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Abstract

Hub Network Design and Discrete Location: Economies of Scale, Reliability and
Service Level Considerations

Moayad Tanash, Ph.D.

Concordia University, 2018

In this thesis, we study three related decision problems in location theory. The first part

of the dissertation presents solution algorithms for the cycle hub location problem (CHLP),

which seeks to locate p-hub facilities that are connected by means of a cycle, and to as-

sign non-hub nodes to hubs so as to minimize the total cost of routing flows through the

network. This problem is useful in modeling applications in transportation and telecommu-

nications systems, where large setup costs on the links and reliability requirements make

cycle topologies a prominent network architecture. We present a branch-and-cut algorithm

that uses a flow-based formulation and two families of mixed-dicut inequalities as a lower

bounding procedure at nodes of the enumeration tree. We also introduce a greedy ran-

domized adaptive search algorithm that is used to obtain initial upper bounds for the exact

algorithm and to obtain feasible solutions for large-scale instances of the CHLP. Numerical

results on a set of benchmark instances with up to 100 nodes confirm the efficiency of the

proposed solution algorithms. In the second part of this dissertation, we study the modular

hub location problem, which explicitly models the flow-dependent transportation costs us-

ing modular arc costs. It neither assumes a full interconnection between hub nodes nor a

particular topological structure, instead it considers link activation decisions as part of the

design. We propose a branch-and-bound algorithm that uses a Lagrangean relaxation to

obtain lower and upper bounds at the nodes of the enumeration tree. Numerical results are
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reported for benchmark instances with up to 75 nodes. In the last part of this dissertation

we study the dynamic facility location problem with service level constraints (DFLPSL).

The DFLPSL seeks to locate a set of facilities with sufficient capacities over a planning

horizon to serve customers at minimum cost while a service level requirement is met. This

problem captures two important sources of stochasticity in facility location by considering

known probability distribution functions associated with processing and routing times. We

present a nonlinear mixed integer programming formulation and provide feasible solutions

using two heuristic approaches. We present the results of computational experiments to

analyze the impact and potential benefits of explicitly considering service level constraints

when designing distribution systems.
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Chapter 1

Introduction

Location analysis and network design are challenging classes of NP-hard combinatorial

optimization problems. Such problems arise in many practical application areas such as:

public transportation, telecommunication, emergency service facilities, production plan-

ning, and computer system among others. Location problems aim to select a set of nodes

to locate facilities and to design the allocation pattern of customers to facilities. Network

design problems aim to connect customers to facilities and facilities between themselves

by activating a set of links in the underlying network. Well known examples from loca-

tion analysis are weber problems, p-center, and p-median problems which do not explicitly

consider the design of the interconnecting networks. On the other hand, network design

problems such as multicommodity fixed-charge network design and network loading prob-

lems do not consider the location of facilities at nodes. Although the separate study of

location analysis and network design have led to fruitful theoretical and applied advances

in the literature, combining them bring additional complexity and unique challenges to

these class of problems.

Discrete location problems are concerned with the selection of one or more facilities

(hubs, plants, routers, warehouses. . . ) from a discrete set of possible locations to serve a
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given set of customers, such that the total associated fixed and operational costs are min-

imum. Discrete location models have been studied within different disciplines such as

Operations Research, Management Science, Economics, Geography, Industrial Engineer-

ing, Computer Sciences, and Mathematics. For more details about discrete location, read-

ers may refer to Smith, Laporte, and Harper (2009), Daskin (2011), Eiselt and Marianov

(2011), and Laporte, Nickel, and da Gama (2015).

Network design problems involve selecting a set of links from a given underlying

network to connect customers with facilities and facilities between themselves. These

problems can be divided into single-commodity and multi-commodity. Single-commodity

network design problems consider only one type of good to be routed through the net-

work, whereas multi-commodity network design problems considers more than one type

of goods. Fixed-charge network design and network loading problems are well-known

examples of single-commodity network design problems. Hub-and-spoke and capacitated

multi-commodity network design problems are well known examples for multi-commodity

network design problems. Interested readers are referred to Magnanti and Wong (1984),

Costa (2005), Frangioni and Gendron (2009), and Yaghini and Akhavan (2012).

Combining location and network design decisions is useful for modeling situations in

which tradeoffs between network design costs, facility costs, and operational costs have

to be made. Such situations arises in the design of telecommunication networks, airline

network, less-than-truckload distribution systems, just to name a few. One important class

of these problems is hub location problems (HLPs), which seek to select a set of nodes

as hubs to consolidate and centralize traffic between many origin/destination (O/D) nodes

and to allocate demand nodes to hubs in order to route commodities through hub network.

HLPs have four classical assumptions: commodities have to be routed via at least one hub,

hubs are fully interconnected, economies of scale exists in the form of a constant discount

factor that is applied to the flow costs between hub nodes, and distance between nodes
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satisfy the triangle inequality.

One important goal of this dissertation is to study more realistic models that relax some

of the above mentioned assumption in hub location. We focus on the design of hub net-

works that are not necessary complete, instead, we approach hub location problems from

a network design perspective. In addition to location decisions, we consider arc selection

decisions. The location decisions involve the selection of a set of nodes at which hub facil-

ities can be located; the arc selection decision addresses the design of the hub network by

selecting the links to connect origins, destinations, and hubs, establishing a framework for

the routing of commodities through the network.

In the first part of this dissertation, we study the cycle hub location problem (CHLP).

The CHLP seeks to locate p-hub facilities that are connected with a set of hub arcs by

means of a cycle. Each O/D node must be allocated to exactly one hub and flows between

pair of nodes have to be routed through the cycle network so as to minimize the total flow

cost. The CHLP is a challenging NP-hard problem that combines location and network

design decisions. The location decisions focus on the selection of the set of nodes to locate

facilities, while the network design decisions focus on the design of the cycle-star network,

by selecting the access and hub arcs as well as the routing of flows through the network.

This problem was first introduced in Contreras and Fernández (2012) in the context of

general network design problems, but to the best of our knowledge, there is no paper in the

literature dealing with approximate or exact solution methods for solving it.

Potential applications of models where cycle start networks are used arise when the

setup cost of the arcs of the network are very high. When minimizing such setup cost,

tree-star topologies are particularly attractive as they minimize the number of links on the

network at the expense of containing exactly one path between pair of nodes. However,

in the design of reliable networks, cycle topologies are preferred to tree topologies as they

offer an alternative path between any pair of nodes when a link connecting two nodes fails
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for some reason. Applications of these problems arise in the design of telecommunication

networks and rapid transit systems planning. Xu, Chiu, and Glover (1999) offer an example

in digital data service design and Laporte and Rodrı́guez Martı́n (2007) provide additional

applications considering cycle-star structures.

We present two mixed integer programming formulations for the CHLP and computa-

tionally compare them with a general solver. One of the formulations is used in a branch-

and-cut algorithm to obtain optimal solutions for small to medium size instances and to

provide lower bounds for larger instances. It uses two families of valid inequalities to im-

prove the linear programming relaxation bounds at some nodes of the enumeration tree.

We develop separation heuristics to find violated inequalities efficiently. Moreover, we in-

troduce a metaheuristic based on a greedy randomized adaptive search procedure to obtain

initial upper bounds for the branch-and-cut algorithm and to obtain feasible solutions for

large-scale instances of the CHLP. In order to evaluate the efficiency and limitations of our

algorithms, extensive computational experiments were performed on benchmark instances

with up to 100 nodes and 8 hubs.

Fully interconnected networks and the independence of flow discounted costs can be

an oversimplification in applications where the costs represent the economies of scale due

to the bundling of flows on the hub arcs. Full interconnection between hub nodes could

lead to solutions in which hub arcs carry considerably less flow than access arcs, yet the

transportation costs are discounted on the hub arcs. It may also be the case that the amounts

of flow that are routed on various hub arcs are different, yet the same discount factor is

applied across the board. Under the assumption of flow-independent costs and the use of

fully interconnected hubs, the overall transportation cost may be miscalculated, and the set

of hub nodes selected and the corresponding allocation pattern of O/D nodes to hubs may

be suboptimal.

In the second part of this dissertation, we study the modular hub location problem
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(MHLP). The MHLP considers explicitly the flow dependence of transportation costs based

on modular arc costs. Thus, the total transportation cost is estimated not in terms of the

per unit flow cost, as in the classical HLPs, but in terms of the number of facility links

used on each arc. Our approach can be interpreted in terms of its ability to incorporate

multiple capacity levels on the arcs. Another advantage is that it neither assumes a fully

interconnected hub network nor a particular topological structure, instead it considers the

design of the hub network as part of the decision process.

The assumption of modular (or stepwise) transportation costs is consistent with appli-

cations in freight transportation and telecommunications networks. In the case of ground

transportation, trucking companies send commodities (e.g., goods, express packages, ordi-

nary mail) along hub arcs between break bulk terminals, and along access arcs between an

end-of-line terminal and a break bulk terminal, using one or more trucks. The number and

capacity of the trucks and the distance traveled can be used to obtain an accurate estimate

of the transportation cost between terminals. An analogous situation is the use of regional

and hub airports by air cargo companies to efficiently route commodities between many

origins and destinations. The transportation cost between airports can be estimated based

on the number and capacity of the cargo planes, together with the distance.

We present two mixed integer programming formulations for the MHLP. The first for-

mulation uses flow variables to compute the flow through hub arcs, whereas the second

formulation uses path variables to determine whether a specified hub arc lies on the path

between a pair of nodes. We propose a Lagrangean relaxation for the path-based formu-

lation of MHLP by relaxing the linking constraints of the location/allocation and routing

variables. This makes it possible to decompose the Lagrangean function into two indepen-

dent subproblems which can be solved efficiently. We also propose a heuristic algorithm to

obtain feasible solutions. To prove optimality, we develop a branch-and-bound algorithm

that uses the Lagrangean relaxation and a heuristic to obtain lower and upper bounds at the
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nodes of the enumeration tree. Computational results on benchmark instances with up to

75 nodes confirm the efficiency and the robustness of the proposed algorithms.

In today’s transition into a more competitive economy, companies now need to consider

customer preferences and service levels within their strategic decisions. Classically, facility

location decisions are studied within a static environment where they remain unchanged

throughout a time horizon. However, demand often change in a random manner depends

on different factors, such as population shift, and price. If facilities cannot cope with heavy

increase in demands, then facilities are called congested. A queue usually builds up in the

system resulting in long waiting times. A long waiting time is an important concern of

decision makers in FLPs.

In the last part of this dissertation, we study this decision-making process as a dynamic

facility location problem with service level constraints (DFLPSL). The DFLPSL seeks to

locate a set of facilities with sufficient capacities through a planning horizon to satisfy

customer demand with a minimal cost while ensuring a minimum service level requirement.

We consider three sources of uncertainties: demand level, service time, and travel time.

Facilities operate in an M/M/1 queue setting and travel time from a facility to a costumer

is assumed to follow a gamma distribution. One advantage of our model is that customers

are not necessarily served from their closest facility, rather, they are served from the facility

that provides a minimum average travel and waiting time. To the best of our knowledge,

the service level constraint to be presented in this dissertation is the first to consider the

variability of travel time, in addition to service time and demands levels in a closed form

expression.

Applications of the DFLPSL can be found in build-to-order systems. In these systems,

companies receive confirmed orders from customer’s ends, assemble the finished products

from multiple components and finally ship the finished products to the customer’s ends.
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One of the great advantages of the build-to-order systems is the ability to customize prod-

ucts to meet customers expectations without carrying finished good inventory. However, if

demands for a given time is large, then facilities may have a substantial lead time. Addi-

tionally, considering the stochastic nature of the travel time in delivering finished products

might add more delay to total lead time. A long lead time may cause the company to lose

potential sales and thereby reduce its profitability.

We present a nonlinear mixed integer programming formulation for the DFLPSL. This

formulation capture two important sources of stochasticity in facility location by consider-

ing known probability distribution functions associated with processing and routing times.

The resulting nonlinear formulation cannot be solved using commercial solvers, therefore,

we develop two heuristic approaches to obtain good quality solutions. A series of compu-

tational experiments are performed to compare the efficiency of the two proposed solution

algorithms.

This dissertation is organized as follows: Chapter 2 presents the literature review related

to network hub location and facility location problems with uncertainty. In chapter 4, we

present mathematical programming formulations and an exact solution algorithm for the

cycle hub location problem. In Chapter 5, we present integer programming formulations

and an exact solution algorithm for the single assignment modular hub location problem.

Chapter 6 introduces the dynamic facility location problem service level constraints and

two heuristic solution algorithms for solving it. Finally, in Chapter 7 we derive some

conclusions and comments on future research.
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Chapter 2

Literature Review

Facility location and network design are two classes of NP -hard problems which lie at

the heart of network optimization. Facility location problems aim to select a set of nodes

to locate facilities while network design problems aim to activate a set of links to connect

facilities between them. The aim in both facility location and network design problems is

to satisfy customers demands at minimal cost. General network design problems (GNDPs)

offer a unified view of these research directions (Contreras & Fernández, 2012). GNDPs

include design decisions in which the decisions of selecting facilities and activating links

in the underlying network; and operational decisions, in which the decisions of allocating

customers to facilities and routing there demands through the network have to be made.

A well-known classical location problem is the uncapacitated facility location problem

(UFLP), which involves locating a set of facilities and allocating customers to facilities

in such a way that the total setup and allocation costs are minimized. Facilities are as-

sumed to have unlimited capacity to serve customers, therefore, any facility can satisfy all

demands. Another well-known discrete location problem is the p-median problem, which

aims to select the location of p facilities to serve a set of customers so as to minimize

the total transportation cost. Covering location problems, and p-center problem are other

well-known facility location problems that involve location-allocation decisions. For more
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details, readers are referred to Laporte et al. (2015).

Network design problems mainly focus on network design decisions in which a set of

links have to be selected from a given underlying network to connect customers to facili-

ties and facilities among themselves. Because of their importance in many practical areas,

much research has been carried out in this field. Network loading problems (Magnanti,

Mirchandani, & Vachani, 1995) and fixed charge network problems (Costa, 2005; Holm-

berg & Hellstrand, 1998; Sun, Farris, Cote, Shoults, & Chen, 1982) are examples in which

consider link activation decisions. Other network optimization problems deal with both

location and network design decisions. For instance, location-vehicle routing problems

(Nagy & Salhi, 2007) seek to locate a set of depots and design the route to visit customers.

In some other problems, routing decisions have to be made to indicate the route that is used

to send flow between customers. However, the routing and network design decisions are

closely related, since the network design decisions activate the links that will be used in the

path between any pair of nodes.

Generally speaking, GNDPs tackle the design and operational decisions. These prob-

lems are useful for modeling a number of applications in which a tradeoff between network

design costs, allocation cost, transportation cost and facility setup costs have to be made.

Facility location problems, hub location problems, and location-routing problems are well-

known examples of GNDPs. Although these problems share most essential aspects, a small

difference between them has a significant impact on the type of formulations and the diffi-

culty level of the problems.

GNDPs can be categorized based on the type of customer demand into user-facility de-

mands (GNDPs-UF) and user-user demands (GNDPs-UU). In GNDPs-UF, facilities pro-

vide service to users. Therefore, demands are routed between facilities and users. In fact,
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these problems are strategic decision problems concerned with locating facilities and allo-

cating users to facilities such that the setup and transportation costs are minimized. When-

ever links’ setup costs are zero, the network design decisions will allocate each customer to

its facility by a direct connection. Nevertheless, when the links’ setup costs are non-zero,

the network design decisions become non-trivial. For instance, location-network design

problems (Contreras, Fernández, & Marı́n, 2010; Melkote & Daskin, 2001), and location-

vehicle routing problems (Nagy & Salhi, 2007).

In GNDPs-UU, facilities provide connections between users where commodities are

consolidated from different origins, transfered demands through the network, and dis-

tributed to their final destinations. GNDPs-UU, involve location, allocation, network de-

sign and routing decisions. The network design and routing decisions influence the optimal

solution structure by selecting the way to connect users to facilities and facilities to each

other. Classical HLPs can be seen as GNDPs-UU. Some particular problems consider non-

trivial location decisions. Concentrator location problems (Labbé & Yaman, 2006; Yaman,

2004), tree-star location problems (Contreras et al., 2010), ring-star problems (Labbé, La-

porte, Martı́n, & Salazar-González, 2004), and star-star location problems (Labbé & Ya-

man, 2008; Yaman, 2008), are well-known examples of these problems.

GNDPs-UU can be classified based on the type of allocation scheme, i.e. single and

multiple allocation problems. In single allocation problems, users must be allocated to

exactly one facility whereas multiple allocation problems allow users to be allocated to

more than one facility. GNDPs-UU can be also classified based on the topological structure

induced by the facilities and the edges of the network used to connect them, i.e., fully

interconnected, tree networks, cycle networks, etc.
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2.1 Hub Location Problems

HLPs arise in the design of hub-and-spoke networks. They have a wide variety of ap-

plications in airline transportation, freight transportation, rapid transit systems, trucking

industries, postal operations, and telecommunications networks. These systems serve de-

mand for transportation of passengers, commodities, and/or transmission of information

(data, voice, video) between multiple origins and destinations. Instead of connecting every

origin/destination (O/D) pair directly, hub-and-spoke networks serve customers via a small

number of links, where hub facilities consolidate the flows from many origins, transfer

them through the hub level network, and eventually distribute them to their final destina-

tions (see Figure 2.1). The use of fewer links in the network concentrates flows at the hub

facilities, allowing economies of scale to be applied on routing costs, besides helping to

reduce setup costs and to centralize commodity handling and sorting operations. Broadly

speaking, HLPs consider the location of a set of hubs and the design of the hub-and-spoke

network so as to minimize the total flow cost.

Figure 2.1: Network with direct links vs. hub-and-spoke network

Typical examples of applications of hub-and-spoke networks appear in the design of

transportation and telecommunication networks. In the case of transportation networks

(i.e., air and freight transportation), the demand corresponds to commodities, such as pas-

sengers and goods, that are routed in a transportation mode (i.e., airplanes, truck). Hubs

correspond to sorting centers or transportation terminals. The use of hub-and-spoke net-

work encourage these networks to consolidate flows at hub facilities and hub arcs, allowing
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economies of scale to be applied on the transportation costs (D. L. Bryan & O’Kelly, 1999).

In the case of telecommunication networks, applications of hub-and-spoke networks appear

in the design of a broad range of networks such as telephone networks, computer commu-

nication, etc (J. Klincewicz, 1998). In these networks, demand corresponds to transmission

of information (data, voice video) that are transmitted via a physical media (i.e. fiber optic

cables) or wireless signals through the air (i.e. microwave, radio, infrared). Hub facil-

ities correspond to electronic devices such as multiplexors, switches, concentrators, etc.

Economies of scale in information transmission and network utilization, along with the

large set-up cost for hub facilities and communication links encourage the use of hub-and-

spoke architecture.

Since the seminal work by O’Kelly (1986b), several classes of fundamental discrete

HLPs, such as p-hub median problems, uncapacitated hub location problems, p-hub cen-

ter problems, and hub covering problems, have been studied in the literature. For a de-

tailed classification and review of discrete HLPs, the readers are referred to S. Alumur and

Kara (2008), Campbell and O’Kelly (2012), Farahani, Hekmatfar, Arabani, and Nikbakhsh

(2013), and Contreras (2015). Even though these problems are different on a number of

characteristics, mainly due to their particular applications, the vast majority of them share

in common four assumptions. The first one is that flows have to be routed via hubs and

thus, paths between O/D nodes must include at least one hub. Second, it is possible to con-

nect hubs with more effective pathways that allow a constant discount factor to be applied

to the flow cost between hubs. The third assumption is that hub arcs have no setup cost and

thus, hub facilities can be connected at no additional cost. The last one is that distances

between nodes satisfy the triangle inequality.

The above mentioned assumptions simplify the network design decisions. For exam-

ple, the last two assumptions allow the backbone network to be fully interconnected (i.e.

a complete graph), whereas the access network is determined by the allocation pattern
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of O/D nodes to hub facilities. Moreover, the combination of the first, third and fourth

assumptions results in O/D paths containing at least one hub or at most two hub nodes.

This results in HLPs having a number of attractive theoretical features, which have given

rise to various mathematical models (Campbell, 1994; Ernst & Krishnamoorthy, 1998a;

Hamacher, Labbé, Nickel, & Sonneborn, 2004; Labbé & Yaman, 2004), and sophisticated

solution algorithms (Contreras, Cordeau, & Laporte, 2011a; Contreras, Dı́az, & Fernández,

2011; Ilić, Urošević, Brimberg, & Mladenović, 2010; Labbé, Yaman, & Gourdin, 2005).

The idea of hub-and-spoke networks was initially addressed in Goldman (1969), then

followed by O’Kelly (1986a, 1986b). O’Kelly (1987) introduced the first quadratic mixed

integer programming formulation for the single allocation p-hub median problem (p-HLP).

Campbell (1994) proposed the first linear mixed integer programming formulation for the

same problem using a set of four indices binary variables. The main idea of this formulation

is to track the path of routing commodities between any O/D node. Skorin-Kapov, Skorin-

Kapov, and O’Kelly (1996) introduced an important family of formulations called path-

based formulations. They formulated the p-HLP using an additional set of constraints that

model the relation between the location\allocation and routing variables. An attractive

feature of this formulation is that it has a very tight linear programming relaxation bound,

yielding integer optimal solutions in most of the tested instances.

Ernst and Krishnamoorthy (1996) proposed another important family of formulations

called flow-based formulations for the p−HLP. The main idea of this formulation is to re-

place the four indices variables by treating the inter-hub transfers as a multi-commodity

flow problem where each commodity represents the outgoing flow from a particular node.

In comparison to Skorin-Kapov’s et al. (1996) formulation, a flow-based formulation re-

duces the number of required constraints and variables by a factor n. It is worth not-

ing that both path-based and flow-based formulations have been successfully combined

with sophisticated solution algorithms to obtain optimal solutions for large-scale instances
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(Cetiner, Sepil, & Sural, 2010; Contreras, Cordeau, & Laporte, 2011a; Labbé, Yaman, &

Gourdin, 2005). They have also been adapted to model more realistic variants of HLPs

including additional features of real applications (S. Alumur & Kara, 2009; Martins de Sá,

Contreras, Cordeau, Saraiva de Camargo, & de Miranda, 2015a; Yaman, 2008; Yaman &

Elloumi, 2012).

The earliest reviews on hub location are by Campbell (1994) and O’Kelly and Miller

(1994). Campbell (1994) provided a comprehensive survey of hub network problems and

presented a classification scheme for different models. O’Kelly and Miller (1994) presented

a structured review of research on the hub network design problem. Later, J. Klincewicz

(1998) presented key aspects in modeling hub location problems in the particular appli-

cations of communications and transportation networks. D. L. Bryan and O’Kelly (1999)

provided an analytical review for hub-and-spoke networks in the airline industry. In their

survey paper, S. Alumur and Kara (2008) provided a classification of hub location prob-

lems, in which they include some of the most recent trends for these problems. Contr-

eras and Fernández (2012) presented a unified framework for the general network design

problems and combined location problems with network design problems, in which HLPs

are a particular case. Campbell and O’Kelly (2012) introduced some observations of the

present status in hub location problems and provided some visions into early motivations

in this field. Moreover, they suggested some promising research directions for future work.

Farahani et al. (2013) reviewed solution algorithms and applications for several classes of

HLPs. As a most recent book chapter in this area, Contreras (2015) reviewed key features,

assumptions and properties that are commonly consider in HLPs.

As mentioned earlier, HLPs assume that each pair of hubs are connected via a hub arc.

As a result, hub arcs form a complete graph. Although the fully interconnected assumption

simplifies the network design decisions, it may be prohibitive in applications where there

is a considerable setup cost associated with the hub arcs (see, for instance, J. Klincewicz,

14



1998; O’Kelly & Miller, 1994). To overcome this deficiency, several models considering

incomplete hub networks have been introduced. Campbell, Ernst, and Krishnamoorthy

(2005a, 2005b) relaxed the assumption of full interconnection between hubs and incor-

porate hub arc selection decisions. S. A. Alumur, Kara, and Karasan (2009), and Calık,

Alumur, Kara, and Karasan (2009) studied the design of incomplete hub networks with

single assignments in which no network structure other than connectivity is imposed on

the backbone network. Other works have also proposed different models that do not con-

sider a complete backbone network but rather, a particular topological structure. Contreras,

Fernández, and Marı́n (2009), Contreras et al. (2010), and Martins de Sá, de Camargo, and

de Miranda (2013) studied the design of tree-star hub networks in which the hubs have

to be connected by means of a tree and each of the O/D nodes follow a single allocation

pattern to hubs. These papers focus on the minimization of the total flow cost whereas Kim

and Tcha (1992), Y. Lee, Lim, and Park (1996), and Y. Lee, Lu, Qiu, and Glover (1993)

focused on the setup costs associated with the design of tree-star networks. Labbé and Ya-

man (2008) and Yaman (2008) considered the design of star networks in which hub nodes

are directly connected to a central node (i.e. star backbone network) and the O/D nodes

are assigned to exactly one hub node. Yaman (2009) studied the problem of designing a

three-layer hub-and-spoke network, where the top layer consists of a complete network

connecting the central hubs, and the second and third layers are unions of start networks

connecting the remaining hubs to central hubs and the O/D nodes to hubs, respectively.

Yaman and Elloumi (2012) considered the design of two-level star networks, while taking

into consideration the service quality in terms of the length of paths between pair of O/D

nodes. Martins de Sá, Contreras, Cordeau, Saraiva de Camargo, and de Miranda (2015b)

studied the problem of designing a hub-line network in which hubs are connected by means

of a line and the aim is to minimize the total service time between pairs of nodes. Other

studies on incomplete hub networks include Campbell (2009); Contreras and Fernández
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(2014); and Davari, Zarandi, and Turksen (2013).

The independence of flow discounted costs is appropriate in applications in which the

links between hubs are associated with faster transportation modes, but it can be an over-

simplification in applications where the costs represent the economies of scale due to the

bundling of flows on the hub arcs. Several papers have already pointed out that the discount

factor should be regarded as function of the flow volume (see, D. L. Bryan & O’Kelly, 1999;

Campbell, 2013; O’Kelly, 1998; O’Kelly & Bryan, 1998). O’Kelly and Bryan (1998) were

among the first to develop a hub location model that expresses the discount factor on hub

arcs as a function of flow. It was later extended by D. Bryan (1998), J. G. Klincewicz (2002)

and de Camargo, de Miranda Jr, and Luna (2009). However, their models use a nonlinear

cost function to compute the transportation costs on a hub arc as a function of its flow. This

function is approximated by a piecewise linear function to obtain a linear integer program-

ming formulation for the problem. Horner and O’Kelly (2001) proposed a nonlinear cost

function based on link performance functions; it is designed to reward economies of scale

in all arcs in the network. Podnar, Skorin-Kapov, and Skorin-Kapov (2002) formulated a

network design model in which the discount factor applies only on arcs that have flows

larger than a given threshold; however, the model focuses on the design of the network

rather than on the location of the hub facilities. Racunica and Wynter (2005) introduced

a nonlinear concave cost hub location model that determines the optimal location of inter-

modal freight hubs. The cost function models the flow-dependent discounted cost only on

origin-to-hub and hub-to-destination legs.

Yoon and Current (2006) and O’Kelly, Campbell, Camargo, and Miranda (2015) adopted

a different approach for modeling economies of scale on all the arcs in a hub-and-spoke

network. Rather than relying on a nonlinear cost function, they use linear cost functions

which combine variable transportation costs for flows on arcs and fixed costs for activating

those arcs. In these approaches, the use of fixed costs of arcs allows the link costs per unit
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of flow to decrease as the flow increases on that link, resulting in the economies of scale.

Kimms (2006) presented three different models for hub location problems with fixed and

variable costs. In one of the models, the goal is to determine the optimal number of vehicles

used on each arc to route flow through the fully interconnected network. Cunha and Silva

(2007) designed a hub-and-spoke network for a less-than-truckload trucking company in

Brazil based on a nonlinear cost function that allows the discount factor on hub arcs to

vary according to the total amount of freight between hubs. Hoff, Peiró, Corberán, and

Martı́ (2017) studied the capacitated single assignment hub location problem in which the

capacity of the edges between hubs is increased in a modular way. They assumed that hubs

are fully interconnected and does not consider O/D paths containing more than two hub

nodes and one hub arc. Campbell et al. (2005b) and Campbell et al. (2005a) study hub arc

location problems, in which the goal is to locate a set of hub arcs, therefore, no longer con-

sidering a fully interconnected hub network. To some extent, this mitigates the limitations

of flow-independent costs.

2.2 Facility Location Problems with Uncertainty

Facility location problems have a wide variety of applications in both the private and

public sectors. Whether choosing the locations of manufacturing facilities or locating new

retail stores, decision makers are always challenged by difficult tradeoffs between cost and

efficiency. Thus, they have to identify the best potential locations, the appropriate capacity

levels and allocate a large amount of capital. Because of the investment in any location

project incurs in high costs, facilities are expected to remain in operation for an extended

time period, therefore, determining facility locations that will continue to be profitable for

a lifetime is an important strategic decision.

Since the pioneering work of Hakimi (1964), who introduced median and center lo-

cation problems, an extraordinary number of generalizations and extensions have been
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proposed in the literature such as fixed charge facility location problems, multi-objective

problems, location-routing problems and hierarchical facility location models. Readers

may refer to the books by Mirchandani and Francis (1990) and Daskin (2011) Laporte et

al. (2015) for an overview of facility location problems and extensions. Although these

models differ from each other according to various assumptions, the vast majority assume

that input parameters, including demands, travel time, transportation and operation costs

are known with certainty. Therefore, once facilities have been located, they are assumed

to remain open for an extended period regardless of the future changes of any of the input

parameters. These models are known as a single period or static. Over time, however, some

values of the input parameters might vary in an unpredictable manner. Changes in param-

eters over the time can radically change the attractiveness of a particular location, making

the optimal site today, the blunder of investing tomorrow. Thus, it maybe more appropriate

to account for parameter variations during the design process by embedding uncertainty

directly into the mathematical models.

Dynamic and stochastic approaches are used to deal with parameters uncertainties in

location models. The dynamic approach considers a planning horizon that is divided into

several time periods each of which has independent deterministic input parameters. The

dynamic approach allows changes in the network structure between consecutive time pe-

riods. The stochastic approach, on the other hand, assumes that values of the uncertain

parameters are random variables with known probability distributions. The two above ap-

proaches are different in the sense that the latter considers design parameters as stochastic

rather than only subject to known changes from one period to another as in the former.

As mentioned before, classical facility location problems assume that the values of

input parameters are certain. If changes in these values can be predicted, it may be more

appropriate to plan in advance for future modifications to the network structure. Thus, the

question becomes not only “where” to locate facilities but also “when”. For instance, If the
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total demand for a given commodity or service varies over time, then it might be necessary

to locate new facilities, close some of the existing facilities, relocate and/or adjust the total

available capacity to meet the upcoming changes. For example, an increase in the total

demand in a given period might require the decision makers to increase the total available

capacities, relocate facilities, or open new facilities to meet the additional demands. Indeed,

such decisions require a capital, however, the extra cost associated with such decisions

might be compensated by the reduction in transportation costs. Similarly, a decrease in

the total demand for a given period might lead to closure of some existing facilities and/or

reduction in the total available capacity to achieve saving on facility operational costs at

the expanse of the associated closing costs.

The first paper pointing out the important of considering the effect of the future time

dimension in location analysis was presented by Ballou (1968). He considered the location

of a single warehouse over a finite planning horizon such that the total profit is maximized.

Since then, several classes of the dynamic facility location problems have been studied

in the literature. Roodman and Schwarz (1975), Khumawala and Clay Whybark (1976),

Roodman and Schwarz (1977), Van Roy and Erlenkotter (1982), Kelly and Marucheck

(1984), Galvão and Santibanez-Gonzalez (1992) and Chardaire, Sutter, and Costa (1996)

study the uncapacitated version of the problem where a set of uncapacitated facilities should

be located dynamically in time to satisfy customer demands so that the total costs are min-

imized. C. Fong and Srinivasan (1986); C. O. Fong and Srinivasan (1981), S.-B. Lee and

Luss (1987), Syam (2000), Correia, Melo, and Saldanha-da Gama (2013), Delmelle, Thill,

Peeters, and Thomas (2014), Cortinhal, Lopes, and Melo (2015) and Castro, Nasini, and

Saldanha-da Gama (2017) study the capacitated version of dynamic facility location prob-

lems where the goal is to identify in which periods the capacity of a given set of facilities

has to be expanded to meet the additional demands. Luss (1982), Canel, Khumawala, Law,

and Loh (2001), Antunes and Peeters (2001), Melo, Nickel, and Da Gama (2006), Dias,
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Captivo, and Clı́maco (2007), Behmardi and Lee (2008), and Correia and Melo (2017)

consider the possibility of both expanding and reducing the available capacities through

the planning horizon. Wilhelm, Han, and Lee (2013) study the case in which facilities can

be opened, closed, expanded and/or contracted their capacities over time. Other studies

such as Wesolowsky and Truscott (1975), Min and Melachrinoudis (1999), Brotcorne, La-

porte, and Semet (2003) and Melo et al. (2006) consider the case in which facilities are

allowed to be relocated in a given time period, while other studies considered temporar-

ily closing existing facilities (Canel et al., 2001; Chardaire et al., 1996; Dias, Captivo, &

Clı́maco, 2006; Van Roy & Erlenkotter, 1982). Chrissis, Davis, and Miller (1982), Gu-

nawardane (1982) and Rajagopalan, Saydam, and Xiao (2008) study the dynamic version

of the set covering facility location problem.

Recently, Jena, Cordeau, and Gendron (2015) introduced a dynamic facility location

model with generalized modular capacities. This model considers not only the location

decisions, but also the possibility of relocating existing facilities and dynamically adjusting

the available capacities of existing facilities based on the demand changes and the costs

involved in capacity changes. Moreover, the authors consider the possibility of temporarily

closing and reopening the existing facilities multiple times through the planning horizon.

Therefore, this model generalizes a large set of existing dynamic models.

Dynamic facility location problems focus solely on timing issues of locating facilities

over a planning horizon. The input parameters for these problems can be forecasted for

each period. Since facilities are expected to be in operation for an extended time period,

input parameters such as costs and demands are likely to change in a random manner.

Therefore, including the probabilistic information that describe the uncertain parameters in

location models lead to achieve more realistic models. To this end, uncertainty is described

using a probability distribution on the parameters that can be used to minimize the total

expected cost using stochastic programming techniques (Berman & Larson, 1985; Larson,
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1974; Marianov & Serra, 1998).

Traditionally, most of the facility location models assume facilities have sufficient ca-

pacities to respond immediately to demands. In real life problems, however, customers

generate streams of stochastic demands for service and facilities have limited capacity and

stochastic service times. This combination usually leads to congestion. Thus, customers

might need to wait, if they can, until the facility is free to serve them. To address this issue,

facility location problems with congestion have been studied in the literature. Usually, a

waiting time or a queue length formula derived from a queuing model is introduced into an

optimization framework. This brings additional complexity and unique challenges to this

class of location problems. For a recent book chapter in this direction, readers may refer to

Berman and Krass (2015).

There are three families of approaches to model congestion at facilities. In the first

family, congestion is explicitly limited to a target level by including constraints derived

from a queuing system. For instance, Marianov and Serra (1998, 2001, 2002) and Marianov

and Rı́os (2000) present location-allocation models that incorporate congestion at facilities

by imposing constraints on the probability that either waiting time or queue length is at least

a specific threshold value. They model each facility as multiple servers queuing system.

Marianov and Serra (1998), Marianov and Rı́os (2000) and Marianov and Serra (2002)

assume that the number of servers at each facility is predetermined and the same for all

facilities, however, in Marianov and Serra (2001), the number of servers at each facility

is considered to be a part of the design process. Silva and De la Figuera (2007) study the

capacitated facility location problem with constrained backlogging probabilities. In this

model, each facility is assumed to behave as an M/M/1 queue that is required to maintain

backlogging probability below a certain level. Indeed, embedding probability constraints

into facility location problems result in locating facility with high service quality. However,

the complexity of the problems, due to the resulting nonlinear models, limited researchers
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to heuristic methods for solving the problems.

In the second family of approaches, congestion cost is attached to the objective func-

tion to be minimized. Amiri (1997), Amiri (1998), Wang, Batta, and Rump (2002, 2004),

Aboolian, Berman, and Drezner (2008), Elhedhli (2006), Syam (2008), Baron, Berman,

and Krass (2008) and Castillo, Ingolfsson, and Sim (2009) model each facility as a queuing

system where congestion cost is included in the objective function. In Amiri (1997), Amiri

(1998), Wang et al. (2002, 2004), Elhedhli (2006) and Syam (2008), the objective function

includes waiting time cost of customers, while in Aboolian et al. (2008) and Castillo et al.

(2009), the objective function includes the travel time cost and waiting time cost. To ensure

a minimum level of service quality at each service facility, Wang et al. (2004) impose an

upper bound on the server utilization rate and Wang et al. (2002) ensure that the expected

waiting time at any facility does not exceed a predefined threshold value. All of the previ-

ous works assume that customers are served from the closest facility. Berman and Drezner

(2007) assume that customers do not necessarily travel to the closest facility, but to the fa-

cility that provides the minimum travel and waiting time. The objective is to minimize the

total travel time and expected waiting time spent at the selected server for all customers.

Aboolian, Berman, and Drezner (2009) study a center location model with multiple servers

in which customers travel to their closest facility with the objective of minimizing the total

travel and waiting time at the server for all customers.

Finally, congestion effects can be included into other factors, such as demand level or

population size, where the objective is to minimize lost demand or to maximize covered

population. For example, Marianov (2003) studied the congested p-median facility location

problem in which the objective is to maximize the total expected demands that is elastic

to distance and congestion at the facilities. Berman and Drezner (2006) studied a facility

location problem with M/M/1 queuing framework where the objective is to maximize the

expected demands served by facilities subject to a budget constraint on the average waiting
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time of customers.

In today’s transition into a more competitive economy, companies need to consider

customer preference and service level within there strategical decisions. One of the most

important service quality measures in facility location problems is the order lead time of

products or service. The order lead time is usually defined as the time between placing an

order and the delivery time. To ensure satisfaction of different customers regarding delivery

time, facility location models usually include distance, time constraints and/or other costs

as service level requirements. The so-called set covering problem aims to minimize the

total cost of locating a set of facilities such that no customer will be farther than a maxi-

mum service radius from a facility (Moon & Chaudhry, 1984), while the maximal covering

location problem aims to locate a set of facilities in such a way that coverage is maximized

within a predefined coverage radius (Church & ReVelle, 1974). Moore and ReVelle (1982)

studied the hierarchical covering problem where the objective is to minimize the number of

uncovered population subject to budget and coverage radius constraints. Goldman (1969)

followed by Hakimi and Maheshwari (1972) studied the k-center problem where the ob-

jective is to locate k facilities to minimize the maximum service distance (or the travel

time) between any demand point and its closest facility. In these studies, the service level

requirement is modeled using the maximum distance between customer and facility.

Kolen (1983) use a different approach to model service level requirements by relaxing

the distance constraint in the covering problem and introducing a penalty cost in the ob-

jective function for not serving some of the demand points. Geoffrion and Graves (1974)

extended a multicommodity plant and distribution location problem to include customer

service level constraints by inducing an upper bound on the average delivery lead time be-

tween each demand point and a facility. Cheong, Bhatnagar, and Graves (2005); Correia

and Melo (2016) studied the impact of customer sensitivity to the delivery lead-time. They

divided customers into two segments based on their sensitivity to the lead time. The first
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segment consists of customers who require timely demand satisfaction, whereas the sec-

ond segment comprises customers who accept delayed deliveries. In Cheong et al. (2005),

the objective is to minimize the fixed and variable costs in addition to the lost sales cost,

while in Correia and Melo (2016), the objective function aims to minimize, in addition to

the fixed costs, the variable costs that consider the tardiness costs resulting from delayed

deliveries.

In all the above mentioned studies, travel time is assumed to be a deterministic pa-

rameter that is determined by the distance between service facility and demand node. In

real-life problems, however, travel times are another source of uncertainty, due to traffic

and weather conditions, which might influence the location/allocation decisions (Berman

& Odoni, 1982; Mirchandani & Odoni, 1979). In this dissertation, we study a more realistic

model that considers travel time, demand and service times as uncertain parameters with

known probability distributions.
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Chapter 3

Exact and Heuristic Approaches for the

Cycle Hub Location Problem

In this chapter we study the CHLP, which consist of locating exactly p hub facilities

that are connected with a set of hub arcs with a cycle topology. Each O/D node must be

allocated to exactly one hub (i.e. single assignment) and flows between pair of nodes have

to be routed through the cycle-star network so as to minimize the total flow cost. This prob-

lem is useful in modeling applications in transportation and telecommunications systems,

where large setup costs on the links and reliability requirements make cycle topologies a

prominent network architecture.

The CHLP is a challenging NP -hard problem that combines location and network de-

sign decisions. The locational decisions focuses on the selection of the set of nodes to

locate facilities, whereas the network design decisions deals with the design of the cycle-

star network, by selecting the access and hub arcs as well as the routing of flows through

the network. To the best of our knowledge, the CHLP was first introduced in Contreras and

Fernández (2012) in the context of general network design problems, but there is no paper

in the literature dealing with approximate or exact solution methods for solving it. Most

of the material presented in this chapter is published in Contreras, Tanash, and Vidyarthi
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(2016).

The CHLP shares some similarities with other network design problems in which a

cycle-star network is sought. The so-called ring-star problem (RSP), introduced by Labbé

et al. (2004), aims to locate a simple cycle through a subset of nodes with the objective of

minimizing the sum of setup costs of the cycle and assignment costs from the vertices not in

the cycle to their closest vertex on the cycle. Another closely related problem is the median

cycle problem (MCP), studied by Labbé, Laporte, Rodrı́guez Martı́n, and Salazar-González

(2005). This problem arises in the design of ring-shaped infrastructures and consists of

finding a simple cycle that minimizes the setup costs for the cycle, such that the total

assignment cost of the non-visited nodes do not exceed a given budget constraint. Current

and Schilling (1994) and Gendreau, Laporte, and Semet (1997) study covering versions of

the RSP in which all nodes must be within a prespecified distance from the cycle. Baldacci,

Dell’Amico, and González (2007) present the capacitated m-ring star problem, which deal

with the location of m cycles that pass through a central node and the assignment of nodes

to cycles. Y. Lee, Chiu, and Sanchez (1998) and Xu et al. (1999) study the Steiner ring-star

problem, in which the cycle only contains Steiner nodes chosen from a given set. Current

and Schilling (1994) consider the median tour problem, where a cycle with p nodes has

to be located. It is a bicriterion problem, which consists of minimizing the setup cost of

the cycle and of minimizing the total assignment cost of nodes to their closest facilities.

Liefooghe, Jourdan, and Talbi (2010) study a bi-objective ring-star problem, in which the

setup cost of the cycle and the assignment costs are considered. See Labbé, Laporte, and

Rodrı́guez-Martı́n (1998) and Laporte and Rodrı́guez Martı́n (2007) for additional models

related to the location of cycle structures on a network.

All the above mentioned problems focus on the minimization of the setup cost for the

design of the network and on the assignment of nodes to facilities. Service is given at or

from the facilities, so that service demand occurs at nodes. In the case of HLPs, and in
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particular the CHLP, service demand is between pairs of nodes and the facilities are used

as intermediate locations in the routes that connect node pairs. Therefore, in addition to

the network design and assignment decisions considered in the above problems the CHLP

considers additional routing decisions and focuses on the minimization of the total flow

cost between many node pairs. This makes the problem more challenging as the O/D paths

need to be known to compute the routing cost. In fact, even if the location of the hub

facilities and the assignment of O/D nodes to hubs is known, the problem remains NP-hard

as it reduces to the minimum flow cost Hamiltonian cycle problem (see Ortiz-Astorquiza,

Contreras, & Laporte, 2015).

The aim of this chapter to present two mixed integer programming formulations for the

CHLP and computationally compare them with a commercial solver. The first formulation

is based on flow variables that compute the amount of flow that passes through particular

hub arcs, whereas the second formulation is based on path variables that determine is a hub

arc is used on the path between two pair of nodes. Moreover, we propose exact and heuristic

approaches for the CHLP. In particular, the flow based formulation is used in a branch-and-

cut (B&C) algorithm to obtain optimal solutions for small to medium size instances and to

provide lower bounds for large instances. It uses two families of valid inequalities, which

can be seen as an extension of the ixed-dicut inequalities for multicommodity network de-

sign problems, to improve the linear programming relaxation bounds at some nodes of the

enumeration tree. We develop separation heuristics to find violated inequalities efficiently.

Moreover, we introduce a metaheuristic based on a greedy randomized adaptive search

procedure (GRASP) to obtain initial upper bounds for the BC algorithm and to obtain fea-

sible solutions for large-scale instances of the CHLP. Finally, to evaluate the efficiency

and limitations of our algorithms, extensive computational experiments were performed on

benchmark instances with up to 100 nodes and 8 hubs.

The remainder of the chapter is organized as follows. Section 2 provides a formal
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definition of the problem and presents two MIP formulations. The B&C algorithm and the

metaheuristic are presented in Sections. 3 and 4, respectively. The computational results

and the analysis are presented in Section. 5.

3.1 Problem Description and Formulations

Let G = (N,A) be a complete digraph, where N = {1, 2, . . . , n} represents the set of

nodes as well as the potential sites for locating hubs and A = N × N is the set of arcs.

For each ordered pair (i, j) ∈ A, let Wij denote the amount of flow between origin i and

destination j. Thus, Oi =
∑

j∈N Wij is the total flow originating at node i ∈ N , and

Di =
∑

j∈N Wji, is the total flow with destination node i ∈ N . The distances, or flow costs

dij between nodes i and j are assumed to be symmetric, however, they may not satisfy the

triangle inequality property. Given that hub nodes are no longer fully interconnected, O/D

paths on the solution network may contain more than two hub nodes. The per unit flow

cost is then given by the length of the path between an origin and a destination, where the

discount factor 0 < α < 1 is applied to all hub arcs contained on the path.

The CHLP seeks to determine the location of exactly p hubs which are connected by

means of a cycle, and the routing of flows through the hub-and-spoke network. Each node

has to be allocated to exactly one hub and if a node is selected as a hub, then it is self-

assigned. The objective is to minimize the total flow cost. In every feasible solution to the

CHLP: i) there exist p hub arcs; ii) every hub node is connected with exactly two other

hub nodes; iii) the graph induced by the hubs does not contain subtours, and iv) there

are exactly two paths between every pair of nodes on the solution network. This makes

the CHLP more difficult to formulate and solve than classical HLPs, as the shortest path

between O/D nodes, containing an undetermined number of hub nodes and hub arcs, needs

to be determined to evaluate the objective function. Note that when p ∈ {1, 2, 3}, the CHLP

reduces to a classical p-hub median problem in which hubs are fully interconnected.
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Before presenting mixed integer programming formulations, we first define the graph

of flows GF = (N,EF ), as the undirected graph with node set N and an edge associated

with each pair (i, j) ∈ N ×N such that Wij +Wji > 0. We assume that GF is made up of

a single connected component since otherwise the problem can be decomposed into several

independent CHLPs, one for each connected component in GF . If a particular application

requires a single cycle and the graph of flows contains more than one connected component,

we can replace these flows of value zero with Wij = ε > 0 sufficiently small. In what

follows, we present two MIP formulations for the CHLP. The first one uses path variables

to determine the set of arcs on each O/D paths, whereas the second one uses ow variables

to compute the amount ow routed through a particular arc.

3.1.1 Path-Based Formulation

For each i, k ∈ N ; i 6= k, we define binary location/allocation variables,

zik =

 1 if non hub i is allocated to hub k,

0 otherwise.

When zkk = 1, node k is selected as a hub and assigned to itself. For each k,m ∈ N ,

k < m, we also introduce binary hub arc variables

ykm =

 1 if hub arc (k,m) is selected,

0 otherwise.

Finally, we define for each i, j, k,m ∈ N , we define binary routing variables variables as

follows
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Xijkm =

 1 if the the flow from i to j traverses arc (k,m),

0 otherwise,

The CHLP can be stated as follows:

(PF ) min
∑
i∈N

∑
k∈N

(cikOi + ckiDi)zik +
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N
m6=k

αWijckmXijkm

s.t.
∑
k∈N

zik = 1 ∀i ∈ N (1)

∑
k∈N

zkk = p (2)

∑
k∈N

∑
m>k

ykm = p (3)

∑
k<m

ykm +
∑
k>m

ymk = 2zkk k ∈ N (4)

∑
m∈N
m6=k

Xijkm + zjk −
∑
m∈N
m6=k

Xijmk − zik = 0, ∀i, j, k, i 6= j, k 6= j (5)

Xijkm +Xijmk ≤ ykm ∀i, j, k ∈ N, ∀m > k (6)

Xijkm ≥ 0 ∀i, j, k,m ∈ N, k 6= m (7)

zik ∈ {0, 1} ∀i, k ∈ N (8)

ykm ∈ {0, 1} ∀k ∈ N, ∀m > k. (9)

The first and second terms of the objective function represent the transportation cost

between access arcs and hub arcs, respectively. Constraints (1) ensure that each node is al-

located to one hub. Constraint (2) is a cardinality constraint on the number of hubs that can

be opened, whereas constraint (3) state that the number of hub arcs required to define the
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cycle is equal to p. Constraints (4) guaranties that each hub node must be connected to ex-

actly to other hub nodes. Constraints (5) are the well-known flow conservation constraints

used to model O/D paths. Constraints (6) ensure that paths between origins and destina-

tions will use open hub arcs. Finally, constraints (7)–(9) are the integrality contraints. The

combination of constraints (1)–(9) will create paths between all pair of nodes and will form

a cycle-star topology with a single connected component. As a consequence, classical sub-

tour elimination constraints, commonly used to model cycles, are not necessary to describe

the set of feasible solutions to the CHLP.

3.1.2 Flow-Based Formulation

In order to keep track of the path that is used to send the flow between O/D nodes, we

use flow variables commonly used in the hub location literature (see, for instance S. A. Alu-

mur, Nickel, Saldanha-da Gama, & Seçerdin, 2016; Contreras et al., 2010; Ernst & Krish-

namoorthy, 1998b). For each i ∈ N and (k,m) ∈ A, we define xikm equal to the amount of

flow with origin in node i ∈ N that traverses hub arc (k,m). For each k,m ∈ N , k < m,

we introduce binary hub arc variables ykm equal to one if and only if hub arc (k,m) is se-

lected. We also use the zik and yik binary variables for the location allocation and network

design decisions. Following Contreras and Fernández (2012), the CHLP can be formulated

as the following mixed integer program:
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(FF ) min
∑
i∈N

∑
k∈N

(cikOi + ckiDi)zik +
∑
i∈N

∑
k∈N

∑
m∈N
m6=k

αckmxikm

s.t.
∑
k∈N

zik = 1 i ∈ N (10)

∑
k∈N

zkk = p (11)

∑
k∈N

∑
m∈N

ykm = p (12)

∑
m>k

ykm +
∑
k>m

ymk = 2zkk k ∈ N (13)

Oizik +
∑
m∈N
m6=k

ximk =
∑
m∈N
m6=k

xikm +
∑
m∈N

Wimzmk i, k ∈ N ; k 6= i (14)

zkm + ykm ≤ zmm k,m ∈ N ;m > k (15)

zmk + ykm ≤ zkk k,m ∈ N ;m > k (16)

xikm + ximk ≤ Oiykm i, k,m ∈ N ;m > k (17)

xikm ≥ 0 i, k,m ∈ N (18)

zkm, ykm ∈ {0, 1} k,m ∈ N (19)

The first term of the objective function represents the flow cost on the access arcs

whereas the second term evaluates the reduced flow cost on the hub arcs. Constraints

(10) ensure that each node is assigned to exactly one hub. Constraint (11) is a cardinality

constraint on the number of hubs that must be opened, whereas constraint (12) state that

the number of hub arcs in the cycle is equal to p. Constraints (13) guarantee that each

hub node must be connected to exactly two other hub nodes. Constraints (14) are the flow

conservation constraints. Constraints (15) and (16) ensure that both end nodes of a hub

arc are opened hubs and also, they ensure that non-hub nodes are assigned to an open hub.
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Constraints (17) state that the flow between hubs moves through the hub cycle. Finally,

constraints (18) and (19) are the standard nonnegativity and integrality constraints. As

mentioned in Contreras and Fernández (2012), the assumption that the graph of flows GF

contains a single connected component, together with constraints (10)–(10), eliminates the

need for subtour elimination constraints.

3.2 An Exact Algorithm

In this section we present an exact branch-and-cut algorithm that uses the linear pro-

gramming (LP) relaxation of formulation IP as a lower bounding procedure at nodes of the

enumeration tree. The LP bounds from the formulation are strengthened with the incorpo-

ration of two families of valid inequalities that exploit the structure of the CHLP.

3.2.1 Valid Inequalities

The first set of inequalities is an adaptation of the so-called mixed-dicut inequalities first

introduced by Ortega and Wolsey (2003) for the fixed-charge, single commodity, network

flow problem and later extended to the multi-commodity case for the tree of hubs location

problem by Contreras et al. (2010). Let Z denote the set of feasible integer solutions of

(10)–(19). The mixed-dicut inequalities can be defined as follows.

Proposition 1 For i,m ∈ N , F ⊆ N \ {m}, J ⊆ N \ {i,m}, and Q =
∑

j∈J∪{m}Wij ,

the inequality

∑
k∈N\(F∪{m})

xikm +Q

∑
k∈F
k<m

ykm +
∑
k∈F
k>m

ymk

 ≥ ∑
j∈J∪{m}

Wij (zjm − zim)

(20)

is valid for Z.

33



Constraints (20) state that if the O/D nodes in set J are assigned to hub m and node i

is not assigned to m, then the amount of flow entering on m via the hub arcs incident to

m has to be greater or equal to the sum of the flows with origin in i and with destination

in J ∪ {m}, i.e.
∑

j∈J∪{m}Wij . Given that in any feasible solution to the CHLP the flow

originated at i and with destination m and any nodes allocated to m will be routed using

the shortest path between these nodes, the flow will enter m via another hub k̂ (possibly

node i) using hub arc (k̂,m). Thus, depending on the set F , the flow will be counted either

using the flow variables of the first term of the left-hand-side of (20) or using the design

variables of the second term.

We can generalize the mixed-dicut inequalities (20) by considering now a set of can-

didate hub nodes M ⊆ N and the set of O/D nodes assigned to them as follows. Let

δ−(M) = {(i, j) ∈ A : i ∈ N \M, j ∈M} denote the set of arcs entering the set M .

Proposition 2 For i ∈ N , M ⊆ N\{i}, J ⊆ N\(M ∪ {i}), F ⊆ δ−(M), and Q0 =∑
j∈(J∪M) Wij , the generalized mixed-dicut inequality

∑
(k,m)∈δ−(M)\F

xikm +Q0

 ∑
(k,m)∈F
k>m

ymk +
∑

(k,m)∈F
k<m

ykm


≥

∑
j∈(J∪M)

Wij

(∑
m∈M

zjm −
∑
m∈M

zim

)
(21)

is valid for Z.

Proof:

Observe that when m ∈ M are open hubs and node i is not allocated to any node in

M , the right-hand-side
∑

j∈(J∪M) Wij(
∑

m∈M zjm −
∑

m∈M zim), denotes the total flow

coming from i and destined to either the hub nodes m ∈ M or the non-hub nodes j ∈ J

assigned to some hub m ∈ M . The right-hand-side of (21) is thus a lower bound on the
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total flow arriving to the set of hub nodes M from i. Note that this right-hand-side can only

be non-negative when there is one or more nodes m ∈M which are open hubs and i is not

assigned to any of them, otherwise the right-hand-side would be less than or equal to zero.

In the case of the left-hand-side, we note that in any feasible solution in which node i is

not allocated to a hub m ∈ M , any amount of flow routed from i to nodes m ∈ M will

arrive via a subset of hub arcs in the cut δ−(M). If at least one open hub arc is in F , then

the second term of the left-hand-side provides an upper bound on the total amount of flow

originated at i with destination M ∪ J . If all hub arcs in F are closed, then the first term

of the left-hand-side provides an upper bound on the total amount of flow originated at i

with destination M ∪ J entering via a subset of open hub arcs in δ−(M) \ F and the result

follows.

3.2.2 Separating Mixed-dicut Inequalities

Given a fractional solution (x̄, ȳ, z̄) of the LP relaxation of formulation (10)-(19), the

separation problem of inequalities (20) and (21) must be solved to determine whether there

exist a violated inequality at (x̄, ȳ, z̄).

In the case of (20), for each pair of nodes i,m ∈ N , we want to find sets F and J such

that

∑
k∈N\(F∪{m})

x̄ikm +Q

∑
k∈F
k<m

ȳkm +
∑
k∈F
k>m

ȳmk

− ∑
j∈J∪{m}

Wij (z̄jm − z̄im) < 0.

Contreras et al. (2010) present an exact algorithm for solving the separation problem of

constraints (20) for the tree of hubs location problem. Given that for each i,m ∈ N , the

proposed algorithm requires the solution of several 2-dimensional knapsack problems, the

optimal solution of the separation problem requires a considerable amount of time, espe-

cially for large-scale instances. Therefore, we next present a fast heuristic to approximately
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solve the separation problem so as to find violated inequalities (20).

Note that the set J ⊆ N \{i,m} affects both the left-and right-hand-side of the inequal-

ity, whereas the set F ⊆ N \ {m} affects only the left-hand-side. Moreover, given a set J

and its associated Q =
∑

j∈J∪{m}Wij , we can efficiently select the set F that minimizes

the value of

L(Q) = min
F⊆N\{m}

∑
k∈N\(F∪{m})

x̄ikm +Q

( ∑
k∈F :k<m

ȳkm +
∑

k∈F :k>m

ȳmk

)
,

using the following result.

Proposition 3 (Contreras et al., 2010) Let i,m ∈ N , Q ≥ 0, and (x̄, ȳ, z̄) be given. Then,

a set F ⊆ N \ {m} that minimizes the value of L(Q) is given by F = F< ∪ F>, where

F< = {k ∈ N : k < m and
x̄ikm
ȳkm

≥ Q},

and

F> = {k ∈ N : k > m and
x̄ikm
ȳmk

≥ Q}.

The proposed heuristic works by iteratively evaluating different subsets J ⊆ N \{i,m}

and computing L(Q) to check whether the associated inequality is violated or not. First of

all, it constructs an initial set J0 by considering all j ∈ N such that (z̄jm − z̄im) > 0.

Then, it modifies the set J0 by removing elements from it (one at a time) and evaluating

the magnitude of the (possible) violation of the inequality. Let δ denote the smallest differ-

ence between the left-hand-side and right-hand-side of the constraint. If the output of the

algorithm gives δ < 0, it means that a violated inequality has been found. The steps of the

procedure are outlined in Algorithm 1.

In the case of inequalities (21), for each i ∈ N , we want to find sets M , J and F such
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Algorithm 1: Separation of inequalities (20) for (i,m)

J ← ∅
for (j ∈ N) do

if (z̄jm − z̄im > 0) then
J ← J ∪ {j}

end if
end for
δ ← L (Q)−

∑
j∈J∪{m}

Wij(z̄jm − z̄im)

for (l ∈ J) do
J ← J \ {l}

if

(
δ > L (Q)−

∑
j∈J∪{m}

Wij(z̄jm − z̄im)

)
then

δ ← L (Q)−
∑

j∈J∪{m}
Wij(z̄jm − z̄im)

else
J ← J ∪ {l}

end if
end for

that

∑
(k,m)∈δ−(M)\F

x̄ikm +Q0

 ∑
(k,m)∈F
k>m

ȳmk +
∑

(k,m)∈F
k<m

ȳkm


−

∑
j∈(J∪M)

Wij

(∑
m∈M

z̄jm −
∑
m∈M

z̄im

)
< 0.

Observe that, sets M ⊆ N\{i} and J ⊆ N\M ∪ {i} affect both the left and right-hand-

sides, whereas set F ⊆ δ−(M) only affects the left-hand-side. Therefore, for given sets M

and J , we can efficiently select the set F that minimizes the value of

R(Q0) = min
F⊆δ−(M)

∑
(k,m)∈δ−(M)\F

x̄ikm +Q0(
∑

(k,m)∈F
k>m

ȳmk +
∑

(k,m)∈F
k<m

ȳkm)

using a similar approach as in the case of constraints (20).
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Proposition 4 Let i ∈ N , Q0 ≥ 0, and (x̄, ȳ, z̄) be a given LP solution. Then, a set

F ⊆ δ−(M) that minimizes the value of R(Q0) is given by F = F< ∪ F>, where

F< = {(k,m) ∈ δ−(M) : k < m and
x̄ikm
ȳkm

≥ Q0},

and

F> = {(m, k) ∈ δ−(M) : k > m and
x̄ikm
ȳmk

≥ Q0}.

The proposed heuristic uses an iterative procedure to construct different subsets ofM ⊆

N\{i} and J ∈ N\{i,m} and computes the associated R(Q0). We first order the variables

z̄kk by non-increasingly and denote kr the r-th element according to that ordering. That

is, z̄k1k1 ≥ z̄k2k2 ≥ · · · ≥ z̄knkn . We then construct the set M by adding one element at a

time with respect to this ordering. Every time a new element is added to M , an associated

set J0 is constructed by considering all j ∈ N such that (
∑

m∈M z̄jm −
∑

m∈M z̄im) > 0,

and R(Q0) is computed to check whether the associated inequality is violated or not. If the

violation obtained from the addition of the new element to M is higher that the violation

at the previous iteration, the element is permanently added to M . Otherwise, it is removed

and the next element in the sequence is selected as candidate. Once all candidates with

z̄krkr > 0 are considered, the algorithm tries to modify J0 by removing elements from it

one at a time and evaluating the corresponding δ. The outline of the procedure is depicted

in Algorithm 2.

3.2.3 A Branch-and-Cut Algorithm

We present an exact branch-and-cut method for solving the CHLP. The idea is to solve

the LP relaxation of IP with a cutting-plane algorithm by initially including only con-

straints (10)–(16) and (18)–(19) at the root node and iteratively adding constraints (17),

(20), and (21) only when violated by the current LP solution. When no more violated
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Algorithm 2: Separation of inequalities (21) for (i)

M ← ∅, δmin ← 0, r ← 1
Sort the values z̄kk non-increasingly
while(z̄krkr > 0) do

J ← ∅
M ←M ∪ {kr}
for (j ∈ N) do

if (
∑

m∈M z̄jm −
∑

m∈M z̄im > 0) then
J ← J ∪ {j}

end if
end for
δ ← R (Q0)−

∑
j∈J∪{m}

Wij(
∑

m∈M z̄jm −
∑

m∈M z̄im)

if (δ < δmin) then
δmin ← δ

else
M ←M \ {kr}

end if
r ← r + 1

end while
for (l ∈ J) do

J ← J \ {l}
δ ← R (Q0)−

∑
j∈J∪{m}

Wij(
∑

m∈M z̄jm −
∑

m∈M z̄im)

if (δ < δmin) then
δmin ← δ

else
J ← J ∪ {l}

end if
end for

inequalities are found, we resort to CPLEX for solving the resulting formulation by enu-

meration, using a call-back function for generating additional violated constraints (17),

(20) and (21) at the nodes of the enumeration tree. The separation problem of inequalities

(17) is solved by inspection at every node of the tree. The separation of inequalities (20)

is carried out using Algorithm 1 at the root node and at every other node for which the

depth is multiple of 25. The separation problem of inequalities (21) is carried out using

Algorithm 2 and only at the root node of the enumeration tree. For constraints (20) and

(21), we limit the number of generated cuts at every iteration of the separation phase by

39



using a threshold value ε for the minimum violation required for a cut to be added. We use

a branching strategy in which the highest priority is given to the location variables (zkk),

followed by the hub arc variables (y), and least priority to the allocation variables (zik).

3.3 A Heuristic Algorithm

In this section we propose a GRASP for the CHLP. GRASP is a multi-start metaheuris-

tic used for solving combinatorial optimization problems (Festa & Resende, 2011). Each

iteration consists of two phases: a constructive phase and a local search phase.

For the CHLP we propose a constructive phase with three steps. In the first step, a set

of p hubs is randomly selected among a set of candidate nodes. The remaining nodes are

then assigned to their closest open hub. Finally, a set of p hub arcs, associated with the

selected hub nodes, are then chosen in such a way that they form a cycle on the backbone

network. A local search phase is later used to improve the initial solution. In particular,

a variable neighborhood descent (VND) method is used to systematically explore a set of

neighborhoods that modify the structure of the network.

In what follows, solutions are represented by a set of hub nodes H , a set of hub arcs

E, and an assignment mapping a. Therefore, solutions are designated by the form S =

(H,E, a) ,where H ∈ N denotes the set of selected sites to locate hubs, i.e., H(i) = 1

if node i ∈ N is selected to be a hub, E : e → R represents the set of arcs between hub

nodes, i.e., E(e) = 1 if hub arc e exists, and a : N → H is the assigning mapping, i.e.,

a(j) = m if node j ∈ N is assigned to hub node m ∈ H .

Constructive Phase

Let S = (H,E, a) be a partial solution where H(i) = null, E(e) = null and a(j) =

null. To generate a feasible solution, three steps are considered; the selection of a set of

hubs, the assignment of nodes to hubs and the connection of hubs so as to construct a cycle
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structure. A restricted candidate list (RCL) is built using a greedy function, where, at each

iteration t a sub-region N t
i (r) = {j ∈ N t : dij ≤ r} of candidate nodes N t around a node

i with a radius of size r is considered. We define the greedy function as

ψ1
i =

∑
j∈Nt

i (r)

(Wij +Wji) ,

and

ψti =
∑

j∈Nt
i (r)

(Wij +Wji) +
∑

j∈Nt
i (r)

∑
k∈{1,...,t−1}

∑
m∈Nk

i(k)
(r)

(Wjm +Wmj),

for t > 1, where i(k) denotes the node selected as a hub at iteration k. The first term of

ψti represents the flow originated at node i with destination N t
i (r), and the total flow going

into node i coming from nodes in N t
i (r). That is, node i is considered as a potential hub

to serve nodes j ∈ N t
i (r). The second term of ψti represents the amount of flow that needs

to be routed between nodes inside the sub-region N t
i (r) of a candidate hub node i and the

nodes inside the sub-regions Nk
i(k)(r) of the open hubs i(k) selected in previous iterations

k = 1, . . . , t− 1.

In order to achieve a trade-off between quality and diversity, a partially randomized

greedy procedure is considered. At each iteration, one element is randomly selected from

the RCL to become a hub. The RCL is updated at each iteration of the construction phase

and contains the best candidate nodes N t with respect to the greedy function. Let ψtmin =

min{ψti : i ∈ N t} and ψtmax = max{ψti : i ∈ N t}, then

RCL = {i : ψti ≤ ψtmin + β
(
ψtmax − ψtmin

)
},

where 0 ≤ β ≤ 1. Once a hub is located at a candidate node i, we remove all nodes

in N t
i (r) from the set of candidate nodes N t+1. When p hubs are opened, all the non-hub

nodes are simply assigned to their closest opened hub. In order construct a feasible solution,
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a nearest neighbor algorithm (see, Cook, Cunningham, Pulleybank, & Schrijver, 1998) is

applied to connect the set of selected hubs by means of a cycle. It works by arbitrarily

selecting a hub node and connecting it to the nearest hub not yet connected. The process

continues until all hubs are connected. The constructive phase is outlined in Algorithm 3.

Algorithm 3: Constructive Phase of GRASP
H ← φ, t← 1, N0 ← N
while (| H |6= p) do

Evaluate ψti for all i ∈ N t

RCL = {i : ψti ≤ ψtmin + β (ψtmax − ψtmin)}
Select randomly i∗ ∈ RCL
H ← H ∪ i∗
N t ← N t−1\{i∗ ∪N t

i∗(r)}
t← t+ 1

end while
Assign each node j ∈ N t−1 to its closest hub in H .
Connect hubs using the Nearest Neighbor Algorithm.

Local Search Phase

The local search phase is used to improve the initial solution obtained from the con-

structive phase. We use a local search procedure based on a VND method for the CHLP.

The VND was initially proposed by Brimberg and Mladenovic (1996) and is based on a

systematic search in a set of k neighborhoods, N1,N2, . . . ,Nk. The VND works by per-

forming a local search in a neighborhood N1 until a local optimal solution is found. After

that, the algorithm switches to neighborhoods N2, . . . ,Nk, sequentially, until an improved

solution is found. Each time the search improves the best known solution, the procedure

restarts using the neighborhood N1. Our implementation of the VND algorithm explores

three types of neighborhood structures. The first type consist of the classical shift and

swap neighborhood. The latter one tries to improve the current solution by swapping the

assignment of two nodes, whereas the former one considers all solutions that differ from

the current one by changing the assignment of one node. Let S = (H,E, a) be the current
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solution, then

N1(s) = {s′ = (H,E, a
′
) : ∃!j ∈ N, a′(j) 6= a(j)},

and

N2(s) = {s′ = (H,E, a
′
) : ∃!(j1, j2), j

′

1 = a(j2), j
′

2 = a(j1), ∀j 6= j1, j2}.

To explore N1(s), all pairs of the form (i, j) are considered, where a(j) 6= i and for N2(s)

all pairs of the form (j1, j2) are considered, where a(j1) = a(j2). In both cases we use a

best improvement strategy.

The second type of neighborhood structure affects the current set of open hubs. Let

S = (H,E, a) be the current solution and let i ∈ N\H be the nodes which are candidate

to replace the open hubs located at site m ∈ H , then

N3(s) = {S ′ = (H
′
, E
′
, a
′
) : S

′
= H

′\{m} ∪ {i},m ∈ S ′ , i ∈ N\H}.

To explore N3(s) all nodes m ∈ N\H are considered, and a set of solutions is obtained

from the current one by interchanging an open hub by a closed one and reassigning all the

non-hub nodes to their closest open hub.

The third type of neighborhood structure is the so-called 2-opt (Cook et al., 1998),

commonly used in other optimization problems in which cycle structures are sought. The

procedure works by deleting two hub arcs and reconnecting the network with a new cycle.

Let S = (H,E, a) be the current solution, then

N4(s) = {S = (H,E
′
, a) : E

′
= E\{(i1, j1), (i2, j2)} ∪ {(i1, i2), (j1, j2)}}.

In this neighborhood, a best improvement strategy is also considered.
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3.4 Results

We conduct computational experiments to analyze and compare the performance of the

formulations presented in this Chapter using the commercial solver CPLEX as well as the

proposed solution approaches—the exact branch-and-cut algorithm and the GRASP meta-

heuristic. The formulations and solution algorithms were coded in C and run on a single

possessor of an HP station with an Intel Xeon CPU E3-1240V2 processor at 3.40 GHz and

24 GB of RAM under Windows 7 environment. All integer programs were solved using the

callback library of CPLEX 12.4. The numerical tests were performed using the Australian

Post (AP ) instances obtained from the OR library (http://mscmga.ms.ic.ac.uk/jeb/orlib/phubinfo.html).

These instances comprise of postal flow and Euclidean distances between 200 postal dis-

tricts in an Australian city. In our experiments, we have selected instances with |N | = 10,

20, 25, 40, 50, 60, 70, 75, 90, and 100 nodes. The number of hubs to be opened was set to

p = 4, 6 and 8, and the value of discount factor was varied from α =0.2, 0.5 to 0.8.

Our preliminary computational results focus on the comparison between the path-based

(PB) formulation and flow-based (FB) formulation when solved with CPLEX. The detailed

results of this comparison on a set of instances ranging from 10 to 40 nodes are given

in Table 1. The first column lists the problem parameters such as the number of nodes

|N |, the number of hubs to be opened p and the discount factor α for each instance.. The

next columnns report the linear programming relaxation gap (%LP ), the percent deviation

between final upper and lower bound (%Gap), the CPU time (CPU) in seconds, and the

number of explored nodes in the branching tree (Nodes), for both formulations. The %LP

Gap is computed as (UB − LP )/(UB) × 100%, where UB denotes the best upper bound

(or optimal solution value) obtained with CPLEX and LP is the optimal value of the LP

relaxation. The final gap (%Gap) is computed as (UB − LB)/(UB) × 100%, where

UB and LB denote the best upper and lower bounds obtained by CPLEX at termination,

respectively. Throughout this experiment, the maximum time limit is set to 14,400 seconds
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of CPU time on CPLEX. Whenever CPLEX cannot optimally solve an instance within the

time limit, we write time.

Instance Path-Based Formulation(PF) Flow-Based Formulation(FF)

|N | p alpha % LP % Gap CPU Nodes % LP %Gap CPU Nodes

10 4 0.2 2.25 0.0 1.5 4 3.37 0.0 2.08 25

10 4 0.5 0.00 0.0 0.48 0 5.34 0.0 0.67 43

10 4 0.8 0.00 0.0 0.5 0 6.93 0.0 0.97 16

10 6 0.2 0.00 0.0 51 0 5.62 0.0 1.14 73

10 6 0.5 0.00 0.0 0.52 0 8.58 0.0 1.26 261

10 6 0.8 0.00 0.0 0.52 0 10.62 0.0 1.54 877

20 4 0.2 1.05 0.0 890.13 9 1.70 0.0 3.78 36

20 4 0.5 0.29 0.0 470.92 2 4.33 0.0 17.69 485

20 4 0.8 0.00 0.0 346.68 0 5.11 0.0 29.16 1024

20 6 0.2 0.78 0.0 511.5 4 5.60 0.0 30.48 753

20 6 0.5 0.00 0.0 320.8 0 8.26 0.0 350.89 9693

20 6 0.8 0.60 0.0 614.46 8 9.68 0.0 1127.92 32563

20 8 0.2 1.37 0.0 753.16 15 7.35 0.0 180.73 4837

20 8 0.5 1.93 0.0 2159.55 56 12.84 0.0 2736.87 58631

20 8 0.8 1.17 0.0 883.06 20 12.66 0.0 8516.44 245771

25 4 0.2 4.89 4.0 time 6 1.79 0.0 13.65 66

25 4 0.5 0.05 0.0 2661.86 0 3.15 0.0 46.69 248

25 4 0.8 0.00 0.0 707.68 0 4.50 0.0 118.65 928

25 6 0.2 0.00 0.0 2658.85 0 3.46 0.0 32.26 312

25 6 0.5 0.00 0.0 1289.08 0 6.35 0.0 327.76 3435

25 6 0.8 0.25 0.0 7554.94 3 8.87 0.0 4065.04 37955

25 8 0.2 1.08 1.1 time 32 7.51 0.0 3169.96 22421

25 8 0.5 0.45 0.0 7285.53 12 10.12 0.0 7711.25 68475

25 8 0.8 0.98 0.0 7393.37 50 11.09 1.1 time 110994

40 4 0.2 time time time time 1.65 0.0 71.232 127

40 4 0.5 time time time time 3.40 0.0 3445.22 1816

40 4 0.8 time time time time 5.29 1.7 time 7195

40 6 0.2 time time time time 4.10 0.0 4119.21 3332

40 6 0.5 time time time time 8.56 7.0 time 4056

40 6 0.8 time time time time 9.21 7.5 time 4929

40 8 0.2 time time time time 6.54 4.6 time 3217

40 8 0.5 time time time time 12.42 11.2 time 4600

40 8 0.8 time time time time 14.82 14.1 time 5093

Table 3.1: Comparison between path-based and flow-based formulation.
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In Table 1, we can observe that formulation PF is able to solve 22 out of the 33 con-

sidered instances to optimality within the time limit. The % LP gap for the instances that

were solved is relatively small, as is always less than 2.25% and in 11 instances it is equal

to zero. However, CPLEX is not able to solve the LP relaxation of all 40-node instances in

four hours of CPU time. In the case of formulation FF, CPLEX is able to solve 26 out of the

33 instances to optimality. As expected, the % LP gap for the instances that were solved is

always larger than the one of the PF. Nevertheless, given that there is a considerable smaller

number of variables and constraints in FF, it is able to solve three 40-node instances and

one 25-node instance that the PF cannot solve.

Now, we focus on analyzing the improvement of the linear programming (LP) relax-

ation bounds obtained when adding the cuts automatically generated by CPLEX and the

two families of valid inequalities (20) and (21) introduced in Section 3.2 for the formula-

tion FB. In particular, we compare the results of the following experiments:

In the first part of the computational experiments we focus on analyzing the improve-

ment of the linear programming (LP) relaxation bounds obtained when adding the cuts

automatically generated by CPLEX and the two families of valid inequalities (20) and (21)

introduced in Section 3.2 for the formulation IP. In particular, we compare the results of the

following experiments:

(1) We solve the LP relaxation of formulation IP and we do not allow CPLEX to add

cuts.

(2) We solve the LP relaxation of formulation IP and we allow CPLEX to add cuts to

improve the initial LP bounds. All the cuts parameters are set to their default settings.

(3) We solve the LP relaxation of formulation IP and we dynamically add the mixed-

dicut inequalities (20) using the separation heuristic presented in Section 3.2 to find

violated inequalities. We set ε = 0.001 for the minimum violation required for a cut
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to be added.

(4) We solve the LP relaxation of formulation IP and we dynamically add the generalized

mixed-dicut inequalities (21) using the separation heuristic presented in Section 3.2

to find violated inequalities. We set ε = 0.01 for the minimum violation required for

a cut to be added.

The detailed results of these experiments are shown in Table 1. The first column lists

the problem parameters such as the number of nodes |N |, the number of hubs to be opened

p and the discount factor α for each instance. The second set of columns under the heading

CPLEX reports the LP gap (%LP ), the LP gap after adding CPLEX cuts (%LPcuts), the

number of cuts added by CPLEX (#cuts), and the CPU time in seconds (CPU ) to solve

the LP and to add the cuts. The %LP gap is computed as (UB−LP )/(UB)×100%, where

UB denotes the best upper bound (or optimal solution value) and LP is the optimal value

of the LP relaxation. The third set of columns under the heading MDI shows the results

when adding the mixed-dicut inequalities (20) to IP. The results include the LP gap (%LP)

after adding inequalities (20), the number of violated cuts added (Cuts), and the CPU time.

The last set of columns reports the LP gap (%LP) after adding the generalized mixed-dicut

inequalities (21), the number of violated inequalities (Cuts), and the CPU time. In all cases,

the CPU time include the time for separating and adding violated inequalities.

Results in Table 1 show that the average percent LP gap of formulation IP is 6.64% and

ranges from 1.15% to 12.84%. With the addition of CPLEX cuts, the LP gap is reduced to

an average of 5.36% and ranges from 0.48% to 10.58%. However, when adding the mixed-

dicut inequalities (20) the average LP gap is further reduced to 2.82% with a range from

0.03% to 7.14%. When adding the generalized mixed-dicut inequalities (21), the average

LP gap is 1.94% with a range from 0.00% to 5.86%. In fact, constraints (21) are able to

close the optimality gap, and obtain an integer optimal solution in 3 out of the 6 instances

with 10 nodes. However, given that the number of cuts added is much larger to the number
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Table 3.2: Comparison between CPLEX cuts and mixed-dicut inequalities
Instance CPLEX MDI GMDI
|N |-P-α % LP %LPcuts Cuts CPU % LP Cuts CPU % LP Cuts CPU
10-4-0.2 3.37 1.96 84 0.13 0.92 182 0.32 0.60 245 0.12
10-4-0.5 5.34 2.18 75 0.13 0.68 178 0.42 0.07 232 0.09
10-4-0.8 6.93 3.05 74 0.10 0.64 225 0.42 0.00 241 0.08
10-6-0.2 5.62 2.64 69 0.08 0.91 195 0.33 0.00 265 0.08
10-6-0.5 8.58 4.50 88 0.12 1.54 289 0.46 0.00 292 0.11
10-6-0.8 10.62 7.21 71 0.11 2.78 294 0.47 0.09 467 0.24
20-4-0.2 1.70 0.48 198 1.06 0.03 393 0.69 0.10 432 1.21
20-4-0.5 4.33 3.32 288 1.66 1.48 1119 2.71 1.28 1449 9.28
20-4-0.8 5.11 3.41 215 1.72 1.47 843 1.86 0.83 1077 4.78
20-6-0.2 5.60 3.62 288 2.14 1.15 1218 5.19 0.72 2104 17.43
20-6-0.5 8.26 6.60 294 1.67 2.80 1643 4.98 1.69 2802 28.56
20-6-0.8 9.68 7.60 300 2.43 4.46 1388 4.60 2.87 2300 18.44
20-8-0.2 7.35 5.98 234 1.73 2.93 1517 4.45 1.98 2070 19.95
20-8-0.5 12.84 10.58 313 3.33 6.48 1868 6.52 4.46 3370 36.71
20-8-0.8 12.66 9.93 329 5.20 6.18 1671 6.39 3.87 3059 24.50
25-4-0.2 1.79 1.35 262 2.45 0.13 1198 2.71 0.26 1052 5.25
25-4-0.5 3.15 2.75 214 2.10 0.42 1327 4.52 0.33 1290 10.34
25-4-0.8 4.50 4.03 249 3.13 1.63 1211 4.83 0.76 1289 13.77
25-6-0.2 3.46 2.44 275 2.37 0.22 1528 6.00 0.15 1721 12.98
25-6-0.5 6.35 5.57 273 2.24 1.80 2059 6.40 1.04 2635 43.74
25-6-0.8 8.87 6.99 392 6.78 4.29 1476 7.40 2.72 2488 38.57
25-8-0.2 7.51 6.31 386 4.58 3.43 2527 14.22 2.82 4001 94.13
25-8-0.5 10.12 8.26 390 5.99 4.71 2279 11.14 3.15 3472 80.77
25-8-0.8 11.09 8.98 378 7.56 5.84 1851 9.69 3.66 3255 57.95
40-4-0.2 1.65 1.55 411 7.43 0.21 2613 25.10 0.44 2179 82.53
40-4-0.5 3.40 3.10 446 17.43 0.94 2922 66.25 0.80 3597 378.98
40-4-0.8 5.29 5.23 398 20.77 2.44 3164 75.53 1.60 3786 484.93
40-6-0.2 4.10 3.44 525 17.94 1.39 4958 87.85 1.47 6180 958.25
40-6-0.5 7.45 7.28 619 22.33 3.88 5619 124.27 3.10 8441 2389.26
40-6-0.8 8.34 8.01 511 27.09 4.80 3989 92.17 3.06 7543 2236.03
40-8-0.2 6.54 5.84 660 17.03 3.38 6369 95.67 2.81 11774 2867.92
40-8-0.5 10.80 9.42 774 46.06 6.44 5039 125.03 4.82 10104 4731.06
40-8-0.8 10.21 8.86 779 48.03 5.96 4211 106.10 3.83 9105 3427.49
50-4-0.2 1.15 1.02 392 23.48 0.08 2250 40.66 0.23 2304 144.24
50-4-0.5 2.57 2.58 610 51.44 0.52 3677 216.2 0.62 4091 1326.32
50-4-0.8 5.02 4.68 504 70.46 2.45 3838 305.00 1.66 4768 2184.42
50-6-0.2 3.56 2.96 631 48.92 1.06 5486 239.69 1.21 7448 3604.78
50-6-0.5 7.92 7.54 850 65.39 4.78 6132 386.22 4.13 11016 11899.96
50-6-0.8 8.20 8.08 756 73.97 5.18 5219 337.82 3.57 12809 18687.13
50-8-0.2 6.41 5.87 867 52.23 3.72 7381 325.78 3.51 12827 11964.63
50-8-0.5 10.76 9.82 1047 94.08 7.04 6984 392.82 5.86 14684 27641.40
50-8-0.8 10.60 10.03 866 96.30 7.14 5640 348.38 5.25 1278 18705.52
Average 6.64 5.36 413.93 20.46 2.82 2713.57 83.27 1.94 4179.57 2719.86

of cuts added by CPLEX, the CPU time to solve the associated LPs substantially increases.

We also note that the quality of the obtained LP bounds seem to depend on the size, number

of hub facilities and discount factor. For instance, the LP gap is worse as N and p increase.

Also, the LP gaps tend to deteriorate as the value of the discount factor α increases. It is

interesting to observe that the number of generated cuts also depend on these parameters.

We next compare the impact of separating both families of inequalities (20) and (21)

and adding them to formulation IP at the same time. In particular, we compare the results

of the following experiments:
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5. We solve the LP relaxation of formulation IP and we first dynamically add constraints

(20) using the separation heuristic. When no more inequalities of this type can be

found, constraints (21) are then added.

6. We solve the LP relaxation of formulation IP and we first dynamically add constraints

(21) using the separation heuristic. When no more inequalities of this type can be

found, constraints (20) are then added.

The results of these experiments are given in Table 2. For every instance, we report

the percent LP gap obtained after adding cuts from both families (%LP), the number of

added cuts from both families (Cut1) and (Cut2), respectively, and the CPU time in seconds

(CPU ).

Table 2 shows that in the case of MDI +GMDI , the average percent LP gap is 1.75%

and ranges from 0.00% to 5.56%, whereas in the case of GMDI + MDI , the average LP

gap is slightly reduced to 1.68% and ranges from 0.00% to 5.43%. In 34 out of 42 instances,

GMDI + MDI results in lower LP gap as compared to MDI + GMDI . Moreover, by

adding the two families of inequalities to formulation IP, we are able to obtain an integer

solution from the LP relaxation in 5 instances. In general, combining both families of valid

inequalities provides remarkable results in terms of the quality of the LP bounds. Although

the GMDI + MDI scheme provides on average the best LP bounds, the required CPU

time is considerably larger than the other experiments performed. However, experiments 5

provide the best overall results in terms of a tradeoff between the quality of the LP bounds

and the CPU time. Therefore, in the remainder of the experiments we are only considering

this scheme.

In the second part of the computational experiments, we analyze the performance of our

proposed exact and heuristic solution algorithms. In particular, we compare the quality of

the obtained solutions using both constraints (20) and (21) within a branch-and-cut frame-

work and the GRASP algorithm introduced in Section 4. These experiments are performed
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Table 3.3: Results when combining mixed-dicut inequalities
Instance MDI+GMDI GMDI+MDI
|N |-P-α % LP #Cut1 #Cut2 CPU % LP #Cut1 #Cut2 CPU
10-4-0.2 0.59 197 77 0.46 0.48 60 253 0.16
10-4-0.5 0.00 178 78 0.18 0.00 6 232 0.08
10-4-0.8 0.00 225 60 0.19 0.00 0 241 0.09
10-6-0.2 0.00 195 54 0.14 0.00 0 265 0.08
10-6-0.5 0.00 289 91 0.24 0.00 0 292 0.10
10-6-0.8 0.27 302 203 0.65 0.01 35 480 0.27
20-4-0.2 0.00 398 14 0.70 0.00 48 433 0.98
20-4-0.5 0.99 1210 484 7.38 0.97 384 1449 11.14
20-4-0.8 0.67 934 481 4.99 0.62 225 1077 5.53
20-6-0.2 0.49 1383 624 16.11 0.45 446 2104 18.27
20-6-0.5 1.54 1821 763 14.85 1.38 472 2802 27.76
20-6-0.8 2.77 1583 1032 13.61 2.67 368 2300 16.88
20-8-0.2 1.99 1582 816 28.15 1.75 443 2070 19.44
20-8-0.5 4.43 2061 1356 26.86 4.27 418 3370 40.07
20-8-0.8 3.86 1834 1598 19.88 3.73 308 3059 29.28
25-4-0.2 0.04 1216 130 3.90 0.02 339 1052 6.63
25-4-0.5 0.05 1393 325 20.38 0.05 296 1290 12.53
25-4-0.8 0.54 1376 576 15.80 0.55 298 1289 16.56
25-6-0.2 0.04 1539 136 7.51 0.01 156 1823 25.18
25-6-0.5 0.66 2209 1042 26.42 0.69 529 2635 49.97
25-6-0.8 2.55 1680 1212 32.84 2.45 460 2488 40.97
25-8-0.2 2.69 2804 1324 37.66 2.50 938 4001 104.47
25-8-0.5 2.98 2490 1846 55.97 2.88 540 3472 74.96
25-8-0.8 3.66 2092 1579 45.96 3.51 382 3255 69.03
40-4-0.2 0.17 2661 120 31.20 0.04 985 2179 101.96
40-4-0.5 0.55 3131 778 155.61 0.46 1025 3597 429.58
40-4-0.8 1.26 3609 1728 370.22 1.27 1061 3786 519.81
40-6-0.2 1.33 5104 194 112.62 1.01 1815 6180 1039.84
40-6-0.5 2.97 6269 2228 692.53 2.69 1719 8441 2576.85
40-6-0.8 2.77 4478 4310 1365.29 2.78 1190 7543 2247.17
40-8-0.2 2.57 6868 2912 704.81 2.52 1654 11774 3087.52
40-8-0.5 4.75 5516 4258 1590.11 4.53 1464 10104 4705.78
40-8-0.8 3.52 4675 5210 1945.96 3.55 1122 9105 3438.78
50-4-0.2 0.03 2315 179 61.12 0.04 533 2304 182.26
50-4-0.5 0.19 3864 889 505.81 0.22 1071 4091 1443.04
50-4-0.8 1.39 4436 1874 1391.38 1.36 1142 4768 2396.32
50-6-0.2 0.80 5878 1403 822.11 0.73 2110 7448 4124.67
50-6-0.5 3.75 6649 4312 4571.24 3.72 2002 11016 12997.43
50-6-0.8 3.31 5783 6134 7365.06 3.30 1481 12809 19314.28
50-8-0.2 3.05 8113 3867 3225.68 3.05 2635 12827 12591.72
50-8-0.5 5.56 7730 6523 8127.63 5.43 2134 14684 29865.80
50-8-0.8 4.88 6182 8712 12347.64 5.00 1331 14882 21670.62
Average 1.75 2958.38 1703.14 1089.69 1.68 800.60 4506.43 2935.81

on the same set of instances as before (ranging from 10 to 50 nodes). Throughout this

experiment, we set a time limit to 86,400 seconds of CPU time. Instances that could not

be solved to optimality within this time limit are marked with the label ”time”. Moreover,

we set ε = 0.05 for the minimum violation required for both families of cuts to be added.

We also stop adding inequalities at a given node when the improvement of the LP bounds

between the previous iteration and the current one is less that 0.08%.

The detailed results are reported in Table 3. The second set of columns reports the LP

gap (%LP ), the percent deviation between final upper and lower bound (%Gap), the CPU
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time (CPU) in seconds, and the number of explored nodes in the branching tree (Nodes).

Note that, the final gap (%Gap) is computed as (UB − LB)/(UB) × 100%, where UB

and LB denote the best upper and lower bounds obtained at termination, respectively. The

third set of columns under heading Branch-and-Cut reports: %LPcuts the LP bound at the

root node after adding valid inequalities (20) and (21), (%Gap) the final percent deviation

at termination, the CPU time (CPU) in seconds, and the number of explored nodes in the

branching tree (Nodes).

The fourth set of columns reports the results of the GRASP. In order to assess the qual-

ity and robustness of the solution obtained from GRASP, the algorithm was run 30 times for

each instance. The best objective value obtained across all the 30 runs is used to compute

the best percentage deviation (%Dev) with respect to the optimal solution value or the best

LB bound obtained (i.e.,%Dev = (best solutionGRASP−LB)/(best solutionGRASP )×

100%). The robustness is measured by using the average percent deviation (%Avg Dev)

using the best solutions obtained in each of the 30 runs. The average CPU time in seconds

across all the runs of the GRASP is also reported.

The results in Table 3 show that by using formulation IP and a commercial solver

(CPLEX), we were able to solve 31 instances to optimality and the final gaps on the re-

maining instances range from 0.60% to 10.10%. On the other hand, the branch-and-cut

algorithm succeeds in solving 35 out of the 42 instances to optimality within the time limit.

For the remaining 7 instances, the final gaps range from 1.50% to 5.50% . The branch-and-

cut algorithm is faster than CPLEX on 30 out of 31 instances that were solved to optimality

using both the algorithms. Moreover, our branch-and-cut algorithm is able to solve 4 in-

stances that CPLEX is unable to solve within the time limit. For the instances that could

not be solved to optimality, the branch-and-cut always provides smaller final percent gaps

than CPLEX.

Table 3 also shows that the GRASP algorithm is very effective in finding high quality
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Table 3.4: Computational results for the branch-and-cut and GRASP algorithms for
small/medium size instances

Instance CPLEX Branch-and-Cut GRASP
|N |-P-α % LP % Gap CPU Nodes %LPcut %Gap CPU Nodes % Dev % Avg CPU
10-4-0.2 3.37 0.00 2.08 25 0.00 0.00 0.03 0 0.00 0.00 0.03
10-4-0.5 5.34 0.00 0.67 43 0.80 0.00 0.37 8 0.00 0.00 0.03
10-4-0.8 6.93 0.00 0.97 16 1.24 0.00 0.47 15 0.00 0.00 0.03
10-6-0.2 5.62 0.00 1.14 73 3.93 0.00 0.40 64 0.00 0.00 0.04
10-6-0.5 8.58 0.00 1.26 261 4.10 0.00 1.08 204 0.00 0.00 0.04
10-6-0.8 10.62 0.00 1.54 877 5.66 0.00 2.01 668 0.00 0.00 0.04
20-4-0.2 1.70 0.00 3.78 36 0.04 0.00 0.68 3 0.00 0.00 0.21
20-4-0.5 4.33 0.00 17.69 485 1.36 0.00 5.16 54 0.00 0.00 0.21
20-4-0.8 5.11 0.00 29.16 1024 0.91 0.00 3.46 43 0.00 0.00 0.25
20-6-0.2 5.60 0.00 30.48 753 0.83 0.00 8.30 85 0.00 0.00 0.32
20-6-0.5 8.26 0.00 350.89 9693 2.08 0.00 24.15 706 0.00 0.00 0.35
20-6-0.8 9.68 0.00 1127.92 32563 3.09 0.00 159.39 5422 0.00 0.05 0.39
20-8-0.2 7.35 0.00 180.73 4837 2.18 0.00 38.65 1177 0.00 0.00 0.45
20-8-0.5 12.84 0.00 2736.87 58631 4.93 0.00 1569.60 20306 0.00 0.00 0.52
20-8-0.8 12.66 0.00 8516.44 245771 4.36 0.00 2119.75 24271 0.00 0.03 0.51
25-4-0.2 1.79 0.00 13.65 66 0.26 0.00 3.00 19 0.00 0.00 0.42
25-4-0.5 3.15 0.00 46.69 248 0.28 0.00 5.67 16 0.00 0.00 0.49
25-4-0.8 4.50 0.00 118.65 928 0.81 0.00 12.91 50 0.00 0.00 0.50
25-6-0.2 3.46 0.00 32.26 312 0.20 0.00 5.86 22 0.00 0.00 0.66
25-6-0.5 6.35 0.00 327.76 3435 1.20 0.00 20.35 99 0.00 0.00 0.79
25-6-0.8 8.87 0.00 4065.04 37955 2.82 0.00 239.53 2229 0.00 0.00 0.88
25-8-0.2 7.51 0.00 3169.96 22421 3.01 0.00 340.35 2533 0.00 0.00 0.97
25-8-0.5 10.12 0.00 7711.25 68475 3.37 0.00 1127.22 6327 0.00 0.00 1.11
25-8-0.8 11.09 0.00 18229.57 152835 4.04 0.00 5854.66 14780 0.00 0.55 1.11
40-4-0.2 1.65 0.00 71.23 127 0.33 0.00 27.36 32 0.00 0.00 2.16
40-4-0.5 3.40 0.00 3445.22 1816 0.82 0.00 112.30 69.00 0.00 0.00 2.39
40-4-0.8 5.29 0.00 24354.44 16182 1.66 0.00 418.61 343 0.00 0.00 2.62
40-6-0.2 4.10 0.00 4119.21 3332 1.87 0.00 368.63 1200 0.00 0.00 3.67
40-6-0.5 7.45 2.10 86400 41396 3.68 0.00 12862.19 4225 0.00 0.00 3.87
40-6-0.8 8.34 1.40 86400 46600 3.56 0.00 48756.04 14547 0.00 0.00 3.68
40-8-0.2 6.54 0.70 86400 52491 3.77 0.00 17623.38 9436 0.00 0.00 5.45
40-8-0.5 10.80 8.70 time 42625 5.47 3.43 time 6708 3.43 3.43 5.32
40-8-0.8 10.21 8.00 time 43053 4.43 2.27 Time 8807 2.27 2.27 4.83
50-4-0.2 1.15 0.00 233.55 190 0.13 0.00 46.63 28 0.00 0.00 5.64
50-4-0.5 2.57 0.00 6729.47 4332 0.47 0.00 262.42 76 0.00 0.00 5.9
50-4-0.8 5.02 1.80 86400 12659 1.80 0.00 1569.83 407 0.00 0.00 5.41
50-6-0.2 3.56 0.00 25218.14 7791 1.41 0.00 919.15 638 0.00 0.00 8.75
50-6-0.5 7.92 6.60 time 13173 4.57 2.32 time 3554 2.39∗ 2.39 9.00
50-6-0.8 8.20 7.70 time 8609 4.35 2.64 time 3771 2.64 2.66 8.44
50-8-0.2 6.41 6.60 time 11128 3.92 1.75 time 3646 1.75 1.76 12.54
50-8-0.5 10.76 9.60 time 10109 6.70 5.35 time 2961 5.35 5.35 12.37
50-8-0.8 10.60 10.10 time 14139 6.37 5.48 time 2485 5.48 5.55 10.54

solutions for the problem. In particular, it succeeds in finding the optimal solution (or

the best known solution) for 41 out of the 42 instances, while using only a fraction of

CPU time compared to that of the branch-and-cut algorithms. In only one instance (n =

50, p = 6, and α = 0.5), the branch-and-cut algorithm was able to improve the best solution

obtained with GRASP by 0.07%. The percent average deviations over 30 runs ranges

from 0.00% to 5.55%, thereby depicting the robustness of the GRASP algorithm. For 37

instances, GRASP yields the same solution in each run whereas the average deviation for

the other 5 instances range from 0.02% to 0.55%.
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Figure 3.1: Optimal solutions for the CHLP for a 20 nodes instance.

Figure 3.2: Optimal solutions for the p-hub median problem for a 20 nodes instance.

In order to further analyze the efficiency and robustness of proposed solution algorithms

over large-scale instances, we have run a last set of computational experiments on instances

ranging from 60 to 100 nodes. The results are summarized in Table 4.

It is worth mentioning that CPLEX fails to solve any of these instances within the time

limit due to the size and complexity of problem. However, the exact branch-and-cut al-

gorithm succeeds in solving 13 out the 24 instances to optimality and for the remaining

instances, the final percent gap is within 6%. The GRASP is able to obtain the optimal

solution for 12 out of the 13 instances that were solved to optimality using the exact al-

gorithm. For the remaining one instance, the branch-and-cut was able to improve the best

GRASP solution by 0.10%.
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Table 3.5: Computational results for branch-and-cut and GRASP for large-scale instances
Instance CPLEX Branch-and-Cut Heuristic
|N |-P-α % LP %LPcut % Gap Sec Nodes % Dev % Dev Sec
60-4-0.2 1.69 0.96 0.00 242.93 224 0.01 0.01 8.52
60-4-0.5 2.99 1.09 0.00 760.68 188 0.01 0.01 10.06
60-4-0.8 5.41 2.10 0.00 8850.31 939 0.01 0.01 11.45
60-6-0.2 3.84 2.42 0.00 16838.45 3927 0.01 0.02 14.06
60-6-0.5 7.54 4.86 3.45 time 1801 3.45 3.58 19.45
70-4-0.2 1.57 0.83 0.00 729.41 379 0.00 0.00 13.54
70-4-0.5 3.33 1.43 0.00 4315.38 373 0.00 0.00 15.22
70-4-0.8 5.59 2.58 0.00 45543.09 1871 0.11∗ 0.22 18.37
70-6-0.2 3.88 2.05 0.00 17063.47 2221 0.00 0.00 24.58
70-6-0.5 7.83 5.43 4.26 time 802 4.26 4.26 27.86
75-4-0.2 1.52 1.06 0.00 1320.45 678 0.00 0.00 15.83
75-4-0.5 3.40 1.56 0.00 8595.06 501 0.00 0.00 20.97
75-4-0.8 5.64 2.54 0.22 time 1727 0.32∗ 0.32 22.83
75-6-0.2 3.94 2.58 0.25 time 2666 0.25 0.25 28.93
75-6-0.5 7.61 5.42 4.62 time 766 4.62 4.62 34.91
90-4-0.2 1.45 1.35 0.00 9477.66 2529 0.00 0.00 30.41
90-4-0.5 3.14 1.93 0.00 65523.91 1369 0.00 0.00 34.74
90-4-0.8 5.40 3.28 3.00 time 165 3.00 3.12 38.60
90-6-0.2 3.91 3.34 2.67 time 641 2.67 2.69 47.74
90-6-0.5 7.63 5.98 5.96 time 267 5.96 5.96 59.61

100-4-0.2 1.50 1.39 0.00 22352.74 2810 0.00 0.00 39.55
100-4-0.5 3.24 2.26 0.74 time 706 0.74 0.74 48.25
100-4-0.8 5.52 3.41 3.39 time 29 3.39 3.39 49.59
100-6-0.2 4.12 3.73 3.19 time 605 3.19 3.19 64.33
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Chapter 4

An Exact Algorithm for the Modular

Hub Location Problem

In this chapter, we study a modular hub location problem (MHLP) which considers ex-

plicitly the flow dependence of transportation costs based on modular arc costs. Thus, the

total transportation cost is estimated not in terms of the per unit flow cost but in terms of

the number of facility links used on each arc, eliminating the use of nonlinear functions and

their linearizations to compute the discount factor for each hub arc. The cost is modeled

using a stepwise function that determines, for each arc on the network, the total transporta-

tion cost as a function of the amount of flow routed through the arc. Our approach can

be interpreted in terms of its ability to incorporate multiple capacity levels on the arcs.

Another advantage is that it neither assumes a fully interconnected hub network nor a par-

ticular topological structure, instead it considers the design of the hub network as part of

the decision process. Other variants of MHLP involving multiple assignments and direct

connections were initially introduced in Mirzaghafour (2013). The material presented in

this chapter is published in Tanash, Contreras, and Vidyarthi (2017).

The MHLP is related to other hub location models where capacities are considered at
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the arcs of the network. Sasaki and Fukushima (2003) study a capacitated multiple allo-

cation HLP where capacity constraints are considered both on hub nodes and hub arcs.

However, in their model, the flow between each O/D pair can go through at most one hub

facility and hence there is no discount between hubs. Yaman and Carello (2005) intro-

duce the capacitated single assignment hub location problem with modular link capacities

(CHLP-ML) in which additional capacity constraints are considered on the incoming and

outgoing flow at hubs. The CHLP-ML assumes hubs to be fully interconnected and does

not consider O/D paths containing more than two hub nodes and one hub arc. Even though

it is not explicitly mentioned in the paper, this model can be seen as one in which flow-

dependent costs are considered. The authors present a quadratic mixed-inter programming

formulation and compare different linearizations schemes based on the properties of the

optimal solution. They also present a branch-and-cut algorithm and a tabu search heuristic

for solving it. Corberán, Peiró, Campos, Glover, and Martı́ (2016) propose a metaheuris-

tic algorithm based on strategic oscillation for the CHLP-ML that improves on the results

obtained in Yaman and Carello (2005). However, to the best of our knowledge, the best

heuristic algorithm for the CHLP-ML is given in Hoff, Peiró, Corberán, and Martı́ (2016),

where a heuristic based on adaptive memory programing is developed to solve it. Yaman

(2008) present a hub location model for a star-star network with modular link capacities

in which hub nodes are directly connected to a central node. Rastani, Setak, and Karimi

(2015) study a capacitated single-allocation HLP in which the capacities of hubs and hub

links are parts of the decision process. The proposed model considers a flow-independent

discount factor and assume hubs to be fully interconnected.

In this chapter, we present two mixed integer programming (MIP) formulations for the

MHLP. The first formulation uses flow variables to compute the flow through hub arcs,

whereas the second formulation uses path variables to determine whether a specified hub

arc lies on the path between a pair of nodes. We propose a Lagrangean relaxation for
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the path-based formulation (PF) of MHLP by relaxing the linking constraints of the loca-

tion/allocation and routing variables. This makes it possible to decompose the Lagrangean

function into two independent subproblems which can be solved efficiently. We also pro-

pose a heuristic algorithm to obtain feasible solutions. To prove optimality, we develop a

branch-and-bound algorithm that uses the Lagrangean relaxation and a heuristic to obtain

lower and upper bounds at the nodes of the enumeration tree.

The remainder of this chapter is organized as follows. Section 1 formally defines the

problem and presents the proposed formulations. In Section 2, we describe the proposed

Lagrangean relaxation and study the structure of the subproblems and their solutions. Sec-

tion 3 describes the primal heuristic algorithm. While in Section 4, we present a branch-

and-bound algorithm. The computational results and analysis are presented in Section 5.

4.1 Problem Definition and Formulations

Let G = (N,A) be a complete digraph without loops, where N = {1, . . . , n} is the set

of nodes and A is the set of arcs. Let N also represent the set of potential locations, and let

Wij denote the amount of flow between nodes i ∈ N and j ∈ N . Thus, Oi =
∑

j∈N Wij

is the total flow originating at node i ∈ N , and Di =
∑

j∈N Wji is the total flow destined

to node i ∈ N . For each i ∈ N , fi is the set-up cost for locating a hub facility. The

distances between nodes i and j, dij ≥ 0, are assumed to be neither symmetric nor satisfy

the triangular inequality.

To estimate the transportation cost on both access and hub arcs, our model determines

the number of facility links with a given capacity that will be needed to route the flow on

these arcs. There is a fixed cost associated with these capacitated facility links as well as

variable cost that depends on the amount of flow. Therefore, the transportation costs on arcs

are modeled using a step-wise function. A hub arc (k,m) ∈ A connects two different hub

nodes k andm and has an associated transportation cost ckm = lc+b×dkm for each facility
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link with capacity B used to route flow from k to m, where lc and b represent the fixed and

variable costs, respectively. Note that transportation costs of hub arcs model costs incurred

when routing flow between two different hub facilities but not within the same facility. An

access arc (i, k) ∈ N ×N connects two nodes i and k, not necessarily different, and has an

associated transportation cost qik = lq + p× dik for each facility link with capacity R used

to route flow from i to k, where lq and p represent the fixed and variable costs, respectively.

Note that access arcs model the transportation cost to collect and distribute flow between

O/D nodes and hub facilities, even when an O/D node is selected to be a hub, i.e. i = k.

For each i ∈ N , let v1
i = dOi/Re denote the number of facility links required to route

the flow originating from i directly to a hub, and let v2
i = dDi/Re denote the number of

facility links required to route the flow from a hub directly to destination i. This means

that, because of the single assignment assumption, the number of facility links required to

connect each non-hub node to any hub node can be determined a priori and thus, it is not

part of the decision process. The transportation costs on access arcs are thus flow indepen-

dent because the number and actual utilization of the access arcs depend only on the flows

Oi and Di and the capacity R, which are parameters, and not on the assignment decisions.

In order to account for the flow-dependent economies of scale when consolidating flows

at hub facilities and using more efficient paths between hubs, we assume the following in-

equalities on hub arcs and access arcs: B > R, b > p and lc > lq. This ensures that if

facility links were fully loaded (or highly utilized), the unit transportation cost on hub arcs

would be less than the unit flow cost on access arcs. That is, ckm
B

< qkm
R

. However, when

links are only partially utilized it may happen that the unit transportation costs on hub arcs

could be higher than those of access arcs.

Under these assumptions, the MHLP consists of locating a set of hub facilities, activat-

ing a set of hub arc facility links, allocating each node to exactly one hub, and determining

the route of flows through the network such that the total setup and transportation cost is
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minimized. The model assumes a single assignment pattern of O/D nodes to hubs. As it

is the case in other well-known hub location models with single assignments (Contreras,

Dı́az, & Fernández, 2011; Ernst & Krishnamoorthy, 1996), this assumption is consistent

with applications in which outgoing and incoming flows of each non-hub node have to be

processed by a single hub facility due to managerial or contractual reasons. However, an

interesting feature of the MHLP is that it does not make any assumption on a particular

topological structure to connect hub facilities. Instead, it considers a fixed set-up cost for

the activation of hub arcs, allowing the model to select the most cost effective hub-level

network structure. These features make the MHLP a very challenging problem to solve.

Even if the location of hubs and the assignment of non-hub nodes to hubs are given, the

remaining subproblem of activating facility links on the hub-level network is still NP -hard

as it is equivalent to the well-known network loading problem (Magnanti et al., 1995).

In what follows, we present two MIP formulations for the MHLP based on the widely

used path-based and flow-based formulations for classical HLPs (see, Contreras, 2015).

4.1.1 Path-Based Formulation

For each i, k ∈ N , we define binary variables zik equal to one if non-hub i is assigned to

hub k. Note that, when zkk = 1, node k is selected as a hub and assigned to itself. For each

(k,m) ∈ A we define integer variables ykm equal to the number of hub arcs between hub

nodes k and m. For each i, j, k,m ∈ N , we also introduce continuous routing variables

xijkm equal to the fraction of the flow originating from i and destined to j that is routed via

59



hub arc (k,m). Using these sets of variables, the MHLP can be formulated as follows:

2(PF ) minimize
∑
k∈N

fkzkk +
∑
i∈N

∑
k∈N

(
qikv

1
i + qkiv

2
i

)
zik +

∑
(k,m)∈A

ckmykm

subject to
∑
k∈N

zik = 1 i ∈ N (22)

zik ≤ zkk i, k ∈ N (23)

zik +
∑
m∈N

xijmk = zjk +
∑
m∈N

xijkm i, j, k ∈ N, i 6= j (24)

∑
i∈N

∑
j∈N

Wijxijkm ≤ Bykm (k,m) ∈ A (25)

ykm ≤ Qzmm (k,m) ∈ A (26)

ykm ≤ Qzkk (k,m) ∈ A (27)

zik ∈ {0, 1} i, k ∈ N (28)

ykm ∈ Z+ (k,m) ∈ A (29)

0 ≤ xijkm ≤ 1 i, j, k,m ∈ N. (30)

The objective function minimizes the sum of setup costs for locating hub facilities and

the transportation cost on access and hub arcs. Note that when node i is assigned to hub k,

the transportation costs of both access arcs (i, k) and (k, i) are considered to represent the

collection and distribution cost, even when i = k. However, in the case of the transporta-

tion costs of hub arcs, these are considered only between two different hubs nodes k andm.

Constraints (22) ensure that each non-hub node is assigned to exactly one hub. Constraints

(23) ensure that each node is assigned to an open hub. Constraints (24) are the well-known

flow conservation constraints, that are used to model O/D paths. Constraints (25) are ca-

pacity constraints that limit the amount of flow on each hub arc (k,m). Constraint (26)

and (27) ensure that hub arc (k,m) is established only if k and m are hub nodes. Q is a

sufficiently large number representing an upper bound on the number of hub arcs between

60



hub nodes k and m. In this case, Q is set to d
∑

i∈N
∑

j∈N Wij/Be. Constraints (28)-(30)

are usual integrality and non-negativity constraints.

4.1.2 Flow-Based Formulation

For each i ∈ N and (k,m) ∈ A, we define Xikm equal to the amount of flow with

origin i that traverse hub arc (k,m). We also use the zik and ykm variables for the lo-

cation/allocation and network design decisions. The MHLP can then be formulated as

follows:

(FF ) minimize
∑
k∈N

fkzkk +
∑
i∈N

∑
k∈N

(
qikv

1
i + qkiv

2
i

)
zik +

∑
(k,m)∈A

ckmykm

subject to (22)− (23), (26)− (29)∑
j∈N

Wijzjk +
∑
m∈N

Xikm

−
∑
m∈N

Ximk −Oizik = 0 i, k ∈ N (31)

∑
i∈N

Xikm ≤ Bykm (k,m) ∈ A (32)

Xikm ≥ 0 i, k,m ∈ N. (33)

Constraints (31) are the flow conservation constraints whereas (32) are the capacity

constraints.

4.2 Lagrangean Relaxation

Lagrangean relaxation (LR) is a well-known decomposition technique that exploits the

inherent structure of the problem to obtain dual bounds on the optimal solution value (see,

Guignard, 2003). LR has been successfully applied to solve different variants of HLPs
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(An, Zhang, & Zeng, 2015; Contreras, Cordeau, & Laporte, 2011b; Contreras, Dı́az, &

Fernández, 2009). We now present a LR that is based on formulation PF for the MHLP.

In the next section, we embed this relaxation into a branch-and-bound algorithm to obtain

optimal solutions.

In the case of PF, if we relax constraints (24),(26), and (27), in a Lagrangean fash-

ion, weighting their violations with multiplier vectors λ1, λ2 ≥ 0, λ3 ≥ 0 of appropriate

dimension, we obtain the following Lagrangean function:

2 L(λ1, λ2, λ3) = min
∑
k∈N

fkzkk +
∑
i∈N

∑
k∈N

qik(v
1
i + v2

i )zik +
∑

(k,m)∈A

ckmykm

+
∑
i∈N

∑
j∈N

∑
k∈N

λ1
ijk(zik +

∑
m∈N

xijmk − zjk −
∑
m∈N

xijkm)

+
∑

(k,m)∈A

λ2
km(ykm −Qzmm) +

∑
(k,m)∈A

λ3
km(ykm −Qzkk)

s.t. (22)− (23), (25), and (28)− (30).

For a given value of the Lagrangean multipliers (λ1, λ2, λ3), the Lagrangean function

L(λ1, λ2, λ3) can actually be decomposed into two independent subproblems: one in the

space of z variables and the other in the space of (x, y) variables. The subproblem in the

space of z variables is:

2 Lz(λ
1, λ2, λ3) = min

∑
k∈N

F̄kzkk +
∑
i∈N

∑
k∈N

Āikzik

s.t. (22), (23), (28),

where the coefficients of the objective function are:

• F̄k = fk −
∑

m∈N Qλ
2
mk −

∑
m∈N Qλ

3
km,

• Āik = qik(v
1
i + v2

i ) +
∑

j∈N(λ1
ijk − λ1

jik).
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Observe that the Lz(λ1, λ2, λ3) can be evaluated by solving a classical uncapacitated

facility location problem (UFLP) (Cornuéjols, Nemhauser, & Wolsey, 1983). Even though

this problem is known to be NP-hard, it can be solved in reasonable CPU times using

ad-hoc solution algorithms.

The subproblem in the space of the (x, y) variables can be expressed as:

2 Lx,y(λ
1, λ2, λ3) = min

∑
(k,m)∈A

R̄kmykm +
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

M̄ijkmxijkm

s.t. (25), (29), (30),

where the coefficients of the objective function are:

• R̄km = λ2
km + λ3

km + ckm,

• M̄ijkm = λ1
ijm − λ1

ijk.

Given that each of the ykm variables appear in exactly one constraint, we can further

decompose Lx,y(λ1, λ2, λ3) into several independent subproblems, one for each (k,m) pair,

of the form:

2 Lk,mx,y (λ1, λ2, λ3) = min R̄kmykm +
∑
i∈N

∑
j∈N

M̄ijkmxijkm

s.t. (25), (29), (30).

For a given candidate hub arc (k,m), the subproblem computes the optimal number of

facility links to open and the commodities to be routed on this hub arc. These subprob-

lems can be efficiently solved by iteratively setting ykm to a non-negative integer value and

finding the optimal value for the associated xijkm variables. That is, upon fixing ykm the

problem reduces to a continuous knapsack problem, which can be optimally solved with a

greedy knapsack algorithm (Lawler, 1979). This algorithm first orders the xijkm variables
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so that
M̄(s)km

W(s)

≤
M̄(s+1)km

W(s+1)

,

for s = 1, · · · , n2 − n, where W(s) denotes the demand flow of the sth ordered node

pair (i, j). Starting from s = 1, the algorithm adds the ordered items, i.e., x(s)km = 1,

one at a time to the knapsack and continues until the residual capacity is equal to zero or

M(s)km > 0. Note that only a fraction of the last considered item (denoted as r) may have

been added, i.e., x(r)km =
(
Bykm −

∑r−1
s=1 W (s)

)
/W (r) < 1.

To determine the optimal value of ykm, the algorithms starts from ykm = 1 and evaluates

the objective value by solving the corresponding continuous knapsack problem. If the

objective value is strictly negative, ykm is increased by one to add B extra units of capacity

to the knapsack so as to allow more x(s)km variables to take a positive value. The value

of ykm is increased until the capacity increases to a point that all x(s)km can be set to one

or whenever the next element to be added deteriorates the objective (i.e., M̄(s)km ≥ 0). A

value of ykm = 0 is selected as optimal whenever setting ykm ≥ 1 yields strictly positive

objective values.

4.2.1 Solving the Lagrangean Dual Problem

In order to obtain the best possible lower bound, we solve the Lagrangean Dual prob-

lem, which is given by:

(LD) LD = max
λ1

λ2,λ3≥0

L(λ1, λ2, λ3).

We apply the subgradient optimization method to solve problem LD. It is well known

that the classical subgradient algorithm tends to suffer from slow convergence. To over-

come this difficulty, we use a deflected subgradient algorithm. This algorithm uses a linear
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combination of the current subgradient direction st and the direction used in the previ-

ous iteration dt−1 to obtain the next direction of movement. That is, at every iteration t,

dt = st + θtdt−1. The efficiency of this method depends on selecting the deflected subgra-

dient parameter θt (see for instance, Brännlund, 1995; Camerini, Fratta, & Maffioli, 1975).

To this end, we use the following rule based on geometrical arguments (see, Guta, 2003):

θt =

 −π
stdt−1

‖dt−1‖2 if stdt−1 < 0,

0 otherwise,

where 0 ≤ π ≤ 2. For a given vector (λ1, λ2, λ3), let z(λ), y(λ), and x(λ) be the optimal

solution to L(λ1, λ2, λ3). Thus, a subgradient of L(λ1, λ2, λ3) is given by

s(λ1, λ2, λ3) =

((
zik(λ) +

∑
m∈N

xijmk(λ)− zjk(λ)−
∑
m∈N

xijkm(λ)

)
(i,j,k)

,(
ykm(λ)−Qzkk(λ)

)
(k,m)

,(
ykm(λ)−Qzmm(λ)

)
(k,m)

)
.

At each iteration t of the subgradient algorithm, the dual multipliers are updated as:

(λ1, λ2, λ3)(t+1) = (λ1, λ2, λ3)(t) + δt
φ̄− L((λ1, λ2, λ3)t)

||Γ(λ1, λ2, λ3)t||2
dt,

where φ̄ denotes an upper bound on the optimal solution value and δ is a constant between

0 and 2.

4.2.2 Primal Heuristic

We exploit the information generated at some iterations of the subgradient algorithm

to construct feasible solutions. In what follows, solutions are represented by a set of hub
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nodes H , a set of hub arcs D, and an assignment mapping M . Solutions are designated in

the form s = (H,D,M), where H represents the set of selected sites at which hubs are

located, i.e., H(i) = 1 if site i ∈ N is chosen to be a hub, D((i, j)) : A → Z+ represents

the number of facility links installed on hub arcs (i, j) and M : N → H is the assignment

mapping, i.e., M(j) = k if node j ∈ N is assigned to hub k ∈ H .

The proposed heuristic constructs feasible solutions as follows. Let ẑt, ŷt and x̂t be the

optimal solution to the Lagrangean subproblems Lz(λ) and Lx,y(λ) at a given iteration t of

the subgradient algorithm. The optimal solution of the subproblem Lz(λ
t) provides a set of

hubs and an assignment mapping of non-hub nodes to hubs, that is H = {k : ẑkk = 1, k ∈

N}, and M(i) = k̄ where ẑik̄ = 1. Since Lz(λt) and Lx,y(λt) are solved independently, the

solution obtained from the subproblem Lx,y(λ
t) might not be feasible for the set H of hubs

obtained in solving Lz. Therefore, once the location/allocation variables are fixed, the next

step is to determine the number of facility links to be activated on each hub arc in order

to route the flows at minimum cost. This subproblem is actually equivalent to solving a

network loading problem (NLP) on an auxiliary network.

Let Ĝ = (Ĥ, Â) be a directed graph where Ĥ = {k ∈ N : ẑkk = 1} is the set of open

hubs at iteration t and Â = {(k,m) ∈ A : k,m ∈ Ĥ} is the set of candidate hub arcs.

For each pair (k,m) ∈ Ĥ × Ĥ , let wkm =
∑

i∈O(k)

∑
j∈O(m) denote the amount of flow

that needs to be routed from k to m, where O(k) = {i ∈ N : ẑik = 1}. Recall that ckm

represents the (transportation) cost for using one facility link with capacity B on hub arc

(k,m). Using the ykm and xijkm variables defined in Section 2, the NLP can be formulated

as:
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minimize
∑

(k,m)∈Â

ckmykm

subject to
∑
i∈Ĥ

∑
j∈Ĥ

wijxijkm ≤ Bykm (k,m) ∈ Â

∑
m∈Ĥ

xijkm −
∑
m∈Ĥ

xjikm =


1 if k = i,

−1 if k = j.

0 if k 6= i, j.

i, j, k ∈ Ĥ

0 ≤ xijkm ≤ 1 i, j, k,m ∈ Ĥ

yij ∈ Z+ (i, j) ∈ Â.

Even though the NLP is known to be a NP-hard, for instances of reasonable size it can

be solved efficiently using a general purpose solver. The output of the NLP is a set of hub

arcs to open and the associated routing decisions for all demand flow of the MHLP. Thus,

the optimal solution of the NLP provides a feasible solution to the MHLP. The overall

Lagrangean relaxation algorithm is depicted in Algorithm 1.

This constructive phase of the heuristic is executed every time the subgradient algorithm

improves the best known lower bound. Once the subgradient algorithm terminates, we

apply a local search procedure on the best known solution obtained so far. This procedure

iteratively explores two neighborhoods namely classical shift and swap neighborhoods.

In the shift neighborhood, a non-hub node i currently assigned to hub m, is reassigned

to a different open hub k. In the swap neighborhood, two non-hub nodes i and j currently

assigned to hubsm and k with k 6= m, respectively, are reallocated to k andm, respectively.
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Algorithm 1: Lagrangean relaxation heuristic
Initialize zD ← −∞; (λ1, λ2, λ3)0 ← 0; δ0 ← 2; φ̄←∞; t← 0; π ← 1.5
while (Stopping criteria not satisfied) do

Solve the Lagrangean function L((λ1, λ2, λ3)t)
if (L((λ1, λ2, λ3)t)) > zD) then

zD ← L((λ1, λ2, λ3)t)
Apply constructive heuristic to obtain upper bound UBt

if (UBt < φ̄) then
φ̄← UBt

end if
end if
Evaluate the subgradient γ(λ1, λ2, λ3)t

if( γ(λ1, λ2, λ3)tdt−1 < 0) then
θt = −πγ(λ1, λ2, λ3)dt−1/ ‖ dt−1 ‖2

else
θt = 0

end if
Obtain the direction dt = γ(λ1, λ2, λ3)t + θtdt−1

Calculate the step length st ← δt φ̄−L((λ1,λ2,λ3)t)
||γ(λ1,λ2,λ3)t||2 ,

Set (λ1, λ2, λ3)(t+1) ← (λ1, λ2, λ3)(t) + stdt

Set t← t+ 1
end while

Let s = (H,A,M) be the current solution, then

Nshift(s) = {s′ = (H,A,M
′
) : ∃!j ∈ N, M ′

(j) 6= M(j)},

and

Nswap(s) = {s′ = (H,A,M
′
) : ∃!(j1, j2), j

′

1 = M(j2), j
′

2 = M(j1), ∀j 6= j1, j2}.

The local search procedure explores Nshift first until a local optimal solution is found.

The algorithm then tries to improve the solution by exploring Nswap. Each time the search

improves the best known solution, the procedure starts withNshift. In both neighborhoods,

a best improvement strategy is used. Note that in order to reoptimize the arc selection and
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routing decisions in each neighbor, we solve one NLP to optimality. An outline of the local

search scheme is depicted in Algorithm 2.

Algorithm 2: Local search procedure
stoppingcriteria← false
while( stoppingcriteria = false)do

explore Nshift
if(solution not improved in Nshift) then

explore Nswap
if(solution has not been updated) then

stoppingcriteria← true
end-if

end-if
end-while

4.3 Branch-and-Bound Algorithm

We describe a branch-and-bound algorithm for solving the MHLP to optimality. It

uses the Lagrangean relaxation to obtain lower and upper bounds at every node of the

enumeration tree. It is composed of three phases. In the first phase, the enumeration tree

is created by branching on the location variables zkk, producing terminal nodes in which

all location variables have been fixed. The second phase proceeds from each unfathomed

node, creating an enumeration tree by branching on the assignment variables zik. When

all the location and allocation variables are fixed, the third phase finds the optimal link

activation and routing decisions for each unfathomed node by solving an associated NLP.

Let (z̄, ȳ, x̄) be the best solution found at the end of the Lagrangean relaxation algorithm

at any node of the tree. The branching strategy used in the first phase of the enumeration

tree is as follows. If there are any unfixed location variables such that z̄kk = 1, we select

among these the one with the largest reduced cost F̄k and explore the branch with z̄kk = 1.

We store the associated branch with z̄kk = 0 on a list of unexplored nodes for later. When

there are no more location variables which have not been fixed in the tree such that z̄kk = 1,
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we branch on the remaining unfixed variables by selecting the one with the largest reduced

cost and explore the branch with z̄kk = 1. The first phase is completed once all locational

decisions have been fixed.

When some of the nodes of the first phase have not been fathomed, we continue with the

second phase. In this phase, we select each of these unfathomed nodes from the previous

phase, one at a time, in non-decreasing way with respect to their lower bounds obtained

and branch on the assignment variables. During this phase, the tree is not binary. That is,

the number of branches generated at a node of the tree when selecting a non-hub node i for

branching is equal to the number of open hubs on its path. The non-hub nodes are selected

to be explored in the order of decreasing values of the highest reduced cost associated with

the z̄ik variables.

When all nodes of the second phase have been explored, but a subset of terminal nodes

(i.e., nodes of depth n) have not been eliminated we move to the third (and last) phase of

the algorithm. Note that at this point all locational and assignment decisions have been

fixed and thus, the resulting subproblems reduces to a NLP. For each of these unfathomed

nodes, we solve an associated NLP to optimality. We explore the entire enumeration tree

in a depth first search fashion. At each node of the tree, the dual multipliers are initialized

using the dual solutions from its parent node.

4.4 Computational Experiments

We run computational experiments to compare and analyze the performance of the

formulations, the Lagrangean relaxation and the branch-and-bound algorithm. All formu-

lations and algorithms have been coded in C++ and run on an HP station with an Intel Xeon

CPU E3-1240V2 processor at 3.40GHz and 24 GB of RAM under windows 7 environment.

All MIP problems have been solved using Concert technology of CPLEX 12.5.1.
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We generate a set of benchmark instances for the MHLP using the well known Aus-

tralian post (AP) instances which can be downloaded from the OR library (see, Beasley,

1990). The AP data set consists of postal flow and Euclidean distances between 200 dis-

tricts in an Australian city. In our experiments, we have selected problems with |N | =10,

20, 25, 40, 50, 60, and 75 nodes, and disregarded the flows Wii for each i ∈ N , i.e.,

Wii = 0. For each problem size, we generated 9 instances for the MHLP. Each instance

comprises a hub facility link capacity chosen fromB ∈ {200, 300, 400, 500, 600, 650, 750}

with an associated variable cost in b ∈ {450, 500, 600, 800}, and a facility link capac-

ity on access arcs chosen from R ∈ {100, 150, 200} with an associated variable cost in

p ∈ {300, 345, 400, 500}. The choice of the parameters in each generated instance is such

that ckm
B

< qkm
R

where B > R, b > p and lc=lq=0, to guarantee that the unit transporta-

tion cost on hub arcs, when fully utilized, is smaller than the unit transportation cost on

access arcs. That is, there is a potential discount factor associated with hub arcs due to

consolidation and use of more efficient modes of transportation between hub nodes. We

note that b/B
p/R

corresponds to the smallest discount factor that can be achieved on hub arcs

when compared to the transportation cost of access arcs when fully utilized. In practice,

some arcs might be underutilized and thus, the actual discount factor may be higher which

in turn, may lead to a lower unit cost on access arcs than on some hub arcs.

In order to generate a variety of instances, we selected the values for the capacities

and costs in such a way that we obtain different potential discount factors on hub arcs. In

particular, we consider the following configurations:

i) for b/B
p/R

= 0.2:

◦ L1 :(B = 750, R = 100, b = 600, p = 400),

◦ L2 :(B = 750, R = 100, b = 450, p = 300),

◦ L3 :(B = 600, R = 100, b = 600, p = 500),
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ii) for b/B
p/R

= 0.4:

◦ L4 : (B = 400, R = 100, b = 800, p = 500),

◦ L5 : (B = 650, R = 150, b = 600, p = 345),

◦ L6 : (B = 500, R = 100, b = 600, p = 300),

iii) for b/B
p/R

= 0.63:

◦ L7 : (B = 200, R = 100, b = 500, p = 400),

◦ L8 : (B = 300, R = 150, b = 500, p = 400),

◦ L9 : (B = 400, R = 200, b = 500, p = 400).

For each one of these nine configurations, we generate seven different instances, one

for each size of network. Therefore, we generated a total of 63 instances.

In all the experiments, the subgradient algorithm terminates when one of the following

criteria has been met: i) the difference between the upper and lower bound is below a

given threshold value, i.e.|φ̄− ztD| < ε, ii) the improvement on the lower bound after tmax

consecutive iterations is below a threshold value ψ, iii) the maximum number of iterations

itermax has been reached.

After some tuning, we set the following parameters to: ε = 10−6, ψ = 0.05, and

tmax = 150. For the first stage in the branch-and-bound algorithm, we set the maximum

number of subgradient iterations at the root node to itermax = 4, 000 and to itermax = 25

for the rest of the nodes. The parameter δ has been reduced by 0.25 after 100 consecutive

iterations without improvement in the lower bound. In the second stage, the maximum

number of subgradient iterations has been fixed to itermax = 300 at the root node and

itermax = 25 for the rest of the nodes.
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4.4.1 Comparison of Formulations and Algorithm

The first set of computational experiments has been performed to compare the path-

based formulation (PF ) with the flow-based formulation (FF ) when solved using CPLEX.

Throughout experiments, we used the default settings of CPLEX. The detailed results of

this comparison on a set of instances ranging from 10 to 40 nodes are reported in Table

1. The first column provides the number of nodes, n, and the instance name (n − name).

The next set of columns reports the linear programming relaxation gap (%LP ), the linear

programming relaxation gap after adding CPLEX cuts (%LPcut), the percent deviation

between the final upper and lower bounds (%GAP), the CPU time in seconds (CPU), and

the number of explored node in the enumeration tree (Nodes), for both formulations. The

%LP gap has been computed as (UB−LP )/UB×100, where UB is the best upper bound

(or the optimal solution value), and LP is the optimal value of the LP relaxation. The final

percent gap %GAP has been evaluated as (UB − LB)/UB × 100, where UB and LB

denote the best upper and lower bounds obtained at termination, respectively. Throughout

experiments, the maximum time limit is set to one day of CPU time. Instances that could

not be solved to optimality within this time limit have been marked with the label “time”.

As can be seen in Table 1, PF is able to optimally solve 17 out of the 36 instances

within the time limit. The percent LP gap of PF ranges from 2.21 to 10.15. The column

%LPcut shows that the addition of CPLEX cuts has a significant impact on the improvement

of the lower bound at the root node of the tree. Nevertheless, CPLEX is unable to solve the

LP relaxation for all 40-node instances in one day of CPU time. In the case of the FF ,

CPLEX is able to solve 26 out of the 36 instances within the time limit. The %LP gaps

for the instances that have been solved using PF are slightly better than that obtained in

the FF . The percent LP gap of FF ranges from 3.36 to 11.48. However, given that there

is a considerably smaller number of variables and constraints in FF , CPLEX is able to

optimally solve all 25-node instances and one of the 40-node instances that the PF cannot
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Table 4.1: Comparison between path-based and flow-based formulations
Instance Path-based formulation (PF ) Flow-based Formulation (FF )

% LP % LPcut %GAP CPU Nodes % LP % LPcut %GAP CPU Nodes
10-L1 7.75 2.03 0.00 39 374 8.61 3.84 0.00 < 5 935
10-L2 4.30 1.87 0.00 < 5 39 4.80 2.05 0.00 < 5 48
10-L3 9.06 2.58 0.00 142 2,521 9.38 5.47 0.00 33 22,449
10-L4 10.15 4.35 0.00 1,187 23,408 11.48 6.96 0.00 129 43,548
10-L5 4.01 2.65 0.00 < 5 35 4.59 3.03 0.00 < 5 25
10-L6 5.85 3.10 0.00 23 452 6.44 3.28 0.00 < 5 317
10-L7 4.47 3.05 0.00 28 715 6.31 3.39 0.00 < 5 676
10-L8 3.61 1.54 0.00 < 5 52 4.50 2.13 0.00 < 5 69
10-L9 5.02 3.99 0.00 11 199 6.24 4.52 0.00 < 5 467
20-L1 5.72 2.16 1.07 86,400 3,529 6.14 4.01 0.00 1,027 20,977
20-L2 2.96 1.44 0.00 6,543 603 3.36 2.10 0.00 67 1,451
20-L3 8.22 2.85 2.74 86,400 3,098 8.31 7.68 0.00 10492 679,516
20-L4 5.93 2.17 0.00 78,393 6,547 6.68 4.04 0.00 1,707 34,623
20-L5 3.48 1.69 0.00 1,286 472 3.92 3.70 0.00 72 1,485
20-L6 5.05 3.74 0.00 24,329 3,276 5.24 5.18 0.00 133 5,224
20-L7 3.35 2.80 0.00 24,049 3,960 4.15 3.53 0.00 166 8,135
20-L8 2.98 2.32 0.00 6,055 575 3.80 3.05 0.00 101 2,633
20-L9 2.97 2.26 0.00 3,116 357 3.67 2.78 0.00 56 1,091
25-L1 8.82 4.07 4.07 time 0 9.02 6.29 0.00 74,023 312,521
25-L2 3.84 1.84 1.79 time 3 4.36 3.57 0.00 3,300 14,906
25-L3 9.15 3.97 3.97 time 0 9.34 8.57 2.15 time 242,779
25-L4 8.39 3.17 3.14 time 200 8.82 8.69 0.29 time 378,612
25-L5 3.94 2.30 2.14 time 1,330 4.68 4.34 0.00 1,503 14,439
25-L6 4.11 2.89 2.89 time 539 4.96 4.72 0.00 2,180 24,962
25-L7 2.21 1.74 1.16 time 1,329 3.97 3.69 0.00 1,928 17,138
25-L8 2.45 1.77 0.00 time 873 3.39 3.05 0.00 560 4,023
25-L9 3.36 2.15 2.00 time 1,038 4.61 3.94 0.00 646 4,987
40-L1 n.a n.a n.a time n.a 6.91 6.89 4.08 time 167,604
40-L2 n.a n.a n.a time n.a 3.52 3.23 0.00 51,740 37,187
40-L3 n.a n.a n.a time n.a 7.43 7.35 5.14 time 289,952
40-L4 n.a n.a n.a time n.a 7.41 6.79 4.84 time 148,985
40-L5 n.a n.a n.a time n.a 5.12 4.88 2.63 time 69,828
40-L6 n.a n.a n.a time n.a 4.67 4.64 0.75 time 52,983
40-L7 n.a n.a n.a time n.a 4.21 4.12 0.86 time 107,754
40-L8 n.a n.a n.a time n.a 5.41 4.99 3.08 time 82,524
40-L9 n.a n.a n.a time n.a 5.73 4.71 3.55 time 38,074

solve. Moreover, FF was able to provide optimality gaps for the remaining unsolved 40-

node instances.

In order to analyze the performance of our proposed exact algorithm, we conduct a

second series of computational experiments using a set of instances ranging from 10 to

50 nodes. The results are summarized in Table 2. The first five columns have the same

meaning as in Table 1. The next two columns under heading LR provide duality gap of

the best lower bound obtained with Lagrangean relaxation with respect to the best known

solution (%LR) and the CPU time in seconds needed to obtain both lower and upper

bounds using Lagrangean relaxation (CPU). The results of the columns under heading
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Branch and Bound report: the final percent deviation at termination (%Gap), the CPU

time in second (CPU), and the number of the explored nodes in the enumeration tree

(Nodes).

The results in Table 2 show that by using FF , we were able to solve 26 out of the

45 problem instances to optimality using CPLEX (final percent gaps on the remaining

instances range from 0.29 to 8.87). The exact algorithm, on the other hand, was able to

confirm the optimality of the solutions obtained in 35 out of the 45 instances within the

CPU time limit. For the remaining 10 unsolved instances, the final percent deviation is

below 2.8. In all instances considered, the percent deviation of the LR is smaller than the

one obtained with FF even after the addition of CPLEX cuts. As a result, the proposed

algorithm produces significantly smaller enumeration trees and is much faster than CPLEX

for all instances, except on the small size, 10-node instances. Moreover, our exact algorithm

is able to optimally solve 9 instances that FF is unable to solve within the time limit. For

the instances that have not been solved to optimality, our algorithm always provides much

smaller percent gaps as compared to FF . We note that the percent of time taken by the

algorithm for solving the UFLPs at every iteration and the NLPs during the local search

and at the end of the enumeration tree never exceeds 5% of the total computational time for

the larger instances with 40 and 50 nodes.

In order to further analyze the performance of our proposed algorithm, we have run

a third series of computational experiments using 60-node and 75-node instances. The

results are summarized in Table 3. The column CPULP cuts reports the computational time

in seconds to solve the LP relaxation and to add CPLEX cuts whereas the other columns

have the same meaning as in the previous tables.

As can be seen in Table 3, the lower bounds obtained from Lagrangean relaxation are

significantly tighter than those obtained with FF . In particular, the LP gaps of FF range

from 6% to 13%, whereas theLP gaps of the Lagrangean relaxation algorithm never exceed
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Table 4.2: Results of branch-and-bound algorithm for small to medium-size instances
Instance Flow-based Formulation LR Branch and Bound

% LPcut %GAP CPU Nodes %LR CPU %GAP CPU Nodes
10-L1 3.84 0.00 < 5 935 2.02 10 0.00 22 213
10-L2 2.05 0.00 < 5 48 1.86 6 0.00 9 42
10-L3 5.47 0.00 33 22,449 2.48 50 0.00 88 624
10-L4 6.96 0.00 129 43,548 4.52 22 0.00 337 4,537
10-L5 3.03 0.00 < 5 25 2.20 12 0.00 19 87
10-L6 3.28 0.00 < 5 317 3.18 7 0.00 15 127
10-L7 3.39 0.00 < 5 676 3.61 29 0.00 80 714
10-L8 2.13 0.00 < 5 69 1.58 13 0.00 22 137
10-L9 4.52 0.00 < 5 467 4.03 13 0.00 21 180
20-L1 4.01 0.00 1,027 20,977 1.79 35 0.00 102 1,268
20-L2 2.10 0.00 67 1,451 1.47 23 0.00 48 383
20-L3 7.68 0.00 10492 679,516 1.83 83 0.00 308 4,624
20-L4 4.04 0.00 1,707 34,623 2.05 47 0.00 241 4,173
20-L5 3.70 0.00 72 1,485 1.50 42 0.00 58 349
20-L6 5.18 0.00 133 5,224 3.75 37 0.00 149 3,102
20-L7 3.53 0.00 166 8,135 3.22 79 0.00 356 5,116
20-L8 3.05 0.00 101 2,633 2.38 39 0.00 78 818
20-L9 2.78 0.00 56 1,091 2.32 37 0.00 77 764
25-L1 6.29 0.00 74,023 312,521 1.57 129 0.00 697 9,155
25-L2 3.57 0.00 3,300 14,906 0.95 87 0.00 167 700
25-L3 8.57 2.15 time 242,779 2.01 145 0.00 887 11,632
25-L4 8.69 0.29 time 378,612 2.58 450 0.00 3,163 41,232
25-L5 4.34 0.00 1,503 14,439 2.03 67 0.00 276 1,957
25-L6 4.72 0.00 2,180 24,962 2.79 82 0.00 439 5,147
25-L7 3.69 0.00 1,928 17,138 2.27 168 0.00 1,331 13,750
25-L8 3.05 0.00 560 4,023 1.55 82 0.00 289 3,020
25-L9 3.94 0.00 646 4,987 1.77 101 0.00 249 2,185
40-L1 6.89 4.08 time 167,604 1.78 699 0.00 16,144 78,423
40-L2 3.23 0.00 51,740 37,187 0.64 437 0.00 865 1,177
40-L3 7.35 5.14 time 289,952 1.76 734 0.00 32,290 174,658
40-L4 6.79 4.84 time 148,985 2.68 731 1.91 time 290,062
40-L5 4.88 2.63 time 69,828 1.79 135 0.00 4,153 15,151
40-L6 4.64 0.75 time 52,983 2.48 497 0.00 24,200 101,864
40-L7 4.12 0.86 time 107,754 2.85 786 0.00 40,284 152,099
40-L8 4.99 3.08 time 82,524 2.35 681 0.00 59,693 323,662
40-L9 4.71 3.55 time 38,074 1.87 578 0.00 78,105 431,532
50-L1 8.33 7.69 time 62,875 2.79 1,502 1.84 time 239,520
50-L2 6.52 5.86 time 21,077 2.35 1,613 2.00 time 250,642
50-L3 9.76 9.53 time 125,427 2.41 1,903 2.16 time 166,954
50-L4 8.62 7.49 time 154,566 2.56 3,675 2.01 time 190,193
50-L5 9.21 8.56 time 14,841 4.45 1,224 2.61 time 210,039
50-L6 5.83 5.23 time 30,198 2.23 1,305 1.67 time 226,644
50-L7 5.03 3.56 time 105,850 3.34 2,169 1.79 time 173,901
50-L8 6.53 5.75 time 76,346 3.41 1,963 2.72 time 176,399
50-L9 5.40 5.30 time 9,144 1.87 1,319 0.12 time 283,396

5%. It is worth mentioning that both FF and our algorithm are unable to solve any of these

60 and 75 nodes instances within the time limit of one day of CPU due to the size and

complexity of the problem. However, the final gap of our branch-and-bound algorithm is

at most 3.05%.

4.4.2 Sensitivity Analysis

In the last part of the experiments, we perform a sensitivity analysis on some of the

parameters of the problem to analyze the changes in optimal solution networks. In partic-

ular, Tables 4 to 7 show how optimal network configurations change depending on: (i) the
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Table 4.3: Results of branch and bound algorithm for 60 and 75-node instances
Instance Flow-based Formulation LR Branch and Bound

%LPcuts CPULPcuts %LR CPU %GAP CPU Nodes
60-L1 8.76 4,419 2.00 3,129 1.73 time 118,013
60-L2 7.82 3,338 1.75 2,523 1.53 time 131,604
60-L3 9.78 2,408 2.29 3,347 2.09 time 21,369
60-L4 8.57 1,877 2.95 4,191 2.13 time 15,657
60-L5 8.70 2,682 1.90 2,880 1.61 time 130,091
60-L6 8.03 3,392 2.69 3,128 2.13 time 98,955
60-L7 6.02 1,553 4.33 4,037 2.45 time 14,426
60-L8 7.60 1,920 3.69 3,346 2.56 time 15,460
60-L9 7.04 1,543 2.60 4,772 1.58 time 93,931
75-L1 11.05 11,339 2.30 9,678 2.21 time 5,721
75-L2 8.79 10,851 1.83 8,219 1.52 time 7,680
75-L3 10.09 8,390 2.00 15,620 0.86 time 4,940
75-L4 11.01 11,640 3.18 23,013 2.11 time 2,249
75-L5 12.64 11,727 2.80 9,069 0.28 time 4,391
75-L6 10.85 13,972 3.55 8,070 2.67 time 4,198
75-L7 8.25 11,235 4.96 13,183 3.05 time 2,488
75-L8 9.12 8,639 3.55 13,160 1.70 time 3,883
75-L9 8.61 9,888 2.39 10,451 0.44 time 4,959

capacity of hub arcs (B), (ii) the capacity of access arcs (R), (iii) the variable cost of access

arcs (p), and (iv) the variable cost of hub arcs (b), respectively. The tables present the op-

timal network configuration - hub nodes, hub arcs, number of hub facility links (ykm), and

the percent hub arc utilization (% Utilization). That is, the hub arc utilization measures how

much of the available capacity is being used on each hub arc (k,m) and has been computed

as
∑

i∈N
∑

j∈N Wijx̄ijkm/(Bȳkm)100, where (x̄, ȳ) denotes the optimal solution.

Table 4 illustrates the effect of changing the capacity of hub arcs (B) on optimal solution

networks while the rest of the parameters remain fixed. We observe that at higher capacity

levels of hub arcs, more hubs are opened. However, the MHLP tries to utilize hub arc

facilities by activating fewer hub arcs and thus, resulting in a cost efficient hub-and-spoke

network structure. For instance, with B = 650, MHLP opens six hubs at nodes 1, 3,

6, 8, 10, and 13 and connects them with only nine hub arcs. The average arc utilization

is 75.7%. When B decreases to 325, the model closes hub 3 while the rest is open and

increases the number of active hub arcs to 11. The average utilization increases to 86.86%.

Upon decreasing B further to 206, only four hubs are opened at nodes 3, 5, 10 and 13 with

eight hub arcs. Note that the average utilization increases to 88.5%. In all cases, nodes 10

and 13 are chosen as hubs. In addition, we note that larger O/D paths are used when hub
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arc capacities are higher. For example, the flow routed from node 16 to node 0 visits five

hub facilities when B = 650, four hubs when B = 325, and only two when B = 206.

Table 4.4: Effect of varying capacity of hub arcs on optimal solution networks with n = 20,
R = 110, p = 634 and b = 750.
Capacity Solution network Hub arcs ykm % Utilization

B = 650

0

1

2

3

4 5 6

7

8 9
10

11

12 13 14

15

16 17
18 19

(1,6)
(3,1)
(6,3)

(6,10)
(8,13)
(10,6)

(10,13)
(13,8)

(13,10)

1
1
1
1
1
1
1
1
2

55.39
60.45
66.28
86.26
65.05
94.26
98.24
79.24
75.89

B = 325

0

1

2
3

4 5 6

7

8
9 10

11

12 13 14

15

16 17
18 19 (1,6)

(6,1)
(6,8)

(6,10)
(8,10)
(8,13)
(10,6)

(10,13)
(13,6)
(13,8)

(13,10)

1
1
1
1
1
1
1
1
1
1
2

79.25
89.37

100.00
84.00
44.09

100.00
100.00
99.96

100.00
77.32
81.42

B = 206

0

1

2

3

4

5
6

7

8 9
10 11

12 13 14

15

16 17
18 19

(3,5)
(5,13)
(10,3)
(10,5)
(5,10)

(10,13)
(13,5)

(13,10)

1
1
1
1
2
2
2
3

54.65
98.12
73.06
85.48

100.00
98.88
97.82

100.00

Table 5 shows the changes in network configuration when varying the capacities of

access arcs R, while the rest of the parameters remain fixed. From Table 5, we observe that
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as the capacity of links on access arcs decreases, the MHLP locates more hub facilities as

well as more hub arcs to route the flow between allO/D nodes. For instance, whenR = 80,

the model opens two hubs at nodes 6 and 13 and activates only two hub arcs to route the

flow between all O/D nodes. Moreover, the average hub arc utilization in the network is

86.45% which implies that higher flows through the hub arcs. Upon decreasing R to 50,

the optimal solution recommends locating three fully interconnected hub facilities at nodes

5, 10, and 13. In this case, the average hub arc utilization is 89.35%. Further decreasing

R to 25, the model opens six hubs at nodes 1, 3, 6, 8, 11, and 13 and activates 13 hub arcs

to route the flow between all O/D nodes. Moreover, the average hub arc utilization in the

network is 94.15% which implies that higher flows through the hub arcs. Furthermore, a

lower capacity on access arcs leads to the selection of the most isolated node 3 as a hub

given that it is the one with the highest amount of incoming/outgoing flow. It can also be

seen that, as R decreases, the location of hub facilities tend to be closer to each other.

Table 6 illustrates the effects of varying the variable cost of hub arcs b on the optimal

solution network while the capacities B and R and the variable cost p are fixed. As can

be seen in Table 6, as the variable cost b decreases, the MHLP tends to locate more hub

facilities and activate fewer hub arcs. This behavior can be attributed to the decrease in unit

flow cost on hub arcs when b decreases. For example, when b = 600, the MHLP locates

three fully interconnected hub facilities with an average hub arc utilization of 82.72%.

Decreasing the unit flow cost by decreasing b to 500 results in locating four hub facilities

at nodes 5, 8, 10 and 13, and activating 10 hub arcs. The average hub arc utilization is

91.81%. As expected, further decreasing the unit flow cost, i.e. b equal to 300, the optimal

solution recommends locating six hub facilities at nodes 1,3,6,8,10, and 13 and using 13

hub arcs resulting in average utilization of 92.33%.

Finally, Table 7 illustrates the effects of varying the variable costs of access arcs p on

the optimal solution networks while the rest of the parameters remain fixed. As can be
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Table 4.5: Effect of varying capacity of access arcs in optimal solutions with n = 20,
B = 250, b = 200, p = 150.
Capacity Solution network Hub arcs ykm % Utilization

R = 80

(13,6)
(6,13)

4
3

92.14
80.83

R = 50

0

1

2

3

4

5 6
7

8
9

10

11

12

13
14

15

16
17 18

19

(13,10)
(13,5)

(10,13)
(10,5)
(5,13)
(5,10)

3
2
1
1
2
1

78.13
87.00

100.00
100.00
71.90
99.08

R = 25
0

1

2

3

4

5 6 7

8
9

10
11

12 13
14 15

16 17 18 19
(13,11)
(13,8)
(13,6)

(11,13)
(11,6)
(8,13)
(8,1)

(6,11)
(6,8)
(6,3)
(3,1)
(1,8)
(1,6)

2
2
1
1
1
2
1
1
1
1
1
1
1

99.41
88.64

100.00
100.00
100.00
100.00
100.00
91.44
87.94

100.00
84.83
71.68

100.00

seen in this table, as the variable costs p decreases, the MHLP tends to locate fewer hubs

and connect them with fewer hub arcs. For instance, when p = 600, MHLP selects five

locations for hub facilities, i.e., 2, 6, 8, 10, and 13, and activates eight hub arcs to route the

flow between all O/D pairs. The average hub arc utilization is 80.4%. Decreasing p to 317

results in locating only three hubs at nodes 5, 10, and 13 and connecting them using four

hub arcs resulting in an average utilization of 90.06%. Further decreasing p to 212 leads

to selecting only two hub facilities at nodes 6 and 13 with two hub arcs with an average

utilization of 87.12%.
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Table 4.6: Effect of varying the variable cost b of hub arcs on optimal solution networks
with n = 20, B = 250, R = 25 and p = 150.

Cost Solution network Hub arcs ykm % Utilization

b = 600

0

1

2

3

4

5
6

7

8 9
10 11

12 13

14 15

16 17
18 19

(5,10)
(5,13)
(10,5)

(10,13)
(13,5)

(13,10)

1
1
1
1
2
1

100.00
91.37
65.82
76.23
80.31
82.60

b = 500

0

1

2

3

4

5
6

7

8 9
10 11

12 13 14

15

16 17
18 19

(5,8)
(5,10)
(5,13)
(8,5)

(8,13)
(10,5)

(10,13)
(13,5)
(13,8)

(13,10)

1
1
1
1
1
1
1
1
2
2

84.00
94.80
93.59
96.00

100.00
98.92
77.74
98.60
74.42

100.00

b = 300

0

1

2

3

4

5 6 7

8
9 10 11

12 13
14 15

16 17 18 19

(1,6)
(1,8)
(3,1)
(6,3)
(6,8)

(6,10)
(8,1)

(8,13)
(10,6)

(10,13)
(13,6)
(13,8)

(13,10)

1
1
1
1
1
1
1
2
1
1
1
2
2

97.50
73.00
83.60
98.80
87.78
96.94

100.00
98.00
78.53

100.00
100.00
86.07

100.00
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Table 4.7: Effect of varying variable cost p of access arcs on optimal solution networks
with n = 20, B = 650, R = 110 and b = 750.

Cost Solution network Hub arcs ykm % Utilization

p = 600

0

1

2
3

4 5 6

7

8 9
10

11

12 13 14

15

16 17
18 19

(2,6)
(6,2)

(6,10)
(8,13)
(10,6)

(10,13)
(13,8)

(13,10)

1
1
1
1
1
1
1
2

61.73
82.59
86.26
65.05
94.25
98.24
79.24
75.89

p = 317

0

1

2 3

4

5 6

7

8

9 10
11

12
13

14
15

16
17

18 19

(5,10)
(10,5)

(10,13)
(13,10)

1
1
1
2

88.00
100.00
93.69
78.54

p = 212

0

1

2

3

4

5

6

7

8

9
10

11

12

13 14

15

16
17

18 19

(6,13)
(13,6)

1
2

100.00
74.24
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Chapter 5

Dynamic Facility Location with Service

Level Constraints

In this chapter, we study the dynamic facility location problem with service level con-

straints (DFLPSL). This problem seeks to locate a set of facilities with sufficient capacity

through a planning horizon to satisfy customer demands at a minimum cost while a service

level requirement for each customer is met. The service level constraints ensure that, for

each customer in every time period t, the probability of meeting its demand in less than a

predetermined amount of time (service level) is more than a threshold value θ. The pro-

posed service level constraints capture two important sources of stochasticity in facility lo-

cation by considering known probability distribution functions associated with processing

and routing times. To the best of our knowledge, the service level constraints presented in

this chapter are the first to consider the variability of travel time, service time and demands

in a closed form expression.

The goal of this chapter is to present mathematical programming formulations and so-

lution algorithms for the DFLPSL. It considers the stochastic aspects associated with mod-

eling random demands, service times, and travel time. In order to obtain a closed form

representation to the service level constraints, we analyze the stochastic behavior of our
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system by simplifying the probability density functions associated with the random quan-

tities. The resulting nonlinear mixed-integer programming formulation is difficult to solve

using commercial solvers, therefore, we develop two constructive heuristics and a local

search heuristic to obtain feasible solutions. The first approach constructs feasible solu-

tions using five deterministic sequential steps, whereas the second approach is based on a

linear approximation of the service level constraints using subgradients. A series of compu-

tational experiments are performed to compare the efficiency of the two proposed solution

algorithms.

The remainder of this chapter is organized as follows. Section 1 formally defines the

problem and presents a nonlinear mixed integer programming formulation. In section 2,

we present two heuristic algorithms for solving the problem. The computational results and

analysis are presented in Section 3.

5.1 Problem Definition and Formulation

To formally define the problem, let I ∈ {1, 2, . . . , i} be the set of customers, T =

{1, 2, . . . , t} be the set of time periods in the planning horizon, J = {1, 2, . . . , j} be the

set of potential facility locations, and K = {0, 1, . . . , k} be the set of potential capacity

levels for each facility. Let λti be the demand of customer i in time t and dij be the distance

between customer i and facility j. Let ctijk denote the unit flow cost of serving customer

i from facility j with capacity level k at time period t. ctijk is assumed proportional to

the distance dij . The available capacity of the facility j of size k is given by µjk. Let

fjk1k2 represent the cost of changing the capacity level of a facility j from k1 to k2 at the

beginning of period t and the cost to operate the facility at capacity level k2 through the

period t. Moreover, let kj be the capacity level of an existing facility at location j. At the

beginning of the planning horizon, kj is 0 if no facility is opened at location j.
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To develop our model, we extend the formulation of the dynamic facility location prob-

lem with generalized modular capacities proposed by Jena et al. (2015). We define the

following sets of decision variables. Let xtik be the fraction of the demand of customer

i ∈ I served by facility j ∈ J at time period t ∈ T , and

ytjk1k2 =

{
1 if facility j changes its capacity level from k1 to k2 at the beginning of period t,

0 otherwise.

The DFLPSL can be stated as the following MNIP:

P1 min
∑
j∈J

∑
k1∈K

∑
k2∈K

∑
t∈T

fjk1k2y
t
jk1k2

+
∑
i∈I

∑
j∈J

∑
t∈T

λtic
t
ijx

t
ij

s.t.
∑
j∈J

xtij = 1 ∀i ∈ I, t ∈ T (34)

∑
i∈I

λtix
t
ij ≤

∑
k1∈K

∑
k2∈K

µtjk2y
t
jk1k2

∀j ∈ J, t ∈ T (35)

∑
k1∈K
k16=0

∑
k2∈K

y1
jk1k2

= 0 ∀j ∈ J (36)

∑
k1∈K

yt−1
jk1k2

=
∑
k1∈K

ytjk2k1 ∀j ∈ J, t ∈ T (37)

∑
k∈K

y1
j0k = 1 ∀j ∈ J (38)

P{ waiting time at facility+travel time ≤ τ} ≥ θ ∀i ∈ I, j ∈ J, t ∈ T

(39)

xtij ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T (40)

ytjk1k2 ∈ {0, 1} ∀j ∈ J, k1, k2 ∈ K, t ∈ T (41)

The first term of the objective function represents the setup cost for locating facilities

as well as changing capacity levels between periods, whereas the second term represents
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the total transportation cost. Constraints (34) are the demand constraints for the customers.

Constraints (35) are the capacity constraints at facilities. The set of constraints (36) guaran-

tees that there is no facility at the beginning of the planning horizon. Constraints (37) link

the capacity change variables in consecutive time periods. Constraint (38) ensure that only

one capacity level must be chosen at the beginning of the planning horizon. Constraints

(39) are service level constraints that ensure the probability of the response time of facility

j to the demand node i within a τ units of time is at least θ. Constraints (40) and (41) are

the non-negativity and integrality constraints.

We next describe the assumptions we consider for the service level constraints (39).

We assume the demand of each customer i to be independent and to occur continuously

over the time according to a Poisson process with a mean rate of λti. Since each facility

serves a set of demand nodes, the aggregate demand at that facility is the sum of demand

of the customers assigned to it, which can be described as another stochastic process that

equals the sum of several Poisson processes Λt
j . To this end, we can write Λt

j in terms of

the allocation decision variables xtij as:

Λt
j(x) =

∑
i∈I

λtix
t
ij.

Now, let us assume that service times at facilities are random variables that follow

an exponential distribution with an expectation of 1/µtjk, where µtjk is the service rate of

facility j that operates at capacity level k through period t. The service rate reflects the

server capacity or the amount of demand a facility can process in a given time period.

For each facility j in a given time t, the model selects only one capacity level from the

discrete set of potential capacity levels, µjk = {µj1, µj2, . . . , µjK}. Thus, each facility can

be modeled as an M/M/1 queuing system, where the mean service rate of facility j if the
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capacity level k is selected, is given in terms of the locational decision variables y as:

Ωt
j(y) =

∑
k1

∑
k2

µjk2y
t
jk1k2

.

We consider the response time as the sum of the sojourn times at a facility (waiting

in queue + service time) and the travel time on the link from facility j to demand node i.

In order to write constraints (39) in terms of the decision variables, let W t
j (Λ

t
j(x),Ωt

j(y))

denote the total time required to process demands at facility j in time t, and let the random

variables Tij represent the travel time on the link from facility j to demand node i. Then

the service level constraints can be expressed as follows:

P{W t
j (Λ

t
j(x),Ωt

j(y)) + Tijx
t
ij ≤ τ} ≥ θ ∀j ∈ J, i ∈ I, t ∈ T. (42)

Constraints (42) state that the probability to fulfill a customer demand i in time t in less

than τ unit of time is more than θ, where θ ∈ (0, 1). In order to obtain a closed form expres-

sion for service level constraints (42), we analyze the stochastic behavior of our system to

simplify the probability density functions. Under a stationary process (i.e., Λt
j(y) < Ωt

j(x))

and first come first serve queuing discipline, the probability density function of the sojourn

time wtj at facility j at time t is given by

fX(wtj) =

{
[Ωt

j(y)− Λt
j(x)]e−[Ωtj(y)−Λtj(x)]wtj , wtj ≥ 0; Ωt

j(y) > Λt
j(x) ∀t, j;

0, Otherwise.
(43)

Polus (1979) observed that, travel time behavior on an arterial route is seen to closely

follow a gamma distribution. Thus, for a given traveling path from facility j to demand

node i in a road network, the travel time through it is modeled as ttij ∼ Γ(α, βtij)) with a

probability density function of
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fY (ttij) =

{
(βtijx

t
ij)

α

Γ(α)
t
t(α−1)
ij e−β

t
ijx

t
ijt
t
ij , ttij ≥ 0

0, otherwise,
(44)

where βtij = E(t)
V ar(t)

and α = E2(t)
V ar(t)

are the shape and scale parameters, respectively. More-

over, the coefficient of variation of the gamma distribution is given by

CVt =
SD(t)

E(t)
=

√
V ar(t)

E(t)
=

1√
α
.

The acumulative joint distribution function that combines sojourn and travel times can

be stated as the sum of the two random variables (i.e., Zt
ij(x, y)) (see Theorem 7.1 of

Grinstead & Snell, 2012) as:

P{Zt
ij(x, y) ≤ τ} =


1− Γ(α,βtijx

t
ijτ)

Γ(α)
− (βtijx

t
ij)

α

(ωtij(x,y))α
e−(Ωtj(y)−Λtj(x))τ [1− Γ(α,(ωtij(x,y))τ)

Γ(α)
]

ifωtij(x, y) > 0,

1− Γ(α,βtijx
t
ijτ)

Γ(α)
Otherwise,

(45)

where ωtij(x, y) = βtijx
t
ij + Λt

j(x) − Ωt
j(y) and Γ(α, ωtij(x, y)z) is the upper incom-

plete gamma function. We note that for integer values of α, the upper incomplete gamma

function can be computed as:

Γ(α, x) = (α− 1)!e−x
α−1∑
k=0

xk

k!
.

5.2 Solution Algorithms

In this section, we present two different approaches to obtain feasible solutions for the

DFLPSL. The first one is a constructive heuristic that uses a relaxation of the nonlinear

integer model formulation to obtain an initial set of open facilities, and then sequentially
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extends the capacities of the opened facilities of the current solution until feasibility is

achieved. The second approach is based on solving a linear integer programming formula-

tion that approximates the service level constraints by a set of supporting hyperplanes that

are tangent to constraints (45) at several points of the feasible region. Finally, a local search

procedure is used to improve initial solutions obtained by the two techniques by exploring

different types of neighborhoods.

5.2.1 Preprocessing Phase

One way of reducing the size of the formulation (P1) is to perform some preprocessing

capable of eliminating variables that are known not to take a strictly positive value in any

optimal solution of the problem. The preprocessing works as follows. Assume that a

facility j ∈ J will only serve a demand node m ∈ I in period t. Thus, Λt
j(x) = λtmx

t
mj .

Moreover, assume that the capacity of the facility j is set to the maximum possible level

throughout the planning horizon t, i.e., µjk2 = µj|K|. We can say a node m can never be

served from facility j if

P{Zt
mj ≤ τ} < θ,

given that the solution would be infeasible. Therefore, for each m ∈ I , j ∈ J and

t ∈ T , we compute P{Zt
mj ≤ τ} and set xmj to zero if P{Zt

mj ≤ τ} < θ.

5.2.2 Constructive Heuristic

A constructive heuristic is an iterative procedure that seeks to construct an initial feasi-

ble solution. The main idea in the constructive heuristic is to start with an empty or partial

solution, then iteratively add new elements to the current solution until it finds a feasible so-

lution. We propose a deterministic constructive procedure based on the solution of an MIP
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formulation. In particular, the procedure starts with the optimal solution obtained by solv-

ing the formulation P1 without including service level constraints (45) using a commercial

solver. That is,

(P2) min
∑
j∈J

∑
k1∈K

∑
k2∈K

∑
t∈T

fjk1k2y
t
jk1k2

+
∑
i∈I

∑
j∈J

∑
t∈T

λticijx
t
ij

s.t. (34)− (38)(40)− (41).

Note that, the solutions of the relaxed formulation provide valid lower bounds which

can be used later to evaluate the quality of solutions obtained in heuristic approaches. The

optimal solution of P2 provides, for each period t, a set of facilitiesH t with capacity levels

k and allocation pattern M t for demand nodes. In what follows, solutions are designated in

the form S = (H t,M t), where H t represents the set of open facilities, i.e., H t(j, k) = 1 if

location j ∈ J is selected to be a facility at time t with a capacity level k, andM t : I → H t

represents the allocation scheme of customers at period t. That being said, If j ∈ M t(i)

then customer i is assigned to facility j in time t.

The proposed heuristic algorithm constructs a feasible solution as follows. Let (x̄t, ȳt)

be the optimal solution of P2. Ĥ t = {(j, k2) : ȳtjk1k2 = 1} represents the current set of

open facilities and j̄ ∈ M̂ t(i) where x̄tij̄ > 0 denotes the current allocation scheme. Note

that, (x̄t, ȳt) can be either a feasible solution for P1 that satisfies service level constraints

(45), or still partial, i.e., infeasible solution. In the former case, the algorithm terminates

with an optimal solution to the original problem P1. In the latter case, however, the pro-

posed heuristic starts with the partial solution, by only considering the current set of open

facilities and their capacity levels. To generate a feasible solution, we use the following

four sequential steps:

(1) Allocation scheme: In the first step, the proposed algorithm tries to find a feasible so-

lution using the current set of capacitated facilities Ĥ t by finding a feasible allocation
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scheme. Note that, the allocation scheme can be found independently for each time

period t. To this end, we developed a greedy-based algorithm that allows demands to

be served from the nearest available facility in a greedy fashion. Availability refers

to facility ability to serve a demand node with its available capacity without violating

service level constraints (45). To this end, for each i, the algorithm works by ordering

xtij variables such that

λtici(s) < λtici(s+ 1),

for s = 1, . . . , |Ĥ|t, where λtici(s) denotes the cost of serving the demand of node

i from the s(th) ordered facility. For a given node i, starting from s = 1, the al-

gorithm temporally fixes xti(s) to the remaining unserved demand rt(i), i.e., rt(i) =

λti −
∑

j∈Ĥt\{Ĥt(s)} λ
t
ix
t
ij . The algorithm checks for the residual capacity ∆(s) =

Ct
max(s) −

∑
m∈I\{i} λ

t
mx

t
m(s), where Ct

max(s) represents an upper limit on the total

demand that can be served from a facility s in time t. To this end, if ∆(s) is more

than rt(i), then xi(s) = rt(i)
λti

. If ∆(s) is less than r(i)t and greater than zero, then

xti(s) = ∆(s)
λti

. Otherwise, xti(s) is equal to zero. Therefore,

xti(s) =

{
min{ r

t(i)
λti
, ∆(s)

λti
} if ∆(s) > 0

0 Otherwise.

The above procedure is repeated for the second ordered item (i.e., s = 2) until∑
j∈Ĥt xtij = 1.

In order to compute Ct
max(j), let X̂ t

j be the current set of demand nodes that are

assigned to j in time t and satisfies service level constraints. Let m ∈ I\X̂ t
j be the

demand node that needs to be served from facility j, at time t. We temporally fix xtmj

to rt(m)
λtm

and add it to the set X̂ t
j . That is, X ′tj = {X̂ t

j ∪ {m} : m ∈ I\X̂ t
j}. Then

we check for violation in the service level constraints (45) for each demand node i ∈

X ′tj . If the current allocation scheme satisfies constraints (45) then Ct
max(j) = µtjk2 .
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However, if some demand nodes violate constraints (45), then we set Ct
max(j) =∑

i∈X′tj
λtix

t
ij and iteratively decrement Ct

max(j) by a constant δ until constraints (45)

are satisfied. If the above procedure fails to find a feasible allocation scheme, then

we go to step 2.

(2) Increase capacities: In this step of the algorithm, if the service level constraints

in the current solution are violated for some customers i, capacities are increased

sequentially at each time period according to the following procedures. A candidate

list of facilities is sorted in decreasing order based on the overall number of customers

assigned to each facility that violate constraints (45). Starting from the first ordered

facility, we increase its capacity to the next level and check for any violation in

constraints (45). If some demand nodes still violate constraints (45), we increment

its capacity to the next level until constraints (45) are met or the maximum capacity

level for this facility is reached. Note that, each time a capacity increases to the

next level, step 1 is used to try to obtain a feasible allocation scheme, consequently

the candidate list is updated. If the maximum capacity level of the current selected

facility is reached without obtaining a feasible solution, we move to the next ordered

facility. If this step fails to obtain a feasible solution, then we proceed to the next.

(3) Facility relocation: This step affects the current set of open facilities by closing

an open facility at location m ∈ H t with a capacity level k2 through the planning

horizon t and locates a new facility at candidate location j′ ∈ J\H t with the same

capacity level k2 through the planning horizon t. The candidate facility location j′ is

selected without a specific order. Note that, at each iteration, step 1 is used to find a

feasible allocation scheme. If this step fails to provide a feasible solution, then we

go to step 4.

(4) Locate a new facility: If the above steps fail to find a feasible solution for the original
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problem, the algorithm locates a new facility at candidate location j′ ∈ J\H t with a

capacity level k2 = 1 through the planning horizon t. Once the new facility added to

the current solution we go back to step 1.

5.2.3 Branch-and-Cut Heuristic

The second solution approach for the DFLPSL is based on approximating the nonlinear

constraints (45) with a set of linear inequalities. These are valid only at local points of the

feasible region, that is, not necessarily global valid inequalities. The basic idea is to solve a

relaxed version of the nonlinear formulation by iteratively adding a set of linear constraints

only when they are violated by the current integer solution.

For simplicity, let F (x, y, τ) = P{Zt
mj ≤ τ}. To derive the set of linear constraints,

let (ȳ, x̄) be the current integer solution that violates constraints (45), that is F (x̄, ȳ, τ) < θ

for some i in time t. Suppose that F is a concave function that satisfies

F (x, y, τ) ≤ 5T (x̄)(x− x̄) +5T (ȳ)(y − ȳ) + F (x̄, ȳ, τ),

for all y and x, where 5(ȳ) and 5(x̄) is any subgradient of F (x, y, τ) at ȳ and x̄, respec-

tively. Now, we want F (x, y, τ) ≥ θ, thus we should have

θ ≤ F (x, y, τ) ≤ 5T (x̄)(x− x̄) +5T (ȳ)(y − ȳ) + F (x̄, ȳ, τ).

Therefore, we can write the set of linear constraints as

5T (x̄)(x− x̄) +5T (ȳ)(y − ȳ) + F (x̄, ȳ, τ) ≥ θ. (46)

The addition of cuts (46) removes the current solution (x̄, ȳ) from the set of feasible

solutions without removing any solution that is feasible for the original problem P1 if
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and only if the concavity assumption of F (x, y, τ) holds. If F (x, y, τ), however, is not a

concave function, then we may cut out feasible solutions of the P1, including the optimal

one. Unfortunately, in our case such assumption does not hold and adding these inequalities

may have the undesirable effect of excluding part of the feasible region, which may contain

the optimal solution. As we will show in Section 3.2, this approach provides promising

feasible solutions which can be further improved by using local search methods.

We use the finite difference method to compute the partial derivatives of F (x, y, τ).

The partial derivatives via the finite difference method can be computed using forward,

backward or central differences. We evaluate the partial derivative 5(x̄) at x̄ as follows.

We evaluate the function FZ at (x̄, ȳ) and at ((x̄−hetij), ȳ) for i = 1 . . . I; j = 1 . . . , J and

t . . . T , where etij is a unit matrix with a one in position i, j and t and zero elsewhere and

dΛ ∈ {0, 1} represents the incremental rate of the arrival rate (i.e., step size). We compute

the partial derivatives, using backward finite difference method, as:

5(x̄tij) =
Fz(x̄, ȳ, τ)− Fz((x̄− dΛetij), ȳ, τ)

dΛ

if x̄tij − dΛetij > 0. However, when x̄tij − dΛetij < 0, then the corresponding partial

derivatives are computed using the forward difference method as:

5(x̄tij) =
Fz((x̄+ dΛetij), ȳ, τ)− Fz(x̄, ȳ, τ)

dΛ

Finally, to compute5(ȳ) at ȳ, we use forward finite difference as follows,

5(ȳtjk1k2) =
Fz(x̄, (ȳ + dµM t

jk1k2
), τ)− FZ(x̄, ȳ, τ)

dµ

where dµ represents the step size or the incremental change of the service rate and M t
jk1k2

is a unit matrix with a one in position (j, k1, k2, t) and zero elsewhere.
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5.2.4 Local Search

The local search is an iterative procedure that moves from one solution to another ac-

cording to some neighborhood structure. Our local search procedure explores two types

of neighborhoods. The first type affects the current capacity level of facilities by con-

sidering two neighborhoods, namely, increase and decrease capacity levels. The increase

capacity level neighborhood ℵ1 improves the current solution by allowing some facilities

to take higher capacity level so that a trade-off between location and transportation costs is

achieved while ensuring a minimum service level requirement for each customer. To this

end, starting from t = 1, for each facility j ∈ H t with capacity level k2, we perform the

following steps: (i) if k2 < |K|, increases the capacity level of facility j ∈ H t from k2 to

k2 + 1; (ii) find a new transportation scheme using step 1 explained in section 2.2; (iii)

If the total cost of the new solution is better than the best known solution, set the capacity

level of j to k2 + 1 and go back to step (i); (iv) if the new solution is worse than the best

known solution then increment t by one and go back to step (i). Let S = (H t,M t) be the

current solution then

ℵ2 = {S ′ = (H ′t,M ′t) : S ′ = H t\{(j, k2)} ∪ {(j, (k2 + 1))}, k2 ≤ |K|}

Decrease capacity neighborhood ℵ2 allows some facilities, through the planning hori-

zon t, to take lower capacity levels while service level constraints are met. Starting from a

facility j ∈ H t with a capacity level k2, k2 is decreased sequentially at each time period t

until the solution become infeasible or k2 = 0. Let S = (H t,M t) be the current solution,

then

ℵ2 = {S ′ = (H ′t,M ′t) : S ′t = H t\{(j, k2)} ∪ {(j, (k2 − 1))}, k2 ≥ 0}

In this neighborhood structure, a best improvement strategy is considered. Note that, facil-

ities are considered without a specific order.
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The second type of neighborhoods affects the current set of open facilities by inter-

changing an open facility by a closed one. Let S = (H t,M t) be the current solution and

let j1 ∈ J\H t be the candidate location to replace the open facility located at site j2 ∈ H t

with capacity level k2, then

ℵ3 = {S ′ = (H ′t,M ′t) : S ′t = H t\{(j2, k2)} ∪ {(j1, k2)}, j2 ∈ S ′, j1 ∈ J\H t}.

In this neighborhood, a best improvement strategy is also considered. An outline of the

local search scheme is depicted in Algorithm 5.2.

Algorithm 5.2: Local search procedure
stoppingcriteria← false
while( stoppingcriteria = false)do

explore ℵ1

if(solution not improved in ℵ1) then
explore ℵ2

if(solution not improved in ℵ2) then
explore ℵ3
if(solution has not been updated) then

stoppingcriteria← true
end-if

end-if
end-if

end-while

5.3 Computational Experiments

We performed computational experiments to compare and analyze the performance of

the two heuristic algorithms. The formulation and solution algorithms were coded in C++

and ran on an HP station with an Intel Xeon CPU E3-1240V2 processor at 3.40GHz and

24 GB of RAM under windows 7 environment. MIP problems were solved using Concert

technology of CPLEX 12.6.2. We have used the 2000 census data (refer to Daskin, 1995) to

generate a set of benchmark instances for the DFLPSL. This data set consists of the resident
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population of 150 large cities in the continental United States. For generating instances,

we identified seven relevant factors in the design of our experiments, namely the number

of customers (|I| ∈ {30, 50, 70, 90, 110, 130}), the number of potential facility locations

(|J | = 20), the number of planning horizons (|T | = 4), the number of capacity levels

(|K| = 5), service level parameter (θ ∈ {0.8, 0.85, 0.9, 0.95) and the promised response

time (τ ∈ {1, 1.25, 1.5}). At the first time period of the planning horizon (i.e., t = 1),

the mean customer demand rates λ1
i are obtained by dividing the population of those cities

by 1000. For t > 1, we note that both downward and upward demand fluctuation are

possible over the time horizon. In particular, changes are allowed up to ±20 between two

consecutive time periods. That is, λti = (1+πti)λ
t−1
i , where πti = U [−0.2, 0.2]. The service

rate µjk of a facility at location j with capacity level k is set to 1.1× ζk
∑
i∈I

∑
t∈T λ

t
i

|T | , where

ζk = 0.2, 0.5, 0.5, 0.75, 1 with 5 capacity levels. The unit transportation costs cij have been

computed based on the Euclidean distance between the points. That is, cij = ρdij , where

dij represents the distance between nodes i and j and ρ ∈ {0.01, 0.3, 1.25} denotes the

transportation cost structure (i.e., low, moderate, high). The aggregate costs f tjk1k2 capture

economies of scale by taking into account four different costs as follows:

(1) Fixed opening cost FOj of a new facility at candidate location j. The fixed opening

cost is set to the 2015 median home value in the city at location j.

(2) The operating costs of a facility j at capacity level k throughout time t. Operating

costs are set to 5µjk.

(3) The cost of increasing the capacity level of a facility j from level k1 to level k2. The

capacity expansion cost is set to 10(µjk2 − µjk1).

(4) The cost of reducing the capacity level of a facility j from level k1 to level k2. The

capacity reduction cost is set to 15(µjk1 − µjk2).

By combining the aforementioned costs, the aggregate cost f tjk1k2 can be expressed as:
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f tjk1k2 =


FOj + 10(µjk2 − µjk1) + 5µjk2 if k2 > k1, k2 6= 0 ,

FOj + 15(µjk1 − µjk2) + 5µjk2 if k2 < k1, k1 6= 0 ,

FOj + 5µjk2 if k1 = k2, k1 6= 0 .

5.3.1 Sensitivity Analysis

In the first part of the experiments, we performed a sensitivity analysis on some of the

parameters of the problem to analyze the changes in solution structure and the objective

values. Since optimal solutions are not known, we used best known solutions to complete

this section. Through these experiments, we considered instances with |I| = 30, |T | = 1,

τ = 1 and |K| = 5. Note that, when T = 1 and θ = 0%, the problem reduces to a

facility location problem with multiple capacity levels (FLPCL). Figure 5.1 and 5.2 show

the percent total cost increases %Cost between DFLPSL and FLPCL when varying the

desired service level θ and promised response time τ , respectively. The %Cost is computed

as DFLPSL total cost−FLPCL total cost
DFLPSL total cost

× 100.

Figures 5.3-5.6 show how the network configurations change depending on: (i) the

variable costs structure, (ii) the desired service level θ, (iii) the travel time coefficient of

variation CV , (iv) the promised response time τ . In each figure, we report some informa-

tion of the designed system such as set of open facilities (Facility), selected capacity level

at each open facility (Level) and the percent facility utilization (%UTILIZ). The percent

utilization measures how much of the available capacity is being used on each facility and

computed as (
∑

i∈I λ
t
ix̄
t
ij/µ

t
jk2ȳ

t
jk1k2)× 100, where (x̄, ȳ) denotes the best known solution.

In figure 5.1, we let θ vary from 40% to 99% and observe its impact on the total cost.

At the same time, we select three values for the response time, i.e., τ = 1, 1.25 and 1.5

days, fix CV to 0.5 and select moderate transportation cost structure (i.e., ρ = 0.3). As

the service level parameter increases, the %Cost increases. The main reason for this is

that as the θ increases, there is a need to open more facilities (possibly relocate facilities
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to more expansive locations) to react faster to demands. However, more facilities lead to

dispersion concept which results in shorter response time and higher service level. Figure

5.1 also shows that the higher value of τ , the lower impact on the total costs. For instance,

at θ = 92%, when τ = 1.5 days, the percent increase in the total cost is 7.57%, in contrasts

with τ = 1 where the increase is 44%.

In figure 5.1, we let θ vary from 40% to 99% and observe its impact on the total cost. At

the same time, we select three values for the response time, i.e., τ = 1, 1.25 and 1.5 days, fix

CV to 0.5 and select moderate transportation cost structure (i.e., ρ = 0.3). As the service

level parameter increases, the percentage cost difference between FLPCL and FLPCL with

service level solutions increases. The main reason for this is that as the θ increases, there is

a need to open more facilities (possibly relocate facilities to more expansive locations) to

react faster to demands. However, more facilities lead to dispersion concept which results

in shorter response time and higher service level. Figure 5.1 also shows that the higher

value of τ , the lower impact on the total costs. For instance, at θ = 92%, when τ = 1.5

days, the percent increase in the total cost is 7.57%, in contrasts with τ = 1 where the

increase is 44%.
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Figure 5.1: %Cost corresponding to different θ

Figure 5.2, illustrates the changes in the objective function values when varying the

promised response time τ . In particular, we let τ changes from 0.9 to 2.75 days and ob-

serve the impact on the total costs. Moreover, for each τ , we select three values to service

level parameter θ ∈ {0.85, 0.90, 0.95}. Also, we fix CV to 0.5 and select moderate trans-

portation cost structure(ρ = 0.3). As can be seen in the figure, as τ increases, the overall

cost decreases. That is, promising a short response time to customers leads to either locate

more facilities, relocate some facilities to more expansive sites and\or increase capacity

levels. Note that, when τ > 2.3 and θ < 85%, the objective value slightly changed, thus

there is no need to make longer response time decisions.
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Figure 5.3 shows the characteristics of the network when considering different trans-

portation costs structures ρ (i.e., high, moderate and low). Moreover, we fix θ to 85%, τ

to 1 day and CV to 0.5. As expected, the trade-off between transportation costs, facilities

fixed costs and promised response time would determine the optimal number of facilities.

In particular, a high transportation cost leads to more facilities in the network enabling fa-

cilities to occur closer to demand nodes. In the case of low transportation costs structure,

however, it seems that the reduction in transportation costs by adding extra facilities is less

than their fixed costs. For instance, when the transportation costs are low compared to the

fixed costs, the model locates three facilities at locations 7, 10 and 20. The transportation

costs account for 13% of the total cost, and the fixed costs account for 87.0% of the total

cost. Moreover, facility utilizations are 84.01%, 89.17% and 48.60%, respectively.

In the case of moderate transportation costs structure, Figure 5.3(b), the model relocates

the facility at location 7 to 3 and selects the first capacity level to serve its demand with a

46.9% utilization. Moreover capacity level at location 10 increased to level 4, and facility
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utilization decreases to 79.16%. Furthermore, the transportation costs account for 30.9% of

the total costs, whereas the fixed costs account for 69.1% of the total costs. Finally, Figure

5.3(c) shows that high transportation costs structure lead to locate four facilities and select

capacity levels; 1 for location 3, 3 for location 4, 2 for location 7 and 2 for location 20 with

utilizations of 46.94%, 68.28%, 84.10% and 48.56%, respectively. Note that, In the high

transportation costs structure, the fixed costs account for 54.40% of the total costs, while

the variable costs account for 45.60%.
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(a) Low variable costs. 87.0%fixed costs

16

19

8

20

5

23

28

15

27

12

2

29

21

3

22

9

26

18

25

17
11

4 30

1

13

6

10

7

24

14

Facility

Demand Node

Facility %UTLIZ Level

3 46.9 1

10 79.16 4

20 48.60 2

(b) Moderate variable costs. 69.1%fixed
costs
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(c) high variable costs. 54.40% fixed cost

Figure 5.3: Network structures with different variable costs and service level of 85%.

Figure 5.4 presents the characteristics of the network when considering different service

level parameter (θ’s) while the rest of the parameters remain fixed (i.e., τ = 1, CV =

0.5, and ρ = 0.3). As can be seen in the figure, Increasing θ leads to increase not only

the number of open facilities, but also reduces facilities utilizations. For instance, Figure

5.4(a) shows the optimal solution structure to FLPCL, the model locates two facilities at

locations 10 and 20 with utilization of 91.67% and 72.90%, respectively. The total cost is
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$1, 307, 624.183. Incurring 85% service level, increases the total cost to $1, 693, 391.234

(22.78% increase) by adding an additional facility at location 7 with 93.20% utilization and

relocating facility from location 10 to 7 with 81.56% utilization. The utilization of facility

20 is reduced to 48.6%. When θ is selected to be 90%, the best known solution selects four

facilities at locations 3, 10, 19 and 20 with an increase in the total cost of 27.3%. Moreover,

facilities utilization are 46.9%, 79.1%, 15.6% and 57.4%, respectively. Finally, when the

desired service level is 95%, we see the facility at location 20 shifted to location 5 with

46.2% utilization and the total cost increases by 27.6% and facilities utilizations are 46.9%

for 3, 79.2% for 10 and 26.7% for 19.
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(a) θ = 0%; total cost is $1, 307, 624.183
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(b) = θ = 85%; total cost is $1, 693, 391.234
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(c) θ = 90%; total cost is $1, 804, 333.139
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(d) θ = 95%; total cost is $1, 806, 182.53

Figure 5.4: Network structures with different service levels, τ = 1 and CV = 0.5

Figure 5.5 shows the network structure when considering different coefficients of vari-

ations (CV ′s) for the travel time. In particular, we consider CV ∈ {0.3, 0.4, 0.5} to rep-

resent different variability levels in the travel time. Moreover, we fix the service level

parameter to 90% and τ to 1 day. As can be seen in the figure, the more variability in the
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travel time, the more facilities will open. In the case of a lower variability level CV = 0.3,

the best-known solution, a set of facilities are located at locations 4, 7 and 20 with capacity

levels of 3, 2 and 2 respectively. However, for a moderate variability level, CV = 0.4 the

set of facilities changes to become nodes 3, 10 and 20 with capacity levels of 1, 4 and 2,

respectively. In the case of higher variability level CV = 0.5, the set of facilities becomes

{3, 5, 10, 19} with capacity levels of 1,1,4 and 1 respectively.
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(a) CV = 0.3
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(b) CV = 0.4
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(c) CV = 0.5

Figure 5.5: Network structures with different CV s and service level= 90%.

Finally, Figure 5.6 shows the changes in network configuration upon varying the re-

sponse time τ , while the rest of the parameters remain fixed. From Figure 5.6, we observe

that as the response time increases, the model locates fewer facilities to serve demands. For

example, when τ = 1, the model opens four facilities at locations 3, 10, 19 and 20 and se-

lects capacity levels 1, 4, 1, 1, respectively. Moreover, the facilities utilizations are 46.9%,

79.1%, 15.6% and 57.4%, respectively. Upon increasing τ to 1.25, the model recommends

closing facilities at locations 3 and 19 and increasing capacity level of the facility at loca-

tion 2 to level 2. However, the utilization of facility 10 increases to 91.03%, while facility at
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location 20 utilization increases to 50.20%. Finally, when τ = 1.5, the model recommends

keeping facilities at locations 10 and 20, but decreasing capacity level at facility 20 to level

1. Furthermore, the utilization of facility 20 increases to 72.90%.
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(a) τ=1
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(b) τ=1.25
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(c) τ=1.5

Figure 5.6: Network structures with different promised response times τ , θ = 90% and

CV = 0.5

5.3.2 Comparison of Solution Algorithms

The second set of computational experiment is performed to compare the performance

of the two heuristic algorithms. The detailed results of this comparison on a set of 72 in-

stances ranging from 30 to 130 demand nodes, 20 potential facility locations, 5 capacity

levels and 4 time periods are reported in Table 5.1. The first column provides the number

of demand nodes, |I|, desired service level, θ, and promised response time τ (|I| − θ − τ ).
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The second column %Fix reports the percentage of allocation variable fix with the pre-

processing phase. That is, this column is computed as FA
I∗J∗T × 100, where FA is the num-

ber of eliminated allocation variables fixed through the planning horizon. The next set of

columns reports the CPU time in seconds (CPU), the percent deviation with respect to the

best known solution obtained across the two heuristic algorithms, and the percent devia-

tion between final upper and lower bounds (%GAP ). The percent deviation (%DEV ) is

computed as best known solution−huristic final solution
huristic final solution

× 100%. The optimality gap (GAP%) is

computed as best known solution−LB
best known solution

×100%, where LB denotes the lower bound obtained by

solving the relaxed integer programming formulation, i.e., without service level constraints

and with variables elimination test.

Table 5.1 summarizes the performance of the two heuristic algorithms. The first column

provides the number of demand nodes, |I|. The next set of columns under headingHEUR1

reports, for each |I|, the average CPU time in seconds, the average percent deviation with

respect to the best known solution (%DEV ) and the number of best solutions found #Best

on the 72 considered instances.
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Table 5.1: Performance comparison between HEUR1 and HEUR2
Name V ar HEUR1 HEUR2

|I| − θ − τ %Fix CPU %DEV %GAP CPU %DEV %GAP

30− 0.80− 1.00 47.33 246 0.00 19.06 189 1.99 20.67
30− 0.85− 1.00 52.50 122 0.00 19.06 100 2.26 20.89
30− 0.90− 1.00 57.00 231 0.00 1.93 158 0.00 1.93
30− 0.95− 1.00 62.00 232 1.10 3.67 156 0.00 2.61
30− 0.80− 1.25 37.00 104 0.00 4.74 54 0.00 4.74
30− 0.85− 1.25 40.33 99 0.00 4.74 154 0.00 4.74
30− 0.90− 1.25 44.83 196 0.00 19.65 202 0.53 20.08
30− 0.95− 1.25 53.67 237 0.00 1.93 157 0.00 1.93
30− 0.80− 1.50 30.17 1 0.00 0.00 56 0.00 0.00
30− 0.85− 1.50 34.67 65 0.00 3.02 58 0.00 3.02
30− 0.90− 1.50 37.17 98 0.00 4.74 57 0.00 4.74
30− 0.95− 1.50 42.50 106 0.00 20.05 135 3.64 22.96
50− 0.80− 1.00 50.60 147 0.00 3.39 134 0.00 3.39
50− 0.85− 1.00 55.60 234 0.00 10.97 275 2.90 13.55
50− 0.90− 1.00 59.70 405 0.00 8.50 449 2.69 10.96
50− 0.95− 1.00 64.20 815 0.00 9.74 687 0.00 9.74
50− 0.80− 1.25 40.20 155 0.00 3.59 144 0.00 3.59
50− 0.85− 1.25 43.50 145 0.00 3.59 135 0.00 3.59
50− 0.90− 1.25 48.00 140 0.00 3.59 127 0.00 3.59
50− 0.95− 1.25 56.50 432 0.00 9.97 421 0.34 10.27
50− 0.80− 1.50 33.80 162 0.00 3.59 150 0.00 3.59
50− 0.85− 1.50 37.90 156 0.00 3.59 147 0.00 3.59
50− 0.90− 1.50 40.40 154 0.00 3.59 142 0.00 3.59
50− 0.95− 1.50 46.00 139 0.00 3.59 127 0.00 3.59
70− 0.80− 1.00 50.93 240 0.00 3.38 223 0.00 3.38
70− 0.85− 1.00 55.79 379 0.00 6.46 347 0.00 6.46
70− 0.90− 1.00 60.86 836 2.27 7.63 708 0.00 5.53
70− 0.95− 1.00 65.43 943 0.00 9.27 1032 0.00 9.27
70− 0.80− 1.25 40.43 246 0.00 3.69 230 0.00 3.69
70− 0.85− 1.25 43.71 240 0.75 3.62 204 0.00 2.89
70− 0.90− 1.25 48.29 234 0.00 3.38 213 0.00 3.38
70− 0.95− 1.25 56.93 598 2.02 4.93 524 0.00 3.00
70− 0.80− 1.50 33.86 252 0.00 3.69 245 0.00 3.69
70− 0.85− 1.50 38.07 248 0.00 3.69 247 0.00 3.69
70− 0.90− 1.50 40.57 241 0.00 3.69 224 0.00 3.69
70− 0.95− 1.50 46.36 231 0.00 3.38 213 0.00 3.38
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Table 5.1 continued

Name V ar HEUR1 HEUR2

|I| − θ − τ %Fix CPU %DEV %GAP CPU %DEV %GAP

90− 0.80− 1.00 52.39 606 4.59 7.40 298 0.00 3.15
90− 0.85− 1.00 57.11 529 0.00 3.33 486 0.00 3.33
90− 0.90− 1.00 61.94 1112 1.87 6.57 1122 0.00 4.82
90− 0.95− 1.00 66.28 1151 1.33 8.18 1222 0.00 6.96
90− 0.80− 1.25 42.56 348 0.00 3.38 324 0.00 3.38
90− 0.85− 1.25 45.61 333 0.38 3.44 287 0.00 3.08
90− 0.90− 1.25 49.94 624 8.89 11.05 289 0.00 3.15
90− 0.95− 1.25 58.11 825 2.06 5.12 734 0.00 3.17
90− 0.80− 1.50 36.22 343 0.00 3.38 320 0.00 3.38
90− 0.85− 1.50 40.33 338 0.00 3.38 313 0.00 3.38
90− 0.90− 1.50 42.72 328 0.00 3.38 308 0.00 3.38
90− 0.95− 1.50 48.17 307 0.00 3.22 294 0.00 3.22
110− 0.80− 1.00 51.50 836 3.95 8.38 439 0.00 4.76
110− 0.85− 1.00 56.32 689 0.00 3.41 678 0.00 3.41
110− 0.90− 1.00 61.18 1458 0.00 7.11 1381 0.63 7.69
110− 0.95− 1.00 66.27 1802 1.15 8.71 1641 0.00 7.66
110− 0.80− 1.25 41.00 454 0.00 3.76 447 0.00 3.76
110− 0.85− 1.25 44.23 434 0.20 3.74 420 0.00 3.54
110− 0.90− 1.25 49.05 674 3.37 7.86 409 0.00 4.76
110− 0.95− 1.25 57.55 1230 2.15 5.33 1049 0.00 3.30
110− 0.80− 1.50 34.23 490 0.00 3.76 441 0.00 3.76
110− 0.85− 1.50 38.59 472 0.00 3.76 450 0.00 3.76
110− 0.90− 1.50 41.18 464 0.00 3.76 447 0.00 3.76
110− 0.95− 1.50 47.18 701 3.36 7.86 420 0.00 4.76
130− 0.80− 1.00 51.58 918 2.94 7.95 579 0.00 5.25
130− 0.85− 1.00 56.38 1282 0.00 11.66 1407 0.89 12.45
130− 0.90− 1.00 61.08 1803 1.95 9.80 1770 0.00 8.04
130− 0.95− 1.00 66.19 2231 1.43 9.05 2143 0.00 7.75
130− 0.80− 1.25 41.19 555 0.00 3.42 575 0.00 3.42
130− 0.85− 1.25 44.69 536 0.09 3.55 538 0.00 3.46
130− 0.90− 1.25 49.35 857 2.93 7.94 516 0.00 5.25
130− 0.95− 1.25 57.58 1300 0.00 2.81 1329 0.00 2.81
130− 0.80− 1.50 34.50 563 0.00 3.49 586 0.00 3.49
130− 0.85− 1.50 38.73 577 0.00 3.49 602 0.00 3.49
130− 0.90− 1.50 41.46 596 0.00 3.42 629 0.00 3.42
130− 0.95− 1.50 47.54 840 2.92 7.93 523 0.00 5.25

Tables 5.1 and 5.2 clearly show that HEUR2 (which incorporates a branch-and-cut
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Table 5.2: Performance comparison between HEUR1 and HEUR2
HEUR1 HEUR2

|I| CPU %DEV %AGAP #Best CPU %DEV %AGAP #Best

30 144.82 0.09 8.55 4/12 123.08 0.70 9.03 2/12
50 256.90 0.00 5.64 3/12 244.80 0.49 6.09 0/12
70 390.80 0.42 4.73 0/12 367.38 0.00 4.34 4/12
90 570.33 1.59 5.15 0/12 499.68 0.00 3.70 6/12
11 808.70 1.18 5.62 1/12 685.28 0.05 4.58 6/12

130 1004.83 1.02 6.21 1/12 933.05 0.07 5.34 6/12

framework) provides the best performance by yielding the smallest average percent devi-

ation %DEV compared to the constructive heuristic approach HEUR1, specially for the

largest-size instances. For example, HEUR2 yields an overall average of 0.22% (ranging

from 0.00% to 0.70%), whereas HEUR1 provides 0.72% (ranging from 0.00% to 1.59%).

Moreover, HEUR2 was able to find better solutions in 24 out of the 72 considered instances,

while HEUR1 was only able to find 9 better solutions out of the 72 instances.
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Chapter 6

Conclusions

This dissertation considers three challenging combinatorial optimization problems re-

lated to location and network design problems: i) the Cycle Hub Location problem, ii)

the Modular Hub Location problem, and iii) the Dynamic Facility Location Problem with

Service Level Constraints. For the CHLP, we have presented and compared the path based

and flow based formulations for the problem. We presented two solution approaches: a

branch-and-cut based exact approach and a heuristic approach. Two families of valid in-

equalities based on mixed-dicut inequalities were presented and extensive computational

experiments were conducted to evaluate their impact on the quality of LP bounds. These

valid inequalities were embedded into a branch-and-cut framework to improve the lower

bound at some nodes of the enumeration tree. A GRASP meta-heuristic was also presented

to efficiently obtain high quality solutions. Computational results on benchmark instances

with up to 100 nodes confirm the efficiency and robustness of the proposed algorithms.

Another main contribution of this dissertation is the work on the MHLP with single

assignments. The MHLP explicitly models the flow dependency of transportation cost

using modular arc costs. Moreover, it does not assume a particular topological structure,

instead it considers the design of the entire hub network as a part of the decision process.

We presented two mixed integer programming formulations -a flow-based and a path-based
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formulations and compared their strengths using linear programming relaxation bounds.

We proposed a Lagrangean relaxation of the path-based formulation by relaxing the linking

constraints of the location/allocation and routing variables.

We presented a primal heuristic to construct a feasible solution and compute upper

bounds. Further, we presented a branch-and-bound based exact algorithm that uses the

Lagrangean relaxation as a bounding procedure at the nodes of an enumeration tree. Com-

putational results on benchmark instances with up to 75 nodes confirm the efficiency and

the robustness of the proposed algorithms. We also analyzed the effect of changes in hub

and access arcs capacities as well as changes in variable costs of hub and access arcs on

optimal solutions. The obtained results showed that solution networks tend to have more

open hubs when increasing the capacities of hub arcs, whereas an opposite behavior is ob-

served for the case of access arcs. For the case of the variable costs of hub and access arcs,

more hub arcs and hub nodes are activated in optimal solution networks when the variable

costs on hub arcs decrease and variable costs on access arcs increase.

In the last part of this dissertation, we studied DFLPSL. This problem seeks to locate

a set of facilities with sufficient capacities to meet customers demands through a planning

horizon at a minimum cost while service level requirement for each costumer is met. To

ensure the service quality, we imposed a set of service level constraints that guarantees

the probability of a customer will receive its demand in less than a predefined units of

time is more than a threshold value. The service level constraints consider both travel and

service times, and demands as random variables that are followed certain probability dis-

tributions. In particular, we assumed that each facility is modeled as an M/M/1 queuing

system. Moreover, we assumed that the travel time between facilities and customers is

followed a gamma distribution. We derived a closed form expression of the service level

constraints by simplifying the probability density functions associated with random quan-

tities. The resulted formulation is nonlinear therefore, commercial solvers cannot solve it
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directly in its present format. To this end, we proposed two heuristics algorithms followed

by a local search procedure to obtain good quality solutions. The first one, HURE1, that

uses the information obtained from solving a relaxed liner programming formulation to

construct feasible solutions to the problem, whereas the second one, HURE2, is based on

liner approximation to the service level constraints using subgradient methods. Computa-

tional experiments showed that HURE2 outperformed HURE1 in terms of CPU time, the

average final gaps %AGAP and the total number of best obtained solutions in the all tested

instances. We also analyzed the sensitivity of our model to the input parameters such as

service level parameter θ, response time τ and coefficient of variation CV . Solutions with

larger θ and CV and smaller τ have more located facilities in the network to react faster to

demands.

Naturally, there exist several aspects related to this work worth to be further investigated

that are unfortunately out of the scope of this dissertation. For this reason we briefly de-

scribe some future research directions in which we are interested. One possible direction is

the development efficient formulations and sophisticated solution algorithms for different

variants of the MHLP such as single allocation with direct connections, multiple allocation

with or without direct connections. Another promising avenue that can be the incorporation

of capacity constraints on hub nodes.

Another topic of research is to improve the proposed heuristic for the DFLPSL by con-

sidering more neighborhood structures. Moreover, different metaheuristic algorithms can

be developed and compared to obtain high quality solutions to the problem. Exact solu-

tion algorithm, such as branch-and-bound, might also be considered to solve the problem.

Clearly, solving the dynamic facility location problem without including service level con-

straints provides valid lower bounds for the original problem. These lower bounds can be

utilized in solving the DFLPSL within a branch-and-bound framework.
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Labbé, M., & Yaman, H. (2004). Projecting the flow variables for hub location problems.

Networks, 44(2), 84–93.
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Martins de Sá, E., de Camargo, R., & de Miranda, G. (2013). An improved Benders

decomposition algorithm for the tree of hubs location problem. European Journal of

Operational Research, 226, 185–202.

Melkote, S., & Daskin, M. S. (2001). An integrated model of facility location and trans-

portation network design. Transportation Research Part A: Policy and Practice,

35(6), 515–538.

Melo, M. T., Nickel, S., & Da Gama, F. S. (2006). Dynamic multi-commodity capaci-

tated facility location: a mathematical modeling framework for strategic supply chain

planning. Computers & Operations Research, 33(1), 181–208.

Min, H., & Melachrinoudis, E. (1999). The relocation of a hybrid manufactur-

ing/distribution facility from supply chain perspectives: a case study. Omega, 27(1),

75–85.

Mirchandani, P. B., & Francis, R. L. (Eds.). (1990). Discrete location theory. John Wiley

124



& Sons, New York.

Mirchandani, P. B., & Odoni, A. R. (1979). Locations of medians on stochastic networks.

Transportation Science, 13(2), 85–97.

Mirzaghafour, F. (2013). Modular hub location problems (Unpublished master’s thesis).

Concordia University, Montreal, Canada.

Moon, I. D., & Chaudhry, S. S. (1984). An analysis of network location problems with

distance constraints. Management Science, 30(3), 290–307.

Moore, G. C., & ReVelle, C. (1982). The hierarchical service location problem. Manage-

ment science, 28(7), 775–780.

Nagy, G., & Salhi, S. (2007). Location-routing: Issues, models and methods. European

Journal of Operational Research, 177(2), 649–672.

O’Kelly, M. E. (1986a). Activity levels at hub facilities in interacting networks. Geograph-

ical Analysis, 18(4), 343–356.

O’Kelly, M. E. (1986b). The location of interacting hub facilities. Transportation Science,

20(2), 92–106.

O’Kelly, M. E. (1987). A quadratic integer program for the location of interacting hub

facilities. European Journal of Operational Research, 32(3), 393–404.

O’Kelly, M. E. (1998). A geographer’s analysis of hub-and-spoke networks. Journal of

Transport Geography, 6(3), 171–186.

O’Kelly, M. E., & Bryan, D. (1998). Hub location with flow economies of scale. Trans-

portation Research Part B: Methodological, 32(8), 605–616.

O’Kelly, M. E., Campbell, J. F., Camargo, R. S., & Miranda, G. (2015). Multiple allocation

hub location model with fixed arc costs. Geographical Analysis, 47(1), 73—96.

O’Kelly, M. E., & Miller, H. J. (1994). The hub network design problem: a review and

synthesis. Journal of Transport Geography, 2(1), 31–40.

Ortega, F., & Wolsey, L. A. (2003). A branch-and-cut algorithm for the single-commodity,

125



uncapacitated, fixed-charge network flow problem. Networks, 41(3), 143–158.

Ortiz-Astorquiza, C., Contreras, I., & Laporte, G. (2015). The minimum flow cost Hamil-

tonian cycle problem: A comparison of formulations. Discrete Applied Mathematics,

187, 140–154.

Podnar, H., Skorin-Kapov, J., & Skorin-Kapov, D. (2002). Network cost minimization us-

ing threshold-based discounting. European Journal of Operational Research, 137(2),

371–386.

Polus, A. (1979). A study of travel time and reliability on arterial routes. Transportation,

8, 141–151.

Racunica, I., & Wynter, L. (2005). Optimal location of intermodal freight hubs. Trans-

portation Research Part B: Methodological, 39(5), 453–477.

Rajagopalan, H. K., Saydam, C., & Xiao, J. (2008). A multiperiod set covering loca-

tion model for dynamic redeployment of ambulances. Computers & Operations Re-

search, 35(3), 814–826.

Rastani, S., Setak, M., & Karimi, H. (2015). Capacity selection for hubs and hub links in

hub location problems. International Journal of Management Science and Engineer-

ing Management, 1–11.

Roodman, G. M., & Schwarz, L. B. (1975). Optimal and heuristic facility phase-out

strategies. AIIE transactions, 7(2), 177–184.

Roodman, G. M., & Schwarz, L. B. (1977). Extensions of the multi-period facility phase-

out model: New procedures and application to a phase-in/phase-out problem. AIIE

Transactions, 9(1), 103–107.

Sasaki, M., & Fukushima, M. (2003). On the hub-and-spoke model with arc capacity

conatraints. Journal of the Operations Research Society of Japan, 46(4), 409–428.

Silva, F. J. F., & De la Figuera, D. (2007). A capacitated facility location problem with con-

strained backlogging probabilities. International Journal of Production Research,

126



45(21), 5117–5134.

Skorin-Kapov, D., Skorin-Kapov, J., & O’Kelly, M. (1996). Tight linear programming re-

laxations of uncapacitated p-hub median problems. European Journal of Operational

Research, 94(3), 582–593.

Smith, H. K., Laporte, G., & Harper, P. R. (2009). Locational analysis: highlights of growth

to maturity. Journal of the Operational Research Society, 60(1), S140–S148.

Sun, D., Farris, D., Cote, P., Shoults, R., & Chen, M. (1982). Optimal distribution substa-

tion and primary feeder planning via the fixed charge network formulation. Power

Apparatus and Systems, IEEE Transactions on(3), 602–609.

Syam, S. S. (2000). Multiperiod capacity expansion in globally dispersed regions. Decision

Sciences, 31(1), 173–195.

Syam, S. S. (2008). A multiple server location–allocation model for service system design.

Computers & Operations Research, 35(7), 2248–2265.

Tanash, M., Contreras, I., & Vidyarthi, N. (2017). An exact algorithm for the modular hub

location problem with single assignments. Computers & Operations Research, 85,

32–44.

Van Roy, T. J., & Erlenkotter, D. (1982). A dual-based procedure for dynamic facility

location. Management Science, 28(10), 1091–1105.

Wang, Q., Batta, R., & Rump, C. M. (2002). Algorithms for a facility location problem with

stochastic customer demand and immobile servers. Annals of operations Research,

111(1), 17–34.

Wang, Q., Batta, R., & Rump, C. M. (2004). Facility location models for immobile servers

with stochastic demand. Naval Research Logistics (NRL), 51(1), 137–152.

Wesolowsky, G. O., & Truscott, W. G. (1975). The multiperiod location-allocation problem

with relocation of facilities. Management Science, 22(1), 57–65.

Wilhelm, W., Han, X., & Lee, C. (2013). Computational comparison of two formulations

127



for dynamic supply chain reconfiguration with capacity expansion and contraction.

Computers & Operations Research, 40(10), 2340–2356.

Xu, J., Chiu, S. Y., & Glover, F. (1999). Optimizing a ring-based private line telecommu-

nication network using tabu search. Management Science, 45(3), 330–345.

Yaghini, M., & Akhavan, R. (2012). Multicommodity network design problem in rail

freight transportation planning. Procedia-Social and Behavioral Sciences, 43, 728–

739.

Yaman, H. (2004). Concentrator location in telecommunications. Quarterly Journal of the

Belgian, French and Italian Operations Research Societies, 2(2), 175–177.

Yaman, H. (2008). Star p-hub median problem with modular arc capacities. Computers &

Operations Research, 35(9), 3009–3019.

Yaman, H. (2009). The hierarchical hub median problem with single assignment. Trans-

portation Research Part B: Methodological, 43(6), 643–658.

Yaman, H., & Carello, G. (2005). Solving the hub location problem with modular link

capacities. Computers & Operations Research, 32(12), 3227–3245.

Yaman, H., & Elloumi, S. (2012). Star p-hub center problem and star p-hub median

problem with bounded path lengths. Computers & Operations Research, 39(11),

2725–2732.

Yoon, M.-G., & Current, J. (2006). The hub location and network design problem with

fixed and variable arc costs: formulation and dual-based solution heuristic. Journal

of the Operational Research Society, 59(1), 80–89.

128


	List of Figures
	List of Tables
	Introduction
	Literature Review
	Hub Location Problems
	Facility Location Problems with Uncertainty

	 Exact and Heuristic Approaches for the Cycle Hub Location Problem
	Problem Description and Formulations 
	Path-Based Formulation
	Flow-Based Formulation

	An Exact Algorithm
	Valid Inequalities
	Separating Mixed-dicut Inequalities
	A Branch-and-Cut Algorithm

	A Heuristic Algorithm
	Results

	An Exact Algorithm for the Modular Hub Location Problem
	Problem Definition and Formulations
	Path-Based Formulation
	Flow-Based Formulation

	Lagrangean Relaxation
	Solving the Lagrangean Dual Problem
	Primal Heuristic

	Branch-and-Bound Algorithm
	 Computational Experiments
	Comparison of Formulations and Algorithm
	Sensitivity Analysis


	Dynamic Facility Location with Service Level Constraints
	Problem Definition and Formulation
	Solution Algorithms
	Preprocessing Phase 
	Constructive Heuristic
	Branch-and-Cut Heuristic
	Local Search

	Computational Experiments
	Sensitivity Analysis
	Comparison of Solution Algorithms


	Conclusions
	References



