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ABSTRACT

Many-Body Effects in Novel Nanostructures : Optical and Transport
Properties

Mousa Bahrami, Ph.D.

Concordia University, 2018

This work explores many-body effects in novel nanostructures specifically on
transport and optical properties. As an introduction, we investigate these prop-
erties by employing the Drude model in the classical regime. In quantum regime,
these properties are related to the density-density response function known as po-
larization function. To evaluate the polarization function of a system, we employ
Linear Response Theory in the absence of many-body effects. Two such effects
are the Coulomb potential and local field factor; we present the random-phase and
Hubbard approximations considering the former and latter respectively. Impurity
effects have profound influence on a system properties. We develop the Linear Re-
sponse Theory in the Van Hove limit to consider the impurity effects. As examples
of quantum wells and wires, we treat graphene and armchair graphene nanorib-
bons (AGNRs). The single-body wave function of a system is required to evaluate
its polarization function. We introduce the tight-binding approach to evaluate the
eigenvalues and eigenfunctions analytically. Within the k · p method we obtain the
energy spectrum and eigenvalues of those systems at Dirac points in the low energy
limit. We present the dynamical conductivity of AGNRs by considering many-body
effects. In addition, we show reflection and transmission coefficients in the absence
and presence of electron-electron interaction and scattering for AGNRs. As an ex-
ample of collective coherent phenomena, we obtain surface plasmons in AGNRs. To
investigate the impurity effects on collective coherent phenomena, we evaluate plas-
mons and surface plasmons in graphene and two-dimensional free electron gas. We
show how impurity modifies the dispersion domain of these coherent phenomena.
We have also show that there is a critical value for the impurity strength below
which there are no collective coherent phenomena. In addition, we obtain an ana-
lytic expression for quality factor of surface plasmons for intra-level and inter-level.
Finally, we show the effects of two-body collisions on dc transport in a homogeneous
system by employing a quantum Boltzmann equation (QBE). As an application of
the QBE, we study the effect of screening, temperature, and electron density on the
dc conductivity of graphene.
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1 Introduction

Nowadays, in less than seconds, the most recent news is displayed on our smart
phones, laptops, tablettes just a few clicks away. Thousands of books and documents
are stored on these devices. We send and receive emails easily, talk to anyone on the
other side of the world. Finding any location and the best route has been facilitated
by the geographical position system known as GPS. We check the weather forecast
whenever we want. Indeed, processing and transferring information is the core of
many of our daily activities. So how have we arrived at these technologies and where
are we heading from here? To understand, let’s review some parts of the history.

Automatic Sequence Controlled Calculator (ASCC) constructed by Howard Aiken
at Harvard University in 1944 was the first large-scale digital computer which used
electromagnetic relays for storing and processing numbers. However, some problems
were associated with these relays; they needed very powerful power pulses to switch
them; they would occupy a very large space; and flipping from “off” to “on” would
take time. Colossus, a computer invented by a team of English mathematicians,
instead of relays used vacuum tubes to switch. In 1946, John Mauchly and J. Pres-
per Eckert from the University of Pennsylvania invented the first fully electronic,
general-purpose, digital computer called ENIAC. It weighed almost 30 tons, was
around 24 meters long, and contained 18000 vacuum tubes. Its operations time
was 5000 cycles per second. The amount of power ENIAC consumed was around
2000 times as much as a laptop. A computer with an order of magnitude faster
than ENIAC would had needed approximately millions of vacuum tubes. In 1974,
John Bardeen, William Shockley and Walter Brattain were trying to develop a new
technology for telephone for amplifying the electrical signals. They used semicon-
ductors to create an amplifier known as point-contact transistor. Transistors have
some advantages compared to vacuum tubes. Their size was typically about as big
as a bean. In addition, the power consumption of transistors were very low since
they used no power when not in operation. However, one major problem remained.
All those transistors had to be connected together by wires. Finally, Jack Kilby and
Robert Noyce invented integrated circuit (IC) that contained an array of transistors
[1, 2, 3, 4].

The building blocks of all contemporary digital electronic device, communica-
tions, and circuits which are employed to process, transport, and storage informa-
tion are formed of metal-oxide-semiconductor field effect transistors (MOSFETs)
[5, 6, 7]. Since nowadays many issues in the vast majority of science fields and
economy rely on transistors with high clock speed, demand for low cost and high
speed MOSFETs with lower power consumption is very strong. The clock speed of
information process in transistors directly pertains to the size, miniaturization, and
density of comprised elements in it [8]. On the contrary, smaller transistors with high
and condensed density of interconnects have high speeds but there is a paramount
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challenge related to the interconnect number. By reducing the size of interconnects
the delay-time increases and imposes critical limitations to the clock speed frequen-
cies [7]. Reducing the size of semiconductor devices, circuits, and components exerts
an influence on their performance and speeds up information processes [8, 9]. Fur-
thermore, size reduction poses major problems such as short-channel effects, gate
leakage, and drastically increasing power density [10].

One successful effective solution is to supersede electromagnetic waves as in-
formation carriers [8]. Due to their extremely high bandwidth, fibre-optics com-
munication devices can carry information by three orders of magnitude faster than
electronic circuits [6]. In addition, in fibre optics light packets carry information they
can travel over long distances [7]. These features of fibre optics suggest a synergy
between these two technologies [11]. However, because the strength of light-matter
interaction in these dielectric materials is not sufficient to exhibit nonlinear behav-
ior, they require high power density and volume which result in limitations on the
integration with electronic circuits [12]. The major obstacle is a consequence of the
diffraction limit which does not allow to squeeze light in a region smaller than its
wavelength [6, 7, 13].

One of the promising solutions is plasmonics waves (PWs) whose wavelength
is smaller than that of a free electromagnetic wave. This PW feature plays a
pivotal role in many applications, such as integrated photonic systems, biosens-
ing, photovoltaic devices, single-photon transistors for quantum computing, opti-
cal modulators, photonic memory devices, surface enhanced Raman spectroscopy
[14, 15, 16, 17], and boosting nonlinear optical effects [18]. PWs allow to manip-
ulate and route light on the nanoscale [19, 20, 21, 11, 7]. PWs provide extremely
fast processing, in the order of a few femtoseconds [18]. Gold and silver as no-
ble metals are predominant materials for plasmonics. However, they suffer from
disadvantages such as high ohmic losses and non-tunability [22]. Size reduction of
plasmonic materials give rises to PWs with smaller wavelength. In addition to gold
and silver, two-dimensional (2D) plasmonic materials, such as a 2D electron gas
(2DEG), polar interfaces of oxides, and oxide nanosheets have more merits than
bulk 3D materials. Because of high losses, PWs in 2D materials can be observed
just at low temperatures. These PWs lie in the mid-infrared (MIR) wavelength
range [10]. Another 2D plasmonic material is graphene that has several advantages,
such as high confinement, chemical doping or electrical gating tunability, low losses
[22], and terahertz-to-MIR PWs [14, 23] at room temperatures. PWs in graphene
can be controlled by doping or electrical gating. The PW dispersion in graphene
nanoribbons can be modified by varying their width [24, 25, 26, 27, 28]. The width
of the nanoribbons and the type and quality of their edges determine whether they
are metallic or semiconducting. The aforementioned studies [24, 25, 26, 27, 28, 29]
and many others consider metallic nanoribbons but their existence has been seri-
ously questioned by first-principle and tight-binding band-structure calculations [30]
which find that they are semiconducting. Of course such a behaviour is found in
nanoribbons created from graphene on a hBN substrate [31]. However, recent exper-
imental studies reported both, (zero gap) metallic and (finite gap) semiconducting
nanoribbons for widths as small as 4.5 nm [32]. PW losses in graphene are lower
compared with those in noble metals. Scattering, e.g., by impurities, can profoundly
affect PWs in it. In literature those effects has been regarded phenomenologically
by heuristically introducing a Drude-form conductivity in the long wavelength limit
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[33].

The thesis is organized as follows:
In Chapter 2 we investigate transport and optical properties of metallic ma-

terials within Drude model. Then we introduce the concept of plasmons and sur-
face plasmons in classical regime. We present the concept of phase-matching by
Kretschmann technique to launch surface plasmons.

Chapter 3 presents the general formalism of the Linear Response Theory. In ad-
dition, the concept of quantum wells, wires, and dots will be discussed. Many-body
effects within the random-phase and Hubbard approximations will be addressed as
well. Finally, in this chapter we present the Lindhard polarization function of an
electron gas and static screening within random-phase approximation.

In Chapter 4 we discuss carbon allotropes. In particular, we talk about striking
features of graphene. We show the general application of tight-binding model applied
to graphene. By linearizing the energy spectrum of graphene, we obtain the massless
Dirac equation. Then, we investigate the density of states in the low energy limit.
Finally, we present the polarization function.

In Chapter 5, in order to obtain optical properties of AGNRs, through tight-
binding model, we evaluate the energy spectrum of AGNRs. Using DOS for several
width values, we obtain a general expression to determine whether AGNRs are
metals or semiconductors. Then, in the low energy limit, within the k · p method,
we evaluate the wave functions and eigenvalues of a metallic AGNR. Finally, we
present detailed calculations of the polarization function of an AGNR in the low
energy limit.

In Chapter 6, using Maxwell’s equations for the incoming and outgoing electro-
magnetic fields, in interaction with a metallic AGNR, and the relationship between
the density-density response function and the conductivity, we study surface plas-
mons in an AGNR within Lindhard, random-phase, and Hubbard approximations.
For transverse magnetic modes, we obtain analytical dispersion relations valid for
q ≤ kF and assess their width dependence. In all approximations, we include screen-
ing. In the long wavelength limit, q → 0, there is a small but noticeable difference
between dispersion relations of the three approximations. In this limit, the respective
scattering-free conductivities differ drastically from those obtained in the presence
of impurities. The reflection amplitude shows that metallic AGNRs do not support
Brewster angles. In addition, AGNRs do not support transverse electric surface
plasmons.

In Chapter 7, within the linear-response theory, we derive a response function
which thoroughly takes into account the influence of elastic scattering that is also
valid beyond the long-wavelength limit. We apply the theory to plasmons and sur-
face plasmons in graphene and in the two-dimensional electron gas. The scattering-
modified dispersion relation shows that below a critical scattering strength γc which
is simply related to the plasmon frequency ω, no plasmons are allowed. The critical
strength, γc, and the allowed (ω, q) plasmon spectra of intra-band and inter-band
transitions in graphene are different. In both graphene and the 2DEG, γc falls
rapidly for small ω’s but much more slowly for large ω’s. We investigate transverse
magnetic and transverse electric surface plasmons in graphene at the presence of
impurity scattering in the Lindhard approximation. We show how the behaviour
and domains of transverse magnetic surface plasmons are altered by the impurity
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strength γ and determine the critical value of γ below which no surface plasmons
exist. The quality factor of transverse magnetic surface plasmons for single- and
two-band cases is shown to be proportional to the square of αλSP/γ, where α is the
fine-structure constant and λSP the surface plasmon wavelength. Further, we show
that impurity scattering suppresses transverse electric surface plasmons.

In Chapter 8, we study the homogeneous DC conductivity of graphene using
quantum Boltzmann equation via two-body collisions. We investigate the tempera-
ture, mean free-path, and screening effect on graphene’s DC transport.

Finally, we conclude with highlighting the remarkable results of the thesis in
chapter Chapter 9.
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2 Transport and optical
properties of metallic materials

2.1 Introduction

The study and treatment of transport and optical properties of material can be
classified in three different approaches. It is worth pointing out that these properties
are material response to a stimulus. Indeed, they remain dormant until an external
perturbation is exerted on them, which can be dynamic or static. To illustrate a
typical static stimulus, a simple wire has no current until an external voltage be
applied to it. In addition, if the external voltage varies with time and resulting in
alternative current, it will generate an electromagnetic filed like what occurs in the
radio devices. As a matter of fact , thermodynamically, these properties do not exist
in the equilibrium condition. These stimuli and materials can be regarded classically
or quantum mechanically. Therefore, the treatment can be totally classical, semi-
classical, semi-quantum mechanic, or fully quantum mechanical. If both the external
perturbation and material are considered classically we call it the classical regime.
In contrast, if both are regarded quantum mechanically it is called the quantum
regime. There is a better justification and perspective of the essential physics of what
is happening when we first treat the former and latter with the Jaynes-Cummings
model but this is beyond the scope of this writing [34, 35].

Transport and optical properties of a material are characterized by two quanti-
ties, permittivity and conductivity, respectively [36].However, in the static regime
there is no connection between them whereas in the dynamic regime, these quan-
tities are closely intertwined. We first treat optical properties of a material via
employing Maxwell’s equations and then we find its relation with the dynamical
transport. In particular, these properties are observed in both the classical and
quantum mechanical regimes. However, the generated electromagnetic field will be
treated classically. Although the following treatments and calculations are valid for
magnetic and non-magnetic materials, we limit ourself to the latter case. Maxwell’s
equations [37] are

~∇. ~D = ρext, (2.1)

~∇. ~B = 0, (2.2)

~∇× ~E = −∂
~B

∂t
, (2.3)

~∇× ~H = ~Jext +
∂ ~D

∂t
, (2.4)
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Chapter 2. Transport and optical properties of metallic materials

where D and B are the electric and magnetic fields within the material, respectively.
These quantities pertain to the external electric and magnetic fields through the
constructive relations

~D = ε0 ~E + ~P = εε0 ~E, (2.5)

~B = ε0 ~H + ~M = µµ0
~H, (2.6)

where P refers to the medium polarization induced by the stimulus and M is the
medium magnetization in the absence of an external magnetic field. In addition,
ρext and Jext in Eqs. (2.1) and (2.4) indicate the external charge and current in the
medium where current and electric field are related by

~J = σ ~E. (2.7)

If we apply the curl operator to both sides of Eq. (2.3)

~∇× (~∇× ~E = −∂
~B

∂t
), (2.8)

and substitute ~B with Eq. (2.4) on the right hand side, we find

~∇× ~∇× ~E = −µ ∂
∂t

( ~Jext +
∂ ~D

∂t
). (2.9)

In the absence of an external charge implying no external current, Jext = 0. By
employing Eqs. (2.5) and (2.6) the Eq. (2.9) becomes

~∇(~∇. ~E)− ~∇2 ~E = −µεε0
∂2 ~E

∂t2
. (2.10)

One of the possible solutions that satisfies the Eq. (2.10) is given by

~E(~r, t) = ~EIe
i~k.~r−iωt, (2.11)

where EI is the amplitude of electromagnetic field. From Eqs. (2.10) and (2.11) we
obtain

i~k(i~k. ~EI) + k2 ~EI = ω2µεε0 ~EI . (2.12)

For the transverse electromagnetic (TEM) field, whit the direction of wave propaga-

tion, known as the wave-vector ~k, perpendicular to that of the electric and magnetic
fields, the first term of Eq. (2.12) is zero. Therefore, the constitutive relation be-
tween the wave-vector, permeability, and permittivity for the TEM field is

k2 = ω2µε0ε(~k, ω), (2.13)

where k is the magnitude of the wave-vector. In general, k is a complex quantity

k = kr + iki. (2.14)

As a matter of fact, Eq. (2.13) indicates that the medium permittivity and perme-
ability are complex quantities

6
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ε = εr + iεi, (2.15)

µ = µr + iµi. (2.16)

For a non-magnetic medium where µ = µ0, from Eqs. (2.13), (2.14), and (2.15) we
obtain the following relations

kr =
1√
2

ω

c

[
εr +

√
ε2r + ε2i

]1/2

, (2.17)

ki =
1√
2

ω

c
εi

[
εr +

√
ε2r + ε2i

]−1/2

, (2.18)

where c is the light speed in vacuum with c2 = 1/ε0µ0. It is worth pointing out that
the real and imaginary parts of the wave-vector imply propagation and dissipation
of energy in the medium, respectively[38]. Note that, the energy dissipation is
connected to the imaginary part of the medium permittivity. The medium refractive
index is defined as

n =
k

k0

, (2.19)

(a) (b)

Figure 2.1: The geometry of incident, reflected, and transmitted (a) TM and (b)
TE electromagnetic fields in two media with permittivity ε1 and ε2.

where k0 is the wave-vector in vacuum. There are two types of TEM electromagnetic
fields, TM and TE, that are depicted in Fig. 2.1[39]. In the former the wave-vector
and electric field are in the same plane with the magnetic field perpendicular to
them. In contrast, in the TE case the magnetic field and wave-vector lie in the same
plane with the electric field normal to plane of incident. In some contexts, these
TM and TE correspond to the p-polarization and s-polarization respectively.

7



Chapter 2. Transport and optical properties of metallic materials

In addition to TEM electromagnetic fields there is another type for which the wave-
vector and electric field are along the same direction. In other words, it is a longitu-
dinal electromagnetic field. The existence of this kind of electromagnetic field can
be derived from Eq. (2.1) as

i~k.ε ~E = 0, (2.20)

this condition can be satisfied only when ε is equal to zero. As we mentioned, there
is a close connection between the medium permittivity and conductivity. The bound
charges in a medium are related to the polarization by

~∇. ~P = −ρbound. (2.21)

Using continuity equation for the current density of bound charges,

~∇. ~J = −∂ρbound
∂t

, (2.22)

we obtain the relation between the current density and the medium polarization

~J =
∂ ~P

∂t
. (2.23)

From Eqs. (2.5), (2.7) and (2.23) after some simple algebra we obtain

ε(~k, ω)

ε0
= 1 +

iσ(~k, ω)

ε0ω
. (2.24)

In the classical regime to obtain the static conductivity it suffices to set the frequency
equal to zero, ω = 0. The static conductivity characterizes the inertia of the charge
movement in the medium due to the externally applied electric field. Moreover,
the static permittivity in both the classical and quantum regimes characterizes the
screening of the Coulomb potential [40]. In the classical regime it is constant and
equals to ε0 which is independent of the wave-vector. However, it depends on the
wave-vector in the quantum regime and can be evaluated either with the random-
phase or Hubbard approximations [41].

2.2 Drude model

At the turn of twentieth century Paul Karl Ludwig Drude developed a theory
to justify the empirical law of Wiedermann-Franz which states that the ratio of the
electrical conductivity to the thermal conductivity at a given temperature is constant
for all metals [42]. Ohm’s law, Joule heating of metals, equipartition theorem, and
the discovery of electron by J.J. Thomson were available at that moment. Although
at normal temperature and pressure the electron density in a metals is three order of
magnitude larger than in a gas. Drude courageously treated conduction electrons in
metals as a gas of negatively charged particles traversing in a medium of uniformly
distributed positive ions. He assumed that these positive ions which are required
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Chapter 2. Transport and optical properties of metallic materials

for charge neutrality are heavier particles, which are immobile and are at rest and
do not contribute to the conduction. It should be pointed out that Drude presented
his model in 1897, a few years before the plum pudding model by J.J. Thomson
and Rutherford model. The former proposed in 1904 and the later in 1909. He
constructed his model by applying classical mechanics and the kinetic theory of gas
to the electron sea. In the following we review the essential assumptions that he
used to picture his model [42, 43, 44].

1. Some fraction of electrons are free. They are not bound to any nuclear sites
and they move in a homogeneous potential.

2. For a given electron, its interaction with other electrons and ions between col-
lisions is neglected. The former known as independent electron approximation
implying that there is no correlation between the electron momentum before
and after the collision. In other words, electron has no “ memory”. The latter
is known as free electron approximation.

3. Collisions are treated as instantaneous and elastic. It is assumed that after
undergoing a collision, an electron instantaneously attains thermal equilibrium
with the surrounding. This reflects that after a collision, the electrons have
the same temperature as the local environment of the lattice. Furthermore,
electrons have a randomly directed velocity, with a kinetic energy given by the
appropriate thermodynamic distribution function after collision.

4. Electrons are assumed to experience collisions. The collisions are essential
due to increasing kinetic energy as a function of time which imply the energy
diverges and this is unphysical. The probability of an electron collision in a
time interval dt is dt/τ where τ is known as the mean free time, relaxation
time, or collision time. It is assumed that the relaxation time is independent
of the electron position and has no dependence on time.

Permittivity and conductivity of a medium in the classical regime can be evaluated
within the Drude model. From Newton’s second law of motion, given by

m~̈x = ~F , (2.25)

where F is the total internal and external forces acting on an electron. In general
these forces have time and space dependencies. Here we assume that the internal
force, which is caused by friction, to be constant and proportional to the electron
velocity. For the external force, we suppose that the medium is interacting with an
electromagnetic field. Therefore, the electron equation of motion is

mẍ = −mγẋ+ qE(x, t), (2.26)

where γτ = 1 and q = −e, is the electron charge. For simplicity we consider the one-
dimensional case which can be easily extended to the three-dimension. In general,
the external electromagnetic field can be regarded as a electromagnetic wave packet.
Therefore, it is given by

E(x, t) =
∑
q

∫
dωE(q, ω)ei(qx−ωt), (2.27)

9
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where E(q, ω) is the Fourier component of the electromagnetic field. Note that, any
other external field that acts on an electron can be treated the same way. Here, for
simplicity, we limit our calculation to the long wavelength limit. In this limit, the
wave-vector of the external field goes to zero, as q → 0. This means the wavelength
of the external field is larger than any system characteristic length such as the unit
cell. It is worth remarking that the width of external field that perturbs the system
is assumed to be larger than the size of the sample. In other words, all parts of the
system is covered by the external field. In this case Eq.(2.27) becomes

E(t) =

∫
dωE(ω)e−iωt. (2.28)

Since in Eq. (2.25) we expressed the external force in terms of Eq. (2.28), the
electron position can be regarded the same way. Therefore, it is given by

x(t) =

∫
dω1x(ω1)e−iω1t, (2.29)

From Eqs.(2.26), (2.28), and (2.29) we arrive at∫
dω1m

[
−ω2

1 − iγω1

]
x(ω1)e−iω1t = q

∫
dωE(ω)e−iωt. (2.30)

If we multiply both sides by eiω
′′t and integrating over t we obtain

∫
dω1m

[
ω2

1 + iγω1

]
x(ω1)δ(ω1 − ω′′) = −q

∫
dωE(ω)δ(ω − ω′′). (2.31)

Integration over ω1 and ω0 yields

x(ω) = − q

m

E(ω)

ω2 + iγω
. (2.32)

We can obtain the medium permittivity, from Eq. (2.5) by first evaluating its
polarization, which in the time Fourier space is defined as

P (ω) = qnx(ω), (2.33)

where n is the electron density. Combining Eqs. (2.5), (2.32), and (2.33) leads to

ε(ω)E(ω) = ε0E(ω) + P (ω) =

[
ε0 −

nq2

m

1

ω2 + iγω

]
E(ω), (2.34)

where we find

ε(ω)

ε0
= 1− ne2

mε0

1

ω2 + iγω
. (2.35)

From Eq. (2.24) the conductivity is

σ(ω) =
σ0

1− iωτ
, σ0 =

ne2τ

m
, (2.36)

where σ0 is the static conductivity. From this, we see the ac conductivity reduces the
dc one by setting ω = 0. As a matter of fact the real and imaginary parts of conduc-
tivity characterize energy dissipation and transport in the medium. Furthermore,
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due to the complex nature of the conductivity, there is an attributed phase which
indicates the time delay between the applied perturbation field and the medium
response. For instance, let’s consider the stimuli to be a chromatic electromagnetic
field in the long wavelength limit such as

E(t) = E cos(ωt). (2.37)

From Eq. (2.7) we obtain the magnitude of current density

J(t) =
σ0√

1 + ω2τ 2
E cos(ωt− φ), φ = tan−1

[
ωτ

(1 + ω2τ 2)2

]
, (2.38)

where φ describes the phase difference between the input field and the medium
response. The permittivity and conductivity which have been introduced here are
only for a metallic medium. One can extend this toy model for dielectric materials
by introducing a restoring force in Eq. (2.25) such as, Fres = −mω2

0~x. One then
find the following result

ε(ω)

ε0
= 1−

ω2
p

ω2 − ω2
0 + iγω

. (2.39)

which is known as the Lorentz model [45].

2.3 Plasmons

Plasmons are longitudinal electromagnetic waves which originate from coherent
collective excitation of charges in a metallic medium about their equilibrium position
[38, 42]. In the framework of the classical regime and the Drude model they can be
envisaged as depicted in Fig. 2.2 (a).

(a)

(b)

Figure 2.2: Plasmon wave in a metallic system.

In the absence of an external field, the metallic medium is in equilibrium and it
is neutral in the sense that it has no extra free charges. By applying a perturbation
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which can be an electromagnetic field, beam of electrons, or thermal gradient, mo-
mentum would be transfered from this perturbation to the charges and offset them
about their equilibrium position. The role of a stimulus can be imagined as a force
that acts on an harmonic oscillator. When the mass attached to the spring is pulled
and then released, the oscillator starts its harmonic motion in the absence of the
external force. The applied perturbation on the metallic medium acts analogue to a
harmonic oscillator. The metallic medium is neutral but the external filed induces
an ensemble of dipole-moments at the nuclear sites which are depicted as the yellow
oval shapes in Fig. 2.2 (a). For a simpler description, the former imagination can
be visualized as Fig. 2.2 (b) where all internal dipole-moments cancel each other’s
effect and only that of edges survive. In other words, charges with different signs are
accumulated on both sides of the metallic medium. At the beginning of the interac-
tion of stimulus with the metallic medium positive charges accumulate on one side
and the negative charge on the other side. Then the generated field in the metallic
medium due to this accumulation of charges on both sides exerts a force on them.
The negative and positive charges move in parallel and anti-parallel directions of the
generated field, respectively. By passing the time the amount of charge on the both
sides reduce. Consequently, the strength of the generated field decreases as well. For
a moment, the generated field vanishes but due to the acquired momentum negative
and positive charges will accumulate on opposite sides compared to earlier. This
process continuous for ever if we assume that there is no dissipation in the metallic
medium. This oscillation of charge density known as plasma and the quantum of it
is called a plasmon. As mentioned, the condition for the existence of a longitudinal
electromagnetic wave is given by

ε(q, ω) = 0. (2.40)

Within the Drude model, neglecting loss or dissipation means the γ parameter van-
ishes from Eqs. (2.35) and (2.40) and the plasmon frequency of a metallic medium
can be obtained as

ω2
p =

ne2

mε0
, (2.41)

where p stands for plasmon. With Eq. (2.41) at our disposal we can rewrite the
Drude model as

ε(ω)

ε0
= 1−

ω2
p

ω2 + iγω
. (2.42)

2.4 Surface Plasmons

A surface plasmon (SP) is an evanescent electromagnetic field propagating be-
tween the interface of two media under specific condition, like in a metal-dielectric
joint [46]. The most striking feature of surface plasmons is its wavelength which
is smaller than that of light in vacuum. In spite of plasmon which exist only in
one form where the electric field and propagation are in the same direction, surface
plasmon have two types, TM and TE. In the case of TM surface plasmons, the com-
ponent of electric field which is perpendicular to the interface of two media decays
exponentially. The magnetic field components of the TE surface plasmons play the
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Figure 2.3: TM surface plasmon profile propagating at the interface of two media
with permittivities ε1 and ε2.

same role that of electric field of TM surface plasmons. First we evaluate the TM
surface plasmons for the simplest case, consisting of two media with permittivities
ε1 and ε2. Using the time Fourier transform, Eq. (2.10) becomes

~∇(~∇. ~E)− ~∇2 ~E = ω2µεε0 ~E, (2.43)

For TEM electromagnetic fields, it reduces to

~∇2 ~E +
ω2

c2
ε ~E = 0. (2.44)

which is known as Helmholtz equation. First we treat TM surface plasmons and
then we treat that of TE surface plasmons. From Eqs. (2.3) and (2.44) for z > 0,
as shown in Fig. 2.3, the components of electric and magnetic fields are given by

Hy(z) = C2e
ikxxe−k2zz, (2.45)

Ex(z) =
iC2

ωε1
eikxxe−k2zz, (2.46)

Ez(z) = −C2kx
ωε1

eikxxe−k2zz. (2.47)

For z < 0 we have

Hy(z) = C1e
ikxxek1zz, (2.48)

Ex(z) =
iC1

ωε2
eikxxek1zz, (2.49)

Ez(z) = −C1kx
ωε2

eikxxek1zz, (2.50)

where the frequency and wave-vectors are related by

ω2

c2
= k2

x + k2
iz, i = 1, 2, (2.51)
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here kx stands for the surface plasmon wave-vector and kz is the perpendicular wave-
vector. This implies the damping of the surface plasmon field. Furthermore, C1 and
C2 are constants that can be determined by conservation of energy between the
applied perturbation and the surface plasmon. Satisfying the boundary conditions
for normal and tangential components of the electric field at z = 0 yields

k2z

k1z

+
ε1
ε2

= 0. (2.52)

Since k1z and k2z are positive quantities that satisfy the former condition we can
conclude that the permittivity sign for two media need to be different. This implies
one of them has to be dielectric and the other one metallic. This is the specific
condition mentioned in the definition of surface plasmon. Combining Eqs. (2.51)
and (2.52) we obtain the general expression for the TM surface plasmon of two
media with permittivities ε1(k, ω), and ε2(k, ω) which is

kx =
ω

c

√
ε1(k, ω)ε2(k, ω)

ε1(k, ω) + ε2(k, ω)
. (2.53)

In the same manner, for the TE surface plasmon the Helmholtz equation for the
components of the electric and magnetic fields for z > 0 become

Ey(z) = D2e
ikxxe−k2zz, (2.54)

Hx(z) = −iD2
k2z

ωµ0

eikxxe−k2zz, (2.55)

Hz(z) = D2
kx
ωµ0

eikxxe−k2zz, (2.56)

and for z < 0 they are
Ey(z) = D1e

ikxxek1zz, (2.57)

Hx(z) = −iD1
k1z

ωµ0

eikxxe−k1zz, (2.58)

Hz(z) = D1
kx
ωµ0

eikxxekzz, (2.59)

where D1 and D2 are constants that need to be determined by energy conservation.
Satisfying boundary conditions leads to

D1 (k1z + k2z) = 0. (2.60)

Since D1 cannot be zero, k1z + k2z should be zero but we know that both of k1z and
k2z are positive quantities. Therefore, we can conclude that there are no TE surface
plasmons at the interface of the two media. One of the interesting things about the
TM and TE surface plasmons is that the pole of reflection or transmission of their
coefficients gives Eqs. (2.53) and (2.60). For the TM electromagnetic field, using
the geometry depicted in Fig.2.1 (a) and satisfying the boundary conditions for the
normal and tangential components of the electric field, we obtain

t(k, ω) = 2

[
n2

n1

+
sin θT
sin θI

]−1

, (2.61)
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r (k, ω) = 1− sin θT
sin θI

t (k, ω) , (2.62)

where we used Snell’s law n1 cos θI = n2 cos θT and θI = θR. Note that here we
assume that the two media have constant permittivities such as n2

i ε0 = εi, i = 1, 2.
For the TE electromagnetic field, which is shown in Fig.2.1 (b), the same approach
yields

1− r = t
n1 sin θT
n2 sin θI

, (2.63)

1 + r = t. (2.64)

Here Snell’s law states θI = θR and n1 cos θT = n2 cos θI . There is an advantage to
employ this approach instead of Helmholtz equation’s solutions. As we mentioned
when we were discussing the TM and TE surface plasmons, the constant coefficients
C1, C2, D1, and D2 must be determined through the conservation of energy. How-
ever, using the reflection and transmission coefficients it simplifies things further
and we will be able to determine the quality factor of the surface plasmons. We
follow this approach for evaluating surface plasmons for novel structures.

2.5 Classical TM surface plasmons within Drude

model

According to Eq. (2.54) the TM surface plasmons at the interface of two media
can be evaluated using the dielectric and metallic permittivities. For simplicity,
we assume the dielectric medium to be air, ε = ε0. If we can provide the metallic
permittivity using quantum mechanics, then we can find the quantum TM surface
plasmon. Here, we use the Drude model to evaluate of permittivity, which is given
by Eq. (2.42). From Eqs. (2.42) and (2.53), and neglecting loss and dissipation,
(γ = 0), the spectrum of the TM surface plasmon within the Drude approximation
can be evaluated as shown in Fig. 2.4, where the red graph is the surface plasmon
dispersion and the blue one is the light dispersion in free space (FS). Note that the
surface plasmon frequency and wave-vector are expressed in terms of dimensionless
parameters to make the results independent of the electron density. As seen, for a
fixed frequency the surface plasmon’s wave-vector is larger than that of light in a
vacuum. This implies that the surface plasmon wavelength is smaller than that of
light. This is the most striking feature of surface plasmons. Due to this we can go
beyond the diffraction limit using surface plasmon. Due to this property it can be
concluded from the conservation of energy that the strength of surface plasmon field
is very large compare to that of light .

There are many techniques to excite and launch surface plasmon, in the following
we talk about the Kretschmann technique, the simple technique known [47]. Indeed,
to excite a surface plasmon two conditions need to be satisfied; momentum and
energy conservations. This is known as the phase matching condition. As mentioned,
the surface plasmons wave-vector is larger than that of light. If we want to excite
a surface plasmon with light we need to change the tangential component of the
light’s momentum. In other words, we need to incline the blue line to the green
one in Fig. 2.5 (a). This can be achieved by using a prism like what is depicted
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Figure 2.4: TM surface plasmon dispersion for a joint dielectric-metallic medium.

in Fig. 2.5 (b). By changing the incident angle, the slope of the blue line in 2.5
(a) changes. Then at the specific angle where the tangential component of light’s
momentum becomes equal to the momentum of the surface plasmon provided that
the frequency conservation already has been into account. Then a surface plasmon
will launch at the interface of two the media.

(a) (b)

Figure 2.5: (a) Phase matching condition for TM surface plasmon of a joint
dielectric-metallic medium. (b) Kretschmann technique geometry.
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3 Quantum Linear Response
Theory

3.1 Introduction

In the previous chapter we reviewed and treated a classical toy model to explain
the transportation and optical properties of a metallic medium. There are also a
few quantum mechanical approaches such as quantum Boltzmann equation (QBE),
density functional theory, Quantum master equation, and Quantum linear response
theory (QLRT) to evaluate these quantities [41, 48, 49, 50, 51]. Linear response
theory has a wealth of information and it is very powerful and simple method that
can provide for instance, static screening, effective interactions, collective modes,
electron energy-loss spectra and Raman spectra at zero and finite temperature. In
the following we investigate the main steps in the derivation of QLRT. The main idea
in QLRT is that a system is at equilibrium before acting of any external perturbation.
If a stimuli at a time like what is shown in Fig. (3.1), t0, acts on the system. This
couples to a degree of freedom and the system is in a non-equilibrium states.

Figure 3.1: A schematic of linear response theory for a system which is at equilibrium
before the interaction with external perturbation.

If the stimuli is weak then the new state is close to the equilibrium and we can
apply a quantum mechanical perturbation. In other words, in QLRT we suppose
that an external field couples to an operator such as A of the system. We are
interested in evaluating the value of an operator like B in the time just after the
stimuli. The Hamiltonian of the system is given by

Ĥ = Ĥ0 + ÂF (t), (3.1)

where H0 is the system Hamiltonian at equilibrium. Â is an operator of the system
which F (t) as an external perturbation couples to it. In particular, when we state
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that the external perturbation needs to be weak it means 〈ÂF (t)〉 � 〈H0〉 .This
external stimuli can be for example an electromagnetic field or a magnetic filed that
couples to density and magnetic dipole respectively as shown in table. 3.1.

Table 3.1: External perturbation Examples.

External perturbation

ÂF (t) F (t) Â∫
Vext(~r, t)n̂(~r)d~r

∫
Vext(~r, t)d~r n̂(~r)

− ~M. ~Bext(t) − ~M. ~Bext(t) ~M

Since there is an ensemble, the average value of an operator is given by

〈B〉0 =
1

Z0

Tr [ρ0B] =
1

Z0

∑
i

〈ψi|B̂|ψi〉 e−βEi , (3.2)

where 〈..〉0 stands for an average at thermal equilibrium and |ψi〉 and Ei are the
ith eigenfunction and eigenvalue of system respectively at equilibrium. Z0 is the
equilibrium partition function

Z0 =
∑
i

e−βEi , (3.3)

and ρ0 is the density operator defined as

ρ0 = e−βH0 =
∑
i

|i〉 〈i| e−βEi , (3.4)

with β = 1/kBT where kB and T are Boltzmann constant and temperature respec-
tively. The expectation value of B over time is given by

〈B〉F (t) =
1

Z0

Tr [ρ(t)B] =
1

Z0

∑
i

〈ψi(t)|B̂|ψi(t)〉 e−βEi , (3.5)

where |ψi(t)〉 is the ith eigenfunction at time t when the system is close to equilib-
rium. In the interaction picture |ψi(t)〉 and |ψi(0)〉 are related by [52]

|ψi(t)〉 = Û(t, t0) |ψi(0)〉 , (3.6)

where Û(t, t0) is a time-evaluation unitary transformation. In the absence of per-
turbation Û(t, t0) is given by

Û(t, t0) = e−iĤ0(t−t0)/~, (3.7)

while in its presence is

Û(t, t0) = e−iĤ0(t−t0)/~ÛF (t, t0), (3.8)
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with ÛF (t, t0) defined as

ÛF (t, t0) = Tt

[
exp

(
− i
~

∫ t

t0

Â(t′ − t0)F (t′)dt′
)]

, (3.9)

and Tt denoting the time ordering operator, see appendix A. By the first order Eq.
(3.9) reduces to

ÛF (t, t0) = 1̂− i
~

∫ t

t0

Â(t′ − t0)F (t′)dt′. (3.10)

From Eqs. (3.2), (3.5), (3.6), and (3.10) by some simple algebra we obtain

〈B〉F (t)− 〈B〉0 = − i
~

∫ t

t0

〈[B̂(t), Â(t′)]〉0 F (t′)dt′. (3.11)

By introducing

〈B〉F (t)− 〈B〉0 ≡ 〈B〉1 (t), (3.12)

and changing the time variable in Eq(3.11) like τ = t − t0 we can rewrite the
commutation relation as

〈[B̂(t), Â(t′)]〉0 = 〈[B̂(τ), Â]〉0 . (3.13)

Combining Eqs. (3.11) and (3.12) leads to

〈B〉1 (t) =

∫ t−t0

0

χBA(τ)F (t− τ)dτ, (3.14)

where χBA(τ) is defined as

χBA(τ) ≡ − i
~

Θ(τ) 〈[B̂(τ), Â]〉0 , (3.15)

where Θ is step function. Physically, χBA is the response of a system when we
are trying to measure the average value of an operator such as B at time τ in the
case that an external perturbation has been coupled to an operator like A at an
earlier time t − τ . This response is called retarded or causal response due to the
aforementioned fact. Since there is no preferential initial time of reference, t0, we
can set it as −∞ provided that at this time the perturbation vanishes. In other
words, the system can be regarded as in equilibrium in the far past, then we can
rewrite Eq.(3.15) as

〈B〉1 (t) =

∫ ∞
0

χBA(τ)F (t− τ)dτ. (3.16)

3.2 Density-density response function

One of the most interesting thing about the response function which has a
very close connection with the transportation and optical properties of a system is
density-density response function also is known as polarization function. We regard
a system whose Hamiltonian is

Ĥ = Ĥ0 +

∫
Vext(~r′, t)ρ̂(~r′)d~r′. (3.17)
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Here the polarization function is defined as

χ0(~r, t; ~r′ , t′) = − i
~

Θ(t− t′)
〈

Φ0

∣∣∣ [ρ(~r, t), ρ(~r′ , t′)
] ∣∣∣Φ0

〉
, (3.18)

where Φ0 is the system wave function at equilibrium and ρ is the number density
operator which in second quantization formalism is given by

ρ(~r, t) = ψ†(~r, t)ψ(~r, t) =
∑
ij

c†i (t)cj(t)φ
∗
i (~r)φj(~r), (3.19)

where c† and c are creation and annihilation operators and φi is the system’s ith
single particle eigenfunction [41, 52, 53]. In addition, the new distribution of the
density can be evaluated by

ρ1(~r, t) =

∫ ∞
0

dτ

∫
d~r′χ0(~r, ~r′, t)Vext(~r′, t− τ). (3.20)

Indeed, χ0 is proportional to the probability of finding an electron at position
~r′ and time t′ knowing its position ~r at time t. Here, naught as a superscript
means polarization function without regarding any interactions between electrons
or environment effects. The quantity in the bracket from Eq. (3.18), by employing
(3.19), becomes

∑
i,j

∑
m,n

〈
Φ0

∣∣∣ [c†i (t)cj(t)φ∗i (~r)φj(~r), c†m(t′)cn(t′)φ∗m(~r′)φn(~r′)
] ∣∣∣Φ0

〉
. (3.21)

Since commutation has no effect on the single particle wave function they can be
extracted. This simplifies the result and leads to

∑
i,j

∑
m,n

φ∗i (~r)φj(~r)φ
∗
m(~r′)φn(~r′)

〈
Φ0

∣∣∣ [c†i (t)cj(t), c†m(t′)cn(t′)
] ∣∣∣Φ0

〉
. (3.22)

The time evolution of an operator is given by[41, 52]

cl(t) = eiH0t/~cle
−iH0t/~ = cle

−iElt/~, (3.23)

where substituting it into Eq.(3.22) gives rise to

∑
i,j

∑
m,n

φ∗i (~r)φj(~r)φ
∗
m(~r′)φn(~r′)e−i(Ei−Ej)(t−t

′)/~
〈

Φ0

∣∣∣ [c†icj, c†mcn] ∣∣∣Φ0

〉
. (3.24)

The expression in the above commutation by some simple algebra becomes[
c†icj, c

†
mcn

]
= (c†ici − c

†
jcj)δi,nδj,m = (n̂i − n̂j)δniδjm, (3.25)

where n̂ indicate the number operator and δ is the Kronecker delta. The thermal
average of Eq. (3.25) yields〈

Φ0

∣∣∣ [c†icj, c†mcn] ∣∣∣Φ0

〉
= (fi − fj)δniδjm, (3.26)
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where f denotes the Fermi-Dirac distribution function

fi =
1

eβ(Ei−µ) + 1
, (3.27)

with µ being the chemical potential. From Eqs. (3.26) and (3.22) we can evaluate
the polarization function which is given by

χ0(~r, t; ~r′ , t′) = − i
~

Θ(t− t′)
∑
i,j

φ∗i (~r)φj(~r)φ
∗
j(
~r′)φi(~r

′)e−i(Ei−Ej)(t−t
′)/~(fi − fj).

(3.28)
By modifying the time it can be rewritten as

χ0(~r, t; ~r′ , t′) = χ0(~r, t− t′; ~r′ , 0) = χ0(~r, ~r′ , t), (3.29)

where its time Fourier component is given by

χ0(~r, ~r′ , ω) =

∫ ∞
−∞

χ0(~r, ~r′ , t)eiωtdt. (3.30)

According to Eq. (3.30) by some algebra we can obtain the time Fourier com-
ponent of the polarization function

χ0(~r, ~r′ , ω) = lim
ν→0

∑
i,j

(fi − fj)
Ei − Ej + ~(ω + iν)

φ∗i (~r)φj(~r)φ
∗
j(
~r′)φi(~r

′), (3.31)

where parameter ν has been introduce in the integration over time to avoid the
divergence and to satisfy causality. Here, we rename χ0 to χ0

non , to indicate this is
for the case of no impurities or collisions

χ0(~r, ~r′ , ω) = χ0
non(~r, ~r′ , ω). (3.32)

In addition to the time Fourier, the space Fourier can be calculated by

χ(~q, ~q′, ω) ≡ 1

Ld

∫
ddre−i~q.~r

∫
ddr′ei

~q′.~r′
∫ ∞

0

dtχ(~r, ~r′, t)eiωt. (3.33)

Since χ(~r, ~r′, t) only depends on the difference of ~r−~r′ the above integral vanishes
unless ~q = ~q′ which implies

χ(~q, ~q′, ω) =
1

V d
χ(~q, ω)δ~q,~q′ , (3.34)

where V d denotes the volume in dimensions. Note that χ0
non(~q, ω) is known as the

Lindhard polarization function.

3.3 Quantum wells, wires, and dots

In a bulk system electrons are treated as free electron gas whose wave functions
are plane waves with energy E = ~2k2/2m where k is the amplitude of their wave-
vector. However, if the motion of electrons is restricted by imposing potentials on
directions of motions which are on the order of the de Broglie wavelength, this results
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Figure 3.2: Bulk, Quantum well, wire and dot systems.

in drastic changes in transport and optical properties of the system. If the electrons’
motion becomes limited as shown in Fig. 3.2 in one, two, or three dimensions, these
new systems are known as quantum wells, wires, and dots respectively. In the
case where the electron-ion interaction is disregarded the bulk, quantum well and
quantum wire can also be considered as electron gases in 3D, 2D and 1D respectively
[45, 54]. In spit of the bulk system which has a continuous quantum number, in
these novel structures there is at least one discrete quantum number which refers to
sub-band. The wave function of an electron gas in these systems is given by

Ψ(~r) =

 C3De
i~k.~r 3D ,

C2De
i(kxx+kyy)φl(z) 2D ,

C1De
i(kxx)φl(z)φm(y) 1D ,

(3.35)

where φl(z) and φm(y) are the eigenvalues in the z and y directions that can be
determined according to the boundary conditions that are imposed on the system.
In addition, C3D, C2D, and C1D can be evaluated through normalization of the wave
function. The energy eigenvalues of these systems are

E =


~2k2
2m

, ~k = kxêx + kyêy + kz êz, 3D ,
~2k2
2m

+ El, ~k = kxêx + kyêy, 2D ,
~2k2
2m

+ El + Em, ~k = kxêx, 1D ,

(3.36)

where El and Em are eigenvalues in the z and y directions. Furthermore, the Fermi
wave-vector for these systems at zero temperature is related to the electron density,
n, by

kF =


(3π2n)

1
3 , 3D ,

(2πn)
1
2 , 2D ,

nπ/2, 1D .

(3.37)

3.4 Many-body effects

Many-body effects such as Coulomb potential between electron-electron, electron-
ion, ion-ion, or impurity and defects, or even electron-phonon coupling have profound
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impacts on the transport and optical properties of the novel structure. Here we ad-
dress the question of when many-body effects become important? The Hamiltonian
of a many-body system, in the simplest case where only the Coulomb potential
between electrons has been regarded and is given by

H =
N∑
i=1

p2
i

2m
+

e2

4πε0

∑
i<j

1

|~ri − ~rj|
(3.38)

where pi and ~ri indicate the momentum and position of the ith electron. By introduc-
ing the dimensionless parameters for momentum and position such as ~P = ~p/rsaB
and ~R = ~r/rsaB where aB and rs refer to Bohr and Wigner-Seitz radii [42]. There-
fore, by these dimensionless parameters Eq.(3.38) can be rewritten

H =
Ry

r2
s

− N∑
i=1

~∇2
~R

+ rs
∑
i<j

1∣∣∣~Ri − ~Rj

∣∣∣
 , (3.39)

where Ry is the Rydberg energy and rs indicates the radius of an imaginary sphere
whose volume is equal to that of an electron. There is a very constructive relation
between this natural length, rsaB , and the electron density in 3D, 2D, and 1D which
is given by

1

n
=


4π(rsaB)3/3, 3D ,
π(rsaB)2, 2D ,

2rsaB, 1D .
(3.40)

According to Eq.(3.39) when rs becomes negligible, the Coulomb potential can
be neglected and the system can be treated as an electron gas. We can see form Eq.
(3.40) in the 3D rs ∼ n−1/3. Since the electron density is high the second term in the
Hamiltonian can be disregarded. However, for 2D and 1D rs has a meaningful value
that cannot be neglected. Therefore, many-body effects show important impacts
on all properties of the system. Indeed, we expect that due to the fact that the
Fermi-wavelength for the 1D system is much greater than of the 2D. In the similar
way, the Fermi wavelength of the 2D is larger than of the 3D as indicated in Eq.
(3.37).

3.5 The random-phase approximation

When the Coulomb potential term in the Hamiltonian becomes important, we
should come up with a new, powerful and brilliant approach to solve it. Since
we are dealing with a system with particle number on the order of 1023 where
even with the most advanced modern computers, we are unable to solve it exactly.
Therefore, we have to employ some approximations to resolve this issue, to obtain
some constructive and intuitive results that can tell us about this many-body effect
on system’s properties. In other word, how does this many-body effect modify the
system polarization function and what is the connection between the new and old
polarization function? Indeed, when an external field is applied and coupled to a
system, it induces a new charge distribution which renders a Coulomb potential
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originated from this distribution. Then, we can express the total potential seen by
a typical electron in the system by

Vsc(~r, t) = Vext(~r, t) +
e2

4πε0

∫
ddr′

δρ(~r′, t)

|~r − ~r′|
, (3.41)

where Vsc(~r, t) indicates the total potential. On the right hand side of Eq. (3.41),
Vext refers to external potential and second term states the mean field theory concept
which has been employed implicitly [52]. Indeed, mean field theory says that the
effect of other particles is included as a mean density. This concept is depicted
in Fig. 3.3 schematically. The relation between the induced charged, δρ, and the
external potential is given by

δρ(~r, t) =

∫
dt

∫
ddrχ(~r, ~r′, t, t′)Vext(~r

′, t′), (3.42)

where χ is the system polarization function. From Eq. (2.1) we have

~∇2Vsc(~r, t) = −eδ(~r, t)/ε0. (3.43)

If we take the space and time Fourier transforms of Eq. (3.43)

− q2Vsc(~q, ω) = −eδ(~q, ω)/ε0, (3.44)

the Fourier transform of Eq. (3.42)

δρ(~q, ω) = χ(~q, ω)Vext(~q, ω), (3.45)

and the Fourier transform of the external potential

Vext(~q, ω) =

∫
ddrei~q.~r

∫
eiωtVext(~r, t), (3.46)

then combing Eqs. (3.44), (3.45), and (3.46) and applying them to the Fourier
transform of Eq. (3.41) we obtain

Vsc(~q, ω) = Vext(~q, ω) + V (q)δρ(~q, ω) = [1 + V (q)χ(~q, ω)]Vext(~q, ω), (3.47)

where V (q) indicates the Fourier components of the Coulomb potential. Eq. (3.47)
can be rewritten in a more compact form

Vsc(~q, ω) =
Vext(~q, ω)

ε(~q, ω)
, (3.48)

where ε(~q, ω) is given by

ε−1(~q, ω) = 1 + V (q)χ(~q, ω). (3.49)

It is worth to point out that Eq. (3.48) indicates the fact that the external potential
has been modified. In other words, it has been screened. The subscript SC in Eq.
(3.41) stands for the screened potential. The total potential seen by an electron in
the system is this screened potential.
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To obtain the polarization function when the Coulomb potential is already re-
garded we can rewrite the induced charge density in term of the “proper” density
response, χ̃(~q, ω), which is given by

δρ(~q, ω) = χ̃(~q, ω)Vsc(~q, ω). (3.50)

If we replace δρ(~q, ω) and Vsc(~q, ω) from Eqs. (3.45) and (3.47), respectively, we
arrive at

χ(~q, ω) = χ̃(~q, ω) [1 + V (q)χ(~q, ω)] , (3.51)

where it can be written in the following form

χ(~q, ω) =
χ̃(~q, ω)

1− V (q)χ̃(~q, ω)
. (3.52)

Within the random-phase approximation (RPA) [41, 55, 56], one approximates the
proper polarization function to be equal to non-interacting polarization function, in
the sense that the induced charge density can be expressed by

δρ(~q, ω) = χ̃(~q, ω)Vsc(~q, ω) ' χ0(~q, ω)Vsc(~q, ω), (3.53)

where the connection between the RPA polarization function and that of the non-
interacting is given by

χRPA(q, ω) =
χ0(q, ω)

1− V (q)χ0(q, ω)
. (3.54)

As seen, within the RPA the effect of the Coulomb potential changes the po-
larization function. As we mentioned, all optical properties can be obtain from the
system permittivity. Here we find the relation between the permittivity and the
proper polarization function. From Eqs. (3.49) and (3.52) by some algebra we can
obtain

ε(~q, ω) = 1− V (q)χ̃(~q, ω), (3.55)

where within the RPA it becomes

εRPA(~q, ω) = 1− V (q)χ0(~q, ω). (3.56)

Here we represent the relation between the system conductivity and its polar-
ization function. The space and time Fourier transforms of the current density
continuity equation is

i~q. ~J(~q, ω)− iωρ(~q, ω) = 0. (3.57)

If we express the current density in terms of the conductivity, electric field, and
density we find from Eq. (3.45)

σ(~q, ω)~q. ~E(~q, ω) = ωχ(~q, ω)Vext(~q, ω), (3.58)

where by substituting the Fourier transform of E(~r, t) = −~∇Vext(~r, t), the above
equation yields

σ(~q, ω) =
ie2ωχ(~q, ω)

q2
. (3.59)
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Figure 3.3: Sketch of the mean field idea. The real physical system where the
interaction gives rise to correlation between the particle motions is shown in left
box. The interactions felt by the red particle is replaced by an average interaction
due to the average density of the blue particles.

One can obtain the conductivity within the Lindhard and RPA by substituting Eqs.
(3.32) and (3.54) respectively into Eq.(3.59). In other words, they are given by

σ0(~q, ω) =
ie2ωχ0(~q, ω)

q2
, (3.60)

σRPA(~q, ω) =
ie2ωχRPA(~q, ω)

q2
. (3.61)

3.6 Exchange and correlation effects

If electrons in the system were distinguishable the average interaction energy of
an electron with the positively charged background would be canceled. However, it
has been observed that even in the absence of the Coulomb interaction the amount of
total energy is less than what is expected. According to the Pauli exclusion principle
the wave function of an electron system need to be anti-symmetry which implies
that there is a high degree of correlation between the positions of two electrons
with the same spin orientation. Therefore, there is a region where the density of
the same-spin electron is smaller than average. In other words, each electron is
surrounded by an hole which is known also “exchange hole”. This gives rise to the
fact that the positive background charge is not exactly canceled. The interaction of
an electron surrounded by the exchange hole with the positive charge yields to the
exchange energy [40, 41]. This alters the polarization function of a system . Indeed,
the exchange and correlation effects can be introduced by local field factor where
modifies the polarization function as

χ(q, ω) =
χ0(q, ω)

1− V (q) [1−G+(q, ω)]χ0(q, ω)
, (3.62)

where G+ is

G+ =
G↑↑ +G↑↓

2
. (3.63)
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↑ and ↓ are symbols for the spin up and down respectively. The proper polarization
function is given by

χ̃(~q, ω) =
χ0(q, ω)

1 + V (q)G+(q, ω)χ0(q, ω)
, (3.64)

and for the permittivity we have

ε(q, ω) = 1− V (q)χ0(q, ω)

1 + V (q)G+(q, ω)χ0(q, ω)
. (3.65)

If one, for simplicity, assume that the local field factor be frequency independent
then it yields to the Hubbard approximation

G(q, ω) ≈ G(q), (3.66)

which for 3D, 2D, and 1D systems is [57]

G(q) =


q2/q2 + k2

F , 3D ,

q/
√
q2 + k2

F , 2D ,

V (
√
q2 + k2

F )/2V (q), 1D .

(3.67)

In the Hubbard approximation Eqs. (3.62) and (3.65) become

χHub(q, ω) =
χ0(q, ω)

1− V (q) [1−G(q)]χ0(q, ω)
, (3.68)

εHub(q, ω) = 1− V (q)χ0(q, ω)

1 + V (q)G(q)χ0(q, ω)
. (3.69)

3.7 The Lindhard polarization function of a free

electron gas

According to Eq. (3.31) in order to obtain the polarization function of a system
we need the single-particle wave function and energy spectrum which for a free
electron gas are

φ~k,s(~r) =
ei
~kd.~r

√
Ld
Xs, E~k,s =

~2|~kd|2

2m
, (3.70)

where L is the system length. Here d denotes the dimension and subscript s indicates
the spin eigenvalue. Here for the free electron gas in 2D and 1D we limit our
calculation to one sub-band. By employing Eq. (3.70) and setting it into Eq. (3.31)
we obtain

χ0
non(~r, ~r′ , ω) = lim

ν→0

∑
~k,s

∑
~k′,s′

(f~k,s − f~k′,s′)
E~k,s − E~k′,s′ + ~(ω + iν)
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×
(

1

Ld

)2

ei(
~k′−~k).~re−i(

~k′−~k).~r′
(
X†sXs′

)︸ ︷︷ ︸
δss′

2
, (3.71)

where δss′ refers to the Kronecker delta. By taking its space Fourier transform we
arrive at

χ0
non(~q, ω) = χ0

non(q, ω) = lim
ν→0

1

Ld

∑
~k,s

(f~k,s − f~k+~q,s)

E~k,s − E~k+~q,s + ~(ω + iν)
, (3.72)

where, by some algebra, it can be rewritten as

χ0
non(q, ω) = lim

ν→0

1

Ld

∑
~k,s

f~k,s

[
1

E~k,s − E~k+~q,s + ~(ω + iν)
+

1

E~k,s − E~k−~q,s − ~(ω + iν)

]
. (3.73)

Using the identity

lim
ν→0

1

a± iν
= P.V.

1

a
∓ iπδ(a), (3.74)

we can separate real and imaginary parts of polarization function

Reχ0(q, ω) =
1

Ld

∑
~k,s

f~k,s

[
1

E~k,s − E~k+~q,s + ~ω
+

1

E~k,s − E~k−~q,s − ~ω

]
, (3.75)

Imχ0(q, ω) = − π

Ld

∑
~k,s

f~k,s

[
δ
(
E~k,s − E~k+~q,s + ~ω

)
−

δ
(
E~k,s − E~k−~q,s − ~ω

)]
, (3.76)

where δ(a) is Delta function. To simplify things we limit our calculation at zero
temperature. For the 3D free electron gas real and imaginary parts are given by
Refs. [41, 58]

Reχ0(q′, ω′) = N3

[
1− ω′2−

4q′
ln

∣∣∣∣ω′− + 1

ω′− − 1

∣∣∣∣− 1− ω′2+
4q′

ln

∣∣∣∣ω′+ + 1

ω′+ − 1

∣∣∣∣− 1

2

]
, (3.77)

Imχ0(q′, ω′) =
πN3

4q′

[
(1− ω′2+)Θ(1− ω′2+)− (1− ω′2−)Θ(1− ω′2−)

]
, (3.78)

where Θ is the step function. For the 2D free electron gas they are

Reχ0(q′, ω′) =
N2

q′

[
ω′+
|ω′+|

Θ(ω′
2
+ − 1)

√
ω′2+ − 1−

ω′−
|ω′−|

Θ(ω′
2
− − 1)

√
ω′2− − 1− q′

]
, (3.79)

Imχ0(q′, ω′) =
N2

q′

[
(1− ω′2+)Θ(1− ω′2+)− (1− ω′2−)Θ(1− ω′2−)

]
, (3.80)
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and finally for the 1D free electron gas the results are

Reχ0(q′, ω′) =
N1

2q′

[
ln

∣∣∣∣ω′+ − 1

ω′+ + 1

∣∣∣∣− ln

∣∣∣∣ω′− − 1

ω′− + 1

∣∣∣∣] , (3.81)

Imχ0(q′, ω′) =
N1π

2q′

[
Θ(1− ω′2+)−Θ(1− ω′2−)

]
, (3.82)

where Nd, q
′, and ω′± are

Nd =
nd

2EF
, q′ =

q

kF
, ω′± =

ω

qvF
± q

2kF
, (3.83)

where EF and kF refer to the Fermi energy and wave-vector.

3.8 Static screening

Eq.(3.48) enables us to evaluate the static screening by setting ω = 0, which
results in

Vsc(~q) =
Vext(~q)

ε(~q)
, (3.84)

where Vext(~q) is the bare Coulomb interaction. For the 3D free electron gas, within
the RPA it can be shown

ε(~q) = 1− V (q)χ0(~q) = 1 +
κ2

q2
, (3.85)

with

κ =

√
4πe2

ε0

∂n

∂µ
. (3.86)

Here n and µ are electron number density and Fermi energy, respectively [45]. Com-
bining Eqs. (3.84) and (3.85), then taking its Fourier transform we obtain

Vsc(r) =
e2

ε0r
e−κr, (3.87)

where κ is the screening wave-vector. This is known also as Yukava potential.
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4 Carbon allotropes

4.1 Introduction

Carbon with atomic number 6 is the second and fourth most abundant chemical
element by mass in the universe and in the human body respectively. Its name
originated from the Latin word carbo which means charcoal [59]. It can be found in
every aspect of daily life such as, soot, wood, inks, paints, and so on. The discovery
of some of its allotrope in the past century and at the turn of 21th century opened
up a new horizons for developing new technology based on them. Due to their
intriguing properties they are the most promising candidate for replacing the silicon
technology. The electron configuration of carbon is 1s22s22p2. Carbon allotrope,
are fullerene, carbon nanotubes, diamond, graphite, and graphene as seen in Fig.
4.1 [60]. Diamond, a bulky allotrope of carbon is the most popular gemstone in
the world which is the hardness material. The atomic arrangement of carbon atoms
in diamond is sp3 which makes it a good thermal conductor [59]. The mother
of all other allotropes is graphene a true 2D material that exist in the 3D world.
Wrapping it up leads to Fullerene, a quasi-0D, rolling it yields a carbon nanotube
(CNT), a quasi-1D, and stacking it gives rise to graphite. There are single and
multilayer carbon nanotubes diameters with the order of few nanometers and length
of microns even in some special cases millimeters. The arrangement of carbon atoms
in nanotubes is sp2. It was discovered in 1992 by Sumio Iijima who worked at that
moment at IBM [61]. Its high tensile strength, electrical and thermal conductivity
and chemical stability drew attention to it at the end of last century. Before the
discovery of nanotubes, fullerenes were made by Kroto et al. in 1985 where their
existence was predicted in 1970. It consists of 60 carbon atoms and its diameter is
about 1nm. Due to its geometry, fullerene’s hardness is greater than that of diamond.
Another allotrope of carbon, graphite which is the softest natural material consists
of a few layers of graphene. The distance between these layers is about 0.335 nm
and are held together by Van der Waals force. Some properties of carbon allotropes
can be found in the table 4.1.

Table 4.1: Properties of carbon allotropes.

Allotropes Diamonds Graphene CNT Fullerene
Dimension 3D 2D 1D 0D
Hybridization sp3 sp2 sp2 sp2

Bond length (A◦) 1.54 1.42 1.42 1.42
Density g/cm3 3.5 2.6 1.2-2 1.72
Electronic properties insulator semi-metal semiconductor semiconductor
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Chapter 4. Carbon allotropes

Figure 4.1: Carbon allotropes.

4.2 Graphene

Graphene, the building block of CNT, graphite, and fullerenes, is a single layer of
carbon atoms that are arranged in a two-dimensional hexagonal honeycomb lattice
where the distance between two carbon atoms is 0.142 nm. Graphene was discovered
in 2004 by Andre Geim and Konstantin Novoselov [62]. Indeed, this hexagonal
lattice is not a Bravais lattice but can be regarded as a Bravais lattice with two
bases. In graphene every carbon atom shares one s orbital with two p orbitals and
form three sp2 orbitals with wave functions given by [63]

Ψ1 =
1√
3
φ2s +

√
2

3
φ2px ,

Ψ2 =
1√
3
φ2s −

1√
6
φ2px +

1√
2
φ2py ,

Ψ3 =
1√
3
φ2s −

1√
6
φ2px −

1√
2
φ2py . (4.1)

These three wave functions are strongly binded together in the 2D planar layer. This
makes graphene the hardest existing material . The forth electron of carbon occupies
the pz orbital and makes π and anti-π bindings as shown in Fig. 4.2 (adopted from
the Ref. [64].)

Some of the striking features of graphene are: a) it is the purest form of carbon:
b) its Young modulus is extremely high which is on the order of 1 TPA: c) it
has highest intrinsic mobility which is about 2 × 105 cm2V −1s−1:d) the thermal
conductivity of graphene is about 5000 Wm−1K−1 which is exceptionally high: e) a
suspended graphene can transmit 98 present of light, and f) it has zero band-gap
and so on. [62, 65, 66]. If graphene is confined to one direction it leads to a new 1D
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Figure 4.2: sp2 configuration in graphene.

Figure 4.3: The crystal of arm-chair and zigzag graphene nanoribbons.

novel structure known as graphene nanoribbon. There are two kinds of nanoribbons;
armchair and zigzag which are defined in terms of their edges as depicted in Fig. 4.3.
To evaluate the electrical and optical properties of graphene and its nanoribbons we
need to obtain their wave functions which is the subject of the following section.

4.3 The tight-binding model

To evaluate any quantity of a system, we need to solve the Schroedinger equation
and obtain its eigenvalues and eigenfunctions. The total Hamiltonian of system is
given by

Htotal =
∑
i

p2
i

2m
+
∑
i

P 2
i

2M
+ Ve−e + Vi−i + Vnucl, (4.2)

where the first and second terms indicate kinetic energy of electrons and nuclei
respectively. Ve−e, Vi−i, and Vnucl are the electron-electron, nucleus-nucleus, and
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Chapter 4. Carbon allotropes

electron-nucleus Coulomb potential energies respectively which are given by

Ve−e =
1

2

∑
i6=j

e2

|~ri − ~rj|
,

Vi−i =
1

2

∑
I 6=J

e2zIzJ

|~RI − ~RJ |
,

Vnucl = −
∑
I

e2zI

|~r − ~RI |
. (4.3)

To solve this many-body problem there are methods such as Hartree, Hartree-Fock,
density functional theory, and Monte Carlo to name but a few. Every of these
methods has it own limitation, for instance in the Hartree-Fock method we need
to solve 1023 coupled equations for a simple system that contains only one electron
for every atom, or the Monte Carlo method is valid only for a system with a small
number of electrons. All these methods are numerical and can only predicate ground
state energy and a few excited states as well. In the many-body methods that are
mentioned what we obtain is only for one momentum. Now we can assume how
much it is cumbersome to deal with this problem if we want to evaluate it for all
points in the Brillouin zone (BZ). One of the simplest models is to regard only the
one-electron Schroedinger equation. In this model, we assume some approximations
such as the Rigid lattice approximation where the nuclei are considered to be fix at
their equilibrium position. In addition, since the mass of the nucleus is much larger
than that of an electron the kinetic energy of nucleus can be neglected. This simple
model and picture leads to band theory in crystals. The are some methods based
on this pictures such as tight-binding (TB), orthogonalized plane wave (OPW),
Pseudopotential, cellular, augmented plane wave (APW), Green’s function, and
Lanczos [44]. Note that except for the tight-binding method all the other methods
are numerical and one needs to take care of the divergence. Even to obtain a
reasonable solution one needs to consider more states. The tight-binding method
was introduced by Bloch in 1928. The predicated results by it have some good
agreement with the obtained experimental results.

In the tight-binding method the wave function of the crystal is constructed by a
linear combination of atomic orbitals (LCAO) [67]. In other words,

Ψcrystal(~x) =
∑
i,j,l

ci,j,lφ
orbital
i,j,l (~x) (4.4)

where l is the index of the orbital in the atom, j refers to the atomic base in the
unit cell and i stands for the position of unit cell in the crystal. For graphene as
shown in Fig. 4.4, the bases in the unit cell and primitive vectors of its crystal are
given by

~a1 =
acc
2

(3,
√

3), ~a2 =
acc
2

(3,−
√

3), (4.5)

~τ1 = acc(0, 0), ~τ2 = acc(1, 0), (4.6)

where acc is the distance between two carbon atoms. The first Brillouin zone of
graphene is also a honey comb as shown in Fig. 4.5 where its reciprocal primitive
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vectors are
~b1 =

2π

3acc
(1,
√

3), ~b2 =
2π

3acc
(1,−

√
3). (4.7)

Figure 4.4: Graphene unit cell and its two primitive vectors a1 and a2.

Figure 4.5: The First Brillouin zone of graphene lattice.

In addition, there are two important set of points K and K ′ in the first Brillouin
zone which are defined by

K =
2π

3acc

(
1,

1√
3

)
, K ′ =

2π

3acc

(
1,− 1√

3

)
. (4.8)

One of the important features of these points is that we cannot move from one of
these points to another by linear combination of the reciprocal primitive vectors.

It turns out from the ab-initio methods that all band structures of graphene for
the energy range from −3 eV to 3 eV is due to the pz orbital. Therefore, the crystal
wave function of graphene in that range of energy can be written as

Ψ~k(~x) =
∑
~R

2∑
~τi=1

c~k, ~R,~τiφpz(~x− ~R− ~τi), (4.9)
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where ~R is

~R = n1~a1 + n2~a2, n1, n2 ∈ Z. (4.10)

To determine the coefficients in Eq. (4.9), c~k, ~R, we can employ the Bloch condition
for wave function which states

Ψ~k(~x+ ~R) = ei
~k. ~RΨ~k(~x), (4.11)

where Ψ~k(~x+ ~R) is

Ψ~k(~x+ ~R′) =
∑
~R

2∑
~τi=1

c~k, ~R+~R′,~τi
φpz(~x+ ~R′ − ~R− ~τi)

=
∑
~R

2∑
~τi=1

c~k, ~R+~R′,~τi
φpz(~x− ~R− ~τi). (4.12)

By some simple algebra and combing Eqs. (4.9), (4.11), and (4.12) we find

Ψ~k(~x) =
1√
Nun

1√
1 + S(~k)

∑
~R

2∑
~τi=1

c~k,~τiφpze
i~k. ~R(~x− ~R− ~τi), (4.13)

where Nun is the number of unit cell and S(~k) is

S(~k) =
∑
~δ 6=0

ei
~k.~ιS(ι), (4.14)

with

S(ι) =

∫
d~xφpz(~x)φpz(~x−~ι), (4.15)

where ~ι is the distance between two pz orbitals. For the first nearest neighbor (FNN)

approximation, S(~k) ' 1. Therefore, the wave function of graphene with the FNN
approximation is

Ψ~k(~x) ' 1√
Nun

∑
~R

2∑
~τi=1

c~k,~τie
i~k. ~Rφpz(~x− ~R− ~τi), (4.16)

where its second quantization representation is

|Ψ~k〉 =
1√
Nun

∑
~R

2∑
~τi=1

c~k,~τie
i~k. ~R |~R, ~τi; π〉 , (4.17)

with 〈~x|~R, ~τi; π〉 ≡ φpz(~x− ~R− ~τi).
A Wannier function can be expanded in terms of Bloch functions. Here, for this

problem, the pz orbital is the Wannier function. Therefore, it can be written as

|~R, ~τi; π〉 =
1√
Nun

∑
~k

e−i
~k. ~R |~k, ~τi; π〉 , (4.18)
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and the wave function in terms of Bloch bases becomes

|Ψ~k〉 =
2∑

~τi=1

c~k,~τi |~k, ~τi; π〉 . (4.19)

Note that in second quantization representation a Wannier function can be expressed
in terms of creation operator in the following manner

|~R, ~τi; π〉 = ĉ†(~R, ~τi; π) |0〉 , (4.20)

where ĉ† is the creation operator. Therefore, Eq. (4.18) in second quantization
representation becomes

ĉ†(~R, ~τi; π) =
1√
Nun

∑
~k

e−i
~k. ~Rĉ†(~k, ~τi; π). (4.21)

To obtain the energy spectrum of graphene we need to solve the Schroedinger
equation

H |Ψ~k〉 = E(~k) |Ψ~k〉 , (4.22)

where the Hamiltonian operator consists of kinetic energy and energy of the periodic
potential

Ĥ = T̂ + Û . (4.23)

In order to simplify notation, we drop π in the bases after this. Because |~R, ~τi〉 is a

complete set of bases, in the sense that 〈~R, ~τi|~R′, ~τj〉 = δ~R,~R′δi,j we can express the

unitary operator, 1̂, in terms of these bases

1̂ =
∑
~R,~τi

|~R, ~τi〉 〈~R, ~τi| . (4.24)

Sandwiching the Hamiltonian operator between two unitary operators leads to

Ĥ = 1̂Ĥ 1̂ =
∑
~R,~τi

∑
~R′, ~τj

|~R, ~τi〉 〈~R, ~τi| Ĥ |~R′, ~τj〉 〈~R′, ~τj| , (4.25)

where by some algebra and employing the Eq.(4.20) it can be written as

Ĥ =
∑
~R,~R′

∑
~τi, ~τj

t
~R,~R′

~τi, ~τj
ĉ†(~R, ~τi)ĉ(~R

′, ~τj), (4.26)

with t
~R,~R′

~τi, ~τj
= 〈~R, ~τi| Ĥ |~R′, ~τj〉 , where in the real space representation it is

t
~R,~R′

~τi, ~τj
=

∫
d~xφ∗pz(~x− ~R− ~τi)

− ~2

2m
~∇2 +

∑
~R

Uion(~x− ~x~R)

φpz(~x− ~R′− ~τj). (4.27)

Eq. (4.26) for FNN gives rise to

Ĥ = ε0

2∑
~R,~τi=1

ĉ†(~R, ~τi)ĉ(~R, ~τi)+
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t0

2∑
~R,i=0

[
ĉ†(~R, ~τ1)ĉ(~R + ~ai, ~τ2) + ĉ†(~R + ~ai, ~τ2)ĉ(~R, ~τ1)

]
, (4.28)

with ~a0 = 0. The ε0 and t0 are on-site and hopping energies, respectively. Physically,
on-site energy means the amount of energy that is needed to remove one electron
from its site. Similarly, hopping energy means the necessary amount of energy to
move an electron from one site to another site.

By using Eq. (4.18) we can write the Hamiltonian, Eq. (4.28), in momentum
space

Ĥ = ε0

2∑
~k,~τi=1

ĉ†(~k, ~τi)ĉ(~k, ~τi)+

t0
∑
~k

[
λ(~k)ĉ†(~k, ~τ1)ĉ(~k, ~τ2) + λ∗(~k)ĉ†(~k, ~τ2)ĉ(~k, ~τ1)

]
, (4.29)

where λ(~k) is

λ(~k) = 1 + ei
~k.~a1 + ei

~k.~a2 . (4.30)

By multiplying 〈~k, ~τi| on both sides of Eq. (4.22) we arrive at

〈~k, ~τi| Ĥ |Ψ~k〉 = E(~k) 〈~k, ~τi|Ψ~k〉 . (4.31)

By some algebra we find[
ε0 − E(~k) t0λ(~k)

t0λ
∗(~k) ε0 − E(~k)

] [
c~k, ~τ1
c~k, ~τ2

]
=

[
0
0

]
, (4.32)

which has a solution if the determinant of the 2× 2 matrix vanishes. This leads to

Eζ(~k) = ε0 + ζt0|λ(~k)|, ζ = ±1, (4.33)

where ζ = +1,−1 refers to conduction and valence bands. Using Eq. (4.30), we
obtain for Eq. (4.33)

Eζ(~k) = ε0 + ζt0

√√√√1 + 4 cos

(√
3

2
kyacc

)
cos

(
3

2
kxacc

)
+ 4 cos2

(√
3

2
kyacc

)
, (4.34)

with t0 ∼ 2.7 eV [68]. This value has been evaluated by density functional theory
calculations. The energy dispersion of graphene in momentum space is shown in Fig.
4.6. By normalization condition of the wave function, 〈Ψ~k|Ψ~k〉 = 1, the coefficients
of Eq. (4.19) can be determined. From Eq. (4.32) we have(

ε0 − E(~k)
)
c~k, ~τ1 + t0λ(~k)c~k, ~τ2 = 0, (4.35)

where we replace E(~k) in (4.35) with Eq. (4.33) it becomes

c~k, ~τ2 =
|λ(~k)|
λ(~k)

c~k, ~τ1 . (4.36)
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Figure 4.6: The energy spectrum of graphene.

Or in a more compact form

c~k, ~τ2 = ζe−iθ(
~k)c~k, ~τ1 , (4.37)

where θ(~k) is defined by

e−iθ(
~k) =

|λ(~k)|
λ(~k)

, θ(~k) = tan−1

(
<(λ(~k))

=(λ(~k))

)
. (4.38)

The normalization condition of the wave function results in

c~k, ~τ1 =
1√
2
. (4.39)

Therefore, the wave function of graphene becomes

|Ψ~k,ζ〉 =
1√
2

(
|~k, ~τ1〉+ ζe−iθ(

~k) |~k, ~τ2〉
)
. (4.40)

In Fig. 4.7(a) the contour plot of Fig. 4.6 is shown. At the six corners of the first
Brillouin zone the energy vanishes. At these points we can observe that the energy
spectrum is like a cone as shown in Fig. 4.7(b). This suggests that the energy
spectrum could be linear in those ranges. To investigate this we can expand the
Hamiltonian matrix element of Eq. (4.32) about these points. For K, λ becomes

λ(~q) = λ(~q)|~q=0 + (~q.~∇~k)λ(~q)|~q=0 =
3t0acc

2
(qx + iqy) , ~q = ~k − ~K. (4.41)

We can replace 3t0acc/2 by ~vF . This yields

λ(~q) = ~vF (qx + iqy) , (4.42)
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(a) (b)

Figure4.7:(a)ContourplotofenergyspectrumintheBrillouinzone.(b)Graphene
spectrumatoneofthecornerofBrillouinzonewhichislikeacone..

withvF∼=10
6m/s.Therefore,theHamiltonianforpointK

HK= vF
0 qx+iqy

qx−iqy 0
. (4.43)

Inthesamemanner,forK wefind

HK = vF
0 qx−iqy

qx+iqy 0
. (4.44)

EigenvalueandeigenfunctionofEqs.(4.43)and(4.44)are

Eζ(q)=ζvF|q|, (4.45)

Ψη,ζ(r)=
1
√
2

e−iηθ(q)

ζ
eiq.r, η=±1 (4.46)

whereη=+1,−1indicatesKandK,respectively.Thisisknownasthek·pmethod
[45].ItisworthtopointingoutthattheeffectiveHamiltonianinEqs.(4.43)and
(4.44)arelikethemasslessDiracequation[68].

4.4 DensityofStates

Oneoftheimportantconceptsinthetreatmentofaquantumsystemisthe
energydensityofstates(DOS).Physically,DOSimpliestheavailablestatesbetween
EandE+dEwhereEindicatestheenergy.ThedefinitionofDOSisgivenby[67]

Dos(ε)=
i

δ(ε−Ei) (4.47)

whereidenotesallquantumnumberandδistheDiracdeltafunction.Thereare
somegeneralrepresentationstoexpressDOSe.g.[69]

δ(ε−Ei)=lim
ν→0

1
√
2πν
e−(ε−Ei)

2/2ν2. (4.48)
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However, we employ the Green’s function representation [70]. The definition of
Green’s function employed to solve an inhomogeneous equation is(

z − Ĥ
)
Ĝ(z) = 1̂, (4.49)

with
z = ε+ iν. (4.50)

Ĝ, Ĥ, and 1̂ are Green’s function, Hamiltonian, and unitary operator, respectively.
From Eq. (4.49) we can rewrite the Green’s function as

Ĝ(z) =
1̂

z − Ĥ
=

1

z − Ĥ

∑
~k,ζ

|~k, ζ〉 〈~k, ζ| , (4.51)

where we express the unitary operator in terms of the Bloch bases . By using Eq.
(4.49), the matrix elements of the Green’s function is given by

Gζ′ζ′′(~k′, ~k′′, z) = 〈~k′, ζ ′|Ĝ(z)|~k′′, ζ ′′〉 = lim
ν→0+

δ~k′~k′′δζ′ζ′′

ε+ iν − Eζ′′( ~k′′)
. (4.52)

The Kronecker delta in Eq. (4.52) implies that only the diagonal terms of Green’s
function matrix exist. Then we can write

Gs(~k, ε) = P
1

ε− Es(~k)
− iπδ

(
ε− Es(~k)

)
, (4.53)

where P means the principal value. We can see that the imaginary part of the
Green’s function and the Dirac delta function are related by

ImGs
(
~k, ε
)

= −πδ
(
ε− Es(~k)

)
. (4.54)

Therefore, the DOS in terms of the Green’s function for graphene is

Dos(ε) =
∑
~k,ζ

δ
(
ε− Eζ(~k)

)
= − 2

π

∑
~k∈FBZ

ImGζ
(
~k, ε
)
. (4.55)

After some algebra we arrive at

Dos(ε) = − A

2π3
lim
ν→0+

∫
~k∈FBZ

d~k
ν(

ε− E(~k)
)2

+ ν2

, (4.56)

where A and FBZ refer to the area and the first Billion zone. In Fig. 4.8, DOS for
a typical range of energy is shown. As seen, for |ε| in the vicinity of 1 eV, DOS has
its maximum value. This is expected since the dominating color is green.

4.5 Lindhard polarization function of graphene

The building block quantity to determine transport and optical properties of a sys-
tem is its polarization function which in the simplest approximation, in the absence
of Coulomb potential interaction and exchange effects, is known as Lindhard polar-
ization function see Eq. (3.31). For an electron doped graphene as shown in Fig
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Figure 4.8: DOS of graphene (a) and (b) contour plot of its energy spectrum.

Figure 4.9: Intra- and inter-transitions in the energy spectrum of graphene.

4.9 , the Lindhard polarization function in long wavelength limit for single-band
transition known also as intra-transition is given by,

χ0(q → 0, ω) =
q2EF
π~2ω2

, (4.57)

and for two-band transition, inter-transition, it is,

χ0(q → 0, ω) =
q2

2π~ω

[
2EF
~ω

+
1

2

∣∣∣∣2EF − ~ω
2EF + ~ω

∣∣∣∣− iπ2 Θ (~ω − 2EF )

]
. (4.58)

The evaluation of the Lindhard polarization function for doped graphene with all
details for all wavelength can be found at Refs. [71, 72].
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5 Armchair Graphene
Nanoribbons

5.1 Tight-binding model for AGNRs

In the previous chapter, as an example of a novel quantum well structure we dealt
with graphene. To extend our treatment to quantum wires, we consider armchair
graphene nanoribbons (AGNRs). Indeed, AGNRs can be constructed from graphene
by confining it in one direction and extending it in the other. To evaluate the band
structure of AGNRs using the tight-binding model, we need to determine a suitable
unit cell. This is depicted in Fig. 5.1, where dm refers to the dimer number.
Moreover, the primitive vector is aT = 2acc.

Figure 5.1: The unit cell and primitive vector of an AGNR.

As in graphene we need to employ unitary operators to evaluate the band struc-
ture. From Fig. 5.1, given by

1̂ =
∑
i

N∑
m=1

2∑
j=1

|~i,m,~j, π〉 〈~i,m,~j, π| , (5.1)

where i, m, and j indicate the indices of the unit cell vector, dimer number and
basis in a dimer, respectively. Note that in real-space representation we have

〈~x|~i,m,~j〉 = φ2pz(~x− êx.~i− êx.~j − êx
√

3

2
m). (5.2)
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In order to simplify notation, we drop the vector signs. The |i,m, j〉 makes a com-
plete set of bases, that is

〈i,m, j|i′,m′, j′〉 = δii′δmm′δjj′ . (5.3)

Therefore, we can write the second quantization Hamiltonian of the AGNR as

Ĥ =
∑
ii′

∑
jj′

∑
mm′

ti
′,m′,j′

i,m,j ĉ†(i′,m′, j′)ĉ(i,m, j), (5.4)

where the hopping parameter is defined by

ti
′,m′,j′

i,m,j = 〈i,m, j|Ĥ|i′,m′, j′〉 . (5.5)

For FNN Eq. (5.4) becomes

Ĥ = ε0

∑
i

∑
m

ĉ†(i,m, τ1)ĉ(i,m, τ1) + ĉ†(i,m, τ2)ĉ(i,m, τ2)

− t0
∑
i

∑
m∈odd

ĉ†(i,m, τ1)ĉ(i− 1,m, τ2)− t0
∑
i

∑
m∈even

ĉ†(i,m, τ1)ĉ(i,m, τ2)

− t0
∑
i

∑
m

ĉ†(i,m, τ1)ĉ(i,m+ 1, τ2) + ĉ†(i,m, τ1)ĉ(i,m− 1, τ2) + h.c (5.6)

where h.c indicates hermitian conjugate. .The relation between the Wannier function
and the Bloch basis for an AGNR leads to

〈~x|i,m, j〉 =
1√
Nun

∑
k

eikRi 〈~x|k,m, j〉 , (5.7)

which provides us with the connection between operators in these two bases in second
quantization representation

ĉ†(i,m, j) =
1√
Nun

∑
k

eikRi ĉ†(k,m, j), (5.8)

where Nun stands for the unit cell number. Using Eq. (5.8), we can write the
Hamiltonian in momentum space

Ĥ = −t0
∑
k

∑
m∈even

ĉ†(k,m, τ1)ĉ(k,m, τ2) + ĉ†(k,m, τ2)ĉ(k,m, τ1)

− t0
∑
k

∑
m∈odd

ĉ†(k,m, τ1)ĉ(k,m, τ2)e−ikaT + ĉ†(k,m, τ2)ĉ(k,m, τ1)eikaT

− t0
∑
k

∑
m

ĉ†(k,m, τ1)ĉ(k,m+ 1, τ2) + ĉ†(k,m, τ1)ĉ(k,m− 1, τ2)

− t0
∑
k

∑
m

ĉ†(k,m, τ2)ĉ(k,m+ 1, τ1) + ĉ†(k,m, τ2)ĉ(k,m− 1, τ1). (5.9)
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Furthermore, the wave function of the AGNR crystal within the tight-binding ap-
proximation for the FNN is

Ψk(~x) =
1√
Nun

∑
i

N∑
m=1

2∑
j=1

Cτj(k,m)eikRiφ2pz(~x−~i−~j(m)), (5.10)

in terms of the Bloch basis (using Eq. (5.7))

|Ψk〉 =
N∑
m=1

2∑
j=1

Cτj(k,m) |k,m, j〉 . (5.11)

To evaluate the eigenvalues and eigenfunctions, it is required to solve the Schroedinger
equation

Ĥ |Ψ〉 = E |Ψ〉 .
Applying Eqs. (5.9) and (5.10) we obtain a set of equations

− t0{Cτ2(k,m)︸ ︷︷ ︸
m∈even

+Cτ2(k,m)︸ ︷︷ ︸
m∈odd

e−ikaT +Cτ2(k,m+ 1) +Cτ2(k,m− 1)} = E(k)Cτ1(k,m),

(5.12)

− t0{Cτ1(k,m)︸ ︷︷ ︸
m∈even

+Cτ1(k,m)︸ ︷︷ ︸
m∈odd

eikaT +Cτ1(k,m+ 1) +Cτ1(k,m− 1)} = E(k)Cτ2(k,m).

(5.13)
In order to solve these equations, we assume that Cτ1(k,m) and Cτ2(k,m) have the
following generic forms

Cτ1(k,m) = A exp

(
i

√
3

2
mkyacc

)
+B exp

(
−i
√

3

2
mkyacc

)
, (5.14)

Cτ2(k,m) = C exp

(
i

√
3

2
mkyacc

)
+D exp

(
−i
√

3

2
mkyacc

)
, (5.15)

where A, B, C, and D are arbitrary coefficients. Beyond the width boundaries of the
AGNR there are no electrons. This implies that the crystal wave function vanishes
there. This imposes that for m = 0

Cτ1(k, 0) = 0, (5.16)

Cτ2(k, 0) = 0, (5.17)

and for m = N + 1

Cτ1(k,N + 1) = 0, (5.18)

Cτ2(k,N + 1) = 0. (5.19)

From Eqs. (5.16) and (5.17), we arrive at the following relations between coefficients

B = −A, D = −C. (5.20)
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By combining Eqs. (5.18) and (5.20), we obtain

Cτ1(k,N + 1) = A sin

(√
3

2
(N + 1)kyacc

)
= 0, (5.21)

where the coefficient A cannot vanish, otherwise the wave function vanishes every-
where. This indicates

√
3

2
(N + 1)kyacc = πr ⇒ ky =

πr

(N + 1)

2√
3acc

, 1 ≤ r ≤ N, (5.22)

where r is an integer. In order to simplify the following calculations, we use this
new variable

ky(r) =

√
3

2
accky. (5.23)

Therefore, The generic solutions become

Cτ1(k,m) = A
[
eimky(r) − e−imky(r)

]
, (5.24)

Cτ2(k,m) = C
[
eimky(r) − e−imky(r)

]
. (5.25)

The set of equations, Eqs. (5.12) and (5.13) for m = 0 result in

− t0{Cτ2(k, 1)︸ ︷︷ ︸
m∈even︸ ︷︷ ︸

=0

+Cτ2(k, 1)︸ ︷︷ ︸
m∈odd

e−ikaT + Cτ2(k, 0) + Cτ2(k, 2)} = E(k)Cτ1(k, 1), (5.26)

and

− t0{Cτ1(k, 1)︸ ︷︷ ︸
m∈even︸ ︷︷ ︸

=0

+Cτ1(k, 1)︸ ︷︷ ︸
m∈odd

eikaT + Cτ1(k, 2) + Cτ1(k, 0)︸ ︷︷ ︸
=0

} = E(k)Cτ2(k, 1), (5.27)

where, after simplifying, they become

− t0{Cτ2(k, 1)e−ikaT + Cτ2(k, 2)} = E(k)Cτ1(k, 1), (5.28)

− t0{Cτ1(k, 1)eikaT + Cτ1(k, 2)} = E(k)Cτ2(k, 1). (5.29)

From Eqs. (5.24), (5.25), (5.28), and (5.29) we find the following set of equations

− t0C{eikaT + 2 cos(ky(r))} = AE(k), (5.30)

− t0A{e−ikaT + 2 cos(ky(r))} = CE(k), (5.31)

which can be expressed as[
E(k) t0

(
e−ikaT + 2 cos(ky(r))

)
t0
(
eikaT + 2 cos(ky(r))

)
E(k)

] [
A
C

]
=

[
0
0

]
. (5.32)

This implies that there is a solution if the matrix determinant vanishes, which gives
rise to
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Er,η(k) = ηt0
√

1 + 2λ(r) cos(kaT ) + λ2(r), η = ±1, (5.33)

with
λ(r) = 2 cos(ky(r)). (5.34)

Here η = +1,−1 refers to the conduction and valence bands, respectively.
The arbitrary coefficients A and C in the Eq. (5.32) can be determined by the

normalization condition of the wave function, which for an AGNR is

〈Ψk,r|Ψk,r〉 =
N∑
m=1

|Cτ1(k,m)|2 + |Cτ2(k,m)|2 = 1. (5.35)

Because the energy spectrum is a function of momentum, band index and the pa-
rameter η, it can be concluded that the coefficients of the wave function have the
same dependencies. In other words, Eqs. (5.24) and (5.25) become

Cτ1(k,m) = Ak,r,η sin(mky(r)), (5.36)

Cτ2(k,m) = Ck,r,η sin(mky(r)). (5.37)

From Eq. (5.30), we have

Er,η(k)Ak,r,η + t0
(
e−ikaT + 2 cos(ky(r))

)
Ck,r,η = 0, (5.38)

which yields

Ck,r,η = − Er,η(k)Ak,r,η
t0 (e−ikaT + 2 cos(ky(r)))

, ⇒ |Ck,r,η|2 = |Ak,r,η|2. (5.39)

Combing Eqs. (5.35) and (5.39) leads to

N∑
m=1

2|Ak,r,η|2 sin2(mky(r)) = 1. (5.40)

Since Ak,r,η is independent of sum index it factors out of the sum and we have to
evaluate the sine squared term, which is

N∑
m=1

sin2(mky(r)) =
N

2
− 1

4

[
sin(2(N + 1)ky(r))

sin(ky(r))

]

=
1

2

[
N − sin(2(N + 1)ky(r))

2 sin(ky(r))

]
. (5.41)

Finally, we obtain the coefficients Ak,r,η

Ak,r,η = ±
[
N − sin(2(N + 1)ky(r))

2 sin(ky(r))

]−1/2

. (5.42)

From Eq. (5.39), after some algebra we arrive at

Ck,r,η = −ηeiθ(k,r)Ak,r,η, (5.43)
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with

θ(k, r) = tan−1

[
sin(kaT )

2 cos(ky(r)) + cos(kaT )

]
. (5.44)
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Figure 5.2: Energy spectrum of AGNR for (a) dm = 4 (b) dm = 5 and their DOS.

5.2 DOS of AGNRs

Similar to the DOS for graphene, for the AGNR we find

Dos(ε) =
N∑

η,r=1

∑
k

δ (ε− Er,η(k))) = − 2

π

N∑
η,r=1

∑
k∈FBZ

ImGη,r (k, ε) , (5.45)

which, after some algebra becomes

Dos(ε) = − L
π2

lim
ν→0+

N∑
η,r=1

∫
k∈FBZ

dk
ν

(ε− Er,η(k))2 + ν2
, (5.46)

where L indicates the length of the AGNR.
In Figs. 5.2 (a) and (b) the energy spectrum of an AGNR with width dm = 4

and dm = 5 are shown along with their DOS in Figs. 5.2 (c) and (d), respectively.
The number of peaks in the DOS spectrum, is equal to indices number of band
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indices. Note that, according to the DOS spectrum we can determine whether a
system is metal, semiconductor, or insulator. For a metallic system the DOS is
gapless. However, for a semiconductor or insulator in some range of energies it has
a gap. It is worth pointing out that the gap in an insulator is much larger than
that of a semiconductor. Therefore, we can state that AGNRs with dm = 4 and
dm = 5 are semiconducting and metallic systems, respectively. In order to find a
connection between the width of an AGNR and whether it is metallic or not, in Fig.
5.3 we have shown DOS spectrum for some typical widths. It can be observed that
for dm = 3z + 2 where z is an integer, the AGNR is metallic. It is worth pointing
out that by increasing the dimer number, we expect to obtain the same results as
graphene. As seen in Fig. 5.3 (f) for dm = 100, the DOS behavior is similar to Fig.
4.8 . In addition, the energy spectrum of an AGNR for dm = 101 is shown in Fig.
5.4 (a) which corresponds to the cross section of the energy spectrum of graphene,
Fig. 5.4 (b).
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Figure 5.3: DOS spectrum for (a) dm = 4, (b) dm = 5, (c) dm = 7, (d) dm = 10,
(e) dm = 20, and (f) dm = 100.
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Figure 5.4: (a) Energy spectrum of AGNR for dimmer number dm = 101 (b)
graphene energy spectrum.

5.3 The k·p method for AGNRs

For a metallic AGNR, there is a sub-band with linear dispersion. To determine the
value of this sub-band it is sufficient to set k = 0 in Eq. (5.33). This leads to

λ(r) = −1. (5.47)

By employing Eqs. (5.23) and (5.34), we obtain the sub-band index

r =
2

3
(dm+ 1) . (5.48)

As an example, for dm = 5 (as shown in Fig. 5.2 (b)), the desired linear sub-band
index is r = 4. Since the dispersion is linear, for this sub-band, as in the case of
graphene in the low energy limit, we can employ the k·p method to evaluate its
eigenvalues and eigenfunctions. In this case, the Dirac points are

~K = (0, K), ~K ′ = (0,−K), (5.49)

with K = 4π/3acc
√

3. In contrast to graphene, these points are degenerate in
momentum space due to the fact that AGNR is a 1D system. The k·p Hamiltonian,
using the same approach that we applied to graphene, is

Hk.p = HK ⊗ IK′ + IK ⊗HK′ , (5.50)

which is a 4× 4 matrix

Hk.p = vF


0 py − ipx 0 0

py + ipx 0 0 0
0 0 0 py + ipx
0 0 py − ipx 0

 . (5.51)

The Schroedinger equation in the k·p method is

Hk.pU(~x) = EU(~x), (5.52)
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which leads to two sets of block diagonal Hamiltonians pertaining to K and K ′

HK

(
ϕA(y)
ϕB(y)

)
eikx = E

(
ϕA(y)
ϕB(y)

)
eikx, (5.53)

HK′

(
ϕ′A(y)
ϕ′B(y)

)
eikx = E

(
ϕ′A(y)
ϕ′B(y)

)
eikx. (5.54)

Therefore, the Bloch wave function is

U(~x) =


ϕA(y)
ϕB(y)
ϕ′A(y)
ϕ′B(y)

 eikx =


UKτ1 (~x)
UKτ2 (~x)
UK′τ1

(~x)
UK′τ2

(~x)

 ≡

Uτ1(~x)
Uτ2(~x)
U ′τ1(~x)
U ′τ2(~x)

 . (5.55)

The total wave function can be regarded as that of two bases at τ1 and τ2 where
each of them has two terms pertaining to the two Dirac points. In other words,

Ψτ1(~x) = Uτ1(~x)ei
~K.~x + U ′τ1(~x)ei

~K′.~x = ϕA(y)ei
~K.~x+ikx + ϕ′A(y)ei

~K′.~x+ikx, (5.56)

Ψτ2(~x) = Uτ2(~x)ei
~K.~x + U ′τ2(~x)ei

~K′.~x = ϕB(y)ei
~K.~x+ikx + ϕ′B(y)ei

~K′.~x+ikx. (5.57)

The wave function vanishes at the edge of AGNR, that is

Ψτ1(~x)|y=0 = ϕA(0)eikx + ϕ′A(0)eikx = 0, (5.58)

Ψτ1(~x)|y=W = ϕA(W )eiKW+ikx + ϕ′A(W )e−iKW+ikx = 0, (5.59)

Ψτ2(~x)|y=0 = ϕB(0)eikx + ϕ′B(0)eikx = 0, (5.60)

Ψτ2(~x)|y=W = ϕB(W )eiKW+ikx + ϕ′B(W )e−iKW+ikx = 0, (5.61)

with W being the width of ribbon. We obtain the following relation at y = 0

ϕA(0) + ϕ′A(0) = 0, (5.62)

ϕB(0) + ϕ′B(0) = 0, (5.63)

and at y = W

ϕA(W )eiKW + ϕ′A(W )e−iKW = 0, (5.64)

ϕB(W )eiKW + ϕ′B(W )e−iKW = 0. (5.65)

In order to determine ϕA and ϕB, we solve Eq. (5.53) in real space

vF

(
0 py − ipx

py + ipx 0

)(
ϕA(y)
ϕB(y)

)
eikx = E

(
ϕA(y)
ϕB(y)

)
eikx, (5.66)

with px = −i~∂x and py = −i~∂y. After some algebra we arrive at

~vF (−i∂y − ik)ϕB(y) = EϕA(y), (5.67)

~vF (−i∂y + ik)ϕA(y) = EϕB(y). (5.68)
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Applying (−∂y + ik) to both sides of Eq. (5.67), we find

(~vF )2 (−∂2
y + k2

)
ϕB(y) = E2ϕB(y). (5.69)

Employing the same approach for K ′ yields

(~vF )2 (−∂2
y + k2

)
ϕ′B(y) = E2ϕ′B(y). (5.70)

The generic solutions for Eqs. (5.69) and (5.70) have the following form

ϕB(y) = Aeikyy +Be−ikyy, (5.71)

ϕ′B(y) = Ceikyy +De−ikyy, (5.72)

where A, B, C, and D are arbitrary coefficients. From Eqs. (5.63), (5.65), (5.71),
and (5.72), we find

A+B + C +D = 0, (5.73)

Aei(K+ky)W +De−i(K+ky)W +Be−i(ky−K)W + Cei(ky−K)W = 0. (5.74)

One of the possible choices to satisfy the above conditions is

B = C = 0, A = −D. (5.75)

Applying it to Eq. (5.74) results in

sin((K + ky)W ) = 0⇒ ky(n) =
nπ

W
− 4π

3acc
√

3
. (5.76)

Therefore, ϕB and ϕ′B become

ϕB(y) = Aeiky(n)y, (5.77)

ϕ′B(y) = −Aeiky(n)y. (5.78)

Combing them with Eqs. (5.69) and (5.70) results in

E = η~vF
√
k2
y(n) + k2, η = ±1, (5.79)

where η = +1,−1 stands for the conduction and valence bands. Using the nor-
malization condition for the wave function we can determine the coefficient A to
be ∫ W

0

dyϕ∗B(y)ϕB(y) = 1, A =
1√
W
. (5.80)

From Eq. (5.67), we can determine ϕA(y)

ϕA(y) =
ηeiky(n)y

√
W

e−iθ(k,ky(n)), (5.81)

with

θ(k, ky(n)) = tan−1

(
k

ky(n)

)
. (5.82)

Therefore, the wave function of AGNR within the k·p method is

U(x, y) = Uk,ky(n),η(x, y) =
1√

4LW


(
ηe−iθ(k,ky(n))

1

)
eiky(n)y(

−ηe−iθ(k,ky(n))

1

)
e−iky(n)y

 eikx. (5.83)
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5.4 Lindhard polarization function of AGNR

In contrast to graphene, we have derived the Lindhard polarization function of
AGNR with detailed calculations for intra-band transition as shown in Fig. 5.5.

Figure 5.5: Intra- and inter-transitions in the energy spectrum of AGNR.

Employing Eqs. (5.83), (5.79), and (3.31) and after some algebra, for the real
part of the Lindhard polarization function of AGNR in momentum space, we obtain

Reχ0
ηη′

nn′
(q, ω) =

L

2π

1

4W
(I + II) , (5.84)

with

I =

∫
dk

(1 + ηη′ cosαnn′(k, k + q)f(Eη
n(k))))

Eη
n(k)− Eη′

n′(k + q) + ~ω
, (5.85)

II =

∫
dk

(
1 + ηη′ cosαnn′(k − q, k)f(E ′η

′
n (k))

)
Eη′

n′(k)− Eη
n(k − q)− ~ω

, (5.86)

where the form factor, αnn′ , is

αnn′(k, k
′) = θ(k, ky(n))− θ(k′, ky(n′)). (5.87)

Since we limit our calculations to the single band of an electron doped AGNR, we
have n = n′ and η = η′ = +. In this case, since ky(n) vanishes for the metallic
AGNR the energy spectrum becomes

E+
n (k) = γ|k|, γ ≡ ~vF . (5.88)

The form factor determines the nonvanishing range of the integral. For |q| < |kF |,
this interval must be [−kF ,−q] ∪ [0, kF ] and for |q| > |kF |, [0, kF ]. Therefore,
inserting Eq. (5.88) into Eq. (5.85) we arrive at

I =

∫
dk

f(Eη
n(k))

γ|k| − γ
√
k2 + q2 + 2kq cosφ+ ~ω

,

with cosφ = ±1 since we are dealing with a one-dimensional integral. Next, inte-
grating over φ gives

I =

∫
dk

f(Eη
n(k))

γ|k| − γ|k + q|+ ~ω
+ dk

f(Eη
n(k))

γ|k| − γ|k − q|+ ~ω
. (5.89)
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To make it clear, we assign the subscript 1 to the integrals for |q| < |kF | and the
subscript 2 for |q| > |kF |. Eq. (5.89) for |q| < |kF | becomes

I1 =

∫ −q
−kF

dk
f(E+

n (k))

γ|k| − γ|k + q|+ ~ω︸ ︷︷ ︸
M1

+

∫ kF

0

dk
f(E+

n (k))

γ|k| − γ|k − q|+ ~ω︸ ︷︷ ︸
M2

+

∫ −q
−kF

dk
f(E+

n (k))

γ|k| − γ|k − q|+ ~ω︸ ︷︷ ︸
M3

+

∫ kF

0

dk
f(E+

n (k))

γ|k| − γ|k + q|+ ~ω︸ ︷︷ ︸
M4

, (5.90)

and for |q| > |kF | it becomes

I2 =

∫ kF

0

dk
f(E+

n (k))

γ|k| − γ|k + q|+ ~ω︸ ︷︷ ︸
M5

+

∫ kF

0

dk
f(E+

n (k))

γ|k| − γ|k − q|+ ~ω︸ ︷︷ ︸
M6

. (5.91)

The modulus terms in Eqs. (5.90) and (5.91) are determined by examining the
intervals of integrals. The moduli M1 through M6 are

M1 ⇒ −kF < k < −q ⇒ |k + q| = −(k + q),

M2 ⇒ 0 < k < kF ⇒
{

0 < k < q ⇒ |k − q| = −(k − q),
q < k < kF ⇒ |k − q| = (k − q),

M3 ⇒ −kF < k < −q ⇒ |k − q| = −(k − q),

M4 ⇒ 0 < k < kF ⇒ |k + q| = (k + q),

M5 ⇒ 0 < k < kF ⇒ |k + q| = (k + q),

M6 ⇒ 0 < k < kF ⇒ |k − q| = −(k − q).

After some algebra, Eqs. (5.90) and (5.91) become

γI1 =

∫ −q
−kF

dk
f(E+

n (k))

−k + (k + q) + ω′
+

∫ q

0

dk
f(E+

n (k))

k + (k − q) + ω′

+

∫ kF

q

dk
f(E+

n (k))

k − (k − q) + ω′
+

∫ −q
−kF

dk
f(E+

n (k))

−k + (k − q) + ω′

+

∫ kF

0

dk
f(E+

n (k))

k − (k + q) + ω′
,

γI2 =

∫ kF

0

dk
f(E+

n (k))

k − (k + q) + ω′
+

∫ kF

0

dk
f(E+

n (k))

k + (k − q) + ω′
,

with ω′ ≡ ~ω/γ. The Fermi-Dirac distribution function

f(E+
n (k)) =

1

1 + eβ(γ|k|−µ)
, (5.92)

at zero temperature becomes f(E+
n (k)) = 1. Evaluating the integrals in Eqs. (5.90)

and (5.91) result in
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γI1 =
2(kF − q)
ω′ + q

+
2kF − q
ω′ − q

+
1

2
ln

(
ω′ + q

ω′ − q

)
, (5.93)

γI2 =
kF

ω′ − q
+

1

2
ln

(
2kF − q + ω′

ω′ − q

)
. (5.94)

The non-vanishing intervals of integration in case II for |q| < |kF | is [−kF , 0]∪[q, kF ]
and for |q| > |kF | is [−kF , 0]. Similar to the evaluation of I, we find

γII1 =

∫ 0

−kF
dk

f(E+
n (k))

|k| − |k − q| − ω′︸ ︷︷ ︸
M1

+

∫ 0

−kF
dk

f(E+
n (k))

|k| − |k + q| − ω′︸ ︷︷ ︸
M2

+

∫ kF

q

dk
f(E+

n (k))

|k| − |k − q| − ω′︸ ︷︷ ︸
M3

+

∫ kF

q

dk
f(E+

n (k))

|k| − |k + q| − ω′︸ ︷︷ ︸
M4

. (5.95)

γII2 =

∫ 0

−kF
dk

f(E+
n (k))

|k| − |k − q| − ω′︸ ︷︷ ︸
M5

+

∫ 0

−kF
dk

f(E+
n (k))

|k| − |k + q| − ω′︸ ︷︷ ︸
M6

. (5.96)

The modulus terms in M1 to M6 are

M1 ⇒ −kF < k < 0⇒ |k − q| = −(k − q),

M2 ⇒ −kF < k < 0⇒
{
−kF < k < −q ⇒ |k + q| = −(k + q),
−q < k < 0 ⇒ |k + q| = (k + q),

M3 ⇒ q < k < kF ⇒ |k − q| = (k − q),

M4 ⇒ q < k < kF ⇒ |k + q| = (k + q),

M5 ⇒ −kF < k < 0⇒ |k − q| = −(k − q),

M6 ⇒ −kF < k < 0⇒ |k + q| = (k + q).

which gives rise to

γII1 =

∫ 0

−kF
dk

f(E+
n (k))

−k + (k − q)− ω′
+

∫ −q
−kF

dk
f(E+

n (k))

−k + (k + q)− ω′

+

∫ 0

−q
dk

f(E+
n (k))

−k − (k + q)− ω′
+

∫ kF

q

dk
f(E+

n (k))

k − (k − q)− ω′

+

∫ kF

q

dk
f(E+

n (k))

k − (k + q)− ω′
. (5.97)

γII2 =

∫ 0

−kF
dk

f(E+
n (k))

−k + (k − q)− ω′
+

∫ 0

−kF
dk

f(E+
n (k))

−k − (k + q)− ω′
. (5.98)

Evaluating the integrals in Eqs. (5.97) and (5.98) result in

γII1 =
q − 2kF
ω′ + q

+
2(kF − q)
q − ω′

− 1

2
ln

(
ω′ + q

ω′ − q

)
, (5.99)
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γII2 =
−kF
ω′ + q

− 1

2
ln

(
ω′ + q

−2kF + q + ω′

)
. (5.100)

Finally, by combing Eqs. (5.93), (5.94), (5.99), and (5.100) and considering the spin
effect, for |q| < |kF | we find

1

L
Reχ0

++(q, ω) =
1

W

1

γπ

(
q2

ω′2 − q2

)
, (5.101)

and for |q| > |kF |
1

L
Reχ0

++(q, ω) =
1

W

1

γπ

(
qkF

ω′2 − q2
+

1

4
ln

[
ω′2 − (2kF − q)2

ω′2 − q2

])
. (5.102)

The imaginary part of the Lindhard polarization function can be evaluated sim-
ilar to the real part

I ′ = −π
∫
dk
[
1 + ηη′ cosαnn′(k, k + q)f(Eηn(k))

]
δ
(
Eηn(k)− Eη

′

n′(k + q) + ~ω
)
, (5.103)

II ′ = π

∫
dk
[
1 + ηη′ cosαnn′(k − q, k)f(E′η

′
n (k))

]
δ
(
Eη
′

n′(k)− Eηn(k − q)− ~ω
)
.

(5.104)

Following the preceding derivation

− γI ′/π =

∫ −q
−kF

δ (q + ω′) dk +

∫ q

0

δ (2k − q + ω′) dk +

∫ kF

q

δ (q + ω′) dk

+

∫ −q
−kF

δ (−q + ω′) dk +

∫ kF

0

δ (−q + ω′) dk +

∫ kF

0

δ (−q + ω′) dk

+

∫ kF

0

δ (2k − q + ω′) dk, (5.105)

γII ′/π =

∫ 0

−kF
δ (−q − ω′) dk +

∫ −q
−kF

δ (q − ω′) dk +

∫ 0

−q
δ (−2k − q − ω′) dk

+

∫ kF

q

δ (q − ω′) +

∫ kF

q

δ (−q − ω′) dk +

∫ 0

−kF
δ (−q − ω′) dk

+

∫ 0

−kF
δ (−2k − q − ω′) dk, (5.106)

which results in

− γI ′/π = θ (q − ω′) [θ (q + ω′) + θ (2kF − q + ω′)] , (5.107)

γII ′/π = θ (q + ω′) [θ (q − ω′) + θ (2kF − q − ω′)] . (5.108)

Finally, the imaginary part of Lindhard polarization function of AGNR for intra-
band transition is given by

1

L
Imχ0

++(q, ω) =
1

2γW
[θ (q + ω′) θ (2kF − q − ω′)

−θ (q − ω′) θ (2kF − q + ω′)] . (5.109)
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6 Transport and optical
properties of AGNRs

6.1 Introduction

As an application of QLRT, below we evaluate the optical properties and surface
plasmons of an AGNR. We consider an AGNR on a substrate as shown in Fig. 6.1.

Figure 6.1: An AGNR on a substrate.

To evaluate the properties of AGNR in interacting with a TM field we use the
conventions that are depicted in Fig. 6.2. Satisfying the boundary condition for
normal components of the electric field

ε1E
⊥
1 − ε2E⊥2 = ρs, (6.1)

where ρs is surface charge density, leads to

ε1(EI cos θI + ER cos θR)− ε1ET cos θT = ρs, (6.2)

where EI , ER, and ET are the amplitudes of incident, reflected, and transmitted
electric field of electromagnetic wave respectively. The θI , θR, and θT stand for the
angles of incidence, refraction, and transmission respectively. For the tangential
components of electric field

E
‖
1 − E

‖
2 = 0, (6.3)

which at the boundary between two media results in

(EI sin θI − ER sin θR)− ET sin θT = 0. (6.4)
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Figure 6.2: An AGNR at the interface of two media with permittivities ε1 and ε2.

To find a relation between the charge density and the electric field we can exploit
the current density continuity equation which by Fourier transforming of it we obtain

− ωρs(q, ω) + kxJx(q, ω) = 0, (6.5)

where according to Fig. 6.2 for the tangential component of wave vector we have,
kx = kT cos θT . Setting

Jx(q, ω) = σ(q, ω)Ex(q, ω), (6.6)

and noticing Ex(q, ω) = ET (q, ω) sin θT yields

ρs(q, ω) =
σ(q, ω)

ω
kT ET sin θT cos θT . (6.7)

We now use Snell’s law n1 cos θI = n2 cos θT , θI = θR, and write ER = rEI , ET = tEI
where r and t are reflection and transmission coefficients respectively. Furthermore,
we have ε1/ε2 = n2

1/n
2
2, kT = n2ω/c, and εi/ε0 = n2

i , i = 1, 2. Then Eqs. (6.2) and
(6.4) become

(1 + r) cos θI =
t

ε1
cos θT

(
ε2 +

σ(q, ω)

ω
kT sin θT

)
, (6.8)

(1− r) sin θI = t sin θT . (6.9)

Solving Eqs. (6.8) and (6.9) for r and t gives rise to
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t(k, ω) = 2

[
n2

n1

+
sin θT
sin θI

+
sin θT
n1ε0c

σ(k, ω)

]−1

, (6.10)

r (k, ω) = 1− sin θT
sin θI

t (k, ω) . (6.11)

For our purpose to express conductivity in terms of polarization function we can
write the surface charge densityρs in Eq. (6.2) as

ρs(~x, t) =
N∑
i=1

∫ ∫
ρ(x, y, z, t)δ(y − yi)δ(z)dydz

= Nρ(x, t), (6.12)

where by combining with Eq. (3.45),

ρ(q, ω) = e2χ(q, ω)φext(q, ω),

and Eq. (6.5) we find

σ(q, ω) =
iNe2ω

q2
χ(q, ω). (6.13)

The Lindhard polarization function for AGNR for intra-band transition, q ≤ kF
has only the real part, see Eq.(5.101), which is given by

χ0 = Reχ0
++(q, ω) =

L

W

1

~π

(
vF q

2

ω2 − v2
F q

2

)
. (6.14)

RPA, Eq. (3.54), takes into account Coulomb interaction which polarization
function within is given by

χRPA(q, ω) =
χ0(q, ω)

1− V (q)χ0(q, ω)
,

here V (q) is the Fourier transform of the matrix element of the 2D screened Coulomb
potential, with respect to x, V (x, y) = e−ksr/r, r2 = x2 + y2,

V (q) =
2e2

ε0

∫ 1

0

∫ 1

0

K0

[
δλ
∣∣(y − y′)∣∣]dydy′ , (6.15)

where δλ = W (k2
s + q2)1/2 = WkF (λ2 + k′s

2)1/2, λ = q/kF , k
′
s = ks/kF , and K0 is the

zeroth order modified Bessel function, and ks measures the strength of screening,
see appendix B. As a test, if we set ks = 0 we obtain the usual q → 0 logarithmic
divergence. If one takes into account the exchange interaction between electrons as
well as correlation effects, the polarization function becomes more accurate. In this
Hubbard approach, Eq. (3.68), one obtains

χHub(q, ω) =
χ0(q, ω)

1− V (q) [1−G(q)]χ0(q, ω)
,

where G(q) is the local field factor which for 1D systems G(q), Eq. (3.67), is

G(q) = V ((q2 + k2
F )1/2)/2V (q).
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We plot V (q) versus q/kF in Fig. 6.3 for different ks. As seen, V (q) decreases
with ks but only for very small q, i.e., only in the long-wavelength limit, and is
insensitive to ks for q/kF ≥ 0.2. This behaviour is contrasted with the screened
V (q) for 2D graphene in panels (b) and (c): (b) is the RPA result, Eq. (2.23) of
Ref. [73] with 1/q → 1/

√
q2 + k2

s and ε = ε0 + (π/2)e2/~vF the effective dielectric
constant, while (c) is the Thomas-Fermi one, Eq. (2.23) of Ref. [73] with V TF

sc (q) =
(1/ε0)(2πe2/(q + qTF ), qTF = 2πe2D(EF )/ε0 the Thomas-Fermi wave-vector, and
D(EF ) the density of states at the Fermi level. If D(EF ) is broadened due to
scattering, qTF can take several values depending on the level width γ. Notice that
in (a) q ≡ qx whereas in (b) and (c) q is the 2D wave vector and q′TF ≡ qTF/kF .
Note also that for ks → 0, the results in (a) and (b) diverge for q → 0.
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Figure 6.3: Matrix element of the screened potential vs q/kF in (a) an AGNR for
dm = 14, EF = 0.1 eV, and 2D graphene in (b) the RPA and (c) Thomas-Fermi
approaches.

We now turn to the conductivity given by Eq. (6.13). In the absence of scattering
we use Eqs. (6.14), (3.54) and (3.68) for χ(q, ω), and plot it in Fig. 6.4. For left panel
the three “lines” shown in the contour plots follow the roots of the denominators in
χ(q, ω). We also see that the slope of the Lindhard case increases as we move to the
Hubbard and RPA results. This reflects the change in the denominators of χ due
to the factors V (q) and G(q) in Eqs. (3.54) and (3.68). The right panel in Fig. 6.4
shown 3D surfaces of the left panel.

To better appreciate the differences between the three approaches we plot cross
sections of Fig. 6.4 in Fig. 6.5(a) for fixed q/kF = 0.18 and in Fig. 6.5(b) for fixed
~ω/EF = 0.48. The dependence of the Hubbard conductivity on the width of the
AGNR is shown in Fig. 6.6 for widths dm = 8, 14, 20. As seen, the dips move to
the right with increasing dm. However, we cannot increase dm indefinitely because
the 1D potential V (q), given by Eq. (6.15), is less and less valid for increasing dm.
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Figure 6.4: 3D surfaces and (ω, q) contour plots of the RPA, Hubbard, and Lindhard
conductivities of a metallic AGNR for dm = 14 and EF = 0.1 eV.
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Figure 6.5: Cross sections of Fig. 6.4 for (a) q/kF = 0.18 and (b) ~ω/EF = 0.48.
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Figure 6.6: Hubbard conductivity for dm = 8, 14, 20 and EF = 0.1 eV. Panel (a) is
for fixed ~ω/EF = 0.48 and panel (b) for fixed q/kF = 0.18.

6.2 Scattering effect on the polarization function

For scattering by impurities the polarization function in the long-wavelength
limit becomes [41]

χ0
im(q, ω) =

(1− iωτ) χ0(q, ω + iγ)

1− iωτ +
[
χ0(q, ω + iγ)/χ0(q, 0)− 1

] , (6.16)

with γ = 1/τ and τ the relaxation time. In the presence of scattering the conduc-
tivity has a real and an imaginary part. In Fig. 6.7 we plot its magnitude, in the
long-wavelength limit, for dm = 14 and EF = 0.1 eV. The top panels are for γ′ = 0,
the middle ones for γ′ = 0.001, and the bottom panels for γ′ = 0.03. As seen,
increasing the scattering strength γ, drastically changes its magnitude especially for
the right part of the panels in the third row. At the same time we see that increas-
ing γ reduces the slopes of the straight “lines” in Fig. 6.5 and slightly shortens the
~ω/EF regions of maximal conductivity. As indicated by Eq. (6.16), when scat-
tering is present χ becomes complex and its imaginary part measures the surface
plasmon strength [41]. We will consider only the RPA result in the long-wavelength
limit. Then

ImχRPA =
Imχ0

im

[1− V (q) Reχ0
im]

2
+ [V (q) Imχ0

im]
2 (6.17)

is a measure of the surface plasmon strength that we will plot. Regarding the surface
plasmon strength we present, in Fig. 6.8, a (ω, q) contour plot of −π~vF ImχRPA.
On the first row the three panels are for γ′ = 0.001, 0.005, 0.009, respectively, and
screening is neglected. On the second one screening is included and the panels are
for γ′ = 0.001, and k

′
s = 0.001, 0.01, 0.1, respectively.
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Figure 6.7: (ω, q) amplitude contour plot of the RPA, Hubbard, and Lindhard con-
ductivities of a metallic AGNR, in the long-wavelength limit, for dm = 14 and
EF = 0.1 eV. The top panels are for γ′ = 0, the middle ones for γ′ = 0.001, and the
bottom panels for γ′ = 0.03.

6.3 Reflection amplitude

The reflection amplitude is given by

R (θ, ω) = (1− δθ,θB) |r|2, (6.18)

with θ the angle of incidence and θB the Brewster angle [74]. In the experiments
when phase matching occurs, for a fixed frequency the wave-vector of the incoming
field is the same as the surface plasmon, the reflected field that reaches the detector,
which measures its amplitude, vanishes. It also vanishes at the Brewster angle . In
Figs. 6.9 (a) we plot the RPA reflection amplitude R, given by Eq. (6.18) versus the
angle of incidence θ for dm = 14, EF = 0.1 eV, n1 = 1 and n2 = 2 in the absence
of screening and scattering. A cross section of this graph for ~ω/EF = 0.5 is shown
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Figure 6.8: (ω, q) contour plot of −π~vF ImχRPA for a metallic AGNR with dm =
14 and EF = 0.1 eV. The first row of panels is for an unscreened potential with
γ′ = 0.001, 0.005, and 0.009., the second row for a screened one with γ′ = 0.001 and
k
′
s = 0.001, 0.01, 0.1.

in Fig. 6.9 (b) together with the 2D substrate result (dot-dashed blue curve) which
shows that the substrate supports Brewster angles. Notice that the two results differ
drastically and that there is no Brewster angle in an AGNR. This means that, e.g.,
in the Kretschmann geometry, if the detector shows a zero value the surface plasmon
has been launched.

20 40 60 80
0.0

0.5

1.0
(b)

R

 substrate
 AGNR

Figure 6.9: (a) RPA Reflection coefficient for dm = 14, EF = 0.1 eV, n1 = 2 and
n2 = 1 in the absence of screening and scattering. (b) contour of (a). (c) The solid
red curve is a cross section of (a) for ~ω/EF = 0.5 and the dot-dashed blue one the
result for a 2D substrate.
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6.4 AGNR surface plasmons

The pole of reflection coefficient gives rise to surface plasmon. For AGNR from
Fig. 6.2 we readily have sin θT = k2z/k2 = k2zc/n2ω and sin θI = k1z/k1 = k1zc/n1ω.
Inserting these expressions in the denominator of Eq. (6.11), set equal to zero, we
arrive at

ε1

[
q2 − n1

ω2

c2

]−1/2

+ ε2

[
q2 − n2

ω2

c2

]−1/2

=
σ(q, ω)

iω
. (6.19)

Since the wave-vector of surface plasmon is much grater than that of electromagnetic
field in vacuum, ω/c� q, we can obtain the general expression for surface plasmon
as

q ' iω(ε1 + ε2)

σ(q, ω)
. (6.20)

The surface plasmon dispersions are obtained by substituting Eq. (6.13) into Eq.
(6.20) and by using W =

√
3(dm+ 1)acc/2 with acc the carbon-carbon bond length.

The results are

~ω/EF =
√
λ2 + ζλ, Lindhard, (6.21)

~ω/EF =
√
λ2(1 + λβλ) + ζλ, RPA, (6.22)

~ω/EF =
√
λ2(1 + λγλ) + ζλ, Hubbard. (6.23)

Here dm = 3m− 1, m is an integer,

ζ = 2e2
/[
π
√

3(ε1 + ε2)accEF
]
(N/(N + 1)), (6.24)

βλ =
2e2

~vF ε0

∫ 1

0

∫ 1

0

K0 [δλ |(y − y′)|] dydy′, λ ≡ q/kF (6.25)

with γλ = βλ − 0.5βλ′ , and λ
′

= (
√

1 + λ2). As a test, we expect that in the long-
wavelength limit the surface plasmon dispersion becomes that of graphene [71] for
W or N sufficiently large. Indeed, for N very large N/(N + 1) → 1 and λ � 1 we
have ~ω/EF ∝

√
λ as in graphene’s case [71, 75, 76, 77, 78, 79]. Furthermore, in the

long-wavelength limit the surface plasmon field is proportional to ζ1/2 or 1/
√
W in

line with expectations [80, 81, 82] and observations Ref [83, 84].
In Fig. 6.10 we plot the Lindhard and Hubbard TM surface plasmon dispersions

for different widths (dm = 5, 8, 20) of a metallic AGNR, with n1 = 1, n2 = 2, and
EF = 0.1 eV. For fixed energy, especially in the long-wavelength limit, the surface
plasmon wavelength increases with the width W of the AGNR and so does the
surface plasmon group velocity. The opposite occurs when W is decreased. The
RPA result is similar to the fully numerical ones of Refs. [85, 86, 87, 88].

The dm dependence shown in Fig. 6.10 can be understood as follows. The energy
of a system in an electromagnetic field is directly related to the induced polarization
which leads to a charge density oscillation. The polarization can be considered as
an ensemble of dipole moments. For an oscillation with specific displacement from
equilibrium, by increasing the number of dipole moments, which in an AGNR is
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Figure 6.10: (a) TM Lindhard and (b) Hubbard surface plasmon dispersions in a
metallic AGNR with n1 = 2, n2 = 1, and EF = 0.1 eV. From top to bottom the
AGNR width is dm = 5, 8, 20.

proportional to the width W (or the dimmer number dm), the generated electro-
magnetic field has more energy. Therefore, we expect that, as shown in Fig. 4, its
frequency or photon energy to increase with the AGNR width W .

In Fig. 6.11 (a) we contrast the TM Lindhard, RPA, and Hubbard SP dispersions
for dm = 8. As Fig. 6.11 (b) shows, even in the long-wavelength limit there is a
small but noticeable difference between them.
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Figure 6.11: TM Lindhard, RPA, and Hubbard surface plasmon dispersions in a
AGNR for EF = 0.1 eV and width dm = 8 for (a) q/kF ≤ 1 and (b) long wavelength
limit, q/kF → 0.

The difference between the dispersions shown in Fig. 6.11 can be understood as
follows. The strength of the charge displacement/polarization due to a electromag-
netic field is reduced when, e.g., we take into account electron-electron interaction
and go from Eq. (8) to Eq. (9) and subsequently to Eq. (11) upon including
exchange. To have the same polarization, which determines the surface plasmon
photon energy, as in the case without electron-electron interaction, the charge dis-
placement must be increased. Then the uncertainty principle indicates that the
modified momentum (∝ q) is smaller. In addition, from photon energy conserva-
tion one can conclude that for a specific surface plasmon mode its intensity in the
Lindhard case is stronger than in Hubbard and RPA cases because of the surface
plasmon wavelength increase in the former case as compared to the latter ones.
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6.5 TE transmission and reflection coefficients

By satisfying the boundary conditions for the normal and tangential components of
the magnetic field B in Maxwell’s equations, see Fig. 6.2 with the electric field E
replaced by B = µH, the tangential components give

H
||
2 −H

||
1 = ~kf × n̂, (6.26)

with ~kf the vector of free surface current, and the normal components

B⊥2 −B⊥1 = 0. (6.27)

For simplicity we assume µ1 = µ2 = µ0. Also, θI = θR and n2 cos θT = n1 cos θI .
Then Eqs. (6.26) and (6.27) are first rewritten in terms of BI , BR, and BT , similar
to Eqs. (6.2) and (6.4), and then in terms of the refractive indices like Eqs. (6.8)
and (6.9). The result is

1− r = t

(
n1

n2

+
σyy

n2ε0 sin θT

)
sin θT
sin θI

, (6.28)

1 + r = t. (6.29)

From Eqs. (6.28) and (6.29) we readily obtain

t = 2

[
1 +

(
n1

n2

+
σyy

n2ε0 sin θT

)
sin θT
sin θI

]−1

. (6.30)

For graphene nanoribbons we have σyy = 0. Then the pole of the transmission
amplitude does not lend any support to TE surface plasmons [89].
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7 Scattering effects on linear
response theory

7.1 Introduction

Let’s assume that the system is at thermal equilibrium. Indeed, this is a conse-
quence of the connection between dissipation and fluctuations in the system. The
former is responsible for an irreversible decay of observables towards their equilib-
rium and the later is intertwined with the preservation of the correct statistical
distribution. As a matter of fact, in the classical regime energy dissipation in a
system is related to the statistical fluctuations which occur in thermal equilibrium.
Brownian motion is a prime example; its analysis provides great insight into the
concept of energy dissipation in a system. For the sake of simplicity, we limit our
calculations to one-dimensional systems. Newton’s second law of motion for a par-
ticle with mass is

m
dv

dt
= F(t) + F (t), (7.1)

where F denotes the external field which can be, for instance, an electromagnetic
field. F (t) stands for the net force that tends to restore the particle to equilibrium.
Since F (t) describes the interaction of a particle with all other degrees of freedom, it
is expected to have fluctuating behavior over time. Therefore, the particle velocity
and the net force can be written as

v = v̄ + v′, (7.2)

F = F̄ + F ′, (7.3)

where v̄ and F̄ are the average parts and v′ and F ′ are the rapidly fluctuating parts
whose average value vanishes. F̄ is a function of v̄, which can be expressed in terms
of power series of v̄ [90]. Hence, we can rewrite F̄ as

F̄ = −αv̄ + β′v̄2 − γ′v̄3 + ... (7.4)

For the linear case, we have
F̄ = −αv̄, (7.5)

where the coefficient, α , is positive due to the fact that v̄ needs to decrease as time
increases. In general, Eq. (7.1) becomes

m
dv̄

dt
= F + F̄ = F− αv̄, (7.6)
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where it can be written in terms of v as

m
dv

dt
= F− αv + F ′(t). (7.7)

In Eq. (7.7) we assumed αv̄ ≈ αv. Eq. (7.7) is known as the “ Langevin equation.”
Note that, −αv indicates the existence of processes, that is frictional forces, which
are associated with the dissipation of energy. It is useful to point out that what we
did in the Drude model derivation is analogous to the Eq. (7.7). The solution for
the average ensemble of Eq. (7.7) is

m 〈v(t+ τ)− v(t)〉 = F(t)τ − 1

kBT

∫ t+τ

t

dt′
∫ 0

t−t′
dsK(s), (7.8)

where 〈..〉0 indicates the mean value, kB is Boltzmann constant, and K(s) is the
ensemble average

K(s) = 〈F (t′)F (t′ + s)〉0 , (7.9)

which is also called the “correlation function.” After some algebra, we obtain

m 〈v(t+ τ)− v(t)〉 = F(t)τ − αv̄(t)τ, (7.10)

where α is given by

α ≡ 1

kBT

∫ ∞
−∞

ds 〈F (0)F (s)〉0 . (7.11)

By assuming that v̄ = 〈v〉 changes slowly over time intervals on the order of τ ,
Eq. (7.10) leads to Eq. (7.6). It is worth pointing out that α in the Drude model
corresponds to γ in Eq. (2.26). Notice there is a very close connection between the
correlation function and the energy dissipation of a system. In the quantum regime,
the structure factor S(~q, ω) is given by [50]

S(~q, ω) =

∫ ∞
−∞

dteiωt 〈ρ̂(~q, t)ρ̂(−~q, 0)〉 . (7.12)

Furthermore, the definition of the polarization function in momentum and frequency
space is

χ0(~q, ω) = − i

~V

∫ ∞
−∞

dteiωtθ(t) [〈ρ̂(~q, t)ρ̂(−~q, 0)〉 − 〈ρ̂(−~q, 0)ρ̂(~q, t)〉] , (7.13)

after algebraic manipulation yields

χ0(~q, ω) =
1

~V

∫ ∞
−∞

dν

2π

S(~q, ν)− S(~q,−ν)

ω − ν + iη
, (7.14)

which we used

θ(t) = lim
η→0+

1

i2π

∫ ∞
−∞

dω
eiωt

ω − iη
. (7.15)

Using the eigenvalue and eigenfunction of the Hamiltonian

H |n〉 = En |n〉
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Eq. (7.12) becomes

S(~q, ω) = 2π~
∑
i,j

e−βEi

Z
|〈i|ρ̂(~q, 0)|j〉|2δ (Ei − Ej + ~ω) . (7.16)

Note that S(~q, ω) ≥ 0. We also have the following relation [41]

S(−~q, ω) = S(~q, ω) = eβ~ωS(~q,−ω). (7.17)

From Eqs. (7.14) and (7.17) we find(
e−β~ω − 1

)
S(~q, ω) = 2~V Imχ0(~q, ω), (7.18)

which states the connection between the structure factor and the imaginary part of
the polarization function. Indeed, we see the dissipation of a system is related to
the imaginary part of its polarization function.

7.2 A challenge for quantum linear response the-

ory

We expect that the results we obtained from linear response theory in the
quantum regime reduce to the classical ones in the appropriate limit. For instance,
Eq. (3.56), which expresses the permittivity of a system, gives rise to Eq. (2.42)
in the long wavelength limit for a free electron gas. Applying the long-wavelength
limit to Eq (3.56), we have

ε(q → 0, ω) = 1− V (q)χ0(q → 0, ω), (7.19)

which, using Eq. (3.72), gives

ε(q → 0, ω) = 1− 4πe2

ε0q2

1

Ld
lim
ν→0

∑
~k

f(~k)

[
E(~q + ~k)− E(~k)

(~ω + iν)2
+

[E(~q + ~k)− E(~k)]3

(~ω + iν)4
+ ...

]
, (7.20)

where, by substituting the energy spectrum from Eq. (3.70), we obtain

ε(q → 0, ω) = 1− 4πe2

ε0q2

1

Ld
lim
ν→0

∑
~k

f(~k)

[
1

(~ω + iν)4

~2q2

2m
+

1

(~ω + iν)4

~6

2m3
12q2(~k.~q)2 +O(q6)

]
. (7.21)

Note that
1

Ld

∑
~k

f(~k) = n and
1

L3

∑
~k

f(~k)(
~k
m

)2 =
3

10
v2
Fn,

where n is the electron density. Employing the above expressions, Eq. (7.21) be-
comes
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ε(q → 0, ω) = 1−
ω2
p

(ω + iν/~)2
− 3

5

ω2
p

(ω + iν/~)4
v2
F q

2 + ..., (7.22)

where we can neglect higher orders terms. This gives

ε(q → 0, ω) = 1−
ω2
p

ω2 + iω2ν/~
. (7.23)

In order to retrieve Eq. (2.35) in the literature usually one replaces 2ν/~ with 1/τ .
In fact, ν designates the coupling of the system to its environment. Then, it is simply
replaced by 1/τ . But such a interpretation is not correct. Below we argue why. In
developing the density-density response function, Eq. (3.30), ν was introduced as an
adiabatic switching-on of the perturbation to avoid a divergence in an integration
over time and satisfy causality. As seen in Eq. (7.23), to retrieve Drude’s result
for the conductivity in the long wavelength limit, usually one enters this parameter
into the final result phenomenologically [41]. The dissipation should originate from
some randomness in the system which should appear in the Hamiltonian. This
randomness term, for example, could represent one-body or two-body randomizing
collisions [51]. In the next section, we develop a density-density response function
for inhomogeneous systems and investigate the influence of this randomness term
(or scattering).

7.3 Linear response theory in the presence of im-

purities

In order to treat the impurity effects, corresponding to frictional forces in the
classical regime, we consider a system whose Hamiltonian is given by

H = H0 − AF (t) + λV, (7.24)

which contains an extra term, λV , compared to Eq. (3.1). This term introduces
the effects of electron-impurity or electron-phonon interaction and so on. The λ
determines the strength of these kind of interactions. To be in the linear-response
regime some conditions are required to be satisfied which they are

〈AF (t)〉 , 〈λV 〉 � 〈H0〉 . (7.25)

Indeed, the introduction of new term in the Hamiltonian alters time evolution of
operators which definitely changes the polarization function of a system. The first
person who tried to come up with a solution to this was Van Hove in which his
publication in 1955 stated that [51]

λ→ 0, , t/τt →∞, λ2t = finite, (7.26)

this limit alters the time evolution of an operator in the manner

cl(t) = e−Λltcl + eiH0t/~cle
−iH0t/~, (7.27)

where τt is the transition time and Λ is a super-operator defined by

Λĉ ≡
∑
i,j

|i〉〈i| [Wji〈j|ĉ|j〉 −Wij〈i|ĉ|i〉] ; (7.28)
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the transition rate Wij given by Fermi’s golden rule

Wij =
(
2πλ2/~

)
|〈i|v|j〉|2δ (Ei − Ej) . (7.29)

It is useful to point out that Eq. (7.27) satisfies the equation of motion, i~∂tcl(t) =
[cl(t), H0 + λV ] in the van Hove limit. For the sake of simplicity in the following
calculations we rewrite the Eq. (7.27) as

cl(t) = ciml (t) + cnonl (t), (7.30)

where ciml and cnonl are
ciml (t) = e−Λltcl, (7.31)

cnonl (t) = eiH0t/~cle
−iH0t/~. (7.32)

Here we evaluate the density correlation function which is〈
Φ′0

∣∣∣ [ρ(~r, t), ρ(~r′ , t′)
] ∣∣∣Φ′0〉 , (7.33)

with |Φ′0〉 being

|Φ′0〉 = |Φ0〉 ⊗ |ξ〉 (7.34)

where |Φ0〉 indicates the wave function of electron and |ξ〉 refers to that of the
impurity or phonon. From Eqs. (7.30) and (7.33) we obtain〈

Φ′0

∣∣∣ [ρim(~r, t) + ρnon(~r, t), ρim(~r′ , t′) + ρnon(~r′ , t′)
] ∣∣∣Φ′0〉 , (7.35)

by splitting which we have〈
Φ′0

∣∣∣ [ρim(~r, t), ρim(~r′ , t′)
] ∣∣∣Φ′0〉+

〈
Φ′0

∣∣∣ [ρnon(~r, t), ρnon(~r′ , t′)
] ∣∣∣Φ′0〉

+
〈

Φ′0

∣∣∣ [ρim(~r, t), ρnon(~r′ , t′)
] ∣∣∣Φ′0〉+

〈
Φ′0

∣∣∣ [ρnon(~r, t), ρim(~r′ , t′)
] ∣∣∣Φ′0〉 , (7.36)

where by some algebra one can find out that the last two terms vanish. From Eqs.
(7.31) and (7.32) we obtain

〈
Φ′0

∣∣∣ [ρim(~r, t), ρim(~r′ , t′)
] ∣∣∣Φ′0〉 =

∑
i,j

∑
m,n

φ∗i (~r)φj(~r)φ
∗
m(~r′)φn(~r′)Υijmn, (7.37)

with
Υijmn ≡

〈
Φ′0

∣∣∣ [e−Λite−Λjtc†icj, e
−Λmte−Λntc†mcn

] ∣∣∣Φ′0〉 , (7.38)

which becomes

Υijmn ≡
〈
ξ
∣∣∣ e−(Λi+Λj)te−(Λm+Λn)t′

∣∣∣ ξ〉〈Φ0

∣∣∣ [c†icj, c†mcn] ∣∣∣Φ0

〉
, (7.39)

for single-body collisions such as electron-phonon interaction. The second term in
the above equation has been evaluated in the derivation of the polarization function.
Therefore, we focus on

Υijmn ≡
〈
ξ
∣∣∣ e−(Λi+Λj)te−(Λm+Λn)t′

∣∣∣ ξ〉 (fi − fj)δniδjm. (7.40)
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If we multiply the correlation function in Eq. (7.33) by Θ(t − t′)/i~ we obtain the
polarization function. From Eqs. (7.35) and (7.36) we arrive at

χ0(~r, t; ~r′ , t′) = − i
~

Θ(t− t′)
〈

Φ′0

∣∣∣ [ρim(~r, t), ρim(~r′ , t′)
] ∣∣∣Φ′0〉

− i

~
Θ(t− t′)

〈
Φ′0

∣∣∣ [ρnon(~r, t), ρnon(~r′ , t′)
] ∣∣∣Φ′0〉 , (7.41)

or in a more compact form

χ0(~r, t; ~r′ , t′) = χ0
im(~r, t; ~r′ , t′) + χ0

non(~r, t; ~r′ , t′). (7.42)

The second term on the right hand side of Eq.(7.42) leads to the previous results
obtained for the polarization function in the absence of λV , which is

− i

~
Θ(t− t′)

〈
Φ′0

∣∣∣ [ρnon(~r, t), ρnon(~r′ , t′)
] ∣∣∣Φ′0〉

= − i
~

Θ(t− t′)
〈

Φ0

∣∣∣ [ρnon(~r, t), ρnon(~r′ , t′)
] ∣∣∣Φ0

〉
〈ξ | ξ〉︸ ︷︷ ︸

=1

= χ0
non(~r, t; ~r′ , t′). (7.43)

The first term on the RHS of the Eq.(7.42) becomes

χ0
im(~r, t; ~r′ , t′) = − i

~
Θ(t− t′)

∑
i,j

∑
m,n

φ∗i (~r)φj(~r)φ
∗
m(~r′)φn(~r′)Υijmn. (7.44)

By changing t→ t− t′ in Eq. (7.44) by some simple algebra we obtain

χ0
im(~r, ~r′ , t) = − i

~
Θ(t)

∑
i,j

φ∗i (~r)φj(~r)φ
∗
j(
~r′)φi(~r

′)
〈
ξ
∣∣ e−Λijt

∣∣ ξ〉 (fi − fj), (7.45)

with
Λij ≡ Λi + Λj. (7.46)

By multiplying both sides of Eq. (7.44) by e−iωt and integrating it, we obtain Eq.
(7.45) in frequency domain

χ0
im(~r, ~r′ , ω) =

∑
i,j

φ∗i (~r)φj(~r)φ
∗
j(
~r′)φi(~r

′) 〈ξ| 1

~(ω + iΛij)
|ξ〉 (fi − fj). (7.47)

7.4 Current-current density response

In general, quantities such as conductivity are tensors. In order to obtain the
components of conductivity tensor we employ current-current response function for-
mula which is defined by

χαβ(~r, ~r′, t, t′) = − i
~

Θ(t− t′)
〈[
jα(~r, t), jβ(~r′ , t′)

]〉
0
, (7.48)
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whose space-time Fourier transformation is

χαβ(~q, ~q′, ω, ω
′
) = − i

~

〈[
jα(~q, ω), jβ(~q′, ω

′
)
]〉

0
. (7.49)

To evaluate the component of current operator, we use continuity equation

∂ρ(~r, t)

∂t
+ ~∇. ~J(~r, t) = 0.

By expressing the operators as

ρ(~r, t) =
1

V

∑
~k

∫ ∞
−∞

∂ω

2π
ρ(~k, ω)e(i.~k.~r−ωt),

~J(~r, t) =
1

V

∑
~k

∫ ∞
−∞

∂ω

2π
~J(~k, ω)e(i.~k.~r−ωt),

after some algebra we arrive at

− iωρ(~q, ω) + i~q. ~J(~q, ω) = 0⇒ Jα(~q, ω) =
ω

qα
ρ(~q, ω), (7.50)

with α ≡ x, y, z. Combining Eqs. (7.49) and (7.50) we can rewrite current-current
response in terms of density-density response

χαβ(~q, ~q′, ω, ω
′
) =

ωω
′

qαq′β

(
− i
~

〈[
ρ(~q, ω), ρ(~q′, ω

′
)
]〉

0

)
, (7.51)

We already know that the quantity in the parentheses is χ0(~q, ~q′, ω, ω
′
). Then, we

have

χαβ(~q, ~q′, ω, ω
′
) =

ωω
′

qαq′β
χ0(~q, ~q′, ω, ω

′
). (7.52)

In the same manner that we showed χ0(~q, ~q′, ω, ω
′
) = χ0(~q, ω)δ~q,−~q′δω,ω′ , It can be

shown that
χαβ(~q, ~q′, ω, ω

′
) = χαβ(~q, ω)δ~q,−~q′δω,ω′ . (7.53)

Finally, Eq. (7.52) becomes

χαβ(~q, ω) =
ω2

qαqβ
χ0(~q, ω). (7.54)

From the connection between conductivity and current-current response we find

σ0
αβ(~q, ω) =

ie2

ω
χαβ(~q, ω) =

ie2ω

qαqβ
χ0(~q, ω). (7.55)

7.5 Plasmons in graphene in the presence of im-

purities

As we mentioned, from the density-density response function (DDRF) many
properties such as plasmons, reflection and transmission amplitudes can be evalu-
ated. Below we investigate graphene plasmons in the random-phase approximation.
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For low energies from the Eqs. (4.45) and (4.46) we evaluated single-band (SB)
and two-band (TB) transition. Here, for the sake of the simplicity of expression we
rewrite them in terms of dimensionless parameters. That is,

χ0,SB
non (q′, ω′) =

kF
π~vF

q′2

ω′2
, (7.56)

χ0,TB
non (q′, ω′) =

kF
π~vF

q′2

2ω′

[
A(ω′)− iπ

2
Θ(ω′ − 2)

]
, (7.57)

where we used the dimensionless parameters q′ and ω′ (q′ ≡ q/kF , ω
′ ≡ ~ω/EF ) ,

with

A(ω′) =
2

ω′
+

1

2
ln

∣∣∣∣2− ω′2 + ω′

∣∣∣∣. (7.58)

As for χ0,SB
im , by employing Eqs. (4.45), (4.46), and (4.46) we obtain

χ0,SB
im (q′, ω′) =

kF
2π~vF

C(ω′, γ′) (1− δγ′,0) , (7.59)

with

C(ω′, γ′) =
ω′ − iγ′

ω′2 + γ′2
, γ′ ≡ ~γ/EF . (7.60)

Although 〈Λ〉b is a function of momentum, for simplicity in the derivation of Eq.
(7.59) it has been replaced by τ/2 where τ is the relaxation time and γ = 1/τ ; this
is valid only for elastic scattering. For TB transitions χ0,TB

im is given by

χ0,TB
im (q′, ω′) =

kF
π~vF

C(ω′, γ′) (1− δγ′,0) . (7.61)

The DDRF in momentum and energy space, χ(q′, ω′), characterizes the proba-
bility to find an electron which its final and initial states differing in momentum
and energy by q′ and ω′, respectively. In other words, it describes the probability
of an electron excitation. In Fig. 7.1 we show the real and imaginary parts of the
TB polarization function in the absence of impurities. The real part shows that
its magnitude decreases, with increasing frequency, for all values of the momentum.
The decrease is very fast for large frequencies. On the other hand, the imaginary
part decreases dramatically, as the momentum decreases, for ω′ > 2 and vanishes
for ω′ 6 2.
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Figure 7.1: Real and imaginary parts of the polarization function χ
′0,TB
non in the absence

of impurities.

We show χnon and χim as functions of ω′ in Fig. 7.2. Actually, Fig. 7.2 shows
that the magnitude of the real part of Eq. (7.61) ,Reχim dominates for almost all
ω′ except for very small ω′ for which the magnitude of Reχnon is larger that Reχim.
Therefore, apart for very small ω′ one can obtain all properties of graphene, related
to χ, from χim that has not been considered so far. In addition, as seen in Fig.
7.2, for fixed ω′ increasing γ′ makes χim weaker since increasing γ′ leads to shorter
scattering time and length. Therefore, the probability for an electron to reach the
final desired momentum is reduced by strengthening the interaction with impurity.
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Figure 7.2: Real parts of χ0
non and χ0

im versus ω′ where χ0
im is displayed for several γ′.

The real part of the total TB DDRF (Reχ), containing both χnon and χim, is
shown in Fig. 7.3 (a) versus ω′ for a typical value of q′ in the long wavelength
limit. The solid black curve represents the TB DDRF without inclusion of scat-
tering whereas the coloured curves are for several different γ′. To make clearer its
dependence on ω′ in Fig. 7.3 (b) we blow up the part of Fig. 7.3 (a) for ω′ ≤ 0.4.
As seen, the TB DDRF for small ω′ decreases dramatically because in this energy
range the principal contribution to it emanates from χnon as we mentioned in the
justification of Fig.7.2.
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Figure 7.3: (a) Real part of the TB DDRF (Reχ) for several values of γ′. (b) A part of
(a) for ω′ ≤ 0.4.

The imaginary part of the TB DDRF (Imχ), versus ω′, is shown in Fig. 7.4 (a)
for several γ′. To make more transparent its dependence on ω′, in Fig. 7.4 (b) we
show it for three different γ′ on an expanded scale. Notice though that this makes
the cusps or maxima of Fig. 3(a) invisible.
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Figure 7.4: (a) Imaginary part of the TB DDRF, Imχ, for q′ = 0.01 and several γ′. (b)
A segment of Imχ for three γ′.

Figures 7.5 (a) and (b) show the real and imaginary parts of the TB DDRF
versus q′ for several different values of γ′ and a typical frequency ω′ = 0.001. As
shown in 7.5 (a) the dependence of Reχ is approximately parabolic because only
χnon has a term that contains q′ and contributes to the TB DDRF. In addition, it
is clear that for q′ fixed Reχ increases as γ′ decreases.
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Figure 7.5: (a) Real and (b) imaginary parts of the TB DDRF versus q′ at ω′ = 0.001 for
several different values of γ′

The 3D bar of real and imaginary parts of TB DDRF in the presence of impurity,
χ
′0,TB
imp , are shown in Fig. 7.6. In spite of χ

′0,TB
non , χ

′0,TB
imp does not rely on momentum

since γ′ has been regarded to be independent that of. Therefore, it has been shown
in term of impurity strength and frequency. It is worth to be pointed out that the
order of magnitude of χ

′0,TB
imp is much larger compared with χ

′0,TB
non . Consequently we

expect that the contribution of χ
′0,TB
imp in the total polarization function χ be more

than χ
′0,TB
non . In the Fig. 7.7. for a typical value of impurity, γ′ = 5, 3D bar of χ is

depicted. We can see the real part of χ for a typical momentum in small frequency
it dramatically decreases and then it increases. On the other hand, its imaginary
part increases with frequency for a typical momentum reflecting this fact that for
larger frequency the energy dissipation increases.

Figure 7.6: Real and imaginary parts of the polarization function χ
′0,TB
imp in the presence

of impurities.
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Figure 7.7: Real and imaginary parts of χ for γ′ = 5.

Since the logarithmic and step function terms alter the behaviour of Reχ and
Imχ, respectively, in the vicinity of ω′ = 2 , which is not clear in Figs. 7.3 (a) and
7.4 (a) due to the large difference between their values with and without scattering,
in Fig 7.8 we display them separately. The upper panels are for γ′ = 0 and the
lower ones for γ′ = 10. Notice i) how including scattering, γ′ 6= 0, strengthens the
behaviour of the results without it near ω′ = 2 and ii) without scattering (γ′ = 0)
Imχ, shown in Fig. 7.8(b), vanishes for ω′ ≤ 2 and that there is no dissipation
in the system. In contrast, when scattering is included Imχ has approximately a
constant slope.
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Figure 7.8: (a) Real and (b) imaginary parts of the TB DDRF for γ′ = 0 versus ω′. (c)-
(d): as in (a) and (b) for γ′ = 10.

As we mentioned in section 2.3 to find plasmons of a system it suffices to set its
permittivity equal to zero. For the RPA we need to employ Eq. (3.56)

78



Chapter 7. Scattering effects on linear response theory

εRPA(q, ω) = 1− V (q)χ0(q, ω),

where V (q) is the 2D Fourier transform of the Coulomb potential. In terms of q′ we
rewrite V (q) as

V (q′) = η/q′, (7.62)

with η ≡ 8απ2~c/εbkF and εb the background permittivity. For SB transitions the
plasmons can be derived by combining Eqs.(7.56),(7.59), and (3.56). The result is

1− β

q′

[
q′2

ω′2
+
ω′ (1− δγ′,0)

2 (ω′2 + γ′2)

]
= 0. (7.63)

One solution of this quadratic equation is

q′ =
ω′2

2β

(
1 +

[
1− 2β2 (1− δγ′,0)

ω′ (ω′2 + γ′2)

]1/2
)
, (7.64)

with β ≡ ηkF/π~vF , gives the dispersion relation. Notice that Eq. (7.63) gives the
well-known dispersion ω ∝ q1/2 for γ = 0. The other solution, with 1+ in Eq. (7.63)
replaced by 1−, is unphysical and therefore rejected.

For TB transitions combining Eqs. (7.57),(7.61), and (3.56) gives the plasmon
spectrum as

q′ =
ω′

βA(ω′)

[
1 +

{
1− 2β2A (ω′) (1− δγ′,0)

(ω′2 + γ′2)

}1/2
]
. (7.65)

Again the second solution for q′, with 1+ in Eq. (27) replaced by 1−, is unphys-
ical and rejected. In Figs. 7.9 (a) and 7.10 (a) we show the dispersion relations,
resulting from Eqs. (7.64) and (7.65), for several values of γ′. To make these graphs
more clear in Figs. 7.9 (b) and 7.10 (b) we show their windows for 0.03 ≤ q′ ≤ 0.05
and different values of γ′, respectively. In both cases the frequency increases with q′

while the momentum plasmon range, i.e., the lower acceptable value of q′, decreases
with increasing γ′. Judging from the results as γ increases in Figs. 7.9 and 7.10, we
see that the SB plasmon frequency is larger than that the TB one, whereas the SB
plasmon momentum range is a bit shorter than the TB one. Note that the plasmon
group velocity ∂ω/∂q is approximately constant and independent of the scattering
strength γ′.

A plasmon is a coherent collective excitation of the charge density with all charges
oscillating about their equilibrium positions. Scattering effects, such as electron-
impurity or electron-phonon interaction, result in dissipation by single-particle exci-
tations. In other words, a single-particle excitation competes with the collective one:
if the mean-free path related to the single-particle excitation is of the order of the
wavelength of the collective one, there would be no plasmon. In Figs. 7.9 (b) and
7.10 (b) we can see that there is a critical plasmon momentum below which there is
no plasmon spectrum for a typical γ′. This can be explained as follows. The mean-
free path decreases with increasing γ′. By the uncertainty principle then its mo-
mentum increases with γ′ and so does the critical plasmon momentum. Physically,
if the wavelength of the collective oscillation, the displacement from equilibrium, is
smaller than the mean-free path, the system supports plasmons.
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Figure 7.9: (a) SB dispersion relation for several values of γ′. (b) The portion of (a) for

0.03 ≤ q′ ≤ 0.05.
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Figure 7.10: (a) TB dispersion relation for several values of γ′. (b) The portion of (a)
for 0.028 ≤ q′ ≤ 0.05.

We also see, in both figures, that for fixed plasmon momentum the plasmon
frequency increases with decreasing γ′. This can be justified as follows. At fixed
plasmon momentum the coherent collective dipole momenta generate the plasmon
electromagnetic field (PEM) whose energy is determined by the displacement from
the equilibrium positions and the number of available coherent dipole momenta.
Higher impurity density, that is larger γ′, increases the elastic scattering probability
which reduces the number of coherent dipole momenta. Therefore, the PEM field
resulting from them will have lower energy as γ′ increases.

As emphasized above, there are critical values γ′c below which there are no SB
or TB plasmons. To find them we set the factors [...]1/2 and {...}1/2 in Eqs. (7.64)
and (7.65), respectively, equal to zero. This gives

γ
′SB
c =

[
2β2/ω′ − ω′2

]1/2
, (7.66)

γ
′TB
c =

[
2β2A(ω′)− ω′2

]1/2
. (7.67)

Figure 7.11 shows γ′c versus the plasmon frequency ω′ for SB and TB plasmons. In
the former case the high value for low frequencies decreases fast for ω′ small but
much more slowly for ω′ > 0.5, while in the latter its value falls down very fast.
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0.0 0.5 1.0 1.5
0

20

40

60

' c

'

 SB
 TB
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It is worth observing that setting [...]1/2 = 0 in Eq. (7.64) leads, for γ 6= 0 fixed,
to a simple cubic equation for ω′, ω′3 + γ′2 ω′ − 2β2 = 0. Its acceptable solution ωc
is given below in Eq. (7.68). This then can be used to find analytically the lowest
limit for qc = ω2

c/2β, shown in Figs. 7.9 and 7.10, from Eq. (7.64). The explicit
results for γ′ ≥ γ′c are

ωc = [β2 +
√
Z]1/3 + [β2 −

√
Z]1/3, Z = β4 + γ′6/27. (7.68)

Unfortunately, for TB transitions this is not possible due to the factor A(ω′) in Eq.
(27).

The plasmon spectrum in Figs. 7.9 and 7.10 involves only a few discrete values
of γ′. For a continuous γ′ we show it in Fig. 7.12 as a contour plot. Plasmons
are not allowed outside the coloured regions. For the same plasmon frequency and
momentum, we easily see that the corresponding γ′ differ drastically.

7.6 Plasmons in a two-dimensional electron gas

For a two-dimensional electron gas (2DEG) in the long wavelength limit χ0
non is

given by
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χ0
non(q′, ω′) =

n~2k2
F

mE2
F

q′2

ω′2
, (7.69)

where n and m are the charge density and electron mass, respectively [41]. As for
χ0
im, with Eqs (3.70) and (7.47) and the assumption that the scattering is elastic

and τ independent of the wave vector, we obtain

χ0
im(q′, ω′) =

k2
F

2πEF
C(ω′, γ′). (7.70)

In the long wavelength limit the plasmon spectrum can be evaluated by utilizing
Eqs. (3.56), (7.69), and (7.70) [91]. The result is similar to graphene’s plasmon
spectrum, namely,

q′ =
ω′2

2β′

(
1 +

[
1− 2β′2 (1− δγ′,0)

ω′ (ω′2 + γ′2)

]1/2
)
, (7.71)

with β′ = 4/kFaB and aB the Bohr radius. In Fig. 7.13 we show this 2DEG
plasmon spectrum in the absence and presence of impurities for various values of β′.
To contrast it with that of graphene we give β′ in “units” of β. In Fig. 7.13 (a) we
can see that for a fixed q′ the plasmon energy increases; this can explained as follows.
If the number of plasmon dipole-momenta increases we expect the energy of PEM
field to increase as well. Note that in Eq. (7.71) the plasmon momentum is inversely
proportional to β′. In addition, kF in a 2DEG is proportional to the square root of
the electron density, kF =

√
2πn. Then one finds that the plasmon momentum q′

is likewise proportional to
√
n. In contrast, in graphene the dimensionless plasmon

momentum is independent of the electron density n. In Fig. 7.13 we show the
plasmon dispersion in a 2DEG in (a) the absence and (b) the presence of impurity
scattering; in (b) we took γ′ = 25. It can be seen that for fixed plasmon momentum
and decreasing β′ the plasmon energy decreases due to the reduction of the plasmon
dipole momenta. Furthermore, compared to the graphene case β′ = β, we can see
that for the lower value of β′ the critical plasmon momentum becomes smaller due
to the fact that scattering by impurities weakens with decreasing electron density.
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Figure 7.13: 2DEG plasmon dispersion (a) in the absence and (b) presence of impurity
scattering. In (b) γ′ = 25 is used.
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Further, as in the case of graphene, in a 2DEG the critical γ′, below which no
plasmons are allowed, is obtained in the same way. It is given by

γ
′2DEG
c =

[
2β′2/ω′ − ω′2

]1/2
. (7.72)

We show it in Fig. 7.14 γ
′2DEG
c for several values of β′. It can be seen that for

fixed ω′ and increasing β′ the value of γ′c increases as well. We further remark that,
similar to graphene for SB transitions, with γ′c 6= 0 fixed Eq. (33) allows an analytic
evaluation of the allowed ω′ which in turn determines the lower value of q′ below
which no plasmons are allowed. One simply has to replace β with β′ in Eq. (7.68)
to obtain the corresponding ωc and qc.
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Figure 7.14: γ
′2DEG
c versus ω′ for several values of β′.

7.7 Single- and two-band TM SP

The poles of the transmission or reflection coefficients of graphene give the SPs
which for TM modes is given by

q =
iωε0(n2

1 + n2
2)

σ(q, ω)
. (7.73)

It should be pointed out that similar to section 6.4 Eq. (7.73) is valid only for SP
momenta much larger than that of light, q � ω/c. The simplest approximation
on which we focus here is the Lindhard one that neglects the effects of Coulomb
interaction and local field factor. Because the polarization function has different
values for SB and TB transitions, the SPs would be different in each of them. Note
that real part of the transmission pole yields an SP mode [45, 90] and its imaginary
part is responsible for dissipation. For SB transitions Eqs. (7.56), (7.59), (3.59),
and (7.73) give

q′2 − q′β′′ω′2 +
ω′3 (1− δγ′,0)

2 (ω′2 + γ′2)
= 0 (7.74)

with β′′ = vF (n2
1 + n2

2)/4αc. The physical solution is given by

q′ =
1

2

[
β′′ω′2 +

[
(β′′ω′2)2 − 2ω′3 (1− δγ′,0)

ω′2 + γ′2

]1/2
]
. (7.75)
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For TB using Eqs. (7.57), (7.61), (3.59), and (7.73) we obtain the physical
solution as

q′ =
ω′β′′

A(ω′)

(
1 +

[
1− 2A(ω′)

β′′2

( 1− δγ′,0
ω′2 + γ′2

)]1/2
)
. (7.76)

Notice that there are other solutions for Eqs. (7.75) and (7.76) with the plus sign in
front of the square root +[..]1/2 replaced by a negative sing. However, these solutions
are unphysical therefore they have been rejected. Here in our calculation n1 and
n2 have been considered to be 1 and 2 respectively. In Figs. 7.15 (a) and 7.16 (a)
the TM SP spectrum of SB and TB for several values of γ′ are shown. To make
the behavior of graphs more clear in Figs. 7.15 (b) and 7.16 (b) we show them in
a smaller windows of q′. To show how the domain of SPs alter by the value of im-
purity. As seen with decreasing γ′ the acceptable value of q′ increases where that of
SB is smaller than TB. Furthermore, the SP frequency in TB is larger than SB for a
typical allowed value of q′. In both cases the group velocity ∂ω/∂q is approximately
constant and independent of the impurity strength. As seen, the SP dispersion
changes when the strength γ′ is varied. This can be explained as follows. A coher-
ent ensemble of dipole moments oscillating about their equilibrium configuration,
under a phase matching condition, starts to generate evanescent electromagnetic
filed that propagates at the interface of metallic-dielectric media. Damping effects
due to defects, impurities, or electron-phonon interaction are expected to reduce the
effective number of these coherent dipole moments. In other words, a higher value
of γ′ increases the probability of scattering and reduces the number of coherent
dipole moments. Therefore, the energy of an electromagnetic field originated from
an ensemble of dipole moments for lower γ′, with the same momentum, is larger
than that for higher γ′.
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Figure 7.15: (a) SB TM SP for different values of γ′. (b) The segment of (a) for q′ ≤ 0.006.

84



Chapter 7. Scattering effects on linear response theory

0.000 0.015 0.030 0.045
0.00

0.04

0.08

0.12

0.16

/E
F

q/kF

 '=0
 '=4
 '=5
 '=10

(a)

0.000 0.005 0.010 0.015
0.00

0.04

0.08

(b)

/E
F

q/kF

 '=0
 '=4
 '=5
 '=10

Figure 7.16: (a) TB TM SP for different values of γ′. (b) The segment of (a) for q′ ≤ 0.015.

In Figs. 7.17 and 7.18 we show the 3D TM SP spectrum and (ω′, γ′) contour plot
of SB and TB respectively. As seen, for a fixed γ′ by increasing SP frequency its
momentum increases as well. The bars in these figures indicate the allowed values
in a region where SPs exist. It can be seen, in particular in Figs. 7.15 and 7.16,
that below a critical value of γ′, called γ′c, no SPs exist. This critical strength γ′c
can be determined by setting to zero the quantities [..]1/2 in Eqs. (7.75) and (7.76).
The results are

γ
′SB
c = [2/β′′2ω′ − ω′2]1/2, (7.77)

γ
′TB
c =

[
2A(ω′)/β′′2 − ω′2

]1/2
. (7.78)

The strength γ′c, versus the SP frequency ω′ is shown in Fig. 7.19 for the SB and
TB cases. In both γ′c decreases very fast with increasing SP frequency. In addition,
for fixed frequency γ′c is smaller in the SB case.

0.035 0.070 0.105 0.140
0

2

4

6

8

10

'

/EF

0.0

0.0080

0.016

0.024

0.032

q/kF

Figure 7.17: 3D bar and (γ′, ω′) contour plot of TM SB SPs.
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Figure 7.18: 3D bar and (γ′, ω′) contour plot of TM TB SPs.
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Figure 7.19: Critical impurity strength versus SP frequency.

7.8 Quality factor

To efficiently transport high-speed information and energy, devices must have the
least possible number of obstacles or defects, e.g. impurities, so that the energy dis-
sipation is the lowest. Devices with the best functionality are usually distinguished
by the quality factor (QF) defined as the ratio of the stored to the dissipated energy.
The devices with higher the QF higher have higher functionality and performance
[92]. The QF is given by

Q =
Ustor
Udis

=
U0 − Udis
Udis

=
U0

Udis
− 1, (7.79)

where Ustor, Udis and U0 refer to the stored, dissipated, and total energy densities,
respectively. Here U0 is the energy density of the incoming filed, U0 = ε0 |EI |2 /2.
The dissipated energy of the SP, Udis , is

Udis =
1

2
ε0 |Edis|2 =

1

2
ε0 |EI |2

∣∣Im t(q′sp, ω
′
sp)
∣∣2 , (7.80)
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where Im t(q′sp, ω
′
sp) is the imaginary part of the transmission coefficient at the sur-

face plasmon momentum and frequency. For SB and TB transitions we obtain

QSB =
[
η ImC(ω′, γ′)/2k′sp

]2 − 1, (7.81)

QTB =
[
ηD(ω′sp, γ

′)/2k′sp
]2 − 1, (7.82)

with
D(ω′, γ′) = ImC(ω′, γ′) + (πq′2sp/4ω

′) Θ(ω′ − 2), (7.83)

and η = 4αc/(vFn1n2). For low SP frequency by combining Eqs. (7.75) and (7.81)
for SB and Eqs. (7.76) and (7.82) for TB, respectively, it can be shown that QF is

Q ∝ α2λ2
sp/γ

′2, (7.84)

which depends only on fine-structure, SP wavelength, and impurity strength. In
Figs.7.20 (a) and (b) QF of SB and TB TM SPs versus SP frequency for several
values of γ′ are shown. As seen, by increasing SP frequency QF decreases dramati-
cally. In addition, for a fixed SP frequency in both cases by increasing the impurity
strength QF decreases which is expected since impurity with higher value implying
more loss and dissipation. In low frequency according to Eqs. (7.75) and (7.76) SP
wavelength is proportional to ω−2, as seen in Figs.7.20 in both cases, SB and TB,
QF decreases with the power of ω−4 in this regime. Due to the fact that, dissipation
in TB is more than SB regarding to (7.59) and (7.61) we expect that QF in SB be
more than SB as it is conspicuous here.
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Figure 7.20: (a) SB and (b) TB TM SPs QF versus SP frequency for several values of
γ′.

7.9 Single- and two-band TE SP

Similar to the case of TM SPs, the transmission amplitude for TE SPs, see Eq.
(6.30), is given by

t(k, ω) = 2

[
1 +

n2 sin θT
n1 sin θI

+
σ(k, ω)

n1ε0c sin θI

]−1

. (7.85)

Corresponding to Eq.(7.73) for TE SPs we find

k =
iσ(k, ω)ω

2ε0c2
. (7.86)
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In the SB case there are no TE SPs as in the absence of scattering [93]. In the TB
one corresponding to Eq.(7.74) we obtain

q′3 + aq′2 + b = 0, (7.87)

with a = 2αcω′A(ω′)/vF , b = 4αcω′2ReC(ω′, γ′)/vF . Eq. (7.87) has a real solution
with negative value for q′ which is not physical. Accordingly, we infer that impurity
scattering suppresses TE SPs in graphene.
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8 Quantum Boltzmann equation

8.1 Introduction

In the previous chapters, we dealt with QLRT to investigate dynamical trans-
port and optical properties of inhomogeneous systems. For instance, we treated
plasmonics properties of AGNRs and graphene by regarding many-body effects such
as exchange-hole effect, electron-phonon, and the Coulomb potential to name a few.
Here we employ quantum Boltzmann equation (QBE) in the Van Hove limit with
the same Hamiltonian of Eq. (7.24) to study transport properties of a homogeneous
system via considering many-body effects such as electron-electron interaction [94]

∂〈c†
ζ′
cζ′′ 〉t
∂t

−F (t)
1− e−β(E

ζ
′−E

ζ
′′ )

Eζ′ − Eζ′′
〈nζ′′ 〉eq(1−〈nζ′ 〉eq)〈ζ

′′ |ȧ|ζ ′〉+ i

~
(Eζ′′ −Eζ′ )〈c

†
ζ′
cζ′′ 〉t

+ βF (t)
∑
ζ1ζ2ζ3

Q(ζ3ζ; ζ2ζ1)〈nζ3nζ(1− nζ2)(1− nζ1)〉eq(aζ3 + aζ − aζ2 − aζ1)δζ′ζ′′

= −
∑
ζ1ζ2ζ3

Q(ζ3ζ; ζ2ζ1)〈nζ3nζ(1−nζ2)(1−nζ1)− (1−nζ3)(1−nζ)nζ2nζ1〉tδζ′ζ′′ , (8.1)

with 〈ζ|a|ζ〉 being the expectation value of the position operator and β = 1/kBT .
Here a and A in Eq. (7.24) are related by A =

∑
i ai. The Q in Eq. (8.1) is the

transition probability per unit time given by

Q(ζ3ζ; ζ2ζ1) = λ2 2π

~
|〈ζ3ζ|v|ζ2ζ1〉|2δ (Eζ3 + Eζ − Eζ2 − Eζ1) , (8.2)

where v is the interaction. The Delta function in Eq. (8.2) is added manually to
satisfy energy conservation. The conductivity of system can be evaluated by current
operator which, for ω = 0, direct current (DC), results in

σdµν =
βe2

V

∑
klmi

Q(m, i; l, k) 〈nmni(1− nl)(1− nk)〉eq

× (aνm + aνi − aνl − aνk)aµi, (8.3)

σndµν =
ie2~
V

∑
i6=i′
〈ni〉eq (1− 〈ni′〉eq) 〈i|vν |i

′〉 〈i′|vµ|i〉
1− e−β(Ei′−Ei)

(Ei′ − Ei)2 , (8.4)

where e and V stand for the electron charge and system volume. The superscripts
“d” and “nd” in Eqs. (8.3) and (8.4) refer to diagonal and non-diagonal parts
respectively. This stems from the approach used in representation of an operator
like A
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A =
∑
ij

|i〉 〈i|A |j〉 〈j|

=
∑
i

|i〉 〈i|A |i〉 〈i|+
∑
i6=j

|i〉 〈i|A |j〉 〈j|

= PA+ (1− P)A ≡ Ad + And, (8.5)

where P is the projection operator. For more details see Ref. [51]. Therefore, the
general expression for dc conductivity by considering electron-electron interaction is
given by σµν = σdµν + σndµν with µ, ν = x, y, z.

8.2 dc conductivity of graphene in presence of

electron-electron interaction

In this section, as an example of the application of QBE, we evaluate the dc
conductivity of graphene via considering the electron-electron interaction. For the
sake of the simplicity, we assume that the external applied electric field is in the x
direction, ~E = Exêx . For the diagonal part Eq. (8.3) becomes [94]

σdxx =
βe2

4V

∑
klmi

Q(m, i; l, k)fmfi(1− fl)(1− fk)(axk + axl − axm − axi)2, (8.6)

where f is the Fermi-Dirac distribution. In the derivation of Eq. (8.6), we have
exploited

〈nmni(1− nl)(1− nk)〉eq = 〈nm〉eq 〈ni〉eq (1− 〈nl〉eq)(1− 〈nk〉eq)

= fmfi(1− fl)(1− fk).

Graphene eigenvalues and eigenfunctions are given by

〈~r|~kζs〉 =
ei
~k~r

√
4A


e−iθ(

~k)

ζ

eiθ(
~k)

ζ

Xs, Eζs(~k) = ζ~vF |~k|, ζ = ±1, (8.7)

with θ(~k) = tan−1 (ky/kx). Here X and ζ = ±1 refer to spin part of the eigen-
function, valence, and conduction bands respectively. Therefore, Eq. (8.6) leads
to

σdxx =
βe2

4A

∑
~k1ζ1s1

∑
~k2ζ2s2

∑
~k3ζ3s3

∑
~k4ζ4s4

Q(~k1ζ1s1, ~k2ζ2s2;~k3ζ3s3, ~k4ζ4s4)

×f~k1ζ1s1f~k2ζ2s2(1−f~k3ζ3s3)(1−f~k4ζ4s4)(ax~k4ζ4s4 +ax~k3ζ3s3−ax~k1ζ1s1−ax~k2ζ2s2)
2, (8.8)

with

Q(~k1ζ1s1, ~k2ζ2s2;~k3ζ3s3, ~k4ζ4s4) =
2π

~
I2
combδ(E~k1ζ1s1 + E~k2ζ2s2 − E~k3ζ3s3 − E~k4ζ4s4),
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where Icomb is

Icomb ≡ 〈~k1ζ1s1, ~k2ζ2s2|v|~k3ζ3s3, ~k4ζ4s4〉 . (8.9)

For the sake of simplicity, we first deal with Icomb. The Coulomb potential is written
in terms of its Fourier transform

v(~r − ~r′) =
∑
~q

ei~q.(~r−
~r′)√

q2 + k2
s

, (8.10)

where ks is the screening strength. Eq. (8.9) becomes

Icomb =
1

(4A)2

∫ ∫
d~rd~r′


e−iθ(

~k1)

ζ1

eiθ(
~k1)

ζ1


†

e−iθ(
~k3)

ζ3

eiθ(
~k3)

ζ3

 ei~r.(
~k3−~k1)


e−iθ(

~k2)

ζ2

eiθ(
~k2)

ζ2


†

e−iθ(
~k4)

ζ4

eiθ(
~k4)

ζ4

 ei
~r′.(~k4−~k4) X†s1Xs3︸ ︷︷ ︸

δs1s3

X†s2Xs4︸ ︷︷ ︸
δs2s4

∑
~q

ei~q.(~r−
~r′)√

q2 + k2
s

(8.11)

which, by some simplifications, leads to

Icomb =
1

4

∑
~q

δs1s3δs2s4√
q2 + k2

s

[
cos[θ(~k1)− θ(~k3)] + ζ1ζ3

] [
cos[θ(~k2)− θ(~k4)] + ζ2ζ4

]
1

A

∫
d~rei~r.(

~k3−~k1+~q)︸ ︷︷ ︸
δ~k1−~k3,~q

1

A

∫
d~r′ei

~r′.(~k4−~k2−~q)︸ ︷︷ ︸
δ~k4−~k2,~q

, (8.12)

resulting in

Icomb ≡
1

4

δs1s3δs2s4δ~k1−~k3,~k4−~k2√
g(~k1, ~k3)2 + k2

s

O(~k1ζ1, ~k2ζ2;~k3ζ3, ~k4ζ4), (8.13)

with
g(~k1, ~k3) ≡

∣∣∣~k1 − ~k3

∣∣∣,
and

O(~k1ζ1, ~k2ζ2;~k3ζ3, ~k4ζ4) ≡
[
cos[θ(~k1)− θ(~k3)] + ζ2ζ4

] [
cos[θ(~k2)− θ(~k4)] + ζ2ζ4

]
.

For the sake of the simplicity, we only consider the conduction band, ζ1 = ζ2 = ζ3 =
ζ4 = +1. Finally, Eq. (8.8) becomes

σdxx =
βe2

4A

∑
~k1~k2

∑
~k3~k4

∑
s1s2s3s4

2π

~
δs1s3δs2s4

|g(~k1, ~k3)|2 + k2
s

1

42
O2(~k1ζ1, ~k2ζ2;~k3ζ3, ~k4ζ4)
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× f~k1s1f~k2s2(1− f~k3s3)(1− f~k4s4)(ax~k4s4 + ax~k3s3 − ax~k1s1 − ax~k2s2)
2

× δ(E~k1ζ1s1 + E~k2ζ2s2 − E~k3ζ3s3 − E~k4ζ4s4)δ~k1−~k3,~k4−~k2 . (8.14)

The production of the delta function and Kronecker delta in the above equation
states the conservation of energy and momentum. In general, g(~k1, ~k3) is a constant.

In the case that g(~k1, ~k3) → 0, for the sake of simplicity, we assume g(~k1, ~k3) = 0.

This implies that the conductivity is non-vanishing if and only if ~k1 = ~k3, ~k4 = ~k2

or ~k1 = −~k2, ~k4 = −~k3. After some algebra and using the following identity

βfi(1− fi) = δ(Ei − EF ), (8.15)

we arrive at

σdxx =
2πe2

A3~
4∆x2

k2
s

∑
~k1~k2

δ(E(~k1)− EF )f~k2(1− f~k2), (8.16)

with ∆x = (ax~k1 − ax~k2). Since ax,~kζs vanishes, we use the following approximation
∆x = lτ where lτ is the mean-free distance. From the physical point of view, the av-
erage distance between electron scatterings which result in changing the momentum
of electrons is the mean-free distance. Converting the sum into an integral gives rise
to

σdxx =
2πe2

A3~
4l2τ
k2
s

A2

(2π)4

∫ 2π

0

dθ2

∫ 2π

0

dθ1

∫ kF

0

k1dk1δ(k1 − kF )

×
∫ kF

0

k2e
β~(k2−kF )

[1 + eβ~(k2−kF )]
2dk2. (8.17)

After some algebra, we obtain

σdxx =
e2

A~
4l2τ
k2
s

kF
2π

∫ kF

0

keβ~(k−kF )

[1 + eβ~(k−kF )]
2dk. (8.18)

The integral in the above equation can be evaluated in the following way:

II =

∫ kF

0

(k − kF + kF )eβ~(k−kF )

[1 + eβ~(k−kF )]
2 dk = kF

∫ kF

0

eβ~(k−kF )

[1 + eβ~(k−kF )]
2dk+

∫ kF

0

(k − kF )eβ~(k−kF )

[1 + eβ~(k−kF )]
2 dk, (8.19)

where the first term results in

kF

∫ kF

0

eβ~(k−kF )

[1 + eβ~(k−kF )]
2dk =

kF
β~

[
1

1 + e−β~kF
− 1

2

]
,

and the second term∫ kF

0

(k − kF )eβ~(k−kF )

[1 + eβ~(k−kF )]
2 dk =

1

(β~)2

∫ 0

−β~kF

xexdx

(1 + ex)2
=

1

(β~)2

[
xex

1 + ex
− ln(1 + ex)

] ∣∣∣0
−β~kF
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=
1

(β~)2

[
β~kF e−β~kF
1 + e−β~kF

+ ln

(
1 + e−β~kF

2

)]
.

Therefore, the value of the integral is

II =
k2
F

βEF

[
1

1 + e−βEF
− 1

2

]
+

k2
F

(βEF )2

[
βEF e

−βEF

1 + e−βEF
+ ln

(
1 + e−βEF

2

)]
.

By introducing σ0 ≡ e2/h, we arrive at

σ′xx ≡
σdxx
σ0

=
4

AkF

(lτkF )2

(ks/kF )2

(
1

(βEF )2

[
βEF e

−βEF

1 + e−βEF
+ ln

(
1 + e−βEF

2

)]

+
1

βEF

[
1

1 + e−βEF
− 1

2

])
. (8.20)

Because of the relation between the Fermi wave-vector and charge density in low
energy limit for graphene, kF =

√
2πn, we can rewrite the above equation as

σ′xx =
1

A

1√
πn

(lτkF )2

(ks/kF )2

(
1

(βEF )2

[
βEF e

−βEF

1 + e−βEF
+ ln

(
1 + e−βEF

2

)]

+
1

βEF

[
1

1 + e−βEF
− 1

2

])
. (8.21)

In Fig. 8.1 (a) σ′xx as a function of temperature for several values of lτkF at a
fixed value of Fermi energy and screening strength is shown. We see for a typical
value of lτkF the diagonal part of conductivity in the x direction, σ′xx, increases by
increasing the temperature. As seen with increasing lτkF for a fixed temperature,
the value of σ′xx increases due to the lower probability of collisions. In Fig. 8.1 (b)
we show σ′xx versus temperature for a fixed value of Fermi energy and mean-free
path for several screening strength. We see the same behavior such as Fig. 8.1 (a).
However, the value of σ′xx decrease by increasing ks for a fixed temperature due to
the change in strength of the Coulomb interaction which governs the interaction
between the electrons.
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Figure 8.1: (a) σ′xx versus temperature for several values of lτkF for ks/kF = 0.001
and EF = 0.01 eV. (b) σ′xx versus temperature for several values of ks/kF for lτkF =
10 and EF = 0.01 eV
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For a fixed temperature and mean free distance value, for several values of screen-
ing strength, we show σ′xx versus Fermi energy in Fig. 8.2 (a). As seen, by increas-
ing the Fermi energy the value of conductivity decrease which can be understood
as follows. The Fermi energy is proportional to the square root of electron density,
EF ∝ n1/2. This implies the probability of electron-electron interaction increase by
increasing the electron density. Therefore, for lower value of Fermi energy, σ′xx has
higher value. To make the behavior of σ′xx more clear for EF ≥ 0, in Fig. 8.2 (b) we
show a portion of Fig. 8.2 (a).
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Figure 8.2: (a) σ′xx versus Fermi energy for several values of lτkF for ks/kF = 0.001
and T = 300. (b) a segment of (a) in the range of 0.04 ≤ EF ≤ 0.06 eV.

In Fig. 8.3 (a) for a typical value of screening and mean-free path, we show the 3D
bar plot of σ′xx as a function of Fermi energy and temperature. In the same way, for
a typical value of screening and temperature, in Fig. 8.3 (b) the 3D bar plot of σ′xx
as a function of Fermi energy and mean free-path is shown.

(a) (b)

Figure 8.3: 3D bar of σ′xx (a) versus Fermi energy and temperature for ks/kF = 0.001
and lτkF = 10. (b) versus Fermi energy and lτkF for T = 300 and ks/kF = 0.001.

Using Eq. (8.4) the non-diagonal part of conductivity takes the form

σndµν =
ie2~
A

∑
i6=i′
〈i|vν |i′〉 〈i′|vµ|i〉

(fi − fi′)
(Ei′ − Ei)2 , (8.22)
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where we used the identity

fi(1− fi′)
[
1− e−β(Ei′−Ei)

]
= (fi − fi′). (8.23)

For µ = ν = x = y, Eq. (8.22) vanishes as can be seen by exchanging the
indexes i by i′. This results in two terms with opposite sings. For µ = x, ν = y, in
the case when an electric field such as ~E = Exêx +Eyêy is applied, Eq. (8.22) leads
to

σndxy =
ie2~
A

∑
ζs

∑
~k 6=~k′

〈~kζs|vx|~k′ζs〉 〈~k′ζs|vy|~kζs〉
(f~kζs − f~k′ζs)(
E~k′ζs − E~kζs

)2

+
ie2~
A

∑
~ks

∑
ζ 6=ζ′
〈~kζs|vx|~kζ ′s〉 〈~kζ ′s|vy|~kζs〉

(f~kζs − f~kζ′s)(
E~kζ′s − E~kζs

)2 , (8.24)

with

vx = vF


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , vy = vF


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 .

Let’s first evaluate 〈~kζs|vx|~k′ζs〉 of the first term on the right hand side (RHS) of
Eq. (8.24)

〈~kζs|vx|~k′ζs〉 =
vF
4A


e−iθ(

~k)

ζ

eiθ(
~k)

ζ


†

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0



e−iθ(

~k′)

ζ

eiθ(
~k′)

ζ

∫ ei~r.(
~k′−~k)d~r︸ ︷︷ ︸

δ~k,~k′

. (8.25)

The sum over ~k and ~k′ indicates they should be different. However, we have δ~k,~k′
which implies the first term of RHS of Eq. (8.24) vanishes. For the second term of

Eq. (8.24), we evaluate 〈~kζs|vx|~kζ ′s〉 which is

〈~kζs|vx|~kζ ′s〉 ∝ −
v2
F

A
(ζ − ζ ′) A

4π2

∫ 2π

0

sin(θ) cos(θ)dθ︸ ︷︷ ︸
=0

= 0. (8.26)

Since both terms on RHS of Eq. (8.24) vanish we can conclude that σndxy vanishes.
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This thesis presents a theoretical approach for many-body effects on trans-
port and optical properties of novel nanostructures. Within the Drude model, we
treated those properties in the classical regime for metallic systems. Then, we in-
troduced the definition and concept of nanostructures and the importance of many-
body effects in these systems such as quantum wires and wells. To study prop-
erties of these systems, we employed quantum linear response theory to evaluate
the polarization function which enables one to obtain system’s conductivity and
permittivity. As an example of these novel systems, we studied TM and TE sur-
face plasmons, reflection and transmission coefficients, and conductivity of armchair
graphene nanoribbons in the Lindhard, random-phase, and Hubbard approximations
where we used the tight binding as a reliable method to evaluate eigenvalues and
eigenfunctions analytically. We showed that metallic ribbons do not support Brew-
ster angles and TE surface plasmons. We demonstrated that in the long wave length
limit, the linear response theory cannot retrieve the classical results of the Drude
model. We discussed the adiabatic switching-on parameter which is designated to
satisfy causality and avoid divergence in integration over time; and we showed that
dissipations in a system originating from randomness need to be addressed in the
system’s Hamiltonian.

We evaluated the linear-response function to an external stimulus, obtained an
expression that is valid for elastic scattering. This was achieved by applying the
van Hove limit to all operators and by utilizing appropriate super-operators of the
literature. The resulting polarization function has two terms, χnon which is inde-
pendent of the scattering, and χim who does depend on it and produces results that
are qualitatively and quantitatively different from those of χnon. In graphene the
term χnon dominates the response in the long wavelength limit, i.e., for very low
frequencies, while the term χim dominates for all other frequencies.

As an application of this development, we evaluated plasmons in graphene and
the 2DEG in the random-phase approximation. The main result of the term χim is
that introduces scattering-dependent wave-vector limits below which no plasmons
are allowed. It is also valid for all values of the wave vector, that is, it is not limited to
the long wavelength limit as χnon is. Another nice feature is that it simply explains
and retrieves the Drude model results in the long wavelength limit. We showed new
plasmon results for i) graphene and ii) the 2DEG. In i) we distinguished between
intra-band (SB) and inter-band (TB) transitions. In both i) and ii) we obtained
the scattering-induced limits referred to above, analytical dispersion relations, and
their well-known long wavelength limit in the absence of scattering. An important
difference between i) and ii) is that in the dimensionless units used the plasmon wave
vector for graphene is independent of the electron density whereas in a 2DEG it is
proportional to its square root, q′ ∝

√
n. As discussed, depending on the scattering
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strength γ′ the single-particle excitations due to scattering drastically modify the
frequency and wave vector domains (ω, q) of the collective excitations. The latter
are suppressed below a critical γ′.

Next we evaluated TM SPs in graphene for SB and TB transitions in the absence
of Coulomb interaction and local field factors, i.e., in the Lindhard approximation
for the polarization function, but took into account scattering by impurities. We
showed that the scattering strength γ restricts the SP domains for SB and TB
transitions. Importantly, for each frequency there is a critical scattering strength γc
below which SPs do not exist. The strength γc decreases with frequency, very fast
for very low frequencies and much less for higher frequencies. Further, we explicitly
evaluated the quality factor and found it is approximately equal to the square of
αλSP/γ, where α is the fine-structure constant and λSP the wavelength. For fixed
frequency the quality factor decreases with γ for SB and TB transitions and is higher
for the SB ones. In addition, we investigated TE SPs in the presence of impurity
scattering and showed that the scattering suppresses them in both cases.

Finally, we investigated the electron-electron interaction on DC conductivity of
graphene by considering the screening effect in the homogeneous quantum Boltz-
mann equation. We showed how electron density and temperature modify graphene
conductivity.

Graphene, as the first member of 2D materials, was created by mechanical exfo-
liation in lab at room temperature. However, graphene has a high electron mobility,
but it is gapless. There are some methods to open a band gap in graphene such
as quantum confinement, defects, hybrid structures, and substrate to name a few.
Advances in exfoliation techniques have enabled us to manufacture a single layer
sheet from any 3D material. Silicene and germanene are silicon and germanium
counterparts of graphene with buckled lattices in group IV. Due to the spin-orbit
coupling (SOC), they have a band gap in the order of a few meV at the Dirac points.
Another class of 2D materials that has band gap on the desired order is transition
metal chalcogenides (TMCs) which makes them promising candidates for the new
generation of electronic devices. A single layer TMC is comprised of a hexagonally
ordered plane of metal atoms sandwiched between two hexagonally ordered planes
of chalcogen atoms.

There are several areas of research regarding the transport and optical properties
of novel structure graphene-like materials that require further study and investiga-
tions, including:

1. Studying the effect of normal and tangential magnetic fields on dynamical
transport of transition metal chalcogenides such as WSe2 and investigat-
ing many-body effects such as electron-electron interaction, screening, and
exchange-hole.

2. Studying the impurity effects on transport and optical properties of WSe2 in
the presence and absence of magnetic and electric fields.

3. Investigating the phonon-phonon response function to determine thermal con-
ductivity of novel structures in quantum regime.

4. Extending the above-mentioned studies on double-layer systems.

5. Studying transport and optical properties of single and multi-layer novel struc-
tures by considering many-body effects.
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6. Extending response function to higher orders to evaluate second and third
nonlinear response terms.

7. Simulating transport and optical properties by finite-difference time domain
(FDTD) and finite-element method (FEM) using parallel computing such as
OpenMp and OpenAcc.
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A Time ordering operator

The time-evaluation of wave functions and operators in the interaction picture
are

|ψ̂(t)〉 ≡ eiH0t |ψ〉 , State ,

Â(t) = eiH0tÂe−iH0t, Operator ,
H0, Time independent,

(A.1)

where we let ~ = 1. The system’s Hamiltonian is given by

H = H0 + V (t). (A.2)

By evaluating the time derivative of the wave function, |ψ̂(t)〉, we obtain the follow-
ing useful relation

i∂t |ψ̂(t)〉 = V̂ (t) |ψ̂(t)〉 , (A.3)

where ∂t indicates the partial time derivative. Since the time evolution of |ψ̂(t)〉
is given only by (A.3) the Schroedinger equation reduces to this equation. This
indicates that |ψ̂(t)〉 and |ψ̂(0)〉 are related through an unitary transformation like
Û(t, t0) that only depends on V̂ (t)

|ψ̂(t)〉 = Û(t, t0) |ψ̂(t)〉 . (A.4)

From Eqs. (A.3) and (A.4) we obtain

i∂tÛ(t, t0) = V̂ (t)Û(t, t0). (A.5)

In addition, from Eq.(A.3) we have the boundary condition Û(t0, t0) = 1. To solve
Eq. (A.5) we integrate which leads to

Û(t, t0) = 1 +
1

i

∫ t

t0

dt′V̂ (t′)Û(t′, t0). (A.6)

This indicates the solution can be obtained by iteration and the solution has the
following form

Û(t, t0) = 1 +
1

i

∫ t

t0

dt′V̂ (t′) +
1

i2

∫ t

t0

dt′V̂ (t′)

∫ t

t0

dt′′V̂ (t′′) + ... (A.7)

To express results in a more compact form we use the following relation. The second
term in the (A.7) can be rewritten∫ t

t0

dt′V̂ (t′)

∫ t

t0

dt′′V̂ (t′′)
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=
1

2

∫ t

t0

dt′V̂ (t′)

∫ t

t0

dt′′V̂ (t′′) +
1

2

∫ t

t0

dt′′V̂ (t′′)

∫ t

t0

dt′V̂ (t′)

=
1

2

∫ t

t0

dt′
∫ t

t0

dt′′V̂ (t′)V̂ (t′′)θ (t′ − t′′) +
1

2

∫ t

t0

dt′′
∫ t

t0

dt′V̂ (t′′)V̂ (t′)θ (t′′ − t′)

≡ 1

2

∫ t

t0

dt′
∫ t

t0

dt′′Tt

[
V̂ (t′)V̂ (t′′)

]
.

(A.8)
By some algebra we can extend this to higher order. To finally obtain

Û(t, t0) =
∞∑
j=0

1

j!

(
1

i

)j ∫ t

t0

dt1...

∫ t

t0

dtjTt

[
V̂ (t1)...V̂ (tj)

]
= Tt

[
exp

(
−i
∫ t

t0

dt′V̂ (t)

)]
.

(A.9)
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B Matrix elements of the
Coulomb potential of AGNRs

The normalized wave function of an AGNR is given by

U(~r) = Uk,ky(n),η(x, y) =
1√

4LW


(
ηe−iθ(k,ky(n))

1

)
eiky(n)y(

−ηe−iθ(k,ky(n))

1

)
e−iky(n)y

 eikxXs, (B.1)

where Xs denotes the spin part of the wave function. In second quantization repre-
sentation, the Coulomb potential operator is

V̂ =
1

2

∫ ∫
d~rd~r′Û †(~r)Û †(~r′)V (~r − ~r′′)Û(~r)Û(~r′), (B.2)

where the field operator Û(~r) is given by

Û(~r) =
∑
k,n,η,s

âk,n,η,sUk,ky(n),η(x, y). (B.3)

By substituting Eq. (B.3) into Eq. (B.2) we have

V̂ =
1

2

(
1√

4LW

)4 ∫ ∫
d~rd~r′

 ∑
k,n,η,s

âk,n,η,s


(
ηe−iθ(k,ky(n))

1

)
eiky(n)y(

−ηe−iθ(k,ky(n))

1

)
e−iky(n)y

 eikxXs


†

×

 ∑
k′,n′,η,s′

âk′,n′,η′,s′


(
ηe−iθ(k

′,ky(n′))

1

)
eiky(n′)y′(

−ηe−iθ(k′,ky(n′))

1

)
e−iky(n′)y′

 eikx
′
Xs′


†

V (~r − ~r′′)

×

 ∑
ν′,m′,µ′,α′

âν′,m′,µ′,α′


(
µ′e−iθ(ν

′,ky(m′))

1

)
eiky(m)y′(

−µ′e−iθ(ν′,ky(m′))

1

)
e−iky(m′)y′

 eiν
′x′Xα′



×

 ∑
ν,m,µ,α

âν,m,µ,α


(
µe−iθ(ν,ky(m))

1

)
eiky(m)y′(

−µe−iθ(ν,ky(m))

1

)
e−iky(m)y′

 eiνx
′
Xα

 . (B.4)
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After some algebra we arrive at

V̂ = 4
1

2

(
1

4LW

)2 ∑
k,n,η,s

∑
k′,n′,η,s′

∑
ν′,m′,µ′,α′

∑
ν,m,µ,α

â†k,n,η,sâ
†
k′,n′,η′,s′ âν′,m′,µ′,α′ âν,m,µ,α

× {X†sXα}︸ ︷︷ ︸
δsα

{X†s′Xα′}︸ ︷︷ ︸
δs′α′

(
1 + ηµei[θ(k,ky(n))−θ(µ,ky(m))]

) (
1 + η′µ′ei[θ(k

′,ky(n′))−θ(µ′,ky(m′))]
)

×
∫ W

0

∫ W

0

V (q, y − y)

L
cos ([ky(m)− ky(n)] y) cos ([ky(m

′)− ky(n′)] y′) dydy′

×
∫
dxei(ν−k+q)x︸ ︷︷ ︸
Lδν,k−q

∫
dx′ei(k

′−ν′+q)x′︸ ︷︷ ︸
Lδν′,k′+q

. (B.5)

Applying Kronecker deltas and using y = uW and y′ = uW ′ we obtain

V̂ =
1

8

∑
k,n,η,s

∑
k′,n′,η,s′

∑
m′,µ′

∑
m,µ

â†k,n,η,sâ
†
k′,n′,η′,s′ âk′+q,m′,µ′,s′ âk−q,m,µ,s

∫ 1

0

∫ 1

0

dudu′

(B.6)

× V (q,W (u− u′))
L

cos ([ky(m)− ky(n)]πu) cos ([ky(m
′)− ky(n′)] πu′) ,

where V (q,W (u− u′)) is the Fourier component of the Coulomb potential, that is

e2∣∣∣~r − ~r′∣∣∣ =
1

L

∑
q

V (q, y, z)eiqx. (B.7)

We can find V (q) by multiplying both sides of Eq. (B.7) by e−iq
′x which leads to

V (q, y, z) = e2

∫ ∞
−∞

dx
e−iqx√

x2 + y2 + z2

= e2

∫ ∞
−∞

dx
cos(qx)√
x2 + y2 + z2

− ie2

∫ ∞
−∞

dx
sin(qx)√
x2 + y2 + z2︸ ︷︷ ︸
=0

. (B.8)

By introducing a2 = y2 + z2 and some calculations we arrive at

V (q, y, z) = 2e2

∫ ∞
0

dx
cos
(
x
a
qa
)

a
√

1 +
(
x
a

)2
, (B.9)

where by introducing x = ta Eq. (B.9) becomes

V (q, y, z) = 2e2

∫ ∞
0

dt
cos(qat)√

1 + (t)2
= 2e2K0

(∣∣∣q√y2 + z2

∣∣∣) . (B.10)

We can rewrite Eq. (B.6) as

V̂ =
1

8

∑
k,n,η,s

∑
k′,n′,η,s′

∑
m,µ,m′,µ′

∑
q

â†k,n,η,sâ
†
k′,n′,η′,s′ âk′+q,m′,µ′,s′ âk−q,m,µ,sVn,n′,m,m′(q),
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with

Vn,n′,m,m′(q) ≡ Vm−n,m′−n′(q) =
2e2

εb

∫ 1

0

∫ 1

0

K0 (|qW (u− u′)|) cos ([ky(m)− ky(n)]πu)

× cos ([ky(m
′)− ky(n′)]πu′) dudu′. (B.11)

In Fig. B.1 we plot Vm−n,m′−n′(q) for several values of sub-band indices for dm = 23.
As seen, the strength of the components with the same sub-band index, V0,0(q), is
larger than others.
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Figure B.1: Several values of the Fourier components of the Coulomb potential with
dm = 23.

In Fig. B.2 we show V0,0(q) for several values of dm. As seen, V0,0(q) for an AGNR
with smaller width has higher value.
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Figure B.2: Fourier components of the Coulomb potential, V0,0(q), for several values
of dm.

109


	List of Figures
	List of Tables
	Introduction
	Transport and optical properties of metallic materials
	Introduction
	Drude model
	Plasmons
	Surface Plasmons
	Classical TM surface plasmons within Drude model

	Quantum Linear Response Theory
	Introduction
	Density-density response function
	Quantum wells, wires, and dots
	Many-body effects
	The random-phase approximation
	Exchange and correlation effects
	The Lindhard polarization function of a free electron gas
	Static screening

	Carbon allotropes
	Introduction
	Graphene
	The tight-binding model 
	Density of States
	Lindhard polarization function of graphene

	Armchair Graphene Nanoribbons
	Tight-binding model for AGNRs
	 DOS of AGNRs
	The kp method for AGNRs 
	Lindhard polarization function of AGNR

	Transport and optical properties of AGNRs 
	Introduction
	Scattering effect on the polarization function
	Reflection amplitude
	AGNR surface plasmons
	TE transmission and reflection coefficients

	Scattering effects on linear response theory 
	Introduction
	A challenge for quantum linear response theory
	Linear response theory in the presence of impurities
	Current-current density response
	Plasmons in graphene in the presence of impurities
	Plasmons in a two-dimensional electron gas
	Single- and two-band TM SP
	Quality factor
	Single- and two-band TE SP

	Quantum Boltzmann equation 
	Introduction
	dc conductivity of graphene in presence of electron-electron interaction

	Conclusions and outlook 
	Bibliography
	Appendix Time ordering operator
	Appendix Matrix elements of the Coulomb potential of AGNRs

