
CIVIL & ENVIRONMENTAL ENGINEERING | RESEARCH ARTICLE

Accelerated parallel computation of field
quantities for the boundary element method
applied to stress analysis using multi-core CPUs,
GPUs and FPGAs
Junjie Gu1 and Attila Michael Zsaki1*

Abstract: Computation in engineering and science can often benefit from accel-
eration due to lengthy calculation times for certain classes of numerical models.
This paper, using a practical example drawn from computational mechanics, for-
mulates an accelerated boundary element algorithm that can be run in parallel on
multi-core CPUs, GPUs and FPGAs. Although the computation of field quantities,
such as displacements and stresses, using boundary elements is specific to
mechanics, it can be used to highlight the strengths and weaknesses of using
hardware acceleration. After the necessary equations were developed and the
algorithmic implementation was summarized, each hardware platform was used to
run a set of test cases. Both time-to-solution and relative speedup were used to
quantify performance as compared to a serial implementation and to a multi-core
implementation as well. Parameters, such as the number of threads in a workgroup

ABOUT THE AUTHORS
Junjie Gu completed her Master of Applied
Science graduate degree in 2016 under the
supervision of Dr Zsaki. Her research interests
are computer applications in geomechanics and
parallel processing.

Attila Michael Zsaki is an associate professor
in the Department of Building, Civil and
Environmental Engineering. He obtained his BE
degree from Ryerson University and his MSc and
PhD degrees in civil engineering from the
University of Toronto. Dr Zsaki’s research is
focused on modelling and computational
aspects of geosciences with particular interest in
multiphysics modelling of continuum and dis-
continuum. His other areas of interest are
scientific computing, parallel computing, com-
puter graphics and mesh generation. In addition
to academia, Dr Zsaki has worked in the industry
as software developer and consultant for a
geomechanics analysis software company, and
lately on high-performance scientific computing
applications for modelling continuum behaviour.
His interests are performance optimization and
parallel computing on scalable, shared-memory
multiprocessor systems, graphics processing
units (GPU) and FPGAs.

PUBLIC INTEREST STATEMENT
Many problems in science and engineering require
use of computers to create and analyse models
to increase our understanding of the world
around us. Most often the computation requires
hours if not days to accomplish, thus any means
to expedite the process is of interest. This paper
presents a novel formulation of a numerical
method used in engineering mechanics, devel-
oped such that it harnesses the power of various
additional computer hardware, such as graphics
cards, already found in a computer to achieve
considerable reduction in time while maintaining
the accuracy of computation. In addition to
accelerated computing capabilities, the energy
consumption was considered as well when rank-
ing each computer hardware, catering to our
energy-consciousness. The paper concludes with
recommendations concerning the merits of each
hardware accelerator.

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

© 2018 The Author(s). This open access article is distributed under a Creative Commons
Attribution (CC-BY) 4.0 license.

Received: 08 January 2018
Accepted: 24 June 2018
First Published: 10 July 2018

*Corresponding author: Attila Michael
Zsaki, Department of Building, Civil
and Environmental Engineering,
Concordia University, Montreal,
Quebec
E-mail: am.zsaki@concordia.ca

Reviewing editor:
Sanjay Kumar Shukla, Edith Cowan
University, Australia

Additional information is available at
the end of the article

Page 1 of 21

http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2018.1493713&domain=pdf&date_stamp=2018-07-10
http://creativecommons.org/licenses/by/4.0/

and power consumption were considered and recommendations are given con-
cerning the merits of each hardware accelerator.

Subjects: Structural Geology; Simulation & Modelling; Geomechanics

Keywords: accelerated computation; GPU; FPGA; multi-core CPU; numerical stress analysis;
OpenCL

1. Introduction
The boundary element method (BEM) is one of the established numerical methods for solving
partial differential equations often of interest in the fields of engineering and science. The BEM
formulation has been applied to solve for stresses and displacements in solid mechanics (Crouch,
Starfield, & Rizzo, 1983; Kythe, 1995), flow of fluids in fluid mechanics (Brebbia & Partridge, 1992)
and also seen use in the field of electrical engineering and electromagnetism (Poljak & Brebbia,
2005), in the theory of solvation (Molavi Tabrizi et al., 2017) and biophysics (Cooper, Bardhan, &
Barba, 2014). Its characteristic approach to solve the differential equations is to cast them as
integral equations, and using an appropriate Green’s function, the discretized solution is developed
as a system of linear equations. Perhaps the greatest benefit of using a BEM formulation, as
opposed to finite elements (FEM) or finite differences, is the inherent reduction in the dimension of
a problem domain. For physically two-dimensional domains, a BEM discretization is only required
on the contour of a domain, and analogously, for three-dimensional physical domains, a BEM
solution is set up for the surface of a domain only. Yet, the benefit of reduction in size of the
system of linear equations can be potentially offset by the nature of the coefficient matrix; it is
densely populated, unlike the ones arising from most FEM formulations. This has an implication on
matrix storage requirements and solution time of the system. Other potential concerns with the
BEM are its inherent difficulty dealing with material heterogeneity and non-linearity (Crouch et al.,
1983; Gu, 2015). In addition, fundamental to the reduction of problem dimension is that a solution
of the linear system yields result only on a boundary. If quantities are wanted inside (or outside,
depending if it is an interior or an exterior problem Crouch et al., 1983), then further computation is
required to obtain them. Although BEM has a widespread application, and there have been
initiatives to use GPUs in BEM (Haase, Schanz, & Vafai, 2012; Torky & Rashed, 2017) their focus
was on solving the linear system of equations and not solving for displacements and stresses in
the domain (these quantities are often called “field quantities”). Thus, this paper focuses on BEM’s
use in solid mechanics, with particular application for computation of stresses and displacements
in geologic media. In this field, the foremost interest lies in the response of a geologic medium, as
measured by the developed displacements and stresses in the domain, which sets apart this
research from others (Haase et al., 2012; Torky & Rashed, 2017). In geomechanics, often the
ratio of computational effort between solving the linear system of equations and field quantities is
from 1:100 up to 1:1000 (in 3D). The computation of field quantities using BEM can be formulated
such that it is possible to carry it out on a grid of locations (either in two- or three- dimensions).
Once a solution is found by solving the dense linear system of equations, the computation of field
quantities at any given point can be performed independently from any other point. This indepen-
dence is the key, so that the computation of field quantities can be accomplished in a massively
parallel manner, using an appropriate hardware accelerator (such as a multi-core CPU, GPU, FPGA,
or similar). This paper presents a formulation of BEM for stress analysis of underground excava-
tions, such as tunnels, often of interest to practicing engineers. Although the second author has
investigated the possibility of use of GPUs in solving for displacements and stresses at field points
(Zsaki, 2011), at the time NVIDIA’s CUDA (NVIDIA, 2014) platform was used and no comparison
was done regarding its performance with other hardware platforms. In this study, the BEM
algorithm was implemented to run in parallel with the help of OpenCL (Khronos Group, 2014) for
execution on single and multi-core CPUs, GPUs and FPGAs. Performance aspects of each hardware
platform will be discussed as compared to a serial implementation, in which the field quantities are
sequentially computed. Metrics such a speedup, speedup-per-watt and workgroup sizes will be
evaluated and examined in detail along with the effect of single- and double-precision

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 2 of 21

computation on performance and accuracy of computation. In the current climate of competing
acceleration frameworks, such as NVIDIA’s CUDA (NVIDIA, 2014), the choice was made to use
OpenCL since the code with minor modification can be complied on all platforms considered, which
is not the case for CUDA, which currently only works on certain GPUs. Thus, the use of a common
source code enables a comparison of performance across a wide-range of platforms, perhaps
giving valuable insight as to what hardware platforms present the most appropriate option for
acceleration. Even though the BEM formulation presented in this paper is specific to a domain of
application, the authors feel that there is no loss of generality. The conclusions drawn can be
applied to accelerating not only other BEM formulations, but also to other numerical computation
using hardware accelerators in general.

2. Accelerated parallel computation of field quantities
The main advantage of a BEM formulation over an equivalent FEM one is to reduce the dimension-
ality of a problem, as discussed in the preceding section. The general formulation of BEM for solid
mechanics (Kythe, 1995), in which the solution for displacements (uj) and/or surface tractions (pj)
on a boundary C is sought, subjected to body forces (B) and can be expressed as follows:

∑
N

j¼1
Hijuj ¼ Bi þ ∑

N

j¼1
Gijpj (1)

Equation (1) is a discrete form of the general integral equation, since it considers a domain
discretized into boundary elements, such as the one shown in Figure 1. Generally, Equation (1)
results in a linear system of equations with a dense coefficient matrix. As mentioned above, the
solution of this matrix equation can pose computational challenges. However, the main focus of
this paper is not on the solution of linear systems, since that topic is well-covered in the literature
(Haase et al., 2012; Torky & Rashed, 2017). In contrast, the emphasis is on the subsequent solution
of field quantities in a domain, because unlike FEM formulations, Equation (1) only gives the
surface displacements and tractions. Thus, the BEM’s reduction in problem dimension comes at
a cost; the response of a solid material needs to be computed after a solution is found on the
boundaries.

Figure 1. Domain discretized
with constant boundary
elements, after Kythe (Kythe,
1995).

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 3 of 21

With the unknown quantities in Equation (1) solved for, the displacements (ui) in an exterior
domain can be computed as follows:

ui ¼ ∑
n

j¼1
Gijpj � Hijuj
� �

(2)

where coefficients Hij and Gij are matrices in the form of

Hij ¼
H11
ij H12

ij

H21
ij H22

ij

 !
; Gij ¼

G11
ij G12

ij

G21
ij G22

ij

 !
(3)

Thus, Hij and Gij can be evaluated as follows (Kythe, 1995):

H11
ij ¼ � 1

4π 1� vð Þ
ð
Ci

@r
@n

1� 2vþ 2 r;1
� �2h i dC

r
;

H12
ij ¼ � 1

4π 1� vð Þ
ð
Ci

2
@r
@n

r;1r;2 � 1� 2vð Þ r;1n2 � r;2n1
� �� �

dC
r
;

H21
ij ¼ � 1

4π 1� vð Þ
ð
Ci

2
@r
@n

r;2r;1 � 1� 2vð Þ r;2n1 � r;1n2
� �� �

dC
r
;

H22
ij ¼ � 1

4π 1� vð Þ
ð
Ci

@r
@n

1� 2vþ 2 r;2
� �2h i dC

r
(4)

and

G11
ij ¼ 1

8πμ 1� vð Þ
ð
Ci

3� 4vð Þ ln 1
r
þ r;1
� �2� �

dC;

G12
ij ¼ G21

ij ¼ 1
8πμ 1� vð Þ

ð
Ci
r;1r;2dC; (5)

G22
ij ¼ 1

8πμ 1� vð Þ
ð
Ci

3� 4vð Þ ln 1
r
þ r;2
� �2� �

dC:

where μ is the shear modulus, v is the Poisson’s ratio, and n is the normal-to-boundary vector. After
the displacements are found, stresses can be computed from

σij ¼
ð ð

R
Dijbdx1dx2 þ �

C
Dijpds� �

C
Sijuds

¼ ∑
M

s¼1

ð ð
R
Dijdx1dx2

� �
bs þ ∑

N

j¼1
�
Cj
Dijds

()
pj � ∑

N

j¼1
�
Cj
Sijds

()
uj (6)

where in two dimensions it reduces to

Dij ¼ D1 D2½ �Sij ¼ S1 S2½ �p ¼ p1 p2½ �Tu ¼ u1 u2½ �T (7)

with k = 1,2 giving rise to

Dk ¼
1

4π 1� υð Þr 1� 2υð Þ δkir; j þ δkjr;i � δijr;k
� 	þ 2r;ir; jr;k

 �
(8)

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 4 of 21

Sk ¼
μ

2π 1� υð Þ r2
2 @r

@n 1� 2υð Þδijr;k þ υ δikr; j þ δjkr;i
� �� 4r;ir; jr;k

� 	 þ

2υ nir; jr;k þ njr;ir;k
� �þ 1� 2υð Þ 2nkr;ir; j þ njδik þ niδjk

� �� 1� 4υð Þnkδij

2
4

3
5 (9)

For the mathematical derivation of Equations (2) through (9), the reader is referred to Kythe
(1995).

To solve for field quantities, Equations (2) through (9) need to be evaluated at every field point.
In a serial or single-core implementation, a loop is created over all field points and displacements
and stresses are computed in a sequential manner. However, since there is no inter-dependence
amongst Equations (2)–(9) between any pair of field points, they can be computed in parallel,
which will be exploited in this paper.

The BEM solution for both on a boundary and the subsequent sequential computation of field
quantities can be summarized in Algorithms 1 and 2 using a pseudo-code, as follows:

Algorithm 1: BEM solution on a boundary and at field quantities

Input: Discretization of boundary geometry into elements, material properties, grid dimensions for
field points

Output: Displacements and stresses on the boundary and at field points

Read in input file

Allocate memory for data structures (coefficient matrix and Hii and Gii entries)

Evaluate Hii and Gii coefficients for the boundary solution using Gaussian quadrature

Assemble coefficient matrix

Assemble right-hand side (forcing) vector

Solve linear system of equations for boundary displacements/tractions

Compute location of grid points

Initialize timers for timing the solution

Solve for field quantities at each grid point (Algorithm 2)

Gather timing results

Write out solution to a file

Clean up memory

Algorithm 2: BEM solution with sequential computation of field quantities

Input: Boundary displacements and tractions

Output: Displacements and stresses at field points

for all grids do

for all grid points within a grid do

Evaluate coefficients Hij and Gij (Equations 4 and 5) using Gaussian quadrature

Compute displacements (Equation 2)

Compute stresses (Equations 6–9)

end for

By separating the computation of field quantities from the solution ona boundary, it is reasonably simple
to isolate a part of the code that needs to be parallelized and Algorithms 1 and 2 can be rewritten. To

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 5 of 21

clarify terminology, computation of field quantities will be executed on an accelerator (or “device”) and
the file input/output and solution of the linear system of equations will be run on a “host”. Thus,
Algorithms1and2, as implementedusingOpenCL,weredefinedusinga three-stepapproach. Inaddition
to the existing steps in Algorithm 1 (pertaining the solution of a linear system), the first step set up and
initialized theOpenCLenvironment, defined andallocatedbuffers for data transfer, compiled kernels and
finally, transferred all the data needed to the accelerator. The second step ran the kernel on an
accelerator, while the third step wrote the data back to the host. The pseudo code, as shown in
Algorithms 3 and 4, based on the actual C code, is as follows:

Algorithm 3: BEM solution on a boundary and at field points—accelerated, host side

Input: Discretization of boundary geometry into elements, material properties, grid dimensions for
field points

Output: Displacements and stresses on the boundary and at field points

Read in input file

Allocate memory for data structures (coefficient matrix and Hii and Gii entries)

Evaluate Hii and Gii coefficients for the boundary solution using Gaussian quadrature

Assemble coefficient matrix

Assemble right-hand side (forcing) vector

Solve linear system of equations for displacements/tractions

Compute location of grid points

Initialize timers for timing the solution

Set up OpenCL platforms and devices

Create OpenCL context and queue

Create OpenCL buffers for grid and model control parameters

Compile OpenCL program, create kernel and set kernel arguments

Set global and local worksizes

for all grids do

for all subsets of grid points do

Write OpenCL buffers to the accelerator

Execute kernel on the accelerator (Solve for field quantities at each grid point on the accelerator
(Algorithm 4))

Flush the queue

Retrieve results from the accelerator

end for

end for

Gather timing results

Write out solution to a file

Clean up memory and release buffers

Algorithm 4: BEM solution with accelerated computation of field quantities—device side

Input: Boundary displacements and tractions

Output: Displacements and stresses at a field point

Obtain current index of execution thread

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 6 of 21

Evaluate coefficients Hij and Gij (Equations 4 and 5) using Gaussian quadrature

Compute displacements (Equation 2)

Compute stresses (Equations 6–9)

Store results in buffers

Note that in Algorithm 2, the computation is carried out over all grid points within each grid, in
sequence. There could be multiple grids such that in 2D each grid is a set of points distributed in a
rectangle. In 3D, multiple grids can be defined as sets of points enclosed in a volume. Typically, a
3D grid is defined as a sequence of 2D grids that are stacked on top of each other along the third
dimension. This definition of 3D grids will become advantageous for certain accelerators, so in
Algorithm 3, for each grid, the points are processed in subsets (generally in sheets of 2D grids). The
application of this will be discussed in the next paragraph.

The development environment was Microsoft Visual Studio Ultimate 2012 (Microsoft, 2012), the
programs were developed in C/C++ . The computer was outfitted with 32GB RAM, running Microsoft
Windows 7 Professional. For the FPGA, the OpenCL kernels were compiled by Altera’s Quartus II 12.0
Suite (Altera Inc, 2014), while for the CPU, Intel’s implementation of OpenCL was used (Intel, 2015a).
Similarly, on the GPUs, the OpenCL compiler supplied by NVIDIA was used (Khronos Group, 2014).
Focusing on the OpenCL implementation of the BEMmethod in Algorithm 3, the OpenCL environment
was set up by querying available accelerator platforms and resources. The appropriate accelerator was
selected by specifying CL_DEVICE_TYPE_CPU, CL_DEVICE_TYPE_GPU or
CL_DEVICE_TYPE_ACCELERATOR (for FPGAs), as appropriate. Definition of a context and queue was
done next, followed by the creation of buffers. These included buffers for grid parameters, material
properties, already computed displacements and tractions from the boundary solution and return
buffers for the yet-to-be-computed displacements and stresses at field points. Common constants
such as material properties were stored in a shared memory on the accelerator, since threads often
use them during a computation. The kernel and program were compiled next using the global and
local workgroup sizes, and the buffers were “enqueued”. Asmentioned in the preceding paragraph, 3D
grids were processed in subsets of 2D sheets. Reason being is that desktop and laptop GPUs used for
display are not allowed to be continuously tied up with computation. A watchdog timer, part of the
operating system (Microsoft Windows 7), monitors processes that execute for a long time. Processes
that run “too long” trigger a Timeout Detection and Recovery response from the OS and the OS
terminates the offending process. On the tested desktop GPU platform, which will be summarized in
Section 2.2, this timeout limit was approximately 2.8 s. Literature reports threemethods to address the
time limit (Khronos Group, 2014; NVIDIA, 2014):

● run the simulation on a GPU that is not participating in displaying graphics

● disable the OS’ watchdog timer responsible for Timeout Detection and Recovery

● reduce OpenCL (and equally valid for CUDA) kernel run times

Although the first option seems attractive, it is only feasible if the system is equipped with an
extra GPU. For most systems, it is not a viable option. The second choice was not considered
since it can interfere with the operation of a computer system and can lead to instability of the
system. Consequently, the last option was adopted resulting in the subdivision of a 3D grid into
subsets at a potential expense in computation time since multiple kernel invocations and data
transfer will be required. To estimate the effect of this, a set of experiments were devised: (a)
the whole 3D grid was uploaded (and the results downloaded) and (b) a set of sub-grids were
uploaded (and the results downloaded) to/from the accelerator. In both cases, the kernel did
no actual computing work. The running time associated with this operation was measured. It
was found, on average, the extra kernel invocation and data transfer increases the total
computation time by less than 3%. Note that only a GPU used for display requires multiple
invocations of a kernel, CPUs, non-display GPUs and FPGAs can run the computation
continuously.

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 7 of 21

2.1. Test model
The test model chosen was a two-dimensional horseshoe-shaped excavation, representing a
typical tunnel cross-section, characteristic of ones used in railway and road transportation.
Geometry and coordinates of the tunnel boundary are shown in Figure 2, where the units are in
meters. Rock mass properties used were Young’s modulus (E) of 15 GPa and Poisson’s ratio (v) of
0.25, representing a typical rock mass, such as sandstone. The rock mass was subjected to a stress
field of 10 MPa in both principal directions, inclined 30° from the vertical, in the counter-clockwise
direction. The tunnel boundary was discretized using 37 elements, as shown in Figure 2. The
discretization was arrived at after performing a mesh convergence study. A number of elements,
from 15 to 41, were used to generate models of the same tunnel geometry. Four locations (crown,
invert, left and right extremities of the tunnel) were used to monitor the resulting magnitude of
displacement. As seen from Figure 3, the values of displacements do not change beyond 37
elements, and thus the corresponding discretization was adopted for the subsequent study.

The pattern of displacements around the tunnel excavation, computed on a 5002-point grid, is
shown in Figure 4. As shown in the figure, the largest displacements occur around the excavation
(orange/red area). As an example, a hardware-accelerated computation to obtain these results
required 0.0333 s, while the serial computing timewas as long as 4.53 s for the same 5002-point grid.

The same example model will be used to compare the accelerated implementations of our BEM
algorithm to the serial one. The performance of the accelerated implementation will be evaluated
as a function of increasing grid sizes from 1002 to 10002 in increments of 1002 and from 10002 to
16002 in increments of 2002. Thus, the results will be computed for 14 grid sizes from 10,000 points
to 2.56 million points in total. For each scenario, numbers presented in the subsequent sections are
an average of 10 runs, in order to smooth out any performance hits due to external factors, such
as Operating System tasks.

2.2. Hardware platforms
The work summarized in this paper considered a set of accelerators: from a single core of a CPU, a
multi-core CPU, a desktop GPU, a GPU-based accelerator and an FPGA. When the research was
conducted, these accelerators represented a realistic selection of available hardware. The features
of each accelerator are summarized in Table 1. Where possible, a reference and a link to the
manufacturer’s documentation were given. Since there is a communication between a host and an
accelerator to move data back and forth, it was anticipated that the high-memory bandwidth

Figure 2. Horseshoe-shaped
tunnel geometry.

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 8 of 21

Figure 3. Boundary element
mesh convergence study.

Figure 4. Displacements around
the horseshoe-shaped tunnel
for a model size of 5002 points.

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 9 of 21

available to the CPU will positively affect (e.g. reduce) the computation time as compared to both
the GPUs and FPGA, since the latters were limited by the PCI-E bus’ relatively modest bandwidth.

As seen from Table 1, each accelerator device has unique characteristics when it comes to the
number of cores, available memory or power usage. Some of these parameters affect the max-
imum number of concurrent threads that can be run on an accelerator. In OpenCL, two constants
define the number of threads requested to be run; the global worksize and the local worksize.
Generally, the global worksize is problem-dependent; for the computation of field quantities, it was
taken as the number of field points in a 2D grid, in the range from 1002 to 16002, as discussed in
Section 2.1. However, the choice for local worksize can significantly affect the efficiency of an
accelerated implementation. Each hardware platform has an upper limit on the size of local
worksize, as summarized in Table 1. However, the actual number used can influence performance.
In order to investigate this, a set of local worksizes were used, from 1 to 64 (as 2i, i = 0 to 6). For
certain model sizes, not all local workgroup sizes were used since the OpenCL specification requires
that the global worksize to be evenly divisible by the local worksize (Khronos Group, 2014).
Although the accelerators can be used with local worksizes greater than 64, it was found that
beyond 64 there is no appreciable gain in performance for any of them. The OpenCL implementa-
tion permits to omit the specification for local worksize, thus allowing the OpenCL SDK for select
the most appropriate number (Khronos Group, 2014).

2.3. Single core CPU base case
The computation of field quantities using BEM Algorithms 1 and 2 was implemented and used to
run the test model. This sequential (or serial, non-OpenCL) implementation will be used as a base-
case; all subsequent accelerated implementations will be compared against it. Care was taken that
most reasonable optimizations were performed on the code such as loop unrolling, pre-computa-
tion of constants outside loops, and multiplication with an inverse, instead of division. Although
the length of computation was expected to be the same if the code was run multiple times, the run
times shown in Figure 5 are an average of 10 runs. As expected, the correlation for both single-
and double-precision computation bears an O(n) relationship as the number of field points is

Table 1. Accelerator specifications

CPU Desktop GPU GPU-Tesla FPGA

Intel i7-4770K
(Intel, 2015b)

GTX 760 (EVGA,
GTX760, 2015)

Tesla K40c
(NVIDIA, 2013)

Terasic DE5-Net using
Altera Stratix V with
622K logic elements
(Terasic Inc., 2015)

Cores 4 (8 threads) 1152 2880 Configurable, see text

Compute units 8 6 15 1

Memory 8 MB L3 cache
(32 GB system)

2 GB 12 GB 8 GB

Max. single
allocatable
memory

512 MB 512 MB 2855 MB 4096 MB

Max. local
worksize

1024 1024 1024 64

Frequency 3.5 GHz 1072 MHz 745 MHz
(Boost up to 875

MHz)

156.34 MHz (Altera Inc,
2015)

Max. memory
bandwidth

25.6 GB/s 192.2 GB/s
15.75 GB/s
(PCI-E 3.0)

288 GB/s
15.75 GB/s
(PCI-E 3.0)

17 GB/s
15.75 GB/s
(PCI-E 3.0)

Thermal design
power (TDP)

84 W 170 W 235 W 23.7 W
(Altera Inc, 2015)

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 10 of 21

increased. The figure shows computing times for both single- and double-precision runs on the
single-core of a CPU (see Section 3.2). The longest run-times for single precision were 37.44 s for
the model with 16002 field points, while the longest run-times for double precision were 46.60 s for
the model with 16002 field points.

2.4. Multi-core CPU accelerated BEM
The multi-core CPU (MCPU) implementation of BEM Algorithms 3 and 4 using OpenCL was executed
using all four cores of a CPU. In accordance with the testing parameters set out in Sections 2.1 and
2.2, Figure 6 summarizes the solution times obtained. Time to solution versus the number of field
points are plotted for all combinations of local workgroup sizes considered for both single- and

Figure 5. Run times for the
serial (non-OpenCL) implemen-
tation of Algorithms 1 and 2 for
the test model.

Figure 6. Run times for the
OpenCL-accelerated MCPU
implementation of Algorithms 3
and 4 for the test model (SP –

single precision, DP – double
precision).

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 11 of 21

double-precision computations. The serial run time is plotted as well, for reference. Figure 6 reveals
that the performance curves are stratified for both single and double precision. For small local
worksizes (1 through 4), the performance curves are essentially the same. For local worksizes
beyond 4, the performance considerably increases; however, the plots still overlap. It is speculated
that for the range of 1–4, each core of a CPU gets a single thread scheduled, and above 4 each core
gets two threads. The overhead of using OpenCL is evident for small problem sizes (up to about
3002 field points), where the serial implementation is actually faster. The ratio of reduction in
solution time for local worksizes above 4 to those below 4 is about 3.1 for single precision and 1.96
for double precision. Further discussion on the effect of local worksize is given in Section 3.1, while
the difference in single- and double-precision computations in shown in Section 3.2.

2.5. GPU accelerated BEM
The work presented in the paper considered two GPU-based accelerators: a desktop graphics card
(GTX 760) and a purpose-built accelerator (NVIDIA Tesla K40c). Both of these were based on
NIVIDIA’s Kepler microarchitecture (NVIDIA, 2013) and represented two common cards available
at the time the research was conducted. The OpenCL-based acceleration of the BEM Algorithms 3
and 4 was used in the testing according to the test parameters and conditions set out in Sections
2.1 and 2.2.

2.5.1. Desktop GPU
For the Desktop GPU, Figure 7 summarizes run times for all local worksizes considered, both single
and double precision. Considering the operating system-imposed time limit of tying up the GPU for
computation (as discussed in Section 2.0), the kernel required multiple invocations. The maximum
number of field points that can be computed before triggering the watchdog timer was deter-
mined by trial-and-error. Run times reported in Figure 7 incorporate the additional time associated
with multiple kernel invocations and extra data transfer and, as discussed before, this amounts to
an estimated increase in total computation time by slightly less than 3%. Unlike for the MCPU, the
curves for the desktop GPU are distinct for each worksize and the run times decrease with the
increasing number of local worksizes. As expected, there is an O(n) relationship between the
number of field points and solution times. Although not a surprise for desktop GPUs, the double-
precision performance for small local workgroup sizes (up to 8) is actually worse than the serial

Figure 7. Run times for the
OpenCL-accelerated desktop
GPU implementation of
Algorithms 3 and 4 for the test
model (SP – single precision,
DP-double precision).

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 12 of 21

base-case, owing to the inherent low double-precision capabilities which is a characteristic of the
card. A more detailed discussion of this will be given in Section 3.2. The ratio of best-performing
run (with 64 for the local worksize) to the single local worksize case was 32.78 for single-precision
and 26.83 for double-precision computations.

2.5.2. Tesla GPU
Although based on the same microarchitecture, the Tesla GPU card was designed for high-end
scientific computation. It is not affected by the watchdog timer timeout as the Desktop GPU. The
same set of local worksizes were used for executing the example problem and the run times are
plotted in Figure 8. Similar to the Desktop GPU, for each increase in local worksize, the solution
time decreased while maintaining an O(n) relationship. Both the single-precision and double-
precision results are better (lower solution time) than the serial implementation. However, the
cost of OpenCL setup and data transfer overhead is observable for small problem sizes. The
double-precision performance of the Tesla GPU is considerably better than the Desktop GPU. For
small local worksizes, it is marginally better than the serial implementation, further underlining
that GPUs were meant to run many concurrent threads of execution to achieve good performance.
The ratio of best-performing run (with the local worksize of 64) to a single local worksize case was
32.69 for single-precision and 26.90 for double-precision computations, almost identical to the
Desktop GPU. Relative speedups will be discussed in detail in Section 3.0.

2.6. FPGA accelerated BEM
Due to its nature, the FPGA hardware accelerator is different than an MCPU or a GPU. The FPGA is
mainly defined by its number of available gates or logic elements, which can accommodate a
hardware description of the algorithms to be run. The hardware synthesis of BEM Algorithm 4 can
be influenced by the number of cores requested, which is limited by the number of logic elements.
Other factors, such as the available memory can influence the design as well. Depending on the
size of an algorithm (e.g. number of instructions, type of instruction, quantity and type of data to
be operated on, etc.) the FPGA might not have a sufficient number of gates, as was found for the
case of double-precision algorithm. Thus, only single-precision results are available in this paper. It
is expected, given a larger-size FPGA, that the double-precision implementation can be achieved as
well. The BEM Algorithm 4 was synthesized using Altera’s Quartus II suite and the example

Figure 8. Run times for the
OpenCL-accelerated Tesla GPU
implementation of Algorithms 3
and 4 for the test model (SP –

single precision, DP – double
precision).

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 13 of 21

problem was run according to test parameters and conditions set out in Sections 2.1 and 2.2. Run
times for the range of field points and local worksizes are shown in Figure 9. The solution times
generally decrease with an increasing local worksize, while more-or-less maintaining an O(n)
relationship.

For local worksizes of 1 and 2, the FPGA’s performance is lower than the base serial implemen-
tation; a worksize of 1 takes over twice as long as the serial implementation. For worksizes greater
than 2, the performance gradually improves, but there is little difference between 32 and 64,
signalling an upper limit of performance gains. The ratio of best-performing run (with the local
worksize of 64) to the single local worksize was 30.96 for single-precision.

3. Performance comparisons
Although results presented in Sections 2.4 through 2.6 show solution times for an example
problem for each accelerator along with the unaccelerated, serial computation times, it is hard
to evaluate relative performance gains offered by each accelerator. Run times can help to compare
the effectiveness of an algorithm, its implementation and the benefits offered by a specific
hardware platform. More commonly though, relative speedup, as defined by Pacheco (Pacheco,
1997), can be used to compare different implementations. However, in our energy-conscious
world, a growing emphasis is placed on the actual energy used in performing a task. Thus, for
our computations, an additional metric is introduced; the speedup-per-watt (Bischof, 2008). While
this section focuses on the comparison of relative speedups, the speedup-per-watt will be dis-
cussed in Section 3.3.

The purpose of any ranking based on relative speedup is to guide our choice when it comes to
acquiring new hardware either to replace or supplement what is currently available. Therefore, it is a
logical choice to base our comparisons on an un-accelerated, serial implementation running on a
single core of a CPU before hardware-accelerated versions are implemented. However, the majority
of currently available CPUs have more than one core. Therefore, at no extra investment, we have at
our disposal a hardware accelerator. In this case, it is sensible tomodify our performancemetric (the
relative speedup) to compare other accelerators to the multi-core CPU (MCPU). This growing senti-
ment of what serves as a good base case was voiced in literature as well (Lee et al., 2010).

Figure 9. Run times for the
OpenCL-accelerated FPGA
implementation of Algorithms 3
and 4 for the test model (SP –

single precision).

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 14 of 21

Figure 10 summarizes relative speedups achieved by various accelerators using a single core, serial
implementation as a base case. Both single and double-precision results are plotted and both sets of
curves exhibit the same characteristics. Thus, without loss of generality, this section considers the single-
precision results only, while Section 3.2 will examine the relative performance based on single or double-
precision computations. For each accelerator discussed in Sections 2.4–2.6, the best-performing case
was selected (the oneswith the largest localworksize, asmentionedbefore). All speedup curves display a
similar trend; there is a relatively sharp rise in speedup for small problem sizes (as measured by the
number of field points), which levels off as the problem size increases. The MCPU offers speedups from
below one for small problem sizes (1002 to 4002) to as high as 5 for larger problems (14002 and greater).
Even though the theoretical maximum would be 8 if all cores are fully utilized, in practice it is almost
unattainable. Thus, the relative speedup of 5 for a MCPU is a reasonable one, considering that no
additional hardware was required to attain it. For the GPU-based accelerators considered, the Tesla
GPU achieves the highest speedups, followed by the Desktop GPU. For larger problem sizes (14002 and
greater) the speedup reached above 134 with a slight drop in speedup as the problem size further
increased. The Desktop GPU shows an almost identical trend, albeit with a maximum speedup of about
110 for larger problem sizes. The last hardware accelerator considered, the FPGA, unfortunately shows
much more modest performance gains; it only achieves a speedup of about 12.5 for larger problems,
positioning it above theMCPU in performance. It appears that GPU-based accelerators offer the greatest
achievable speedups among the hardware considered, based on the comparison with the serial
implementation.

If the relative speedup comparison is based on the MCPU as a base case, Figure 11 shows that both
GPU-basedaccelerators reacha relative speedupof about 20 (maximumof 22 for the Tesla GPUand18.3
for the Desktop GPU). The GPUs’ relative speedup seems to steadily drop after reaching their peak. This is
attributable to the combined effect of drop in GPU performance and increase in the MCPU performance
for large problem sizes, as already discussed in relation to Figure 10. The FPGA reaches a peak relative
speedup of about 2 and drops slightly to 1.7 towards the right of the figure. As expected, if the MCPU is
used as the base case, the relative speedups are not nearly as high as for the serial case. Yet, the GPU-
based accelerators achieve a speedup as high as 22 over the MCPU.

Figure 10. Speedups achieved
by various implementations as
compared to the serial case.

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 15 of 21

3.1. Effect of local workgroup size
It is evident from Figure 6 through 9 that the local worksize plays an important role in the
resulting computation time. Since all accelerators are based on a principle that multiple
concurrent threads of execution are running, if only a single thread is run, the performance
will be far from optimum. As an upper limit, the maximum number of concurrent threads in a
workgroup is summarized Table 1. Ideally, performance should increase with an increasing
number of concurrent threads in a workgroup. However, in that case more threads are acces-
sing common constants and variables in the shared memory, perhaps impacting performance.
Another way to look at the data summarized in Figure 6 through 9 is to plot the solution time
vs. local worksize for each problem size. For the sake of brevity these plots are only included in

Figure 11. Speedups achieved
by various implementations as
compared to the MCPU case.

Figure 12. Solution times as a
function of local worksize –

MCPU.

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 16 of 21

this paper for the MCPU and Tesla GPU (as shown in Figures 12 and 13), for the single-precision
computation only, while similar trends were observed for the Desktop GPU and FPGA as well.
The double-precision results exhibited a very similar trend also. For the MCPU, the local work-
size between 1 and 4 has little effect on performance. For a worksize of eight, there is a sharp
increase in performance (drop in solution time), and beyond which, with increasing worksize,
there is little or no further improvement. The worksizes considered in this paper, as presented
in Section 2.2, were all integer powers of two. But for example, if worksize of 10 was used, the
performance suddenly drops by as much as 40% (if compared to a worksize of 8), as seen on
Figure 12. This re-iterates that, although tempting to use local worksizes that we are more
accustomed to (powers of 10), there could be a performance drop. However, by using powers of
two for local worksize either the global worksize has to be adjusted or some combinations of
local and global worksizes are not possible any more. Figure 13 summarizes performance for
the Tesla GPU; in contrast to Figure 12, increasing the local worksize starting with one
translates into increased performance. Unlike the MCPU, for the Tesla GPU there is no perfor-
mance drop if non-power of two local worksizes were used; Figure 13 contains data for 10 and
50 as the local worksize, without any performance penalty. Similar to the MCPU, worksizes
beyond 50 or 64 offer no appreciable speed increase. Although not shown, the same conclu-
sions can be drawn for both the Desktop GPU and FPGA.

3.2. Single precision vs. double precision – speedup and accuracy
Accuracy is of importance for numerical computation in engineering and science. Many numerical
models and methods, like solution of a system of equations, are sensitive to round-off errors or the
number of significant digits in input parameters. Thus, most of these methods generally employ
double-precision computation. Even though the accuracy in computation is important, one has to
consider the quality of input parameters. For example, in geomechanics, most input parameters,
like rock mass properties, are seldom know within 20–30% of their true mean (Starfield & Cundall,
1988), presenting an opportunity for accepting “less-than-accurate” computation. To investigate
the potential loss of accuracy and perhaps speed gains, Algorithms 1–4 were modified to use
double-precision constants and variables. Also, appropriate arithmetic functions (e.g. going from
fabsf() to fabs()) were used to avoid unnecessary casts resulting in speed reduction. All test cases

Figure 13. Solution times as a
function of local worksize –

Tesla GPU.

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 17 of 21

were re-run using double precision for both the serial algorithm and the hardware-accelerated
ones, where double-precision computation was possible.

Figure 5 shows that for the serial (single-core) case there is an approximately 20% performance
drop if double-precision computation is used for larger problems, while the greatest difference in
solution, measured using L1 norm, was 0.00093% across all modelled cases (grid points from 1002

to 16002) for the computed displacements. While Figures 6 through 9 show the single- and double-
precision performance for each accelerator, Figure 10 contains the composite results expressed as
relative speedup. Double-precision computations on the OpenCL-accelerated MCPU, for larger
problem sizes, take on average 9% longer than in single-precision, while the difference in solution
across all modelled cases, using a L1 norm, was 0.00125%. The mere 9% increase in computation
time is not surprising since the MCPU is a general-purpose chip, with good floating-point perfor-
mance for both single and double precision. Actually, compared to the serial (single-core) case,
where the cost of double precision was 20% extra time, the performance of the MCPU was very
good. For the GPU-based accelerators, it was found that the double-precision performance of the
Desktop GPU was on average 26 times slower than its single-precision computation. In interpreting
this low performance, one has to consider that most computer graphics operations on a GPU are
optimized for single-precision. Literature reports that the double-precision performance of Kepler
microarchitecture desktop GPUs is 1/24 of their single-precision performance (Arrayfire, 2015),
which confirms our findings. The difference in solution of displacements across all modelled cases
using L1 norm was 0.00147% on the Desktop GPU. However, the same source reports that the
Kepler microarchitecture-based Tesla GPU has a substantially better double-precision floating
point performance (1/3 of single-precision). Our results indicate that double-precision computa-
tions on the Tesla GPU were on average 3.8 times slower than single-precision ones, which is
similar to what literature reports. For this platform, the maximum difference in results, as mea-
sured by a L1 norm, was 0.00132% between the single and double-precision results. As mentioned
before, the FPGA-based accelerator was only able to synthesize the single-precision algorithms;
thus, we cannot compare the performance.

In summary, most hardware accelerators are capable of carrying out computations in both
single- and double-precision without considerable degradation in accuracy. However, based on the
design philosophy behind each accelerator, its double-precision performance can vary significantly.
Even though the Tesla GPU’s double-precision performance is about one-quarter of its single-
precision one, it is still almost 40 times faster than the serial (single core) of a CPU. If the basis
of comparison is the MCPU, the Tesla GPU is on average five times faster than the MCPU for double-
precision calculations, as seen in Figure 11. Unfortunately, the Desktop GPU’s double-precision
performance is on par with the MCPU; thus, it does not offer performance improvement in double-
precision computations.

3.3. Speedup-per-watt
Although most accelerators are preferred in order to expedite the completion of a computing task,
in the current energy-conscious climate, the use of energy is becoming important. Table 1
summarizes the power consumption of hardware accelerators. However, these are individual
components only. Many of them cannot function alone; a computer system requires power for
the CPU, motherboard, memory, GPU and other accessories. Thus, to measure the minimum power
required to run the system, different scenarios were devised based on what accelerator was used,
as summarized in Table 2. For each scenario, the largest model (with 16002 grid points) was run for
10 times. For each run, the power was sampled at 1-ms intervals using an in-line energy usage
monitor. The power consumptions in Table 2 are an average within each run and also averaged
over the 10 runs.

Interestingly, the actual power consumption of the system is somewhat different than what the
sum of active components suggests. For all cases, the system power usages were lower than what
the components indicate. For example, Table 1 indicates that the CPU’s design power was 84W,

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 18 of 21

while the single-core scenario consumed on average 53.7W and the multi-core one needed 72.1W,
both of which were below the values indicated in Table 1, considering that the motherboard and
memory consumed some energy as well. Similarly, for the Tesla GPU, Table 1 lists 235W and the
system power consumption (including CPU, memory, etc.) required 178.5W in total. Only for
the FPGA the system power consumption was in line with Table 1, where 23.7 W was predicted
for the FPGA. Adding this on top of the single-core CPU scenario resulted in approximately the
measured power usage.

Having determined the actual power consumption of the system for each scenario, the data in
Figure 10 can be updated by dividing relative speedup by the power usage, expressed as a
speedup-per-watt metric. This new metric is shown in Figure 14. For single-precision computations,
the lower relative power consumption of the Desktop GPU (in comparison to the Tesla GPU) results
in the best performance in contrast to Figure 10. The FPGA ranks third, slightly above the MCPU;
thus, the FPGA presents a viable alternative to CPUs where low-power acceleration is required.
However, for double precision, the Tesla GPU still achieves the highest performance, followed by
the MCPU and Desktop GPU, reversing the ranking for the last two. In closing, overall the Tesla GPU
appears to be the highest performer even when the power consumption is considered.

4. Conclusions
Computation in engineering and science can be challenging. Both the formulation of a mathema-
tical model and its evaluation in a timely manner can be detrimental in the model’s widespread

Table 2. Scenarios for power consumption testing

Scenario Active components Average power
consumption (W)

Single-core CPU CPU, Motherboard, RAMa 53.7

Multi-core CPU CPU, Motherboard, RAMa 72.1

Desktop GPU CPU, Motherboard, RAM plus GPU 135.6

Tesla GPU CPU, Motherboard, RAM plus Tesla GPUa 178.5

FPGA CPU, Motherboard, RAM plus FPGAa 78.6

Note: aThe system was run headless, accessed remotely via VNC.

Figure 14. Speedup-per-watt
achieved by various implemen-
tations as compared to the
serial case.

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 19 of 21

use. A method such as the BEM, often used in geomechanics, was selected as an example of a
numerical method, which can be benefitted from acceleration. The computation of field quantities,
such as stresses and displacements, in a BEM model can be performed in parallel. This paper
considered the acceleration of computation on a wide variety of hardware accelerators from
multiple cores of a CPU, through the use of GPUs, and finally considering FPGAs. Each hardware
accelerator presented different challenges because some of them were designed for parallel
execution using a large number of concurrent threads (GPUs), while others were designed to run
a relatively small set of simultaneous threads (e.g. the number of cores on a multi-core CPU).
FPGAs, relative newcomers amongst the OpenCL-based accelerators, were considered in this study
for their low power consumption, representing an energy-conscious alternative. Upon performing
computation on the hardware accelerators and evaluating their relative performance using various
metrics, such as relative speedup, the following conclusions can be drawn:

● If maximum performance is needed, currently Tesla GPUs present the best option. Even
though their power requirements are the highest, their performance ranks highest in both
single and double-precision computation.

● While for no additional investment, the multi-core CPU OpenCL version of the BEM algorithm
offers a modest (five-fold) speedup.

● Although Desktop GPUs were not meant for double-precision computation, if a single-precision
formulation of a numerical model can be used, their performance is very high.

● Even though FPGAs offer an energy conscious alternative, currently their comparatively low
speedup and long kernel compilation times could detract from their potential to be used as
accelerators, at least for this class of BEM computation.

● Intentionally, the cost of hardware and software needed was not included in the study;
however, if cost is a consideration and single-precision computation is adequate, commonly
available Desktop GPUs offer the best value.

Funding
This work was supported by the Concordia ENCS Faculty
Graduate Support program (GSSP) and the Natural
Sciences and Engineering Research Council of Canada’s
(NSERC) Discovery Grant program,Concordia University –

NSERC Govt. Canada [grant number N01088].

Author details
Junjie Gu1

E-mail: junie3026@gmail.com
Attila Michael Zsaki1

E-mail: am.zsaki@concordia.ca
1 Department of Building, Civil and Environmental
Engineering, Concordia University, Montreal, Quebec,
Canada.

Citation information
Cite this article as: Accelerated parallel computation of
field quantities for the boundary element method applied
to stress analysis using multi-core CPUs, GPUs and FPGAs,
Junjie Gu & Attila Michael Zsaki, Cogent Engineering
(2018), 5: 1493713.

References
Altera Inc. (2014). Altera quartus II. Retrieved from http://

dl.altera.com/?edition=pro
Altera Inc. (2015). Altera quartus II – PowerPlay power

analyzer tool. Retrieved from http://dl.altera.com/?
edition=pro

Arrayfire. (2015). Explaining FP64 performance on GPUs.
Retrieved from http://arrayfire.com/explaining-fp64-
performance-on-gpus

Bischof, C. (2008). Parallel computing: Architectures,
algorithms, and applications. Amsterdam,
The Netherlands: IOS Press.

Brebbia, C. A., & Partridge, P. W. (1992). Boundary ele-
ments in fluid dynamics. Netherlands: Springer.

Cooper, C. D., Bardhan, J. P., & Barba, L. A. (2014). A
biomolecular electrostatics solver using Python, GPUs
and boundary elements that can handle solvent-
filled cavities and Stern layers. Computer Physics
Communications, 185(3), 720–729. doi:10.1016/j.
cpc.2013.10.028

Crouch, S. L., Starfield, A. M., & Rizzo, F. (1983). Boundary
element methods in solid mechanics. Journal of
Applied Mechanics, 50, 704. doi:10.1115/1.3167130

EVGA, GTX760. (2015). Retrieved from http://www.evga.
com/Products/Specs/GPU.aspx?pn=D34D9B88-00D7-
4F24-A92D-76ECD7BB6346

Gu, J. (2015). GPU-accelerated boundary element method
for stress analysis of underground excavations
(Master’s Thesis). Dept. of Building, Civil and
Environmental Engineering, Concordia University,
Montreal, QC, Canada

Haase, G., Schanz, M., & Vafai, S. (2012). Computing
boundary element method’s matrices on GPU, in
large-scale scientific computing. In I. Lirkov, S.
Margenov, & J. Waśniewski (Eds.), 8th international
conference, LSSC 2011, Sozopol, Bulgaria, June 6–10,
2011, Revised Selected Papers (pp. 343–350). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Intel. (2015a). OpenCL SDK. Retrieved from https://soft
ware.intel.com/en-us/intel-opencl

Intel. (2015b). Intel® Core™ i7-4770K Processor. Retrieved
from http://ark.intel.com/products/75123/Intel-Core-i7-
4770K-Processor-8M-Cache-up-to-3_90-GHz

Khronos Group. (2014). OpenCL. Retrieved from https://
www.khronos.org/opencl/

Kythe, P. K. (1995). An introduction to boundary element
methods. Boca Raton, FL: CRC press.

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 20 of 21

http://dl.altera.com/?edition=pro
http://dl.altera.com/?edition=pro
http://dl.altera.com/?edition=pro
http://dl.altera.com/?edition=pro
http://arrayfire.com/explaining-fp64-performance-on-gpus
http://arrayfire.com/explaining-fp64-performance-on-gpus
https://doi.org/10.1016/j.cpc.2013.10.028
https://doi.org/10.1016/j.cpc.2013.10.028
https://doi.org/10.1115/1.3167130
http://www.evga.com/Products/Specs/GPU.aspx?pn=D34D9B88-00D7-4F24-A92D-76ECD7BB6346
http://www.evga.com/Products/Specs/GPU.aspx?pn=D34D9B88-00D7-4F24-A92D-76ECD7BB6346
http://www.evga.com/Products/Specs/GPU.aspx?pn=D34D9B88-00D7-4F24-A92D-76ECD7BB6346
https://software.intel.com/en-us/intel-opencl
https://software.intel.com/en-us/intel-opencl
http://ark.intel.com/products/75123/Intel-Core-i7-4770K-Processor-8M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/75123/Intel-Core-i7-4770K-Processor-8M-Cache-up-to-3_90-GHz
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/

Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D.,
Nguyen, A. D., . . . Singhal, R., 2010, Debunking the
100X GPU vs. CPU myth: an evaluation of throughput
computing on CPU and GPU. Proceedings of the 37th
annual international symposium on Computer archi-
tecture (pp. 451–460). ACM New York, NY, USA.
doi:10.1177/1753193410364178

Microsoft. (2012). Visual studio ultimate. Retrieved from
https://www.microsoft.com/en-ca/download/details.
aspx?id=30682

Molavi Tabrizi, A., Goossens, S., Mehdizadeh Rahimi, A.,
Cooper, C. D., Knepley, M. G., & Bardhan, J. P. (2017).
Extending the solvation-layer interface condition
continuum electrostatic model to a linearized
Poisson-Boltzmann solvent. Journal of Chemical
Theory and Computation, 13(6), 2897–2914.
doi:10.1021/acs.jctc.6b00832

NVIDIA. (2013). Tesla K40 GPU Active Accelerator.
Retrieved from http://www.nvidia.com/content/PDF/
kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_
v03.pdf

NVIDIA. (2014). CUDA Toolkit. Retrieved from http://docs.
nvidia.com/cuda

Pacheco, P. S. (1997). Parallel programming with MPI. San
Francisco, USA: Morgan Kaufmann.

Poljak, D., & Brebbia, C. A. (2005). Boundary element
methods for electrical engineers (Advances in electri-
cal engineering and electromagnetics). Ashurst,
Southampton: WIT Press.

Starfield, A. M., & Cundall, P. A. (1988). Towards a meth-
odology for rock mechanics modelling. International
Journal of Rock Mechanics and Mining Sciences and
Geomechanics Abstracts, 25(3), 99–106. doi:10.1016/
0148-9062(88)92292-9

Terasic Inc. (2015). DE5-net user manual. Retrieved from
http://www.terasic.com.tw/attachment/archive/526/
DE5NET_OpenCL.pdf

Torky, A. A., & Rashed, Y. F. (2017). GPU acceleration of
the boundary element method for shear-deformable
bending of plates. Engineering Analysis with
Boundary Elements, 74, 34–48. doi:10.1016/j.
enganabound.2016.10.006

Zsaki, A. M. (2011, October 2–6) GPU-accelerated stress
analysis in geomechanics. 64th Canadian
Geotechnical Conference and 14th Pan-American
Conference on Soil Mechanics and Geotechnical
Engineering, Toronto, Canada

©2018 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions

Youmay not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Engineering (ISSN: 2331-1916) is published by Cogent OA, part of Taylor & Francis Group.

Publishing with Cogent OA ensures:

• Immediate, universal access to your article on publication

• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online

• Download and citation statistics for your article

• Rapid online publication

• Input from, and dialog with, expert editors and editorial boards

• Retention of full copyright of your article

• Guaranteed legacy preservation of your article

• Discounts and waivers for authors in developing regions

Submit your manuscript to a Cogent OA journal at www.CogentOA.com

Gu & Zsaki, Cogent Engineering (2018), 5: 1493713
https://doi.org/10.1080/23311916.2018.1493713

Page 21 of 21

https://doi.org/10.1177/1753193410364178
https://www.microsoft.com/en-ca/download/details.aspx?id=30682
https://www.microsoft.com/en-ca/download/details.aspx?id=30682
https://doi.org/10.1021/acs.jctc.6b00832
http://www.nvidia.com/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf
http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda
https://doi.org/10.1016/0148-9062(88)92292-9
https://doi.org/10.1016/0148-9062(88)92292-9
http://www.terasic.com.tw/attachment/archive/526/DE5NET_OpenCL.pdf
http://www.terasic.com.tw/attachment/archive/526/DE5NET_OpenCL.pdf
https://doi.org/10.1016/j.enganabound.2016.10.006
https://doi.org/10.1016/j.enganabound.2016.10.006

