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Abstract

Statistical Machine Translation of English Text to API Code Usages:
A comparison of Word Map, Contextual Graph Ordering, Phrase-based, and Neural Network Translations

Dharani Kumar Palani

Statistical Machine Translation (SMT) has gained enormous popularity in recent years as natural

language translations have become increasingly accurate. In this thesis we apply SMT techniques in

the context of translating English descriptions of programming tasks to source code. We evaluate

four existing approaches: maximum likelihood word maps, ContextualExpansion, phrase-based, and

neural network translation. As a training and test (i.e. reference translation) data set we clean and

align the popular developer discussion forum StackOverflow.

Our baseline approach, WordMapK, uses a simple maximum likelihood word map model which

is then ordered using existing code usage graphs. The approach is quite effective, with a precision

and recall of 20 and 50, respectively. Adding context to the word map model, ContextualExpansion,

is able to increase the precision to 25 with a recall of 40. The traditional phrase-based translation

model, Moses, achieves a similar precision and recall also incorporating the context of the input text

by mapping English sequences to code sequences. The final approach is neural network translation,

OpenNMT. While the median precision is 100 the recall is only 20. When manually examining the

output of the neural translation, the code usages are very small and obvious. Our results represent

an application of existing natural language strategies in the context of software engineering. We

make our scripts, corpus, and reference translations in the hope that future work will adapt these

techniques to further increase the quality of English to code statistical machine translation.
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Chapter 1

Introduction

Software developers construct software systems by reusing the functionality contained in software

libraries. These libraries allow access to their functionality through Application Programming

Interfaces (API). Each API consists of set of named functionality in the form of named functions

(i.e. actions) and classes (i.e. entities). Developers combine these named functions into API usages

to accomplish a wide range of tasks. Since not not all API usages are recorded in the official usage

documentation and programming guides, learning a new API is difficult [77, 73, 74]. To learn an

API developers turn to web based search engines such as Google, Yahoo, and Bing. However web

search engines are not designed for source code search and work based on the keywords found in the

input text[81].

To recommend an API usage for an English query, earlier works use Information Retrieval

(IR) techniques [84, 68, 76, 35]. However they are limited finding relevant code snippets instead

of generating potentially unseen translations of the query to code. Statistical natural language

translation[43] has been quite successful and has lead to commercial solutions, such as the translation

engines developed by Google and Microsoft [87]. One key benefit of the statistical machine translation

in natural languages is the ability to generate fluent translations with the use of a language model.

Hence compared to that of IR methods, the statistical approaches can synthesize new unseen code.

Previous machine translation works in a software context have use word based alignment models

(SWIM[69]), Recurrent Neural Network (RNN) (DeepAPI [30]), and context sensitive word mappings

(T2API [61, 60]) to translate English text into software code. Previous research has focused on

modifying a single SMT technique for English to code translation.

There are many exists, successful statistical machine translation systems. Our goal is to find the

right statistical machine translation system to synthesize source code from English text. This is the

first study to empirically evaluate multiple existing machine translation techniques on single set of
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Table 1: Reference translation from StackOverflow discussion post 13761367. English words such as

“GPS" map to related Locaation code elements.

Input text After NLP processing Reference translation

How to get Latitute

Longitude value

without using GPS

in Android?

latitut longitud valu latitud

gps devic network_provid

Location.Location Location.getLongitude

LocationManager.getLastKnownLocation

Location.getLatitude

LocationManager.LocationManager

Context.getSystemService

LocationListener.onLocationChanged

LocationListener.LocationListener

LocationManager.isProviderEnabled

LocationManager.requestLocationUpdates

reference translations. In our study we directly apply existing state of the art machine translation

approaches to translate English text to API call usages. We compare the performance of each

approach. We contrast our work with IR and suggest future work to modify SMT in the context of

software engineering tasks.

To create a common training and test set, we use the popular StackOverflow form which contains

discussions of software programming in both English and text. We clean and align StackOverflow

to create a common training and test set, i.e. a reference translation. Table 1 is a reference

translation, containing the input text, the text after stemming and other basic NLP processing, and

the corresponding code elements that are in the StackOverflow post. The reference translation shows

that the English words “without using GPS" should be related to the location API elements including

LocationManager.getLastKnownLocation().

We evaluate four existing machine translation techniques: WordMapK, ContextualExpansion,

Phrase-based, and Neural Network translation. Our baseline approach, WordMapK, uses a simple

maximum likelihood model to map the English input to K API code elements in the output. Since

the K elements are an unordered set, we use Nguyen et al.’s [60] GraphOrdering to provide an

appropriate sequence of elements. The precision and recall for WordMapK is 20 and 50, respectively.

The WordMapK model does not take the context of the English input into account. We use

the ContextualExpansion approach [60] to incorporate commonly co-occurring code elements. A

GraphOrdering is also used. The median precision and recall for ContextualExpansion is 25 and 40,

respectively.

Maximum likelihood translation models are not used in current machine translation. As a result,

2



we evaluated existing phrase-based Moses tool on English to code translation. In phrase-based

translation sequences of words are mapped to sequences of code. These sequences mean that the

context of sequence is taken into account. Moses achieves a precision and recall of 25 and 40. While

these values are the same as ContextualExpansion, a manual inspection of the translations shows

that ContextualExpansion suggests more code elements than Moses.

Neural network translation is the current state-of-the-art. We use OpenNMT to evaluate how

well neural translations can be applied to English to code translation. We find a median precision

and recall of 100 and 20, respectively. Unfortunately, the output is usually limited to a very small

and obvious API usage.

This thesis shows the results of using existing SMT approaches to translate English input to

API calls sequences. We conclude that existing SMT approaches have low precision and recall when

compared with other SE specific learning.

In order to test and measure the translation performance of machine translation systems, we

develop a simple web interface. The web console accepts English text from the user and returns

the translated API elements from each of the four SMT systems.1 The tool can also be accessed

programmatically through a REST API allowing others to send English input and obtain the

translated output. This facilitates the development of code suggestion tools for Integrated Development

Environments (IDE). Our tool could also be combined with other translation systems and IR

techniques to supplement the search output with potentially unseen code snippets suggestions.

This thesis is organized as follows. Chapter 2 discusses the mathematical background on the

statistical machine translation systems including word based, phrase based and neural network based

translation models. Chapter 3 presents the parallel corpus, SMT toolkits, and evaluation setup.

Chapter 4 presents the results. Chapter 5 discusses our results as well as the computational cost of

each approach, threats to validity and related work. Chapter 6 present the web portal. In Chapter 7

we provide brief closing remarks.

1CompareSMT: https://users.encs.concordia.ca/~pcr/CompareSMT.html
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Chapter 2

Background

Machine translation has been in existence from the early 1940s. The cold war boosted work in this

area as researchers looked for an automatic means of translation between English and Russian. The

work in statistical machine translation was started in late 1980’s in the IBM research laboratories.

The techniques were borrowed from speech recognition. The initial intent was to train a machine

with large parallel corpora of existing translation. There were two fundamental problems in the

statistical machine translation:

• Translation of words.

• Order words after translation to give correct phrases.

Both problems are addressed by building mathematical models[16, 14, 15]

2.1 Translation Probability

Inferential statistics are implicitly used in all statistical machine translation techniques. A simple and

intuitive model can be created by measuring the count of occurrence of words and their corresponding

translations in a parallel corpora. The translation counts are used to build a lexical translation

probability distribution by using the ratio of the counts. The probability distribution function that

returns a translation probability for a given word s from the source language, the choice of word t in

the target language which indicates how likely the translation is.

ps : t → ps(t)

This function will return a high value when the probability of translating the word s to word t is

quite common and a low value when such a translation is rare. The function returns 0 when there is

4



no translation. This method of estimation is called maximum likelihood estimation as it maximizes

the likelihood for each translation.

2.2 Alignment Function

The translation probability function produces translation tables (“T-Tables”) each word from the

source language is mapped to possible outcomes in the target language. A translation system need to

translate not just words but sentences. Sentences are translated using an alignment function which

maps the word from the source language in position i to a target language word at position j. The

alignments are defined as

a : j → i (1)

This alignment function is actually an inverse mapping function which map words in the target

language to the words in the position i of the source language. The alignment function does not

handle the following scenarios:

• Reordering - translation requires the words to be in different order.

• Addition of words - word in the source language requires more than one word in the target

language.

• Deletion of words - There is no correspondence between the words in the source and target

language.

To address the inclusion of words in the target language, a “NULL” token is added in the

source language. The lexical translation probabilities and the alignment function defined above was

implemented in the first statistical machine translation model namely the “IBM Model 1“ [15]. The

motivation for such a word based model is the difficulty in estimating the translation probabilities

for whole sentences as their occurrence in the corpus may be limited. The process of breaking up

the process of generating the data into smaller steps, modelling the smaller steps with probability

distributions, and combining the steps is called generative modelling

The translation probability of translating a sentence s = (s1, s2, . . . , sns) from the source language

to the sentence in target language t = (t1, t2, . . . , tnt) is defined in the IBM Model 1 as

p(t, a|s) =
ε

(nt + 1)ns

nt∏

j=1
p(tj |sa(j)) (2)

5



2.3 Expectation Maximization Algorithm

The previous section shows the translation probability when translating a sentence from source

language to target language. However when the corpora is not word aligned we do not have the

alignment probability function fully defined. The Expectation Maximization (EM) algorithm[25]

solves the problem by iteratively training the model according to the following:

• Initialize the model, typically with uniform distributions.

• Apply the model to the data (expectation step).

• Learn the model from the data (maximization step).

• Iterate steps 2 and 3 until convergence.

Since the word alignment is unavailable apriori, one simple strategy is to use uniform probability

distributions to initialize the model. This means that any word in a given source language sentence

has an equiprobable translation for all words in the target language sentence. Other ways to initialize

the model is to use random probabilities. In the expectation step, the model is applied to the data.

In the maximization step, the model is learned from the data. The learning of model takes place by

maximum likelihood estimation which uses the ratio of counts of the translation. The expectation

and maximization steps are run until there is improvement in the translation probabilities. The EM

algorithm has a guarantee that the perplexity of the model will not increase in every iteration and

hence will ultimately converge.

2.3.1 Language Models

The language model helps in generating a better translation of the target language given an unknown

set of words in the source language. The most common language model used is n-gram language

model. The most common n-gram language model used is the 3-gram model, which takes the two

previous tokens in predicting the next token. The estimation of 3-gram word prediction probabilities

p(w3|w1, w2) is predicted using a Markov Chain. We count how often in the training corpus the

sequence w1, w2 is followed by the word w3, as opposed to other words. The maximum likelihood

estimation is applied to the statistical data which computes probability of predicting the 3rd token

given two previous tokens.

p(w3|w1, w2) =
count(w1, w2, w3)∑
w count(w1, w2, w)

(3)

6



2.3.2 Noisy Channel Model

The Noisy channel model developed by Shannon [80] is used widely in speech recognition and

information theory. This approach provides a way to decode messages sent through a noisy channel

by reconstructing them using the language model. This analogy is applied in the statistical machine

translation as well. The translated sentence from the statistical machine translation is assumed to

have gone through a noisy channel which has added noise and it will be reconstructed correctly using

the language model of the target language. It is expressed mathematically as

arg max
t

p(t|s) = arg max
t

p(s|t)pf(t)
p(s)

= arg max
t

p(s|t)p(t) (4)

2.4 Phrase Based Models

Word based models face the problems of fertility, where one word in the source language maps to

none or many words in the target language. Hence we need to add or remove words in the target

language to achieve fluency, i.e. readable sentences. Also word based translation do not capture the

surrounding context of the sentence. Phrase based statistical machine translation was developed to

overcome these problems [43]. The benefit of phrase based models is that given a large corpora the

model can learn and translate sequences of words, i.e. phrases. The phrases in the phrase based

translation are just sequence of words. These phrases are statistically selected without any syntactic

or other specific linguistic significance. Phrase based translation selects the best translation for a

target language given the source language input sentence according to the following:

tbest = arg max
t

p(t|s) = arg max
t

p(s|t)pLM (t) (5)

The p(s|t) is further decomposed into

p(s̄I
i=1|t̄I

i=1) =
I∏

i=1
φ(s̄i|t̄i)d(starti − endi−1 − 1) (6)

The phrases are reordered in the target language by applying a distance based reordering model.

The reordering distance is the number of words skipped during translation. The reordering function

is defined with a exponential decay cost function with a value α that makes the resulting function a

proper probability distribution function.

d(x) = α|x| (7)

The reordering function penalizes the movement of words over long distances. The phrase

extraction process will look into the word alignment between the source and the target language,

7



find all possible phrases in the target language and finding the minimal source language phrase that

matches each of them [43].The model is trained on phrases of arbitrary length. Moses by default

build phrase tables with phrases of maximum length 7. Moses documentation suggests that the

optimal number of words in a phrase is 3. For each sentence pair, multiple phrase pairs are extracted.

Then a count of how many sentence pairs a particular phrase pair is present is computed and stored

count(t̄, s̄). Finally, the phrase translation probability φ(t̄, s̄) is estimated by the relative frequency.

φ(s̄|t̄) =
count(t̄, s̄)∑

s̄
i
count(t̄,s̄i)

(8)

The phrase based translation model is derived as

ebest = arg max
t

I∏

i=1
φ(f̄i|ēi)d(starti − endi−1 − 1)

|e|∏

i=1
PLM (ei|e1...ei−1)

(9)

This model consists of three components

• Phrase Translation Table - Foreign phrases matching the target language words

• Reordering Model - which helps to order the phrases

• Language Model - to help with fluency

2.5 Machine Translation using Neural Networks

Artificial Neural networks is a machine learning technique which is inspired by biological neural

networks. They take several inputs and predict outputs. The first models for statistical machine

translation using neural networks were derived during 1980’s and 1990s. Neural network were limited

in this era because of their computational complexity and the lack of computational resources.

The modern neural network based machine translation was first done by Schwenk [79]. Neural

machine translation (NMT) have increased in popularity, and in 2017 at the Conference on Machine

translation all the machine translation models used neural networks. NMT differ from the phrase

based translation systems in that there is a single large system that is used for learning and decoding,

whereas in the phrase based translation system there are several components that requires separate

tuning.

NMT is different from the phrase based machine translation system in that they use vector

representation for words and internal states. There is a simple model and no separate models such
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as language model, translation model and reordering model as observed in the phrase based or word

based machine translation systems.

The most common approach used in the neural machine translation is encode-decoder architecture

[82, 19, 32] with an encoder and a decoder used for each language which is called the Recurrent

Neural Networks (RNN) Encoder-Decoder first proposed by [82] and [19]. In this framework, an

encoder scans the input sentence x = (x1, ..., xTx) and convert it into a vector. The transformation

functions used are

ht = f(xt, ht−1) (10)

and

c = q(h1, ..., hTx) (11)

Here htεR
n is the hidden state at the time instance t and c is the vector obtained from the

sequence of hidden states. The choice of functions (f and q) used depends on the type of the RNN

Encoder-Decoder. In general a softmax function is used. The decoder is trained to predict the next

word yt′ given the context vector c and all the previously predicted words y1, ..., yt0−1. This is the

joint probability of the previously predicted words as given in the following equation

p(y) =
T∏

t=1
p(yt|y1, ..., yt−1, c) (12)

Where this conditional probability is modelled as given in the equation below

p(yt, ..., yt−1, c) = g(yt−1, st, c) (13)

The function g is the function which outputs the probability of yt using the hidden state of the

neural network represented in st and the context vector c.
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Chapter 3

Methodology and Data

3.1 Transforming StackOverflow into a Parallel Corpus

StackOverflow is a forum where software developers post and answer programming questions [88, 1].

We treat StackOverflow as a bilingual corpus as it describes programming tasks in two languages:

English and a programming language, e.g., Java. For example, in Figure 1 we see the StackOverflow

post #13761367 that asks the programming question, “How to get Latitude Longitude value without

using GPS in Android?” In the answer post in Figure 2, the author describes in English how to use

the code elements LocationManager and Location.getLatitude().

StackOverflow is not a parallel corpus. Such a corpus would require a documents that contain

the exact same content in two languages. For example, the proceedings of the Canadian Parliament

includes a human generated transcript in both English an French. In previous works, we have

documented and resolved much of the noise and lack of balance between code and English [70].

In this work, we provide an overview of the techniques. Our goal is to create a parallel corpus

from StackOverflow which aligns the English parts of the post with a corpus that contains the code

elements from the same post.

3.1.1 Automatically extracting code elements from posts

To build this parallel corpora, we process 236, 919 posts from StackOverflow (SO) [61] using Rigby

and Robillard’s ACE tool [72]. ACE can extract code elements from freeform text and code snippets

that do not necessarily compile. ACE identifies type and package information from code elements in

freeform texts and incomplete code snippets. ACE extracts APIs embedded within texts. It removes

stopwords such as (a, the) from the posts and extracts keywords/keyphrases (latitude, longitude, without.

The parallel corpus was prepared using the collection of pairs in which each pair consists of a textual
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Figure 1: Example of StackOverflow question post #13761367

Figure 2: Answer post on StackOverflow #13761367

description (excluding the code elements in the text and the code snippet) and the set of extracted

code elements from both places.

For example, in Figure 2 the extracted English terms include “latitude longitude value”, “without

using the GPS”, and “use Network Provider”. The corresponding set of code elements include

Location.Location, Location.getLongitude, LocationManager.getLastKnownLocation, and Location.getLatitude.

The English terms from each post are placed in the English corpus and the code elements are

placed in the code corpus. The two corpora are aligned on the post. We measure the quality of

each sentence pair (in our case English and code elements) by measuring their balance i.e number of

words in English text to code elements. We ignore the SO posts which have an imbalance in the

number of words to code elements. This parallel corpus is used to train each of the SMT techniques.

The corpus can be obtained from our replication package [66].

3.1.2 Reference translations

A reference translation is a human generated parallel corpora used as a test set to evaluate the

performance of machine translation systems. In the context of translating natural languages, a
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human generated transcript is used. For example, to evaluate machine translation systems for

translating natural language text from English to French and vice-versa, the human generated

transcript containing the proceedings of the Canadian parliament [21] discussion in both English

and French is used as a reference translation. Similarly proceedings from European parliament [41]

is used as parallel corpus to test the performance of the machine translation systems for several

European languages.

In our study we manually prepare a reference translation using English text and code elements

from the StackOverflow posts. We use this parallel corpus as the test set to evaluate different SMT

approaches in this paper. We randomly select 240 posts from StackOverflow to prepare this parallel

corpora. To prepare English text in the parallel corpora, we take text from the title (i.e question)

and discussions surrounding the positively voted and accepted answers. We apply NLP techniques to

the English text such as stemming and stop word removal. Table 2 shows query after the stemming

and stop word removal steps.

To prepare code elements in the parallel corpora, we extract code elements from the positively

voted and accepted answers in the SO post using ACE Tool and RECODER. For some StackOverflow

posts, we manually curate the code elements by referring the source code in the positively voted and

accepted answers. This is because in some SO posts, code elements are described in the text and

code snippets might not represent a solution in entirety.

Figures 1 and 2 is one of the SO post in our reference translation corpora. Table 2 gives the

details of the input text used in the post and the code elements taken from the positively voted and

accepted answers. The reference translation contains the key classes and methods that needs to be

invoked to retrieve the current location without the use of GPS provider.

As we have discussed in previous work, StackOverflow requires substantial cleaning for training

an SMT model [70]. Unlike this training set, the reference translation in SMT is normally manually

created. As a result, we use the a random sample of 240 posts that were manually validated as our

reference translation set. The reference translations can be found in our replication package [66].

3.1.3 Tuning Set

The machine translation systems requires one additional parallel corpora to tune the parameters

and find the optimized weights of the trained models. This parallel corpora is called tuning set or

validation set. The validation set is used to evaluate the convergence of the training. The trained

model that achieves lowest perplexity on the validation set is in general considered the best translation

model. Synonymous with the reference translations, the tuning set is also human generated. There

are several tuning algorithms used in machine translation systems.

The SMT uses one of the two classes of tuning algorithms: batch and online. In batch tuning,
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Table 2: Example of a reference translation. The input English text describes the code elements in

StackOverflow post #13761367

Query After NLP processing Reference translation

How to get Latitude

Longitude value

without using GPS

in Android?

latitut longitud valu latitud

gps devic network_provid

Location.Location Location.getLongitude

LocationManager.getLastKnownLocation

Location.getLatitude

LocationManager.LocationManager

Context.getSystemService

LocationListener.onLocationChanged

LocationListener.LocationListener

LocationManager.isProviderEnabled

LocationManager.requestLocationUpdates

the entire tuning set is decoded and new weights are calculated in an iterative process until a

convergence. In online tuning, each sentence pair is decoded, then the new weights are updated

before the decoding the next sentence. Both algorithms iterate over the tuning set several times

before a convergence is reached. Moses has configuration parameter to select the tuning algorithm,

with the default being Minimum Error Rate Training (MERT) [64]. The other tuning algorithms

available with Moses includes Lattice MERT [51], PRO [36], MIRA [83] and Batch-MIRA. Schuth [78]

and Neubig et al. [58] did an exhaustive study of the tuning algorithms used in various machine

translation systems.

In our study we use tuning set with Berkeley Aligner, Moses and OpenNMT. We manually curated

a tuning set from a random sample of 4870 SO posts. Similar to the test set discussed in Section 3.1.2,

we prepared a parallel corpora of English text and code elements from the StackOverflow posts for

the tuning set.

3.2 Building the Language Models

In the previous section we described how we create an aligned parallel corpus. In this section we

describe the toolkits that we used to build an language model for each SMT technique:

• Berkeley Aligner, to build word based maximum likelihood alignment model.

• Graph Based API Synthesis (GraSyn) [61] to perform GraphOrdering using set of code elements

as input from Berkeley Aligner alignment model.

• Moses toolkit to perform phrase based machine translation using phrases.
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• OpenNMT toolkit to perform neural machine translation with Recurrent Neural Networks

(RNN).

3.3 Berkeley Aligner and Maximum Likelihood alignments

Berkeley Aligner [46, 26] is an unsupervised symmetric word aligner. The theory behind the maximum

alignment translations was discussed in Section 2. It works on the principle that jointly training

two simple asymmetric models will minimize the Alignment Error Rate(AER). This uses a joint

training approach whereby the intersection of the two independent directional trained models reduce

the overall AER and eliminate the need for garbage collecting rare words. The joint training is

done by this agreement, hence it is called alignment by agreement. The Berkeley Aligner is written

in Java and far easier to configure and execute than Giza++ [65], the only other available IBM

maximum likelihood Model implementation. We use the Berkeley Aligner to obtain the maximum

likelihood translation and alignment probabilities for our corpus. Building on the Berkeley Aligner,

we evaluated the following two algorithms: WordMapK and ContextualExpansion.

3.3.1 Simple WordMapK Algorithm

WordMapK is a naive machine translation approach and serves as a simple baseline in this paper.

Using the translation probabilities from the Berkeley Aligner we build a decoding scheme whereby

each word of the English query is mapped to the top K code elements. The implementation simply

involves ordering the translation probability table in descending order by the probability distribution

function. We translate by picking the code elements for each word in the English query and performing

a lookup in the table that fetches the top K code elements. The words are stemmed and keywords

are extracted before the translation process. This simple algorithm is easy to implement and test

but has major shortcomings. The context of the words in the English query is lost in the translation.

This simple mapping also provides many irrelevant code elements for consecutive words. For instance,

the input "write to a file", after eliminating stop words and extracting keywords would yield "write

file". If we pick top K elements for the word "write" will map to both

tt File.write() as well as the incorrect Socket.write().

We measure the precision and recall by varying the value of “K” in the WordMapK algorithm.

The parameter “K” defines the number of elements to pick from the translation probability table for

each word in the input text. We use 5, 7, 10 and 15 for the “K” value and analyze the outcome.
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3.3.2 ContextualExpansion Algorithm

To overcome some of the drawbacks of WordMapK, the ContextualExpansion [61] algorithm identifies

the pivotal code elements as those with mappings to the English words in the input. The words

are used as a context to derive the pivots. The ContextualExpansion algorithm considers two

contexts (word and Code elements). For word context, the next word to be translated must have

the highest relative co-occurrence frequency with all the previously translated words in the query.

For code context (dependency among elements that were already collected), the next element must

have the highest relative co-occurrence frequency with all code elements that were already selected.

Continuing our example, the input text “Write to a file" would map to File.write() only and not

to the incorrect Socket.write() because the pivots consider the context “Write” and “file” in the

input text. A further expansion is performed based on the mapped code elements. For example,

since the element File.write() is already selected, there is a strong likelihood that File.close()

will be need, so it is added to the the expanded mapping. The full details of the approach can be

found in Nguyen et al. [61].

The ContextualExpansion algorithm had a tuning parameter K similar to WordMapK (top K

elements from the translation probability table). We evaluated the performance of this algorithm by

varying the K with (5, 7, 10, 15).

3.3.3 Ordering the code into a graph

English is read in a sequential left-to-right manner. In contrast, code is ordered according to a data

and control flow graph or tree in the form of Abstract Syntax Tree (AST) [37]. To re-order the output

of these simple word mapping models, a code only language model is created by mining the graphs

of 556 existing android projects using GrouMiner [63]. GrouMiner stores the frequency of occurrence

of each code graph during the mining process. The code graph represents the code elements that

occur together with control and data dependencies.

To order the code elements from the word map model, we use Graph Based API Synthesis

(GraSyn) [61] which takes as input a set of code elements and produces a code graph. A beam search

is used to generate the code graph that has the highest probability of occurrence in the training

database with the given input set of code elements from the mapping models. GraSyn will eliminate

nodes which make the overall graph less probable. Since the graph is built by adding one element at

a time, GraSyn is not simply a search engine. Indeed 85% of the synthesized graphs do not exist as a

whole in the training data, thus, cannot be found by code search. The full details can be found in

Nguyen et al. [61].

Without the GraphOrdering stage the number of incorrect elements was high. As a result, we
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only show the WordMapK and ContextualExpansion results after GraphOrdering. The results before

GraphOrdering can be found in the figures and tables in the replication package [66].

3.4 Phrase based translations with Moses

Moses [42] is an implementation of the phrase based machine translation approach the theory of

which were discussed in Section 2.4. It also supports hierarchical phrase based machine translation

and factored machine translation. Moses has two components: the training pipeline and the decoder.

The training pipeline is a collection of utilities which help improve the quality of the bitext. We use

these utility scripts for tokenizing, true casing, and cleaning to eliminate noise in our parallel corpora.

The cleaning script also removes misaligned translations such as long and empty sentences.

Moses then uses the IBM models (Giza++ [65]) to create word alignments and then extracts

phrase based translations through probability estimation. A tuning process add weights to the

translation system to improve the translation quality. The tuning process involves finding the weights

that maximize translation performance on a small set of parallel corpora, the tuning set. The default

tuning algorithm, which we use in this paper, is Minimum Error Rate Training (MERT) [64]. MERT

is a batch algorithm which requires the whole tuning set to be decoded and model weights updated.

The tuning set is then re-decoded with the new weights, the optimization is repeated until the

convergence criterion is satisfied. To improve fluency, Moses uses KenLM [31] to adjust the language

model for output in the target language. This language model is used by the decoder to produce

fluent output for the translation. We set the word length of the parallel corpora to 80 words to filter

out the misaligned translations.

In our context, the aligned StackOverflow corpus is used to train the model. The posts in the

reference translation are translated from the English inputs into a sequence of code elements.

3.5 Neural SMT with OpenNMT

The research into neural machine translation has resulted in many tools including GroundHog [28],

lamtram [57] and tensorflow-seq2seq. However, the stability and documentation is often poor. We

selected the widely used OpenNMT [39] deep learning framework, which is used in machine translation,

speech recognition, and image processing. The theory behind neural sequence to sequence learning

models is discussed in Section 2.5. OpenNMT has important features built into its implementation:

• Scripts to support corpus cleaning such as tokenization and word embedding.

• A gated RNN architecture[34, 20].
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• Several layers of stacked recurrent neural networks[82].

• Input feeding [50], which entails feeding the previous attention vector back into the input as

well as the predicted word.

• Decoding using beam search with support for multiple hypothesis target predictions.

OpenNMT has three implementations for three different implementations namely LuaTorch,

PyTorch and TensorFlow. In our study we use the LuaTorch version as it is a full-featured,

production ready product. Neural machine translation systems are computationally expensive and

requires one or more Graphics Processing Unit (GPU) to perform the training and tuning of the

NMT models. In the absence of GPUs, the training utilizes the Central Processing Unit (CPU).

However with CPU’s, the training time is several fold slower.

We setup a virtual machine in the Google cloud infrastructure with 4 Nvidia K80 GPU. The

encoder layer of the RNN has 4 layers and the decoder has 8 layers. The size of the neural net is 512

nodes. Each graphics processing unit had about 12 GB of memory and the server had 8 virtual CPU

cores with 30 GB of memory. The training was configured for 30 epochs with each epoch spanning

10, 000 iterations totalling approximately 300K iterations. The training program ran for about 4

days in this configuration and completed the 30 epochs which we have configured. We measure the

translation performance by changing the beam search width parameter during the decoding process.

OpenNMT uses beam search [40] during decoding process. We ran the OpenNMT decoder with two

different beam search width parameter. One with the default value of 5 and another decoding by

increasing the beam-width to 10 to identify whether the beam-width has an impact on the predictive

capability of the decoder. We discuss the results in the section 4.4.

3.6 Ensemble Approach

Ensemble methods is a technique used in statistics and machine learning to combine multiple learning

processes to enhance the overall predictive outcome. Dietterich [27] lists three reasons to apply

ensemble learning, namely “statistical”, “computational” and “representational”. Inspired by this

ensemble learning, we combined the outputs from different translation systems and measure the

performance. For instance we combined the mapping output of the WordMapK translation scheme

with NMT and studied how the effective system perform. We discuss the results in the Section 4.5.

The commonly used ensemble algorithms are “bagging” [13], “boosting” [29] and “stacking” [89].

In “bagging”, different classifiers are trained on randomly selected datasets and then combined.

The subset of training data sets are randomly selected with replacement from the entire training data

set. The ensemble is then obtained by combining the classifiers in which the class that is most voted
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by the classifiers is treated as the ensemble decision. In “boosting” technique, ensembles are created

by resampling of the training data and the decision is obtained by majority voting. In “stacking” the

ensembles of classifiers are trained using bootstrapped samples of training data and the outputs are

trained again in a different classifier, in that the ensembles is formed as stack. We follow a similar

approach to “stacking” in that we combine the translated code elements from the different machine

translation schemes and then apply GraphOrdering.

3.7 Evaluation Setup

We present the data set and our evaluation details in this section. We use three data sets to evaluate

each machine translation system.

• Training data set - a parallel corpus built using the ACE tool with the text and code elements

from 236, 919 SO posts.

• Tuning data set - manually curated parallel corpus built with the text and code elements from

4870 SO posts.

• Validation data set - selected reference translations of text and code elements from 240 SO

posts.

The training data set is used to build the translation model in the machine translation system.

The tuning set is used to optimize the weights and tune the trained model. The validation set

is used to evaluate the performance of each machine translation scheme. After the training and

tuning process, we use the machine translation system toolkit to translate every input text from the

validation set and store the code elements translated by the translation systems in a file corresponding

to each input text. We compare this translated code elements with our reference translation in the

validation set. For each reference translation from the StackOverflow post, we compute the precision

and recall for the code elements in the post. We use the following standard formulas to compute

precision and recall.

precision = (tp/(tp + fp)) ∗ 100 (14)

recall = (tp/(tp + fn)) ∗ 100 (15)

Table 3 below shows how we compute precision and recall with for a post. In the example

translation presented in Table 3, there are 4 true positives and 1 false positive out of the 5 code

elements in the candidate translation. Hence the precision value is 80. There are 8 false negatives in
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Table 3: Example calculation of Precision and Recall. True positives are highlighted in bold. 4 TP

and 1 FP out of 5 code elements leads to a precision of 80%. There are 8 FNs for a recall of 33%

Reference translation Candidate translation Precision Recall

Environment.getExternalStorageDirectory

File.mkdirs File.File

Environment.Environment

File.exists File.createNewFile

String.String

OutputStreamWriter.append

OutputStreamWriter.OutputStreamWriter

FileOutputStream.FileOutputStream

OutputStreamWriter.close

FileOutputStream.close

Environment.Environment

File.File

Environment.getExternalStorageDirectory

FileOutputStream.FileOutputStream

Intent.Intent

80 33

the candidate translation (i.e these code elements are missed by the translation system), hence the

recall is 33.33.

We plot the distribution of precision and recall values for the 240 reference translations using a

violin plot. A violin plot combines a boxplot and a density plot (shown horizontally). The boxplot is

represented as the box in the middle of the distribution. The bottom of the box is the 25th percentile

and the top is the 75th. The vertical line is the median. The violin plot on top is precision and

recall is on the bottom. Since precision and recall values are skewed for each reference translation,

we discuss the median values in the text.
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Chapter 4

Results

In this section we present the precision and recall results for each machine translation approach.

As an illustrating example, we use the English to code pair presented in Table 2 to contrast the

outcomes of the translation systems. The code output for each reference translation can be found in

our replication package [66].

4.1 Results for WordMapK

The WordMapK algorithm is a simple maximum likelihood mapping between each English input

word and the most probable K code elements. The translation probability table is derived using the

Berkeley Aligner. This algorithm is naive and very easy to implement and serves as a baseline to

compare the other approaches.

Figure 3 shows the distribution of precision and recall for K = 5 and 15 with GraphOrdering.

For GraphOrdering we consider K for which we had high precision and recall in the mapping stage.

Table 5 summarizes the precision, recall with GraphOrdering. The median precision and recall for

K = 5 is at 20 and 50 respectively. For K = 15 the precision decrease to 8, while recall increase to

66.

Table 4 gives the output of the WordMapK algorithm with K = 5 for the input from the test set

shown in Table 2. We include the translated code elements from the WordMapK algorithm along

with the GraphOrdering stage. The WordMapK algorithm maps the important classes that are used

in the reference including LocationManager, Location, LocationListener. We also observe that WordMapK

algorithm maps many of the correct methods including Location.getLatitude(), Location.getLongitude(),

LocationManager.requestLocationUpdates() which are essential to answer the question, “How to get

Latitude Longitude value without using GPS in Android?”.

There are many code elements in the translation which are out of context. For instance String,
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Table 4: WordMapK output for K = 5 : Code elements for an English text from the reference

translation, i.e. true positives, are in bold. While WordMapK captures many correct elements it

also suggest generic code elements.

WordMapK Output GraphOrdering Output

LocationManager.LocationManager

Location.Location Location.getLatitude

Location.getLongitude Context.getSystemService

LocationListener.LocationListener

LocationManager.requestLocationUpdates

LocationManager.getBestProvider

Context.Context String.String

LocationManager.removeUpdates

SharedPreferences.SharedPreferences

Toast.makeText Log.Log EditText.getText

Integer.Integer String.valueOf

PackageManager.PackageManager

Address.Address Geocoder.getFromLocation

Double.Double Build.Build ArrayList.size

LocationManager.LocationManager

Location.Location Location.getLongitude

Location.getLatitude

Context.getSystemService

LocationManager.requestLocationUpdates

String.valueOf Context.Context String.String

LocationManager.removeUpdates

Table 5: Median Precision and Recall of WordMapK with GraphOrdering

K Value Precision Recall

5 20 50

15 8 66
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Figure 3: WordMapK with GraphOrdering precision and recall distributions

22



Table 6: Median Precision and Recall of contextual expansion with GraphOrdering

K Value Precision Recall

5 25 40

7 18 42

10 13 50

15 10 50

Integer, String.valueOf(), SharedPreferences, EditText.getText(), Toast.makeText(). We analyze the translation

probability table in the Berkeley Aligner and found that the top 5 translations for the keyword “value”

that is present in the input text are String, Integer, String.valueOf, SharedPreferences, EditText.getText.

We also see several other translations such as Double, ArrayList.size(), Log.Log(), Context, though they

were not present in the reference translation data set, these are most common code elements used

in solving many software engineering tasks, particularly in Android application development. For

instance, considering the translation task, we know that “latitude” and ”longitude” are typically

stored in a Double variable, hence they are present in our translations even though they are not

present in the reference translation.

The GraphOrdering step is essential because it removes the noise inherent in the simplistic

WordMapK algorithm. The GraphOrdering eliminates nodes which make the overall set of code

elements less probable. Returning to our translation example in Table 4, we see that generic code

elements including SharedPreferences, EditText.getText(), Integer are pruned. Despite removing some

code elements, others that are commonly associated with the input text are retained even though

they are not in the reference translation, including String, LocationManager.removeUpdates(). The output

for all the reference translations can be found in our replication package [66].

WordMapK uses a simple maximum likelihood model to map each English word in the input

to K code elements in the output. The elements are then ordered into a graph. The median

precision and recall for K = 5 is 20 and 50.

4.2 Results for ContextualExpansion

The ContextualExpansion algorithm considers the context of the keywords in the input and maps them

to an expanded set of code elements (See Section 3.3.2 for details on the algorithm). Nguyen et al. [61]

designed this algorithm to overcome the lack of context in the simple likelihood translation table

mapping used in WordMapK. The expansion, which is based on earlier translated code elements, takes

the software engineering context into account, such as File.open() frequently occurs with File.close().
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Figure 4: Contextual Expansion with GraphOrdering precision and recall distributions

24



Table 7: Output of ContextualExpansion (K = 5) Code elements for an English task from the

reference translation, i.e. true positives, are in bold. ContextualExpansion finds code elements that

are relevant to the context of the input text.

Contextual Expansion Output Contextual Expansion with GraphOrdering

Context.getSystemService

Location.Location Location.getLatitude

Location.getLongitude

LocationManager.LocationManager

LocationListener.LocationListener

LocationManager.requestLocationUpdates

LocationManager.getLastKnownLocation

LocationListener.onLocationChanged

LocationManager.isProviderEnabled

List.List Service.Service

Geocoder.Geocoder Double.Double

LocationManager.removeUpdates

Criteria.Criteria

LocationManager.getBestProvider

ArrayList.size EditText.getText

LocationManager.LocationManager

Location.Location Location.getLongitude

Location.getLatitude

LocationManager.getLastKnownLocation

LocationManager.isProviderEnabled

LocationManager.requestLocationUpdates

LocationManager.removeUpdates

Table 8: Comparing Precision, Recall WordMapK and CE algorithms

WordMapK with GraphOrdering CE With GraphOrdering

K Precision Recall Precision Recall

5 20 50 25 40

15 8 66 10 50
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Figure 4 shows the distribution of precision and recall of the ContextualExpansion algorithm

with GraphOrdering. Table 6 shows the median precision and recall for K = 5, 7, 10, and 15 with

GraphOrdering. The median precision is highest for K = 5 and recall is highest for K >= 10. The

best balance is K = 5 with precision and recall values of 25 and 40. The ContextualExpansion

algorithm outperforms WordMapK for both precision and recall as shown in Table 8.

To put the results in context, from Android GPS translation example, we can see in Table 7 that

ContextualExpansion correctly identifies all 10 code elements including the Location.getLatitude(), Loca-

tionManager.getLastKnownLocation() method calls. However, it identifies 9 code elements that are not in

the reference translation, including the Geocoder, List classes and the LocationManager.isProviderEnabled(),

EditText.getText(), ArrayList.size() method calls. Although these code elements are not in the reference

translation, they are commonly associated with the English word “Location" as many developers loop

through a list of locations or read the text from the “EditText” (i.e textbox) component to obtain a

location. On the right side of Table 7 we see the output after GraphOrdering. In this case, 7 of 10

elements are correct. The only incorrect element is the LocationManager.removeUpdates() method, which

is commonly used by developers to unsubscribe from location updates from the LocationManager. In

contrast to WordMapK, the ContextualExpansion algorithm does not translate out-of-context code

elements. For example, the WordMapK algorithm translate 5 incorrect code elements, including String,

SharedPreferences, Toast.makeText(), Integer which are generic Android code elements. The incorrect

elements translated by ContextualExpansion are those that are useful in the context of location and

GPS, including LocationListener.onLocationChanged(), LocationManager.isProviderEnabled(). The output for

all the reference translations can be found in our replication package [66].

ContextualExpansion uses the WordMapK model but incorporates the context of commonly

co-occurring code elements. The elements are ordered into a graph. The median precision and

recall for K = 5 is 25 and 40. ContextualExpansion accounts for context which improves the

precision at the expense of recall when compared with WordMapK.

4.3 Results for Phrase Based Machine Translation

The phrase-based machine translation is an extension of word based models with the translation

probabilities constructed using phrases (chunks of words). The sequence of code elements are

translated from the sequence of English text by mapping the alignment of chunks of text and code

elements. The phrase-based machine translation system has implicit reordering capability to generate

sequence of words in the target language. Phrase-based translation requires repetition of phrases in

the parallel corpora to achieve good translation quality.

Table 9 shows the translated set of code elements for the input text in Table 2. We see that
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Table 9: Output of Moses. Code elements for an English task from the reference translation, i.e.

true positives, are in bold.

Reference Translation Translated code elements

Location.Location Location.getLongitude

LocationManager.getLastKnownLocation

Location.getLatitude

LocationManager.LocationManager

Context.getSystemService

LocationListener.onLocationChanged

LocationListener.LocationListener

LocationManager.isProviderEnabled

LocationManager.requestLocationUpdates

LocationManager.LocationManager

Location.Location Location.getLatitude

Address.getLocality String.String

Context.Context Address.getAddressLine

Geocoder.Geocoder

0 20 40 60 80 100

Precision (Top) / Recall (Bottom)

Figure 5: Moses precision and recall distribution
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Table 10: Comparison of Moses with CE and WordMapK algorithms. The true positives are

highlighted in bold

Input text
WordMapK (K = 5)

with GraphOrdering

ContextualExpansion

(K = 5)

with GraphOrdering

Moses Output

play media

file continuously

MediaPlayer.MediaPlayer

MediaPlayer.setDataSource

MediaPlayer.start

MediaPlayer.stop

View.View

MotionEvent.MotionEvent

MediaPlayer.release

MotionEvent.get

ActionView.setOnClickListener

MediaPlayer.MediaPlayer

MediaPlayer.start

Log.d

Intent.putExtra

Toast.Toast

Toast.makeText

MediaPlayer.MediaPlayer

Log.d

View.View

Sending email on

android via default

email application

Intent.Intent

Intent.putExtra

Context.Context

Intent.addCategory

Context.startService

Intent.setType

Intent.createChooser

Uri.Uri

Uri.parse

Activity.startActivity

Intent.putExtra

Intent.setType

Intent.createChooser

Intent.Intent

Intent.putExtra

Intent.setType

Intent.createChooser

Android Crop

Center of Bitmap

Bitmap.Bitmap

Bitmap.createBitmap

Bitmap.getWidth

View.View

Intent.putExtra

Intent.setDataAndType

Canvas.drawBitmap

View.getHeight

Display.getWidth

Intent.setType

TextView.TextView

TextView.setGravity

Display.Display

Intent.Intent

Bitmap.createBitmap

Bitmap.getWidth

Bitmap.Bitmap

Bitmap.getHeight

Canvas.Canvas

View.getHeight

Matrix.Matrix

Matrix.postScale

Canvas.drawBitmap

View.getWidth

Bitmap.createBitmap

Bitmap.Bitmap

Bitmap.getWidth

Bitmap.getConfig

Canvas.Canvas

String.String

RelativeLayout.RelativeLayout

Canvas.drawBitmap

Bitmap.copy

Bitmap.createScaledBitmap

Bitmap.Config
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Moses translates less code elements when compared to the ContextualExpansion and WordMapK

algorithm for the same input text. Moses is able to translate only 3 code elements out of the 10 code

elements from the reference translation. We see that Moses is able to predict code elements such

as Geocoder class and Address.getAddressLine(), Address.getLocality() methods which are relevant to the

“Location” keyword.

Figure 5 shows the results of precision and recall at the output of Moses. We analyzed the

sequence of code elements translated by Moses for each of the input text from our validation data set

and observed that length of the translated code elements is less than that of naive WordMapK and

ContextualExpansion algorithms with graph ordering. The median precision and recall is 25 and 40

respectively for the entire set of reference translations.

We compare the output from WordMapK and the ContextualExpansion algorithms with Moses.

We observe that although the overall precision and recall is similar for Mosses and ContextualEx-

pansion, the sequence of translated code elements for Mosses is much more limited. As a result, in

Table 10 we present three additional reference translations to help compare phrase based machine

translation with ContextualExpansion and WordMapK algorithm. The output for all the reference

translations can be found in our replication package [66].

The first example in the Table 10, the question is how to “play media files continuously?” We

find that WordMapK and ContextualExpansion algorithms are able to translate relevant code

elements including MediaPlayer.setDataSource(), MediaPlayer.start(), MediaPlayer.stop() along with the

class MediaPlayer whereas Moses is able to translate only the class without any methods. Moses is

unable to find likely code elements which coexists with MediaPlayer class. In the second example,

which describes sending email with the default application, we find that Moses is able to translate

two code elements namely the Intent class and the Intent.putExtra() method. These are very common

code elements for Android. ContextualExpansion provides a more accurate translation adding the

Uri.parse() method. In the third example, which describes cropping a bitmap, all three approaches find

the Bitmap.getWidth(), Bitmap.createBitmap() methods coexisting with the Bitmap. ContextualExpansion

is able to also correctly identify Bitmap.getHeight() which is commonly associated used when both

width and height are required.

We hypothesize that Moses is able to translate the coexisting code elements and relies upon the

occurrence frequency of the co-occurring code elements (i.e phrases) in the parallel corpora to perform

the translations. From Table 10 we see that Moses is able to translate code elements from English

text with similar precision to that of ContextualExpansion with GraphOrdering. In terms of the

median precision on the overall validation data set, Moses performs better than the naive WordMapK

algorithm and is competitive with the ContextualExpansion algorithm with GraphOrdering.
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Table 11: Output of OpenNMT. Code elements for an English text from the reference translation,

i.e. true positives, are in bold.

Reference Translation code elements Translated code elements

Location.Location Location.getLongitude

LocationManager.getLastKnownLocation

Location.getLatitude

LocationManager.LocationManager

Context.getSystemService

LocationListener.onLocationChanged

LocationListener.LocationListener

LocationManager.isProviderEnabled

LocationManager.requestLocationUpdates

Location.Location

Table 12: Median precision and recall in OpenNMT

Beam-width Precision Recall

5 80 20

10 100 20

Phrase-based translation translates sequences of words. As a result, English phrases are mapped

to code phrases. The median precision and recall is 25 and 40. Phrase-based translation and

ContextualExpansion produces similar translated outputs.

4.4 Results for Neural Machine Translation

OpenNMT uses artificial neural networks and deep learning to perform the sequence to sequence

translation. Neural machine translation is the current state-of-the-art for machine translation and

is used by Google, Microsoft, and Yandex [12]. NMT has shown significant improvements in the

translation quality and is well suited for sequence to sequence translation [10]. The target language

sequence prediction is based on complete source sentence and the target sentence that has been

produced already. We expect neural machine translation to translate long sequence of code elements

with high precision.

OpenNMT uses beam search [40] during translation process. Beam search algorithm uses a width

parameter to limit the search space. We evaluated OpenNMT toolkit with two different beam search
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Beam Width 5

Beam Width 10
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Figure 6: Neural Machine Translation precision recall distribution
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width parameter. One with the default value of 5 and another by increasing the beam-width to 10 to

identify whether the beam-width has an impact on the predictive capability of the translator.

Table 12 shows the median precision and recall for OpenNMT for two beam-width configuration

and Figure 6 shows the corresponding distribution. We observe that a median precision and recall of

80 and 20 for beam width of 5. When we increase the beam width to 10 the recall remains the same

but the precision increases to 100. We manually analyzed the translated output between beam-width

5 and 10. We found that 95 percent of the input texts the change beam-width parameter translated

the same code elements. With a beam-width of 10 there were a few additional correct code elements

Table 11 shows the GPS “location reference” translation example. OpenNMT is only able to

translate the class Location. OpenNMT is precise, however it does not translate enough code elements

(i.e suffers recall) for the given input text. The translation of few code elements is present in other

reference translation. In the "media player" example only MediaPlayer.setOnCompletionListener() is

translated. In the “sending email” example, only the Intent class is translated. In the “crop Bitmap”

example, only the Bitmap class is correctly translated. We analyzed the output for all the reference

translations and found that for most only constructor of the classes were the only translations.

OpenNMT translates relatively few methods for input texts compared to the class constructors.

Neural networks translate sequences of English to code sequences. The median precision and

recall are 100 and 20. Unfortunately, the output is usually limited to a small number of class

constructors and typically does not provide interesting API usages.

4.5 Results for Ensemble Translation

Ensemble learning is used in machine learning to combine multiple learners to enhance the overall

predictive outcome [27]. Section 3.6 provides the the theoretical background on ensemble learning.

Inspired by ensemble learning, we combine neural machine translation which had high precision with

the WordMapK and GraphOrdering (K = 15) algorithm which had the highest recall. Figure 7

presents the ensemble results. To aid the comparative analysis we also include the precision and recall

distribution in the GraphOrdering step of the WordMapK (K = 15) algorithm. The median precision

and recall of this ensemble of neural machine translation and WordMapK (K = 15) is 20 and 50

respectively, which equals the median precision and recall obtained in WordMapK (K = 15) scheme

with GraphOrdering. We conclude that the neural machine translation did not predict substantially

different code elements than the naive WordMapK algorithm. The discussion section we further

discuss potential reasons.
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Figure 7: Distribution of precision and recall with code elements from OpenNMT and WordMapK(k

= 15) with graph ordering
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Chapter 5

Discussion and Related Work

In this thesis we have compared four existing machine translation approaches: WordMapK, Contex-

tualExpansion, phrase-based, and neural network translation. Table 13 shows the resulting median

precision and recall across the set of reference translations. The WordMapK algorithm which is a

simple maximum likelihood model predicts the largest number of code elements for each input word

leading to high recall. It is however, quite imprecise predicting irrelevant code elements that lack the

context of the input. ContextualExpansion which build on WordMapK by considering the context

has a higher precision with a compromise in recall. ContextualExpansion strikes a balance between

precision and recall. Phrase-based translation translates short sequences of English to Code. The

precision and recall are similar to that ContextualExpansion perhaps because both consider the

context of each word and code element. Neural machine translation has the highest precision, however,

it conservatively suggests class constructors instead of meaningful sequences of code elements.

5.1 Overlap in Predicted Elements

Precision and recall provide a comparison between techniques based on the elements that each

technique correctly predicts. We are interested in determining how similar the code elements

Table 13: Summary of results

Method Precision Recall

WordMapK (K = 5) with GraphOrdering 20 50

ContextualExpansion (K = 5) with GraphOrdering 25 40

Moses 25 40

OpenNMT 100 20
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Figure 8: Set difference of code elements from CE, Moses and OpenNMT against WordMapK
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Table 14: Computational Cost: Hardware and Maximum Processing Time

Toolkit Hardware Time

Berkeley Aligner 1 CPU, 2GB RAM 10 minutes

GraphOrdering 8 CPU Cores, 24GB of RAM 4 hours

Moses 8 CPU, 24GB of RAM 16 hours

OpenNMT 4 GPUs, 48GB GPU Memory 4 days(GPU)

are among predictors. We calculated the elements that are unique to each technique related to

WordMapK. We choose WordMapK because it suggested the most code elements. Mathematically

this is the complement or set difference with WordMapK: ContextualExpansion \ WordMapK,

Phrase \ WordMapK, and NMT \ WordMapK. We plot the number of code elements in the

complement for each technique in Figure 8.

In the figure, we see that the ContextualExpansion suggests a median of 8 code elements that are

not predicted by WordMapK. This suggests that ContextualExpansion not only provides contextually

relevant code elements, it also suggest additional elements that are missed by simple word mapping.

In contrast, the phrase-based translation and NMT prediction suggest few additional elements

relative to WordMapK. The median complement is 1 and 0 for phrase-based and NMT, respectively.

The prediction from the neural and phrase based machine translation techniques are nearly

subsets of the WordMapK prediction. This subset finding makes it clear why we cannot combine the

phrase based or neural machine translation translated set of code elements with the code elements

obtained from WordMapK technique.

5.2 Computational Costs

The hardware used in our experiments and time taken to execute each machine translation technique

are shown in Table 14. The word mapping Berkeley Aligner is least expensive in terms of resource

requirements. It can be run on a standard desktop computer or laptop which has moderate memory

and number of CPU cores. In our experimental setup, the Berkeley Aligner took about 10 minutes

to align the more than 200k posts in the StackOverflow corpus. The Berkeley Aligner is the limiting

factor for WordMapK and ContextualExpansion does not add significant additional time.

The GraphOrdering step require requires a large graph database that includes mining 543 Android

projects from GitHub. The graph database when loaded from disk expands to 12 GB of main memory.

Hence the GraphOrdering steps requires a strong server. We used a server with 8 cores and 24 GB of

RAM. The GraphOrdering phrase is dependent on the size of K, with a large K = 15 this phase took
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4hrs.

The phrase-based Moses toolkit requires a strong server [56]. The training time is proportional to

the number of cores. Running on an 8 CPU machine with 24GB of RAM the training took 16 hours.

Neural networks require substantial processing power. Our first attempt was to run OpenNMT

on the 8 CPU machine with 24GB of ram. After running the training process for two weeks, we

estimated that it would take at least 30 days to complete.

We switched to a Google Cloud GPUs. We set up a virtual machine with four NVidia K80 GPUs.

Each GPU had 12GB of GPU memory. The server had 6 virtual CPUs with 30 GB of RAM. With

this configuration, the time taken for one iteration is less than 2 seconds and whole training completed

in less than 4 days with the total cost of 250 Canadian dollars. Though we included four GPU’s in

the server configuration, OpenNMT did not utilize the memory of all the GPU’s. In total, we had 48

GB of GPU memory of which the OpenNMT consumed 12 GB during training. Each NVidia Kepler

80 GPU costs about 6, 000 Canadian dollars. For a similar configuration in an in-house setup, we

would have ended up spending nearly 20, 000 Canadian dollars. Though cloud infrastructure provides

an alternative option for setting up an inexpensive computational environment, it is not suitable

for recurrent executions. In summary neural machine translation toolkits requires an expensive

investment in infrastructure for early feedback and recurrent experiments.

5.3 Threats to validity

The number of iterations can be adjusted for the Berkeley Aligner. We adjusted this parameter for

WordMapK and ContextualExpansion. Although more iteration usually improves the translation

quality, we found the best results with 2 iterations. Indeed, the precision and recall values start

decreasing for 5 to 20. However for iterations 20, 50, 100, 200 the median precision and recall

remain constant but they are not better than two iterations. We reported two iterations for all

our experiments in this study. The results for iteration settings can be found in the replication

package [66].

With phrase-based translation, imbalanced sequences can affect the Moses toolkit. An imbalance

occurs when the number of English words is substantially more than the number of code elements in

for a a post in the bitext. Furthermore, Moses is unable to handle sentences longer than 80 words in

source and target language. Hence we clean the corpora before the training process. This reduced our

training data set for Moses. The initial size of the corpus is 331K lines of bitext. We ran the cleaning

script provided by Moses. Lines with imbalance were pruned resulting in a bitext of size 224K. This

bitext is smaller than the original corpus used by the other machine translation techniques.

Machine translation is typically assessed with metrics such as BLEU [67] and METEOR [11].
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These metrics are designed for natural languages by comparing that the sequence of tokens in

the translation, i.e. n-grams, with the reference translation or manual translation. Unlike natural

languages that are read sequentially, e.g., left-to-right, code is represented as a graph. It is unclear

how BLEU can be modified to work on graphs. As a result, we resort to using the precision and recall

of the translated elements. We also use the set differences among technique as a further comparison.

5.4 Related Work

5.4.1 Mining API Rules

In modern software development, frameworks and API’s form a major backbone. Hence identifying

the API usage pattern is an important outcome in the source code mining. Michail [53, 54] developed

CodeWeb which uses association and generalized association rules to mine frequently reused API

methods and classes in a library. Xie et al. [90] developed MAPO (Mining API usages from Open

Source Repositories) which mines the frequently used API usages and present them for developers to

inspect.

Li and Zhou [45] used the frequent item set mining to extract implicit programming rules from

large corpora of industrial projects. The mined rules are used to detect violations in the source

code. Acharya et al. [6] developed a framework to capture frequent partial orders of API calls

among the related API usages directly from the API client code. Uddin et al. [85] applied machine

learning techniques to model the coherent temporal changes in the API usages of the client program.

Liu et al. [49] developed a model checker to automatically extract software library usage patterns

that can be elicited as temporal properties. Mileva et al. [55] measured the success of an API through

its popularity. Wang et al. [86] developed Usage Pattern Miner (UP-Miner) which mined the API

usages with measure of succinctness and coverage. Linares-Vasquez et al. [47] empirically studied the

energy greedy API usage patterns in Android applications using a hardware power monitor. Azad

et al. [9] used association mining rules to find commonly co-occurring API elements on StackOverflow

and suggest autocompletions to developers. Unlike these works, we translate from English input

texts to code.

5.4.2 Code Search and Recommendation

Atkins et al. [8] developed Version-Editor which integrates the past versions of the source code using

the history from the version control systems to assist developers while making changes in the software

by using the version histories. Cubranic et al. [24] developed HipiKat an Eclipse plugin which is an

implicit group memory from project archives and recommend artifacts relevant to the tasks that is
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performed by the developer. Yunwen Ye [91] developed Code Broker an intelligent software agent

that monitors the current programming activity and automatically delivers the task-relevant Java

library components that are not known to a programmer. It will also find an example program that

uses the programmers chosen component. Ying et al. [92] developed a source code recommender

which leverages the information from the version control and suggests the additional set of files

that has potential changes based on the current set of files that are modified by the developer.

Holmes et al. [35] developed Strathcona an Example Recommendation Tool which leverages the

structural characteristics of both the past projects and the current developer context to recommend

relevant examples. Sahavechaphan et al. [76] developed an Eclipse plugin named XSnippet a code

assistant system that facilitates developers with object instantiation task at hand by accepting a

query to find code snippets from a repository.

Lemos et al. [44] developed a tool named CodeGenie which employs a test-driven code search

on large code repositories and presents the resulting code from the search adapted to use for

the developers project. Reiss et al. [71] built a Java based Web interface to accept as input the

specifications as precisely as the class, method signatures, test cases and security constraints and

performs a semantics based code search. Little and Miller [48] implemented Keyword Programming for

Java language as an Eclipse plugin which accurately constructs 90 percentage of original expressions

from keywords provided as input queries. Thummalapenta et al. [84] implemented a web based

code search application which accepts the queries in the form Source object ==> target object and

interacts with a code search engine to refine the results and present the relevant code snippets.

Alnusair et al. [7] presents a code reuse tool which uses ontological representation of the source code

without the need for explicit source code repository. Their algorithm analyzes the library API and

builds the ontological information on the fly by traversing the code graph. They accept the queries of

form Source object ==> target object from the developers and presents a code snippet by considering

the context of the current code. Instead of searching for and recommending common code snippets,

we use statistical machine translation to create potentially unseen code snippets based on an English

input text.

5.4.3 Natural Language Processing and Machine Translation

Use of NLP and machine translation systems has recently become more common in the field of

software engineering. Hindle et al.’s [33] research showed that the source code used in programming

exhibits a repetitive nature synonymous with the natural languages. Hindle et al. studied the

naturalness of software and used n-gram language model to build a code completion engine for

Java. They presented the repetitive nature of the source code mathematically by using the theory of

statistical language modelling.
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Karaivanovet al. [38] used phrase based machine translation to transform source code from

C-sharp to Java. They trained on a large parallel corpora of source code elements from C-sharp

and Java languages. They found that applying phrase based translation as is to the source code

transformation does not work and produce grammatically incorrect translations because of the

inherent structure enforced by the grammar of the programming languages. Hence they extended

the phrase based translation system to accommodate the grammar of the languages.

SWIM [69] uses a statistical translation system (word based model) to perform a mapping from

the clickthrough data obtained with the Bing search results and then uses a Word2Vector to reorder

the keywords to code elements. SWIM is based on the C-sharp API for the training and validation.

DeepAPI [30] uses deep learning approach with sequence-to-sequence based Recurrent Neural

Network (RNN). DeepAPI neural language model is built from the Java projects from GitHub by

performing a mapping between the first line of the JavaDoc comment and the code elements used in

the body of the corresponding method.

Nguyen et al. [61, 60] developed T2API to address the shortcomings in the sequence to sequence

translation models with GraSyn which generates a code graph using graph based language model of

the code. T2API process the discussions in the StackOverflow platform to prepare a parallel corpus

of English text and source code. It then use a statistical word based model to align the English text

and code elements, which is transformed into a code graph using GraSyn.

The previous research into translation of English input to code output have evaluated only a

single translation approach. In contrast, we use a common dataset and evaluate the historically most

popular natural language translation approaches to assess their appropriateness for use in software

engineering.

5.4.4 Comparison with Other Statistical Approaches in Software Engi-

neering

In this section we compare our study with similar research that has used statistical approaches in the

fields of code search, synthesis and migration. In our study we used unmodified implementations of

neural machine translation and phrase based machine translation systems to translate English text

to API sequence calls. We find that the precision and recall with the existing machine translation

systems are quite low compared to that of past research which use Information Retrieval (IR)

approaches. We analyze the performance of similar research and present justifications to make

software engineering specific changes to the machine translation and information retrieval systems.

We will first analyze research that uses information retrieval techniques perform code search and

suggestion. PARSWEB [84] uses Google Code Search Engine (GCSE) results for the query of type

“Source -> Destination” where “Source” and “Destination” represent object types. The objective

40



of the query is to obtain the destination object type given the source object type. PARSEWEB

uses an Abstract Syntax Tree (AST) parser and builds Directed Acyclic Graph (DAG) from the code

samples obtained from the GCSE. It then extracts the Method Invocation Sequence(MIS) from the

code samples to rank and list the possible MIS from the source type to the destination type. They

show that using code search results from GCSE without processing with AST and DAG cannot solve

the problem of finding relevant method invocation sequences.

Ponzanelli et al. [68] developed PROMPTER, a tool that automatically retrieves relevant discus-

sions from StackOverflow. The tool considers current context of code in the IDE and transforms

into a query, which is then sent to a custom code search engine to retrieve relevant StackOverflow

discussions and rank them. It applies different features including textual similarity, code similarity,

API types similarity to rank the resulting StackOverflow discussions. The evaluation was conducted

with programmers of varying skills and measured relevance of StackOverflow discussions. They

reported that developers using PROMPTER were able to complete a software engineering task about

68% of time.

In the context of statistical modeleling in software engineering, Hindle et al. [33] studied the

repetitiveness of software by using n-gram models. They developed a code suggestion tool based

on this model which proves to improve the existing code suggestion component of Eclipse IDE.

They relied upon the lexical information in the source code. However lexical tokens cannot capture

the abstract semantics of the source code. Semantic LAnguage Model for source Code (SLAMC)

by Nguyen et al. [62] improved the code suggestion by using semantic annotations which they

call sememes instead of using lexemes. SLAMC provided improvement in the code suggestion

compared to the n-gram models used by Hindle et al.. They empirically evaluated in different settings

including a cache of recently used variable names, data dependencies among the n-gram tokens and

reported improvements over the standard n-gram model based code suggestion. It should be noted

that the n-gram model works well with natural languages and assumes a left-to-right sequence of

tokens. In contrast, source code is typically represented in the form of a graph. Compilers and

humans do not process source code sequentially similar to that of natural languages[22, 23, 75, 17].

Nguyen et al. [63, 59] have shown that the Graph Based Object Usage Model (groum) can be used

to suggest source code elements at a higher level of abstraction than an n-gram model. So the

statistical modelling cannot be used for source code suggestion without augmenting them with

software engineering specific information.

In the context of machine translation, the work of Karaivanov et al. [38] of using phrase based

machine translation system (PBMT) to translate source code from C-sharp to Java programming

language. In their study they used the phrase based machine translation without any modification.

However it was found that the resulting translations to Java code had syntactic and compilation
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issues. Hence they augmented the phrase based machine translation system with the prefix grammar

of the languages (C-sharp and Java) as part of the translation. The prefix grammar ensures that the

previously translated code elements are parseable and discard non-parseable code elements. They

report BLEU [67] as well as parse rate as the measure of quality, with the claim that BLEU score

is inappropriate for the programming languages. It was reported that unmodified PBMT system

translates code that fails to parse in more than 60% of test cases, whereas the modified PBMT

system using prefix grammar failed to parse only in less than 1% percent of test cases. So this study

reveals that we cannot use statistical machine translation as is without considering the software

engineering context (i.e programming language).

SWIM [69] uses word based model [16] to map user queries to the API elements. They use the

clickthrough data from the Bing search engine and extract API elements in the resulting web pages.

This information was used in the mapping model to translate user queries to API elements. They

separately mine 25000 open source Github projects to extract structured call sequences for each

object type in the C-sharp framework. The statistical word alignment system used to map the queries

to API elements does not include order of the API elements, control, data flow information and

variable names. Hence they designed an API synthesizer which takes as input a set of API elements

and combine them to a valid code snippet. SWIM reported the percentage of relevant API elements

in top 5 and top 10 synthesized code snippets. They report that about 65% and 54% of synthesized

snippets from top 5 and top 10 respectively are relevant.

DeepAPI [30] translates from English text to API sequences. DeepAPI does not synthesize

code. They extended the neural translation model with Inverse Document Frequency (IDF) based

weights for the API elements. For example, frequently appearing API elements including Logger.Log,

System.out.println are given lower weights and less common API elements will be given higher weights.

A modified cost function is applied to the RNN Encoder-Decoder model to enhance the translation.

The training parallel corpora used in DeepAPI is prepared from using the first line of JavaDoc

comment and the list of API elements found in the method body. This parallel corpora is relatively

noise free when compared to English text and code elements extracted from StackOverflow. DeepAPI

uses BLEU score as a measure of the translation quality and achieves a better BLEU score compared

to that of translation of natural languages.

T2API[61] extended the word based alignment model[15, 16] with context information of API

elements and English text. The context information is derived from computing the co-occurring

English texts and API elements in the parallel corpora. T2API uses Graph based language model

of the source code to search and synthesize code graph using a set of API elements as input. We

have shown in our study that the median precision and recall in the contextual expansion with

GraphOrdering performs only marginally better than the baseline approach WordMapK and matches
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to that of the unmodified PBMT system. This could be partially because of the inherent noise

present in the extracted parallel corpora from StackOverflow.

Campbell et al. [18] developed NLP2Code an IDE based content assist solution which allow

developers to integrate with source code from StackOverflow. The plugin offers a content assist

system loaded with natural language tasks extracted from StackOverflow posts that are tagged

as “Java”. They use Stanford NLP toolkit [52] to find relation of words in the sentences that are

obtained from the StackOverflow. The query selected by the user is then sent to the custom Google

search engine on StackOverflow and ranks the resulting code snippets. They claim that NLP2Code

outperforms T2API with a set of evaluation queries.

In T2API, DeepAPI, SWIM and Karaivanov et al. [38] we observe that the statistical machine

translation models designed for natural languages does not work well for source code generation or

translation without augmenting them with software engineering specific information. Our results

suggests that Contextual Expansion with GraphOrdering used in T2API is able to synthesize many

unseen API elements compared to the phrase based machine translation system. The contextual

expansion considers code and text context into consideration during translation, whereas the phrase

based machine translation system works on aligned sequence (phrase) of text and code elements.

The systems using information retrieval techniques tend to outperform the statistical systems as

they focus more on code search and code retrieval from existing repositories and examples. However

they do not focus on synthesizing new code which could explain the fact that they tend to outperform

the statistical systems for similar set of natural language queries.
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Chapter 6

Tools: T2API and CompareSMT

T2API [61, 60] is a context-sensitive statistical machine translation approach that takes a description

of a software engineering task in English and synthesizes an API usage template. T2API research

involves several components including word alignment with Berkeley Aligner, building contextual

mapping model using translation probability table from Berkeley Aligner, computing co-occurrence

frequency and synthesizing API usage from a trained Graph database. The development of an

integrated pipeline and a user interface to test translation is discussed in this chapter. We implement

a web portal as well as Representational State Transfer (REST) APIs to deliver the components in

the T2API system for various client uses.1 We then extend the same portal to include an interface

to compare the translation outcomes of multiple machine translation systems for the same English

query (CompareSMT).2 The web portal includes three interfaces to support following usecases:

• To accept an English text description of the software engineering task and present an API

usage template with code graph. This interface uses the ContextualExpansion algorithm to

translate English text to source code.

• To display stage wise execution of translation of English text to source code with Contex-

tualExpansion. This allows experimenters to determine the productivity of each individual

stage.

• Accept an English text and display source code translations outputs from WordMapK, Contex-

tualExpansion, Moses, and OpenNMT in a single view to compare their performance.
1T2API: https://users.encs.concordia.ca/~pcr/ToolT2API.html
2CompareSMT: https://users.encs.concordia.ca/~pcr/CompareSMT.html
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6.1 Components

T2API is comprised of multiple independent components. Some components works offline and

produce an output which can be used later for the integrated pipeline. The components that work

offline include

• Preparation of parallel corpus by extracting English text and source code elements from

StackOverflow.

• Training of parallel corpus with machine translation systems including Berkeley Aligner(Word-

based model), Moses(Phrase based), OpenNMT (Neural machine translation).

• Preparation of graph database by mining open source Java Android projects from github with

GrouMiner [63].

The online components are implemented as REST APIs that accept English text as input and

invokes the decoder (i.e translator) part of the machine translation system. For instance, if a user

invokes the REST interface to decode an English text with phrase-based machine translation system

(i.e Moses), the moses decoder will be executed. The online components provide the following services

in the form of REST interfaces including

• A service to perform NLP techniques including stemming, stop word removal, and keyword

extraction on the English input.

• A service for ContextualExpansion that computes mapped code elements for the input.

• A service that produces API code template for a given set of mapped code elements obtained

with ContextualExpansion.

• A service to retrieve the API usage graph images.

• A service to invoke the decoder for word-based(WordMapK), phrase-based(Moses), and neural

network models (OpenNMT).

6.2 Architecture

The T2API components were developed in isolation as part of the earlier research. The components

were implemented to perform input/output operation through files. We designed and implemented

the pipeline to transfer data from one component to another using files. We create REST end points

to execute the components in isolation. The web client combines and presents the outcome from each

stage. We create a web interface to accept an English text input describing a software engineering
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task and present the top ranked API template graph. The T2API web portal is made up with the

following frameworks and components.

• Jersey[4] is a framework to develop the REST API.

• AngularJS[2], HTML, and CSS to handle the user interactions on the web client.

• Apache Tomcat[3] to host the web application.

The figure 9 shows the architecture of T2API console. The ContextualExpansion, GrouMiner

and GraphOrdering components were developed in Java programming language as part of the

earlier research of T2API. Hence we decide to use Apache Tomcat framework to host the Java web

application and Jersey library to build REST interfaces on top of existing components and the

new pipeline connecting those components. The web application use the translation probability

table from Berkeley Aligner to translate English text to API elements using WordMapK and

ContextualExpansion algorithms. The web application loads the trained graph database into the

main memory during the initialisation. For the phrase based machine translation decoding it loads

the Minimum Error Rate Training (MERT) model file and invokes the Moses decoder. Similarly for

neural machine translation system, the decoder component of the OpenNMT toolkit is invoked with

trained neural translation model file.

6.3 Server Components

The server comprise of REST interface implementations for various URLS. The REST interfaces are

designed to accept and respond with Javascript Object Notation (JSON) data interchange format. For

every invocation of the REST URL, the server creates a random Globally Unique Identifier (GUID)

and creates a directory in the server filesystem to isolate the execution of different components in

simulataneous requests threads.

6.3.1 Stemming

Stemming is the process of reducing inflected words to the root form. For example words such as

“fishing”, “fished” and “‘fisher” would be represented in the stemmed form as “fish”. The raw query

in English has to be converted to a common base form. This will reduce inflections and remove

derivational affixes. We use the English Snowball Stemmer [5] which is a Java ARchive (JAR), which

takes as input a file containing raw English text in each line and produces an output file contained

stemmed words corresponding to each line. We execute the stemmer as a separate Java process from

within the T2API server. The raw English text received from JSON request is written to a file and
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Figure 9: T2API Web Console Architecture
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Table 15: English description of software engineering tasks and their stemmed outputs

Raw English Text Stemmed Output

get location when GPS is not present get locat gps

decode a bitmap image decod bitmap imag

read the file line by line and append in a string read file line line append string

play media file one after another continuously play media file continu

insert a record into sqllite database insert record sqllite databas

the file path is provided as argument to the Stemmer executable JAR file. The output file from the

stemmer is read and then returned as a JSON response to the client. Table 15 shows the stemmer

output for various raw English queries text.

6.3.2 WordMapK Mapper

The WordMapK algorithm is a simple maximum likelihood mapping between each English input

word and the most probable K code elements. The translation probability table is derived using

the Berkeley Aligner. WordMapK algorithm use the translation probability table and builds the

mapping model to translate K code element for each English input text. The translation probability

file is loaded during the web application initialisation routine. The WordMapK mapping produces a

set of API elements for the query in English text.

6.3.3 Contextual Expansion Mapper

ContextualExpansion algorithm use the translation probability table from the Berkeley Aligner to

build the expansion model. It also computes the co-occurring frequency of English text and source

code elements by analysing the training parallel corpora. This process is executed offline and resulting

expansion model along with co-occurring frequencies written in a binary file. These files are loaded

during the web application initialisation routine. The ContextualExpansion algorithm takes as input

the stemmed words and does expansion of API elements. It outputs unordered API elements which

are then used by the GraphOrdering component.

6.3.4 Graph Synthesizer

To order the code elements from the word map model, we use Graph Based API Synthesis (GraSyn) [61]

which takes as input a set of code elements and produces a code graph. A beam search is used to

generate the code graph that has the highest probability of occurrence in the training database with
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Figure 10: Top ranked Groum for the query "insert a record into sqllite database"

the given input set of code elements from the mapping models. GraSyn will eliminate nodes which

make the overall graph less probable. We develope a REST interface to accept the mapped API

elements and return a list of API elements along with ranked list of API usage graphs and their

corresponding images. Figure 10 gives the top ranked API graph image for the query "insert a record

into sqllite database".

6.3.5 Code Generator

We develop the code generator component to translate the Groum (API usage graph) into a usable

code template. The GraphOrdering outputs a ranked list of API usage graphs given the list of

API elements. The Groum is an abstract representation of the source code with temporal and

data dependencies. Providing a graph output would be hard to interpret even for expert software

programmers and hence it would be beneficial to transform a given graph into a usable code template.

The code generator iterates each connected component of the graph and then identifies the control

and data dependencies. For data dependencies it builds the dependency stack in the temporal order

API elements from the graph. Then it pops the API elements from the graph and generates the code.
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It also does variable creation and assignment for the invocation of constructors or static methods

which returns a specific type by inferring the type information of the API elements.

Listing 6.1: CodeGenerator Example

Cursor varCursor = SQLiteDatabase . rawQuery ( ) ;

varCursor . moveToFirst ( ) ;

ContentValues varContentValues ;

varContentValues . put ( ) ;

varCursor . moveToNext ( ) ;

SQLiteDatabase . update ( ) ;

varCursor . getColumnIndex ( ) ;

SQLiteDatabase . i n s e r t ( ) ;

varCursor . g e tS t r i ng ( ) ;

The code listing in 6.1 gives the source code produced by the code generator module for the Figure

10. In this example the groum had only one connected component. The code generator identifies the

dependencies and order from the groum and then output the sequence of code elements. In this example

the variable varCursor is used declared and assgined to the output of the SQLiteDatabase.rawQuery()

method. The T2API objective is to present a set of usable and compilable API elements.

6.3.6 Moses Decoder

The phrase-based machine translation is an extension of word based models with the translation

probabilities constructed using phrases (chunks of words). The sequence of code elements are

translated from the sequence of English text by mapping the alignment of chunks of text and code

elements. The phrase-based machine translation system has implicit reordering capability to generate

sequence of words in the target language. We use Moses which is a popular toolkit for phrase based

machine translation.

During decoding with Moses decoder, the server will spawn the moses decoder as an external

process during startup and provide the location of MERT model file. The moses decoder loads the

model file into main memory and waits for input. On an incoming request to decode the English text,

the REST interface provides the external moses decoder process with the stemmed query and waits

for the decoder process to provide the translations. The moses decoder accepts input and provides

output through standard input and output respectively. We use the input and output stream classes

from the Java Development Kit (JDK) to interact the external process and obtain the translations.
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6.3.7 OpenNMT Decoder

OpenNMT uses artificial neural networks and deep learning to perform the sequence to sequence

translation. Neural machine translation is the current state-of-the-art for machine translation and is

used by Google, Microsoft, and Yandex [12]. The target language sequence prediction is based on

complete source sentence and the target sentence that has been produced already. Similar to the

phrase based machine translation decoding, we initially tried to spawn the OpenNMT decoder with

the trained model and intend to translate the query. However we faced difficulties communicating

with OpenNMT decode using JDK input and output stream classes and decided to take the route of

using the restserver package that is available as part of OpenNMT toolkit.

The default REST server did not allow Cross Origin Resource Sharing (CORS) request for HTTP

OPTIONS method. This prevented us from invoking the REST URL of the OpenNMT server directly

from the web client. Hence we created a proxy REST end point in T2API web application and

rerouted the request to the rest server in OpenNMT. We use the Apache Http Client library to

interact with the OpenNMT rest server and transformed the request, response from and to the

T2API web client.

6.4 Client Components

On the client side AngularJS framework is used to communicate with the server as well as to handle

user interactions. AngularJS[2] is a Javascript framework which supports model view controller

pattern. The view in T2API web portal comprises of the text fields required to capture user query

and present them with API code template. The model manages the data shown in these fields and

the controller handles the communication with the Apache tomcat server by invoking the REST API

end points.

The web application consists of three different views (i.e web pages). Figure 11 shows the

interface which accepts an English text in the input field and performs the entire translation using

ContextualExpansion algorithm with GraphOrdering. Figure 12 show the complimentary debug

interface to educate the user with stage wise execution of translation from English text to API

elements with ContextualExpansion algorithm and GraphOrdering. Figure 13 shows the interface to

present translation outputs of different machine translation systems for the same English query.

6.4.1 Deployment

The final product is deployed as a Web application resource or Web application archieve (WAR)

file in the Apache Tomcat container. A config file is available to scaffold the environment and load
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Figure 11: Main interface stage wise execution in T2API web portal

the dependencies. More details on the deployment and server configurations are available in the

Appendix A.
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Figure 12: Debug interface showing stage wise execution in T2API web portal
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Figure 13: Interface to compare the outputs of different machine translation systemsT2API web

portal
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Chapter 7

Concluding Remarks

The main contribution of this thesis is an empirical evaluation of four machine translation approaches

in the context of software engineering. We evaluated each of the following approaches:

1. WordMapK uses a simple maximum likelihood model to map each English word in the input

to K code elements in the output. The elements are then ordered into a graph. The median

precision and recall for K = 5 is 20 and 50.

2. ContextualExpansion uses the WordMapK model but incorporates the context of commonly

co-occurring code elements. The elements are ordered into a graph. The median precision and

recall for K = 5 is 25 and 40. ContextualExpansion accounts for context which improves the

precision at the expense of recall when compared with WordMapK.

3. Phrase-based translation translates sequences of words. As a result, English phrases are mapped

to code phrases. The median precision and recall is 25 and 40. Phrase-based translation and

ContextualExpansion produces similar translated outputs.

4. Neural networks translate sequences of English to code sequences. The median precision and

recall are 100 and 20. Unfortunately, the output is usually limited to a small number of class

constructors and typically does not provide interesting API usages.

We conclude that using existing machine translation systems which are designed to translate

natural languages shows low precision in translating English text to API sequences without adapting

it for the software engineering context. Our study shows that precision and recall values are low in

the existing machine translation systems compared to other software engineering specific learning

approaches. Our scripts, corpus, and reference translations are available in our replication package [66].

Our CompareSMT web console and REST API is also available.1 We hope that this work will lead
1CompareSMT: https://users.encs.concordia.ca/~pcr/CompareSMT.html
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to inspire future work that adapts neural networks and other modern machine translation approaches

to a software engineering context.
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Appendix A

Configuration Information

A.1 Berkeley Aligner with fixes

The Berkeley Aligner source code was initially hosted in Google Code Repository (https://code.google.com).

After the shutdown of Google code services in March 2015, several independent programmers forked

Berkeley Aligner project from Google code and forked them to their personal and public repositories.

At this moment there are about 20 different forks of Berkeley Aligner in the famous source code

repository GitHub (https://github.com). We have modified the Berkeley Aligner for the following

reasons/issues

• The alignment information between English text and source code is written using index of

English words instead of the actual terms.

• The default implementation did not support multiple threads.

• A bug, that prevented the translation probability table being written completely on disk when

processed for large parallel corpora.

Hence to train the parallel corpora for word alignment with Berkeley Aligner it is recommended

to use the modified Berkeley Aligner that is available in our replication package [66]

Follow the instructions on the README in the root directory of the Berkeley Aligner project to

compile and generate the “berkeleyaligner.jar” file in the distribution directory.

A.2 OpenNMT Training - Server Configuration

OpenNMT is a neural machine translation toolkit. For training the English text to source code

parallel corpora we require Graphics Processing Unit (GPU). We trained our corpora using Google
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cloud infrastructure.

We setup a virtual machine in the Google cloud infrastructure with 4 Nvidia K80 GPU. The

encoder layer of the RNN has 4 layers and the decoder has 8 layers. The size of the neural net is 512

nodes. Each graphics processing unit had about 12 GB of memory and the server had 8 virtual CPU

cores with 30 GB of memory. The training was configured for 30 epochs with each epoch spanning

10, 000 iterations totalling approximately 300K iterations. This configuration would approximately

takes about 4 days to complete the training with the parallel corpora.

To install OpenNMT toolkit, follow the installation instructions provided in the URL

http://opennmt.net/OpenNMT/installation/.

In our setup we did not use the Docker container. You need to install the REST server of

OpenNMT toolkit to execute the decoder. To install the REST server of OpenNMT toolkit follow

the instructions provided at http://opennmt.net/OpenNMT/tools/servers/

If the training happened on GPUs then you might have to convert the trained model to a release

model file in the OpenNMT if you intend to run the OpenNMT decoder in a non GPU environ-

ment. In order to convert the trained model to a release model follow the instructions provided at

http://opennmt.net/OpenNMT/options/release_model/

A.3 Moses - Server Configuration

Moses is the phrase based machine translation toolkit. Moses requires adequate main memory and

more cores to expedite the training process. In our study we ran Moses on server with 24GB of

main memory and 8 logical cores. Moses should be configured to use Multithreaded Giza (mgiza)

to leverage the available cores. We followed the instructions provided in the Moses official website

(http://www.statmt.org/moses/?n=Development.GetStarted) to setup and configure the toolkit.

We faced issues with tokenization script provided as part of Moses toolkit, because our source

code corpus had API elements separated by “.” character. Hence for Moses alone we trained by

converting the dot character to underscore character. For example, the API element String.substring

was converted to String_substring to mitigate this problem.

A.4 T2API Web Portal

T2API Web portal is a Apache Tomcat web application. To setup the T2API Web portal install the

software components shown in the Table 16
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Table 16: Software Requirements for T2API

Library Version or Location

Eclipse IDE Neon version or later with JEE support

Apache Tomcat 8.5.0

Jersey 1.20-SNAPSHOT

Apache Http Client 4.5.6

Java Development Kit 1.8.0_101

Moses https://github.com/moses-smt/mosesdecoder

OpenNMT https://github.com/OpenNMT/OpenNMT

Torch http://torch.ch/docs/getting-started.html

A.5 T2API Deployment

The T2API Web portal is a Apache Maven project and includes a Project Object Model (POM). Import

the project using the Eclipse import option. The project will get build and all the dependencies will

be resolved. You will have to setup a runTime environment to point to Apache Tomcat installation

directory. To generate the Web ARchieve or Web Application Resource (WAR) file, choose “File

–> Export” option, then select WAR option under “Web” menu. Enter a destination directory and

generate the WAR file. Deploy the WAR file to the “webapps” directory under the Apache Tomcat

installation directory. There is a “config.properties” file available in the project which contains

key-value pairs to configure the path.

Table 17 shows the list of configuration keys and their descriptions.

A.5.1 Moses And OpenNMT Decoders

To execute the decoder components of Moses and OpenNMT toolkits, update the “config.properties”

file with relevant information by referring to Table 17.

The Moses decoder will be invoked by the web application when there is a request to translate

code elements using Moses. The OpenNMT REST server has to be started before starting the Apache

Tomcat server that hosts the T2API web application. The command to start the OpenNMT REST

server is provided in the Listing A.1. Replace the path argument with the path of the release model

file.

Listing A.1: OpenNMT Decoder using REST Server

$ th t o o l s / r e s t _ t r a n s l a t i o n _ s e r v e r . lua −model −host 0 . 0 . 0 . 0 −model <path r e l e a s e model>
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Table 17: Deployment Configuration for T2API

Configuration Key Description of Key and Value to set

BASE_DIR
Sandbox directory to use for the

web application

JAVA_EXEC_PATH
Path of the Java

executable to invoke the Stemmer

STEMMER_JAR_LOCATION

Path of the Stemmer JAR file.

We have included the Jar

file in the [66]

GRALAN_DATABASE_DIR Location of the graph database

WORD_MAPPING_CONFIG_DIR,

WORD_MAPPING_BERK_DIR

Directory containing configuration

files for ContextualExpansion algorithm.

Available in [66]

MOSES_BINARY

Full path to the moses

executable file.

Typically found under the

bin directory of the Moses

installation.

MERT_WORKING_MOSESINI Full path to the trained and tuned moses model file.

STAGE_PARAMS_FILE

Translation probability file in the

Berkeley Aligner. Typically in the

output directory with name

“stage2.2.params.txt”

K K value for WordMapK Algorithm

OPENNMT_REST_SERVER_URL URL of the OpenNMT REST server
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Table 18: Hardware Requirements for T2API

Component Memory

Apache Tomcat with

Graph database,

ContextualExpansion Mappings,

and WordMapK Mappings

16 GB

Moses 6 GB

Update the JAVA_HOME variable in the file “setenv.sh” in the bin directory of the Apache Tomcat

to point to the installation directory of Java Development Kit. Update the CATALINA_OPTS

variable to values “-Xms10g -Xmx16g” to set the minimum heap and maximum heap to 10 and 16

GB respectively.

The commands to start and stop the Apache Tomcat is provided in the Listings A.2 and A.3.

Change to the Apache Tomcat installation bin and execute the following commands.

Listing A.2: Apache Tomcat Start Command

$ . / s ta r tup . sh

Listing A.3: Apache Tomcat Stop Command

$ . / shutdown . sh

A.5.2 T2API Web Portal - Server Requirements

The server configuration requirements are listed in Table 18. A server with adequate main memory

is required to execute T2API web portal with less latency.

We need a server with a minimum main memory of 24 GB to configure and run the T2API web

portal. Higher memory will help to reduce latency and support more concurrent requests.
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Appendix B

API Translations from WordMapK,

ContextualExpansion Moses and

OpenNMT

We give the translation outputs of WordMapK, ContextualExpansion, Phrase based machine transla-

tion and Neural machine translation systems for the set of input queries from the validation data set.

For WordMapK and ContextualExpansion algorithms we give the API elements with GraphOrdering.

The validation data set consists of 240 queries of English text and reference translations. We include

the output translations from different machine translation systems in our replication package [66]. In

this Section we show 10 translations for each scheme.
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Table 19: Translations from WordMapK with GraphOrdering for K = 5

English Task API Elements

insert a record into sqllite database

SQLiteDatabase.insert Cursor.Cursor Cursor.getColumnIndex

String.String Cursor.moveToNext ContentValues.put

ContentValues.ContentValues Cursor.getString

write a file in sdcard

Environment.getExternalStorageDirectory Environment.Environment

File.File File.exists

Context.openFileOutput FileOutputStream.FileOutputStream

get date and time-of-day
Calendar.getInstance Calendar.Calendar LayoutInflater.inflate

View.View Calendar.get Calendar.set

read a JSON response in

an array

BufferedReader.BufferedReader BufferedReader.readLine

String.String JSONObject.getString JSONArray.getJSONObject

JSONArray.length

display html document in a view

WebView.loadUrl View.View Html.fromHtml

TextView.TextView Html.Html WebView.loadData

View.findViewById WebView.WebView TextView.setText

how to zero the time of a calendar

Calendar.Calendar View.View View.getHeight

ContentResolver.insert String.String String.format

ContentValues.put Calendar.getTimeInMillis

how to hide virtual

keyboard on touch of a spinner

View.View View.setVisibility

MotionEvent.MotionEvent ArrayAdapter.createFromResource

ArrayAdapter.setDropDownViewResource MotionEvent.getAction

ArrayAdapter.ArrayAdapter Spinner.Spinner

InputMethodManager.hideSoftInputFromWindow

InputMethodManager.InputMethodManager

Spinner.setAdapter MotionEvent.getX MotionEvent.getY

Resize a bitmap
Bitmap.Bitmap Bitmap.createBitmap Bitmap.getWidth

Bitmap.createScaledBitmap Bitmap.getHeight Canvas.drawBitmap

check internet connection

ConnectivityManager.ConnectivityManager

ConnectivityManager.getActiveNetworkInfo NetworkInfo.NetworkInfo

Context.getSystemService NetworkInfo.isConnected

hide soft keyboard

View.View View.setVisibility

InputMethodManager.hideSoftInputFromWindow

InputMethodManager.InputMethodManager
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Table 20: Translations from ContextualExpansion with GraphOrdering for K = 5

English Task API Elements

insert a record into

sqllite database

SQLiteDatabase.insert SQLiteDatabase.update Cursor.Cursor

Cursor.getColumnIndex SQLiteDatabase.rawQuery Cursor.moveToNext

ContentValues.ContentValues ContentValues.put

Cursor.moveToFirst Cursor.getString

write a file in sdcard

File.getAbsolutePath FileOutputStream.write FileOutputStream.close

Environment.getExternalStorageDirectory Environment.Environment

File.File File.mkdirs Context.openFileOutput

FileOutputStream.FileOutputStream

File.exists File.delete File.createNewFile

get date and time-of-day

Calendar.Calendar Calendar.getInstance Calendar.get

String.equals Calendar.getTime Calendar.set

Calendar.getTimeInMillis Integer.parseInt

read a JSON response in

an array

HttpResponse.HttpResponse HttpResponse.getEntity

JSONObject.getString JSONArray.length JSONArray.getString

JSONObject.getJSONArray

display html document in a view

WebView.loadUrl WebView.getSettings

WebView.loadDataWithBaseURL WebView.loadData

WebView.WebView

how to zero the time of a calendar
Calendar.getInstance Calendar.Calendar

Calendar.get Calendar.set

how to hide virtual

keyboard on touch of a spinner

InputMethodManager.hideSoftInputFromWindow

InputMethodManager.showSoftInput MotionEvent.MotionEvent

InputMethodManager.InputMethodManager

MotionEvent.getAction MotionEvent.getX

Resize a bitmap

ImageView.ImageView Bitmap.createBitmap

Canvas.Canvas Bitmap.getWidth

BitmapFactory.decodeFile BitmapFactory.BitmapFactory

BitmapFactory.decodeResource Bitmap.getHeight

ImageView.setScaleType ImageView.setImageBitmap

ImageView.setImageResource Canvas.drawBitmap

check internet connection

ConnectivityManager.ConnectivityManager

ConnectivityManager.getActiveNetworkInfo

Context.getSystemService NetworkInfo.NetworkInfo

NetworkInfo.isConnected

hide soft keyboard

InputMethodManager.hideSoftInputFromWindow

InputMethodManager.showSoftInput

InputMethodManager.InputMethodManager
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Table 21: Translations from Moses - Phrase based machine translation toolkit

English Task API Elements

insert a record into

sqllite database

MediaRecorder.prepare SQLiteDatabase.insert String.String

ContentValues.ContentValues ContentValues.put

write a file in sdcard
String.String Environment.getExternalStorageDirectory

Intent.getStringExtra File.File Environment.Environment

get date and time-of-day

Calendar.Calendar Calendar.getInstance

SimpleDateFormat.SimpleDateFormat String.String

Calendar.getTime Activity.Activity Date.Date

read a JSON response in

an array

String.String JSONArray.JSONArray JSONObject.JSONObject

JSONObject.getString JSONArray.length JSONArray.getJSONObject

JSONObject.getJSONArray

display html document in a view
View.View Html.fromHtml

Activity.Activity Html.Html Spanned.Spanned

how to zero the time of a calendar Calendar.Calendar View.View String.substring

how to hide virtual

keyboard on touch of a spinner

View.View Context.Context

InputMethodManager.hideSoftInputFromWindow

Context.getSystemService MotionEvent.MotionEvent

InputMethodManager.InputMethodManager

MotionEvent.getAction MotionEvent.getX

MotionEvent.getY Spinner.Spinner

Resize a bitmap Bitmap.Bitmap Bitmap.getHeight

check internet connection

Context.Context ConnectivityManager.ConnectivityManager

ConnectivityManager.getActiveNetworkInfo

Context.getSystemService NetworkInfo.NetworkInfo

NetworkInfo.isConnectedOrConnecting

hide soft keyboard

View.View Context.Context Context.getSystemService

InputMethodManager.hideSoftInputFromWindow

InputMethodManager.showSoftInput EditText.EditText

InputMethodManager.InputMethodManager
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Table 22: Translations from OpenNMT - Neural machine translation toolkit

English Task API Elements

insert a record into sqllite database ContentValues.ContentValues ContentValues.put

write a file in sdcard
File.File Environment.Environment

Environment.getExternalStorageDirectory

get date and time-of-day Calendar.Calendar Calendar.getInstance Calendar.get

read a JSON response in an array JSONArray.JSONArray JSONObject.JSONObject

display html document in a view WebView.WebView

how to zero the time of a calendar Calendar.Calendar Calendar.getInstance Calendar.get

how to hide virtual

keyboard on touch of a spinner

InputMethodManager.InputMethodManager

Context.Context Context.getSystemService

InputMethodManager.hideSoftInputFromWindow

Resize a bitmap Bitmap.Bitmap Bitmap.createScaledBitmap

check internet connection

ConnectivityManager.ConnectivityManager Context.Context

NetworkInfo.NetworkInfo Context.getSystemService

ConnectivityManager.getActiveNetworkInfo NetworkInfo.isConnected

hide soft keyboard

InputMethodManager.InputMethodManager

Context.Context Context.getSystemService

InputMethodManager.hideSoftInputFromWindow
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