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ABSTRACT

Path Planning Algorithms for Autonomous Mobile Robots

MohammadAli AskariHemmat

This thesis work proposes the development and implementation of multiple differ-
ent path planning algorithms for autonomous mobile robots, with a focus on differentially
driven robots. Then, it continues to propose a real-time path planner that is capable of find-
ing the optimal, collision-free path for a nonholonomic Unmanned Ground Vehicle (UGV)
in an unstructured environment. First, a hybrid A* path planner is designed and imple-
mented to find the optimal path; connecting the current position of the UGV to the target
in real-time while avoiding any obstacles in the vicinity of the UGV. The advantages of
this path planner are that, using the potential field techniques and by excluding the nodes
surrounding every obstacles, it significantly reduces the search space of the traditional A*
approach; it is also capable of distinguishing different types of obstacles by giving them
distinct priorities based on their natures and safety concerns. Such an approach is essential
to guarantee a safe navigation in the environment where humans are in close contact with
autonomous vehicles. Then, with consideration of the kinematic constraints of the UGV,
a smooth and drivable geometric path is generated. Throughout the whole thesis, exten-
sive practical experiments are conducted to verify the effectiveness of the proposed path

planning methodologies.
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Chapter 1

Introduction

The topic of path planning for mobile, car-like, robots has consistently been in the center of
attention for the past thirty years. Researches are still proposing new algorithms with higher
performance and accuracy. During the last decade, improvements in computational power,
easier and cheaper access to hardware and software platforms has helped researches develop
innovative algorithms and build on top existing ones. Algorithms that implementing them
might have been unfeasible a few years ago, are now being implemented on robots thanks
to cheap, fast and affordable hardware.

There are different challenges in Path Planning for mobile robots. However, the final
goal of all algorithms is to find an optimal and safe path. Optimality of a path can be
interpreted differently based on the use case but usually optimality of a path implies how
short the path is. A safe path on the other hand is a path that guides the robot to safely travel
around obstacles, both static and dynamic ones.

Based on the application, there might be solutions to the path planning problem but
they are usually designed with limiting assumptions in mind, assumptions that render the
algorithm and solution useless in another scenario or under slightly different assumptions.
There have been numerous attempts in the past 20 years to improve the cruise control of
cars and not only help the drivers with monitoring and controlling the speed but also with
lane changing and navigation. The current solutions usually depend on visual lane finding

techniques and driving the car within a lane. However, as soon as the markings on the road



become unclear, due to snow, raining or any other environmental changes, the navigation
would fail to find a safe, drivable path.

Automation, transportation and manufacturing industries are undergoing a remark-
able revolution thanks to technology advancement in Artificial Intelligence and Machine
Learning. The cornerstone of all these advancements lies in the DARPA’s 2004, 5005 and
2007 Grand and Urban Challenges [1]. These competitions proved that autonomous driving
is possible and since then, there has been a huge spike of interest in this industry. As it is

shown in Figure 1.1 the search trend for Autonomous Cars has steadily increased [2].

100 — —
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Figure 1.1: Google trends result for the Autonomous Cars and Darpa Grand Challenge

queries

1.1 Motivation and context

Quanser has provided Networked Autonomous Vehicles (NAV) lab with a set of Quanser
Ground Vehicles, also known as QGVs. As autonomous driving will play an essential
role in the coming years in Automation and Transportation, the aim with this thesis is to

provide students and research centers background and working simulations and toolboxes
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to perform research on the provided platform.

In this thesis, the focus is to analyze different path planning algorithms which were
developed over years and evaluate their strengths and weaknesses. The feedback control
approaches to solve the path planning problem has usually failed. The main reason is
that feedback control has traditionally approached this problem where the work space and
environment is free of obstacles, or the obstacles are static. The attempts to provide a
feedback control law in presence of obstacles are usually extremely limited in practice.
This work will present such attempts and will discuss why they are so limited and then
propose a set of feasible solutions that are relatively easy to implement as base path planner
and then expand upon with a more sophisticated algorithm. The proposed algorithms do
not depend on strong mathematical background and are fast enough to find collision free

paths even in dynamic workspaces.

1.2 Problem description

The goal of this thesis is to provide enough resources to solve a rather generic path planning
problem. The path planning problem can be summarized as:

Generating a smooth path in real-time that is drivable by a nonholonomic robot. The
smooth, optimal path should start from an arbitrary state x; and should end in an arbitrary
set XGoal While avoiding static and dynamic obstacles. The algorithm should explicitly de-

termine if there is no valid path between initial and goal configurations.

Historically this has been the definition of a path planning problem [25]. The path planners
usually assume perfect sensing for localization and exact control. This implies that the
workspace and the robot’s state is perfectly known at all times. In this thesis a set of similar

assumptions are made:

e The localization is a solved problem and we have the exact location and state of the

robot and obstacles with high certainty and low latency at all times.



e The size of the obstacles are large enough to be detected by the localization system.

e Dynamic obstacles will only move in a short time span and will stay rested for the

majority of the time.

1.3 Structure of the thesis

In Chapter 2, a short background for nonholonomic systems is given and theoretical con-
cepts for controlling such systems are presented. Chapter 3 and Chapter 4 go through
different approaches to solve the path planning problem and will discuss how these algo-
rithms have failed to provide a solution for the problem. Chapter 5 will use the theoretical
foundation presented in Chapter 4 and proposes a solution. The implementation details and
results are also discussed in this chapter. Finally, in Chapter 6 some suggestions for future

work is presented and the shortcomings of the proposed algorithm is discussed.



Chapter 2

Mathematical Modeling

2.1 Introduction

In order to design controllers for systems, one should first know how the system functions
and behave. The differential drive robot is one of the most common models used in robotics
research due to multiple reasons which will become apparent in this chapter. In Section 2.2
the kinematic model of a differential wheeled robot is derived. Then it is shown that it is a

driftless control-affine system and then its controllability is discussed [22].

2.2 Kinematic model for differentially driven robots

Differential drive robots are very popular for indoor robotic experiments because they are
very easy to build from scratch due to their simple structural design. The kinematic model
is also very intuitive and easy to derive and maybe the most appealing reason is the simple
control laws required to control such systems. The robot has 2 main wheels, each of which
is powered independently using a DC motor. To add stability to the robot and preventing it
from falling a third passive wheel, caster wheel, is added to the rear/front of the robot. The
steering of the robot is maintained by rotating the wheels at different rates and thus move
the robot around the environment.

The movement of the robot in the workspace is the result of combining two basic



motions, pure translation and pure rotation. Assuming non-zero angular velocity, if the
velocities have the same magnitude and the same sign w, = wu;, the robot wheel have a
pure translational motion and if the signs are opposite u, = —uj, the robot will have a pure
rotational motion.

By controlling the angular velocity of the two wheels one could control the motion
of the robot in the working space. So the control vector becomes the angular velocity of the

right and left wheels.

u = (ug,uy) (2.1)

We are interested to know where the robot is located in a fixed reference frame and
at which direction it is heading to so the state vector, configuration vector, of the system is
[z,y, G]T. Since there are only two control inputs and the system has 3 states, we have an
under-actuated system. Now, the question is which point on the robot should we care about
and control, a point at the front, a point on the wheel, or some where else?

In a pure rotational motion w, = —wu;, the middle point of the axle between the
two wheels does not move. Assigning the origin of the local coordinate system on the
middle point would satisfy the pure rotational motion because that point does not have any
translational motions under this condition. So it would be easier to analyze the system by
selecting such coordinate system. If the position of this point and the orientation of the local
frame with respect to the global reference frame is known at all times one could localize
the entire system.

As it can be observed from Figure 2.1 there are only 2 geometrical measurements
necessary to construct the kinematic model of a differential drive robot. The vertical dis-
tance between the center of the two wheels L and the radius of the wheels . Assuming
two arbitrary velocities for the right and left wheels and by using instantaneous center of

velocity the the linear and angular velocity of the mid-point can be easily found.

. VR—V
§—YRTVL
L

(2.2)



Figure 2.1: Geometry of a generic differentially driven robot [22]

__ VR+VL
2

v (2.3)

and by assuming the radius of each wheel is r the linear velocity is vg = r X ug and substi-

tuting it in equation 3 would yield:

0=—(u—u) (2.4)

Now that the angular and linear velocity of the mid-point is known, it is easy to derive the
state-transition equation. In order to find the projection of the velocity on the x and y axis

simply multiply the linear velocity v, by cos 0 and sin 6.

X=vcos0O
y = vsin0 (2.5)
0=0w

2.3 Controlling a differentially driven robot

Rewriting the kinematic model of the differential drive robot, Equation (2.5), in matrix form

would yield



X cos® O

= |sinf O (2.6)

and in vector form it will be

§g=Au 2.7)

comparing Equation (2.7) to differential equation model of a linear system

q=f(q,u) =Aq+Bu (2.8)

we notice that it is not a linear system so it must be nonlinear. The general form of a

first-order nonlinear equation is

q=f(q,u,t) (2.9)

and if the system is affine in control input the general form will be

G = fi1(q,t) + f2(q,t)u (2.10)

Equation (2.10) represents a family of nonlinear differential equations called control affine
systems. These systems are linear in action but the states of the system evolve in a nonlinear
fashion [22]. If the first term fi(g,?), is zero, the system becomes a driftless nonlinear

control system.

q=f2(q,t)u (2.11)

By comparing Equation (2.11) and Equation (2.7) it is trivial that the kinematic model
of the differential drive robot is indeed a driftless nonlinear system. The nonholonomic
nature of wheeled mobile robots has precise consequences in terms of structural properties
of the kinematic model. The first, and most important one, is that in spite of the reduced

number of degrees of freedom, wheeled robot is controllable in its configuration space; i.e.,
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given two arbitrary configurations, there always exists a kinematically admissible trajectory
(with the associated velocity inputs) that transfers the robot from one to the other. Since the
kinematic model is driftless, a well known result implies that it is controllable if and only
if the accessibility rank condition holds. The motion control problem for wheeled mobile
robots is generally formulated with reference to the kinematic model.

There are essentially two reasons for taking this simplifying assumption. First, the
kinematic model fully captures the essential nonlinearity of single-body wheeled robots,
which stems from their nonholonomic nature. This is another fundamental difference with
respect to the case of robotic manipulators, in which the main source of nonlinearity is
the inertial coupling among multiple bodies. Second, in mobile robots it is typically not
possible to directly command the wheel torques, because there are low-level wheel control
loops integrated in the hardware or software architecture. Any such loop accepts as input
a reference value for the wheel angular speed, which is then reproduced as accurately as
possible by standard regulation actions (e.g., PID controllers). In this situation, the actual
inputs available for high-level control are precisely these reference velocities.

Several methods are available to drive a wheeled mobile robot in feedback along a
desired trajectory. A straightforward possibility is to first compute the linear approximation
of the system along the desired trajectory (which, unlike the approximation at a configu-
ration, results to be controllable) and then stabilize it using linear feedback. Only local
convergence, however, can be guaranteed with this approach. For the kinematic model of
the unicycle, global asymptotic stability may be achieved by suitably morphing the linear
control law into a nonlinear one [10].

In robotics, a popular approach for trajectory tracking is input - output linearizion via
static feedback. In the case of a unicycle, consider as output the Cartesian coordinates of a
point B located ahead of the wheel, at a distance b from the contact point with the ground.
The linear mapping between the time derivatives of these coordinates and the velocity con-
trol inputs turns out to be invertible provided that b is nonzero; under this assumption, it is
therefore possible to perform an input transformation via feedback that converts the unicy-

cle to a parallel of two simple integrators, which can be globally stabilized with a simple



proportional controller (plus feedforward). This simple approach works reasonably well.
However, if one tries to improve tracking accuracy by reducing b (so as to bring B close to
the ground contact point), the control effort quickly increases. Trajectory tracking with b
(i.e., for the actual contact point on the ground) can be achieved using dynamic feedback
linearizion. In particular, this method provides a one-dimensional dynamic compensator
that transforms the unicycle into a parallel of two double integrators, which is then glob-
ally stabilized with a proportional-derivative controller (plus feedforward). In contrast to
static feedback linearizion, no residual zero dynamics is present in the transformed system.
However, the dynamic compensator has a singularity when the unicycle driving velocity is
zero. This is expected, because otherwise the tracking controller would represent a univer-
sal controller. Note that dynamic feedback realizability using the x, y outputs is related to

them being flat, the two properties are equivalent.

2.3.1 Accessibility and controllability

For linear systems, x = Ax+ Bu where x € R" and u € R™ and the celebrated Kalman rank
condition fully characterizes when the system is (globally) controllable (from any point).
Our objective here is to come up with similar tests for nonlinear systems. Let us start by

making precise the notions of accessibility and controllability [10].

2.3.2 Configuration space

It is easy to imagine the height of the robot does not have any effect on the motion planning
algorithm and the generated paths so let’s consider the 3-D rigid body of the robot does
not have a height, the result would be a 2-D plane. So the motion planning algorithm must
generate a path for the new rigid body, the plane, in R2. As mentioned in Section 2.3 the
transformation matrix Equation (2.6) on page 8 could transform any x,y € R this would
yield a manifold M; = R%. Also one could apply any rotation 8 € [0,27) which would

yield another manifold M, = S'. So the following manifold covers all possible motions

10



C={(x,y,0)] (x,y) €R* 6 c[0,2n)]} = R*x S! = M| x M, (2.12)

The new manifold is called the Configuration Space of the system and might be considered
as a special case of the state space [22]. The configuration space of the system looks like
a torus but the cross section is a square instead of a circle. Topologically speaking, it is

important to realize the configuration space is not bounded and it does not have a boundary.

P

» H A A
M L G
0 B 2n

Figure 2.2: A visualization of Configuration Space for a double pendulum [5]

Figure 2.2 shows how the systems moves in the configuration space. As it can be seen due
to the periodic nature of rotations the system reaches it’s starting yaw angle after a complete
rotation.

It is crucial to understand the physical space the robot moves in is called the Work
Space W and it is a subset of R? while the Configuration Space is a 3-manifold and it is a
subset of R3 and this is where the state of the system changes. The concept of configuration
space might seem to be too abstract and not so useful for motion planning of differential
drive robots but this abstraction makes it possible to use similar motion planning algorithms
for different problems. The configuration space lets us abstract the motion planning prob-
lem from a geometric point of view to a topological one and then use topological tools and

find a path and then convert the topological path to a geometric one.

2.3.3 Configuration space obstacles

While defining the Configuration Space it was assumed there are no obstacles. But there

are such constraints in the configuration space and they should be removed. This removed

11



section is called the Configuration Space Obstacles and the rest of the configuration space
is called the Free Space and the generated path must solely be in this section.

Let’s assume there is some obstacle region O in the Work Space, O C W. Also the
robot rigid body A C W is defined. If g € C represents the configuration of the rigid body

A, the obstacle configuration space is defined as:

Cobs = {q€C|A(Q)m07AQ} (2.13)

This new configuration space is basically the set of all possible configuration of the
robot, rigid body, at which it intersects the obstacle region, O. Since the sets A(g) and O
are closed sets, the obstacle region is a closed set in C. The rest of the configurations make
up the free space and it is denoted as Cfroe = C\Cyps. This free space ,Cyyee, is an open
set. Being an open set means that the rigid body, robot, can come arbitrarily close to the

obstacle region and still be in the Cye. [22].

2.3.4 Definition of a motion planning problem

The classic example of a motion planning problem is the Piano Mover’s problem. The
problem is to find a collision-free path from some start configuration to a goal configuration
for a 3-D rigid body among a known set of obstacles. It is assumed that the rigid body is

capable of omnidirectional movements. This problem can be formulated as [22], [5]:

1. A world W in which either W = R? or W = R3.

2. A semi-algebraic obstacle region O C W in the world.

3. A semi-algebraic robot is defined in V. It may be a rigid robot A or a collection of

m links, Ay, Az, ..., Ap.
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4. The configuration space C determined by specifying the set of all possible transfor-

mations that may be applied to the robot. From this, C,;s and Cy, are derived.

5. A configuration, g; € Cy.. designated as the initial configuration.

6. A configuration gG € Cyree designated as the goal configuration. The initial and goal

configurations together are often called a query pair (or query) and designated as

(q1,96)

7. A complete algorithm must compute a (continuous) path, 7 : [0,1] — C free» Such that

7(0) = g7 and (1) = gg, or correctly report that such a path does not exist.

Other aspects of this problem that might need more attention is that, it is considered that the
obstacles are perfectly known and they are stationary. The execution of the planned path is
exact. Because the path is planned before execution, it is called offline motion planning [5].

The key issue is to make sure no point on the rigid body hits an obstacle. We use the
configuration space concept to represent the configuration of all points on the rigid body
and check for possible collisions.

Let’s consider the case showed in Figure 2.3. The two squares are stationary and
we are trying to pass the rectangle between them. It is really hard to consider all different
orientations that the squares or the rectangle can take, and decide if the rectangle can pass
through the squares. If there was a way that we could expand the square and shrink the
rectangle such that the rectangle becomes a point in space, it would much easier to figure
out the possible collision. Because it is just a matter of checking if a point falls into a
specific set. The algorithm mentioned below lets us shrink the robot to a point and expand
the obstacles, so we don’t have to worry about the weird geometry of the obstacle and the

robot. It would be much easier to plan a path for a point compared to a 2-D rigid body.

13



I I qlnn

L ]

q goal

Figure 2.3: A Work Space with start and goal states of a 2D rigid body [5]

There are different ways to explicitly model the configuration space obstacle [5] [22]. There
is a rather simple method for configuration spaces in R where n = 1,2, 3. For example if we
consider a robot which is only capable of pure translation, but not rotation, the configuration
space would be C = R?. For such a C-space the C-Space obstacle can be found using the

Minkowski Sum.

AdB={a+beR"|acA,beB} (2.14)

The Minkowski Sum is a way to add, or subtract, geometrical shapes. A circular rigid
body makes the calculation of the Minkowski Sum much more computationally feasible
and thus for the sake of simplicity, it is usually considered that the robot is circular and it
would drastically improve computing the configuration space obstacle.

According to the definition of the configuration space obstacle, we have to find the
configurations at which the robot touches the obstacles. It is very intuitive to see that if the
distance between the center of the robot and the perimeter of any obstacle is less than the
radius of the robot, there will be a collision. So by just easily expanding the boundary of
each obstacle, and shrinking the boundary of the walls in the Work Space with respect to
the radius of the robot we can find the Configuration Space Obstacle [5]. Thus the problem

of motion planning for a circular robot in Work Space, is transformed to a simpler problem:
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Motion planning for a point in the Work Space.

As we have seen in Section 2.2 on page 5 the differential drive robot has 3 degrees of
freedom, two for translation in R? and one for rotation and its C-Space is R? x S! . Also
as mentioned earlier using the Minkowski Sum only works for a case where the C = R”,
where n = 1,2,3. But if we consider the robot has a fixed orientation the configuration
space would be reduced to a 2-manifold. So it is intuitive to reduce the C-Space of the
robot for a given orientation, and find the respective C-Space obstacle. Repeating this for
different orientations and stacking the respective C-Space would result a 3-manifold which
is the C-Space for the robot. As shown in Figure 2.4 each slice represents the configuration

space of the robot at one fixed orientation.

X

Figure 2.4: A configuration space with start and goal states of a rigid body [5]
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Chapter 3

Potential Functions

Previous attempts to solve the path planning problem usually find a collision free path but
the proposed algorithms do not provide any guarantees and feasibility if the robot can follow
the generated path. The algorithms were usually open loop and there were no answers
on what should happen when the robot deviates from the generated path. This was the
main motivation for feedback based path planning and eventually potential functions. In
this chapter the theoretical background for potential function and their shortcomings are

discussed.

3.1 Introduction

Potential Functions are one of the earliest methods of motion planning for mobile robots.
Due to ease of implementation and efficiency of the algorithm, potential functions were
popular for real-time collision avoidance, specially for the cases where the configuration
space is not well defined and the robot does not have a clear model for the configuration
space obstacle [22].

Figure 3.1 shows a discretized work space with the associated potential field. The
major concern while working with potential functions is the selection of a differentiable
real-valued function U : R” — R. The function U is illustrated in Figure 3.1d. At any given

point in the work space the potential function has a real value which could be considered
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as the energy of the moving particle at that point. By measuring the negated gradient of the
potential function U, the force applied to the particle at any given point can be calculated
and by assigning the value of the negated gradient —%—Z and —%—ly] to any point on the
workspace the vector field is generated. This generated vector field would direct any particle
from any given start point towards the predefined goal point. An intuitive metaphor to
understand this algorithm is to consider the 2-D rigid body of the robot as one single point
in the configuration space where according to the position of this particle a specific force
drives the point towards the goal.

Generally it is considered that the robot mass point is a positively charged particle and
the goal configuration is considered to be negatively charged, and thus pulling the robot
towards itself. While the obstacles are positively charged, pushing the robot away from
the C-Space obstacle. The combination of attractive and repulsive potentials create this
force field. As illustrated in Figure 3.2 on page 19 if we consider the robot as a point, it will
follow a path downhill towards the goal point, regardless of where the starting configuration
is located.

One of the points that make potential fields very interesting is that, this method can
be used as a feedback motion planner for any mass point robot. At any given point there is
a vector directing the robot towards the goal, so the controller should only have to control
the heading of the robot and make sure it follows the right direction. The reference to the
controller is the heading, and it could be easily controlled using a PI controller. By con-
structing a feedback control plan over this continuous space we could generate a trajectory
and use trajectory tracking methods and to track it. This would make potential functions a
closed loop feedback motion planning algorithm. As shown in Figure 3.2 on page 19 for
all points in the work space there is a vector defined that could direct the robot towards the
goal.

As intuitive and as simple as this method is, it has its own draw backs. Consider the
case where the potential function introduces a local minima to the potential field, due to the
geometry of the obstacles or simply due to the position of the obstacle relative to the goal. In

this case if the starting configuration is close enough to this minima, or the path passes close
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(a) A Work Space with two rectangular obstacles

(b) Attractive potential field (c) Repulsive potential field

(d) Total potential field

Figure 3.1: The total potential field is simply the sum of the attractive and repulsive fields
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Figure 3.2: Negated gradient vector field

by this local minima, the robot might get trapped in the local minima and will never rich the
goal. There are different potential functions other than the attractive/repulsive potential, but
almost all of them suffer from the same problem, which is the existence of local minima.

That’s why potential functions are not considered as a complete motion planner.

3.2 Potential field for C = R?

The function defined below was introduced by Khatib [18] and it is probably the most
famous potential function for mass point robots in R? and even R3. Let’s first construct the
artificial forces applied to a point in R?. The potential should be a differentiable function,

U : C — R. The artificial forces can be easily found by finding the negated gradient vector:

F(q)=-VU(q) (3.1)

where ¢ is the configuration of the point, ¢ = (x,y) and VU(q) = [a—g, %—ly]]T. Notice that
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since we are working with just a point the configuration g does not consider the orientation
of the robot, 6. The total potential function is constructed as the sum of the attractive and

repulsive potential functions:

U(‘]) = Uatt(CI) + Urep(‘]) (3.2)

3.3 Attractive potential

The role of the attractive potential is to drive the robot to the goal configuration. Maybe the

simplest function that could play the role of the attractive potential is the euclidean distance.

U(Q) = Kattd(%ngal) (3.3)

the value of the function is always positive and somehow represents an error, the distance
between current configuration and the desired configuration. This function only has one
global minimum at the goal configuration where the potential is zero. The gain K, is used
to change the effect of the attractive potential function. If the gain is higher the attractive

potential will be higher. The gradient of Equation (3.3) is

8U(q) . Kot (X_xgoal)

dx d(%‘]goal)
34
9U(q) _ Katt(y_ygoal) ( )
ay d(Qngoal)

Selecting this gradient function results in a linear change in the force exerted on the
robot and when implemented it will result in a non-smooth motion. Also as illustrated in
Figure 3.3 on the next page the gradient is not defined if ¢ = g4, and the function becomes
non-differentiable. We can simply use a quadratic potential function instead of the conic

potential function to have a smooth differentiable function.

1
Uasr (Q) = EKattdz(%CIgoal) (3.5)
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Figure 3.3: Conic potential field

and the gradient would be

U,
a—t;@ — Katt (x - xgoal )

U,
a—t;(Q) = Kart (y _}’goal)

(3.6)

The quadratic potential function also provides a smooth vector field as the robot ap-
proaches the goal. When the robot is far away from the goal, the gradient has a higher
value and as the robot approaches the goal the gradient decreases. The % fraction is added
to simplify the gradient function. As it can be seen in Figure 3.4 on the following page the

quadratic potential function is smooth and differentiable.
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Figure 3.4: Smooth & differentiable attractive potential field

3.4 Repulsive potential

The repulsive potential helps the robot stay away from the obstacles or the work space
boundaries. Also it is desirable that the the robot does not get under the influence of the
obstacles when it is far from them. It is also assumed the obstacles are convex, if they are not
some decomposition algorithm must be used to make all obstacles convex. Equation (3.7)
encapsulates this concept. For each obstacle CO) the distance function D;(g) is the distance

between the current location of the robot to the closest point on the obstacle.

1 1 1 . *
3Krep(5775 — pe)»  if Di(q) < Dj
28rep\p; D) i
Unepi(g) = Dita) ’ (3.7)

0, if Di(q) > D}

Dy is the threshold distance and represents the range of influence of obstacle COyyy. It is
interesting to note that this threshold distance is not necessarily similar for all obstacles
and it can have different values according to the type of the obstacle. Just like the K, the
effect of the repulsive function could be tuned using a gain K,,. As the distance between
the robot and obstacle CO) is decreased the value of the potential function is increased and
tends to infinity.

The total repulsive potential field is obtained by adding the effect of all obstacles.

Given n obstacles the total potential field is

22



Figure 3.5: Equipotential contour of repulsive function around obstacles

n
Urep(‘l) = ZUrep,i
i=1

The gradient of Equation (3.7) on the preceding page is

Koep - — i) 5 VDia). i€ Dilg) <D}

0, if Di(q) > D;k

VUrep,i(q) =

thus the total force experienced by the robot from the obstacles is

VUrep,i
1

Frep =

n
1=

3.5 Motion planning using APF

(3.8)

(3.9)

(3.10)

Once the attractive and repulsive potential functions are defined it is very straightforward

to find the total potential function

Utoral = Urep + Uant

(3.11)

and the vector field, which represents the artificial force experienced by the robot in the

work space is
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n
VUiotat = VUart + Z VUiep,i
~ (3.12)
Fiotal = =VUart — Z VUrep,i
i=1

l
Once the vector field is constructed there are different approaches on how to use this vector

field and drive the robot towards the goal [22].

e Consider the vector field as a vector of generalized forces that make the robot move
in a certain way according to the current configuration of the robot and the dynamic

model of the robot
T= Ft()tal (q) (313)

e Consider the vector field as a velocity field which describes the velocity of the robot

in the configuration space
q = Ftotal (Q) (314)

In this thesis we only deal with the kinematic model of a robot, so the second ap-
proach is more attractive. Once the desired velocity of the robot in the configuration space
is known, the robot could be controlled using the kinematic model and Equation (3.14) pro-
vides the reference velocity to the controller. The motion planner does not have to provide
a trajectory, i.e. a profile of the velocity or acceleration along the path, so it is logical to
assume a constant velocity along the path. So, to make things easier it’s usually assumed

that the final vector field is normalized.

3.5.1 Continuous motion planning

As it was mentioned before, it is assumed the system is a point in the working space and
thus there are no constraints on the system. So, the representation of the system is X =

f(x,u) = u, which represents a fully actuated system. Now given:
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1. A world W, obstacles O, robot A, and configuration space C
2. An input space U
3. A state transition equation ¢ = —u

4. An initial configuration gy € Cfree and a goal set ggoqr C Cree

the motion planner should return a set of waypoints from the initial configuration to the
goal configuration. The input space U, is actually the total vector field over the workspace.
Notice that the the goal configuration must be a set of valid configurations. Usually it is
reasonable enough to accept a path which makes the system get close enough to the goal.
To find the way points the most common choice is the simple numeric integration of state

transition equation using the Euler method

gi+1 =qi —aU(qi) (3.15)

Equation (3.15) could also be considered as the gradient descent algorithm. Once the initial
configuration is known, the robot would move step by step in the direction guided by the
force field, which is the negated gradient of the potential field. The only tricky part of this
algorithm is selecting how fast the robot should move towards the goal. If the steps that the
robot is taking are too big, the robot might pass the goal and/or oscillate around the goal
configuration. On the other hand if the steps are too small, it might take a long time for the

robot to reach the goal [5].

Algorithm 1 Gradient Descent
q(0) = gstare
i=0
while VU, ,,(¢q(i)) # 0 do
q(i+1) = 4(i) = aVUoa(4(i))
i=i+1

end while
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The input of the algorithm is the start configuration, a function to calculate the force
field related to the current state ¢(i) and some scalar coefficient o, which decided how far
at each step the robot should proceed. The larger this coefficient, the larger the step. It is
worth mentioning that  is not necessarily a constant, and it could be dynamically changed.
A good approach for changing « is to select a larger value at the beginning and as the robot
gets closer to the goal decrease the coefficient [5]. Also, it is almost impossible for the
condition VU41(q(i)) # 0 to ever become true. So a more relaxed condition is usually
used ||VUa1(q(i))|| < €, where € is selected based on the condition of the task at hand,
the smaller the € the closer the robot will be to the goal. That is why the goal configuration
is a set rather than a single point. Consider the working space illustrated in Figure 3.6. The

goal is to plan a path from ggar t0 Ggoar-

o
qgoal

0
Qstart

Figure 3.6: A work space with rectangular obstacles

Figure 3.7 shows the planned path using simple gradient descent with a constant step
size o¢ = 0.2. But as it can be seen there are a lot of oscillations in the generated path.

Unfortunately these oscillations are one of the negative points about potential functions.
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But fortunately the problem can be usually solved using a more sophisticated optimization
method. One of the methods to go around this problem is to update the step size o adap-
tively. It’s very intuitive that when the system gets stuck in these oscillations one of the
ways to get out earlier is to have a larger step size or use the information from the previous

iteration and decide the step size based on it for the new iteration and thus a smoother path.

4goal

Qstart

Figure 3.7: Planned path generated by simple integration with oscillations

One of the methods to find the optimized & is to solve the following optimization

problem, usually called a line search problem:

arg;nin{U(q —aVUoa(q))} (3.16)

if we consider —aVU;y41(q) = Ag the problem becomes

argmin{U (¢ +Aq)} (3.17)

This basically means find the @ which takes the system to the lowest possible poten-
tial in the current direction. But the problem is that we don’t have an explicit definition of
the potential function at hand. The easiest way to solve this problem is to find the Taylor’s
expansion of the potential function which provides a very good approximation of the value

of the total potential at any given pointU.
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1
U(g+Aq) =U(q)+b(q) Ag+ EAqTA(Q)Aq (3.18)

where b(q) is the gradient of the potential function and A(g) is the Hessian matrix calculated
at g. Equation (3.18) will be minimized by the solution to A(q)q = b. As proved here
[33] the value of the & which minimizes equation Equation (3.18) can be calculated using

equation Equation (3.19)

l"T}"

o=
rTAr

(3.19)

where the residual r = b — Ag shows the error between the correct value of b and its’ esti-
mated value. Once « is calculated the following algorithm is used to update the state of the

system

Algorithm 2 Adaptive Gradient Descent
q(0) = gsiar
i=0
while VU,,,(¢(i)) # 0 do
b=VU(q:)
A=Hess(U(q;))

ri=b—Axgq;

o = riTri
L r[TAr;

q(i+1) =q(i) — tVUpa(q(i))
i=i+1

end while

Figure 3.8 shows the same work space as the one in Figure 3.6 but the path is gener-
ated using Algorithm 2. Although the generated path is much smoother and there are not
that many oscillations, but we have to realize what we are giving to gain this smoother path.
In the simple gradient descent algorithm we only had to calculate the gradient and we had
full control of the step size o, but here not only we have to calculate the hessian matrix

at any given point but we also have to deal with the conservative nature of this algorithm
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which chooses much smaller time steps. Figure 3.9 shows a comparison of the value of the
step size in the two different methods. As it can be seen the normal implementation of Euler
method, general gradient descent, has much less number of iterations, around 150. But The
adaptive gradient descent algorithm has gone through around 650 iterations to converge to
the goal point. It is an obvious observation when you consider how small the step size « is
for a large section of the adaptive algorithm. The average value of o in adaptive algorithm
is 0.011 while the constant step size foe the general gradient descent algorithm is 0.1 which
is almost 10 times larger. For cases where the normal gradient descent algorithm has a hard
time converging to the goal or there are a lot of oscillations it might be better to use the

adaptive gradient descent algorithm.

4 T T T T

e
oF o .
4goal
AF |
2+ -
Astart

_3 b ,
-4 1 |  f i | | 1

-4 3 2 1 0 1 2 3 4

Figure 3.8: Planned path by updating o at each iteration

But this won’t stop us from using adaptive gradient descent. Actually the main reason
for using gradient descent is cases where the normal gradient descent algorithm does/can

not converge to the goal. Consider the same work space illustrated in Figure 3.10 which
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Figure 3.9: Dynamics of & as a function of number of iterations

is the same as Figure 3.6 but with different locations for the start and goal configurations.
Running the general gradient descent algorithm on this problem would not generate a path.
As shown in Figure 3.10 there are a lot of oscillations close to the obstacle and the algorithm
did not converge even after 4000 iterations. But on the same work space and start/goal con-
figurations the adaptive gradient descent algorithm converges and a smooth path is planned.
The path is found after almost 1650 iterations.

There are also other algorithms such as conjugate gradient descent, newton’s method
and also the momentum gradient descent which can solve this problem. In nature they are
very similar to the previously discussed algorithms but they have different running times,
number of iterations, and behavior depending on the problem.

So far we have solved one of the big problems of potential functions which is numer-
ous oscillations close to the obstacles or between them in a corridor. But there is another
challenging problem regarding the potential functions. Consider the work space in figure

3.12, it seems even simpler than the previous work space as there is only one obstacle
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(a) Unsuccessful path (b) Oscillations close to the obstacle

Figure 3.10: General gradient descent on different start/goal configurations might not con-

verge

present. But the location of the start and goal configuration with reference to the obstacle
make these type of work spaces interesting and challenging. If we imagine a line between
start and goal configurations, it would be completely perpendicular to the obstacle bound-
aries. At such situations the attractive and repulsive force are co-linear but in opposite
directions and this would result an area where these forces are equal but in opposite direc-
tions thus they balance each other out. These areas are called local minima and their effect
in potential functions have been extensively studied over the years [32] [20] [7].

Figure 3.12 shows the contour of potential function on this work space. The circular
lines are equipotential areas. The area shown on the left of the rectangular obstacle is the
local minima. If the movement direction of the robot is perpendicular to the side of an
obstacle this area appears due to how the forces are defined and the robot will get stuck in
this area as shown in Figure 3.13.

There is no deterministic gradient descent algorithm to find a path in such vector
fields. The same problem appears in a lot of different areas of engineering. There are
different proposed algorithms to solve this problem a few them are mentioned and described

here

e Wave-Front planner [5], which probably is the easiest algorithm to solve the local
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Figure 3.11: Planned path by updating o at each iteration

minima problem. The algorithm is described in Subsection 3.5.3, discrete motion

planning.

Rimon and Koditschek [32] developed an analytic method to find a special family
of potential functions called Navigation Functions which just like potential functions
would result in a velocity field but there are no spurious local minima and there is
only a single minimum located at the goal. Maybe the most distinctive property of
such potential functions is that they must be a Morse 1 [28] function to satisfy the
single global minimum criteria. A Morse function is a function where all critical
points the Hessian are nondegenerate. Just like the potential functions this method
assumes a repulsive force from the obstacles and an attractive force from the goal.

This method is also described in Subsection 3.5.2

Connolly et. al. [8] proposed a special family of navigation functions which are

numerical solutions to Laplace’s heat equation and they are usually called Harmonic
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(b) The potential function contour over the

workspace exposing local minima

Figure 3.12: Local minima in a workspace when the direction of movement is perpendicular

to one of the obstacles in the workspace

Potential Functions. Harmonic potential functions hold all conditions for a navigation
function except being a Morse function due to the possibility of isolated degenerate

saddle points.

A function ¢ is called a harmonic function if it satisfies the differential equation

<

2
i T =0 (3.20)
X

Vi = zn"
i=1

Usually finite element methods are used to solve for the solution of Equation (3.20).

5]

In order to solve the equation one must define some conditions on the boundary of
the domain over which the function ¢ is defined. Usually either Dirichlet boundary
condition or Neumann boundary condition or a superposition of the two conditions
is used depending on the work space. Here lies one of the problem with Harmonic
potential functions, they require an explicit boundary of the free space Cy, and it’s
usually avoided in path planning algorithms. Also the numerical solution might be

feasible in low dimensions but in higher dimensions it is expensive [22].

e Chosetet. al. [6] and also Lavalle [27] [26] have proposed different algorithms where
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Figure 3.13: There is no deterministic gradient descent algorithm to solve the local minima

problem

they use cell decomposition and make convex polygons in the free space Cy.. and
build a vector field and define a control policy on each single cell and a switching
strategy to smoothly switch between control policies of each cell. Choset et al have
used the Harmonic potential function to create this vector field but Lavalle has pro-
posed a very interesting approach where they creates the vector field directly without
having to define a potential function based on the distance of edges and vertices to

the current location of the robot.

3.5.2 Navigation functions

The major concern with potential functions is the existence of local minima. One of the
methods that tries to construct a feedback motion planner over the continuous free space

is called Navigation Functions which have been proposed by Rimon and Koditschek [32].
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Figure 3.14: Lavalle et. al. [25] proposed an algorithm to use cell decomposition and create

convex cells and then construct the vector field directly on each cell

Figure 3.15: Choset et. al. [6] used the weak harmonic potential functions on decomposed

cells
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They have showed that it is not possible to construct a scalar field free from critical points.
But they proposed a set of functions which construct a globally asymptotic scalar potential
filed in which the critical points are unstable (i.e. the Hessian is non-singular and the critical
point is non-degenerate). Thus, in implementation it is practically impossible for the point-
mass robot to get trapped in such unstable critical points.

In the proposed method the motion planning algorithm is abstracted from the geomet-
ric space to a topological space, usually this topological space is called a “model space”.
The obstacle avoidance problem is then equivalent to staying in the same connected section
of the free space Cy., in which the point-mass robot has started. The model space could
be considered any generalized sphere world.

For cases where the obstacle and the work space are not a sphere, a diffeomorphism is
used and the geometric complicated obstacles are mapped into simple sphere in the model
space. Then a navigation function is constructed on the model space, the motion planner
generates a path and then the inverse of the diffeomorphism is used to transform the path
from the model space to the real work space. In Subsection 3.5.2.1 the simpler sphere
world is considered where there is no need to have a diffeomorphism because every thing
is already a simple Euclidean sphere. Then in Subsection 3.5.2.2 a more general and com-
plicated geometry of the work space is considered and it is described how to define the

diffeomorphism and its inverse.

3.5.2.1 Navigation functions in a sphere world

A sphere world is defined as a compact, close and bounded, subset of n-dimensional eu-
clidean space E" whose boundary is a single (n — 1) — dimensional sphere. In this thesis
however only the 2-dimensional euclidean space is considered. The space bounded by this

1-sphere called the workspace VV and is defined as

W={qeE*||q|*<ps} (3.21)

where py > 0 is the radius of the outer sphere bounding the workspace. The center of the
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bounding sphere is considered to be at the origin. If there are a total of M obstacles in
the working space the number of all spheres would be M + 1, where the extra 1 is the outer
sphere. The remaining M other spheres which bound the obstacles present in the workspace

are defined as

Oj={q€B*|lg—qj|>*<p;}, j={1,2,...M} (3.22)

where ¢; is the center of each spherical obstacle and its radius is p; > 0. Thus the configu-

ration space obstacle is defined as
M
Cons = | O (3.23)
j=1
the free space remains after removing all obstacles from the workspace

Crree = W\ Cops (3.24)

Notice that according to the definition of configuration space obstacle the boundary
of all obstacles are in the free space thus it would be a valid path if the point-mass robot
goes on this boundary, which in reality represents scratching the surface of an obstacle. One
could assume the workspace as a standard disk and the obstacles as spherical punctures in
this disk. This idea is represented in Figure 3.16.

The formal definition [5] of a navigation function is as follows :

Definition 3.5.1.
If Cfree is a compact analytical manifold with boundary then the map @ : Cree — [0,1] is
called a navigation function if it:

1. is analytical on Cyye. (Infinitely differentiable, smooth, or at least Ckfork>2)

2. is polar on Cree (A unique minimum exists at qg € Cree )
3. is Morse on Cyee (All critical points are non-degenerate)
4

. is admissible on on C .. (Uniformly maximal on the boundary of the free space)
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Figure 3.16: Different sets on a sphere world with respective dimensions

The potential function proposed by Koditschek-Rimon has all of the above mentioned
properties !.
The potential that acts as the attractive portion of the navigation function is the simple

euclidean distance to the goal ¥ : Cfree — [0,0)

They have also proved that all critical points appear close to the boundary of the free space C free- They
have shown these critical points would vanish from the free space if an annulus with a width € is added around
all obstacles. It is also proved that there is a formulation to find the minimum value for € which satisfies this
condition
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Y(q) =7%(q), keN\{0,1}: %(q) = llg— gl (3.25)

where 7 is zero at the goal configuration and increases as q moves away from the goal. The
repulsive portion is the product of obstacle functions present in the workspace B8 : Cyee —

[0,20)

M
Bla)=]]Bi(@) (3.26)
j=0
where f3;s are defined as
Po(a)=p5 —llal*s  Bila)=lla—ajl —p}. j=1.2,...M (3.27)

the definition of obstacle functions is direct result of the way the configuration space ob-
stacle is defined. The outer sphere which constructs euclidean disk is considered a s the
zeroth Obstacle. According to Equation (3.27) the obstacles hold a negative value inside
the obstacle, zero on its boundary and positive in the free space C .. Also notice the same
thing holds true for B(g) as it is the product of the obstacles and not the summation of
the obstacles, in contrast with the way repulsive potential was defined in Khatib’s potential
function.

Using the repulsive and attractive potentials the function ¢(q) = % is defined. As ¢
approaches the boundary of any obstacle 8 goes to zero and ¢ goes to infinity thus repelling
the robot. Also it is only zero at the goal configuration, where Y is zero. As [ref to Robot
Navigation Functions on Manifolds with Boundary theorem 4] Koditschek-Rimon have
proved there exists a positive integer N such that for every k > N, ¢ has a unique minimum
at the goal configuration. It is very easy to see that in @, as k increases the numerator
changes more significantly compared to the denominator and thus ¢ points toward the goal.
It is also worth mentioning that the critical points also move closer to the boundary of
the obstacles as k increases because the effect of repulsive function from the obstacles is

reduced in further distances [19].
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As ¢ approaches the boundaries ¢ can have arbitrarily large values. So the diffeo-

morphism o : [0,00) — [0, 1] is introduced to bound ¢

o X
Cl4x

(3.28)

this diffeomorphism maps the range of ¢ to the unit interval. Using this diffeomorphism
the values at the boundary of any obstacle is 1 and the goal has a value of zero. But with
some ks it might have a degenerate critical point at the goal. So a distortion is introduced

to eliminate the degeneracy o,: [0,1] — [0, 1]

o4(x) =x*%; k€N (3.29)

the final function which poses all the conditions of a Navigation Function will be

Yg(‘Z)
(¥(q) +B(g))*

which is guaranteed to have a single unique minimum at g, if k is sufficiently large.

0= (040000)(q) = (3.30)

Consider the workspace depicted in Figure 3.17 on the following page. We would
like to construct a scalar potential filed on the free space of this workspace. Then use the
gradient descent algorithm to find a path starting from any point in the free space toward
the goal ggoq. As discussed earlier such a potential field can be constructed using Equa-
tion (3.30). Figure 3.18 shows how this scalar field develops as the parameter k is increased.
Notice that the existence of local minima is apparent where k holds a smaller value but as k
increases the scalar field changes and after a large enough k there is no local minima in the

free work space.
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Figure 3.17: A Sphere World workspace
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Figure 3.18: Change in the contour lines over free space as K increases
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Figure 3.19: Change in the scalar field over free space as K increases
Figure 3.20 shows different paths with different with different initial positions. For

this configuration the gain K is set to 7. As it can be seen all the paths are collision free.

evolves starting from different positions towards the goal.
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3.5.2.2 Navigation functions in a star world

In the previous section it was assumed that we are in a perfectly defined Euclidean Sphere
World. This section tries to solve the path planning problem in a more general world, a Star
World. Let’s first mathematically define a Star shaped world. In set theory a star shaped
set S is a set where there exists at least one point in the set that is within line of sight of all
other points of the same set: The construction of analytic diffeomorphisms for exact robot

navigation on star worlds [5]:

dxsuchthatVye S, tx+(1—t)ye S Vr € [0,1] (3.31)

In the same spirit an obstacle O; is considered Star Shaped if there is a point g; € O; such

that for all g € O the inward gradient Vf3;(q) satisfies

VBi(q)-(g—q;>0 (3.32)

if all obstacles in the free space, Sy, are star shaped then, Sy, is called a Star World.

In the previous section it was shown how to find a navigation function for Sphere
Worlds. With a Star World we should first map the Star World to a Sphere World, solve for
the navigation function and then use a diffeomorphism to map the navigation function back
to the Star World.

Thinking about the definition of a Star World you might realize how close they are to
a Sphere World. A Sphere World could be thought of as a homeomorphism of a Star World
and ice versa [5]. The construction of analytic diffeomorphism for exact robot navigation on
star worlds Elon Rimon, Daniel E. Koditschek have shown that given a navigation function
in the free configuration space P of a Sphere World ¢ : Py, — [0, 1] there always exists a
mapping which is a diffeomorphism 2 from a Star World to the Sphere World # : Prree —
Stree-

Rimon and Koditschek have shown that the construction of analytic diffeomorphisms for

2A diffeomorphism is a map between two smooth manifolds. It is an invertible, and thus bijective, map-
ping. Both the diffeomorphism and its inverse are smooth

44



exact robot navigation on star worlds could be achieved in two steps. In the first step the the
start world is mapped to a homeomorphic sphere world, then the navigation functions are
constructed under the sphere World and then they could be pulled back into a Star World
using this diffeomorphism.

So if @ : Prre — [0, 1]is a navigation function on P and % : Prree — Spree is the

analytical diffeomorphism then

0:poh. (3.33)

is a navigation function on the Star World S. The bijective property of the diffeomorphism

guarantees that there is a one-to-one relation between the critical points and obstacles.

3.5.3 Discrete motion planning

As discussed in the previous sections, although the potential function idea is very elegant
and simple but it has one major draw back which is the existence of local minima, let alone
the oscillations which generally could be solved using the right selection of ¢;. There is no
simple deterministic algorithm to solve the local minima problem other than the Navigation
functions. They provide very beautiful and elegant solution for this problem but at the same
time they add a lot of complexity to the the problem. Even a simple work space needs a
lot of work to implement the navigation function. But there is a special type of Navigation
Functions on spaces which are represented as grids called WaveFront Planner. These family
of navigation functions are probably the simplest solution to the local minima problem and
are used in a lot of different motion planners and also a lot of video games as the algorithm is
very easy to implement and work with. The input to the WaveFront planner is an occupancy
grid 3. Occupancy grids were first popularized by Hans Moravec and Alberto Elfes at CMU.
As our initial assumption about the workspace he occupancy grid used in this thesis is a

binary map, O or 1. Because we have assumed we have perfect mapping information about

3 An occupancy grid is a discrete probabilistic method to represent a work space. Each cell holds a proba-
bility value that shows the certainty if that cell is occupied or not. 1 shows a 100% certainty of an obstacle on
that cell and O shows a 100% certainty that it is a cell free of obstacles
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the workspace. Figure 3.20 shows a Work Space and its corresponding occupancy grid.

(a) A simple work space (b) Occupancy grid

Figure 3.20: (a) Shows a simple work space with 2 rectangular obstacles and (b) Shows the
occupancy grid representation of the same work space. Cells that lie on an obstacle have a

value of 1 and the free cells have a value of zero

The goal cell has a value of 2. The wave Front planner starts from the goal, then finds
all zero valued cells around the goal and change their value to 3. In the next step all zero
valued cells adjacent to cells with a value of 3 are update to have a value of 4. This process
continues until the whole gird is covered. The value of a cell holds could be interpreted as
a cost function, the cost it takes to move from the goal cell to the current cell. The wave

front algorithm is described below

Algorithm 3 Wave Front Algorithm
Label the goal cell in the occupancy grid with a 2

i=2

Find all zero valued cells neighboring the cell with value i
Update the label for all the zero valued cells to i+1

i=i+l

Go to step 3
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The only question that remains unanswered is how the neighboring cells are found.
Consider Figure 3.21 where two types of possible neighborhoods are shown. If the dynam-
ics of the robot allows movements in diagonal direction usually the 8-neighborhood method
is chosen and the cell M has 8 children in the graph induced by Moore connectivity. If the
movement of the robot is limited the 4-neighborhood method is chosen and the cell M has

4 children in the graph induced by the Von Neumann connectivity.

(a) Von Neumann connectivity inducing (b) Moore connectivity inducing 8-neighborhood

4-neighborhood for the central cell for the central cell

Figure 3.21: Comparing a 4-neighborhood and an 8-neighborhood connectivity

Figure 3.22 on the following page shows how the wave front planner grows on the work
space shown in Figure 3.20 if the 8-neighborhood connectivity is chosen.

As it might not be clear how the wave is propagating through the workspace Figure 3.23
shows the same wave propagation where the cells having similar colors also have the same
cell value.

Once the wave front has expanded all the cells in the grid, a simple gradient descent
algorithm can be implemented to find a path from any given start point towards the goal.
That is a very positive point about Wave-Front algorithm. For a given work space and
static obstacles the algorithm runs only once but it will work for any start configuration in
the free work space. That’s why a lot of researchers categorize this algorithm as a Feed
Back motion planning algorithm because a new control input is provided based on the last
position of the system. The accuracy of this algorithm depends on how small each cell is.

On the other hand the smaller the size of a cell, the longer it would take for the algorithm
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Figure 3.22: Wave front planner growing inside a workspace

to go through the whole grid. Figure 3.24 shows the final path generated using the gradient

descent algorithm starting from an arbitrary configuration.
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Figure 3.23: Wave front planner growing inside a workspace different colors represent

different cost of a cell
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goal

(a) A path found using gradient descent on the  (b) The same path on the work space created by

wave front grid connecting gray cells on the grid

Figure 3.24: A path found using gradient descent is shown on the grid, and the same path

is shown on the work space
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Chapter 4

Heuristic-Based Path Planning

In this chapter the basic terminology and mathematical background necessary to understand
graphs is covered. This first part will give enough intuition to introduce search algorithms

and then discuss and compare their differences.

4.1 Graph basics

In heuristic-based Path Planning the problem is usually represented as a graph and then a
graph-searching algorithms is used to solve the path planning problem. Such search algo-
rithms have been used extensively to solve different engineering problems such as routing
of telephone traffic, navigation through mazes, layout of printed circuit boards, etc. In gen-
eral there are 2 main different approaches to solve a graph-search problem, mathematical
approach and heuristic approach. The mathematical approach usually considers the ab-
stract properties of a graph rather than the computational feasibility of the solution while
heuristic approaches usually use a special knowledge about the domain of the problem to
improve the efficiency of the solution.

A graph, in the most common sense, is an ordered pair G = (V,E) such that V is a set
of vertices {v;}, or nodes, and E is a set of edges {¢;;}, or arcs. In such a graph each edge
is related with two distinct vertices. If e,,, is an element form the set of edges then there

exist an arc from node v, to v, and the node v, is a successor of v,,. There is usually a label
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associated with each edge. Depending on the application the label might have different

names, such as cost, length or capacity.

Figure 4.1: A graph with 7 nodes and 8 edges. The label represents the cost of moving

from node V; to V;.

The nodes that share an edge are called adjacent. All nodes adjacent to a node are
called it’s neighborhood ! . The graphs can have two different types depending on the type
of the edge

e In an undirected graph movement on an edge is bidirectional. i.e. If exist a path

from v; to v;, the same path can be used to go from v; to v;.

e In a directed graph an edge from v; to v; can not be used to go from v; to v;. 2

In the graph search domain it becomes much easier to think of a graph as a space

that goes through different states. Let’s assume all search algorithms have a search agent

I'This is also sometime referred to as the Branching Factor of a node. The Branching Factor in a graph is
the number of edges going out of that node.

2Such maps are usually used in games where the character enters a room through a door but it is not
possible to get out of the room from the same door!
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that starts from a specific node, Initial State x; and then traverses the graph by checking
different vertices, nodes, and finally ends up inside the Goal Set Xg. At each vertex there
are just a few actions that the search agent can take to move on to the next vertex. Lavalle

[22] has beautifully defined the state space, X, of a graph as:

e A nonempty state space X, which is a finite or countably infinite set of states.

For each state x € X, a finite action space U (x).

A state transition function f that produces a state f(x,u) € X for every x € X and

u € U(x). The state transition equation is derived from f as X' = f(x,u).

An initial state xz,j;;q € X.

A goal set Xgoq C X.

Let’s consider the following gird as a search problem. We can simply represent a grid

as a graph.
(o} (o} (o} (o} (o} [0} [0} [0} [0} [0} [0} o o o o o
[0} [0} [0} [0} [0} [0} [0} [0} [0} [0} [0} (o] (o] (o] (o] (o]
[0} [0} [0} [0} [0} [0} [0} [0} [0} [0} [0} (o] (e} (o] (o] (o]
[0} [0} . [0} [0} [0} [0} [0} [0} [0} [0} (e} [ ] (e} (o] (o]
[0} [0} [0} [0} [0} [0} [0} [0} [0} [0} [0} (o] (e} (o] (o] (o]
[0} [0} [0} [0} [0} [0} [0} [0} [0} [0} [0} (o] (o] (o] (o] (o]
[0} [0} [0} [0} [0} [0} [0} [0} [0} [0} [0} (o] (o] (o] (o] (o]
o} o} o} o} o} o o o o o o o o o o o

Bl Xcow U o z;

Figure 4.2: A grid represented as a graph

As shown, the center of each cell on the grid can represent a node of a graph. The search

problem is then how to find a path from x; to the goal set, Xg,q. Vxi € X we have U(x) =
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{(0,1),(1,0),(0,1),(1,0)} as the action space and the transition equation is f(x,u) = x+u
where x € X and u € U. In this graph it is assumed that the search agent cannot traverse
diagonally and each vertex has a degree 3 of 4. If we were to allow the diagonal movements
the action space would be U (x) = {(0,1),(1,1),(1,0),(1,1),(0,—1),
(1,—1),(=1,0),(—1,1)}.

In the discrete search algorithms that are covered in this chapter there is a repeating
scenario. At each step of the search, each vertex can be in one of these three different
states: unexplored, explored or inside the frontier list *. The search algorithm starts the
search from a specific node, Initial or start state x;. Then the search agent starts the search
by applying the transition function. When the transition function is applied on a node that
node is marked as explored and it is added to the Closed Set C, specifying that this node
is already explored by the search agent. The nodes that are adjacent to the explored nodes
are then added to the Open Set O. The nodes in the open set are also called the frontier and
they specify the nodes that have the potential to be selected as the next node to be explored
by the search agent. The order in which these frontier nodes are explored depends on the
search algorithm. The search will continue as long as there are still nodes in an unexplored
state.

The frontier is an ordered set of nodes that creates a data structure. The main differ-
ence between search algorithms is how new elements enter this data structure and how old

elements leave it. There are 3 main different data structures:

e Stack: A stack is a LIFQ, last in first out, data structure. When the search agent is
exploring new nodes, it will pick the most recent node from the data structure and

apply the transition function on it.

e Queue: A queue is a FIFO, first in first out, data structure. When the search agent
is exploring new nodes, it will pick the oldest node from the data structure and apply

the transition function on it.

3The degree of a vertex is equal to the number of adjacent vertices.
4LaValle [22] refers to these states as Unvisited, Dead and Alive
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e Priority Queue: Each node is given a priority based on some type of criteria and then
it is added to the list. When the search agent is exploring new nodes, it will pick
a node that has the minimum priority from the list. Unlike a stack and a queue the
order at which the nodes are added to the priority queue does not affect when they

are picked out of the queue.

Considering any given node in the graph G and a starting node x;, there are different
algorithms that can be used to find the goal set. In this chapter we will cover the following

algorithms:

Breadth First Search

Depth First Search

Dijkstra’s Algorithm

A* Search

Considering these search algorithms as a Path Planner we expect to get a path from
node x; to X as the output. This path should be a set of nodes vg,vy,...,vr where each
node v; 4 1 is a successor of node v; and vy € Xg,. Usually in path planning problems
we are interested in a more particular path, a path that is shorter or more cost effective
than all other feasible paths. Such a path is called an optimal path. The cost for an edge
could be integrated in a graph by giving each edge a specific weight based on a metric, i.e.
euclidean distance between two nodes. The cost of an edge between any two nodes v; and
vj is represented by i(v;,v;). There are three criteria that should be considered when we are

comparing the search algorithms; Completeness, Time Complexity and Space Complexity.

e Completeness: An algorithm is complete when, if there exists a solution, it guaran-

tees to find a solution within a finite amount of time.

e Time Complexity: The time complexity of an algorithm is the worst-case amount

of time that it takes to run the algorithm. We express the time complexity of each
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algorithm in terms of the maximum branching factor (b) and the maximum length of

the path (m).

e Space Complexity: The space complexity of an algorithm is the worst-case amount
of space that it takes to run the algorithm. We also express the space complexity
of each algorithm in terms of the maximum branching factor (b) and the maximum

length of the path (m).

4.2 Breadth first search

The Breadth First Search (BFS) algorithm was introduced by Lee [24] in 1971. Lee has
compared the algorithm to A computer model of waves expanding from a source under a
form of straight-line geometry. Those cells having the same cell mass may be thought of as
the location of the wave front at the nth unit of time.. This description is very similar to the
Wave front planner algorithm which was discussed in section 3.5.3. They are actually the
same thing but Wave Front planner is a stripped down version of BFS. The main difference
is that in Wave front planner the algorithm goes through the whole grid and gives a value to
each cell and then a gradient descent algorithm finds the final path. But BES is searching
for the goal point and once it reaches the goal the search stops. Then another method is
used to back propagate through the graph and find the path.

BFS starts at the initial start vertex x; in the graph and explores the neighbor vertices
first before moving to the next level vertices. A Queue is used as the data structure to store
the nodes and the frontier is a list of vertices [vo, vy, V2, ...,v,], where vo = x;. The search
agent always selects the earliest element that was added to the frontier.

In the first step, vy is selected as the starting point and tested for being a goal. If vy
was not a goal. The state transition function is then applied to this node and the output
nodes of the transition function are added to the end the frontier list. The search agent
would then iteratively explore all nodes until all nodes are explored or the agent reaches a

node inside the X .
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BFS is guaranteed to find the path that involves the fewest arcs and it is a complete
algorithm if the branching factor for all nodes was finite. The time complexity is O(b™)
because every node in the tree has to be examined. BFS’s Space complexity is O(b™)
because the whole frontier has to be stored in the memory. This should not be surprising.
As it can be seen in Algorithm 4 BFS does not check for the cost of an edge during the

search, i.e. BFS assumes the input graph is unweighted.unweighted graphs

Algorithm 4 Breadth First Search Algorithm
O = Empty Queue
C={}
O:push(xy)

while True do
x; = O:pop();
if x; € X then
return
end if
C:add(x;);
for all u € U(x;) do
Xsuce = f (Xiyu)
if x5,cc ¢ C then
if xgucc ¢ O then
O:push(xgycc)
end if
end if
end for

end while
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o =5 I Xcow [ ] visited nodes

Figure 4.3: BFS state space

4.3 Depth first search

Depth first search starts at a given vertex x, in the graph and explores along each branch until
it reaches a dead end. The frontier is a stack of vertices; [vo,vi,v2,...,v,] and {ny,ny,...,n;}
is v¢’s neighbors. In the first step, vy is selected as the starting point and tested for being a
goal. If vy was not a goal, all its neighbors are added to the frontier stack, so the frontier
will be [ny,n2,...,nk,v1,V2,...,v;]. v is only selected when all the paths of v;’s neighbors
are explored. Exploration is done iteratively until it reaches the goal, v, or every vertex has
been visited.

If the graph is acyclic and finite, DFS can be considered as a complete algorithm
and guarantees to find a solution if one exists. DFS has the time complexity of O(b™) and
its space complexity is O(bm). Where b is the maximum branching factor and m is the

maximum length of the path.
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Algorithm 5 Depth First Search Algorithm

O = Empty Stack
C={}
O:push(xy)
while True do
xi = O:pop();
if x; € X then
return
end if
C:add(x;);
for all u € U(x;) do
Xsuce = f (i )
if xgucc ¢ C then
if xg,cc ¢ O then
O:push(Xsucc)
end if
end if
end for

end while
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Figure 4.4: DFS state space

4.4 Dijkstra search

A very natural question that might pop up on any one’s mind is that, If we already have
some type of information about the goal can we make the search faster, Can we check for a
smaller number of cells? A* is the answer to this question.

Consider a graph G and a starting node x; and the goal set X5, In BES or Wave
front planner all neighboring nodes are blindly visited. But what if we could just visit a
more promising node in the neighborhood instead of all nodes? We must have a criteria or
a metric to choose the most promising nodes from the neighboring nodes. A very common
and logical metric could be the distance between any of the neighboring nodes and the goal
node. It might seem that if we always choose the closest node to the goal there is a higher
chance of being on the shortest path towards the goal. Following the closest cell to the goal
does not always necessarily results the shortest path. This algorithm is called greedy search.
Greedy search does not take into account how many steps it has moved to reach the goal. It
just cares about the best immediate action it can take, no matter what might be the result of

this action.
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Now, let’s take a look at what would happen instead of caring about the distance to
goal, we try to move in such a way that we always maintain the minimum distance to the
starting node. At each step the neighboring nodes are pushed into a data structure. Then we
check which node in the data structure is still unvisited and has the shortest distance to the
start node. As it can be seen in figure ??? this algorithm results in checking a large number
of nodes, but it is guaranteed to generate the shortest possible path, because we always go
to a node that is the closest to the start point. This algorithm is actually very famous and
it’s called Disktra’s algorithm, named after famous Danish Computer Scientist Edsger W.

Dijkstra.

I 2. I X0 I Obstacle [ Visited Nodes [l Path [l Frontier

Figure 4.5: Dijkstra state space

4.5 A* search

What if we could take into account the number of steps the search agent has taken so far

and also the the distance it still has to cover to reach the goal. That’s exactly what A* >

> A note on the A* name: In 1964 Nils Nilsson invented a heuristic based approach to increase the
speed of Dijkstra’s algorithm. This algorithm was called Al. In 1967 Bertram Raphael made dramatic
improvements upon this algorithm, but failed to show optimality. He called this algorithm A2. Then in 1968
Peter E. Hart introduced an argument that proved A2 was optimal when using a consistent heuristic with only
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does. A* is at the sweet spot between Dijkstra and Greedy search. If we think of Dijkstra
as an improvement over BFS, A* is an improvement over Dijkstra.
A* search is a deterministic © heuristic based search that was introduced in 1968 [15].

A* is considered to be optimal if the following three conditions apply:
e costs are positive,
e Branching factor, b is finite,

e i(x;) is non-negative and is an underestimate of the shortest path from x; to the goal

set XGoal-

I = . I X o M Obstacle [ Visited Nodes [l Path [ Frontier

Figure 4.6: A* state space

Figure 4.6 shows the same work space as shown in the previous two search algo-
rithms. As it can be seen Ax visits a lot less number of nodes but also like other algorithms
it finds the shortest path. In the coming sections we will discuss how and why Ax explores

fewer nodes compared to other algorithms.

minor changes. His proof of the algorithm also included a section that showed that the new A2 algorithm was
the best algorithm possible given the conditions. He thus named the new algorithm in Kleene star syntax to
be the algorithm that starts with A and includes all possible version numbers or A*

6 The other technique is a non-deterministic randomized algorithm developed by Lavalle et al and Kavraki
etal [17] [23] [22]

62



Algorithm 6 A* Search

Require: x;NXgou € X

1: O = PriorityQueue()
2:2C=0

3: O.push(x;)
4: while O # 0 do

5:

6:

7.

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

x;i < O.pop()
C.push(x;, f(x;))
if x; € Xgou then
return
else
for u € U(x;) do
Xsuce < [f(xi,u)
if xg,cc ¢ C then
Grentative < &(Xi) + cost (X, Xsucc)
if Xgucc ¢ O or g < g(xgycc) then
8(Xsucc) <= rentative
h(Xsuce) < FindHeuristic(Xgyce, XGoal)
S Xsuee) = 8(Xsuce) + h(Xsuce)
O.push(Xuce f (Xsucc))
end if
end if
end for

end if

23: end while
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4.5.1 Heuristics

Heuristics are a set of strategies that are used to solve a problem faster or find a more
optimal solution. The data structure that is used is a priority queue. Because it can be used
to associate a node with the heuristic of that node. One can think of the heuristic as an
estimate that helps the search agent to decide which node will result in a more optimal path
and fewer explored/visited nodes during its exploration. A* uses a type of distance to goal
and traveled distance from the starting node as a strategy to explore fewer nodes, this is the
heuristic that is used in A*. At each node x; the search agent looks up in the data structure

and picks the node that has the lowest heuristic value. The heuristic is calculated as

f(xi) = g(xi) +h(x;), (4.1)

where g(x;) is the cost from the starting node, x;, to the current node x;. It is very straight
forward to calculate g(x;) for any x;.A search heuristic &(x;) is an estimate of the cost of
the shortest path from node x; to the goal set, Xg,,;. This is the tricky part, because if we
already knew the length of the shortest path we did not have to search the graph. This is
where we have to do our best. As it will become clear choosing a good heuristic function is
very crucial however most implementations use an approximation that is computationally
non-intensive. It is a very common practice ti play with the heuristic function to get a more
optimal solution depending on the current problem. Depending on the value of A(x;) the

behavior of the search drastically changes:

e /(x;) = 0, will result in a search that only g(x;) plays a role and practically Ax is

converted to Dijkstra.

e h(x;) < Real ExactCosttogoal, then it is guaranteed that Ax will find the optimal path.
The smaller the A(x;) is compared to the real cost, the more nodes are expanded by

the search agent which essentially makes the search slower.

e h(x;) = RealExactCosttogoal will result in the best and most optimal path. No extra

node will be explored by the search agent.
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e h(x;) > Real ExactCosttogoal will break the guarantee that the final found path will
be optimal. This heuristic might be useful in cases where the optimality of the path
is not important and we are more interested in finding any path and also considering

a fast search speed. If the difference is too large A* acts like the greedy search.

This is what makes Ax so popular and powerful. By just playing with the heuristic
and exploiting the trade off between speed and accuracy we can get totally different results
based on the assumptions and requirements of the application.

A very crucial point that is usually overlooked is the scale of g(x;) and A (x;) functions.
Extra care should be taken when defining these two functions and it should be checked that
the units of the two functions match. As an example if g(x;) gives the number of nodes
between x; and x; while A(x;) gives the euclidean distance between x; and goal set, adding
the two functions will create a number that doesn’t really represent the heuristic and Ax will
not perform as expected.

As mentioned there is no way to tell the shortest distance so we have to use some

kind of estimation. The most popular estimations are ’:

e Manhattan Distance. This is the standard heuristic used for square grids. The reason
is obvious in Figure 4.7. The search agent has only expanded the nodes on the path
and no extra node is expanded. This is a case where the heuristic is exact and always
returns that exact distance to goal. Adding an obstacle in the field would result in a

totally different behavior.

e Euclidean distance. This is simply the norm between current vertex and the goal set.
d(xi,XGoa1) = inf{||xi —al| : @ € Xgour}. This estimation is usually used in graphs
that have 8-neighborhood connectivity and the search agent can traverse the graph
diagonally. As shown in Figure 4.8 the search agent has expanded a lot of extra
nodes. This is also expected, because Euclidean heuristic assumes the search agent

can move at any angle. Obviously this is not the case and this heuristic returns values

"Please note that these methods are only valid for grid with square cells
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Figure 4.7: A* Search using manhattan heuristic

that are smaller than the exact distance. As discussed earlier this will result in more
node expansion and a longer search time. But the final found path is still guaranteed

to be the shortest path.

B = I X¢ou [ Visited Nodes [l Path [ Frontier

Figure 4.8: A* Search using euclidean heuristic

There are other heuristics such as Chebyshev and Octile but they are not discussed in this

thesis.
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4.5.2 Admissibility

As it was mentioned in Subsection 4.5.1 if the heuristic overestimates the cost of reaching
the goal the optimality guarantee of the path will be broken and the heuristic is called
non admissible. On the other hand an admissible heuristic will result in an optimal path.
Basically &(x;) is a lower bound on the cost of getting from x; to the goal. This is also
another powerful feature of A* algorithm. The designer has the power to decide if they
prefer an optimal path or they are just looking for a path and not necessarily the optimal

one.

4.6 Hybrid A*

All algorithms that have been covered in this thesis can find a path, some of them even find
the optimal path. But none of them guarantee that the generated path is actually drivable
by the robot! Another issue that was never discussed is that what if we want the robot to
arrive at the goal set in a specific angle? None of the current algorithms address these two
problems. In this section we will first address the second problem and then discuss possible
solutions for the first one.

Other than the dimension of the robot another geometric property of the robot plays
a significant role in the generated path. That property is the minimum turning radius. The
minimum turning radius is the radius of the smallest arc that a robot, or a car, can make.
This radius has a great significance on the path and it’s length. In 2007, Dolgov and Thrun
used the hybrid A* algorithm and came in second in the DARPA Urban Challenge [29,
12, 11, 13]. In the publications related to the search algorithm it is shown that one can
use a combination of discrete workspace and a continuous action space. The continuous
actions space would solve the problems that raise with dynamical systems and their inherit
constraints and the discrete workspace lets us use the discrete algorithms that have been
working and tested for decades, algorithms like BF'S, DF'S, A* and Dijsktra. In Subsections
4.6.1 and 4.6.2 the details of Hybrid A* will be discussed in detail.
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4.6.1 Dubin’s path

So far we have always assumed the robot can move from point a to any other point b in

a straight line. But in reality there are nonholonomic constraints that does not necessarily

allow movements on a straight line. Consider the scenario show in Figure 4.9 where the

robot starts from x, and the heading is § and has to arrive at the goal set with the same

heading. We are also interested in the shortest path between the two configurations.

Figure 4.9: Dubin’s path

Due to holonomic constraints of the system lateral movement is not possible but it

is also not trivial to find such a path. In 1957, Dubins published a paper and showed there

exist an analytical solution to find the shortest path necessary to connect any configuration

X, to any other configuration in Xg,,; [14]. In order to find such a path, Dubin has simplified

the model of a car. A Dubin’s car is a car that can only move forwards at a unit velocity.

This means the car cannot move backwards and it doesn’t ever accelerate or brake. Such a

car essentially has only 3 type of movements:

e Turning left at maximum

68



e Going straight

e Turning right at maximum

all the paths that a Dubins car can trace is a combination of such movements. Dubins has

given a name for each one of these movements:

e Turning left at maximum : L
e Going straight : S

e Turning right at maximum : R

and he has proved that all shortest paths between any two configurations can be described
by only 6 combination of such movements and they are RSR, LSL, RSL, LSR, RLR and
LRL. The idea of a Dubins path is used in the Hybrid A* algorithm to drive the car at

towards the specified algorithm in the goal set.

4.6.2 Action space

In previous algorithms the action space was very simple, just up, down, left and right move-
ments. Actions that do not take into account the dynamics of the robot and possible existing
constraints. This will result in discrete and underivable paths. Doglov et al. [12] have shown
that unlike discrete algorithms one can assume that the search agent can reach any continu-
ous point on the grid and not necessarily the vertex. Transitioning from one node to another
in this continuous workspace give us the ability to incorporate the non-holonomic nature of
the dynamical system. This means that just like the conventional A* the 2D (x,y) search
space is discretized but unlike A* which only allows the search agent to expand nodes on
the centers of cells, hybrid A* lets the search agent at any point in a cell and then associates

the (x,y, 0) of the expanded node to the cell.
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Algorithm 7 Hybrid A* Search

Require: x;NXgou € X
1: O = PriorityQueue()
2. C=0
3: O.push(x;)

4: Xotdguce = (0,0)
5: while O # 0 do
6: x; < O.pop()
7: C.push(x;)

8: if x; € X5,q then

9: return
10: else
11: for u € U(x;) do
12: Xsuce < f(xi,u)
13: if xgucc ¢ C then
14: Srentative < &(Xi) + cost (Xi, Xgucc)
15: if Xguce & O OF grentative < §(Xsucc) then
16: &(Xsuce) < 8rentative
17: h(Xsuce) < FindHeuristic(Xgyce, XGoal)
18: tempF (Xsuce) < &(Xsuce) + M (Xsuce)
19: if X140 suce == Xsuce then
20: if tempF (Xgucc) > f(Xsucc) then
21: continue
22: end if
23: end if
24: O.push(xsycc)
25: end if
26: Xold_succ = Xsucc
27: end if
28: end for
29:  endif 70

30: end while




4.6.3 Node expansion

As shown in Figure 4.10, Hybrid A* uses a continuous action space to explore new nodes.
In order to explore new nodes the continuous transition function is applied to the current
state and the new successor nodes are found. The state at node v; is characterized by (x,y, 0)
where x and y represent the Cartesian coordinate of the node and 6 shows the heading of the
search agent, it is safe to assume that in Hybrid A* the search agent is a car/robot. Using
the idea of the Dubins car each node is expanded by driving the car using three different

scenarios:

e Constant velocity and maximum steering to left.
e Constant velocity and no steering.

e Constant velocity and maximum steering to right.

that’s why there are only three lines out of each node in Figure 4.10. Each arc represents
the path the robot can drive in a given time dt with the minimum turning radius. Each
one of these actions is applied only for a fixed amount of time. The time depends on the
granularity of the gird and it is usually selected in such a way that it gives enough time
to the search agent to drive to a different cell, this will speed up the search. This idea of
combining Dubins paths and continuous action space guarantees that the path generated by
the search algorithm is drivable by the robot/car.

In A* the cost of actions in action space was simply the distance between two neigh-
boring cells. In Hybrid A* the cost is the length of the arc that connects two nodes. As it
will be apparent later, in order to get a smoother path it would be a good idea to give addi-
tional costs when a change in driving direction occurs, the penalty for changing is usually a
constant value. As shown in Algorithm 7 just like normal A* when the search agent reaches
a cell that is not in the closed set the expansion continues, this means that the cell has never

been expanded. Then there will be two scenarios:

e The cell is not in open list (The cell is not expanded through any other node)
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Figure 4.10: Generic discrete A* vs hybrid continuous A* [12]

e The cell is in open list, but the tentative cost is lower than the current cost of the cell.
(This means that the current cell was already in the frontier but the cost of old path is

higher than the tentative cost of the current path)

in both cases the search continues. Figure 4.10 reveals yet another critical difference be-
tween A* and Hybrid A*. During node expansion it is very likely that there are multiple
successor nodes in the same gird cell. This adds another level of complexity to the algo-
rithm. This is important because we are still associating continuous vertices with discrete
grid cells and in cases where there are multiple vertices in the same cell the algorithm
should first calculate the f score for all successor nodes residing in the same grid cell and

then push the node that has a smallest f score into the priority queue.
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4.6.4 Analytical expansion

Continuous node expansion resolves the problem of underivable paths, but we still do not
have a solution for reaching exact goal configurations. The current solution will generate
a drivable path from start configuration to the goal set but it does not guarantee that it can
reach a specific configuration in the goal state. In order to overcome this problem Dogolv
has proposed to use Dubins path algorithm to reach any goal configuration. This means
that during node expansion the algorithm should try to find a drivable obstacle free path
from the current node configuration to the goal configuration. On the other hand finding
the obstacle free Dubins path for every single node expansion is a computation intensive
operation. Instead of looking for such a path at every node expansion, the operation is
done every nth iteration and as the search agent gets closer to the goal the frequency is
increased because it is more likely to find a path when the search agent is closer to the goal

configuration.

4.6.5 Heuristics

As it was discussed in Subsection 4.5.1 selecting the right heuristic is crucial for an optimal
search and further more if the heuristic is not admissible the search can not even find the
optimal path. The nature of search algorithms discussed so far doesn’t allow for integrating
the dynamic and geometry of the search agent to generate a drivable path that follows the
non-holonomic constraints of the system. In those algorithms the heuristics could be a sim-
ple euclidean norm because it is assumed that the search agent can move in any direction. In
Hybrid A* a more sophisticated heuristic is used which takes into account the dynamic and
non holonomic constraints of the system. The Hybrid A* heuristic is a combination of two
different heuristics, a constrained heuristic and an unconstrained one. These heuristics cap-
ture two very different part of the problem. The constrained heuristic assumes there is no
obstacle in the environment and embodies the non-holonomic and dynamical constraints of
the system while the unconstrained heuristics neglects the vehicle constraints and only takes

into account the configuration space and the work space. The final heuristic is the minimum
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of one of the two heuristics. This will guarantee the admissibility of the algorithm and also

takes into account the dynamics of the system.

4.6.6 Constrained heuristics

The constrained heuristic neglects any and all obstacles in the workspace and only focuses
on the dynamics and constraints of the system. At each node expansion a Dubins path is
found from the expanded node to the goal state. Then the length of this path is used as one
of the possible heuristics.

The current heading and geometrical properties of a system do not have any effect
on a normal euclidean heuristic. But this heuristic considers the current heading, goal
configuration and also the geometrical properties of the robot, such as minimum turning
radius, into account. This heuristic cannot ever over estimate the length of the optimal path
and usually performs much better than a simple euclidean distance because it is closer to

the real path and thus less nodes are expanded.

Figure 4.11: Euclidean heuristic, visited nodes: 3011
Path Length: 7.567432 m
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Figure 4.12: Constrained Dubins heuristic, visited nodes: 2213

Path Length: 7.408262 m

Figure 4.12 and Figure 4.11 clearly show the difference and the effect that the un-
constrained heuristic plays in Hybrid A* search. The number of visited nodes is reduced
by 26.5% and the length of the path is reduced by around 3%. The improvement in the
length of the path might not be significant but the reducing the number of visited nodes

significantly speeds up the search, which is the main bottle neck in real time applications.

4.6.7 Unconstrained heuristics

Unconstrained heuristics disregards the non-holonomic constraints of the system and in-
stead focuses on available the obstacles in the work space. This heuristic should give us a
very good estimate of the length of a path while considering the available obstacles. But
how is that even possible, if we want to know the length of the path we should first search
and then find the length of the path, how can we find the path without searching? The
answer is we don’t know the length of the path and we must do the search but we need a

fast search! The fastest search algorithm that was covered in this thesis was A* and that
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is exactly what we are going to use. At each node expansion we will first search the dis-
crete work space without considering the constraints on the system and use the result of the

search as the heuristic for the Hybrid A*.

Figure 4.13: Unconstrained Heuristic, Visited Nodes: 107
Path Length: 7.617800 m

The algorithm to find the heuristics will be 3

Algorithm 8 Hybrid A* Heuristics
1: DubinsPath = FindDubinsPath(xj,XGoal)

2: DubinsPathLength = FindDubinsPathLength(DubinsPath)

3: AStarPath = FindAStarPath(x,Xcoa)
4: AStarPathLength = FindAStarPathLength(AStarPath)
5: heurstics(x ;) = max(AStarPathLength, DubinsPathLength)

As shown in Figure 4.13 the number of visited nodes has drastically decreased to 107
nodes. This is a huge improvement! The constrained heuristics will guide the search agent

away from dead ends and obstacles There is a caveat though, something which might not

8Note that this algorithm soubd be executed for every single node expansion
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be clear. At each iteration we are running Algorithm 8 which means a complete normal A*
search using Euclidean heuristics. This will significantly slow down the search algorithm.
There are some workarounds for this issue though. One could run the A* search for every
single cell in the workspace prior to the Hybrid A* search and then save the result in a look
up table, then during the Hybrid A* search the search agent will have to lookup that table
for the A* path result, this will make Hybrid A* a perfect and powerful solution for path

planning of mobile robots and cars.
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Chapter 5

Implementation & Results

In the previous sections we discussed how to find a path for a mass point robot, a rigid
body and a non-holonomic robot. In this section we will discuss how to integrate all of
the previous steps to generate a path and successfully follow it. Hybrid A* is the most
complicated and involved algorithm discussed in this thesis. In this chapter only the results
and details of implementing Hybrid A* will be discussed.

As discussed in the introduction in this work we assume:

e We have a complete and correct map of the environment
e The goal is to find a path, a set of waypoints, from a start configurations to a goal set

e Minimal effort is done on the path tracking section

In the following section the overall structure of the experiment and lab equipments
will be discussed.
The developed Hybrid A* path planner is able to generate a path from any initial start

configuration to a the goal set with a maximum frequency of 20HZ.
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5.1 General structure of experiments

5.1.1 Software

All tests done in this work were designed and implemented in MATLAB 2015b using
QUARC Real-Time Control Software [4]. The toolbox provides a soft Real-Time control
environment on Windows through MATLAB and Simulink.

5.1.2 Hardware

All tests were performed on a Windows 7 Dell Precision Tower 3000 Series work station.

5.1.3 Mobile robot

The test platform is a research platform designed and developed by Quanser, marketed as

QGYV (Quanser Ground Vehicle). TODO: add reference to Quanser manual for QGV
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Figure 5.1: Quanser Ground Vehicle, QGV

5.2 Path planner structure

As shown in Figure 5.2 the inputs to the path planner are the occupancy grid, start config-
uration x; and the goal set X, Once the inputs are prepared a check is done to make
sure the goal and start configurations and set reside within the occupancy grid. Then the
input is fed to the search algorithm. The search then performs Hybrid A* and generates a
drivable path. Usually the path is not smooth. The path is then passed to another algorithm
to smoothen the path. The final smooth path is guaranteed to be drivable by the robot and
is very close to the most optimal path.

In the following sections each section of the path planner is explained in more details.
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Figure 5.2: Hybrid A* path planner
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5.2.1 Localization

All tests were performed in a controlled in door environment. The OptiTrack [3] motion
capture system was used to localize the robot and the obstacles. A set of 24 Flex 3 cameras
are used for localization. The cameras emit IR light which is then reflected off of markers
mounted on the QGV and the obstacles back to the cameras’ sensors. The sensors then
estimate the location<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>