
Path Planning Algorithms for Autonomous Mobile Robots

MohammadAli AskariHemmat

A Thesis

in

The Department

of

Mechanical, Industrial and Aerospace Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montréal, Québec, Canada

July 2018

c©MohammadAli AskariHemmat, 2018

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: MohammadAli AskariHemmat

Entitled: Path Planning Algorithms for Autonomous Mobile Robots

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Mechanical Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. Suong Van Hoa Chair

Chair’s name

Dr. Javad Dargahi Examiner

Examiner’s name

Dr. Wei-Ping Zhu Examiner

Examiner’s name

Co-Supervisor

Co-Supervisor’s name

Dr. Youmin Zhang Supervisor

Supervisor’s name

Approved by

Chair of the MIAE Department

2018

Dean of Engineering

ABSTRACT

Path Planning Algorithms for Autonomous Mobile Robots

MohammadAli AskariHemmat

This thesis work proposes the development and implementation of multiple differ-

ent path planning algorithms for autonomous mobile robots, with a focus on differentially

driven robots. Then, it continues to propose a real-time path planner that is capable of find-

ing the optimal, collision-free path for a nonholonomic Unmanned Ground Vehicle (UGV)

in an unstructured environment. First, a hybrid A* path planner is designed and imple-

mented to find the optimal path; connecting the current position of the UGV to the target

in real-time while avoiding any obstacles in the vicinity of the UGV. The advantages of

this path planner are that, using the potential field techniques and by excluding the nodes

surrounding every obstacles, it significantly reduces the search space of the traditional A*

approach; it is also capable of distinguishing different types of obstacles by giving them

distinct priorities based on their natures and safety concerns. Such an approach is essential

to guarantee a safe navigation in the environment where humans are in close contact with

autonomous vehicles. Then, with consideration of the kinematic constraints of the UGV,

a smooth and drivable geometric path is generated. Throughout the whole thesis, exten-

sive practical experiments are conducted to verify the effectiveness of the proposed path

planning methodologies.

iii

To my loving family

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Dr. Youmin Zhang, for

his excellent guidance, caring, patience, and providing me with an excellent atmosphere for

doing research. This thesis would not have been possible without his guidance and support.

I would like to thank all my fellow researchers and colleagues in Networked Autonomous

Vehicles (NAV) Lab at Concordia University. Without their guidance, support and continual

encouragements, this thesis would not have been possible. I am especially grateful to Dr.

Zhixiang Liu , Ban and Dr. Yiqun Dong. They have proven to be supportive friends as well

as thoughtful colleagues with good advice and collaboration. Finally, my deepest and most

heartfelt thanks to my family; my parents who provided the best possible environment for

me to grow up and supported me in all my pursuit and my brother and sister for all their

love and encouragement.

v

TABLE OF CONTENTS

LIST OF FIGURES . ix

LIST OF ACRONYMS . xii

1 Introduction 1

1.1 Motivation and context . 2

1.2 Problem description . 3

1.3 Structure of the thesis . 4

2 Mathematical Modeling 5

2.1 Introduction . 5

2.2 Kinematic model for differentially driven robots 5

2.3 Controlling a differentially driven robot 7

2.3.1 Accessibility and controllability 10

2.3.2 Configuration space . 10

2.3.3 Configuration space obstacles . 11

2.3.4 Definition of a motion planning problem 12

3 Potential Functions 16

3.1 Introduction . 16

3.2 Potential field for C =R2 . 19

3.3 Attractive potential . 20

3.4 Repulsive potential . 22

3.5 Motion planning using APF . 23

3.5.1 Continuous motion planning . 24

3.5.2 Navigation functions . 34

3.5.2.1 Navigation functions in a sphere world 36

3.5.2.2 Navigation functions in a star world 44

3.5.3 Discrete motion planning . 45

vi

4 Heuristic-Based Path Planning 51

4.1 Graph basics . 51

4.2 Breadth first search . 56

4.3 Depth first search . 58

4.4 Dijkstra search . 60

4.5 A* search . 61

4.5.1 Heuristics . 64

4.5.2 Admissibility . 67

4.6 Hybrid A* . 67

4.6.1 Dubin’s path . 68

4.6.2 Action space . 69

4.6.3 Node expansion . 71

4.6.4 Analytical expansion . 73

4.6.5 Heuristics . 73

4.6.6 Constrained heuristics . 74

4.6.7 Unconstrained heuristics . 75

5 Implementation & Results 78

5.1 General structure of experiments . 79

5.1.1 Software . 79

5.1.2 Hardware . 79

5.1.3 Mobile robot . 79

5.2 Path planner structure . 80

5.2.1 Localization . 82

5.2.2 Occupancy grid . 82

5.2.3 Search . 82

5.3 Path smoothing . 85

5.4 Path tracking . 91

5.5 Dynamic path planning . 93

vii

6 Conclusions & Future Works 100

6.1 Conclusions . 100

6.2 Future works . 101

6.2.1 Dynamic path planning . 101

6.2.2 Localization . 101

6.2.3 Acceleration and velocity profiles 102

Bibliography 103

viii

LIST OF FIGURES

1.1 Google trends result for the Autonomous Cars and Darpa Grand Challenge

queries . 2

2.1 Geometry of a generic differentially driven robot [22] 7

2.2 A visualization of Configuration Space for a double pendulum [5] 11

2.3 A Work Space with start and goal states of a 2D rigid body [5] 14

2.4 A configuration space with start and goal states of a rigid body [5] 15

3.1 The total potential field is simply the sum of the attractive and repulsive fields 18

3.2 Negated gradient vector field . 19

3.3 Conic potential field . 21

3.4 Smooth & differentiable attractive potential field 22

3.5 Equipotential contour of repulsive function around obstacles 23

3.6 A work space with rectangular obstacles 26

3.7 Planned path generated by simple integration with oscillations 27

3.8 Planned path by updating α at each iteration 29

3.9 Dynamics of α as a function of number of iterations 30

3.10 General gradient descent on different start/goal configurations might not

converge . 31

3.11 Planned path by updating α at each iteration 32

3.12 Local minima in a workspace when the direction of movement is perpen-

dicular to one of the obstacles in the workspace 33

3.13 There is no deterministic gradient descent algorithm to solve the local min-

ima problem . 34

3.14 Lavalle et. al. [25] proposed an algorithm to use cell decomposition and

create convex cells and then construct the vector field directly on each cell . 35

ix

3.15 Choset et. al. [6] used the weak harmonic potential functions on decom-

posed cells . 35

3.16 Different sets on a sphere world with respective dimensions 38

3.17 A Sphere World workspace . 41

3.18 Change in the contour lines over free space as K increases 42

3.19 Change in the scalar field over free space as K increases 43

3.20 (a) Shows a simple work space with 2 rectangular obstacles and (b) Shows

the occupancy grid representation of the same work space. Cells that lie on

an obstacle have a value of 1 and the free cells have a value of zero 46

3.21 Comparing a 4-neighborhood and an 8-neighborhood connectivity 47

3.22 Wave front planner growing inside a workspace 48

3.23 Wave front planner growing inside a workspace different colors represent

different cost of a cell . 49

3.24 A path found using gradient descent is shown on the grid, and the same path

is shown on the work space . 50

4.1 A graph with 7 nodes and 8 edges. The label represents the cost of moving

from node Vi to Vj. 52

4.2 A grid represented as a graph . 53

4.3 BFS state space . 58

4.4 DFS state space . 60

4.5 Dijkstra state space . 61

4.6 A* state space . 62

4.7 A* Search using manhattan heuristic . 66

4.8 A* Search using euclidean heuristic . 66

4.9 Dubin’s path . 68

4.10 Generic discrete A* vs hybrid continuous A* [12] 72

4.11 Euclidean heuristic, visited nodes: 3011 Path Length: 7.567432 m 74

4.12 Constrained Dubins heuristic, visited nodes: 2213 Path Length: 7.408262 m 75

x

4.13 Unconstrained Heuristic, Visited Nodes: 107 Path Length: 7.617800 m . . . 76

5.1 Quanser Ground Vehicle, QGV . 80

5.2 Hybrid A* path planner . 81

5.3 Flex 3 OptiTrack motion capture system 82

5.4 Work Space . 83

5.5 Cost map of a work space . 84

5.6 Hybrid A* path . 85

5.7 Smooth Hybrid A* path . 89

5.8 Hybrid A* path vs a smooth hybrid A* path 90

5.9 Empirical comparison of tracking results [25] 92

5.10 Geometry of Pure-Pursuit algorithm . 93

5.11 Hybrid A* search in a dynamic environment 94

5.12 Dynamic Hybrid A* - configuration 1 . 95

5.13 A depiction of cross-track errors along X & Y axes in (m) at configuration 1 95

5.14 Dynamic Hybrid A* - configuration 2 . 96

5.15 A depiction of cross-track errors along X & Y axes in (m) at configuration 2 96

5.16 Dynamic Hybrid A* - configuration 3 . 97

5.17 A depiction of cross-track errors along X & Y axes in (m) at configuration 3 97

5.18 Dynamic Hybrid A* - configuration 4 . 98

5.19 A depiction of cross-track errors along X & Y axes in (m) at configuration 4 98

5.20 Dynamic Hybrid A* - configuration 5 . 99

5.21 A depiction of cross-track errors along X & Y axes in (m) at configuration 5 99

xi

LIST OF ACRONYMS

LTI Linear Time Invariant

PID Proportional —Integral —Derivative

MP Motion Planning

PP Path Planning

RTOS Real Time Operating System

ML Machine Learning

GD Gradient Descent

AGD Adaptive Gradient Descent

AI Artificial Intelligence

RT Real Time

PF Potential Function

APF Artificial Potential Function

LIFO Last In First Out

FIFO First In First Out

BFS Breadth First Search

DFS Depth First Search

RRT Rapidly-exploring Random Tree

xii

Chapter 1

Introduction

The topic of path planning for mobile, car-like, robots has consistently been in the center of

attention for the past thirty years. Researches are still proposing new algorithms with higher

performance and accuracy. During the last decade, improvements in computational power,

easier and cheaper access to hardware and software platforms has helped researches develop

innovative algorithms and build on top existing ones. Algorithms that implementing them

might have been unfeasible a few years ago, are now being implemented on robots thanks

to cheap, fast and affordable hardware.

There are different challenges in Path Planning for mobile robots. However, the final

goal of all algorithms is to find an optimal and safe path. Optimality of a path can be

interpreted differently based on the use case but usually optimality of a path implies how

short the path is. A safe path on the other hand is a path that guides the robot to safely travel

around obstacles, both static and dynamic ones.

Based on the application, there might be solutions to the path planning problem but

they are usually designed with limiting assumptions in mind, assumptions that render the

algorithm and solution useless in another scenario or under slightly different assumptions.

There have been numerous attempts in the past 20 years to improve the cruise control of

cars and not only help the drivers with monitoring and controlling the speed but also with

lane changing and navigation. The current solutions usually depend on visual lane finding

techniques and driving the car within a lane. However, as soon as the markings on the road

1

to perform research on the provided platform.

In this thesis, the focus is to analyze different path planning algorithms which were

developed over years and evaluate their strengths and weaknesses. The feedback control

approaches to solve the path planning problem has usually failed. The main reason is

that feedback control has traditionally approached this problem where the work space and

environment is free of obstacles, or the obstacles are static. The attempts to provide a

feedback control law in presence of obstacles are usually extremely limited in practice.

This work will present such attempts and will discuss why they are so limited and then

propose a set of feasible solutions that are relatively easy to implement as base path planner

and then expand upon with a more sophisticated algorithm. The proposed algorithms do

not depend on strong mathematical background and are fast enough to find collision free

paths even in dynamic workspaces.

1.2 Problem description

The goal of this thesis is to provide enough resources to solve a rather generic path planning

problem. The path planning problem can be summarized as:

Generating a smooth path in real-time that is drivable by a nonholonomic robot. The

smooth, optimal path should start from an arbitrary state xs and should end in an arbitrary

set XGoal while avoiding static and dynamic obstacles. The algorithm should explicitly de-

termine if there is no valid path between initial and goal configurations.

Historically this has been the definition of a path planning problem [25]. The path planners

usually assume perfect sensing for localization and exact control. This implies that the

workspace and the robot’s state is perfectly known at all times. In this thesis a set of similar

assumptions are made:

• The localization is a solved problem and we have the exact location and state of the

robot and obstacles with high certainty and low latency at all times.

3

• The size of the obstacles are large enough to be detected by the localization system.

• Dynamic obstacles will only move in a short time span and will stay rested for the

majority of the time.

1.3 Structure of the thesis

In Chapter 2, a short background for nonholonomic systems is given and theoretical con-

cepts for controlling such systems are presented. Chapter 3 and Chapter 4 go through

different approaches to solve the path planning problem and will discuss how these algo-

rithms have failed to provide a solution for the problem. Chapter 5 will use the theoretical

foundation presented in Chapter 4 and proposes a solution. The implementation details and

results are also discussed in this chapter. Finally, in Chapter 6 some suggestions for future

work is presented and the shortcomings of the proposed algorithm is discussed.

4

Chapter 2

Mathematical Modeling

2.1 Introduction

In order to design controllers for systems, one should first know how the system functions

and behave. The differential drive robot is one of the most common models used in robotics

research due to multiple reasons which will become apparent in this chapter. In Section 2.2

the kinematic model of a differential wheeled robot is derived. Then it is shown that it is a

driftless control-affine system and then its controllability is discussed [22].

2.2 Kinematic model for differentially driven robots

Differential drive robots are very popular for indoor robotic experiments because they are

very easy to build from scratch due to their simple structural design. The kinematic model

is also very intuitive and easy to derive and maybe the most appealing reason is the simple

control laws required to control such systems. The robot has 2 main wheels, each of which

is powered independently using a DC motor. To add stability to the robot and preventing it

from falling a third passive wheel, caster wheel, is added to the rear/front of the robot. The

steering of the robot is maintained by rotating the wheels at different rates and thus move

the robot around the environment.

The movement of the robot in the workspace is the result of combining two basic

5

motions, pure translation and pure rotation. Assuming non-zero angular velocity, if the

velocities have the same magnitude and the same sign ur = ul, the robot wheel have a

pure translational motion and if the signs are opposite ur =−ul, the robot will have a pure

rotational motion.

By controlling the angular velocity of the two wheels one could control the motion

of the robot in the working space. So the control vector becomes the angular velocity of the

right and left wheels.

u= (ul,ur) (2.1)

We are interested to know where the robot is located in a fixed reference frame and

at which direction it is heading to so the state vector, configuration vector, of the system is

[x,y,θ]T . Since there are only two control inputs and the system has 3 states, we have an

under-actuated system. Now, the question is which point on the robot should we care about

and control, a point at the front, a point on the wheel, or some where else?

In a pure rotational motion ur = −ul, the middle point of the axle between the

two wheels does not move. Assigning the origin of the local coordinate system on the

middle point would satisfy the pure rotational motion because that point does not have any

translational motions under this condition. So it would be easier to analyze the system by

selecting such coordinate system. If the position of this point and the orientation of the local

frame with respect to the global reference frame is known at all times one could localize

the entire system.

As it can be observed from Figure 2.1 there are only 2 geometrical measurements

necessary to construct the kinematic model of a differential drive robot. The vertical dis-

tance between the center of the two wheels L and the radius of the wheels r. Assuming

two arbitrary velocities for the right and left wheels and by using instantaneous center of

velocity the the linear and angular velocity of the mid-point can be easily found.

θ̇ =
vR− vL

L
(2.2)

6

Figure 2.1: Geometry of a generic differentially driven robot [22]

v =
vR + vL

2
(2.3)

and by assuming the radius of each wheel is r the linear velocity is vR = r×uR and substi-

tuting it in equation 3 would yield:

θ̇ =
r

L
(ur−ul) (2.4)

Now that the angular and linear velocity of the mid-point is known, it is easy to derive the

state-transition equation. In order to find the projection of the velocity on the x and y axis

simply multiply the linear velocity v, by cosθ and sinθ .

ẋ = vcosθ

ẏ = vsinθ

θ̇ = ω

(2.5)

2.3 Controlling a differentially driven robot

Rewriting the kinematic model of the differential drive robot, Equation (2.5), in matrix form

would yield

7











ẋ

ẏ

θ̇











=











cosθ 0

sinθ 0

0 1















v

ω



 (2.6)

and in vector form it will be

q̇ =Au (2.7)

comparing Equation (2.7) to differential equation model of a linear system

q̇ = f (q,u) = Aq+Bu (2.8)

we notice that it is not a linear system so it must be nonlinear. The general form of a

first-order nonlinear equation is

q̇ = f(q,u,t) (2.9)

and if the system is affine in control input the general form will be

q̇ = f1(q,t)+f2(q,t)u (2.10)

Equation (2.10) represents a family of nonlinear differential equations called control affine

systems. These systems are linear in action but the states of the system evolve in a nonlinear

fashion [22]. If the first term f1(q, t), is zero, the system becomes a driftless nonlinear

control system.

q̇ = f2(q,t)u (2.11)

By comparing Equation (2.11) and Equation (2.7) it is trivial that the kinematic model

of the differential drive robot is indeed a driftless nonlinear system. The nonholonomic

nature of wheeled mobile robots has precise consequences in terms of structural properties

of the kinematic model. The first, and most important one, is that in spite of the reduced

number of degrees of freedom, wheeled robot is controllable in its configuration space; i.e.,

8

given two arbitrary configurations, there always exists a kinematically admissible trajectory

(with the associated velocity inputs) that transfers the robot from one to the other. Since the

kinematic model is driftless, a well known result implies that it is controllable if and only

if the accessibility rank condition holds. The motion control problem for wheeled mobile

robots is generally formulated with reference to the kinematic model.

There are essentially two reasons for taking this simplifying assumption. First, the

kinematic model fully captures the essential nonlinearity of single-body wheeled robots,

which stems from their nonholonomic nature. This is another fundamental difference with

respect to the case of robotic manipulators, in which the main source of nonlinearity is

the inertial coupling among multiple bodies. Second, in mobile robots it is typically not

possible to directly command the wheel torques, because there are low-level wheel control

loops integrated in the hardware or software architecture. Any such loop accepts as input

a reference value for the wheel angular speed, which is then reproduced as accurately as

possible by standard regulation actions (e.g., PID controllers). In this situation, the actual

inputs available for high-level control are precisely these reference velocities.

Several methods are available to drive a wheeled mobile robot in feedback along a

desired trajectory. A straightforward possibility is to first compute the linear approximation

of the system along the desired trajectory (which, unlike the approximation at a configu-

ration, results to be controllable) and then stabilize it using linear feedback. Only local

convergence, however, can be guaranteed with this approach. For the kinematic model of

the unicycle, global asymptotic stability may be achieved by suitably morphing the linear

control law into a nonlinear one [10].

In robotics, a popular approach for trajectory tracking is input - output linearizion via

static feedback. In the case of a unicycle, consider as output the Cartesian coordinates of a

point B located ahead of the wheel, at a distance b from the contact point with the ground.

The linear mapping between the time derivatives of these coordinates and the velocity con-

trol inputs turns out to be invertible provided that b is nonzero; under this assumption, it is

therefore possible to perform an input transformation via feedback that converts the unicy-

cle to a parallel of two simple integrators, which can be globally stabilized with a simple

9

proportional controller (plus feedforward). This simple approach works reasonably well.

However, if one tries to improve tracking accuracy by reducing b (so as to bring B close to

the ground contact point), the control effort quickly increases. Trajectory tracking with b

(i.e., for the actual contact point on the ground) can be achieved using dynamic feedback

linearizion. In particular, this method provides a one-dimensional dynamic compensator

that transforms the unicycle into a parallel of two double integrators, which is then glob-

ally stabilized with a proportional-derivative controller (plus feedforward). In contrast to

static feedback linearizion, no residual zero dynamics is present in the transformed system.

However, the dynamic compensator has a singularity when the unicycle driving velocity is

zero. This is expected, because otherwise the tracking controller would represent a univer-

sal controller. Note that dynamic feedback realizability using the x, y outputs is related to

them being flat, the two properties are equivalent.

2.3.1 Accessibility and controllability

For linear systems, x = Ax+Bu where x ∈ Rn and u ∈ Rm and the celebrated Kalman rank

condition fully characterizes when the system is (globally) controllable (from any point).

Our objective here is to come up with similar tests for nonlinear systems. Let us start by

making precise the notions of accessibility and controllability [10].

2.3.2 Configuration space

It is easy to imagine the height of the robot does not have any effect on the motion planning

algorithm and the generated paths so let’s consider the 3-D rigid body of the robot does

not have a height, the result would be a 2-D plane. So the motion planning algorithm must

generate a path for the new rigid body, the plane, in R
2. As mentioned in Section 2.3 the

transformation matrix Equation (2.6) on page 8 could transform any x,y ∈ R this would

yield a manifold M1 = R
2. Also one could apply any rotation θ ∈ [0,2π) which would

yield another manifold M2 = S
1. So the following manifold covers all possible motions

10

C = {(x,y,θ) | (x,y) ∈ R
2,θ ∈ [0,2π)]}= R

2×S
1 = M1×M2 (2.12)

The new manifold is called the Configuration Space of the system and might be considered

as a special case of the state space [22]. The configuration space of the system looks like

a torus but the cross section is a square instead of a circle. Topologically speaking, it is

important to realize the configuration space is not bounded and it does not have a boundary.

Figure 2.2: A visualization of Configuration Space for a double pendulum [5]

Figure 2.2 shows how the systems moves in the configuration space. As it can be seen due

to the periodic nature of rotations the system reaches it’s starting yaw angle after a complete

rotation.

It is crucial to understand the physical space the robot moves in is called the Work

Space W and it is a subset of R2 while the Configuration Space is a 3-manifold and it is a

subset of R3 and this is where the state of the system changes. The concept of configuration

space might seem to be too abstract and not so useful for motion planning of differential

drive robots but this abstraction makes it possible to use similar motion planning algorithms

for different problems. The configuration space lets us abstract the motion planning prob-

lem from a geometric point of view to a topological one and then use topological tools and

find a path and then convert the topological path to a geometric one.

2.3.3 Configuration space obstacles

While defining the Configuration Space it was assumed there are no obstacles. But there

are such constraints in the configuration space and they should be removed. This removed

11

section is called the Configuration Space Obstacles and the rest of the configuration space

is called the Free Space and the generated path must solely be in this section.

Let’s assume there is some obstacle region O in the Work Space, O ⊂ W. Also the

robot rigid body A ⊂W is defined. If q ∈C represents the configuration of the rigid body

A, the obstacle configuration space is defined as:

Cobs = {q ∈C | A(q)∩O 6= /0} (2.13)

This new configuration space is basically the set of all possible configuration of the

robot, rigid body, at which it intersects the obstacle region, O. Since the sets A(q) and O

are closed sets, the obstacle region is a closed set in C. The rest of the configurations make

up the free space and it is denoted as C f ree = C\Cobs. This free space ,C f ree, is an open

set. Being an open set means that the rigid body, robot, can come arbitrarily close to the

obstacle region and still be in the C f ree [22].

2.3.4 Definition of a motion planning problem

The classic example of a motion planning problem is the Piano Mover’s problem. The

problem is to find a collision-free path from some start configuration to a goal configuration

for a 3-D rigid body among a known set of obstacles. It is assumed that the rigid body is

capable of omnidirectional movements. This problem can be formulated as [22], [5]:

1. A worldW in which eitherW = R
2 orW = R

3.

2. A semi-algebraic obstacle region O ⊂W in the world.

3. A semi-algebraic robot is defined inW . It may be a rigid robot A or a collection of

m links, A1,A2, . . . ,Am.

12

4. The configuration space C determined by specifying the set of all possible transfor-

mations that may be applied to the robot. From this, Cobs and C f ree are derived.

5. A configuration, qI ∈ C f ree designated as the initial configuration.

6. A configuration qG ∈ C f ree designated as the goal configuration. The initial and goal

configurations together are often called a query pair (or query) and designated as

(qI,qG).

7. A complete algorithm must compute a (continuous) path, τ : [0,1]→C f ree, such that

τ(0) = qI and τ(1) = qG, or correctly report that such a path does not exist.

Other aspects of this problem that might need more attention is that, it is considered that the

obstacles are perfectly known and they are stationary. The execution of the planned path is

exact. Because the path is planned before execution, it is called offline motion planning [5].

The key issue is to make sure no point on the rigid body hits an obstacle. We use the

configuration space concept to represent the configuration of all points on the rigid body

and check for possible collisions.

Let’s consider the case showed in Figure 2.3. The two squares are stationary and

we are trying to pass the rectangle between them. It is really hard to consider all different

orientations that the squares or the rectangle can take, and decide if the rectangle can pass

through the squares. If there was a way that we could expand the square and shrink the

rectangle such that the rectangle becomes a point in space, it would much easier to figure

out the possible collision. Because it is just a matter of checking if a point falls into a

specific set. The algorithm mentioned below lets us shrink the robot to a point and expand

the obstacles, so we don’t have to worry about the weird geometry of the obstacle and the

robot. It would be much easier to plan a path for a point compared to a 2-D rigid body.

13

Chapter 3

Potential Functions

Previous attempts to solve the path planning problem usually find a collision free path but

the proposed algorithms do not provide any guarantees and feasibility if the robot can follow

the generated path. The algorithms were usually open loop and there were no answers

on what should happen when the robot deviates from the generated path. This was the

main motivation for feedback based path planning and eventually potential functions. In

this chapter the theoretical background for potential function and their shortcomings are

discussed.

3.1 Introduction

Potential Functions are one of the earliest methods of motion planning for mobile robots.

Due to ease of implementation and efficiency of the algorithm, potential functions were

popular for real-time collision avoidance, specially for the cases where the configuration

space is not well defined and the robot does not have a clear model for the configuration

space obstacle [22].

Figure 3.1 shows a discretized work space with the associated potential field. The

major concern while working with potential functions is the selection of a differentiable

real-valued function U : Rn→R. The function U is illustrated in Figure 3.1d. At any given

point in the work space the potential function has a real value which could be considered

16

as the energy of the moving particle at that point. By measuring the negated gradient of the

potential function U , the force applied to the particle at any given point can be calculated

and by assigning the value of the negated gradient −∂U
∂x

and −∂U
∂y

to any point on the

workspace the vector field is generated. This generated vector field would direct any particle

from any given start point towards the predefined goal point. An intuitive metaphor to

understand this algorithm is to consider the 2-D rigid body of the robot as one single point

in the configuration space where according to the position of this particle a specific force

drives the point towards the goal.

Generally it is considered that the robot mass point is a positively charged particle and

the goal configuration is considered to be negatively charged, and thus pulling the robot

towards itself. While the obstacles are positively charged, pushing the robot away from

the C-Space obstacle. The combination of attractive and repulsive potentials create this

force field. As illustrated in Figure 3.2 on page 19 if we consider the robot as a point, it will

follow a path downhill towards the goal point, regardless of where the starting configuration

is located.

One of the points that make potential fields very interesting is that, this method can

be used as a feedback motion planner for any mass point robot. At any given point there is

a vector directing the robot towards the goal, so the controller should only have to control

the heading of the robot and make sure it follows the right direction. The reference to the

controller is the heading, and it could be easily controlled using a PI controller. By con-

structing a feedback control plan over this continuous space we could generate a trajectory

and use trajectory tracking methods and to track it. This would make potential functions a

closed loop feedback motion planning algorithm. As shown in Figure 3.2 on page 19 for

all points in the work space there is a vector defined that could direct the robot towards the

goal.

As intuitive and as simple as this method is, it has its own draw backs. Consider the

case where the potential function introduces a local minima to the potential field, due to the

geometry of the obstacles or simply due to the position of the obstacle relative to the goal. In

this case if the starting configuration is close enough to this minima, or the path passes close

17

(a) A Work Space with two rectangular obstacles

(b) Attractive potential field (c) Repulsive potential field

(d) Total potential field

Figure 3.1: The total potential field is simply the sum of the attractive and repulsive fields

18

Figure 3.2: Negated gradient vector field

by this local minima, the robot might get trapped in the local minima and will never rich the

goal. There are different potential functions other than the attractive/repulsive potential, but

almost all of them suffer from the same problem, which is the existence of local minima.

That’s why potential functions are not considered as a complete motion planner.

3.2 Potential field for C =R2

The function defined below was introduced by Khatib [18] and it is probably the most

famous potential function for mass point robots in R
2 and even R

3. Let’s first construct the

artificial forces applied to a point in R
2. The potential should be a differentiable function,

U : C →R. The artificial forces can be easily found by finding the negated gradient vector:

~F(q) =−~∇U(q) (3.1)

where q is the configuration of the point, q = (x,y) and ~∇U(q) = [∂U
∂x

, ∂U
∂y

]T . Notice that

19

since we are working with just a point the configuration q does not consider the orientation

of the robot, θ . The total potential function is constructed as the sum of the attractive and

repulsive potential functions:

U(q) =Uatt(q)+Urep(q) (3.2)

3.3 Attractive potential

The role of the attractive potential is to drive the robot to the goal configuration. Maybe the

simplest function that could play the role of the attractive potential is the euclidean distance.

U(q) = Kattd(q,qgoal) (3.3)

the value of the function is always positive and somehow represents an error, the distance

between current configuration and the desired configuration. This function only has one

global minimum at the goal configuration where the potential is zero. The gain Katt is used

to change the effect of the attractive potential function. If the gain is higher the attractive

potential will be higher. The gradient of Equation (3.3) is

∂U(q)

∂x
=

Katt(x− xgoal)

d(q,qgoal)

∂U(q)

∂y
=

Katt(y− ygoal)

d(q,qgoal)

(3.4)

Selecting this gradient function results in a linear change in the force exerted on the

robot and when implemented it will result in a non-smooth motion. Also as illustrated in

Figure 3.3 on the next page the gradient is not defined if q = qgoal and the function becomes

non-differentiable. We can simply use a quadratic potential function instead of the conic

potential function to have a smooth differentiable function.

Uatt(q) =
1

2
Kattd

2(q,qgoal) (3.5)

20

Figure 3.3: Conic potential field

and the gradient would be

∂Uatt(q)

∂x
= Katt(x− xgoal)

∂Uatt(q)

∂y
= Katt(y− ygoal)

(3.6)

The quadratic potential function also provides a smooth vector field as the robot ap-

proaches the goal. When the robot is far away from the goal, the gradient has a higher

value and as the robot approaches the goal the gradient decreases. The 1
2

fraction is added

to simplify the gradient function. As it can be seen in Figure 3.4 on the following page the

quadratic potential function is smooth and differentiable.

21

Figure 3.4: Smooth & differentiable attractive potential field

3.4 Repulsive potential

The repulsive potential helps the robot stay away from the obstacles or the work space

boundaries. Also it is desirable that the the robot does not get under the influence of the

obstacles when it is far from them. It is also assumed the obstacles are convex, if they are not

some decomposition algorithm must be used to make all obstacles convex. Equation (3.7)

encapsulates this concept. For each obstacle CO〉 the distance function Di(q) is the distance

between the current location of the robot to the closest point on the obstacle.

Urep,i(q) =











1
2
Krep(

1
Di(q)
− 1

D∗
), if Di(q)≤ D∗i

0, if Di(q)> D∗i

(3.7)

D∗i is the threshold distance and represents the range of influence of obstacle CO〉{}. It is

interesting to note that this threshold distance is not necessarily similar for all obstacles

and it can have different values according to the type of the obstacle. Just like the Katt , the

effect of the repulsive function could be tuned using a gain Krep. As the distance between

the robot and obstacle CO〉 is decreased the value of the potential function is increased and

tends to infinity.

The total repulsive potential field is obtained by adding the effect of all obstacles.

Given n obstacles the total potential field is

22

∇Utotal = ∇Uatt +
n

∑
i=1

∇Urep,i

Ftotal =−∇Uatt−
n

∑
i=1

∇Urep,i

(3.12)

Once the vector field is constructed there are different approaches on how to use this vector

field and drive the robot towards the goal [22].

• Consider the vector field as a vector of generalized forces that make the robot move

in a certain way according to the current configuration of the robot and the dynamic

model of the robot

τ = Ftotal(q) (3.13)

• Consider the vector field as a velocity field which describes the velocity of the robot

in the configuration space

q̇ = Ftotal(q) (3.14)

In this thesis we only deal with the kinematic model of a robot, so the second ap-

proach is more attractive. Once the desired velocity of the robot in the configuration space

is known, the robot could be controlled using the kinematic model and Equation (3.14) pro-

vides the reference velocity to the controller. The motion planner does not have to provide

a trajectory, i.e. a profile of the velocity or acceleration along the path, so it is logical to

assume a constant velocity along the path. So, to make things easier it’s usually assumed

that the final vector field is normalized.

3.5.1 Continuous motion planning

As it was mentioned before, it is assumed the system is a point in the working space and

thus there are no constraints on the system. So, the representation of the system is ẋ =

f (x,u) = u, which represents a fully actuated system. Now given:

24

1. A worldW , obstacles O, robot A, and configuration space C

2. An input space U

3. A state transition equation q̇ =−u

4. An initial configuration qinit ∈ C f ree and a goal set qgoal ⊂ C f ree

the motion planner should return a set of waypoints from the initial configuration to the

goal configuration. The input space U , is actually the total vector field over the workspace.

Notice that the the goal configuration must be a set of valid configurations. Usually it is

reasonable enough to accept a path which makes the system get close enough to the goal.

To find the way points the most common choice is the simple numeric integration of state

transition equation using the Euler method

qi+1 = qi−αU(qi) (3.15)

Equation (3.15) could also be considered as the gradient descent algorithm. Once the initial

configuration is known, the robot would move step by step in the direction guided by the

force field, which is the negated gradient of the potential field. The only tricky part of this

algorithm is selecting how fast the robot should move towards the goal. If the steps that the

robot is taking are too big, the robot might pass the goal and/or oscillate around the goal

configuration. On the other hand if the steps are too small, it might take a long time for the

robot to reach the goal [5].

Algorithm 1 Gradient Descent

q(0) = qstart

i = 0

while ∇Utotal(q(i)) 6= 0 do

q(i+1) = q(i)−α∇Utotal(q(i))

i = i+1

end while

25

The input of the algorithm is the start configuration, a function to calculate the force

field related to the current state q(i) and some scalar coefficient α , which decided how far

at each step the robot should proceed. The larger this coefficient, the larger the step. It is

worth mentioning that α is not necessarily a constant, and it could be dynamically changed.

A good approach for changing α is to select a larger value at the beginning and as the robot

gets closer to the goal decrease the coefficient [5]. Also, it is almost impossible for the

condition ∇Utotal(q(i)) 6= 0 to ever become true. So a more relaxed condition is usually

used ‖∇Utotal(q(i))‖ < ε , where ε is selected based on the condition of the task at hand,

the smaller the ε the closer the robot will be to the goal. That is why the goal configuration

is a set rather than a single point. Consider the working space illustrated in Figure 3.6. The

goal is to plan a path from qstart to qgoal .

Figure 3.6: A work space with rectangular obstacles

Figure 3.7 shows the planned path using simple gradient descent with a constant step

size α = 0.2. But as it can be seen there are a lot of oscillations in the generated path.

Unfortunately these oscillations are one of the negative points about potential functions.

26

U(q+∆q) =U(q)+b(q)T ∆q+
1

2
∆qT A(q)∆q (3.18)

where b(q) is the gradient of the potential function and A(q) is the Hessian matrix calculated

at q. Equation (3.18) will be minimized by the solution to A(q)q = b. As proved here

[33] the value of the α which minimizes equation Equation (3.18) can be calculated using

equation Equation (3.19)

α =
rT r

rT Ar
(3.19)

where the residual r = b−Aq shows the error between the correct value of b and its’ esti-

mated value. Once α is calculated the following algorithm is used to update the state of the

system

Algorithm 2 Adaptive Gradient Descent

q(0) = qstart

i = 0

while ∇Utotal(q(i)) 6= 0 do

b = ∇U(qi)

A = Hess(U(qi))

ri = b−A∗qi

αi =
rT

i ri

rT
i Ari

q(i+1) = q(i)−αi∇Utotal(q(i))

i = i+1

end while

Figure 3.8 shows the same work space as the one in Figure 3.6 but the path is gener-

ated using Algorithm 2. Although the generated path is much smoother and there are not

that many oscillations, but we have to realize what we are giving to gain this smoother path.

In the simple gradient descent algorithm we only had to calculate the gradient and we had

full control of the step size α , but here not only we have to calculate the hessian matrix

at any given point but we also have to deal with the conservative nature of this algorithm

28

which chooses much smaller time steps. Figure 3.9 shows a comparison of the value of the

step size in the two different methods. As it can be seen the normal implementation of Euler

method, general gradient descent, has much less number of iterations, around 150. But The

adaptive gradient descent algorithm has gone through around 650 iterations to converge to

the goal point. It is an obvious observation when you consider how small the step size α is

for a large section of the adaptive algorithm. The average value of α in adaptive algorithm

is 0.011 while the constant step size foe the general gradient descent algorithm is 0.1 which

is almost 10 times larger. For cases where the normal gradient descent algorithm has a hard

time converging to the goal or there are a lot of oscillations it might be better to use the

adaptive gradient descent algorithm.

Figure 3.8: Planned path by updating α at each iteration

But this won’t stop us from using adaptive gradient descent. Actually the main reason

for using gradient descent is cases where the normal gradient descent algorithm does/can

not converge to the goal. Consider the same work space illustrated in Figure 3.10 which

29

Figure 3.9: Dynamics of α as a function of number of iterations

is the same as Figure 3.6 but with different locations for the start and goal configurations.

Running the general gradient descent algorithm on this problem would not generate a path.

As shown in Figure 3.10 there are a lot of oscillations close to the obstacle and the algorithm

did not converge even after 4000 iterations. But on the same work space and start/goal con-

figurations the adaptive gradient descent algorithm converges and a smooth path is planned.

The path is found after almost 1650 iterations.

There are also other algorithms such as conjugate gradient descent, newton’s method

and also the momentum gradient descent which can solve this problem. In nature they are

very similar to the previously discussed algorithms but they have different running times,

number of iterations, and behavior depending on the problem.

So far we have solved one of the big problems of potential functions which is numer-

ous oscillations close to the obstacles or between them in a corridor. But there is another

challenging problem regarding the potential functions. Consider the work space in figure

3.12, it seems even simpler than the previous work space as there is only one obstacle

30

Figure 3.11: Planned path by updating α at each iteration

minima problem. The algorithm is described in Subsection 3.5.3, discrete motion

planning.

• Rimon and Koditschek [32] developed an analytic method to find a special family

of potential functions called Navigation Functions which just like potential functions

would result in a velocity field but there are no spurious local minima and there is

only a single minimum located at the goal. Maybe the most distinctive property of

such potential functions is that they must be a Morse 1 [28] function to satisfy the

single global minimum criteria. A Morse function is a function where all critical

points the Hessian are nondegenerate. Just like the potential functions this method

assumes a repulsive force from the obstacles and an attractive force from the goal.

This method is also described in Subsection 3.5.2

• Connolly et. al. [8] proposed a special family of navigation functions which are

numerical solutions to Laplace’s heat equation and they are usually called Harmonic

32

(a) Even a simple work space can have the

local minima problem

(b) The potential function contour over the

workspace exposing local minima

Figure 3.12: Local minima in a workspace when the direction of movement is perpendicular

to one of the obstacles in the workspace

Potential Functions. Harmonic potential functions hold all conditions for a navigation

function except being a Morse function due to the possibility of isolated degenerate

saddle points.

A function φ is called a harmonic function if it satisfies the differential equation

∇2φ =
n

∑
i=1

∂ 2φ

∂x2
i

= 0 (3.20)

Usually finite element methods are used to solve for the solution of Equation (3.20).

In order to solve the equation one must define some conditions on the boundary of

the domain over which the function φ is defined. Usually either Dirichlet boundary

condition or Neumann boundary condition or a superposition of the two conditions

is used depending on the work space. Here lies one of the problem with Harmonic

potential functions, they require an explicit boundary of the free space C f ree and it’s

usually avoided in path planning algorithms. Also the numerical solution might be

feasible in low dimensions but in higher dimensions it is expensive [22].

• Choset et. al. [6] and also Lavalle [27] [26] have proposed different algorithms where

33

Figure 3.13: There is no deterministic gradient descent algorithm to solve the local minima

problem

they use cell decomposition and make convex polygons in the free space C f ree and

build a vector field and define a control policy on each single cell and a switching

strategy to smoothly switch between control policies of each cell. Choset et al have

used the Harmonic potential function to create this vector field but Lavalle has pro-

posed a very interesting approach where they creates the vector field directly without

having to define a potential function based on the distance of edges and vertices to

the current location of the robot.

3.5.2 Navigation functions

The major concern with potential functions is the existence of local minima. One of the

methods that tries to construct a feedback motion planner over the continuous free space

is called Navigation Functions which have been proposed by Rimon and Koditschek [32].

34

(a) A vector field is constructed directly with-

out a potential function

(b) Trajectories from different initial condi-

tions to the goal

Figure 3.14: Lavalle et. al. [25] proposed an algorithm to use cell decomposition and create

convex cells and then construct the vector field directly on each cell

Figure 3.15: Choset et. al. [6] used the weak harmonic potential functions on decomposed

cells

35

They have showed that it is not possible to construct a scalar field free from critical points.

But they proposed a set of functions which construct a globally asymptotic scalar potential

filed in which the critical points are unstable (i.e. the Hessian is non-singular and the critical

point is non-degenerate). Thus, in implementation it is practically impossible for the point-

mass robot to get trapped in such unstable critical points.

In the proposed method the motion planning algorithm is abstracted from the geomet-

ric space to a topological space, usually this topological space is called a ”model space”.

The obstacle avoidance problem is then equivalent to staying in the same connected section

of the free space C f ree, in which the point-mass robot has started. The model space could

be considered any generalized sphere world.

For cases where the obstacle and the work space are not a sphere, a diffeomorphism is

used and the geometric complicated obstacles are mapped into simple sphere in the model

space. Then a navigation function is constructed on the model space, the motion planner

generates a path and then the inverse of the diffeomorphism is used to transform the path

from the model space to the real work space. In Subsection 3.5.2.1 the simpler sphere

world is considered where there is no need to have a diffeomorphism because every thing

is already a simple Euclidean sphere. Then in Subsection 3.5.2.2 a more general and com-

plicated geometry of the work space is considered and it is described how to define the

diffeomorphism and its inverse.

3.5.2.1 Navigation functions in a sphere world

A sphere world is defined as a compact, close and bounded, subset of n-dimensional eu-

clidean space E
n whose boundary is a single (n− 1)− dimensional sphere. In this thesis

however only the 2-dimensional euclidean space is considered. The space bounded by this

1-sphere called the workspaceW and is defined as

W = {q ∈ E
2 | ‖q‖2

6 ρ2
0} (3.21)

where ρ0 > 0 is the radius of the outer sphere bounding the workspace. The center of the

36

bounding sphere is considered to be at the origin. If there are a total of M obstacles in

the working space the number of all spheres would be M+1, where the extra 1 is the outer

sphere. The remaining M other spheres which bound the obstacles present in the workspace

are defined as

O j = {q ∈ E
2 | ‖q−q j‖

2 < ρ2
j }, j = {1,2, ...,M} (3.22)

where q j is the center of each spherical obstacle and its radius is ρ j > 0. Thus the configu-

ration space obstacle is defined as

Cobs =
M
⋃

j=1

O j (3.23)

the free space remains after removing all obstacles from the workspace

C f ree =W\Cobs (3.24)

Notice that according to the definition of configuration space obstacle the boundary

of all obstacles are in the free space thus it would be a valid path if the point-mass robot

goes on this boundary, which in reality represents scratching the surface of an obstacle. One

could assume the workspace as a standard disk and the obstacles as spherical punctures in

this disk. This idea is represented in Figure 3.16.

The formal definition [5] of a navigation function is as follows :

Definition 3.5.1.

If C f ree is a compact analytical manifold with boundary then the map ϕ : C f ree→ [0,1] is

called a navigation function if it:

1. is analytical on C f ree (Infinitely differentiable, smooth, or at least Ck for k > 2)

2. is polar on C f ree (A unique minimum exists at qg ∈ C f ree)

3. is Morse on C f ree (All critical points are non-degenerate)

4. is admissible on on C f ree (Uniformly maximal on the boundary of the free space)

37

Figure 3.16: Different sets on a sphere world with respective dimensions

The potential function proposed by Koditschek-Rimon has all of the above mentioned

properties 1.

The potential that acts as the attractive portion of the navigation function is the simple

euclidean distance to the goal γ : C f ree→ [0,∞)

1They have also proved that all critical points appear close to the boundary of the free space C f ree. They

have shown these critical points would vanish from the free space if an annulus with a width ε is added around

all obstacles. It is also proved that there is a formulation to find the minimum value for ε which satisfies this

condition

38

γ(q) = γk
g(q), k ∈ N\{0,1}; γg(q) = ‖q−qg‖

2 (3.25)

where γ is zero at the goal configuration and increases as q moves away from the goal. The

repulsive portion is the product of obstacle functions present in the workspace β : C f ree→

[0,∞)

β (q) =
M

∏
j=0

β j(q) (3.26)

where β js are defined as

β0(q) = ρ2
0 −‖q‖

2; β j(q) = ‖q−q j‖−ρ2
j , j = 1,2, ...,M (3.27)

the definition of obstacle functions is direct result of the way the configuration space ob-

stacle is defined. The outer sphere which constructs euclidean disk is considered a s the

zeroth Obstacle. According to Equation (3.27) the obstacles hold a negative value inside

the obstacle, zero on its boundary and positive in the free space C f ree. Also notice the same

thing holds true for β (q) as it is the product of the obstacles and not the summation of

the obstacles, in contrast with the way repulsive potential was defined in Khatib’s potential

function.

Using the repulsive and attractive potentials the function ϕ̂(q) = γ(q)
β (q) is defined. As q

approaches the boundary of any obstacle β goes to zero and ϕ̂ goes to infinity thus repelling

the robot. Also it is only zero at the goal configuration, where γ is zero. As [ref to Robot

Navigation Functions on Manifolds with Boundary theorem 4] Koditschek-Rimon have

proved there exists a positive integer N such that for every k > N, ϕ̂ has a unique minimum

at the goal configuration. It is very easy to see that in ϕ̂ , as k increases the numerator

changes more significantly compared to the denominator and thus ϕ̂ points toward the goal.

It is also worth mentioning that the critical points also move closer to the boundary of

the obstacles as k increases because the effect of repulsive function from the obstacles is

reduced in further distances [19].

39

As q approaches the boundaries ϕ̂ can have arbitrarily large values. So the diffeo-

morphism σ : [0,∞)→ [0,1] is introduced to bound ϕ̂

σ =
x

1+ x
(3.28)

this diffeomorphism maps the range of ϕ̂ to the unit interval. Using this diffeomorphism

the values at the boundary of any obstacle is 1 and the goal has a value of zero. But with

some ks it might have a degenerate critical point at the goal. So a distortion is introduced

to eliminate the degeneracy σd : [0,1]→ [0,1]

σd(x) = x
1
k ; k ∈ N (3.29)

the final function which poses all the conditions of a Navigation Function will be

ϕ = (σd ◦σ ◦ ϕ̂)(q) =
γg(q)

(γ(q)+β (q))
1
k

(3.30)

which is guaranteed to have a single unique minimum at qg if k is sufficiently large.

Consider the workspace depicted in Figure 3.17 on the following page. We would

like to construct a scalar potential filed on the free space of this workspace. Then use the

gradient descent algorithm to find a path starting from any point in the free space toward

the goal qgoal . As discussed earlier such a potential field can be constructed using Equa-

tion (3.30). Figure 3.18 shows how this scalar field develops as the parameter k is increased.

Notice that the existence of local minima is apparent where k holds a smaller value but as k

increases the scalar field changes and after a large enough k there is no local minima in the

free work space.

40

Figure 3.17: A Sphere World workspace

41

Figure 3.18: Change in the contour lines over free space as K increases

42

Figure 3.19: Change in the scalar field over free space as K increases

Figure 3.20 shows different paths with different with different initial positions. For

this configuration the gain K is set to 7. As it can be seen all the paths are collision free.

evolves starting from different positions towards the goal.

43

3.5.2.2 Navigation functions in a star world

In the previous section it was assumed that we are in a perfectly defined Euclidean Sphere

World. This section tries to solve the path planning problem in a more general world, a Star

World. Let’s first mathematically define a Star shaped world. In set theory a star shaped

set S is a set where there exists at least one point in the set that is within line of sight of all

other points of the same set: The construction of analytic diffeomorphisms for exact robot

navigation on star worlds [5]:

∃x such that ∀y ∈ S, tx+(1− t)y ∈ S ∀t ∈ [0,1] (3.31)

In the same spirit an obstacle O j is considered Star Shaped if there is a point q j ∈ O j such

that for all q ∈ O j the inward gradient ∇β j(q) satisfies

∇β j(q).(q−q j > 0 (3.32)

if all obstacles in the free space, S f ree, are star shaped then, S f ree is called a Star World.

In the previous section it was shown how to find a navigation function for Sphere

Worlds. With a Star World we should first map the Star World to a Sphere World, solve for

the navigation function and then use a diffeomorphism to map the navigation function back

to the Star World.

Thinking about the definition of a Star World you might realize how close they are to

a Sphere World. A Sphere World could be thought of as a homeomorphism of a Star World

and ice versa [5]. The construction of analytic diffeomorphism for exact robot navigation on

star worlds Elon Rimon, Daniel E. Koditschek have shown that given a navigation function

in the free configuration space P of a Sphere World ϕ : P f ree→ [0,1] there always exists a

mapping which is a diffeomorphism 2 from a Star World to the Sphere World h : P f ree→

S f ree.

Rimon and Koditschek have shown that the construction of analytic diffeomorphisms for

2A diffeomorphism is a map between two smooth manifolds. It is an invertible, and thus bijective, map-

ping. Both the diffeomorphism and its inverse are smooth

44

exact robot navigation on star worlds could be achieved in two steps. In the first step the the

start world is mapped to a homeomorphic sphere world, then the navigation functions are

constructed under the sphere World and then they could be pulled back into a Star World

using this diffeomorphism.

So if ϕ : P f ree → [0,1]is a navigation function on P and h : P f ree → S f ree is the

analytical diffeomorphism then

φ : ϕ ◦h. (3.33)

is a navigation function on the Star World S . The bijective property of the diffeomorphism

guarantees that there is a one-to-one relation between the critical points and obstacles.

3.5.3 Discrete motion planning

As discussed in the previous sections, although the potential function idea is very elegant

and simple but it has one major draw back which is the existence of local minima, let alone

the oscillations which generally could be solved using the right selection of αi. There is no

simple deterministic algorithm to solve the local minima problem other than the Navigation

functions. They provide very beautiful and elegant solution for this problem but at the same

time they add a lot of complexity to the the problem. Even a simple work space needs a

lot of work to implement the navigation function. But there is a special type of Navigation

Functions on spaces which are represented as grids called WaveFront Planner. These family

of navigation functions are probably the simplest solution to the local minima problem and

are used in a lot of different motion planners and also a lot of video games as the algorithm is

very easy to implement and work with. The input to the WaveFront planner is an occupancy

grid 3. Occupancy grids were first popularized by Hans Moravec and Alberto Elfes at CMU.

As our initial assumption about the workspace he occupancy grid used in this thesis is a

binary map, 0 or 1. Because we have assumed we have perfect mapping information about

3An occupancy grid is a discrete probabilistic method to represent a work space. Each cell holds a proba-

bility value that shows the certainty if that cell is occupied or not. 1 shows a 100% certainty of an obstacle on

that cell and 0 shows a 100% certainty that it is a cell free of obstacles

45

the workspace. Figure 3.20 shows a Work Space and its corresponding occupancy grid.

(a) A simple work space (b) Occupancy grid

Figure 3.20: (a) Shows a simple work space with 2 rectangular obstacles and (b) Shows the

occupancy grid representation of the same work space. Cells that lie on an obstacle have a

value of 1 and the free cells have a value of zero

The goal cell has a value of 2. The wave Front planner starts from the goal, then finds

all zero valued cells around the goal and change their value to 3. In the next step all zero

valued cells adjacent to cells with a value of 3 are update to have a value of 4. This process

continues until the whole gird is covered. The value of a cell holds could be interpreted as

a cost function, the cost it takes to move from the goal cell to the current cell. The wave

front algorithm is described below

Algorithm 3 Wave Front Algorithm

Label the goal cell in the occupancy grid with a 2

i = 2

Find all zero valued cells neighboring the cell with value i

Update the label for all the zero valued cells to i+1

i = i+1

Go to step 3

46

The only question that remains unanswered is how the neighboring cells are found.

Consider Figure 3.21 where two types of possible neighborhoods are shown. If the dynam-

ics of the robot allows movements in diagonal direction usually the 8-neighborhood method

is chosen and the cell M has 8 children in the graph induced by Moore connectivity. If the

movement of the robot is limited the 4-neighborhood method is chosen and the cell M has

4 children in the graph induced by the Von Neumann connectivity.

(a) Von Neumann connectivity inducing

4-neighborhood for the central cell

(b) Moore connectivity inducing 8-neighborhood

for the central cell

Figure 3.21: Comparing a 4-neighborhood and an 8-neighborhood connectivity

Figure 3.22 on the following page shows how the wave front planner grows on the work

space shown in Figure 3.20 if the 8-neighborhood connectivity is chosen.

As it might not be clear how the wave is propagating through the workspace Figure 3.23

shows the same wave propagation where the cells having similar colors also have the same

cell value.

Once the wave front has expanded all the cells in the grid, a simple gradient descent

algorithm can be implemented to find a path from any given start point towards the goal.

That is a very positive point about Wave-Front algorithm. For a given work space and

static obstacles the algorithm runs only once but it will work for any start configuration in

the free work space. That’s why a lot of researchers categorize this algorithm as a Feed

Back motion planning algorithm because a new control input is provided based on the last

position of the system. The accuracy of this algorithm depends on how small each cell is.

On the other hand the smaller the size of a cell, the longer it would take for the algorithm

47

Figure 3.22: Wave front planner growing inside a workspace

to go through the whole grid. Figure 3.24 shows the final path generated using the gradient

descent algorithm starting from an arbitrary configuration.

48

Figure 3.23: Wave front planner growing inside a workspace different colors represent

different cost of a cell

49

(a) A path found using gradient descent on the

wave front grid

(b) The same path on the work space created by

connecting gray cells on the grid

Figure 3.24: A path found using gradient descent is shown on the grid, and the same path

is shown on the work space

50

Chapter 4

Heuristic-Based Path Planning

In this chapter the basic terminology and mathematical background necessary to understand

graphs is covered. This first part will give enough intuition to introduce search algorithms

and then discuss and compare their differences.

4.1 Graph basics

In heuristic-based Path Planning the problem is usually represented as a graph and then a

graph-searching algorithms is used to solve the path planning problem. Such search algo-

rithms have been used extensively to solve different engineering problems such as routing

of telephone traffic, navigation through mazes, layout of printed circuit boards, etc. In gen-

eral there are 2 main different approaches to solve a graph-search problem, mathematical

approach and heuristic approach. The mathematical approach usually considers the ab-

stract properties of a graph rather than the computational feasibility of the solution while

heuristic approaches usually use a special knowledge about the domain of the problem to

improve the efficiency of the solution.

A graph, in the most common sense, is an ordered pair G = (V,E) such that V is a set

of vertices {vi}, or nodes, and E is a set of edges {ei j}, or arcs. In such a graph each edge

is related with two distinct vertices. If emn is an element form the set of edges then there

exist an arc from node vm to vn and the node vn is a successor of vm. There is usually a label

51

{(0,1),(1,0),(0,1),(1,0)} as the action space and the transition equation is f (x,u) = x+u

where x ∈ X and u ∈U . In this graph it is assumed that the search agent cannot traverse

diagonally and each vertex has a degree 3 of 4. If we were to allow the diagonal movements

the action space would be U(x) = {(0,1),(1,1),(1,0),(1,1),(0,−1),

(1,−1),(−1,0),(−1,1)}.

In the discrete search algorithms that are covered in this chapter there is a repeating

scenario. At each step of the search, each vertex can be in one of these three different

states: unexplored, explored or inside the frontier list 4. The search algorithm starts the

search from a specific node, Initial or start state xs. Then the search agent starts the search

by applying the transition function. When the transition function is applied on a node that

node is marked as explored and it is added to the Closed Set C, specifying that this node

is already explored by the search agent. The nodes that are adjacent to the explored nodes

are then added to the Open Set O. The nodes in the open set are also called the frontier and

they specify the nodes that have the potential to be selected as the next node to be explored

by the search agent. The order in which these frontier nodes are explored depends on the

search algorithm. The search will continue as long as there are still nodes in an unexplored

state.

The frontier is an ordered set of nodes that creates a data structure. The main differ-

ence between search algorithms is how new elements enter this data structure and how old

elements leave it. There are 3 main different data structures:

• Stack: A stack is a LIFO, last in first out, data structure. When the search agent is

exploring new nodes, it will pick the most recent node from the data structure and

apply the transition function on it.

• Queue: A queue is a FIFO, first in first out, data structure. When the search agent

is exploring new nodes, it will pick the oldest node from the data structure and apply

the transition function on it.

3The degree of a vertex is equal to the number of adjacent vertices.
4LaValle [22] refers to these states as Unvisited, Dead and Alive

54

• Priority Queue: Each node is given a priority based on some type of criteria and then

it is added to the list. When the search agent is exploring new nodes, it will pick

a node that has the minimum priority from the list. Unlike a stack and a queue the

order at which the nodes are added to the priority queue does not affect when they

are picked out of the queue.

Considering any given node in the graph G and a starting node xs, there are different

algorithms that can be used to find the goal set. In this chapter we will cover the following

algorithms:

• Breadth First Search

• Depth First Search

• Dijkstra’s Algorithm

• A* Search

Considering these search algorithms as a Path Planner we expect to get a path from

node xs to XG as the output. This path should be a set of nodes v0,v1, ...,vk where each

node vi + 1 is a successor of node vi and vk ∈ XGoal . Usually in path planning problems

we are interested in a more particular path, a path that is shorter or more cost effective

than all other feasible paths. Such a path is called an optimal path. The cost for an edge

could be integrated in a graph by giving each edge a specific weight based on a metric, i.e.

euclidean distance between two nodes. The cost of an edge between any two nodes vi and

v j is represented by h(vi,v j). There are three criteria that should be considered when we are

comparing the search algorithms; Completeness, Time Complexity and Space Complexity.

• Completeness: An algorithm is complete when, if there exists a solution, it guaran-

tees to find a solution within a finite amount of time.

• Time Complexity: The time complexity of an algorithm is the worst-case amount

of time that it takes to run the algorithm. We express the time complexity of each

55

algorithm in terms of the maximum branching factor (b) and the maximum length of

the path (m).

• Space Complexity: The space complexity of an algorithm is the worst-case amount

of space that it takes to run the algorithm. We also express the space complexity

of each algorithm in terms of the maximum branching factor (b) and the maximum

length of the path (m).

4.2 Breadth first search

The Breadth First Search (BFS) algorithm was introduced by Lee [24] in 1971. Lee has

compared the algorithm to A computer model of waves expanding from a source under a

form of straight-line geometry. Those cells having the same cell mass may be thought of as

the location of the wave front at the nth unit of time.. This description is very similar to the

Wave front planner algorithm which was discussed in section 3.5.3. They are actually the

same thing but Wave Front planner is a stripped down version of BFS. The main difference

is that in Wave front planner the algorithm goes through the whole grid and gives a value to

each cell and then a gradient descent algorithm finds the final path. But BFS is searching

for the goal point and once it reaches the goal the search stops. Then another method is

used to back propagate through the graph and find the path.

BFS starts at the initial start vertex xs in the graph and explores the neighbor vertices

first before moving to the next level vertices. A Queue is used as the data structure to store

the nodes and the frontier is a list of vertices [v0,v1,v2, ...,vn], where v0 = xs. The search

agent always selects the earliest element that was added to the frontier.

In the first step, v0 is selected as the starting point and tested for being a goal. If v0

was not a goal. The state transition function is then applied to this node and the output

nodes of the transition function are added to the end the frontier list. The search agent

would then iteratively explore all nodes until all nodes are explored or the agent reaches a

node inside the XGoal .

56

BFS is guaranteed to find the path that involves the fewest arcs and it is a complete

algorithm if the branching factor for all nodes was finite. The time complexity is O(bm)

because every node in the tree has to be examined. BFS’s Space complexity is O(bm)

because the whole frontier has to be stored in the memory. This should not be surprising.

As it can be seen in Algorithm 4 BFS does not check for the cost of an edge during the

search, i.e. BFS assumes the input graph is unweighted.unweighted graphs

Algorithm 4 Breadth First Search Algorithm

O = Empty Queue

C = {}

O:push(xs)

while True do

xi = O:pop();

if xi ∈ XG then

return

end if

C:add(xi);

for all u ∈U(xi) do

xsucc = f (xi,u)

if xsucc /∈C then

if xsucc /∈ O then

O:push(xsucc)

end if

end if

end for

end while

57

Algorithm 5 Depth First Search Algorithm

O = Empty Stack

C = {}

O:push(xs)

while True do

xi = O:pop();

if xi ∈ XG then

return

end if

C:add(xi);

for all u ∈U(xi) do

xsucc = f (xi,u)

if xsucc /∈C then

if xsucc /∈ O then

O:push(xsucc)

end if

end if

end for

end while

59

Algorithm 6 A* Search

Require: xs∩XGoal ∈ X

1: O = PriorityQueue()

2: C = /0

3: O.push(xs)

4: while O 6= /0 do

5: xi← O.pop()

6: C.push(xi, f (xi))

7: if xi ∈ XGoal then

8: return

9: else

10: for u ∈U(xi) do

11: xsucc← f (xi,u)

12: if xsucc /∈C then

13: gtentative← g(xi)+ cost(xi,xsucc)

14: if xsucc /∈ O or g < g(xsucc) then

15: g(xsucc)← gtentative

16: h(xsucc)← FindHeuristic(xsucc,xGoal)

17: f (xsucc)← g(xsucc)+h(xsucc)

18: O.push(xsucc, f (xsucc))

19: end if

20: end if

21: end for

22: end if

23: end while

63

4.5.1 Heuristics

Heuristics are a set of strategies that are used to solve a problem faster or find a more

optimal solution. The data structure that is used is a priority queue. Because it can be used

to associate a node with the heuristic of that node. One can think of the heuristic as an

estimate that helps the search agent to decide which node will result in a more optimal path

and fewer explored/visited nodes during its exploration. A* uses a type of distance to goal

and traveled distance from the starting node as a strategy to explore fewer nodes, this is the

heuristic that is used in A*. At each node xi the search agent looks up in the data structure

and picks the node that has the lowest heuristic value. The heuristic is calculated as

f (xi) = g(xi)+h(xi), (4.1)

where g(xi) is the cost from the starting node, xs, to the current node xi. It is very straight

forward to calculate g(xi) for any xi.A search heuristic h(xi) is an estimate of the cost of

the shortest path from node xi to the goal set, XGoal . This is the tricky part, because if we

already knew the length of the shortest path we did not have to search the graph. This is

where we have to do our best. As it will become clear choosing a good heuristic function is

very crucial however most implementations use an approximation that is computationally

non-intensive. It is a very common practice ti play with the heuristic function to get a more

optimal solution depending on the current problem. Depending on the value of h(xi) the

behavior of the search drastically changes:

• h(xi) = 0, will result in a search that only g(xi) plays a role and practically A∗ is

converted to Dijkstra.

• h(xi)< RealExactCosttogoal, then it is guaranteed that A∗will find the optimal path.

The smaller the h(xi) is compared to the real cost, the more nodes are expanded by

the search agent which essentially makes the search slower.

• h(xi) = RealExactCosttogoal will result in the best and most optimal path. No extra

node will be explored by the search agent.

64

• h(xi) > RealExactCosttogoal will break the guarantee that the final found path will

be optimal. This heuristic might be useful in cases where the optimality of the path

is not important and we are more interested in finding any path and also considering

a fast search speed. If the difference is too large A* acts like the greedy search.

This is what makes A∗ so popular and powerful. By just playing with the heuristic

and exploiting the trade off between speed and accuracy we can get totally different results

based on the assumptions and requirements of the application.

A very crucial point that is usually overlooked is the scale of g(xi) and h(xi) functions.

Extra care should be taken when defining these two functions and it should be checked that

the units of the two functions match. As an example if g(xi) gives the number of nodes

between xi and xs while h(xi) gives the euclidean distance between xi and goal set, adding

the two functions will create a number that doesn’t really represent the heuristic and A∗ will

not perform as expected.

As mentioned there is no way to tell the shortest distance so we have to use some

kind of estimation. The most popular estimations are 7:

• Manhattan Distance. This is the standard heuristic used for square grids. The reason

is obvious in Figure 4.7. The search agent has only expanded the nodes on the path

and no extra node is expanded. This is a case where the heuristic is exact and always

returns that exact distance to goal. Adding an obstacle in the field would result in a

totally different behavior.

• Euclidean distance. This is simply the norm between current vertex and the goal set.

d(xi,XGoal) = in f{||xi− a|| : a ∈ XGoal}. This estimation is usually used in graphs

that have 8-neighborhood connectivity and the search agent can traverse the graph

diagonally. As shown in Figure 4.8 the search agent has expanded a lot of extra

nodes. This is also expected, because Euclidean heuristic assumes the search agent

can move at any angle. Obviously this is not the case and this heuristic returns values

7Please note that these methods are only valid for grid with square cells

65

4.5.2 Admissibility

As it was mentioned in Subsection 4.5.1 if the heuristic overestimates the cost of reaching

the goal the optimality guarantee of the path will be broken and the heuristic is called

non admissible. On the other hand an admissible heuristic will result in an optimal path.

Basically h(xi) is a lower bound on the cost of getting from xi to the goal. This is also

another powerful feature of A* algorithm. The designer has the power to decide if they

prefer an optimal path or they are just looking for a path and not necessarily the optimal

one.

4.6 Hybrid A*

All algorithms that have been covered in this thesis can find a path, some of them even find

the optimal path. But none of them guarantee that the generated path is actually drivable

by the robot! Another issue that was never discussed is that what if we want the robot to

arrive at the goal set in a specific angle? None of the current algorithms address these two

problems. In this section we will first address the second problem and then discuss possible

solutions for the first one.

Other than the dimension of the robot another geometric property of the robot plays

a significant role in the generated path. That property is the minimum turning radius. The

minimum turning radius is the radius of the smallest arc that a robot, or a car, can make.

This radius has a great significance on the path and it’s length. In 2007, Dolgov and Thrun

used the hybrid A* algorithm and came in second in the DARPA Urban Challenge [29,

12, 11, 13]. In the publications related to the search algorithm it is shown that one can

use a combination of discrete workspace and a continuous action space. The continuous

actions space would solve the problems that raise with dynamical systems and their inherit

constraints and the discrete workspace lets us use the discrete algorithms that have been

working and tested for decades, algorithms like BFS, DFS, A* and Dijsktra. In Subsections

4.6.1 and 4.6.2 the details of Hybrid A* will be discussed in detail.

67

• Going straight

• Turning right at maximum

all the paths that a Dubins car can trace is a combination of such movements. Dubins has

given a name for each one of these movements:

• Turning left at maximum : L

• Going straight : S

• Turning right at maximum : R

and he has proved that all shortest paths between any two configurations can be described

by only 6 combination of such movements and they are RSR, LSL, RSL, LSR, RLR and

LRL. The idea of a Dubins path is used in the Hybrid A* algorithm to drive the car at

towards the specified algorithm in the goal set.

4.6.2 Action space

In previous algorithms the action space was very simple, just up, down, left and right move-

ments. Actions that do not take into account the dynamics of the robot and possible existing

constraints. This will result in discrete and underivable paths. Doglov et al. [12] have shown

that unlike discrete algorithms one can assume that the search agent can reach any continu-

ous point on the grid and not necessarily the vertex. Transitioning from one node to another

in this continuous workspace give us the ability to incorporate the non-holonomic nature of

the dynamical system. This means that just like the conventional A* the 2D (x,y) search

space is discretized but unlike A* which only allows the search agent to expand nodes on

the centers of cells, hybrid A* lets the search agent at any point in a cell and then associates

the (x,y,θ) of the expanded node to the cell.

69

Algorithm 7 Hybrid A* Search

Require: xs∩XGoal ∈ X

1: O = PriorityQueue()

2: C = /0

3: O.push(xs)

4: xoldsucc = (0,0)

5: while O 6= /0 do

6: xi← O.pop()

7: C.push(xi)

8: if xi ∈ XGoal then

9: return

10: else

11: for u ∈U(xi) do

12: xsucc← f (xi,u)

13: if xsucc /∈C then

14: gtentative← g(xi)+ cost(xi,xsucc)

15: if xsucc /∈ O or gtentative < g(xsucc) then

16: g(xsucc)← gtentative

17: h(xsucc)← FindHeuristic(xsucc,xGoal)

18: tempF(xsucc)← g(xsucc)+h(xsucc)

19: if xold succ == xsucc then

20: if tempF(xsucc)> f (xsucc) then

21: continue

22: end if

23: end if

24: O.push(xsucc)

25: end if

26: xold succ = xsucc

27: end if

28: end for

29: end if

30: end while

70

4.6.3 Node expansion

As shown in Figure 4.10, Hybrid A* uses a continuous action space to explore new nodes.

In order to explore new nodes the continuous transition function is applied to the current

state and the new successor nodes are found. The state at node vi is characterized by (x,y,θ)

where x and y represent the Cartesian coordinate of the node and θ shows the heading of the

search agent, it is safe to assume that in Hybrid A* the search agent is a car/robot. Using

the idea of the Dubins car each node is expanded by driving the car using three different

scenarios:

• Constant velocity and maximum steering to left.

• Constant velocity and no steering.

• Constant velocity and maximum steering to right.

that’s why there are only three lines out of each node in Figure 4.10. Each arc represents

the path the robot can drive in a given time dt with the minimum turning radius. Each

one of these actions is applied only for a fixed amount of time. The time depends on the

granularity of the gird and it is usually selected in such a way that it gives enough time

to the search agent to drive to a different cell, this will speed up the search. This idea of

combining Dubins paths and continuous action space guarantees that the path generated by

the search algorithm is drivable by the robot/car.

In A* the cost of actions in action space was simply the distance between two neigh-

boring cells. In Hybrid A* the cost is the length of the arc that connects two nodes. As it

will be apparent later, in order to get a smoother path it would be a good idea to give addi-

tional costs when a change in driving direction occurs, the penalty for changing is usually a

constant value. As shown in Algorithm 7 just like normal A* when the search agent reaches

a cell that is not in the closed set the expansion continues, this means that the cell has never

been expanded. Then there will be two scenarios:

• The cell is not in open list (The cell is not expanded through any other node)

71

(a) A generic implementation of A* only ex-

plores centers of cells and the f score is asso-

ciated with the center of each cell

(b) Hybrid A* can visit any point inside a cell

and the f score is associated with each contin-

uous state rather than the center of a cell

Figure 4.10: Generic discrete A* vs hybrid continuous A* [12]

• The cell is in open list, but the tentative cost is lower than the current cost of the cell.

(This means that the current cell was already in the frontier but the cost of old path is

higher than the tentative cost of the current path)

in both cases the search continues. Figure 4.10 reveals yet another critical difference be-

tween A* and Hybrid A*. During node expansion it is very likely that there are multiple

successor nodes in the same gird cell. This adds another level of complexity to the algo-

rithm. This is important because we are still associating continuous vertices with discrete

grid cells and in cases where there are multiple vertices in the same cell the algorithm

should first calculate the f score for all successor nodes residing in the same grid cell and

then push the node that has a smallest f score into the priority queue.

72

4.6.4 Analytical expansion

Continuous node expansion resolves the problem of underivable paths, but we still do not

have a solution for reaching exact goal configurations. The current solution will generate

a drivable path from start configuration to the goal set but it does not guarantee that it can

reach a specific configuration in the goal state. In order to overcome this problem Dogolv

has proposed to use Dubins path algorithm to reach any goal configuration. This means

that during node expansion the algorithm should try to find a drivable obstacle free path

from the current node configuration to the goal configuration. On the other hand finding

the obstacle free Dubins path for every single node expansion is a computation intensive

operation. Instead of looking for such a path at every node expansion, the operation is

done every nth iteration and as the search agent gets closer to the goal the frequency is

increased because it is more likely to find a path when the search agent is closer to the goal

configuration.

4.6.5 Heuristics

As it was discussed in Subsection 4.5.1 selecting the right heuristic is crucial for an optimal

search and further more if the heuristic is not admissible the search can not even find the

optimal path. The nature of search algorithms discussed so far doesn’t allow for integrating

the dynamic and geometry of the search agent to generate a drivable path that follows the

non-holonomic constraints of the system. In those algorithms the heuristics could be a sim-

ple euclidean norm because it is assumed that the search agent can move in any direction. In

Hybrid A* a more sophisticated heuristic is used which takes into account the dynamic and

non holonomic constraints of the system. The Hybrid A* heuristic is a combination of two

different heuristics, a constrained heuristic and an unconstrained one. These heuristics cap-

ture two very different part of the problem. The constrained heuristic assumes there is no

obstacle in the environment and embodies the non-holonomic and dynamical constraints of

the system while the unconstrained heuristics neglects the vehicle constraints and only takes

into account the configuration space and the work space. The final heuristic is the minimum

73

be clear. At each iteration we are running Algorithm 8 which means a complete normal A*

search using Euclidean heuristics. This will significantly slow down the search algorithm.

There are some workarounds for this issue though. One could run the A* search for every

single cell in the workspace prior to the Hybrid A* search and then save the result in a look

up table, then during the Hybrid A* search the search agent will have to lookup that table

for the A* path result, this will make Hybrid A* a perfect and powerful solution for path

planning of mobile robots and cars.

77

Chapter 5

Implementation & Results

In the previous sections we discussed how to find a path for a mass point robot, a rigid

body and a non-holonomic robot. In this section we will discuss how to integrate all of

the previous steps to generate a path and successfully follow it. Hybrid A* is the most

complicated and involved algorithm discussed in this thesis. In this chapter only the results

and details of implementing Hybrid A* will be discussed.

As discussed in the introduction in this work we assume:

• We have a complete and correct map of the environment

• The goal is to find a path, a set of waypoints, from a start configurations to a goal set

• Minimal effort is done on the path tracking section

In the following section the overall structure of the experiment and lab equipments

will be discussed.

The developed Hybrid A* path planner is able to generate a path from any initial start

configuration to a the goal set with a maximum frequency of 20HZ.

78

5.1 General structure of experiments

5.1.1 Software

All tests done in this work were designed and implemented in MATLAB 2015b using

QUARC Real-Time Control Software [4]. The toolbox provides a soft Real-Time control

environment on Windows through MATLAB and Simulink.

5.1.2 Hardware

All tests were performed on a Windows 7 Dell Precision Tower 3000 Series work station.

5.1.3 Mobile robot

The test platform is a research platform designed and developed by Quanser, marketed as

QGV (Quanser Ground Vehicle). TODO: add reference to Quanser manual for QGV

79

N is the total number of waypoints in the path. Defining the following variables will help

us express the final cost function:

• Oi the location of the closest obstacle to the ith waypoint.

• ∆Xi = Xi−Xi−1 the displacement vector at the ith waypoint.

• ∆φi = |tan−1 ∆yi+1

∆xi+1
− tan−1 ∆yi

∆xi
| the change in the tangential angle at the ith waypoint.

The first term of the cost function is Pobstacle which penalizes based on how close a

waypoint is to an obstacle. It was [12] found that a simple quadratic function works well as

a cost function.

Po = wo

N

∑
i=1

σo(|Xi−Oi|−dmax) (5.1)

where dmax is the maximum distance that an obstacle can affect the cost of the path. Notice

that dmax is constant for all obstacles and waypoints. The weight wo coefficient determines

how important this cost function is. If |Xi−Oi|> dmax we simply ignore this term because

it is too far from an obstacle to have a significant effect. Otherwise the gradient of this term

will be:

∂σo

∂xi
= 2(|xi−Oxi

|−dmax)
xi−Oxi

|xi−Oxi
|

∂σo

∂yi
= 2(|yi−Oyi

|−dmax)
yi−Oyi

|yi−Oyi
|

(5.2)

The second term of the cost function is the Pcurvature. At each waypoint we must check

that we are not creating a path that the robot cannot drive. This means that the instantaneous

curvature at each waypoint should be in the drivable range of the robot. For each waypoint

i, there are two other points that affect the curvature, i−1 and i+1. The tangential angle at

each waypoint with respect two the other two waypoint can be calculated as

∆φi = cos−1 ∆XT
i ∆Xi+1

|∆Xi||∆Xi+1|
(5.3)

86

As mentioned earlier this term is to ensure drivability of the path which means that at

each waypoint the curvature should be larger than the maximum drivable curvature. So we

can define the curvature term as:

Pc = wc

N−1

∑
i=1

σc(
∆φi

|∆Xi|
−κmax) (5.4)

where κmax is the maximum drivable curvature and the quadratic function σc. We can then

define the curvature of the path as κi =
∆φi

∆Xi
. The derivative of this curvature at each on of

the 3 waypoints can be calculated as

∂κi

∂Xi
=
−1

∆Xi

∂∆φi

∂cos(∆φi)

∂cos(∆φi)

∂Xi
−

∂φi

(∆Xi)2

∂∆Xi

∂Xi

∂κi

∂Xi−1
=
−1

∆Xi

∂∆φi

∂cos(∆φi)

∂cos(∆φi)

∂Xi−1
−

∂φi

(∆Xi)2

∂∆Xi

∂Xi−1

∂κi

∂Xi+1
=
−1

∆Xi

∂∆φi

∂cos(∆φi)

∂cos(∆φi)

∂Xi+11

The third and last term that was used to smoothen the path is PSmoothnessterm. This

term penalties the displacement vectors between two waypoints. The waypoints that are

further from their neighborhood waypoints are given a larger cost. Also the waypoints that

change the heading of the path are given a higher cost.

Ps = ws

N−1

∑
i=1

σc(∆Xi+1−∆Xi)
2 (5.5)

The proposed algorithm consists of running gradient decent on the following cost

function:

P = Po +Pc +Ps (5.6)

and adjust the location of the way points according to the 3 mentioned terms. The final

gradient descent algorithm is shown in Algorithm 9 on the next page. The output of this

algorithm will be a list of waypoints that geometrically is much smoother and it is still

drivable by the robot. An important note that must be mentioned is that in most gradient

87

descent algorithm there is a stop threshold. This threshold determines when the algorithm

should stop. The proposed algorithm uses an iterator and when the iterator is reached a

certain number the optimization stops.

Algorithm 9 Gradient descent on waypoints

iterations = 500

i = 0

while i < iterations do

for all x ∈ X do

correctionAtT hisWaypoint = (0,0)

correctionAtT hisWaypoint = correctionAtT hisWaypoint−Po(x j)

correctionAtT hisWaypoint = correctionAtT hisWaypoint−Pc(x j−1,x j,x j+1)

correctionAtT hisWaypoint = correctionAtT hisWaypoint−Ps(x j,x j+1)

x j = correctionAtT hisWaypoint + x j

end for

i = i+1

end while

The smoother algorithm can be applied on any set of way points and thus it can be

applied on the way points generated by other algorithms. Figure 5.7 represented a path

found using Hybrid A* but it is not a smooth path. Once the smoothening algorithm is

applied on this path it will generate a much smoother path as the output. The output of this

algorithm is depicted in Figure 5.7. The difference between the two paths is more obvious

in Figure 5.8.

We now have a path but we how should it be tracked? So far we have only discussed

the path generation and path tracking was not discussed at all. In the next section we will

cover how to track a path and control the robot to follow the path as closely as possible.

88

5.4 Path tracking

As mentioned in the introduction the goal of this thesis was to generate a drivable path but

the path tracking are relatively simple and promising. In this section we will cover the a

simple geometrical algorithm for path tracking.

The paths generated so far are simple geometric waypoints that are connected to-

gether with straight lines. The only assumption in path generation is a constant velocity of

the vehicle and the minimum turning radius. There are a lot of algorithms that can use way

points to create speed and acceleration profiles but they are usually complicated and add

extra time and computation power to the algorithm. Maybe the most famous algorithm to

generate a smooth path using waypoints is spline which tries to create a continuous profile

for velocity and acceleration. The major concern with splines is that it will try to insert or

remove waypoints from the given list of waypoints and there is no natural way to integrate

the algorithm with the configuration space and the existence of obstacles in the work space.

This means there should be additional steps and operations performed on the path generated

by splines to verify that the path still goes through the free space.

The idea of generating a set of waypoints and tracking the waypoints is one of the ear-

liest problems in video game development [31]. Like all other problems in robotics, game

developers have already come up with a smart, efficient and easy to implement algorithm

for this problem. The pure-pursuit algorithm are among the most common algorithms of

path tracking for mobile robots or even UAVs [30]. The algorithm and its variations are so

efficient and powerful that they were used by multiple different teams in the 2007 DARPA

grand challenge, MIT [21] , Stanford [34] and Carnegie [35]. The Stanford team even won

the competitions with this algorithm with a slight change in both name 1 and logic. The

algorithm for mobile robot and car like vehicles was first introduced by Craig Coulter [9] at

Carnegie Mellon University. If the speed of the vehicle is restricted, such as an indoor lab

environment, the problem of controlling the steering of a robot can be approached as a pure

kinematic problem. The performance of the algorithm has been compared to other modern

1They renamed the algorithm after their car Stanley!

91

Figure 5.10: Geometry of Pure-Pursuit algorithm

The goal is to relate the curvature of the arc with the lateral x offset. Following simple

geometry we will have

d = r− x

(r− x)2 + y2 = r2

2rx = l2

r =
l2

2x

κ =
2x

l2

(5.8)

Just like the algorithm itself implementing the pure-pursuit algorithm is very straight

forward.

5.5 Dynamic path planning

In all previous sections the assumptions was that the work space is static. The position and

the number of the obstacles do not change. The following sections will discuss the results

produced in a dynamic environment.

As illustrated in figure Figure 5.11 the algorithm is very similar to static search. The

main difference is the fact that the search is done continuously to take into account obstacles

93

Chapter 6

Conclusions & Future Works

6.1 Conclusions

The research in the area of path planning for mobile robots, car like and differential drive,

will continue to grow based on the milestones achieved by the teams in the DARPA Ur-

ban Challenge and Grand challenge. There are many ways to solve the navigation problem

based on the environment that the robot has to work under. In this work different approaches

for path planning for car like robots were discussed and the positive and negative points of

each algorithm was discussed. The implementation details of the Hybrid A* was discussed

in details and the results were presented. The Hybrid A* is a fast planner that could be even

used in dynamic environments. The algorithm was developed using MATLAB/Simulink

and the Quarc real time package and it was tested on the QGV platform in an indoor envi-

ronment.

The discussed planner addressed the problem of finding a smooth drivable path for

car like robots. The algorithm can uses the non-holonomic nature of the system to create

the action space and the constraints of the system are respected in all stages of the algo-

rithm, node expansion, heuristic estimates and analytic expansion. This results in a smooth

drivable path, which is the most significant characteristic of this algorithm. None of the

other algorithms discussed in this work can generate such paths.

100

In order to provide a simulation environment for learning and teaching purposes a

MATLAB toolbox was designed and the source code is freely available under https:

//gitlab.com/AliAskari/HybridAStar. The toolbox provides an easy interface to

setup a configuration space and the user can apply multiple path planning algorithms on

the configuration space.

6.2 Future works

6.2.1 Dynamic path planning

The trigger to start a new search was 20cm. This is a relatively high trigger specially in

an indoor environment. The main problem introduced with smaller triggers are jerky ma-

neuvers by the QGV. Each small movement of an obstacle will trigger the search and each

search will generate a slightly different path. The next step to resolve such problems is to

use a multi level path planner. The higher level path planner will always provide a smooth

path and the lower level path planner will perform a search when an obstacle has moved.

Then the result of the lower level path planner should be integrated with the previously gen-

erated path in the higher level path planner. This also allows the use of variable resolution

grids. The higher level path planner can generate a grid where the resolution of the cells

varies based on how close they are to the free space and the obstacles. This will allow a

more smooth transition between generated paths when an obstacle moves in the work space.

6.2.2 Localization

In this work the localization problem was not discussed at all. It was a solved problem

from the beginning. The set of OptiTrack cameras can be used to generate a perfect high

resolution gird and configuration space. In the next step of the work on board sensors can

be used to generate a map of the environment in real time and integrate the localization

problem with the path planning problem.

101

6.2.3 Acceleration and velocity profiles

In both discrete and analytical node expansion it was assumed the system will always have

a constant velocity and thus no acceleration. The generated paths also are suitable for a

constant velocity along the path. The problem that arises is that the drive is not necessarily

comfortable for the possible passengers in some part of the path, specially in sharp turns.

An addition to hybrid A* algorithm would be to generate a velocity and acceleration profile

based on the current geometric path while considering the forces felt by the passengers.

This is an area where a lot of self driving car companies are spending their development

and research efforts on.

102

Bibliography

[1] The darpa urban challenge. Accessed: 2015-09-01. URL: http://archive.darpa.

mil/grandchallenge/. 2

[2] Google trends. Accessed: 2017-02-01. URL: https://trends.google.com. 2

[3] Optitrack motion capture system. Accessed: 2015-09-01. URL: http://optitrack.

com/. 82

[4] Quarc real-time control software. Accessed: 2015-09-01. URL: http://www.

quanser.com/Products/quarc. 79

[5] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and

S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations.

MIT Press, 2005. ix, 11, 12, 13, 14, 15, 25, 26, 31, 37, 44

[6] D. C. Conner, A. A. Rizzi, and H. Choset. Composition of local potential functions

for global robot control and navigation. Proceedings of the IEEE/RSJ Intl. Conference

on Intelligent Robots and Systems, 2003. x, 33, 35

[7] D. C. Conner, A. A. Rizzi, and H. M. Choset. Construction and automated deployment

of local potential functions for global robot control and navigation. 2003. 31

[8] C. I. Connolly and R. A. Grupen. Applications of harmonic functions to robotics.

1992. 32

[9] R. C. Coulter. Implementation of the pure pursuit path tracking algorithm. 1992. 91

103

[10] Canudas de Wit, Carlos, Siciliano, Bruno, Bastin, and Georges. Theory of Robot

Control. Springer, 1996. 9, 10

[11] D. Dolgov and S. Thrun. Autonomous driving in semi-structured environments: Map-

ping and planning. pages 3407–3414, 2009. doi:10.1109/ROBOT.2009.5152682.

67

[12] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Practical search techniques in

path planning for autonomous driving. 2008. x, 67, 69, 72, 85, 86

[13] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Path planning for autonomous

vehicles in unknown semi-structured environments. The International Journal of

Robotics Research, 29(5):485–501, 2010. doi:10.1177/0278364909359210. 67

[14] L. E. Dubins. On curves of minimal length with a constraint on average curvature,

and with prescribed initial and terminal positions and tangents. 79:47–516, 1957. 68

[15] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination

of minimum cost paths. 4:100107, 1968. 62

[16] M. A. Askari Hemmat, Z. X. Liu, and Y. M. Zhang. Real-time path planning for

nonholonomic unmanned ground vehicles. 2017. Won best student paper award. 83

[17] LE. Kavraki, P. Svestka, JC. Latombe, and MH. Overmars. Probabilistic roadmaps

for path planning in high-dimensionalconfiguration spaces. 12:566580, 1996. 62

[18] O. Khatib. The international journal of robotics research. Journal of Field Robotics,

5(1):90–98, 1986. 19

[19] D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds with bound-

ary. 11(4):412–442, 1990. 39

[20] B. H. Krogh. A generalized potential field approach to obstacle avoidance control.

SME Conf. Proc. Robotics Research: The Next Five Years and Beyond, 1984. 31

104

[21] Y. Kuwata, J. Teoy, and Frazzoli E. et. al. Motion planning in complex environments

using closed-loop prediction. 91

[22] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006. ix, 5, 7, 8,

11, 12, 14, 16, 24, 33, 53, 54, 62

[23] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. 20:378400,

2001. 62

[24] C. Y. Lee. An algorithm for path connections and its applications. 3:346–365, 1961.

56

[25] S. R. Lindemann. Smooth Feedback Planning. PhD thesis, University of IllinoisUr-

bana, 2008. ix, xi, 3, 35, 92

[26] S. R. Lindemann and S. M. LaValle. Computing smooth feedback plans over cylin-

drical algebraic decompositions. 2008. 33

[27] S. R. Lindemann and S. M. LaValle. Simple and efficient algorithms for computing

smooth, collision-free feedback laws over given cell decompositions. 28(5):600–621,

2009. 33

[28] J. W. Milnor. Morse Theory. Princeton University Press, 1963. 32

[29] M. Montemerlo, Becker, and S. Thrun. Junior: The stanford entry in the urban chal-

lenge. Journal of Field Robotics, 25(9):569–597, 2008. 67

[30] S. Park, J. Deyst, and J. P. How. Performance and lyapunov stability of a nonlin-

ear path-following guidance method. Journal of Guidance, Control, and Dynamics,

30(6):17181728, November 2007. 91

[31] C. W. Reynolds. Steering behaviors for autonomous characters. 1999. 91

[32] E. Rimon and D. E. Kodischek. Exact robot navigation using artificial potential func-

tions. IEEE Transactions on Robotics and Automation, 8(5):501518, 1992. 31, 32,

34

105

[33] J. R. Shewchuk. An introduction to the conjugate gradient method without the ago-

nizing pain. 1994. 28

[34] S. Thrun, M. Montemerlo, H. Dahlkamp, and et. al. Stanley: The robot that won the

darpa grand challenge. Journal of Field Robotics, 23(9):661692, 2006. 91

[35] C. Urmson, C. Ragusa, and D. et. al. Ray. A robust approach to high-speed navigation

for unrehearsed desert terrain. Journal of Field Robotics, 23(8):467508, 2006. 91

106

