple-instance learning (MIL), as a weakly supervised learning algorithm, has achieved im-

pressive performances when annotating data (bag) consisting of unlabeled instances [108]. As

mentioned before in Chapter 3 in a MIL model, a bag label is positive if it contains at least a

positive instance (see Figure 4.13). This assumption is analogous to the work by radiologists in

which a DBT is labeled as positive if at least one corresponding slice image has an early sign of

breast cancer (see Figure 4.12). If DBT images are indicated bags and corresponding 2D slices

their instances, then the MIL framework is well suited to the task of DBT annotation based on

the extracted information from 2D slices.

A MIL learner algorithm is a variant of supervised learning that the available labels for data are

ambiguous. In the supervised learning problem, a set of labeled samples are available, and the

goal is to learn a classifier using the labeled data. In a MIL problem, the input data are collections

of instances (bags). The labels for the bags are available but not for the instances. The goal of

the binary MIL classifier is to learn the target that is determined across all positive bags and lost

in negative bags. Previously in Chapter 3 we introduced the general representation of the binary

MIL classification. In this study, the MIL with multiple classes is desirable because there are

more than one early sign of breast cancers (masses, micro-calcifications, bilateral asymmetry,

and architecture distortion) that should be recognized in DBT images. The synergy of MIL with

other classification methods may provide us the MIL with multi-label classification approach

that it will be especially valuable when more clinical cases are used.

There have been various studies on the synergy of classification methods and the MIL setting.

One of the significant application of these models on medical images is cancer detection such

as multiple cluster instance learning for colon cancer detection [98], mass detection on mam-

mogram images using MIL [33], [29], and using deep multi-instance networks [109]. In this
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         Slice 29                                                           Slice 14                                                                          Slice 46                   

FIGURE 4.12: Three images extracted from the DBT (the 29, 14, and 46th
slices). In the middle image, the manual segmentation from 14th slice is in red.
DBT image was labeled positive because of the positive (instance) label on slice

14.

thesis, we use the MIL random forests classification which is called MI-RF in [55]. The DBT

annotation blocks in Figures 4.5, and 4.10 use the MI-RF to classify DBT images.

Choosing the random forests (RFs) as the synergy classification into the MIL architecture is

motivated by several factors. RFs approaches are the comparable state-of-the-art performance

in mammograms classification and clustering [13]. Additional, an RFs classier is an inherent

multi-class. Besides this classifier provides an easy training procedure for CAD systems [55].
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FIGURE 4.13: Sample examples for DBT cancer and non-cancer images: left
image is the negative bag (non-cancer stack of 2D slices); right image is the pos-
itive bag (cancer stack of 2D slices). Red rectangles show the positive instances
(cancerous 2D slices), and the green ones are negative instances (non-cancerous

2D slice ).
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Random Forests

The RF classification model was introduced in [5]; this approach is an ensemble of M indepen-

dent decision trees fm:

fm(x) : X −→ Y (4.32)

where Y = {1, ...,K} is the set of classes. The predictive confidence for an RF classifier is

defined:

Fk(x) =
1

M

M∑
m=1

pm(k|x) k ∈ Y (4.33)

where pm(k|x) is the estimated density of kth class of the leaf from themth decision tree. Taking

the maximum overall probabilities of classes yields the output class:

C(x) : X −→ Y, C(x) = arg max
k∈Y

Fk(x) (4.34)

The upper bound of the error for an RF classier is defined [19]:

PE ≤ ρ̄(1− s2)
s2

(4.35)

where ρ̄ and s are the mean correlation between pairs of decision trees and the strength of en-

semble, respectively. Breiman [19] defined the margin function of an RF:

margin(x, k) =

∑M
m=1 1(fm(x) = k)

M
−max

j 6=k

[∑M
m=1 1(fm(x) = j)

M

]
(4.36)

where 1 is the indicator function and j ∈ Y. The expectation of the margin in e.q 4.36 over

data is called the strength term s. We can achieve the RF with the low error by reducing the

correlation between trees considering that its variance is not increased too much. For reduction

the correlation values among trees, each tree is provided by sub-sampling with replacement from

the training data. So that for creating each tree an individual subset of the training set is used.

The training data for each tress is separated into samples to be classified, in which the purity of
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groups is maximized when a new node is created. The entropy measures the impurity of trees:

H(I) = −
K∑
i=1

pji log2(p
j
i ) (4.37)

where pji is the density of ith class in jth node. The training process of trees is continued until a

maximum depth of the tree is achieved, or further information gain is impossible.

MIL-RF Settings on DBT images

As authors in [55] mentioned the obvious way to apply the MIL constraints to the RFs is adopting

the MIL for each decision tree. Note that the architecture of MIL with RFs must be capable of

keeping the diversity between trees to avoid incrementing the error of RFs. Hence finding the

optimization strategy that preserves the proper regularization of trees in RFs plays the critical

role in the efficient MI-RF architecture.

In our study, we are given the training set of bags DBTi i = 1, ..., n. Each bag contains a set

of learned features of corresponding 2D slice images. Therefore, DBTi=
{
Sji , j = 1, ..., ni

}
where Sji is representing jth instance (2D slice) features from ith DBT (bag). The MI-RF is

formulated as the optimization procedure in [55], in which the RFs is trained and labels of

instances become optimization variables.

((yji )
∗, F∗) = argmin

yji ,F (.)
ΣN
i=1Σ

ni
j=1L(F

yji
(Sji ))) (4.38)

s.t. ∀i : Σni
j=11(yi = argmaxk∈YFk(S

j
i )) ≥ 1

where yji ∈ Y and L, 1 are the loss function and the indicator function, respectively. N , ni are the

number of DBT images and amount of corresponding instances in ith bag. In this optimization

procedure the RFs is trained, and simultaneously the suitable set of labels for instances are found
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by minimizing the loss function L all over the entire instance samples. Thus the optimization

procedure in 4.38 is the non-convex problem.

We follow the model that is proposed in [55] to solve this non-convex optimization procedure

using the deterministic annealing (DA). We add a convex entropy term to the hard non-convex

optimization problem. Then the optimization problem gradually reverses back to the original

form using the cooling parameter T:

p∗ = arg min
p∈P

Ep(L(y))− TH(p) (4.39)

where L(y), and P are the objective function, and the space of probability distribution, respec-

tively. The cooling parameter sequence is represented as the T0 > T1 > ... > T∞ = 0.

DA-based Optimization MI-RF

The objective function in 4.38 is reformulated to the DA optimization format:

((P̂ , F) = argminP,F (.)Σ
N
i=1Σ

ni
j=1Σ

K
k=1P̂ (k|Sji )l(Fk(S

j
i ))) + TΣN

1 H(P̂i) (4.40)

H(P̂i) = −
ni∑
j=1

K∑
k=1

P̂ (k|Sji ) log(P̂ (k|Sji )) (4.41)

The optimization procedure in e.q 4.40 consists of the following steps. First, the RFs without

any MIL constraint is trained on labeled instances using their corresponding bags labels for

annotation instances. Then, instance labels in target bags are considered as random variables

defined over the space of probability distributions P . Afterward, the probabilities stored in the

leaf of trees P̂ ∈ P that are used by each tree to infer instance labels are adjusted over the bags

based on the optimization problem in e.q 4.40.

Note that for the given temperature value the optimization problem is split into the two steps.

First, the objective function is optimized by fixing the P̂ distribution. Then, the distribution P ∗

using the entropy is adjusted over the entire bags.
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Summary of MI-RF Learning on DBT

Learned features of 2D slices from the extraction paradigm (hand-crafted feature based, DCaRBM

or DCNN) and corresponding DBT images are considered as the training instances and bags, re-

spectively. First, the RFs is initialized by training it on instances that inherited their labels from

DBTs where they lie. Then at a given iteration t, to train the new RF, for each tree individually a

pseudo label for each instance is drawn based on the probabilities that stored in the leaf of trees

from the previous iteration. If we have a positive bag (DBT) with no instance (2D slice) labeled

as positive, the positive pseudo-label is assigned to the instance with the highest probability of

being positive. Trees are trained on pseudo labeled instances individually. This training proce-

dure is continued until the temperature value reaches the minimum value. The cooling parameter

T is scheduled with function T(t) = e−t.C where t expresses the current iteration andC = {0.1}

is a constant.

4.4.6 Other MIL Models

In this study, we like to examine another popular MIL approaches in the CAD frameworks

based on the synergy of support vector machines (SVM) and MIL. The SVM approach is one

of the most common supervised learning methods for different learning tasks. The standard

SVM is a non-probabilistic binary classifier that provides the separation hyperplane between

the examples from the two classes, in which this hyperplane separates samples with the highest

possible margin.

The binary MIL models our problem DBTi=
{
Sji , j = 1, ..., ni

}
with each bag DBTi a label

yi is associated. These labels are interpreted as: if yi = −1, all yji = −1. The relation between

instance labels and yji and bag labels yi is defined as yi = maxj∈ni y
j
i while it can be presented

in term of linear formulation:

∑
j∈ni

yji + 1

2
≥ 1, ∀i s.t. yi = 1, and yji = −1, ∀i s.t. yi = −1 (4.42)
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The mixed integer SVM (mi-SVM) is formulated using the SVM constraints while this method

leaves the label of instances unknown in positive bags. It applies the constraint for positive

bags that guarantees at least one positive instance is available in the bag. The formulation of

generalized soft-margin mi-SVM is given by:

min
yji ,w,b,ξ

1

2
wTw + C

∑
i∈N

∑
j∈ni

ξij

s.t. yji (wTφ(Sji ) + b) ≥ 1− ξij ,

ξij ≥ 0, yji ∈ {−1, 1},
∑

j∈ni

yji+1
2 ≥ 1 if yi = 1

yji = −1 if yi = −1

(4.43)

where the function φ(Sji ) maps the instances Sji to the higher dimensional kernel space,C > 0 is

the regularization parameter, and 0 < ξij ≤ 1 are margin violation points to allow classification

errors. The mi-SVM is a mixed problem that should find the optimal labels for instances and the

optimal hyperplane. In mi-SVM, the soft-margin criterion is maximized over all possible labels

as well as hyperplanes.

Another way to applying the maximum margins to the MIL setting is to employ the margin to

bags instead of instances concerning the hyperplane:

yi max
i∈N

(wTφ(Sji ) + b) (4.44)

This approach selects the instance with the most positive instance of the positive bags and the

instance with the least negative labels of the negative bags for representing bags. E.q 4.43 is

rewritten with the functional bag margin in 4.44 and gives the MI-SVM formulation as:
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min
yi,w,b,ξ

1

2
wTw + C

∑
N

∑
i∈N

ξi

s.t. yi max
i∈N

(wTφ(Sji ) + b) ≥ 1− ξi

ξi ≥ 0, yi ∈ {−1, 1}

(4.45)

Another SVM-based MI approach is the multiple-instance classification algorithm (MICA). In

the MI-SVM algorithm, a particular instance is chosen in each bag that acts as the witness. But

in the MICA approach, the witness is found using the linear programming in which it finds the

arbitrary combinations of points in a positive bag that serve as the witness [32].

Multiple instance semi-supervised SVM (MissSVM) [32] is like mi-SVM by semi-supervised

SVM approaches. The optimization procedure is the same as the MI-SVM optimization with

two more constraints that enforce a positive instance and a negative one in the positive bags.

Single-instance learning (SIL) is the most straightforward approach to estimate the instance-level

classifier. It assigns the label of the bags to their instances. For this classifier, the supervised

learning classifier (SVM in this study) with mislabeling negative instances in the positive bags

is used to model the MIL learner. The SIL formulation is given in:

min
yi,w,b,ξ

1

2
wTw + C

∑
i∈N

∑
j∈ni

ξij

s.t. yi(wTφ(Sji ) + b) ≥ 1− ξi

ξi ≥ 0, yi ∈ {−1, 1}

(4.46)

Optimization Procedure

Likewise the optimization procedure in an SVM method, the optimization problem is the dual

form that maximizes the margin hyperplane. First the solution for w, and b are found:

min
α

1

2
αTQα− eTα

s.t. yTα = 0 and 0 ≤ α ≤ C
(4.47)
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where e, and Qmn = ymynK(xm, xn) are the vector of ones, and the positive semi-definite

matrix, respectively, and K(xm, xn) is the kernel function. By solving this dual problem, w and

the bias value b of the hyperplane are found. Now the hyperplane is available, then using this

hyperplane the instances are classified to obtain new labels. We apply the MIL constraint that at

least one positive label is available in each bag. By chance, if we find some positive bags that

do not include the positive instance, we assign positive pseudo-label to the instance that is the

closest to the hyperplane. The optimization procedure is continued until the algorithm converges

to labels so that labels of the instances do not change anymore.
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Chapter 5

Experimental Evaluations

5.1 Datasets: Synthetic DBT Dataset, Real DBT Datasets

In this thesis, we validate and compare our CAD frameworks on the DBT medical image the

dataset which includes the real data, and the synthetic data. In medical imaging studies, it is

common to use the simulated data that provided from the real data. The reason is that the real

datasets with confirmed lesions especially for DBT images are very limited. In this section first,

we introduce the real dataset. Then we discuss our technique for generating more DBT data.

5.1.1 DBT Dataset

The benchmarking clinical DBT images used were provided by medical doctors in the Breast

Imaging Research Laboratory of at Massachusetts General Hospital (MGH). Professor Richard

Moore was our project contact at MGH; he developed algorithms for breast imaging technol-

ogy. He is a partner with Dr. Kopans, a patent holder of the DBT. Each DBT was generated

by low-dose exposures, in which the total shot doses should be in the range of regular mam-

mogram dose. DBT cases were acquired in a mediolateral oblique (MLO) view by a prototype

General Electrics. The system used an X-ray source that covered an arc of 50o and provided

eleven projection views. DBTs were reconstructed to 1-mm slices spacing and saved in SMV

format. The images are large volume images (300-500 MB). We converted SMV images into

TIFF stack/slices and used data in TIFF format. The number of provided 2D slices varied based
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on breast thickness between 50 and 80 slices per breast. Each 2D slice with the resolution of

1270×2304 pixels was saved in TIFF format. The dataset contains 87 DBT images from 87 in-

dividual breasts, of which 27 are malignant and 60 were normal. Non-cancerous DBT volumes

without early signs of breast cancer were obtained from 30 patients, in which images were taken

from the left and right breasts. The cohort of cancerous cases was annotated by two Mammog-

raphy Quality Standards Act (MQSA) radiologists with a 2D bounding box for DBT (see Figure

5.2). The dataset includes invasive ductal carcinoma (IDC), the most common type of breast

cancer; ductal carcinoma in situ (a common, non-invasive breast cancer); invasive carcinoma;

and invasive lobular carcinoma cases (see Figure 5.3). The dataset includes 87 DBT volumes

with corresponding 5,040 2D X-ray images. Figure 5.1 illustrates an example of 2D slices that

are extracted from the raw 3D reconstructed DBT image.
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FIGURE 5.1: 61 2D image slices that are extracted from the quasi 3D DBT
volume.
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(a) (b) (c) (d)

FIGURE 5.2: (a) Irregular spiculated masses highlighted in the red box and the
yellow circle on the slice 15 (b) of a cancer DBT case, whereas they do not

appear in (c) and (d) slices of the DBT.

5.1.2 Data Augmentation

As mentioned earlier, we developed three CAD frameworks for detecting breast cancer in DBT.

Two of them utilize deep learning models, DCNN and DCaRBM architectures. These models are

powerful neural network models that can memorize the training data. Deep learning architectures

have many hidden layers with a vast number of parameters. If a model has enough parameters,

the model performance on the training data may approach perfection, while its performance on

the testing data decreases. This issue is called over-fitting and is the significant drawback of the

training deep learning models. The over-fitting problem causes the model reduces the ability of

generalization. In the other word, there is not enough data for building the model. For exam-

ple, the authors in [76] proposed a deep learning CAD framework on DBT images based on the

transfer learning technique using the large mammography data. This model was trained on the

extracted ROIs of mammography data. Then all weights in the first three convolutional layers

were frozen, and the last convolutional layer and fully- connected layers were initialized and

trained with DBT training ROIs. In another study, synthetic X-ray projections were generated

by simulation models [41]. The proposed simulation model used algorithmic and software ap-

proaches to simulate 3D breast images with micro-calcifications. Though various studies have
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FIGURE 5.3: DBT dataset annotated by radiologists. M in the left PATH column
represents the malignant lesion. The right PATH column shows the labels for
different types of breast cancers. The S columns include R and L to show the
lesion is on the right and left breast, respectively. X, Y, and Z are the lesion

coordinates on the DBT image.
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investigated and authors have introduced many methods in the literature, reduction the over-

fitting is still an open subject of research in the machine learning area.

In this study, we employed various techniques to avoid the over-fitting issue for our deep learning

models. We applied some methods to design of deep learning models that mentioned in 4.

Such as the dropout layer in DCNNs, and the application of the sparsity to design CaRBMs.

Moreover, we cropped out the small randomly parts from images and treat them as the input

of networks for training deep learning models[51]. Furthermore, in this section, we introduce

the data augmentation techniques to generate artificially more 2D X-ray images to train deep

learning CAD models.

Data Augmentation Approaches on the DBT Data

Geometrical transformations are categorized into the rigid, and the non-rigid transformations

(see Figure 5.4). The rigid ones including the translations and rotations keep all distances con-

stant. In non-rigid transformations such as polynomial, thin-plate spline interpolation, and B-

spline, distances changed, but the lines are kept straight. In this thesis, we utilize both rigid and

non-rigid transformations to enlarge our data for training the deep learning based CAD frame-

works.

2D slices of DBT images are rotated in [00, 900, 1800, 2700] [47]. This provides 4 DBT slices

from each 2D slice. Then the non-rigid thin-plate spline transformation is applied on 2D slices.

After applying the rotating and flipping techniques, we use thin-plate spline (TPS) deformation

on the DBT slices. First, we need to extract fiducial points of 2D slices. First, we obtain the

contour of the breast in each 2D slice by a simple thresholding method, then 2D fiducial points

({Fi, i = 1, .., k}) are selected through a sampling step along the breast contours and left the

border of the 2D slice images. Extracted fiducial points are transformed randomly at the 2D

slice, and a deformed image is generated using:

f(x, y) = a1 + axx+ ayy +
k∑
1

wiU(|Fi − (x, y)|) (5.1)
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Rigid transformation

Non-rigid transformation

FIGURE 5.4: The input image (left image) the rigid, and non-rigid transformed
images (right images).

where f(x, y) denotes the displacement of an arbitrary 2D point (x, y), and a1, ax, ay, and wi

represent spline coefficients. The final summation term controls the bending influenced by k

fiducial points using a controlling function U(r) = r2 log(r), where r is the Euclidean distance
√
((xi − x)2 + (yi − y)2 from the ith fiducial point to (x, y). In fact, TPS defines a surface on

fiducial points, while the function f(x, y) minimizes the bending energy with �2f = 0.

After application data augmentation techniques to our dataset, the DBT data was enlarged to

696 DBT volumes with 40,320 corresponding 2D slices. Note that we must increase the size of

the Data for training deep-learning based CAD frameworks. For the hand-crafted, feature-based

CAD framework, we use the original data to extract features and learn image patterns.

5.2 Performance Metrics

We discuss the evaluation concepts used for the performance analysis of three CAD frameworks

for detection spiculated masses in DBT images in the following subsections.
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(a) (b)
FIGURE 5.5: (a) A 2D slice sample, and (b) selected fiducial points from (a).

5.2.1 Sensitivity and Specificity

A classification model maps the instances into the available labels for the input data such as

diseased or healthy classes for medical images. The classifiers on medical images are usually

binary classification so that they result in a positive (p) or a negative (n) decision. Considering

a set of ROIs or the whole images, some of them exhibiting normal tissue (n) and others with

signs of abnormality (p). The correct type of each image is referred to as the ground truth.

There are four possible outcomes for binary classifications. If the result forms a prediction p and

the correct label is p, this is called true positive (TP). If the prediction value is p while its label is

n that is called the false positive (FP). Contrariwise true negative (TN) happens if predicted and
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actual labels are negative; if the predicted class is positive, it is called false positive (FP).

Consider a CAD framework developed to classify medical images as positive, and negative cases.

To evaluate the performance of a CAD framework common metrics are sensitivity and specificity.

The sensitivity is defined as the fraction of positive samples that are annotated as positive, and

the specificity is the fraction of negative ones that are identified as negatives by the framework.

Sensitivity indicates how sensitive is the system for detection of positive samples. The high

sensitivity rate shows that the framework very rarely misses an abnormal (p) samples. The most

reliable CAD framework is that one the has the highest sensitivity. The high specificity means

the system rarely classifies the normal (n) sample as the abnormal (p) cases.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP+TN

TN+TP+FP+FN

False-positive ratio (FPR) represents the rate of the false abnormal detection samples. It is

essential for a CAD framework to produce as low as possible FPR. This problem that is called

false alarm may increase the anxiety and health-care costs to the patient.

FPR = 1− specificity
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False-negative ratio (FNR) represents the rate of the missed abnormal samples. This issue delays

the treatment for patients and in the worst case scenario may lead to the patient’s death.

FNR = 1− sensitivity

5.2.2 Receiver Operating Characteristic (ROC) Analysis

A ROC curve is another evaluation method. This curve is a graph of the true positive rate versus

false positive rate are obtained by varying a threshold for a binary classifier system. It is plotted

in the unit square, where the true positive rate on the ordinate (y-axis), and the false positive rate

on the abscissa (x-axis). The ideal point for the CAD framework sensitivity and specificity are

one; this point is at (0, 1). ROC analysis can provide tools to select the optimal models. The

area under the ROC curve (AUC) is the measurement of the overall performance of a system.

The desired CAD framework results in AUC=1.

5.3 Mass Detection Results

We validated and compared three CAD frameworks (the DCNN-, DCaRBM-, and hand-crafted

feature-based frameworks using the MI-RF classifier) on the DBT medical image dataset. Fur-

thermore, we evaluated the MI-RF learner through four other MIL-based classifiers: the MISVM,

SIL, MissSVM, and MICA. Consequently, we examined a total of fifteen frameworks for DBT

image classification. The results are reported three in Table 5.5 (CAD with MI-RF classifier),

three in Table 5.6 (CAD with MI-SVM classifier), three in Table 5.7 (CAD with MissSVM clas-

sifier), three in Table 5.8 (CAD with SIL classifier), and three in Table 5.9 (CAD with MICA

classifier). The best results of these frameworks were published in [104].

We developed three pipelines for three CAD frameworks. The whole implementation of three

CAD frameworks is in Python and C++ languages. The main approaches in the hand-crafted

feature-based CAD framework for detecting spiculated masses are Gabor wavelet transforma-

tion, cooperative of a principled deep random field model and graph cut segmentation and MI-

RF learning. The Skimage Python library, the QPBO C++ scripts, and also graph cut algorithms
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such as Min-Cut/ Max-Flow algorithms for energy minimization C++ scripts have been used

to implement mass area detection and segmentation approaches. The DCaRBM MI-RF CAD

framework consists of DCaRBMs performed by the C++ library and also the proper adjustment

that we applied to the model for mass detection on DBT images. For implementing DCNN, we

used the Tensorflow library with GPU support specifically the NVIDIA GTX 1080 11 GB GPU

with CUDA toolkit. The MI-RF classifier was implemented in the C++ library, we modified

this library based on our data and wrote the Python wrapper for the whole library. In all these

experiments we use these frameworks for the mass detection problem in DBT images. However,

as mentioned earlier, we also substitute the MI-RF with other MIL classifications designed uti-

lizing the SVM classier. The CVXOPT library was used to solve the quadratic programs (QPs)

in SVM based models. For both MI-RF and multiple instance SVM based models, we wrote the

scripts that fetch information from the list of 2D slices of DBT images.

The DBT images were obtained from MGH hospital. The dataset consists of the 87 views from

87 breasts, of which 27 were malignant and 60 were normal. Non-cancerous DBT volumes with-

out early signs of breast cancer were obtained from 30 patients. These images are large volume

(300∼500 MB) and including (50∼70 slices). The data set includes 87 DBT volumes with 5,040

corresponding 2D X-ray images. The radiologist professor Richard Moore was our project con-

tact at MGH; he annotated the images. Due to DCNN- and DCaRBM- based frameworks require

a large amount of labeled data for training, we artificially generated more 2D X-ray images to

train the DCNN and DCaRM models. In the two-step enlargement technique, first, each DBT 2D

slice was rotated; then, the thin-plate spline (TPS) deformation was applied to the DBT slices.

Following data augmentation, the number of 2D slices used for training increased from 5,040 to

40,320. The details of the data set are reported in Table 5.1.

We utilize the MI-RF in the CAD architectures as the main learner procedure to deliver multi-

class instance classifier. Using this learner in CAD frameworks make them capable of detecting

other early sign of breast cancer on DBT images with new clinical cases. In this experiment,

we employ it for two-class prediction problem (spiculated mass, and normal classes). Note

that the SVM based multiple instance baselines work for binary classification, but we use these

algorithms for multi-class problems (mass- Normal). We evaluate the SVM baselines in CAD
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TABLE 5.1: Data used to extract information from 2D slices and 2D and DBT
data MIL training. Note: For the training set of deep learning based models
on 2D slices, each slice was augmented, resulting in eight slices. For the MIL

testing and training sets, we did not use augmented data.

CAD framework No. of 2D data for learn-
ing features

No. of 2D instances
in MIL

No. of bag data in
MIL

DCNN based 40320 5040 87

DCaRBM based 40320 5040 87

Hand-crafted feature based 5040 5040 87

systems with training a set of masses versus the normal class cases. To evaluate each framework,

performance metrics based on TP, TN, FP, and FN are calculated separately (see Table 5.2).

TABLE 5.2: Performance metrics for mass detection in the DBT datasets.

Measure Description

TP CAD framework=mass, radiologist=mass

FP CAD framework=mass, radiologist=benign

TN CAD framework=benign, radiologist=benign

FN CAD framework=benign, radiologist=mass

Sensitivity TP/(TP+FN)
Specificity TN/(TN+FP)
Accuracy (TP+TN)/(TN+TP+FP+FN)
AUC Area under receiver operating characteristic (ROC) curve

The preprocessed input data was passed to the feature paradigm of each CAD frameworks for

obtaining information from 2D slices. The deep learning-based systems were trained on the input

data to capture features from samples. For training deep learning models we used 70% of the

data for the training, and 30% for testing sets. Note that we maintained the original image and

its corresponding augmented images in the same set (training or testing). In the learning task,
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the features extracted from 2D slices were conveyed to the MIL learner for categorizing DBT

volumes into two classes: spiculated mass and normal cases. The details of the data used to

extract information from 2D slices as well as the training data for MIL classifiers are reported in

Table 5.1. Bag data including learned features from 2D slices are split into two subsets, in which

the proportion of malignant and normal cases are maintained. The training set comprised of 14

masses and 15 normal cases, and the test set contained 13 mass cases and 15 normal samples.

We performed five random training and testing sets partitions. The partition that obtained the

best ROC result for each CAD framework is used to report results and plot performance curve.

5.3.1 MI-RF Results

We first evaluate the DBT classification performance of three CAD systems with the MI-RF

classifier on DBT testing data. For five partitions, sensitivity, specificity, and global accuracy

are determined, and a ROC curve is obtained, by varying a threshold on the bag testing mass

likelihood scores. We use the partition that is achieved the best ROC curve to report DBT clas-

sification performance for the three CAD frameworks. The parameters for MI-RF are optimally

chosen individually for each CAD framework. Table 5.3 reports various parameters for MI-RF

for different CAD frameworks.

DBT classification performance for the three CAD frameworks are reported in Table 5.4. We

also illustrate DBT classification performance using ROC curves (see Figure 5.6). Due to the

small number of malignant case, note that the ROC curves in Figure 5.6 would not be generalized

to the population.
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TABLE 5.3: MI-RF parameters are used in CAD frameworks.

MI-RF parameters DCNN based DCaRBM based Feature based

No. of trees 100 100 100

Train-sampling method Bagging without refine Bagging without refine Bagging with refine

Max depth of trees 20 20 15

Min No. of samples split 5 5 5

Min temperature value 0.1 0.1 0.1

Max temperature value 5 5 5

Cooling-parameter-tree Entropy Entropy Entropy

Loss function Entropy Entropy Entropy

TABLE 5.4: Performance comparisons of the three CAD frameworks using the
MI-RF classifier on DBT tests.

Measure DCNN MI-RF DCaRBM MI-RF Hand-crafted Feature MI-
RF

AUC 0.87 0.70 0.75

Accuracy 86.81% 78.5% 69.2%

Specificity 87.5% 66.6% 75%

Sensitivity 86.6% 81.8% 66.6%
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FIGURE 5.6: ROC curves for the three CAD MI-RF based frameworks DBT
classification for mass detection on the DBT testing data.
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5.3.2 Multiple Instance SVM Learning Baselines Results

In this section, three CAD frameworks with MICA, MI-SVM, SIL, and MissSVM classifica-

tions are evaluated for mass detection on DBT images. We use support vector machine multiple

instance learners as matching templates in [32] for all experiments in this section. The param-

eters for these models are optimally chosen individually for each CAD framework. We use the

radial basis function (RBF) kernel for all multiple-instance SVM based models. Parameters for

the RBF kernel γ from [10−6, 10], and C ∈ [10−2, 105] are found for each CAD framework us-

ing the random parameter search method [32]. The maximum iterations for quadratic programs

are set at most 100 times. For CAD frameworks based on the MICA approach, we use the L1

regularization.

DBT classification performance of the three CAD systems with SVM based multiple-instance

classifiers was evaluated using the test data. The reported results for the CAD frameworks are

presented in Tables 5.5, 5.7, 5.8, and 5.6. Figures 5.7, 5.9, 5.10 and 5.8 show ROC curves for

the three CAD frameworks with multiple-instance SVM classifiers.
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TABLE 5.5: Performance of three CAD frameworks using the MI-SVM classi-
fier in the DBT dataset over the tests for each system.

Measure DCNN MISVM DCaRBM
MISVM

Hand-crafted Feature
MISVM

AUC 0.72 0.65 0.52

Accuracy 69.2% 61.5% 35.71%

Specificity 66.6% 66% 33.3%

Sensitivity 70% 60% 36.36%

TABLE 5.6: Performance of the three CAD frameworks using MissSVM classi-
fier in the DBT dataset over the tests for each system.

Measure DCNN
MissSVM

DCaRBM
MissSVM

Hand-crafted Feature
MissSVM

AUC 0.68 0.75 0.73

Accuracy 69% 66% 64.28%

Specificity 66% 66% 66.6%

Sensitivity 70% 67.6% 63.63%
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TABLE 5.7: Performance of the three CAD frameworks using SIL classifier in
the DBT dataset over the tests for each system.

Measure DCNN SIL DCaRBM SIL Hand-crafted Feature
SIL

AUC 0.5 0.7 0.4

Accuracy 61.5% 66.7% 35.3%

Specificity 66% 66.6% 33.3%

Sensitivity 60% 66.6% 37.5%

TABLE 5.8: Performance of the three CAD frameworks using MICA classifier
in the DBT dataset over the tests for each system.

Measure DCNN MICA DCaRBM MICA Hand-crafted Feature
MICA

AUC 0.55 0.61 0.58

Accuracy 53.38% 53.3% 64.7%

Specificity 66% 0% 66.6%

Sensitivity 50% 66.6% 62.5%
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FIGURE 5.7: ROC curves for three CAD MissSVM-based models DBT classi-
fication for mass detection on the DBT test.
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FIGURE 5.8: ROC curves for three CAD MI-SVM-based models DBT classifi-
cation for mass detection on the DBT test.
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FIGURE 5.9: ROC curves for three CAD MICA-based models DBT classifica-
tion for mass detection on the DBT test.
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FIGURE 5.10: ROC curves for three CAD SIL-based models DBT classification
for mass detection on the DBT test.
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Chapter 6

Discussion and Conclusions

6.1 Discussion

We introduced three computer-aided detection frameworks to detect breast cancer on digital

breast tomosynthesis images. These three CAD systems for mass detection in DBT utilized

identical input and multiple-instance learning classification structures, but different feature rep-

resentation paradigms for 2D slices of DBT images. For designing the first framework, we

employed the hand-crafted feature extraction for detecting spiculated masses in DBT images.

As opposed to the hand-crafted feature-based model, we introduced two CAD frameworks using

the deep learning techniques to learn automatically hierarchical features from images. We used

the deep cardinality restricted Boltzmann machines comprised the stack of three CaRBMs in

the former deep model for detecting spiculated masses. For the latter deep model, we utilized

the deep convolutional neural networks model with three convolutional and two fully connected

layers. In the learning task, features were extracted from 2D slices, and then the MIL learner

annotated DBT volumes. For the feature extraction, the hand-crafted, feature-based model re-

quired the segmentation and feature extraction stages and the deep learning models needed to be

trained using the original data, and the simulated data.

In this study, our dataset in hand included 87 DBT volumes whose number of 2D slices ranges

among (50-80) results in 5,040 2D images. We applied the augmentation techniques on each

2D slice by rotating and flipping methods and using the thin-plate spline algorithm, resulting

in 8 2D slices to enrich the dataset for the training deep learning models. We used 70% of the
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data (the original data, and the simulated ones) for the training set and 30% for the testing set.

After extracting information from 2D slices either using hand-crafted features or deep learning

models, for each system individually the weakly multiple-instance learning classification was

trained on the information obtained to annotate DBT, where each bag in the training process

comprised the learned features from 2D slices. DBT classification performance of the three

CAD frameworks with five MIL methods was evaluated using the metrics of accuracy, AUC,

specificity, and sensitivity.

Table 5.4 in chapter 5 shows, the DCNN-MI-RF is the conqueror CAD model based on all

metrics values. Based on this table, we see that both deep learning models can differentiate TPs

and FPs more accurate than the hand-crafted feature-based method. The high dependency of the

hand-crafted feature-based model on specific lesion-features may justify this issue for this model.

In comparison the deep learning models are less influenced by the specific hand-crafted steps

than the handcrafted feature-based framework, resulting in the better chance of detecting masses

and the significantly better breast cancer detection performance by the DCNN-MI-RF. Moreover,

I investigated cases of masses in the training set, which the DCNN MI-RF framework failed for

the correct train. Images with the label of Ductal Carcinoma in Situ scored very low because in

our training set we had a few cases with this label. Other samples were masses that appeared

very close to the breast boundary that the system could not recognize them. The recognition

of these cases could be improved if more training samples can be provided from real medical

images or augmented data using generative adversarial neural networks [21]. Though DCNN-

and DCaRM-based frameworks do not require the segmentation and feature extraction stages

when compared to the hand-crafted, feature-based model, they needed big enough training data.

Nevertheless, for further studies, we should collect a larger DBT dataset for training and test deep

learning models and further investigation for application of the new augmentation techniques on

DBT data like the generative adversarial neural networks algorithm for DBT data.

Table 6.1 presents a summary of selected studies in the literature with reported results. Note

that we reviewed these models for mass detection in DBT methods in Chapter 2. Unfortunately,

there is not any publicly available data for DBT to evaluate our CAD frameworks with several

approaches. The models in the literature have obtained results from different private data, so a
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TABLE 6.1: A comparison of selected studies in the detection of masses in the
DBT datasets.

Author (Year) Classifier Size of DBT dataset Performance

Fotin et al. [35] (2016) DCNN 344
89% sensitivity
86.40% accuracy

Samala et al. [76] (2016) DCNN 94 80% sensitivity
over 0.80 AUC

Reiser et al. [70] (2006) LDA 36 90% sensitivity

Kim et al. [47] (2016) SVM 160 0.847 AUC

Schie et al. [91] (2013) NN 752 80% sensitivity

Chan et al. [26] (2008) LDA 100 80% sensitivity
0.91AUC

Palma et al. [65] (2014) SVM 101 90% sensitivity

Wei et al. [95] (2011) LDA 50 0.866 ACU

Morra et al. [61] (2015) — 89 89% sensitivity

Chan et al. [24] (2005) LDA 26 85% sensitivity
0.91AUC

DCNN MI-RF in Ta-
ble 5.4 [104]

MI-RF 87

86.6% sensitivity
0.87 AUC
87.5 % specificity
86.81 % accuracy

DCaRBM MI-RF in
Table5.4 [104]

MI-RF 87 81.8% sensitivity

quantitative comparison between our CAD systems and these models is not possible.

Among these studies, three works have developed deep learning based CAD frameworks Samala
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et al. [76], Fotin et al. [35], and Kim et al. [47] that reported the impressive results using deep

learning methods. These studies presented CAD frameworks for detection of malignant masses

in DBT volumes based on both hand-crafted feature- and DCNN-based models. Samala et al.

[76] proposed a DCNN-based CAD framework with the prescreening stage that provided the

mass candidates to the DCNN with four convolutional layers and three fully connected layers.

The proposed model was first trained on the mammography ROIs, then all the weights of the first

three convolutional layers were frozen, and the rest of the network was trained using the DBT

ROIs. The system in [76] was evaluated on 94 DBT volumes with 89 lesions and achieved 80%

sensitivity at 2.94 false positives per volume. Fotin et al. [35] have used the DCNN system like

the AlexNet model [51]. They trained the model on the generated ROIs containing 1,864 lesions

from mammography, and 339 lesions from slice-by-slice basis data of the DBT volumes. They

obtained the 89% sensitivity at 3.25 false positives per volume 334 DBT volumes containing

suspicious and malignant lesions. Kim et al. [47] proposed the DCNN model to identify the

latent bilateral feature representations of masses in DBT volumes. They reported the AUC of

0.847 for the latent bilateral feature representation model.

Let us mention other works that have been developed based on integrated information from 2D

slices of DBT images for mass detection in DBT volumes. Schie et al. [91] have proposed the

framework based on a two-stage approach. First, information from 2D slices of DBT images has

gathered using the 2D CAD framework [46]. Then the findings from 2D slices have merged by

applying some rules on finding regions in different slices. They used the data from 192 patients

where 49 patients were diagnosed resulting in 80% sensitivity at 3 false positives per volume.

Reiser et al. [70] proposed the model that has detected masses individually within 2D projection

views then recombined the detections in the 3D space. They reported a sensitivity 90% for 36

DBT volumes.

A fair comparison of our results and those results of these studies is not possible since the

datasets and the measurement methods are not the same. The specific device provided each

dataset with the different number of PVs and from patients with various clinical cases. For

example, the dataset we have in hand includes real masses, vascular intersections, and other

high-intensity irregular shaped objects but not all clinical cases. The current extracted features



Chapter 6. Discussion and Conclusions 116

for the hand-crafted feature-based models are intuitive for our dataset and is not applicable on

the other datasets in other studies. For the deep learning models, some intrinsic factors from the

dataset such as the number of training data and the heterogeneous data directly affect the design

of the system. Moreover, each CAD system was designed to achieve the promising results on

the dataset with the particular goal of the study. For instance, in this thesis, our goal was to re-

duce the false positive detection rate and the false negative rates. The consequence of non-public

DBT data set is that we cannot even implement the published works in Table 6.1 on our dataset

for comparing their results with our framework results. However, the DCNN MI-RF with best

results among other frameworks in this study obtained 86.81% accuracy, and 86% sensitivity

with an AUC of 0.87 for the DBT testing dataset with 28 DBT images. So based on our essential

goal in this study that was to improve the sensitivity and the specificity rates of mass detection

on our DBT dataset, using these impressive results, we can claim that our framework achieved

this goal.

6.2 Conclusions

Digital breast tomosynthesis images as a breakthrough in mammography can provide a clearer,

more accurate view compared to the digital mammography images. This imaging modality

allows the radiologists to see through layers of breast tissues from different angles. A DBT

image is a quasi 3D volume that is reconstructed from the limited number of low-dose projection

views acquired over a limited angular around the breast.

Throughout this thesis, we addressed the challenges in developing new CAD systems for DBT

images. We presented three frameworks for detecting spiculated masses in multi-layer breast

tomosynthesis images based on hand-crafted feature, DCaRBM, and DCNN methods for ex-

tracting features from images and the MIL algorithms to classify DBTs. The most significant

advantage of the proposed CAD frameworks is that the models learn complex patterns from 2D

slices of DBT data (automatically or using hand-crafted features) and use all the information

obtained from the slabs to analyze DBT images with weakly supervised classifiers based on

multiple-instance learning algorithms. We used the separate MIL layer in deep learning based
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CAD models as the same classification approach between all systems because the separate MIL

layer in deep learning models allows us to have the fair comparison of the classification per-

formance among three frameworks. Besides the advantage of the appropriate comparison, the

separate MIL layer enables us to utilize different MIL models (MI-RF, MI-SVM, etc.) efficiently

in our CAD frameworks. In this study, I showed that the DCNN MI-RF based CAD framework

outperformed hand-crafted, feature-based, and DCaRBM-based models using the metrics of ac-

curacy, AUC, specificity, and sensitivity.

Besides, we designed two other channels for detecting the micro-calcifications and bilateral

asymmetry in images. For the bilateral asymmetry system, we provided the successful alignment

of 2D slice images from the left and right breasts on DBT images. This approach overcame the

breast registration challenge on the DBT data. There are limited studies on indication bilateral

asymmetry on DBT images or even on mammogram images. So we can claim that this channel

can serve as the first step for future studies on bilateral asymmetry detection in DBT images. Our

micro-calcification detection framework also achieved the promising results for detecting clus-

ters of micro-calcifications on images. However, our data for the micro-calcification detection

channel was not sufficient to generalize the presented method to the population.

6.2.1 Future Directions

The methods used in CAD frameworks in this thesis based on Gabor filters, cooperative graph cut

segmentation, TPS registration, deep CaRBM, DCNN, as well as MI-RF model, offer promising

ways to detect spiculated masses and bilateral asymmetrical detection in DBT images. Although

CAD frameworks obtained promising results in DBT classification, further improvements can

be made when more DBT data are available. Lacking sufficient DBT data is the main drawback

of this work. The efficiency and robustness of our developed CAD frameworks need to be

investigated on the general DBT images of the population in the future. These CAD frameworks

require various data with more micro-calcifications and architecture distortion samples to obtain

satisfactory public performance, which can be used to detect all early signs of breast cancers.

The proposed CAD frameworks in this study are not ready to be used for clinical applications;
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many of their components need to be improved, and several directions of the research based on

this study must be investigated.

• Examine the Number of PVs

The number of projection views and tomographic angular range may affect the CAD sys-

tems; this effect should be examined in detail.

• Examine Deep Learning Models using Transfer Learning on Mammogram Data

Available DBT data are insufficient in the world because the DBT image modality is the

new X-ray image technique. One of the practical ways to examine our deep learning

models is using the transfer learning using the large mammogram dataset. First, the deep

learning model is trained on the large mammogram dataset includes various clinical cases.

Then, the weights of the adjacent layers to the input layer are frozen, and the rest of the

model is trained on the DBT data. This transfer learning approach may help to generalize

deep learning models for analyzing the new clinical DBT images.

• Examine Other Augmentation Techniques on DBT

In this study, we used some augmentation algorithms to increase the size of the DBT data

artificially. For further studies, other augmentation techniques like the generative adver-

sarial neural networks algorithm for DBT data should be investigated for the performance

improvement of the deep learning models.

• Improving Micro-calcifications Detection Approach

Two proposed robust deep learning approaches can be used to detect other early signs

of breast cancers such as architectural distortion and micro-calcifications. Future work

with more data will focus on combining 3D reconstructed imaging information with 2D

information on adequate data. This combination may improve accuracy in other early
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signs of breast cancer detection procedures. This improvement will be especially valuable

when more clinical cases are used in the study.

• Improving Bilateral Asymmetry Detection

The bilateral asymmetry detection method was not evaluated thoroughly. We designed the

registration algorithm and region comparison algorithm in our framework and examined

the system on the available data. But we did not know what asymmetric level will raise

the alarm, given that we did not have image cases labeled in this category. So for fur-

ther development of this system, we need to evaluate the system on the images with the

malignant bilateral asymmetry label.
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Appendix A

Platforms and Tools

Operating Systems and Hardware

• Linux, and macOS operating systems

• Pycharm, and Cython IDE

• Two NVIDA GTX 1080 11 GB GPUs

Computer Languages and Libraries

• Python and C++ languages

• Python liberates such as PIL, scipy, scikit.

• Tensorflow Library

• Open CV

• Python wrapper for some C++ scripts
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