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Abstract 
 

 

An Optimization Model for Sustainable Renovations in Buildings 

 

Shahrzad Farshchian,2018 

 

Buildings consume a substantial amount of energy and adversely affect the global climate and 

environment. According to the US Department of Energy (DOE), buildings account for 39% of 

total primary energy consumption and 71% of the electricity consumption. The construction and 

operation phases constitute the largest proportion of the total energy end-use worldwide (Ma et al. 

2012).  

  

An innovative and comprehensive set of sustainable materials aiming at the envelope of buildings 

excluding the roofs is employed to define the renovation alternatives in order to ameliorate the 

sustainability status of the buildings. The model is comprised of a NSGA-II multi-objective 

optimization algorithm integrated into a simulation engine. Simulation runs are performed to 

compute the objective function values and transfer them to the optimization algorithm.  

 

A hybrid fuzzy simulation-based optimization model is developed to select the optimum 

renovation alternatives. The model simultaneously minimizes annual energy consumption and 

capital cost of an existing office building based on a multi-objective optimization problem. Fuzzy 

set theory is assigned to the objective functions to address the uncertainty associated with 

calculation of energy consumption and capital cost values. Conclusively, the model is 

implemented on a sample case to substantiate the capabilities of the developed model. The case 

study is a one-story office building with a double skin facade on the south facing facade in 

Montreal. The results illustrate nine Pareto optimal points and demonstrate that the generated 

optimum solutions are capable of causing an average of 35% decrease in the annual energy 

consumption compared to the conventional building scenario.  
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CHAPTER. 1 INTRODUCTION 
 

 

1.1 Motivation 

Energy is consumed in large quantities by households, industries, and business. Energy cost in 

Canada has been reported as $195 billion in 2013 (Natural Resources Canada, 2013). The energy 

has been used for heating and cooling purposes in official and residential areas. Additionally, it is 

used for the operation of appliances, vehicles, machinery and industrial processes. The $195 billion 

is approximately equivalent to 11% of Canada's gross domestic product (GDP) (Natural Resources 

Canada, 2013). 

Buildings consume a considerable amount of energy and adversely affect the global climate and 

environment. According to Natural Resource Canada: “residential and commercial/institutional 

buildings consume about 30 percent of the total secondary energy use”. Consequently, they 

account for almost 29 percent of CO2 equivalent greenhouse gas emissions. A similar situation is 

also observed in the United States, where buildings are responsible for 39 percent of the total 

primary energy consumption and 70 percent of the electricity consumption (US Department of 

Energy, 2009) About 38 percent of CO2 emissions, 52 percent of SO2, and 20 percent of NOx are 

produced in the US as a result of energy consumption related to building sector. Apart from the 

physical need for performing upgrades, the environmental impact of existing building stock creates 

the need for implementing renovations to enable monitoring energy performance of aging 

buildings. Green buildings, in particular, have recently become the goal of renovations to prevent 

resource depletion as well as waste emissions. The goals that shape sustainable refurbishments 

include conserving resources, waste reduction, minimization of life cycle cost, and ensuring 

occupants comfort (Woolley et al. 1997).  
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Like any other construction project that necessitates evaluating the potential designs in the 

conceptual design phase, in order for the renovation measures to be effective and successful, their 

impacts must be evaluated in the design phase of renovation strategies. Hence, the impact of each 

renovation scenario on the finished building can be evaluated. In current renovation practices, 

designers choose to trust previous experience or building energy simulation programs to determine 

the suitable quantities of renovation scenarios. However, there are several problems associated 

with this course of action. Firstly, the previous experience is unable to cover all the feasible 

circumstances and mirror the complex interactions among different variables. Thus, they might 

bring about illogical conclusions. Secondly, with regard to the use of comprehensive energy 

simulation programs such as DOE, EnergyPlus and despite their capability of examining the 

impact of renovations alternatives on the energy performance of buildings, they are time-

consuming. This is because the trial and error process of studying all available options and 

exploring the best solutions is ineffective. Furthermore, the precision rate would be very low due 

to the difficulty of exploring a very large search space (Konstantinou 2014). 

To address the mentioned problem, this study intends to couple an optimization algorithm to an 

energy simulation program. This methodology allows finding the optimal or near optimal 

renovation solutions by exploring through the search space.  Owing to the fact that achieving more 

sustainably developed building stock has become a common goal in the building sector, it drives 

the improvement of the existing building stock. Different sectors in building stock are perfect 

candidates for undergoing such transformation. Commercial, and residential buildings, for 

instance (Konstantinou 2014). Having contemplated the importance of decreasing energy demand 

of the building sector, the bigger challenge is determining the proper measures to perform the 

refurbishments in existing buildings. 

 

The importance of considering existing building for performing the refurbishments is due to the 

fact that the renewal rate of the stock is often very low. Even though it depends on the region, the 

average rate is 1% per year. On another point, the conditions of existing buildings usually demand 

recurring restoration. A part of from the fact that existing buildings might suffer from several 

physical problems, most of them are in low energy and sustainability state. In North America, 

approximately 70% of the existing buildings are aged over 30 years. 
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This problem is highlighted by taking into consideration that it was following the energy crisis in 

the 1970s, that most building regulations were issued mandating thermal insulation of building 

envelopes (Poel et al. 2007). 

The other sensible solution is demolition which is not suitable for aging buildings. With regard to 

wastes and materials, it is demonstrated by studies that demolition and reconstruction have more 

devastating impacts to the environment rather than the cycle extension of a building (Thomsen and 

van Der Flier 2008). Although a considerable amount of energy is consumed during the production 

and transport process, it is stored in the construction. In contrast, demolition denotes wasting all 

the energy away. Aside from the embodied energy, buildings are a sort of capital, hence demolition 

wastes both energy and capital. 

For the mentioned reasons, in order to have lower energy consuming buildings with higher comfort 

standards, the existing buildings ought to undergo refurbishments. They require certain upgrades 

to have lower operating costs incurred by energy while their comfort, health, and safety is 

improved. Aside from lower energy and its respective costs, there are the social, and economic 

aspects of refurbishments. Moreover, technical, structural problems can be resolved as well as 

improved operational costs and internal conditions.  

As the fossil fuel resources are rapidly declining, building industry as a major consumer of this 

source of energy is in dire need of undergoing radical changes to reduce its usage on fossil fuels. 

As shown above, concerning existing buildings, the first and foremost course of action to meet this 

goal is performing refurbishments on aging buildings with undesirable energy performance. To 

better manage energy demand and avoid depletion of resources there has been an inclination 

towards utilizing renewables sources of energy in the building industry in the past few years. 

Moreover, the escalation in Green House Gas (GHG) emissions has been another motive towards 

utilization of renewable energy technologies (Arndt, Baringer, and Johnson 2010) (Parry et al. 

2007). In this study, the target of renovations is the building envelope as it constitutes the main 

portion of energy consumption. Two performance criteria are examined in this thesis: 1. Annual 

energy consumption and 2. The capital cost of renovation scenarios. Aside from renewable 

technologies such as PV panels, the integration of innovative materials and strategies in the 

envelope are studied. 
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1.2 Problem Statement 

As mentioned in the motivation section above, the building sector constitutes a considerable 

proportion of primary energy consumed in many developed countries. According to the US 

Department of Energy (DOE) buildings are responsible for 39 percent of the total primary energy 

consumption and 70 percent of the electricity consumption (US Department of Energy 2009). 

 Apart from the resource depletion, this unrestrained utilization of energy sources adversely 

impacts the environment. Since buildings are a major consumer of energy, they produce a sizeable 

proportion of Green House Gas (GHG) emissions, air pollutants, and solid wastes. For instance, 

in 2002, buildings in the US were accountable for nearly 38% of CO2. With regard to existing 

buildings, most of them are in low energy and sustainability state. In North America, 

approximately 70% of the existing buildings are aged over 30 years. 

When addressing the requirement of energy reduction in existing buildings by means of 

renovations, the common methodology is mostly using guidelines identified as general 

recommendations regardless of the unique features of each project. The protocols and regulations 

provide benchmarks for energy consumption behavior but fail to address information on 

requirements of their implementation in the design phase. In reality, however, every single project 

has to have access to detailed measures, and elaborately explained procedures as the location, 

project specifications, available budget and clients’ preferences are different (Nemry et al. 2010). 

Another problem with using predefined guidelines instead of whole building energy analysis in 

the conceptual design phase is that the energy performance is an evaluation of energy performance 

takes place after determining renovation measures (Konstantinou 2014). 

In case of using building performance assessment tools instead of guidelines, the decision-making 

process will occur based on mere energy performance. However, the cost factor is also a 

prohibitive factor in implementing renovation measures. Thus, for the successful implementation 

of sustainable renovations, all performance criteria must be taken into consideration. The process 

of finding the optimum solutions in terms of energy and cost form the fundamental problem this 

thesis is aiming to address. More specifically, discovering the optimum renovation alternatives 

while simultaneously minimizing annual energy consumption and capital costs defines the 
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problem statement in this study. 

1.3 Scope and Objectives 

The overall goal of this thesis is to reduce annual energy consumption in existing buildings through 

sustainable envelope renovations. More elaborate objectives with their respective sub-objectives 

are as follow: 

 

1. To reduce annual energy consumption in office buildings. 

1.1 Perform whole building performance assessment. 

1.2 Evaluate the renovation alternatives in the conceptual design phase. 

1.3 Define pertinent performance criteria to evaluate the proposed renovation alternatives. 

 

2. To identify the optimum renovation alternatives. 

2.1 Perform optimization on proposed renovation alternatives to find the optimum 

solutions which are the trade-offs between the performance criteria (energy consumption 

and cost). 

2.2 Use of Building Performance Simulation (BPS) integrated into the optimization 

algorithm to reduce the computational time of the investigation. 

 

3. Address the uncertainty associated with the performance criteria used in the optimization. 

3.1 Defining fuzzy set theory to address the uncertainty pertaining cost and energy 

consumption objective functions. 

3.2 Defining fuzzy membership functions of the unit cost for all renovation alternatives. 

3.3 Defining fuzzy membership functions of the u-value for all renovation alternatives. 

 

 

A renewal project has various stages starting from project kick-off to the very last steps, such as 

operation and future maintenance. However, the scope of this research is limited to the renovation 

of the design process. This research aims at studying the renovations on an office building. It 

evaluates the proposed scenarios by assessing the two criteria- energy performance and capital 

costs- to identify the trade-off between these conflicting objectives. As mentioned earlier, the 
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renovations are intended to cover the envelope of the building. Renovation scenarios consist of 

innovative material and strategies in the envelopes; to name a few, double façades, Building 

Integrated Photovoltaic panels (BIPV), PCM materials and so on. A large number of these 

scenarios rely on renewable energies, solar in this study. Wind energy is not considered since wind 

the access is restricted in urban environments as well as the lower geostrophic wind speeds and 

thereby lower generation capacity in comparison with rural areas.  

1.4 Research Methodology 

In this thesis to perform sustainable renovations in existing buildings, the alternatives for 

renovations addressing the envelope are defined. A building model is created in DesignBuilder, 

and the required input data for the simulation are added based on the ASHRAE standard. The 

objective functions of the consideration of uncertainty are defined. The fuzzy set theory is used to 

address the uncertainty involved in the cost and energy functions. The simulation engine, 

EnergyPlus, is integrated into the optimization algorithm, NSGA-II, in the DesignBuilder 

software. As for the optimization, the design variables which were previously defined are inputted. 

The objective functions are also defined in the optimization algorithm. As the optimization is 

initialized, the simulation engine calculates the amount of energy and cost functions for each set 

of variables and transfers the respective values to the optimization module simultaneously. Once 

the termination criteria of the optimization are met, the optimum solutions are displayed by a 

Pareto front. The Pareto front consists of several optimum scenarios each including the defined 

renovation alternatives.  

 

1.5 Thesis Outline 

This thesis is composed of 6 chapters. The next chapter will present a literature review on 

sustainable renovations, followed by energy and cost assessment tools, and finally by optimization 

algorithms. The third chapter describes the proposed model, and the fourth expands on energy and 

cost calculation performed by the simulation engine followed by the optimization algorithm. The 

fifth chapter presents the model implantation and results. Conclusively, the last chapter 

summarizes the entire study.  



 7 

 

CHAPTER. 2 LITERATURE REVIEW 

 

2.1 Energy Consumption in Building Sector 

According to natural resources in Canada, there are two general types of energy use: primary and 

secondary. Primary energy use includes the total requirements for all users of energy. This also 

includes secondary energy use. Additionally, primary energy use refers to the energy required to 

transform one form of energy into another (e.g., coal to electricity). It also includes the energy 

used to bring energy supplies to the consumer (e.g., pipeline). Furthermore, it entails the energy 

used to feed industrial production processes (e.g., the natural gas used as feedstock by the chemical 

industries). In 2013, the total amount of primary energy consumed in Canada was estimated at 

12,681 PJ (One petajoule is approximately equal to the energy used by more than 9,000 households 

in one year) (Natural Resources Canada, 2013). 

With regard to Secondary energy use, natural resources Canada defines it as the energy used by 

final consumers in various sectors of the economy. Secondary energy use also includes the energy 

required to heat and cool homes or businesses in the residential and commercial/ institutional 

sectors. Secondary energy use accounted for about 70 percent of the primary energy use in 2013. 

(Natural Resources Canada, 2013). 

During the operation phase of a building, there are two sources of secondary energy that are 

responsible for energy consumption: electricity and natural gas. In this study, the secondary energy 

is studied, and the source in question is electricity. According to the US Department of Energy, 

buildings account for 39% of total primary energy consumption and 71% of the electricity 

consumption. Among all phases in the life cycle of a building, the construction and operation phase 

constitutes a large proportion of total energy end-use worldwide (Ma et al. 2012). In the building 

sector, the larger proportion of energy is consumed by existing buildings (Konstantinou 2014). 
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Owing to the fact that the rate of replacement of existing buildings by the new buildings is 1-3% 

per year, an improvement of energy efficiency in existing buildings is of paramount importance 

for a reduction in global energy use, as well as environmental sustainability (Roberts 2008). A 

substantial amount of research has been conducted to explore energy efficiency opportunities with 

the goal of enhancing energy performance in existing buildings (Ardente et al. 2011). These studies 

reveal that the energy consumption in existing buildings can be significantly decreased through 

appropriate refurbishments (Xing, Hewitt, and Griffiths 2011). To account for resource depletion 

and energy waste, the philosophy of Green building design and Sustainability have been developed 

and practiced. (Woolley et al. 1997).  

2.2 Innovative Sustainable Envelope  

 

2.2.1 General 

As mentioned before, renovating existing buildings with energy efficient component and strategy 

could significantly reduce the energy consumption of buildings. In this respect, several materials/ 

strategies used in the envelope which make contributions to energy saving are introduced.  

 

High rise buildings usually have high energy consumption, caused by high heat losses during the 

heating season and high solar gains during the cooling season. Renewable energies and innovative 

material and strategies have recently been more focused on  to reduce the energy consumption of 

high rise buildings, commercial and institutional in particular (Ioannidis 2016). 

An effective means to the energy reduction is the development of low-cost photovoltaic panels 

that can be integrated into the building envelope. More precisely solar facades, opaque or 

transparent solar facades that can incorporate some of these technologies capable of producing 

thermal and electrical energy on site; such as building integrated photovoltaics (BIPV) and 

building integrated photovoltaics/thermal (BIPV/T) systems. Another type of technologies is the 

semi-transparent photovoltaics (STPV) windows that can allow partial passage of solar radiation 

through them and generate electricity simultaneously.  

An example of a transparent solar façade is Double Skin Facade (DSF) that combine the active 

and passive features. According to Saelens et al., a DSF, as shown in the Figure 1 normally consists 

of an external and an internal skin separated by a cavity that is used as an air channel (Saelens et 
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al. 2003). DSFs can give support to the reduction of the energy consumption of buildings by 

interacting with the adjacent zones and the environment (Ioannidis 2016). 

 

 

Figure 1. An example of DFS in a new office building in the Netherlands 

[https://facadeworld.com/2014/03/15/solarlux-nijverdal/] 

 

2.2.2 Double Skin Façades  

According to Safer et al. a  double skin façade (DSF) can be defined as a “ special type of envelope, 

where a second skin, usually transparent glazing is placed in front of a regular building façade” 

(Safer, Woloszyn, and Roux 2005). The cavity between the two facade or skins is known as a 

‘channel’. To avoid overheating in cooling season and improve energy saving in cooling season, 

this channel is normally ventilated either naturally or mechanically and even by means of a hybrid 

system including both types (Omrany et al. 2016). The concept of a double skin facade was 
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originally presented in the early 1900s. However, further progress made by the end of the 1900s 

was inconsequential. It has been in recent years that utilizing DSFs has become more prevalent in 

building envelope. The channel or cavity between the two skins can be airtight or ventilated (Chan 

et al. 2009). The ventilation could be forced or natural. The exterior skin is normally a toughened 

single glazed panel and may be fully glazed. The interior skin is commonly not forcibly fully 

glazed, however, double glazing with insulation. According to literature the optimum width of the 

gap between the two skins can vary between 200 mm to 2m and beyond (Chan et al. 2009). The 

principal advantage of an airtight DSF is increasing the building thermal insulation and reducing 

heat loss in winter. There are further benefits to DSFs as presented below (Shameri et al. 2011; 

Barbosa and Ip 2014; Ghaffarianhoseini et al. 2016).  

• As the outer skin is generally fully glazed, this system offers an adequate visual connection 

with the outside environment.  

• DSFs facilitate daylighting, as a large volume of daylight can enter the building without 

causing excessive glare. 

• DSFs contribute to the aesthetic qualities of buildings. 

• DFSs enhance indoor air quality through natural ventilation along with improved thermal 

comfort without any further electricity requirement.  

Despite various benefits of DSFs, there are a few drawbacks to them as well, which are as follow: 

• DSFs incur higher costs of design, construction, and maintenance in comparison with the 

conventional single facade.  

• The application of DSFs entail higher weight o building’s structure 

• DSFs though benefit from transparent qualities, they might cause overheating on sunny 

days since a higher cooling demand is brought about.  

• The design process of DSFs can be a challenging task as several factors are to be taken into 

consideration, such as geometric parameters, glass selection, ventilation strategy, shading, 

daylighting, esthetics, wind loads, maintenance and cleaning cost expectations 
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2.2.3 Building Integrated Photovoltaics (BIPV, BIPV/T)  

 

BIPV 

Either for the purpose of being integrated into the building envelope or towards achieving net zero 

or near net-zero buildings, there has been a surge in the utilization of BIPVs in the building 

envelope in recent years. The BIPVs become part of the envelope by replacing parts of the 

conventional building envelope. These photovoltaics become the active part of the envelope, 

essentially by being mounted on facades or roofs (Jelle and Breivik 2012). Figure 2 depicts four 

types of BIPVs namely BIPV foil products, BIPV tile products, BIPV module products, and Solar 

cell glazing products. 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Figure 2. Four types of BIPVs. (a)Foil products, (b) BIPV tile products, (c) BIPV module 

products, (d) Solar cell glazing products (Jelle and Breivik 2012) 

 

BIPV/T  

Building Integrated Photovoltaic/ Thermal (BIPV/T) is a developing technology, combining 

electricity production, heat production and the integration of photovoltaics on the structure of the 

envelope of the building.  
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The structure of a BIPV/T involves a photovoltaic panel integrated at the exterior of the building 

envelope which forms a small cavity between the photovoltaic and the envelope of the building. 

Through this way, the air flowing inside the cavity eliminates heat from the photovoltaic, causing 

it to cool down. This procedure aids the system in two ways:  

1. Increasing the efficiency of the photovoltaics, as they are sensitive to the increase of their 

temperature.  

2. By Preheating the air that can be led into the HVAC system, hence reducing the energy 

consumption of the building.  

An example of a BIPV/T is represented in Figure 3 

 

 

Figure 3. BIPV/T demonstration project in a Concordia University building in Montreal. 

(Athienitis et al. 2011) 

 

2.2.4 Switchable /Dynamic, Reflective Glazing  

Switchable reflective glazing is essentially an adjustable tint glazing and is typically appropriate 

for cooling load dominant buildings with significant solar gain (Sullivan et al. 1995). In some 

kinds of switchable reflective glazing, the optical properties change as a function of the incident 

solar radiation, either by employing a low DC voltage (electrochromics (EC)) or by using hydrogen 

(gasochromics) to change from bleached to a colored state. In other kinds,  light-based elements 
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such as switchable reflective light shelves reflect solar radiation (Bahaj, James, and Jentsch 2008). 

A life-cycle energy analysis of 25 years was conducted on Electrochromic windows in Greece, 

which showed an energy reduction of 54%, compared to a standard window (Papaefthimiou, 

Syrrakou, and Yianoulis 2006). The payback period was found to be about 9 years, and the total 

energy cost savings ranged from 228 to 569 D/m2 for 10 and 25 years of EC window operation. 

Innovation in window technology is dynamic, or switchable glass. Two control versions of 

electrochromic windows are currently available: 1. Electrochromic windows controlling solar gain 

by means of a transparent conductor placed between the glass panes that can be progressively 

darkened or lightened using an electric current. 2. The glass not allowing heat gain, however, 

remaining transparent. The window can be manually tinted or controlled by a mechanized 

procedure. It should be born in mind that there is a distinction between these windows and privacy 

glass, which uses liquid crystal technology to switch from clear to opaque, and has no capability 

of energy-saving (proremodeler.com). 

 

2.2.5 Thermochromic Windows 

Thermochromic windows are installed in many commercial, retail and residential buildings 

throughout the world. The thermochromic glass uses the heat from direct sunlight to tint the 

windows when required. As the sunlight becomes more direct and intense, the glass becomes 

darker. This function allows the windows to significantly reduce the heat load coming into the 

building and since the glass transmission adapts continuously over a range of temperatures, a 

natural balance and maximum use of daylighting is achieved. The aim of thermochromic windows 

is to help reduce glare, fading, noise, and to increase safety. 

Thermochromic windows include a safety interlayer, built from extruded thermochromic materials 

into polyvinyl butyral (PVB). The layers were laminated between two pieces of tempered glass 

and mounted on an insulated glass element through a low emissivity coating. Because of the 

laminated design, this group of windows can be used as a building block to satisfy most of the 

building codes and design requirements. The interlayer can be laminated to nearly any tint or 

thickness of glass and used with high-performance Low-E coatings and specialty glass 

(www.commercialwindows.org). 
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2.2.6 Application of Phase Change Materials (PCMs) in wall systems  

With their ability to materialize the goal of heating control, PCM materials have drawn attention 

in the last decade. The mechanism through which they function is absorbing the surplus energy 

and releasing it when there is an energy deficit. Accurate application of PCM materials in the 

building envelope makes contributions to the reduction of energy consumption together with 

retaining the comfort levels of the indoor environment in the conditions of minor temperature 

fluctuations. The most widespread use of PCM materials in buildings is in the installation of 

wallboards close to the interior side of the building envelope (Omrany et al. 2016). When these 

impregnated wallboards are placed inwards, PCM materials with their high thermal storage 

capacity can absorb and release the heat in the building for a major part of the day. The application 

of these wallboards in lightweight building structures that normally have low thermal inertia is 

favorable due to their adequate thermal storage capacity. PCMs can be classified into two broad 

categories of organic and inorganic (Xu, Li, and Chan 2015; Pielichowska and Pielichowski 2014). 

According to Xu, B., P. Li, and C. Chan organic compounds used for PCM include paraffin waxes, 

esters, acids, and alcohols; inorganic materials include salt hydrates, eutectics of inorganic salts, 

and metals and their eutectics (Xu, Li, and Chan 2015). PCMs made from organic mixtures 

generally have low melting points, and can merely be used for room-heating thermal storage. 

Inorganic compounds, on the other hand, are suitable for applications of high-temperature thermal 

storage (Bradshaw, Cordaro, and Siegel 2009). Several investigations have been conducted with 

the goal of discovering the effects of PCMs-based materials used in the building envelope on the 

overall indoor temperature and energy consumption.   

Lee et al. (Lee et al. 2015) studied the thermal performance of south and west facing walls (in the 

northern hemisphere) equipped with a thin layer of PCM. ‘PCM thermal shield (PCMTS)’ was 

included into the wall through a thermal shield, using which the PCM was included in thin sealed 

polymer pouches, formed in sheets laminated with aluminum foil on both sides. The PCMTSs 

were installed at five locations, one at a time, at various depths inside the wall cavities of the south 

and west facing walls. Two identical test cases were utilized to experimentally assess the thermal 

performance of south and west facing walls with and without PCMTS. According to Lee et al. 

results suggested that at the optimal location of PCMTS, the peak heat flux reductions were 51.3% 

and 29.7% for the south and the west walls, respectively (Lee et al. 2015). 
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Mandilaras et al. examined a typical double-story residential located in Greece. The Walls 

comprised of multiple layers of insulation materials and gypsum plasterboard panels including 

PCMs (BASF – MicronalR PCM melting point of 23 °C) for the goals of thermal energy storage 

(Mandilaras et al 2013). Sensors were installed in different locations of all external walls so that 

detailed temperature measurements could be provided. To only focus on thermal characterization 

of the walling system, the building was left closed, unoccupied, without any energy systems 

installed. It is demonstrated that within the predicated conditions, the thermal mass of the walling 

system was enhanced during late spring, early summer and fall, due to the PCM implementation, 

also leading to a decrease of the decrement factor by a further 30–40% and an increase in the time 

lag of approximately 100 mins.  

 

2. 3 Challenges in Sustainable Renovations 

Renovation of existing building may be a desirable solution to energy waste. However, it has 

numerous challenges. Aside from uncertainties such as climate change, services change, human 

behavior change, government policy change, etc.; the subsystems in buildings have high 

interactions. Different renovation scenarios may exert different impacts on building subsystems 

caused by the mentioned interactions. Hence, the selection of renovation actions become very 

complex. Handling these interactions is a significant challenge in the practice of performing 

renovations. Furthermore, a decision made at the conceptual design phase by evaluating various 

design alternatives have major effects on the building performance, energy performance in 

particular.  

Among other obstacles in conducting green renovations, is the budget limitations. The inclination 

of owners to burden costly retrofits merely to achieve energy efficient buildings is another setback 

in this respect. In addition to interactions of sub-systems in a building, the interrelationships among 

various design parameters, a multitude of performance criteria, and the existence of different life 

cycle stages render the renovations in existing buildings a complex and elaborate task.  
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2.4 Building Performance Simulations (BPS) and Optimization in 

Renovations 

Owing to the fact that the goal of energy assessments and analyzing building performance is 

achieving energy-efficient buildings, the methods through which enhancement options are 

evaluated ought to be taken into close consideration. Generically dividing these methods, they are 

either parametric simulations or iterative ones. The former approach alternates each variable input 

while the rest are remained constant to monitor the results of objective functions. Subsequently, 

this procedure is repeated for all other variables. A major drawback of this approach is being time-

consuming as well as delivering only partial improvements. The reason for this partiality is 

complex and non-linear nature of interactions among design variables. The latter approach, 

iterative methods, are used as a solution to this problem. These methods can deliver optimal or 

near-optimal solutions to a problem using less time and effort. In this category, improved 

approximations to a solution are infinitely generated by the points in the search space meeting all 

optimality criteria. Since the nature of these practices is iterative, computer programming is 

regularly used to facilitate the process. In whole, the above-mentioned methods are recognized as 

“simulation based-optimization” or “numerical optimization” (Nguyen, Reiter, and Rigo 2014). 

 

Consequently, a computer-based tool or methodology which is capable of assisting designers in 

the conceptual phase of green building design is required to enhance the performance of existing 

buildings through sustainable renovations (US Department of Energy, 2009). Simulation programs 

which include whole building assessment ensure that all interactions among systems and 

components in a building are considered in addition to taking into account the interrelations among 

various renovation alternatives. A further advantage of simulation programs is their ability to 

address performance criteria such as cost goals. In other words, simulation programs pave the way 

for proper evaluation of the renovation alternatives. Despite the availability of simulations 

assessing building retrofit technologies, the selection of such renovation alternatives is another 

problem to resolve. This decision to select which set of renovation measures should be used for a 

specific case is a multi-objective optimization problem. This optimization problem could be 

subject to many constraints and limitations, and energy saving is not the only criterion. The 

optimum solution is a trade-off among different objectives such as economic and energy-related 
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objectives. Furthermore, the text-based format of inputs and outputs in simulations simplifies their 

integration with optimization. 

There have been several studies investigating the implementation of renovations through building 

simulation programs and optimization. Some of the simulation programs include EnergyPlus, 

TRNSYS, DOE-2, ESP-r, EQUEST, ECOTECT, DeST, Energy-10, IDE-ICE, Bsim, IES-VE, 

PowerDomus, HEED, Ener-Win, SUNREL, and Energy Express (Crawley et al. 2008). 

The result of an interview of 28 building optimization experts (Attia 2012) showed that GenOpt 

(Wetter 2003) and MatLab environment (Beale, Hagan, and Demuth 1992) is most commonly 

used in building optimization. GenOpt is a free generic optimization tool designed to apply to build 

optimization problems (BOPs). Thus it is suitable for many purposes in BPS with acceptable 

complexity. A constraint of the current GenOpt versions is that it does not involve any multi-

objective optimization algorithm. As with Matlab optimization toolboxes and Dakota (Adams et 

al. 2009), since they are not specifically designed for building simulation-optimization; they 

necessitate more complex skills to use. The Neural Network toolbox in Matlab and the surrogate 

functions in Dakota enable utilization of a surrogate model. However, in the case of integration 

with the optimization module, using the surrogate models introduce fitting error which is the 

product of variation of the surrogate model from actual simulations and can dramatically 

undermine the accuracy of the method. For this reason, in this study simulation engines are utilized 

to calculate the objective function values and simultaneously transfer them to the optimization 

platform. 

In the field of assessing renovations in buildings, Ascione, Bianco et al. performed a GA 

optimization on the thermal comfort and annual primary energy demands for the space heating and 

cooling. They studied several variables with regard to the HVAC and ventilation systems as well 

as insulation levels. Even though they defined several budget scenarios, they did not directly 

include a cost objective in the optimization process. Furthermore, the range of variables indicating 

energy efficiency measures does not encompass a wide range of innovative sustainable materials 

or strategies. Lastly, the concept of uncertainty was not taken into account for any parameters 

(Ascione et al. 2015). Abdallah, El-Rayes et al. investigated green building upgrade measures with 

the aim of reducing Carbon emissions and energy consumption through a GA optimization. The 

upgrade measures mainly covered HVAC systems, water heaters, lighting and did not concentrate 

on the envelope. Moreover, the cost limit was defined as fixed budget scenarios rather than an 
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objective function in the optimization. Moreover, the uncertainty issue was not discussed 

(Abdallah, El-Rayes, and Clevenger 2015). A study on Energy consumption optimization in 

schools sector in Jordan by Ali Al-Arja and Awadallah in 2016 discovered optimum renovation 

solutions addressing energy consumption and thermal comfort, leaving out a cost objective. 

Several limitations are associated with this research; first and foremost alternatives are evaluated 

through a parametric study rather than a multi-objective optimization. Secondly, a lack of a wide 

range of renovation alternatives is evident. Furthermore, the cost criterion is not studied in the 

evaluation. Finally, no uncertainty analysis is performed, (Ali Al-Arja and Awadallah 2016). 

Sharif and Hammad investigated a simulation-based optimization of building’s renovations 

considering an extensive range of alternatives including both envelope and HVAC and ventilation 

systems. However, they did not address uncertainty with either cost or energy objective (Sharif 

and Hammad). Marzouk and Abdelkader assessed minimizing construction emissions using 

building information modeling and decision-making techniques without taking into consideration 

the uncertainty involved in the calculation of energy consumption (Marzouk and Abdelkader 

2017).  Conclusively, for most of the mentioned studies, the energy consumption comprised of 

heating and cooling demand. However, this research considers the consumed energy with respect 

to lighting, plug loads, etc. in addition to the heating and cooling demand.  

 

2.5 Uncertainty Involving Cost and Energy Consumption 

In a construction project the cost, duration, energy consumption of buildings and several other 

variables are subject to change due to several parameters such as weather, resource availability, 

etc. (Zahraie and Tavakolan 2009). Hence, performing risk analysis in construction is very 

common. Conventionally, probability theory has been applied in handling uncertainty with respect 

to simulation model inputs (Sadeghi, Fayek, and Pedrycz 2010). A limitation regarding probability 

theory, restricting its use is the case where the number of experiments is not sufficiently large. 

Moreover, the requirement of the human experts, with subjective and linguistically expressed data 

necessitates other approaches rather than probability theory as they are not appropriate for 

objective scientific conclusions due to their subjectivity and ambiguity (Sadeghi, Fayek, and 

Pedrycz 2010).  In contrast, Fuzzy set theory introduced by Zadeh offers a methodical approach 

for handling subjective and linguistically parameters for expressing uncertainty in the absence of 
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precise and complete information (Zadeh 1975). A fuzzy set A on the universal set X is defined by 

its membership function μ(x) and represents the degree that x belongs to the fuzzy set. In 

probability theory, however, a probability density function (PDF) is defined on continuous 

variables. The area under the curve of a PDF can be used to discover the probability that a random 

variable falls into a particular interval (Sadeghi, Fayek, and Pedrycz 2010) (Pedrycz and Gomide 

2007). Figure 4 introduces a PDF and a fuzzy membership function. In fuzzy set theory, in lieu of 

representing the probability value, the degree to which the objects belong to the properties of the 

fuzzy set is represented (Pedrycz and Gomide 2007). Consequently, despite the ability of 

probability theory to manage the information gained from historical data, fuzzy set theory is able 

to represent the imprecise information of experts’ judgments.  

 

Figure 4.  (a) A Probability Density Function (PDF), developed based on historical data. 

(b)A fuzzy set developed based on experts’ judgment (Sadeghi, Fayek, and Pedrycz 2010) 

 

2.6 Optimization 

Optimization is the procedure of finding the minimum or maximum value of a function by 

choosing a number of variables subject to a number of constraints. The optimization function is 

called cost or fitness or objective function and is usually calculated using simulation tools. Because 

of code features, the results may be non-linear and have discontinuities, making necessary the use 

of special optimization methods that don't require the computation of the derivatives of the 

function. Optimization methods can be applied to several different building design problems such 
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as massing, orientation, façade design, thermal comfort, daylighting, life cycle analysis, structural 

design analysis, energy and of course cost. The structural design (i.e., selection of beam/columns 

cross-section) and building controls (operation/scheduling) optimization are not part of the present 

review. However, in some of the reviewed cases optimization of both building design and setpoint 

scheduling or more advanced multi-disciplinary optimization was applied (Machairas, 

Tsangrassoulis, and Axarli 2014). 

Optimization investigates the types of problems which involve the minimization or maximization 

of one or multiple objectives that are functions of several variables. This procedure is performed 

systematically by selecting proper values of real or integer variables in an acceptable set.  

Multi-objective optimization handles simultaneously two or more contradictory objectives within 

a certain set of constraints (Bandyopadhyay and Saha 2012). 

 

 

2.6.1 Optimization Techniques 

According to Goldberg (Holland and Goldberg 1989), Optimization techniques can be categorized 

into three groups: enumerative methods, calculus-based methods, and guided random search 

techniques. All of which are discussed below. 

 

2.6.1.1 Enumerative Methods  

In these methods, the algorithm sequentially evaluates the objective function within a finite search 

space, or a discretized infinite search space, at every point in the space. However, methods of this 

type lack real-world applicability. Even though they propose an improvement on basic trial-and-

error heuristics, they are unable to assess the whole search spaces, especially in the field of building 

design as they are often too large. For this reason, this technique cannot be a practical proposition 

(Bandyopadhyay and Saha 2012). 

2.6.1.2 Calculus-Based/Numerical Methods  

Numerical methods, also called calculus-based methods, are sometimes considered ‘‘systematic” 

(Nielsen 2002) and rely on the mathematical expression of objectives, or their gradients. Their 

goal is to meet a set of necessary and sufficient conditions that must be satisfied by the solution of 
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the optimization problem (Bourazza 2006) (Goldberg and Holland 1988).  

Numerical methods can be further divided into two categories, namely direct and indirect methods. 

Direct search methods perform moving in the function space by moving in a direction related to 

the local gradient. In indirect methods, the solution is obtained by solving a set of equations 

resulting from setting the gradient of the objective functions equal to zero. The calculus-based 

methods are local in scope and also presume the derivatives exist (Bandyopadhyay and Saha 2012). 

Several researchers have used this method in the field of building design. Bolattürk (Bolattürk 

2006) optimized the thickness of insulation layers by this method in which a  mathematical 

expression of the life-cycle cost was produced, the derivative was calculated, and the optimum 

value is the one for which the derivative is zero. The ‘‘simplex” method and its variants, such as 

the Hooke-Jeeves method, were used by Peippo et al. (Peippo, Lund, and Vartiainen 1999) to 

optimize the design of solar low-energy buildings, using the objective function of capital and 

energy costs. Bouchlaghem and Letherman (Bouchlaghem and Letherman 1990) investigated the 

building envelope and used analytical and graphical methods to optimize its thermal performance.  

The main disadvantage of these methods is that the possibility of convergence relies on the 

regularity of the objective functions, which, as a result, must have an explicit expression, or permit 

derivatives. For this reason, their application is mainly restricted for many practical problems, 

although they can be very efficient in a small class of unimodal problems.  

2.6.1.3 Guided Random Search Methods 

 These methods are based on enumerative methods. However, they benefit from additional 

information concerning the search space to guide the search to potentially acceptable 

regions of the search space (Bandyopadhyay and Pal 2007), (Holland and Goldberg 1989). 

These methods can be further subdivided into two classifications, namely single-point 

search and multiple-point search, dependent on whether it is searching just at one point or 

with several points at a time. Simulated annealing is a popular example of a single-point 

search technique that uses thermodynamic evolution to search for the minimum-energy 

states. Evolutionary algorithms such as genetic algorithms are well-known examples of 

multiple-point search, where according to Bandyopadhyey et al (Bandyopadhyay and Pal 



 23 

2007) “random choice is used as a tool to guide a highly explorative search through coding 

of the parameter space.” The guided random search methods are practical in tackling 

problems where the search space is large, multimodal, and discontinuous, and where a 

near- optimal solution is acceptable, rather than a true optimal.  

 

 

2.6.2 Multi-Objective Optimization  

Definition 

The stochastic search technique usually used for multi-objective optimization is divided into single 

point search and multiple point search. Moreover, the multiple point search includes Evolutionary 

Algorithms. Several algorithms form this category namely GAs (Genetic Algorithms), Particle 

swarm optimization, Simulation annealing (SA), Ant Colony, and Harmony Search Algorithm.  

 

2.6.2.1 Genetic Algorithms 

A genetic algorithm is a commonly used an evolutionary algorithm that takes advantage of the 

principle of natural selection to evolve a set of solutions towards an optimum solution (Holland 

and Goldberg 1989). Genetic algorithms (GA) are population-based algorithms, and they can 

efficiently handle non-linear problems with discontinuities and many local minima; for this reason, 

they are broadly used in the field of building optimization. Wright and Farmani (Wright and 

Farmani 2001) used GA for simultaneous optimization of the fabric construction, HVAC system 

size and the control strategy. Coley and Schukat (Coley and Schukat 2002)used GA to minimize 

annual energy use while Znouda et al. (Znouda, Ghrab-Morcos, and Hadj-Alouane 2007) optimize 

the design of Mediterranean buildings. Oliveira Panão et al. (Panão, Gonçalves, and Ferrão 2008) 

used GA for the optimization of the urban building efficiency potential and Rakha and Nassar 

(Rakha and Nassar 2011) to optimize the ceiling form to achieve predefined daylight uniformity. 

Pernodet et al.  

Genetic algorithms have various variations, some of which are Pareto and some non-Pareto which 

will be discussed as follow. 
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2.6.2.1.1 VEGA (Vector Evaluated Genetic Algorithm) 

This population-based non-Pareto algorithm includes a special selection operator in which several 

subpopulations are generated by employing proportional selection according to each objective 

function. VEGA was the first multi-objective genetic algorithm devised for tackling multi-

objective problems (Schaffer 1985). 

 

2.6.2.1.2 MOGA (multi-objective genetic algorithm) 

In this Pareto based, non-elitist approach, an individual is assigned a rank associated with the 

number of all individuals in the current population that has dominated the individual and is 

summed with1. Also, a niche method is used to distribute the population over the Pareto optimal 

area. The drawback of this method is the very low convergence rate as well as problems with niche 

size parameters (Erickson, Mayer, and Horn 2002). 

 

2.6.2.1.3 Niched Pareto GA (NPGA) To select the winner between the two candidate solutions, 

a Pareto dominance-based tournament selection with a sample of the population is used.  IF the 

tournament has same results for both candidates, the outcome is decided through fitness sharing. 

The drawback, again, is selecting an appropriate value of the niche size parameter (Erickson, 

Mayer, and Horn 2002). 

2.6.2.1.4 Non-Dominated Sorting GA (NSGA)  

In this approach to select the non-dominated solutions. All non-dominated individuals are 

classified into one category, with a dummy fitness value proportional to the population size. This 

group is then eliminated, and the remaining population is classified again. This process is reiterated 

until all the individuals in the entire population are classified. The selection operator is stochastic 

remainder proportionate. Even though the method has a very high convergence rate,  it suffers 

from problems related to the niche size parameter, similar to previous approaches (Srinivas and 

Deb 1994). 

2.6.2.1.5 NSGA-II (Elitist Non-dominated Sorting GA) 

This Pareto based, an elitist approach which was proposed to remove the weaknesses of NSGA, 

especially its non-elitist nature and requirement of the sharing parameter. In this approach, the 

individuals in a population undergo non-dominated sorting as in NSGA, and individuals are given 
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ranks based on this. A new selection technique, called crowded tournament selection, is proposed 

where the selection is made based on crowding distance (representing the neighborhood density 

of a solution). To implement elitism, the parent and child population are combined, and the non-

dominated individuals from the population are propagated to the next generation. NSGA-II is one 

of the widely used MOO algorithms and is the method used in the thesis. It will be further 

explained in the methodology chapter (Deb et al. 2002). 

2.7 Limitations of Previous Studies 

Having conducted an assessmment on the previous research works in the field of renovations in 

buildings several gaps are discovered as described below: 

• The uncertainty associated with the evaluation of objective functions in the optimizations 

has not been investigated. 

• There is an absence of an innovative comprehensive set of sustainable materials as the 

renovation alternatives. 

• In many research works, parametric studies were performed instead of optimization. 

• Several studies did not address the envelope and merely focused on the HVAC systems. 

• A lack of whole building performance analysis was observed in various research works. 

• The cost objective was not considered as a performance criterion while assessing 

renovation alternatives 

 

2.8 Summary 

Conducting a literature review, it is revealed that energy assessment of renovation methods 

requires more efficient methods compared to simple trial and error or parametric study and iterative 

approaches. For this reason, a Building Performance Simulation (BPS) is used to evaluate the 

energy performance and address all the interactions among subsystems and building components. 

Within the process of renovation, since the innovative materials and strategies have not been 
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widely used, they will be considered due to their potential to significantly reduce the energy 

consumption of buildings. With respect to the optimization algorithm, the Non-Dominated Sorting 

Genetic Algorithm (NSGA-II) is selected owing to the fact that it can handle large search spaces, 

continuous and discrete variables, and benefit from the elitist approach in contrast to the traditional 

GA. Finally, consideration of uncertainty involved with the objective functions’ parameters is 

required to provide more precise results. In this study, the fuzzy set theory is integrated into the 

NSGA-II algorithm to address the mentioned uncertainties. 
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CHAPTER. 3 MODEL DEVELOPMENT 

 

3. 1 Overview 

The target end-users for the proposed model are designers, architects, or facility managers or their 

consultants. The renovations are related to the maintenance phase in the life cycle of a building as 

shown in Figure 5. To find the optimum solutions of renovating an existing building, the genetic 

algorithm is selected as the optimization method to handle the large search space of renovation 

alternatives, as well as addressing both discrete and continuous variables. 

a genetic algorithm (NSGA-II) is used for the optimization, while a detailed whole-building 

simulation program, EnergyPlus in the DesignBuilder platform, is used for energy and cost 

analysis.  

The simulation-based optimization system functions by means of 3 modules. The DesignBuilder 

is the platform in which optimization, data files, and simulation engine can intricately collaborate. 

The input and output are the means of connection with users; the optimizer module facilitates the 

optimization algorithm (NSGA-II), and the simulation program evaluates the objective functions, 

and the data files store the data required by the simulation program and the optimization algorithm 

(NSGA-II). All the modules are closely interrelated. To initiate the optimization process, 

optimization parameters, decision variables, and simulation inputs must be defined by referring to 

data files. As the optimizer module is initiated, close interaction is formed between the NSGA-II 

(optimization algorithm) and simulation engine (EnergyPlus). To be able to assess fitness values 

for all variables, the optimization module transfers the variables to the simulation module to 

evaluate their objective functions, and subsequently, they are returned to the optimization module. 

The two objective functions are assumed to consider the uncertainty.  To address the uncertainty 

concerning the capital cost objective, the parameter “unit cost” which is used in the calculation of 
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the cost objective for each renovation alternative is assumed to be a fuzzy number. The same 

assumption is held for the “u-value” parameter involved in the energy consumption calculations. 

Both these parameters are then defuzzified to be used in the simulation and optimization 

calculations. In the course of the simulation process, the simulation engine might regularly access 

data files (simulation parameters) to define the entity represented by a variable. When the 

mentioned values are calculated, they are sent back to the optimization for a fitness assessment. 

Consequently, after several iterations, the optimum or near optimum solutions are discovered and 

represented by the Pareto front. Figure 6 pictures a summary of the proposed model. 

 

Figure 5. The life cycle of buildings (Fesanghary, Asadi, and Geem 2012) 

  

3.2 Proposed Model 

The aim of the proposed model is to identify the sets of renovation alternatives capable of 

minimizing capital constriction cost and annual energy consumption simultaneously in an existing 

office building. This thesis studies the renovation measures aimed at the envelope of the building 

excluding the roof. The renovation actions are mostly related to external walls and glazing, each 

of which is categorized in several types of innovative sustainable materials and strategies. Figure 

6 describes the proposed model followed by a brief description of each step. 
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Figure 6. The schematic diagram of the proposed mode 
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Step 1: Creating the building model and inputting the relevant data  

In the initial step, the building model is created in DesignBuilder. The required input data such as 

location, weather file, occupancy rates, as well as the ASHRAE standard templates, HVAC 

template, etc. are entered in the model. 

 

Step.2 Defining the variables 

Using the input data, the variables representing renovation alternatives are defined, forming the 

database for the simulation and optimization algorithm. 

 

Step. 3 Defining the objective functions under uncertainty 

Both capital cost and annual energy consumption objectives are assumed to incorporate 

uncertainty. To address the mentioned uncertainty, a fuzzy set theory is assigned for both 

objectives. A fuzzy membership function taking the shape of a triangular distribution is considered 

for the fuzzy sets. To defuzzify the fuzzy numbers, the graded mean integration approach is 

utilized, and the center of the area is identified. The defuzzified value for both parameters of cost 

and energy objectives is used in DesignBuilder for the computation of capital cost and annual 

energy consumption. Further details are provided in section 3.2.2.  

 

Step. 4 Initializing the optimization 

The NSGA-II is initiated, and GA parameters such as population size, the number of generations, 

crossover and mutation probability are specified. An initial population which is a set of possible 

individuals (renovation scenarios each consisting of decision variables) is randomly generated. In 

case constraints exist, the individuals will be checked against them.  

 

Step. 5 Performing energy simulations integrated into the genetic algorithm 

Energy simulations are performed for each set of variables. All individuals in the  

population which are decoded into their corresponding design are used for an annual simulation.  

The objective functions of each induvial are calculated by the simulation engine and 

simultaneously transferred to the optimization algorithm to be used for genetic algorithm fitness 

evaluation. 
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Step. 6 Perform non-dominated sorting and crowding distance 

To sort all members of a population based on the values of their objective functions, the NSGA-II 

algorithm utilizes the non-dominated sorting algorithm to compare individuals. Afterward, 

according to crowding distance, the selected non-dominated solutions which are most widely 

spread are introduced to the offspring population. 

 

Step. 7 Checking the termination criteria and constructing the Pareto front 

If the number of iterations (Ng) is not equal to the maximum value (Ng, max), the individuals will 

go through crossover and mutation, and the algorithm will be repeated from step 5, otherwise the 

optimization process is terminated, and the non-dominated solutions at the last generation are 

designated as Pareto optimal set. 

 

3.2.1 Model Inputs 

The inputs required in the proposed model are divided into two categories: building model inputs 

and renovation alternatives, and the latter form the decision variables. Both categories will be 

explained in the following sections. 

 

3.2.1.1 Building Model Inputs  

In order for a building to operate in the simulation software, various parameters are to be set. After 

creating the 3D plan of a building in DesignBuilder, different properties of building systems are 

required to be defined. HVAC size and properties, activity templates, occupancy data, lighting 

template, etc. are some of the fundamental building model inputs. Table 1 summarizes several 

model inputs used.  
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Table 1. Simulation parameters and inputs 

Location QC, Montreal/ Mirabel INT’ LA. ASHRAE 

climate zone: 6A 

Occupancy schedule Office_OpenOff_Occ 

Weather data file Montreal Mirabel PQ CAN WYEC2-B-

75290 WMO#=716278 

Simulation period Annual simulation (Jan 1- Dec 31) 

 

Solution algorithm for heat transfer Finite difference 

Solar distribution Full interior and exterior 

HVAC template Fan coil Unit (4-Pipe), Air cooled chiller 

HVAC heating set point 22℃ 

HVAC cooling set point 24℃ 

 

3.2.1.2 Renovation alternatives 

The decision variables indicate the set of alternative measures that are available for building 

renovations. Several building renovation studies place emphasis on determining the suitable range 

and measurement of each component. For instance, those methodologies are defined in such a way 

to determine the optimum width of an external wall or sizing of a certain fenestration type.  In this 

research, on the other hand, decision variables are defined based on the material types and 

strategies. Accordingly, the problem was sought to address the selection of renovation measures 

based on the sustainable components. 

Decision variables are specified as the elements in a building envelope that play the most 

prominent role in causing higher energy consumption rates. To precisely pinpoint the 

aforementioned elements in an envelope is a challenging task as it involves numerous choices. 

In building optimization, typically building parameters are defined as continuous variables merely 

since in numerical optimization methods it is difficult to deal with discrete variables (Fesanghary, 
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Asadi, and Geem 2012). In this research, however, the GA algorithm is selected to handle the 

discrete variables rather than avoiding discrete variables. Each variable is defined according to the 

materials and systems used in different layers (such as external walls and internal and external 

glazing). Consequently, each decision variable is associated with a table describing its construction 

(except window-to-wall ratio as it is a continuous variable).  

The common elements in envelopes with the highest impact on energy consumption are found to 

be as follow (Asadi et al. 2014):  

 

• window to wall ratio; 

• external wall; 

• glazing; 

• orientation; 

• shading; 

• the windows type; 

• the solar collector's type. 

In the case of this thesis, the following decision variables in Table 2 are used and the options they 

cover consist of innovative material and strategies. 
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Table 2. Renovation alternatives (decision variables) 

Variable  Variable 

type 

Category Variable ID Construction detail 

External wall Discrete PCM walls InnoExW-PCM. 1-3 - Curtain wall (Spandrel glass, Insulation board, BioPCM- M, Gypsum 

board) 

- Curtain wall (Metal wall panel, Insulation board, BioPCM- M, Gypsum 

board) 

- Curtain wall (Stone, Insulation board, BioPCM- M, Gypsum board) 

 

InnoExW-PCM. 4-6 - Stud wall (metal wall panel, sheathing, batt insulation, BioPCM- M, 

gypsum board) 

- Stud wall (Wood siding, sheathing, batt insulation, BioPCM- M, wood) 

- Stud wall (Stucco sheathing, batt insulation, BioPCM- M, gypsum 

board) 

 

InnoExW-PCM.7-9 

 

- EIFs wall (EIFS finish, Insulation board, fiberboard sheathing, 

BioPCM-M, gypsum board) 

- EIFs wall (EIFS finish, Insulation board, fiberboard sheathing, batt 

insulation, BioPCM-M, gypsum board) 

- EIFs wall (EIFS finish, Insulation board, fiberboard sheathing, 

Lightweight concrete block, BioPCM-M, gypsum board) 

InnoExW-PCM.10-19 - Brick wall (Brick, insulation board, sheathing, gypsum board) 

- Brick wall (Brick, insulation board, sheathing, batt insulation, 

BioPCM-M, gypsum board) 

InnoExW-PCM. 20-25 - Concrete block (LW concrete block, batt insulation, BioPCM-M 

,gypsum board) 

- Concrete block (stucco, HW CMU, fill insulation, gypsum board) 

InnoExW-PCM. 26-34  
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- Pre-cast and cast in place concrete block 

 

BIPV Walls InnoExW-BIPV. 1-10 - Brickwork, Photovoltaic panel, XPS Extruded Polystyrene- CO2 

Blowing, Concrete block, Gypsum plastering 

 

BIPV + 

PCM Walls 

InnoExW-BIPV-PCM. 1-5 - Brickwork, Photovoltaic panel, XPS Extruded Polystyrene- CO2 

Blowing, BioPCM-M/Q, Gypsum plastering 

 

Glazing 

template 

Discrete 

merge 

Double 

glazing 

 

InnoGlzTemp- Dbl. 1-20 -Double Glazing, Clear, Electrochromic (absorptive) switchable 

-Double Glazing, Clear, Electrochromic (reflective) switchable 

-Double Glazing, Clear, LoE, argon filled 

Triple 

glazing 

 

 InnoGlzTemp- Trp. 21-35 - Triple Glazing, Clear,  

- Triple Glazing, Clear, LoE, argon filled 

- Triple Glazing, Clear, LoE, argon filled+ BIPV 

 

- Triple Glazing, Clear, LoE, argon filled+ Thermochromic 

Quadruple 

glazing 

 

InnoGlzTemp. 36 - Quadr, LoE, Krypton 

BIPV 

glazing 

 

InnoGlzTemp. 37-42 - Triple Glazing, Clear, LoE, argon filled+ BIPV 

- Doble, Clear, BIPV 

 

External 

glazing  

Discrete Pane 

material 

Gas 

Color 

InnoExGlz. 1-60 Dbl, Air/Argon 

Dbl Elec Abs/Ref, Air/Argon 

Dbl LoE, Air/Argon 

Dbl LoE, Elec Abs/Ref, Air/Argon 

Electrochromic, absorptive 

Electrochromic, reflective 

LoE (coated) 

Thermochromic: Triple (thermo, air, thermo, air, clr 

Internal 

glazing  

Discrete  InnoIntGlz. 1-55 Dbl, Air/Argon 

Dbl Elec Abs/Ref, Air/Argon 

Dbl LoE, Air/Argon 
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Dbl LoE, Elec Abs/Ref, Air/Argon 

Electrochromic, absorptive 

Electrochromic, reflective 

LoE (coated) 

Thermochromic: Triple (thermo, air, thermo, air, clr) 

Clear glass 

 

 

Internal 

thermal mass 

 

 

 

Discrete BioPCM 

continuous 

layer 

 

Inno. InternalThermalMass. 

1-19 

Concrete, BioPCM-M, Continuous layer 

 Traditional 

construction 

(concrete) 

Internal ThermalMass. 20-

42 

Concrete slab 

Reinforced concrete slab 

 

Partition 

construction 

Discrete   BioPCM-M, Continuous layer 

Expanded wood chipboard 

Brick cavity wall 

Reinforced concrete 

Single leaf brickwork 

Fiberboard, cavity 

Gypsum plasterboard, cavity 

Facade type Discrete   % fitted glazing 

% vertical glazing 

curtain wall, % glazing 

fixed height 1/1.5m. 20/30% glazing 

fixed window 

Horizontal strip, %glazed 

Preferred height, %glazed 

Window to 

wall ratio 

Continuous   

 

 20-100% 

Shading 

(window 

blind) 

Discrete  InnoShd. 1-50 - Electrochromic switchable 

- SageGlass Electrochromic 

- Slatted Blinds 
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- Transparent Insulation 

Window 

frame 

Discrete   UPVC 

Aluminum 

PVC (with thermal break) 

Painted wooden 

wooden 
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3.2.2 Evaluation of Model Objectives: Hybrid Fuzzy Simulation-Based Optimization 

 

3.2.2.1 Evaluation of objective functions under uncertainty 

As the main objective of this study is to discover the optimum sets of renovation alternatives in an 

existing building, the defined decision variables (renovation alternatives) must be assessed against 

performance criteria which are addressed as objective functions. The following performance 

criteria are considered in this study, based on which the decision variables will be gauged: 

 

1. Minimize: Annual energy consumption 

As the annual energy consumption is calculated by the simulation engine using thermal calculation 

and directly transferred to the optimization module, no equation is defined for this objective. 

 

2. Minimize: Capital construction cost 

Capital construction cost = ∑ 𝑈𝑛𝑖𝑡 𝑐𝑜𝑠𝑡 ∗ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠𝑛
𝑖=1       Eq. 1 

Where n is the number of construction components.  

 

The fuzzy set theory is selected to handle uncertainty in this study for the following reasons: 

1. A large data base is not available for forming a probability set. In contrast, fuzzy sets 

require a limited number of datasets. 

2. Fuzzy sets are expressed based on previous experience in a qualitative manner by experts. 

 

Fuzzy Set Theory is explained below followed by its application in the model.  

 

Fuzzy Set Theory 

Fuzzy set theory (FS) was first developed specifically to handle uncertainties without statistical 

nature by Zadeh (Zadeh 1965). A fuzzy number, in contrast to a crisp number whose value is 

precisely defined, is a fuzzy set defined on the set of real numbers whose numeric meaning is 

vaguely defined. The fuzzy set is defined as below (Sadeghi, Fayek, and Pedrycz 2010): 
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where A is a fuzzy number; i.e., a normalized convex fuzzy subset of real number C. µA(c) is a 

membership function which takes values between [0,1] indicating the degree c belongs to A. 

Several fuzzy systems with triangular fuzzy numbers, trapezoidal, Gaussian or similar ones could 

be used. Selection of the appropriate shape of fuzzy number highly relies on the stochastic nature 

of the parameter. Thus, their shape and value are usually defined based on the expert’s opinion 

and varies for different projects.  

Fuzzification is a procedure through which the input variables are converted into fuzzy numbers. 

Such conversion is accomplished through the membership functions (MFs). An MF is a function 

which associates a value (usually numerical) with the level of membership to the set. The grades 

of membership in fuzzy sets may take any values within the interval of 0 and 1. A degree of 0 

denotes that an element is not a member of the set at all, whereas a degree of 1 indicates a full 

membership (Yeung, Chan, and Chan 2011). MFs can be of several types, the simplest is formed 

with straight lines, though the most used commonly used are triangular and trapezoidal shaped 

MFs. Figure 7 depicts the mentioned functions. Generally, in most cases, the fuzzy membership 

functions are triangular, where the lowest points are located on the feet of the triangle (also known 

as the lowest full memberships), and the highest point locates the peak (known as the highest full 

membership). (Che Ibrahim, Costello, and Wilkinson 2014). A triangular function is described as 

below: 

  

 

 

 

 

where For TFN (triangular fuzzy number) a and c are the minimum and the maximum values 

Eq. 2 

 

Eq. 3 
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respectively, and b is the most likely value.  

 

Figure 7. Triangular and trapezoidal fuzzy membership functions (Che Ibrahim, Costello, 

and Wilkinson 2014) 

 

Fuzzy Set Theory in Calculation of Cost and Energy Consumption Objectives  

Both objectives “capital construction cost, and energy consumption” are subject to uncertainty due 

to several factors such as weather, resource availability, etc. To address the uncertainty of the 

objectives functions which will be used in the optimization algorithm, the fuzzy set theory is 

utilized.  

In this setting, the unit per surface cost and u-value (heat transfer coefficient) are the parameters 

respectively involved in the calculation of cost and energy objective functions which are fuzzy 

numbers. These fuzzy numbers are to be defuzzified so that they result in a crisp number which 

can be used in the optimization. To do so, a triangular distribution is used for the fuzzy membership 

function since Klir et al. have pointed out that most of the fuzzy set applications do not show 

significant sensitivity to the used shape of fuzzy membership function (Klir, Wang, and Harmanec 

1997). Moreover, it is the simplest distribution, most commonly used in the literature and 

conclusively, it requires the smallest data set compared to a normal distribution, for instance. The 

fuzzy numbers in fuzzy sets for the “unit cost” and “u-value (heat transfer coefficient)” follow the 

membership function which has taken the form of the triangular distribution. As depicted in Figure 

8, the fuzzy numbers are namely; l, m, u which are the lower-bound, most-likely, an upper-bound 
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for the unit cost and u-value. The mentioned values are calculated for each renovation alternatives 

for all the envelope components which are intended to be optimized. The lower bound is defined 

as 98.5% of the most likely amount. Similarly, the upper bound is assumed 102% of the most 

likely amount. The most likely value for unit cost is the value recommended by DesignBuilder to 

be used in the cost calculations. Correspondingly, the most likely amount for the u-value is taken 

from DesignBuilder recommended by ASHRAE standard used in the energy consumption 

calculations. In order to defuzzify the fuzzy numbers, the graded mean integration approach is 

utilized (Mahata and Mahata 2011; Kutlu and Ekmekçioğlu 2012). According to this approach, a 

fuzzy number can be transformed into a crisp number by employing the equation below (Mahata 

and Mahata 2011; Kutlu and Ekmekçioğlu 2012): 

 

Graded mean = 
𝑙+4𝑚+𝑢

6
 

 

Using the above Eq. 4 the value for the center of the area for each alternative is calculated and 

used in the optimization module for the objectives fitness evaluation.  

 

 

 

 

 

 

 

 

 

 

 

  
         

Figure 8. Triangular distribution 

 

The uncertainty concerning each objective is explained as follows: 

Capital Cost Objective Function 

The defuzzified value of unit cost which is used in the capital cost calculations is computed for 

each renovation alternative using the Eq. 4 above and is stated in Table 3. As the description of 
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alternatives is provided in previous section 3.2.1.2, only the alternatives IDs are provided in the 

following tables. 

Table 3. Fuzzy and defuzzified numbers associated with unit cost 

Alternatives 

Triangular fuzzy membership function 

numbers of unit cost 

Defuzzified 

value 

(Center of the 

area) Most likely 
Lower 

bound 

Upper 

bound 

InnExW-PCM1 879.27 866.08 896.85 880 

InnExW-PCM2 714.40 703.69 728.69 715 

InnExW-PCM3 864.28 851.32 881.57 865 

InnExW-PCM4 524.56 516.69 535.05 525 

InnExW-PCM5 464.61 457.64 473.91 465 

InnExW-PCM6 464.61 457.64 473.91 465 

InnExW-PCM7 459.62 452.72 468.81 460 

InnExW-PCM8 679.43 669.24 693.02 680 

InnExW-PCM9 489.59 482.25 499.38 490 

InnExW-PCM10 709.41 698.77 723.60 710 

InnExW-PCM11 924.23 910.37 942.71 925 

InnExW-PCM12 724.40 713.53 738.88 725 

InnExW-PCM13 734.39 723.37 749.08 735 

InnExW-PCM14 714.40 703.69 728.69 715 

InnExW-PCM15 744.38 733.21 759.27 745 

InnExW-PCM16 714.40 703.69 728.69 715 

InnExW-PCM17 714.40 703.69 728.69 715 

InnExW-PCM18 944.21 930.05 963.10 945 

InnExW-PCM19 954.20 939.89 973.29 955 

InnExW-PCM20 749.38 738.13 764.36 750 

InnExW-PCM21 469.61 462.56 479.00 470 

InnExW-PCM22 469.61 462.56 479.00 470 

InnExW-PCM23 479.60 472.41 489.19 480 

InnExW-PCM24 659.45 649.56 672.64 660 

InnExW-PCM25 659.45 649.56 672.64 660 

InnExW-PCM26 659.45 649.56 672.64 660 

InnExW-PCM27 659.45 649.56 672.64 660 

InnExW-PCM28 459.62 452.72 468.81 460 

InnExW-PCM29 449.63 442.88 458.62 450 

InnExW-PCM30 499.58 492.09 509.58 500 

InnExW-PCM31 469.61 462.56 479.00 470 

InnExW-PCM32 504.58 497.01 514.67 505 

InnExW-PCM33 474.60 467.49 484.10 475 

InnExW-PCM34 479.60 472.41 489.19 480 

InnoExW-BIPV 129.89 127.94 132.49 130 
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InnoExW-BIPV+PCM 294.75 290.33 300.65 295 

InnoGlzTemp-Dbl 159.87 157.47 163.06 160 

InnoGlzTemp-Dbl 209.83 206.68 214.02 210 

InnoGlzTemp-Dbl 179.85 177.15 183.45 180 

InnoGlzTemp-Trp 159.87 157.47 163.06 160 

InnoGlzTemp-Trp 199.83 196.84 203.83 200 

InnoGlzTemp-Trp 169.86 167.31 173.26 170 

InnoGlzTemp-Trp 179.85 177.15 183.45 180 

InnoGlzTemp-Qdr 299.75 295.25 305.75 300 

InnoGlzTemp-BIPV 159.87 157.47 163.06 160 

InnExtGlz-1 149.88 147.63 152.87 150 

InnExtGlz-2 179.85 177.15 183.45 180 

InnExtGlz-3 209.83 206.68 214.02 210 

InnExtGlz-4 209.83 206.68 214.02 210 

InnExtGlz-5 209.83 206.68 214.02 210 

InnExtGlz-6 209.83 206.68 214.02 210 

InnExtGlz-7 159.87 157.47 163.06 160 

InnExtGlz-8 179.85 177.15 183.45 180 

InnExtGlz-9 209.83 206.68 214.02 210 

InnExtGlz-10 209.83 206.68 214.02 210 

InnExtGlz-11 209.83 206.68 214.02 210 

InnExtGlz-12 209.83 206.68 214.02 210 

InnExtGlz-13 179.85 177.15 183.45 180 

InnIntGlz 1 149.88 147.63 152.87 150 

InnIntGlz 2 179.85 177.15 183.45 180 

InnIntGlz 3 209.83 206.68 214.02 210 

InnIntGlz 4 209.83 206.68 214.02 210 

InnIntGlz 5 209.83 206.68 214.02 210 

InnIntGlz 6 209.83 206.68 214.02 210 

InnIntGlz 7 159.87 157.47 163.06 160 

InnIntGlz 8 179.85 177.15 183.45 180 

InnIntGlz 9 209.83 206.68 214.02 210 

InnIntGlz 10 209.83 206.68 214.02 210 

InnIntGlz 11 209.83 206.68 214.02 210 

InnIntGlz 12 209.83 206.68 214.02 210 

InnIntGlz 13 179.85 177.15 183.45 180 

InternalThermalMass. 19.98 19.68 20.38 20 

Inn.TraditionalthermalMass 209.83 206.68 214.02 210 

PartitionConstruction 19.98 19.68 20.38 20 

InnSh1 149.88 147.63 152.87 150 

InnSh2 59.95 59.05 61.15 60 

InnSh3 49.96 49.21 50.96 50 

WindowFrame1 4.00 3.94 4.08 4 

WindowFrame2 79.93 78.73 81.53 80 

WindowFrame3 79.93 78.73 81.53 80 
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WindowFrame4 39.97 39.37 40.77 40 

WindowFrame5 39.97 39.37 40.77 40 

 

Energy Consumption Objective Function 

As the energy consumed by components heavily relies on u-value (the thermal resistance) of 

components, this parameter is studied for uncertainty analysis. The defuzzified value of u-value 

which is used in the energy consumption calculations is computed for each renovation alternative 

using the Eq. 4 above and is stated in Table 4. 

 

Table 4. Fuzzy and defuzzified numbers associated with u-value 

Alternatives 

Triangular fuzzy membership function 

numbers of u-value (W/m2K) 

Defuzzified 

value 

(Center of the 

area) 

(W/m2K) 

Most likely Lower bound Upper bound 

InnExW-PCM1 0.122 0.120 0.124 0.122 

InnExW-PCM2 0.111 0.109 0.113 0.111 

InnExW-PCM3 0.068 0.067 0.069 0.068 

InnExW-PCM4 0.436 0.429 0.444 0.436 

InnExW-PCM5 0.422 0.415 0.430 0.422 

InnExW-PCM6 0.422 0.415 0.430 0.422 

InnExW-PCM7 0.466 0.459 0.475 0.466 

InnExW-PCM8 0.143 0.141 0.146 0.143 

InnExW-PCM9 0.317 0.312 0.323 0.317 

InnExW-PCM10 0.135 0.133 0.138 0.135 

InnExW-PCM11 0.079 0.078 0.081 0.079 

InnExW-PCM12 0.125 0.123 0.127 0.125 

InnExW-PCM13 0.113 0.111 0.115 0.113 

InnExW-PCM14 0.145 0.143 0.148 0.145 

InnExW-PCM15 0.121 0.119 0.123 0.121 

InnExW-PCM16 0.145 0.143 0.148 0.145 

InnExW-PCM17 0.145 0.143 0.148 0.145 

InnExW-PCM18 0.779 0.768 0.795 0.78 

InnExW-PCM19 0.789 0.778 0.805 0.79 

InnExW-PCM20 0.126 0.124 0.128 0.126 

InnExW-PCM21 0.397 0.391 0.405 0.397 

InnExW-PCM22 0.346 0.341 0.353 0.346 

InnExW-PCM23 1.840 1.813 1.877 1.842 

InnExW-PCM24 0.149 0.147 0.152 0.149 

InnExW-PCM25 0.149 0.147 0.152 0.149 
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InnExW-PCM26 0.143 0.141 0.146 0.143 

InnExW-PCM27 0.143 0.141 0.146 0.143 

InnExW-PCM28 0.434 0.427 0.442 0.434 

InnExW-PCM29 0.434 0.427 0.442 0.434 

InnExW-PCM30 0.637 0.628 0.650 0.638 

InnExW-PCM31 0.401 0.395 0.409 0.401 

InnExW-PCM32 0.468 0.461 0.477 0.468 

InnExW-PCM33 0.451 0.444 0.460 0.451 

InnExW-PCM34 0.280 0.276 0.285 0.28 

InnoExW-BIPV 0.350 0.344 0.357 0.35 

InnoExW-BIPV+PCM 0.316 0.311 0.322 0.316 

InnoGlzTemp-Dbl 2.427 2.391 2.476 2.429 

InnoGlzTemp-Dbl 2.427 2.391 2.476 2.429 

InnoGlzTemp-Dbl 1.492 1.469 1.522 1.493 

InnoGlzTemp-Trp 2.176 2.144 2.220 2.178 

InnoGlzTemp-Trp 0.7794 0.768 0.795 0.78 

InnoGlzTemp-Trp 1.9584 1.929 1.998 1.96 

InnoGlzTemp-Trp 2.1272 2.095 2.170 2.129 

InnoGlzTemp-Qdr 0.7803 0.769 0.796 0.781 

InnoGlzTemp-BIPV 1.9584 1.929 1.998 1.96 

InnExtGlz-1 2.6578 2.618 2.711 2.66 

InnExtGlz-2 2.5089 2.471 2.559 2.511 

InnExtGlz-3 1.7585 1.732 1.794 1.76 

InnExtGlz-4 1.4918 1.469 1.522 1.493 

InnExtGlz-5 1.7585 1.732 1.794 1.76 

InnExtGlz-6 1.4918 1.469 1.522 1.493 

InnExtGlz-7 1.7845 1.758 1.820 1.786 

InnExtGlz-8 1.4918 1.469 1.522 1.493 

InnExtGlz-9 1.6147 1.590 1.647 1.616 

InnExtGlz-10 1.3219 1.302 1.348 1.323 

InnExtGlz-11 1.6147 1.590 1.647 1.616 

InnExtGlz-12 1.3219 1.302 1.348 1.323 

InnExtGlz-13 2.1272 2.095 2.170 2.129 

InnIntGlz 1 2.6578 2.618 2.711 2.66 

InnIntGlz 2 2.5089 2.471 2.559 2.511 

InnIntGlz 3 1.7585 1.732 1.794 1.76 

InnIntGlz 4 1.4918 1.469 1.522 1.493 

InnIntGlz 5 1.7585 1.732 1.794 1.76 

InnIntGlz 6 1.4918 1.469 1.522 1.493 

InnIntGlz 7 1.7845 1.758 1.820 1.786 

InnIntGlz 8 1.4918 1.469 1.522 1.493 

InnIntGlz 9 1.6147 1.590 1.647 1.616 

InnIntGlz 10 1.3219 1.302 1.348 1.323 

InnIntGlz 11 1.6147 1.590 1.647 1.616 

InnIntGlz 12 1.3219 1.302 1.348 1.323 
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InnIntGlz 13 2.1272 2.095 2.170 2.129 

Inno. 

InternalThermalMass. 
1.1291 1.112 1.152 1.13 

TraditionalthermalMass 3.0145 2.969 3.075 3.017 

PartitionConstruction 1.1291 1.112 1.152 1.13 

WindowFrame1 3.4731 3.421 3.543 3.476 

WindowFrame2 5.8761 5.788 5.994 5.881 

WindowFrame3 5.0098 4.935 5.110 5.014 

WindowFrame4 3.6300 3.576 3.703 3.633 

WindowFrame5 3.6300 3.576 3.703 3.633 
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The above objectives will be evaluated in the optimization algorithm. A Building Performance 

Simulation engine (BPS), EnergyPlus, embedded in the DesignBuilder software will calculate the 

energy consumption for each set of renovation alternatives in all optimization iterations. The cost 

function, alike, will be calculated through the simulation engine. As formerly explained, the 

simulation engine is selected for computation of objective function values to avoid using Response  

Surface Approximation Models (RSA) which first mimic the behavior of the base building model, 

and they are used within the GA for the evaluation of individuals (Magnier and Haghighat 2010). 

The rest of the chapter will introduce Building Performance Simulation engine (BPS), after which 

the integration of the simulation engine to the optimization module will be discussed. Further 

elucidation on both optimization module and the simulation engine will be provided in the 

subsequent chapter.  

 

3.2.2.2 Building Performance Simulation 

According to the section above, a Building Performance Simulation program (BPS) is selected as 

a means to evaluate objectives quantities. The objective functions, Annual energy consumption, 

and total construction cost require whole building evaluation; thus, rendering complex, non-linear 

computations. Although there are some equations available for calculating energy consumption 

and the relevant construction cost, elaborate substitutions such as the translation of a Window-to-

Wall Ratio (WWR) into window coordinates or geometry studies beyond the basic figures cannot 

be handled (Bucking 2013).  

Additionally, apart from the mentioned reasons, the complex nature of heat transfer calculations 

entails a more thorough and detailed computation method. For this reason, whole building 

simulations are normally used in building performance assessments. In this study, the commercial 

simulation program, DesignBuilder simulation with its EnergyPlus engine has been utilized. Even 

though the term simulation, ordinarily refers to stochastic programs (e.g., a discrete-event 

simulation programs using Monte Carlo methods), the area of simulation-based optimization 

mostly involves deterministic computer programs that are regularly used in building simulations 

(Gosavi 2003; Fu 2002). 
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3.2.2.3 Integration of the simulation and the optimization module 

 

To address the interaction between the simulation and the optimization module, the nature of the 

simulation program should be considered. There are two types of simulation programs based on 

the means of their collaboration with the optimization module and three types of interactions. 

Simulations could be either internal or external. The external category does not include compiling 

together with the optimizer. In contrast, the internal type operates based on compiling with the 

optimizer. The types of interactions between simulation engines and optimizers have three types 

of interfaces namely external interface, an internal interface, and hybrid interface (Wang 2005). A 

brief description of each is as follows: 

 

External interface: This is to address external simulations in which the communication with the 

optimization module is performed through files, thus necessitating the use of a translator to transfer 

the input and output to and from the optimization module.  

Internal Interface: Addressing the internal simulations, the values of variables and functions are 

directly transferred between the simulation and optimization module. The primary advantage of 

this method is that since the variables are stored in the computer memory, they can be shared by 

the simulation and optimization module. In the case of this research, the DesignBuilder software 

is the platform facilitating the collaboration between simulation and optimization module. The first 

and foremost merit of the internal interface is its significantly less computation time and cost in 

comparison with the external version. Despite its substantial benefit, it suffers from the fact that 

the variables, performance criteria, and the optimization algorithm are required to be determined 

in advance. However, since every refurbishment project has its decision variables and decision 

criteria, this quality might, in fact, transpire as a benefit.  

Hybrid Interface: This category incorporates both the internal and external simulations for 

calculating the objective functions amounts and requires both internal and external interfaces. 

 

In this study, an internal simulation with an internal interface is employed to avoid the high 

computational time, transferring between optimization and simulation modules. 
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3.2.3 Model Output 

 

The output of the simulation-based optimization model will be presented as optimal solutions sets 

of renovation alternatives. A Pareto front containing all these sets of optimal renovation scenario 

will summarize the optimization outcome. Each point on the Pareto front which is an optimal 

solution represents a renovation scenario consisting of renovation alternatives. A general form of 

a Pareto front resulted from optimization of two objective functions is presented in Figure 9 (The 

Pareto front from the model implemented in this thesis is present in chapter 5). 

  

 

 

Figure 9. A sample of a Pareto front (Chantrelle et al. 2011) 

 

 

3.3 Summary 

This chapter included describing the proposed model; it is input consisting of building model input 

data needed for simulation and optimization as well as the decision variables defined in 

DesignBuilder to be used in the NSGA-II optimization algorithm. After this section, the objective 

functions including uncertainty, and fuzzy set theory were described, and the building performance 

simulation engine (BPS) was explained as the means of computing them. Afterward, the 

integration of the simulation to the optimization algorithm was demonstrated. At last, the outcome 
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of simulation-based optimization, Pareto front, was discussed. The next chapter will incorporate 

further elaboration on the computation of objective functions in the simulation engine, along with 

the optimization algorithm and Pareto front.  
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CHAPTER. 4 OPTIMIZATION & 

SIMULATION INTEGRATION 

 

 

4.1 General 

As mentioned in previous chapters, there are numerous advantages pertaining to the use of BPS 

for building energy consumption calculation. Some of the benefits of performing whole building 

simulation are namely; accounting for interactions among all systems and subsystems in a 

building, higher precision, lower computational time in comparison with trial-and-error methods 

and so on. Another significant advantage of coupling a simulation engine to an optimization 

algorithm is that it eliminates the necessity of using surrogate models and thus for each iteration 

of the optimization algorithm, the values of objective functions are calculated simultaneously and 

transferred to the algorithm without incurring further burden (Magnier and Haghighat 2010).  

Conclusively, the building performance simulation engines for calculating the objective functions 

substantially reduce the computational time and cost. In the following section, the simulation 

engine used in this model followed by the optimization algorithm are explained. It should be noted 

that the consideration of uncertainty with the objective functions is discussed in the chapter. 3 and 

this chapter essentially introduces the above-mentioned objective functions.  

 

4.2 Energy Simulations  

The simulation engine used in this study is EnergyPlus which is embedded in DesignBuilder 

software. Simulations using EnergyPlus have the following characteristics: (DesignBuilder, v. 5.3, 

2018) 
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• Weather data is derived hourly weather data file. 

• Heat conduction and convection between zones of different temperatures are included. 

• Solar gain through windows is included. 

• Simulation of HVAC equipment is included. 

• Includes one or more “warmup” (or pre-conditioning) days to ensure the correct 

distribution of heat in building thermal mass at the start of the simulation. Warmup 

continues until temperatures/heat flows in each zone have converged. If convergence does 

not occur, simulation continues for the maximum number of days as specified in the 

calculation options. 

 

4.2.1 Simulation Inputs Parameters 

In order to be able to perform simulations on thermal performance of retrofit measures on a 

building to calculate energy consumption and subsequently cost of retrofits, several inputs are 

required to be set for the simulation engine. Weather data files, building model (geometry), size 

and function (residential, office, etc.), occupancy patterns, activity templates, components 

construction and energy supply systems are the basic parameters. Apart from the construction 

components that are different in two random models, the rest of the parameters are similar in 

simulation engines and the models (DesignBuilder, v.5.3, 2018). As with the DesignBuilder, the 

required parameters for initiating thermal simulations run by the EnergyPlus engine are:  

 

1. Standards in Building Performance Simulation 

2. Weather, climate 

3. Building geometry, model 

4. Zones 

5. Activity 

6. Schedules 

7. Time step 

8. Occupancy. 

They are explained as follow. 
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1. Standards in Building Performance Simulation: In this study building modeling and energy, 

assessment are performed in accordance with ASHRAE 90.1-2010 Appendix G PRM. 

DesignBuilder uses the ASHRAE climate zone site-level setting so that it can identify the climate 

zone for generating baseline constructions and glazing according to ASHRAE 90.1 

The default climate can be loaded from the Locations template and its value derived from the  

Hourly weather data dialog which itself has bee was derived from .epw hourly weather data.  

When the energy code is set as ASHRAE 90.1 2007 or 2010, the appropriate model data settings 

such as Detailed HVAC and 6 time steps per hour are loaded to the building model accordingly 

The construction, glazing, lighting, activity templates, etc follow the standard set at the beginning 

at the site level. 

 

2. Weather, climate: Weather data is derived from hourly weather data files. Hourly weather data 

in DesignBuilder are an EnergyPlus format with the extension 'epw' by the convention which can 

specify external conditions during simulations. The external temperature, solar radiation, 

atmospheric conditions, etc from each location’s separate file. These hourly weather datasets are 

made available by DOE, U.S. [IWEC2012] Department of Energy, in order to be used in 

EnergyPlus simulation software website and imported in the model and are often 

'typical' data derived from hourly observations at a specific location by 

national weather services.  Examples of these typical data include TMY2 and WYEC2 in the 

United States and Canada and TRY (CEC 1985) in Europe. Figure 10 and Figure 11 show a 

weather data file for Montreal, and location respectively (DesignBuilder, v. 5.3, 2018).  

 

 

https://www.designbuilder.co.uk/helpv5.3/Content/_DesignBuilder_files_location_and_extensions.htm
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Figure 10. Representation of weather file settings in DesignBuilder 

 

 

Figure 11. Representation of location settings in DesignBuilder 
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3. Building geometry, model: The specifications of the geometry of the model are specified in 

the modeling interface. DesignBuilder benefits from a user-friendly modeling interface in which 

models can be defined. As DesignBuilder is remarkably versatile, there is the possibility of either 

importing 2D floor plans from CAD files or paper drawings, or Importing 3D BIM data using the 

gbXML data format (DesignBuilder, v. 5.3, 2018). 

 

4. Zones: Zones are part of the interior space that is required by thermal simulation to perform 

thermal calculations (Crawley et al. 2008). Spaces with similar thermal characteristics are 

categorized as one zone (Konstantinou 2014). The number of zones increases the complexity of 

the simulation escalades when multiple zones are modeled. 

 

5. Activity: Data on the activity tab allows for defining the type of usage in each zone or general 

for the whole building. The data covers occupancy, equipment usage and suitable design internal 

temperatures, illuminance levels and ventilation rates per person. When the activity template is 

similar for the whole building, generic activity data can be selected. Figure 12 presents the activity 

template in DesignBuilder.  
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Figure 12. presentation of activity template in DesignBuilder 

  

  

  

6. Schedules: The schedules define the hours of the day that the selected inputs come into effect. 

In addition to describing the hours when the zone is occupied, schedules also denote the following: 

(Konstantinou 2014) 

• Occupancy times 

• The use of Equipment, lighting HVAC operation 

• Heating and Cooling temperature set points 

• Transparency of component blocks (usually seasonal 

7. Time step: "Step" is a process of calculating system's next state. "Timestep" is the time interval 

for which simulation will progress during next "step." Even though many buildings can be 

successfully simulated with 1 or 2-time steps per hour, EnergyPlus suggest a minimum of 4 for 



 57 

non-HVAC simulations and 6 for simulations with HVAC. When using the Finite difference 

solution method, 20 Time steps per hour is the minimum. Generally, as the number of time steps 

increases, the accuracy is improved. However, it might slow the simulation. (DesignBuilder, 2018) 

 

8. Occupancy: When selecting the ASHRAE standard, and setting the activity template to 

generic office template this input parameter is automatically set based on person/m2 

 

4.2.2 Energy Consumption Calculations  

In EnergyPlus, the simulation engine of DesignBuilder, the thermal simulation of building surface 

constructions is performed by a conduction transfer function (CTF) transformation. Similar to 

other transformation-based solutions, CTF has several limitations such as constant properties, 

fixed values of some parameters, and do not produce results for the interior of the surface. In the 

case of conducting energy analysis by simulating more advanced constructions, such as phase 

change materials (PCM), it necessitates the inclusion of more fundamental forms. Consequently, 

a conduction finite difference (CondFD) solution algorithm has been incorporated into 

EnergyPlus. The two algorithms used in thermal evaluation, conduction, and convection, are 

explained as follow: 

 

1. Conduction algorithm: In this thesis, the general solution algorithm used for heating and 

cooling calculations in DesignBuilder is Finite Difference is a solution technique using one 

dimension solution in the construction elements. It is a sensible heat only solution and does not 

take into account moisture storage or diffusion in the construction elements (DesignBuilder, 2018). 

This solution is mandatory for simulations of PCM including elements. According to 

DesignBuilder, it is also capable of improving accuracy for sheet metal material layers in 

constructions and chilled ceilings. 

The Finite Difference settings used are described below: 

 

The Finite Difference method is another numerical technique frequently used to solve differential 

equations by approximating them with difference equations, in which finite differences 

approximate the derivatives. FDMs are thus based on the concept of discretization (Grossmann, 
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Roos, and Stynes 2007). 

Assuming the function whose derivatives are to be approximated is properly-behaved, by Taylor’s 

theorem we can create a Taylor series expansion (Anderson and Wendt 1995): 

f (x+ ∆x) = f(x) + 
∂f

∂x
 ∆x + 

∂2f 

∂x2  
 
(∆x)2 

2
 + …

∂nf 

∂xn 
 
(∆x)n

n!
 + Rn(x)                               Eq.5 

 

Where n! denotes the factorial of n, and Rn(x) is a remainder term denoting the difference between 

the Taylor polynomial of degree n and the original function. Then, an approximation for the first 

derivative of the function "f" will be derived by first truncating the Taylor polynomial: 

for an x=x0 and by setting ∆x= h we will have  

f (x0+ h) = f(x0) + 
f ′ (x0)

1!  
 h + … + 

f (n) x0  

n!  
 hn + Rn(x) ,                                              Eq. 6 

f (x0+ h) = f(x0) + f ' (x0) h + R1(x)                                                                                                Eq. 7 

Setting, x0=a we have, 

f (a+ h) = f (a) + f ' (a) h + R1(x)                                                                                                         Eq. 8 

Dividing across by h gives: 

 

𝑓 (𝑎+ℎ)

ℎ
 = 

𝑓 (𝑎)

ℎ
 + f ' (a) + 

𝑅1 (𝑥)

ℎ
                                                                                    Eq. 9 

Solving for f'(a): 

 

f ' (a) = 
𝑓 (𝑎+ℎ)−𝑓(𝑎)

ℎ
 - 

𝑅1 (𝑥)

ℎ
                                                                                                                    Eq. 10 

Assuming that  R1(x) is sufficiently small, the approximation of the first derivative of “f ” is: 

 

f ' (a) ≈ 
𝑓 (𝑎+ℎ)−𝑓(𝑎)

ℎ
                                                                                                   Eq.11 
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In the case where the Finite Difference general solution algorithm is selected, or if this algorithm 

is to override any other construction in the simulation the settings below are required: 

1. Fully implicit first order scheme, which is first order in time and is more stable over time. 

However, it may turn out to be slower than the second option below.  

If we use the backward difference at time t n+1 and a second-order central difference for the space 

derivative at position xj (The Backward Time, Centered Space Method "BTCS") we obtain the 

recurrence equation (Anderson and Wendt 1995): 

                                                

 

This is an implicit method for solving the one-dimensional heat equation. We can obtain un
j from 

solving a system of linear equations: 

                                                                                   Eq.13 

2. Crank Nicholson 2nd order, which is second order in time and may be faster than option 1 above. 

However, it might suffer from instability over time when boundary conditions change suddenly 

and severely. 

Finally, if we use the central difference at time tn +1/2 and a second-order central difference for the 

space derivative at position xj  ("CTCS") we get the recurrence equation (Anderson and Wendt 

1995):  

 

Eq. 12 
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                        Eq.14 

This formula is known as the Crank–Nicolson method. We can obtain un+1
j from solving a system 

of linear equations (Anderson and Wendt 1995): 

            Eq. 15 

2. Convection Algorithm: The convection between the between internal zone surfaces and the 

rest of the zone air can be calculated in the simulation using several EnergyPlus inside convection 

algorithms. For the Inside Convection, The TARP algorithm is recommended by DesignBuilder 

based on variable natural convection relying on temperature difference from ASHRAE 

algorithms. As with the Outside Convection, The DOE-2 convection model which is a combination 

of the MoWiTT and BLAST Detailed convection models (LBL 1994) is recommended as the 

default algorithm by DesignBuilder (DesignBuilder, v.5.3, 2018) 

 

4.3 Cost Calculations 

In this model, the cost objective is defined as capital construction costs of renovation scenarios. 

Construction cost modeling provides an early design stage estimate of the initial construction costs. 

The cost calculations in DesignBuilder simulation are performed based on “surface area of each 

construction component.” The capital cost function consists of structure costs, HVAC costs, 

lighting costs, sub-structure costs, renewable costs (such as those of PV panels). 

Since the objective of the simulation is to be utilized in the NSGA-II optimization module, the 

costs outputs are used in tandem with that of annual energy consumption in the course of 
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optimization. The uncertainty associated with the cost objective function is also considered as 

described in section 3.2.2. Figure 13 shows the subdivision of cost which is calculated per surface 

area for a sample building.  

 

 

 

Figure 13. Subdivision of costs calculated per surface area for a sample building 

 

4.4 Optimization 

 

4.4.1 Multi-Objective Optimization  

Satisfying multiple objectives in the course of optimization is known as multi-objective 

optimization. Generally, finding a single solution is a cumbersome task, if not impossible. 

It often happens that improving one objective would cause the other objective(s) to 

deteriorate (Bandyopadhyay and Saha 2012). 

According to Coello et al. and Deb et al., multi-objective optimization (MOO) problems 

can be formally stated as follows (Coello 1999), (Deb 2001) : 
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Find the vector x ∗ = [x1
∗ , x2

∗ , . . . , xn
∗ ]T of decision variables which will satisfy the m 

inequality constraints: 

gi(x)≥0, i=1,2,...,m,  

and the p equality constraints: 

hi(x)=0, i=1,2,...,p  

and simultaneously optimize the M objective values  

f1(x), f2(x), ..., fM(x) 

The constraints given in equations above define the feasible region F which contains all 

the admissible solutions. Any solution outside this region is inadmissible since it violates 

one or more constraints. The vector x∗ denotes an optimal solution in F. In the context of 

multi-objective optimization, the difficulty lies in the definition of optimality, since it is 

only rarely that a situation can be found where a single vector x∗ represents the optimum 

solution to all the M objective functions.  

Population-based methods such as genetic algorithms (GAs) can be easily extended to 

solve multi-objective optimization problems. As previously explained in the literature 

review an extension of GA is selected in this thesis to tackle to the presented multi-

objective problem. For this reason, following is a further explanation of GA and its 

improved version, NSGA-II, which has been utilized in this study.  

4.4.2 Genetic Algorithms 

Genetic algorithms (GAs) known as efficient, adaptive, and robust search and optimization 

processes, use guided random choice as a tool for guiding the search in search spaces which 

are usually very large, complex, and multimodal. GAs are built on the principles of natural 

genetic selection, in which the genetic information of each or potential solution is encoded 

in arrangements called chromosomes.  
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GAs use domain or problem-related knowledge to direct the search to more promising areas 

in the search space; this process is known as the fitness function evaluation. Thus, each 

chromosome is assigned a fitness function which indicates its degree of acceptability with 

regard to the solution it represents. Various operators from biological origins such as 

selection, crossover, and mutation are applied to the chromosomes to produce potentially 

better solutions (Bandyopadhyay and Saha 2012). 

 

Basic Principles and Features of GAs 

Genetic algorithms (GAs) efficiently exploit historical information to reflect on new 

offspring with enhanced performance (Goldberg and Holland 1988). As previously 

mentioned, GAs encode the parameters of the search space in configurations called 

chromosomes (or strings). They implement repetitively on a set of chromosomes, called 

population, using three basic operators: selection/reproduction, crossover, and mutation. 

The distinction between GAs and  most of the normal optimization and search processes 

are as follow (Holland and Goldberg 1989).  

1. Gas operate with the coding of the parameters, not the parameters themselves. 

2. GAs operate simultaneously with multiple points, rather than a single point.   

3. GAs search via sampling (blind search). 

4. GAs search using stochastic operators, rather than deterministic rules, to produce new 

solutions.   

Advantages of GA algorithms 

When used as an optimization technique, GAs are very unlikely to get stuck at a local 

optimum due to working simultaneously on a set of coded solutions. Additionally, the 

resolution of the possible search space is increased by operating on coded (possible) 
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solutions, rather than the solutions themselves.  A schematic diagram of the basic structure 

of a genetic algorithm is shown in Figure 14. 

 

 

Figure 14. Schematic diagram of GAs 

Basic components of GAs 

The evolution of improving solutions starts from a set of chromosomes (representing a 

potential solution set for the objective function to be optimized) and advances to further 

generations through genetic operations. A generation or an iteration is defined as 

“replacement of an old population with a new one’. In order to evaluate the fitness of the 

derived solutions, GAs require a suitable objective function which links the chromosomal 
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space to the solution space. 

According to Bandyopadhyay et al. GAs normally consist of the following components 

(Bandyopadhyay and Saha 2012):  

• A population of binary strings or coded possible solutions (biologically referred to 

as chromosomes).   

• A mechanism to encode a possible solution (mostly as a binary string).   

• An objective function and associated fitness evaluation techniques.   

• A selection/reproduction procedure.   

• Genetic operators (crossover and mutation).   

• Probabilities to perform genetic operations.  

These components are briefly described.   

Population: To solve an optimization problem, GAs first turn a parameter set into a 

chromosomal representation of that set which is coded as a finite-length string. A set of 

these chromosomes in a generation is known as a population.  

Encoding/Decoding Mechanism: To obtain a chromosome, the parameter values of a 

possible solution are converted into strings. Reversely, decoding is the task of retrieving 

the parameter values from the chromosomes.   

Objective Function and Associated Fitness Evaluation Techniques: Being the only 

information (also known as the payoff information) that GAs use while searching for 

possible solutions, the fitness/objective function is chosen depending on the problem so 

that the strings (possible solutions) representative of suitable points in the search space 

have high fitness values.  

Selection/Reproduction Procedure: The selection/reproduction process identifies certain 

individual strings (called parent chromosomes) from a population into a tentative new 
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population (known as a mating pool) for genetic operations for further evolution. Roulette 

wheel parent selection(Holland and Goldberg 1989) and linear selection (Davis 1991)are 

two of the most commonly used selection operators.  

Crossover: It is another operator with the goal of exchanging information between 

randomly selected parent chromosomes by switching parts of their respective strings so 

that offspring for the new generation will be produced. There are several types of crossover. 

In the single-point crossover, one of the most frequently used types, initially the members 

of the reproduced strings in the mating pool are randomly paired. Then a position of an 

integer such as k (known as the crossover point) is selected uniformly at random between 

1 and l − 1, where l is the string length greater than 1. When all characters from position (k 

+ 1) to l are exchanged, two new strings are created. For instance, let  

a = 11000 10101 01000 . . . 01111 10001, b = 10001 01110 11101 . . . 00110 10100  

be two strings (parents) selected from the mating pool for crossover. Let the crossover point 

be 11 (eleven). Then the newly produced offspring (switching all characters after position 

11) will be  

a′ = 11000 10101 01101 . . . 00110 10100, b′ = 10001 01110 11000 . . . 01111 10001.  

Other crossover techniques are multiple-point crossover, shuffle-exchange crossover, and 

uniform crossover (Davis 1991).  

Mutation: The primary goal of mutation, is to introduce genetic diversity into the 

population. Additionally, it sometimes helps to recover information lost in earlier 

generations. Similar to natural genetic systems, a mutation in GAs is generally performed 

sporadically. A random bit position of a randomly selected string is replaced by another 

character from the alphabet. For example, let the third bit of string a, given above, be 

selected for mutation. Then after mutation, the transformed string will be  

11100 10101 01000 . . . 01111 10001.  
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A high mutation rate can cause the genetic algorithm to convert to a random search. It may 

change the value of an important bit and hence result in the fast convergence to a good 

solution. However, it may also slow down the process of convergence at the final stage of 

GAs. 

Probabilities to perform genetic operations: Both the crossover and mutation operations 

are conducted stochastically. The probability of crossover operation is selected in such a 

way that recombination of potential strings (highly fit chromosomes) increases without any 

disruption. Generally, the crossover probability is placed between 0.6 and 0.9 (Davis 1991; 

Goldberg and Holland 1988). Due to its occasional occurrence, mutation operation will 

evidently have a low probability to be performed. Generally, the value is placed between 

1/l and 0.1 (Goldberg and Holland 1988; Davis 1991) of which l is the length of the 

chromosome string. 

Termination criteria: In order for a genetic algorithm to be terminated, according to 

Bandyopadhyay et al. one of the criteria below is to be met (Bandyopadhyay and Saha 

2012): 

1. The average fitness value of a population becomes more or less constant over a specified 

number of generations.  

2. A desired objective function value is attained by at least one string in the population.  

3. The number of generations (or iterations) is greater than some threshold.  

 

4.4.3 Non-Dominated Sorting Genetic Algorithm (NSGA-II) 

After closely examining several methods (fully covered in literature), GAs were selected as the 

optimization algorithm since they are capable of producing a Pareto front containing several 

optimum solutions. However, classic GA, and NSGA are non-elitist in nature. In this study, the 

NSGA-II algorithm is preferred over GA due to its ability to handle complexity in the search space. 
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Furthermore, since NSGA-II benefits from elitism, it can explore the search space more rapidly 

and provide a better diversity. Below is the description of this algorithm.  

The individuals in a population undergo non-dominated sorting and are ranked based on this. A 

new selection technique, called crowded tournament selection, is performed where the selection is 

made on the basis of crowding distance (representing the neighborhood density of a solution). To 

implement elitism, the parent and child population are combined, and the non-dominated 

individuals from the combined population are directed to the next generation. (Bandyopadhyay 

and Saha 2012). 

The non-dominated sorting, an important characteristic of NSGA-II, is performed as follows: 

Given a set of solutions S, the non-dominated set of solutions N ⊆ S is composed of those 

solutions of S which are not dominated by any other solution in S. To find the non-dominated set, 

the following steps are carried out (Bandyopadhyay and Pal 2007; Deb et al. 2002): 

• Step 1: Set i = 1 and initialize the non-dominated set N to empty.   

• Step 2: For each solution j ∈ S (j ≠ i), if solution j dominates solution i  then go 

to step 4.   

• Step 3: If  j< ||S|| , set j=j+1 and go to step 2. Otherwise, set N=N∪i.   

• Step 4: Set i=i+1. If i ≤ ||S|| then go to step2. Otherwise, output N as the non-

dominated set.   

The non-dominated sorting procedure first finds the non-dominated set N from the given set of 

solutions S. Each solution belonging to N is given the rank 1. Next, the same process is repeated 

on the set S = S − N and the next set of non-dominated solutions N′ is found. Each solution of the 

set N′ is given the rank 2. This procedure continues until all the solutions in the initial set are given 

some rank i.e., S becomes empty. A measure called crowding distance had been defined on the 

solutions of the non-dominated front for diversity maintenance. The crowding distances for the 

boundary solutions are set to maximum values (logically infinite). For each solution i among the 

remaining solutions, the crowding distance is computed as the average distance of the (i + 1)th and 

(i − 1)th solutions along with all the objectives. Citing Deb et al., the following are the steps for 
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computing the crowding distance di of each point i in the non-dominated front N (Deb et al. 2002):“  

For i = 1,...,N, initialize di = 0.   

For each objective function fk, k = 1,..., M, do the following:   

o Sort the set N according to fk in ascending order. 

o Set d1=d ||N|| =∞.  

o For j=2 to ( ||N||-1), set dj =dj + (fk(j+1)- fk (j-1)).   

In NSGA-II, a binary tournament selection operator works based on the crowding distance. If two 

solutions a and b are compared during a tournament, then solution a wins the tournament if either: 

  

1. The rank of a is better (less) than the rank of b, i.e., a and b belong to two different non-

dominated fronts, or   

 

2. The ranks of a and b are the same (i.e., they belong to the same non-dominated front) 

and a has higher crowding distance than b; meaning that if two solutions belong to the 

same non-dominated front, the solution situated in the lesser crowded region is 

selected.  (Bandyopadhyay and Saha 2012) 

Having described the NS algorithm and concept of crowding distance used in tournament 

selection, the overall steps of the NSGA-II algorithm can be stated as below:  

• Initialize the population.   

• If termination criterion is not met, repeat the following:  

o Evaluate each solution in the population by computing the objective function 

values.   

o Rank the solutions in the population using Non-dominated Sorting (NS) algorithm.  

o Perform selection using the crowding binary tournament selection operator.  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o Perform crossover and mutation (as in conventional GA) to generate the offspring 

population.  

o Combine the parent and child populations.   

o Replace the parent population with the best members (selected using non-

dominated sorting and the crowded comparison operator) of the combined 

population.   

• Output the first non-dominated front of the final population.   

Figure 15 is an example of a Pareto curve for an optimization problem with two objectives. The 

optimization of three objectives results in a ‘‘Pareto surface”. For more than three objectives, a 

Pareto optimization can still be performed. However,  direct visualization is not possible. (Dietz 

2004). 

 

 

Figure 15. A sample of a Pareto front (Chantrelle et al. 2011) 

  

 

4.5 Summary 

This chapter which is an elaboration on methodology, involved explaining the simulation engine 

calculating objectives function values followed by the description of NSGA-II algorithm.  
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CHAPTER. 5 CASE STUDY (MODEL 

IMPLEMENTATION & VALIDATION) 

 

 

5.1 Overview 

 

This chapter employs the hybrid fuzzy simulation-based optimization that is developed in 

methodology part on a building model created in DesignBuilder. The proposed simulation-based 

optimization on sustainable renovations is conducted on a building model created in 

DesignBuilder, and a Pareto front containing the optimum solutions is obtained.  

To verify the performance of NSGA-II optimization algorithm and to prove the improvements 

achieved by the proposed renovation alternatives, a base case building which represents the same 

building as the optimized model, containing the same activity, location, weather and input 

parameters is created. The only distinction between this base case and the optimized building is 

that only traditional construction has been used and no retrofit has been performed. Subsequently, 

a simulation is run on this base case building to evaluate the annual energy consumption. 

Conclusively, a random Pareto solution which comprises of a scenario of optimum renovation 

alternatives is selected, and its associated energy consumption is compared to the base case 

building which has not undergone a retrofit optimization.  
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5.2 Model Implementation 

 

5.2.1 Case Description 

A one-story office building with a total area of 371m2 with activity template set to ASHRAE 

Generic Office Area; and HVAC template Fan Coil Unit (4-Pipe), Air Cooled Chiller is modeled 

in DesignBuilder. A double facade skin is used for the south facing facade. The building consists 

of 5 zones, one of which being the cavity zone forming. The 3D building model is presented in 

Figure 16. 

It should be mentioned that the double-facade buildings are normally economically and 

environmentally feasible for high rise buildings. However, in this study to avoid high 

computational time the building is modeled as a one-story office building.  

 

 

Figure 16. Floor layout of the sample case Building model created in DesignBuilder 
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5.2.2 Decision Variables 

 

The decision variables used in the simulations which are subsequently incorporated in the 

optimization process are presented in Table 5. The table is followed by a more detailed description 

of several variables.                
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Table 5. Description of decision variables 

Variable  Variable 

type 

Category Variable ID Construction detail 

External wall Discrete PCM walls InnoExW-PCM. 1-3 - Curtain wall (Spandrel glass, Insulation board, BioPCM- M, Gypsum 

board) 

- Curtain wall (Metal wall panel, Insulation board, BioPCM- M, Gypsum 

board) 

- Curtain wall (Stone, Insulation board, BioPCM- M, Gypsum board) 

 

InnoExW-PCM. 4-6 - Stud wall (metal wall panel, sheathing, batt insulation, BioPCM- M, 

gypsum board) 

- Stud wall (Wood siding, sheathing, batt insulation, BioPCM- M, wood) 

- Stud wall (Stucco sheathing, batt insulation, BioPCM- M, gypsum 

board) 

 

InnoExW-PCM.7-9 

 

- EIFs wall (EIFS finish, Insulation board, fiberboard sheathing, 

BioPCM-M, gypsum board) 

- EIFs wall (EIFS finish, Insulation board, fiberboard sheathing, batt 

insulation, BioPCM-M, gypsum board) 

- EIFs wall (EIFS finish, Insulation board, fiberboard sheathing, 

Lightweight concrete block, BioPCM-M, gypsum board) 

InnoExW-PCM.10-19 - Brick wall (Brick, insulation board, sheathing, gypsum board) 

- Brick wall (Brick, insulation board, sheathing, batt insulation, 

BioPCM-M, gypsum board) 

InnoExW-PCM. 20-25 - Concrete block (LW concrete block, batt insulation, BioPCM-M 

,gypsum board) 

- Concrete block (stucco, HW CMU, fill insulation, gypsum board) 

InnoExW-PCM. 26-34  
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- Pre-cast and cast in place concrete block 

 

BIPV walls InnoExW-BIPV. 1-10 -Brickwork, Photovoltaic panel, XPS Extruded Polystyrene- CO2 

Blowing, Concrete block, Gypsum plastering 

 

BIPV + PCM 

walls 

InnoExW-BIPV-PCM. 

1-5 

- Brickwork, Photovoltaic panel, XPS Extruded Polystyrene- CO2 

Blowing, BioPCM-M/Q, Gypsum plastering 

 

Glazing 

template 

Discrete Double glazing 

 

InnoGlzTemp- Dbl. 1-

20 

-Double Glazing, Clear, Electrochromic (absorptive) switchable 

-Double Glazing, Clear, Electrochromic (reflective) switchable 

-Double Glazing, Clear, LoE, argon filled 

Triple glazing 

 

 InnoGlzTemp- Trp. 

21-35 

- Triple Glazing, Clear,  

- Triple Glazing, Clear, LoE, argon filled 

- Triple Glazing, Clear, LoE, argon filled+ BIPV 

 

- Triple Glazing, Clear, LoE, argon filled+ Thermochromic 

Quadruple 

glazing 

 

InnoGlzTemp. 36 - Quadr, LoE, Krypton 

BIPV glazing 

 

InnoGlzTemp. 37-42 - Triple Glazing, Clear, LoE, argon filled+ BIPV 

- Doble, Clear, BIPV 

 

External 

glazing  

Discrete Pane material 

Gas 

Color 

InnoExGlz. 1-60 Dbl, Air/Argon 

Dbl Elec Abs/Ref, Air/Argon 

Dbl LoE, Air/Argon 

Dbl LoE, Elec Abs/Ref, Air/Argon 

Electrochromic, absorptive 

Electrochromic, reflective 

LoE (coated) 
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Thermochromic: Triple (thermo, air, thermo, air, clr 

Internal 

glazing  

Discrete  InnoIntGlz. 1-55 Dbl, Air/Argon 

Dbl Elec Abs/Ref, Air/Argon 

Dbl LoE, Air/Argon 

Dbl LoE, Elec Abs/Ref, Air/Argon 

Electrochromic, absorptive 

Electrochromic, reflective 

LoE (coated) 

Thermochromic: Triple (thermo, air, thermo, air, clr) 

Clear glass 

 

 

Internal 

thermal  mass 

 

 

 

Discrete BioPCM 

continuous layer 

 

Inno. 

InternalThermalMass. 

1-19 

Concrete, BioPCM-M, Continuous layer 

  Traditional 

construction 

(concrete) 

Internal ThermalMass. 

20-42 

Concrete slab 

Reinforced concrete slab 

 

Partition 

construction 

Discrete   BioPCM-M, Continuous layer 

Expanded wood chipboard 

Brick cavity wall 

Reinforced concrete 

Single leaf brickwork 
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Fiberboard, cavity 

Gypsum plasterboard, cavity 

Facade type Discrete   % fitted glazing 

% vertical glazing 

curtain wall, % glazing 

fixed height 1/1.5m. 20/30% glazing 

fixed window 

Horizontal strip, %glazed 

Preferred height, %glazed 

Window to 

wall ratio 

Continuous   

 

 20-100% 

Shading 

(window 

blind) 

Discrete  InnoShd. 1-50 - Electrochromic switchable 

- SageGlass Electrochromic 

- Slatted Blinds 

- Transparent Insulation 

Window 

frame 

Discrete   UPVC 

Aluminum 

PVC (with thermal break) 

Painted wooden 

wooden 
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External wall 

 

The options in the external wall variable are categorized first based on the innovative sustainable 

materials/components/strategies which are then used in different construction types.  To elucidate, 

take PCM walls category. There are various construction walls for an external wall such as curtain 

wall, stud wall, brick wall, concrete block and such, which themselves could have several 

variations based on the components used. For instance, 10 types of brickworks are used to form 

the variable options from InnoExW-PCM.10 to InnoExW-PCM.19. In the case of PCM walls, the 

phase change materials are embedded within each wall option in the innermost layer closest to the 

interior side of the wall and are selected based on the ASHRAE standard. 

 

As with the BIPV walls, PV panels are applied in the outermost layer with the constant efficiency 

of 0.15. Conclusively, concerning the PCM and BIPV walls, the BIPV is installed on the outer 

layer and the PCM materials used in the innermost layer.  

Defining all the mentioned options in DesignBuilder forms the database of variables which are 

subsequently used in simulation and NSGA-II optimization. 

 

A screenshot of the definition of one of the options of BIPV and PCM walls in the DesignBuilder 

is provided below. Since the focus of this research is on the innovative sustainable material and 

strategies, only the characterization of these materials is described as compared to the rest of 

construction.  

Figure 17 describes the formation of one of the options for the BIPV-PCM external wall. As 

previously presented the solution algorithm of simulation calculations is set as Finite Difference 

since as previously explained, in the case of PCM application the required simulation solution 

algorithm is the Finite Difference method. The outer layer is brickwork, and the BIPVs are 

installed on the outer layer. In order for the BIPVs to be integrated in some way with the underlying 

construction, one of the integrated heat transfer mode options is selected. Otherwise, the decoupled 

options will have a similar effect as drawing a separate PV panel on top of the surface at the 

building level. (DesignBuilder, v.5.3 2018) 
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The next layer consists of insulation material, XPS (Extruded Polystyrene- CO2 Blowing). 

Afterward, a PCM, BioPCM M27/Q23 is included prior to the innermost layer, gypsum plastering. 

Figure 20 depicts a visual representation of external wall layers. 

 

 

 
Figure 17. Representation of an option of an External Wall variable in DesignBuilder 
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Figure 18. Visual representation of layers in an External wall option in DesignBuilder 

 

 

Figure 19 displays thermal properties of the phase change material set in DesignBuilder used in 

the mentioned external wall option. The R-value (thermal resistance), though not selected below 

is 0.15 m2k/w for the PCM material BioPCM-M27.  
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Figure 19. Thermal properties of a PCM 

 

Glazing template: This variable defines the structure of the whole fenestration. Offering options 

of double, triple, quadruple and BIPV glazing, which are present in Table 6 

 

External /Internal glazing: In this variable window pane material, gas layer between the two 

glass layers, and the color of panes is demonstrated. Owing to the fact the focus of this study is on 

selecting the material types, not the specifications, the dimensions are not addressed.  
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Table 6. Glazing components 

External/Internal glazing 

Pane materials Gas types colors 

electrochromic, absorptive 

electrochromic, reflective 

LoE (coated) 

Thermochromic 

Clear glass 

 

Argon 

Xenon 

Krypton 

Clear 

Bronze 

Grey 

Blue 

Green 

 

 

Internal thermal mass: In this variable, the inclusion of a PCM type is included 

 

Window Shading:  

Window shading is included to reduce solar gains and improve resistance to heat conduction 

through windows (DesignBuilder, v. 5,3, 2018). Several of its types are as follow: 

 

- Electrochromic switchable 

- SageGlass Electrochromic 

- Slatted Blinds 

- Transparent Insulation 

 

5.2.3 Simulation Parameters 

Having created the sample 3D building model, in order for the genetic algorithm 

optimization to operate, several simulations are performed in parallel in each generation.  

Using EnergyPlus as the core of the simulation engine the energy consumption of the 

created sample building and total construction cost is calculated in each generation for each 
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scenario consisting of renovation alternatives. Some of the settings used for simulation are 

listed in Table 7. 

 

 

Table 7. Simulation parameters 

Location QC, Montreal/ Mirabel INT’ LA. ASHRAE 

climate zone: 6A 

Occupancy schedule Office_OpenOff_Occ 

Weather data file Montreal Mirabel PQ CAN WYEC2-B-

75290 WMO#=716278 

Simulation period Annual simulation (Jan 1- Dec 31) 

 

Solution algorithm for heat transfer Finite difference 

Solar distribution Full interior and exterior 

HVAC template Fan coil Unit (4-Pipe), Air cooled chiller 

HVAC heating setpoint 22℃ 

HVAC cooling setpoint 24℃ 

  

 

Using the abovementioned parameters, the building of the base building case.1, is 

simulated to obtain the energy consumption of this building with conventional 

construction. The annual energy consumption rates for case.1 building calculated by 

DesignBuilder simulation engine are displayed on an HDML format report. A part of which 

is as follows. 

 

Case. 1 Non-renovated envelope 
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The results of the annual simulation for the building on which renovation measures are not 

employed are depicted in Figure 20. Energy consumption rates for the case. 1 

 

 

Figure 20. Energy consumption rates for the case. 1Non-renovated envelope 

 

 

 

5.2.5 Optimization 

In order for the optimization to begin, the following steps proceed: 

 

Step 1 - Create a base model. A one-story office building with the abovementioned parameters 

and templates following ASHRAE 90.1-2010standard is created in DesignBuilder. 

 

Step 2 - Run a standard simulation. Choosing random construction and material from the 

variables described above, an annual simulation is run. This simulation is merely to ensure the 

model would behave as expected in terms of hourly results, the temperature within the building, 

operation periods, etc. (DesignBuilder, V. 5.3, 2018) 
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Step 3 – Define the optimization problem in optimization analysis settings dialog. 

Having performed a sample simulation on case.2 and gaining sufficient knowledge on how the 

model operates, an optimization can be initiated. In the optimization module, the NSGA-II (Non-

dominated Sorting Genetic Algorithm) algorithm is utilized which is a "fast and elitist multi-

objective" method providing a good trade-off between a well converged and a well-distributed 

solution set.  

In order to initiate the optimization process, the optimization problem is defined by means of the 

following three components: 

 

Objectives 

Minimize: Total annual site energy 

Minimize: Capital construction cost  

Constraints: None 

 

 

Figure 21. Representation of objective functions in DesignBuilder 

  

Design variables: 

The decision variables and their options that were previously developed and explained in the 

table. 1are defined in the optimization module. Figure 22 shows their list in the optimization 

module.  
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Figure 22. Representation of decision variables in DesignBuilder 

 

Step 4 - Define optimization calculation parameters 

 

 

Following defining the variables, objective functions, and constraints the optimization parameters 

are defined which are presented as below. Figure 23 shows their representation in DesignBuilder. 

 

Maximum generation:100 

Initial population size: 20 

Tournament size: 2 

Crossover rate: 0.9 

Mutation probability: 0.05 
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Figure 23. representation of optimization parameters in DesignBuilder. 

 

Step 5 - Start optimization analysis 

 

The optimization process will involve running a large number of simulations. With the 

recommended 100 generations with a population size of 20 in each, growing as Pareto solutions 

are added. That means that at least 100 x 20 = 2000 simulations will be run. The condition for the 

optimization termination in this study is the set number of the maximum generation which is 100. 

However, to ensure convergence has been achieved, the last monitors were closely monitored to 

determine if that the solution has converged and enough optimal solutions have been found. For 

example, if no new optimal solutions have been found in the last 10 generations, then that 

suggests convergence has been achieved. 
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5.2.5.1 Optimization Results 

 

Several number of optimizations with a different number of generation of 25, 50, and 100, 

200 were performed, and the graph below appeared as having the most convergent Pareto 

front. In this study, 4060 iterations (simulations) were performed for the 100 generations 

before achieving the Pareto front. The red points forming the Pareto solutions represent the 

optimal scenarios each forming sets of desired amounts of variables. The table below 

indicates the Pareto solutions.  

 

 

 

 

Figure 24. Optimization analysis results. Minimize capital construction costs and annual 

energy consumption 
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1 1562 44 

BioPCM 

Wall Above-

Grade - 

ASHRAE 

90.1 2007 - 

Steel-Framed 

Uninsulate

d 

Inn.15 

internal 

mass 

40 

InnShS.

7 Blind 

with 

medium 

reflectiv

ity slats 

Fixed 

windows - 

height:1.5

m, 

width:1.0 

115mm 

brick 

cavity wall 

with 12mm 

plaster both 

sides 

Sgl Ref-

A-M Clr 

6mm 

Sgl LoE 

(e2=.2) 

Clr 3mm 

Painted 

Wooden 

window 

frame 

481543

.2334 

91008.

4616 

2 2235 59 

BioPCM 

Wall Above-

Grade - 

ASHRAE 

90.1 2007 - 

Steel-Framed 

Double 

glazing, 

reflective, 

clear, 

internal 

blinds 

Inn.6 

internal 

mass 

40 

InnShS.

7 Blind 

with 

medium 

reflectiv

ity slats 

Fixed 

windows - 

height:1.5

m, 

width:1.0 

Inn.4 

internal 

mass 

Sgl Ref-

A-H Clr 

6mm 

Sgl LoE 

(e2=.2) 

Clr 3mm 

Painted 

Wooden 

window 

frame 

470683

.1533 

91136.

51868 

3 2258 59 

BioPCM 

Wall Above-

Grade - 

ASHRAE 

90.1 2007 - 

Steel-Framed 

Triple 

glazing, 

clear, 

LoE, 

argon-

filled 

Inn.15 

internal 

mass 

40 

InnShS.

7 Blind 

with 

medium 

reflectiv

ity slats 

Fixed 

windows - 

height:1.5

m, 

width:1.0 

360mm  

single leaf 

brick 

(plastered 

both sides) 

Sgl Ref-

A-M Clr 

6mm 

Sgl LoE 

(e2=.2) 

Clr 3mm 

Painted 

Wooden 

window 

frame 

476049

.9833 

91016.

41421 

Scenario Iteration 

 

Generation 
External 

wall  

 

Glazing template 

 

Internal thermal 

mass 

 

Window to wall 

ratio 

Window blind 

type 

Facade type 

 

Partition 

construction 

 

Internal glazing  

 
External glazing 

 
Window frame 

type 

Capital 

Cost 

Energy 

Consumption 
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4 2279 60 

BioPCM 

Wall Above-

Grade - 

ASHRAE 

90.1 2007 - 

Steel-Framed 

Triple 

glazing, 

clear, 

LoE, 

argon-

filled 

Inn.15 

internal 

mass 

40 

InnShS.

7 Blind 

with 

medium 

reflectiv

ity slats 

Fixed 

windows - 

height:1.5

m, 

width:1.0 

13mm 

expanded 

wood 

chipboard 

Sgl Ref-

A-H Clr 

6mm 

Sgl LoE 

(e2=.2) 

Clr 3mm 

Painted 

Wooden 

window 

frame 

470160

.3933 

91172.

73466 

5 2282 60 

InnExW. 14 

BIPV + 

PCM Project 

BIPV Wall 

Uninsulate

d 

Inn.19 

internal 

mass 

40 

InnShS.

7 Blind 

with 

medium 

reflectiv

ity slats 

Fixed 

windows - 

height:1.5

m, 

width:1.0 

360mm  

single leaf 

brick 

(plastered 

both sides) 

Sgl Ref-

A-M Clr 

6mm 

Sgl LoE 

(e2=.2) 

Clr 3mm 

Painted 

Wooden 

window 

frame 

488498

.5634 

90580.

51346 

6 2308 60 

InnExW. 14 

BIPV + 

PCM Project 

BIPV Wall 

Uninsulate

d 

Inn.15 

internal 

mass 

40 

InnShS.

7 Blind 

with 

medium 

reflectiv

ity slats 

Fixed 

windows - 

height:1.5

m, 

width:1.0 

13mm 

expanded 

wood 

chipboard 

Sgl Ref-

A-M Clr 

6mm 

Sgl LoE 

(e2=.2) 

Clr 3mm 

Painted 

Wooden 

window 

frame 

482608

.9735 

90758.

82276 

7 2345 62 

BioPCM 

Wall Above-

Grade - 

ASHRAE 

90.1 2007 - 

Steel-Framed 

Triple 

glazing, 

clear, 

LoE, 

argon-

filled 

Inn.15 

internal 

mass 

40 

InnShS.

7 Blind 

with 

medium 

reflectiv

ity slats 

Fixed 

windows - 

height:1.0

m, 

width:0.5 

13mm 

expanded 

wood 

chipboard 

Sgl Ref-

A-H Clr 

6mm 

Sgl LoE 

(e2=.2) 

Clr 3mm 

Painted 

Wooden 

window 

frame 

469705

.3933 

91644.

24059 

8 2392 63 

InnExW. 14 

BIPV + 

PCM Project 

BIPV Wall 

Triple 

glazing, 

clear, 

LoE, 

Inn.4 

internal 

mass 

40 

InnShS.

7 Blind 

with 

medium 

Fixed 

windows - 

height:1.5

m, 

width:1.0 

Inn.3 

internal 

mass 

Sgl Ref-

A-M Clr 

6mm 

Sgl LoE 

(e2=.2) 

Clr 3mm 

Painted 

Wooden 

window 

frame 

483131

.5232 

90718.

0686 
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Table 8. Pareto optimal solutions of the optimization 

 

5.2.5.2 Discussion on pareto optimal solutions 

 

The NSGA-II optimization has been performed multiple times to obtain the Pareto front, the convergence was achieved after 100 

generations, and the last 10 generations were monitored for the possible occurrence of early convergence. The Pareto front shown above 

is the most convergent front obtained regarding convergence and diversity. The red points are the converged non-dominated optimum 

solutions in the last generation, and the whites are the dominated in previous generations. Close observations reveal that: 

 

• The solutions of earlier generations are widely scattered with considerably higher amounts of annual energy consumption. In 

contrast, the solution of the final population is almost uniformly distributed. Furthermore, the observation in the last 10 

generations indicated that a good convergence had been achieved.  

 

argon-

filled 

reflectiv

ity slats 

9 2412 63 

InnExW. 14 

BIPV + 

PCM Project 

BIPV Wall 

Triple 

glazing, 

clear, 

LoE, 

argon-

filled 

Inn.15 

internal 

mass 

40 

InnShS.

7 Blind 

with 

medium 

reflectiv

ity slats 

Fixed 

windows - 

height:1.5

m, 

width:1.0 

115mm 

brick 

cavity wall 

with 12mm 

plaster both 

sides 

Sgl Ref-

A-H Clr 

6mm 

Sgl LoE 

(e2=.2) 

Clr 3mm 

Painted 

Wooden 

window 

frame 

493991

.8132 

90571.

72701 
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• Comparing the maximum energy consumption and capital cost amounts in the initial 

generations with a random solution on the Pareto front, it is demonstrated that the initial 

values for annual energy consumption and capital cost have been respectively 105,500 

kWh, and 506,000 GBP. While, they are reduced to 91,172 Kwh, and 470,160 GBP This 

comparison reveals a 14.3% reduction in annual energy consumption, as well as 7% in 

capital cost. Thus, it testifies that the optimization has been effective in terms of both 

objective functions. 

  

• The optimum Pareto front indicates that the optimum solutions are almost uniformly 

spread and are placed in a close range with regard to energy consumption. However, this 

range constitutes a wider range for the capital cost objective function. To elucidate, the 

maximum difference between the energy consumption of Pareto solution is 1.7%. 

Conversely, the similar difference for the cost function is 5%. This comparison shows that 

for some variables even though the energy consumption has been in a more desirable 

status, they are not optimum due to their higher costs. Take the example of external 

glazing; In Table 9 the single glazing option has been preferred due to its lower cost, 

despite its higher u-value.  

 

Table 9. comparison of options for external glazing variable 

Renovation alternative option Unit cost (GBP/m2) U-value (W/m2K) 

Sgl LoE (e2=.2) Clr 3mm 120 3.835 

Dbl LoE (e2=.2) Clr 3mm/13mm 

Arg 

180 1.712  

Glazing Integrated Photovoltaics 160 1.960 

Trp LoE (e2=e5=.1) Clr 

3mm/13mm Arg 

 

200 0.780 

Thermochromic External Glazing 180 2.130 
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• The fact that the optima are spread in a close range suggests that many optimum solutions 

have several parameters (decision variables) in common such as external glazing, window 

frame, facade type, window to wall ratio, and window blind type. Consequently, the 

mentioned variables show superiority over the rest of the variables. 

 

 

5.3 Optimization validation 

 

In order to verify the efficiency of the optimization algorithm, a random Pareto solution is selected 

from the Pareto front, and its annual energy consumption is compared to a sample base case 

building in which no retrofit optimization is performed. The base case. Building. 1 has a traditional 

concrete envelope and has not undergone any retrofit. Both building case. 1 (the base case) and 

building. 2 (the optimally retrofit) have the same building model, zones, activity, HAVC templates 

and so on. The mere distinction is that building. 1 is not retrofitted and building. 2 has undergone 

retrofitting by optimal renovation alternatives. Both buildings share the model was depicted in the 

figure. At the beginning of this chapter. Table 10 summarizes their respective annual energy 

consumption values. 

 

 

Table 10. Comparison of energy consumption of an optimally renovated building with a 

non-renovated 

Building Annual energy consumption (kWh) 

Renovated building. 2 with renovation 

scenario 5 

90580.51346 

Baseline building. 1 Non-innovative envelope 

 

141167.61 

 

 

As it can be noticed the optimized building manifests considerably lower energy consumption 

value proving that the optimization algorithm has been effective. 
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5.4 Summary 

In this chapter, the proposed model is implemented on a sample case building created in 

DesignBuilder followed by the validation of the optimization algorithm. 
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CHAPTER. 6 CONCLUSION 

 

 

 

6.1 Conclusion  

 

A non-dominated sorting genetic algorithm (NSGA-II) has been performed in this study to 

discover the optimum renovation solutions forming the trade-off between annual energy 

consumption and capital cost. The following results have been achieved: 

  

• 35% reduction in annual energy consumption after implementation of optimized  

sustainable renovations. 

• 9 optimum renovation alternatives were found which are capable of causing the 

abovementioned reduction rate. 

 

• The initial values for annual energy consumption and capital cost in the early generations 

have been respectively 105,500 kWh, and 506,000 GBP. While, they are reduced to 91,172 

kWh, and 470,160 GBP. This comparison reveals that the optimization algorithm was able 

to improve the alternatives 14.3 % in terms of energy consumption function, and 7% with 

respect to the cost function. 
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6.2 Research Contributions 

 

The research contributions are summarized as follow: 

1. Integration of fuzzy set theory to the simulation-based optimization to account for the 

uncertainty associated with the objective functions in the NSGA-II simulation-based 

optimization: 

 

• Fuzzy set theory is utilized to address the uncertainty pertaining to cost and energy 

consumption objective functions. 

• Defining fuzzy membership functions of the unit cost for all renovation alternatives. 

• Defining fuzzy membership functions of the u-value for all renovation alternatives. 

• The defuzzified unit cost and u-value parameters were transferred to simulation-based 

NSGA-II optimization to be utilized in the evaluation of fitness functions 

 

2. Use of innovative sustainable components as the renovation alternatives such as BIPV 

panels in external walls, PCM material, electrochromic glazing, etc.  

 

 

 

6.3 Recommendation for Future Work 

 

This research offers the following recommendations for future work: 

 

• The same model could be performed on a high-rise building, as the double facades and 

BIPVs are most efficient in high rise buildings.  

• Use of innovative components could be expanded to other building parts such as roof, as 

well as the inclusion of a wider range of innovative sustainable components.  

• In the optimization section, the environmental performance criterion can also be 

considered, leading to a Pareto surface of optimal solutions.  
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