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ABSTRACT

Information Geometry of Statistical Models

Xi Yang

Information Geometry is a relatively young branch of Mathematics, which roots back

to studies of invariant geometrical structure involved in statistical inference. It de-

fines a Riemannian metric together with dually coupled affine connections in a mani-

fold of probability distributions. These structures provide tools not only for studying

statistical inference but also for research in wider areas of information sciences, such

as machine learning, signal processing, optimization, and even neuroscience, not to

mention mathematics and physics. The aim of this thesis is to give a brief intro-

duction to Information Geometry with focus on the exponential family. In Chapter

1, we first introduce the notion and basic properties of statistical models. We then

define some common notions in information geometry such as Fisher information,

Christoffel symbols, connections, Skewness tensor, geodesic and Jeffreys Prior. We

also introduce the geometry of entropy, including entropy, Kullback-Leibler diver-

gence (or relative entropy) and information energy on statistical models. Chapter 2

focuses on the geometry of the exponential family of probability distributions. Ex-

amples and properties of exponential families are firstly discussed in this chapter.

Fisher metric and geodesics are worked out explicitly for common exponential fam-

ilies. Chapter 3 contains important examples of exponential families for which the

entropy, Kullback-Leibler relative entropy and information energy are worked out

explicitly. This chapter deals also with the problem of finding the density of max-
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imum entropy subject to the first N moment constraints, with unique solutions for

the cases N ≤ 2.
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Chapter 1

Introduction to Information

Geometry of Statistical Models

Information geometry explores the world of information by means of modern geome-

try. It is a method to characterize the structure of statistical models from a viewpoint

of differential geometry. By considering families of probability distributions as mani-

folds with coordinate charts determined by the parameters of each individual model,

the tools of differential geometry such as divergences and metric tensors provide

additional means to study statistical inference, information loss, and estimation.

Information geometry traces its roots back to the work of C. R. Rao in the

mid-1940s [6]. Rao developed a way to measure the statistical distance between

two populations through a Riemannian metric which was shown to be equivalent to

Fisher’s information matrix. Further contributions were made in the decades fol-

lowed by H. Jeffreys, D. Cox, B. Efron, O. Barndorff-Nielsen, N. N. Chentsov, and
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S. Amari among many others [1]. Information geometry reached maturity through

the work of S. Amari and other Japanese mathematicians in the 1980s. Today, infor-

mation geometry is a filed that is increasingly attracting the interest of researchers

from many different areas of science, including mathematics, statistics, geometry,

computer science, signal processing, physics and neuroscience [4]. It is an active area

of research with international conferences held regularly. Springer is launching a new

topical journal “Information Geometry” in 2018.

The thesis can be read as a brief introduction to information geometry. It is

structured into three chapters.

In Chapter 1, we introduce the notion of statistical models, which is a space

of density functions, and discuss the basic properties of statistical models. In this

chapter, we also define some common notions in information geometry such as Fisher

information, Christoffel symbols, connections, Skewness tensor, autoparallel curves

and Jeffreys Prior. We also introduce the geometry of entropy, including entropy,

Kullback-Leibler divergence (or relative entropy) and information energy on statis-

tical models.

Chapter 2 focuses on the geometry of the exponential family of probability dis-

tributions. The exponential family is not only a typical statistical model, including

many well-known families of probability distributions, but is associated with a con-

vex function (used in the definition for each exponential family). Examples and

properties of exponential families are discussed in this chapter. Fisher metric and

geodesics are worked out explicitly for common exponential families.

Chapter 3 contains important examples of exponential families for which the
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entropy, Kullback-Leibler relative entropy and information energy are worked out

explicitly. This chapter deals also with the problem of finding the density of maxi-

mum entropy subject to the first N moment constraints.

The thesis work is mainly based on the book of O. Calin and C. Udrişte (C&U)

[4], published in 2014. Other important reference used for this work are the book of S.

Amari [2], published in 2016, and the book of Ay et al. [3], published in 2017, which

claiming the standard reference of the field. In this thesis, while many propositions

and corollaries are cited directly or in a modified form from the book [4], many

propositions and useful results for the exponential family of probability distributions

have also been obtained by the author and supplemented. Some mistakes and typos

in C&U’s book [4] have also been corrected in this thesis.

1.1 Statistical Models

We first introduce the notion of statistical models by associating it with a family

of probability distributions. We restrict our work on the statistical models given

parametrically. When the family of distributions can be described smoothly by a

set of parameters, it can be considered as a multidimensional hypersurface. Upon

specifying the parameters of a distribution, we determine a unique element of the

family or a unique point on the hypersurface.
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1.1.1 Probability Spaces and Random Variables

Let (S,F , P ) be a probability space, where the finite or infinite set S is the sample

space, F is a σ-field over S, and P is the probability measure. A random variable X

is a measurable function used to measure the random outcomes contained in S.

A discrete random variable X takes finite or countably infinite values, X : S →
X = {x1, x2, x3, . . .}. The probability forX (s) = xk ∈ X is described by a probability

mass function p : X → [0, 1]

pk = p
(
xk
)
= P

(
X = xk

)
= P

({
s ∈ S;X (s) = xk ∈ X}) , ∀k ≥ 1,

satisfying
∑

k≥1 pk = 1. A discrete probability distribution is characterized by a prob-

ability mass function. The function p (x) defines a probability distribution function

F : X → [0, 1],

F (x) =
N∑
k=1

p (x), ∀xN ≤ x ≤ xN+1.

The Bernoulli distribution, binomial distribution, the geometric distribution and

the Poisson distribution are among the most common discrete probability distribu-

tions.

A continuous random variable X takes a continuous range of values, X : S →
X ⊂ R

n. The probability for X ∈ D, an open set in X , is described by a probability

density function p : X → [0, 1] satisfying
∫
X p (x) = 1,

P (X ∈ D) =

∫
D
p (x) dx.
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A continuous probability distribution is characterized by a probability density func-

tion. When X = R, p (x) defines a probability distribution function F : R → [0, 1],

F (x) =

∫ x

−∞
p (t) dt.

The normal distribution, the lognormal distribution, the exponential distribu-

tion, the gamma and the beta distributions are some most well-known examples of

continuous probability distributions.

1.1.2 Parametric Models

Parameters are descriptive measures of the characteristics of a population that may

be used as the inputs for a probability distribution function. This section deals

with a family of probability density functions described by a set of parameters.

Such a family can be organized as a parameterized hypersurface, each point on the

hypersurface representing a probability density.

Let S = {pξ = p (x; ξ) |ξ = (ξ1, . . . , ξn) ∈ E} be a family of probability distribu-

tions on X , where each element pξ can be parameterized by n real-valued variables

ξ = (ξ1, . . . , ξn) and the set E ⊂ R
n is called the parameters space. The set S is a

subset of the infinite dimensional space of functions

P (X ) =

{
f ; f : X → R, f ≥ 0,

∫
X
f dx = 1

}
.

Definition 1.1.1. The set S = {pξ = p (x; ξ) |ξ = (ξ1, . . . , ξn) ∈ E} is called a sta-
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tistical model or a parametric model of dimension n if the mapping

ι : E → P (X ) , ι (ξ) = pξ

is one-to-one and has rank n = dimE.

The rank n implies that {∂jpξ}nj=1 is a set of linearly independent functions, where

∂j =
∂
∂ξj

. This condition defines the regularity of the statistical model.

The one-to-one condition of the mapping ι : E → P (X ) , ι (ξ) = pξ for a sta-

tistical model implies that it is reasonable to consider the inverse function φ : S →
E ⊂ R

n, φ (pξ) = ξ. Since φ assigns a parameter ξ to each pξ, we can take φ as a

coordinate system for our statistical model.

Although a statistical model may change its parametrization, the geometric re-

sults obtained in one parametrization are valid for all parametrization. Thus, it is

better to choose a convenient parametrization to work with.

1.1.3 Basic Properties of Statistical Models

We will also use the abbreviations S = {pξ} and S = {p (x; ξ)} when there is no

doubt on the parameters space or sample space. The functions ∂jpξ (x), or denoted

by ϕj (x; ξ), are basic vector fields for the model S = {pξ} . The vector field ϕj is a

differentiation on smooth mapping f : S → F (X ,R)

ϕj (f) =
∂ (f (pξ))

∂ξj
.
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A frequently-used mapping is the log-likelihood function 	 : S → F (X ,R) defined
by

	 (pξ) (x) = ln pξ (x) ,

which is sometimes denoted by 	x (ξ) = 	 (pξ (x)). Its derivatives are

ϕj	x (ξ) =
∂ ln pξ (x)

∂ξj
= ϕj (	x (ξ)) , 1 ≤ j ≤ n,

which play a core role in the information geometry of statistical models.

It is often easier to check the linear independence of {∂j	x (ξ)}nj=1 than of {∂jpξ}nj=1.

Theorem 1.1.1. [4] The regularity condition in the definition of the statistical model

S = {pξ} holds if and only if for any ξ ∈ E the set {∂j	x (ξ)}nj=1 is a system of n

linearly independent functions of x.

Proof. Since

∂j	x (ξ) =
∂

∂ξj
ln p (x; ξ) =

1

p (x; ξ)

∂

∂ξj
p (x; ξ) =

1

p (x; ξ)
∂jpξ (x) , (1.1)

the two systems {∂j	x (ξ)}nj=1 and {∂jpξ}nj=1 are proportional. Hence, their linear

independence is equivalent.

We will often use the facts that,

∫
X
ϕj (x) dx = ∂j

∫
X
pξ (x) dx = ∂j1 = 0, ∀j ∈ {1, . . . , n} ; (1.2)
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for continuous distributions, and

∑
k≥1

ϕj (xk) = ∂j
∑
k≥1

pξ (xk) = ∂j1 = 0, ∀1 ≤ j ≤ n. (1.3)

for discrete distributions. In equation (1.2), the interchangeability of the derivative

with the integral holds if assuming the boundedness of X or the integrability of pξ (x);

while in equation (1.3), the derivative can be taken out of the sum by assuming X
finite or the uniform convergence of the series.

Theorem 1.1.2. [4]Assume that the equations (1.2) and (1.3) hold. The expectation

of ∂j	x (ξ) with respect to pξ is zero,

Eξ [∂j	x (ξ)] = 0. (1.4)

Proof. According to equations (1.1) and (1.2), we have

Eξ [∂j	x (ξ)] = Eξ

[
1

p (x; ξ)
∂jpξ (x)

]
= Eξ

[
1

p (x; ξ)
ϕj (x; ξ)

]
=

∫
X
ϕj (x; ξ) dx = 0.

Similarly, in the discrete case, we have

Eξ [∂j	x (ξ)] =
∑
k≥1

pξ (xk) ∂j ln pξ (xk) =
∑
k≥1

∂jpξ (xk) = ∂j
∑
k≥1

pξ (xk) = 0.
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1.2 Information Geometry of Statistical Models

1.2.1 Fisher Information

The Riemannian metric tensor g is a fundamental object in differential geometry.

Similarly, we define a metric structure on a statistical model.

Definition 1.2.1. The Fisher information matrix for a statistical model with the

parameter ξ = (ξ1, . . . , ξn) ∈ E is defined by

gij (ξ) = Eξ [∂i	 (ξ) ∂j	 (ξ)] , ∀i, j ∈ {1, . . . , n} , (1.5)

where 	 (ξ) and ∂i denotes ln pξ (x) and
∂
∂ξi

respectively.

Proposition 1.2.1. [4] The Fisher information matrix can be represented as

gij (ξ) = 4

∫
X
∂i

√
pξ (x)∂j

√
pξ (x)dx (1.6)

The discrete analogue is

gij (ξ) = 4
∑
X
∂i

√
pξ (x)∂j

√
pξ (x). (1.7)
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Proof. We prove the discrete case. The proof to the continuous case is similar.

gij (ξ) = Eξ [∂i	 (ξ) ∂j	 (ξ)]

=
∑
X
pξ (x) ∂i ln pξ (x) ∂j ln pξ (x)

=
∑
X
pξ (x)

∂ipξ (x)

pξ (x)

∂jpξ (x)

pξ (x)

= 4
∑
X

∂ipξ (x)

2
√
pξ (x)

∂jpξ (x)

2
√
pξ (x)

= 4
∑
X
∂i

√
pξ (x)∂j

√
pξ (x).

Proposition 1.2.2. [4] The Fisher information matrix on any statistical model is

symmetric, positive definite and non-degenerate.

Proof. The symmetry follows from the definition (1.5).

For a statistical model S with the parameters ξ, ∀v ∈ TξS and v 	= 0, we have

vtgv =
∑
i,j

gijv
ivj = 4

∑
i,j

∫
X

(
vi∂i

√
pξ (x)v

j∂j

√
pξ (x)

)
dx

= 4

∫
X

(∑
i

vi∂i

√
pξ (x)

)(∑
j

vj∂j

√
pξ (x)

)
dx

= 4

∫
X

(∑
i

vi∂i

√
pξ (x)

)2

dx ≥ 0.

So, g is non-negative definite.
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Since we have

vtgv = 0 ⇐⇒
∫
X

(∑
i

vi∂i

√
pξ (x)

)2

dx = 0 ⇐⇒
∑
i

vi∂i

√
pξ (x) = 0 ⇐⇒

∑
i

vi∂ipξ (x) = 0,

by the linear independence of {∂ipξ (x)} for a statistical model, vi = 0 for all i,

i.e. v = 0, which contradicts our assumption. Thus, g is non-degenerate and positive-

definite.

The Fisher information matrix provides the coefficients of a Riemannian metric

on the hypersurface S. We can measure distances, angles, and define connections on

statistical models by Fisher metric.

Theorem 1.2.1. [4] The Fisher information matrix can be represented as

gij (ξ) = −Eξ [∂i∂j	 (ξ)] . (1.8)

Proof. We start from the normalization condition

∫
X
pξ (x) dx = 1.

Differentiating with respect to ξi yields

∫
X
∂ipξ (x) dx = 0.
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So, we have

Eξ [∂i	 (ξ)] =

∫
X
∂i ln pξ (x) · pξ (x) dx =

∫
X
∂ipξ (x) dx = 0.

Differentiating in
∫
X ∂i ln pξ (x) · pξ (x) dx = 0 again with respect to ξj yields

∫
X
∂j∂i ln pξ (x) · pξ (x) dx+

∫
X
∂i ln pξ (x) · ∂jpξ (x) dx = 0

⇐⇒ Eξ [∂j∂i ln pξ (x)] +

∫
X
∂i ln pξ (x) ∂j ln pξ (x) · pξ (x) dx = 0

⇐⇒ −Eξ [∂j∂i ln pξ (x)] = Eξ [ln pξ (x) ∂j ln pξ (x)] = gij .

Proposition 1.2.3. [4] The Fisher metric is invariant under reparametrizations of

the sample space.

Proof. Consider an invertible transform of sample spaces f : X → Y , where X ,Y ⊆
R
n, defined by Y = f (X). Denote by pξ (x) and p̃ξ (y) the density functions associ-

ated with the random variables X and Y respectively. The relation between pξ (x)

and p̃ξ (y) is given by

pξ (x) = p̃ξ (y)
∂f (x)

∂x
.

Since the log-likelihood functions are given by

	 (ξ) = ln pξ (x) = ln p̃ξ (y) + ln
∂f (x)

∂x
,

12



we have

∂ξi ln pξ (x) = ∂ξi ln p̃ξ (y) .

Hence,

gij (ξ) =

∫
X
∂i ln pξ (x) ∂j ln pξ (x) · pξ (x) dx

=

∫
X
∂i ln p̃ξ (y) ∂j ln p̃ξ (y) · p̃ξ (y) ∂f (x)

∂x
dx

=

∫
Y
∂i ln p̃ξ (y) ∂j ln p̃ξ (y) p̃ξ (y) dy

= g̃ij (ξ) .

Theorem 1.2.2. [4] The Fisher metric is covariant under reparametrizations of the

parameters space.

Proof. Let ξ = (ξ1, . . . , ξn) and η = (η1, . . . , ηn) be two sets of parameters related by

the invertible relationship ξ = ξ (η). Let p̃η (x) = pξ(η) (x).

By chain rule, we have

∂ηi p̃η =
∂

∂ηi
p̃η =

∑
k

∂ξk

∂ηi
∂ξkpξ, ∂ηj p̃η =

∂

∂ηj
p̃η =

∑
r

∂ξr

∂ηj
∂ξrpξ.

13



So, we have the covariance relation between the components of g and g̃,

g̃ij (η) =

∫
X
∂ηi ln p̃η (x) ∂ηj ln p̃η (x) · p̃η (x) dx

=

∫
X

1

p̃η (x)
∂ηi p̃η (x) ∂ηj p̃η (x) dx

=
∑
k

∑
r

[∫
X

1

pξ(η) (x)
∂ξkpξ∂ξrpξdx

]
∂ξk

∂ηi
∂ξr

∂ηj

=
∑
k,r

gkr (ξ) |ξ=ξ(η) ∂ξ
k

∂ηi
∂ξr

∂ηj

=
∑
k,r

gkr (ξ) |ξ=ξ(η)JkiJrj ,

where J is the Jacobian matrix J (ξ, η). Writing in the matrix form, we have g̃ (η) =

J tg (ξ)J , where J t is the transpose of J .

1.2.2 Christoffel Symbols

The Christoffel symbol is the most simple connection on the statistical model S.

Definition 1.2.2. Let gij denote a Riemannian metric, particularly the Fisher in-

formation matrix, then the Christoffel symbols of first kind are defined by

Γij,k =
1

2
(∂igjk + ∂jgki − ∂kgij) , (1.9)

where we used the notation ∂i = ∂ξi. The Christoffel symbols of second kind are
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defined by

Γ p
ij =

1

2
gpk (∂igjk + ∂jgki − ∂kgij) , (1.10)

Proposition 1.2.4. [4] The Christoffel symbols of first kind can be represented in

the following equivalent forms.

(i) Γij,k =
1

2
(Eξ [(∂i∂j	) ∂k	]−Eξ [(∂j∂k	) ∂i	]− Eξ [(∂k∂i	) ∂j	]− Eξ [∂i∂j∂k	]) ;

(ii) Γij,k = Eξ

[(
∂i∂j	+

1

2
∂i	∂j	

)
∂k	

]
;

(iii) Γij,k = 4

∫
X
∂i∂j
√
p(x; ξ)∂k

√
p(x; ξ)dx.

Proof. By equation (1.8),

∂kgij(ξ) = −∂kEξ [∂i∂j	]

= −∂k
∫
X
(∂i∂j	) p(x; ξ)dx

= −
∫
X
(∂k∂i∂j	) p(x; ξ)dx−

∫
X
(∂i∂j	) ∂kp(x; ξ)dx

= −
∫
X
(∂k∂i∂j	) p(x; ξ)dx−

∫
X
(∂i∂j	) (∂k	) p(x; ξ)dx

= −Eξ [∂k∂i∂j	]−Eξ [(∂i∂j	) (∂k	)] .

Similarly, we have

∂igjk(ξ) = −Eξ [∂i∂j∂k	]− Eξ [(∂j∂k	) (∂i	)] ,
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∂jgki(ξ) = −Eξ [∂i∂j∂k	]− Eξ [(∂k∂i	) (∂j	)] .

Substituting the above three results into (1.9) gives (i).

By the definition equation (1.5), we have

∂kgij(ξ) = ∂kEξ [∂i	∂j	]

= ∂k

∫
X
(∂i	∂j	) p(x; ξ)dx

=

∫
(∂k∂i	) (∂j	) p(x; ξ)dx+

∫
(∂k∂j	) (∂i	) p(x; ξ)dx+

∫
X
(∂i	∂j	) ∂kp(x; ξ)dx

= Eξ [∂k∂i	∂j	] + Eξ [∂k∂j	∂i	] + Eξ [∂i	∂j	∂k	] . (1.11)

Similarly, we have

∂igjk(ξ) = Eξ [∂i∂j	∂k	] + Eξ [∂i∂k	∂j	] + Eξ [∂j	∂k	∂i	] ,

∂jgki(ξ) = Eξ [∂j∂k	∂i	] + Eξ [∂j∂i	∂k	] + Eξ [∂k	∂i	∂j	] .

Substituting the above three results into (1.9) gives (ii).

By Proposition 1.2.1, we have

∂kgij (ξ) = 4∂k

∫
X
∂i

√
pξ (x)∂j

√
pξ (x)dx

= 4

∫
X
∂k∂i

√
pξ (x)∂j

√
pξ (x)dx+ 4

∫
X
∂i

√
pξ (x)∂k∂j

√
pξ (x)dx.
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Similarly, we have

∂igjk = 4

∫
X
∂i∂j

√
pξ (x)∂k

√
pξ (x)dx+ 4

∫
X
∂j

√
pξ (x)∂i∂k

√
pξ (x)dx,

∂jgki = 4

∫
X
∂j∂k

√
pξ (x)∂i

√
pξ (x)dx+ 4

∫
X
∂k

√
pξ (x)∂j∂i

√
pξ (x)dx.

Substituting all three results into (1.9), we obtain (iii).

1.2.3 Connections

Definition 1.2.3. The coefficients given by (1.5) induce a Riemannian metric on

S, which is a 2-covariant tensor g defined locally by

g (Xξ, Yξ) =

n∑
i,j=1

gij (ξ) a
i (ξ) bj (ξ) , pξ ∈ S (1.12)

where Xξ =
∑n

i=1 a
i(ξ)∂ipξ and Yξ =

∑n
j=1 b

j(ξ)∂jpξ are vector fields in the 0-

representation on S. Observe that {∂ipξ}ni=1, or simplified as {∂i}ni=1, forms a basis

of the tangent space TξS. The tensor g is called the Fisher-Riemannian metric. Its

associated Levi-Civita connection is denoted by ∇(0) and is defined by

g
(
∇(0)
∂i
∂j , ∂k

)
= Γ

(0)
ij,k, (1.13)

where Γ
(0)
ij,k is the Christoffel symbols of first kind defined in (1.9).
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Definition 1.2.4. Using the Fisher metric g, the ∇(1)-connection is defined by

g
(
∇(1)
∂i
∂j , ∂k

)
= Γ

(1)
ij,k (ξ) = Eξ [(∂i∂j	) ∂k	] , (1.14)

where 	 is the log-likelihood function.

Definition 1.2.5. Using the Fisher metric g, the ∇(−1)-connection on a statistical

model S is defined by

g
(
∇(−1)
∂i

∂j , ∂k

)
= Γ

(−1)
ij,k (ξ) = Eξ [(∂i∂j	+ ∂i	∂j	) (∂k	)] , (1.15)

where 	 is the log-likelihood function.

Proposition 1.2.5. [4] The relation among the foregoing three connections is given

by

∇(0) =
1

2

(∇(1) +∇(−1)
)
. (1.16)

Proof. It suffices to show

Γ
(0)
ij,k =

1
2

(
Γ

(−1)
ij,k + Γ

(1)
ij,k

)
.

By equations (1.14), (1.15) and (ii) in Proposition 1.2.4, we have

Γ
(−1)
ij,k + Γ

(1)
ij,k = Eξ [(∂i∂j	+ ∂i	∂j	) (∂k	)] + Eξ [(∂i∂j	) ∂k	]

= 2Eξ[

(
∂i∂j	+

1

2
∂i	∂j	

)
∂k	]

= 2Γ
(0)
ij,k.
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Proposition 1.2.6. [4] For any vector fields X, Y, Z on the statistical model S =

{pξ}, we have

Zg (X, Y ) = g
(
∇(1)
Z X, Y

)
+ g
(
X,∇(−1)

Z Y
)
. (1.17)

Proof. Choosing X =
∑
i

ai∂ipξ, Y =
∑
j

bj∂jpξ and Z =
∑
k

ck∂kpξ with the basis

{∂ipξ}ni=1 of the tangent space TξS, we have

Zg (X, Y ) = Z

(∑
i,j

gijaibj

)
=
∑
k

ck∂k

(∑
i,j

gijaibj

)
.

By equations (1.14) and (1.15), we have

g
(
∇(1)
Z X, Y

)
=
∑
k

ckg
(
∇(1)
∂k
X, Y

)
=
∑
k

ck
∑
i,j

aibjΓ
(1)
ki,j,

g
(
X,∇(−1)

Z Y
)
=
∑
k

ckg
(
X,∇(−1)

∂k
Y
)
=
∑
k

ck
∑
i,j

aibjΓ
(−1)
kj,i ,

Thus, it suffices to prove

∂kgij = Γ
(−1)
kj,i + Γ

(1)
ki,j.

By equations (1.14), (1.15) and (1.11), we have

Γ
(−1)
kj,i + Γ

(1)
ki,j = Eξ [(∂k∂j	+ ∂k	∂j	) (∂i	)] + Eξ [(∂k∂i	) ∂j	]

= ∂kgij.
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Definition 1.2.6. We define the 1-parameter family of connections

∇(α) =
1 + α

2
∇(1) +

1− α

2
∇(−1), (1.18)

with real parameter α on the statistical model S. Using the Fisher metric g, the

connection components are denoted by

Γ
(α)
ij,k = g

(
∇(α)
∂i
∂j , ∂k

)
.

The connection components are given by the following proposition.

Proposition 1.2.7. [4]

Γ
(α)
ij,k = Eξ

[(
∂i∂j	+

1− α

2
∂i	∂j	

)
∂k	

]
. (1.19)

Proof. Writing definition (1.18) in terms of components and then use equations (1.14)

and (1.15), we obtain

Γ
(α)
ij,k =

1 + α

2
Γ
(1)
ij,k +

1− α

2
Γ
(−1)
ij,k

=
1 + α

2
Eξ [(∂i∂j	) ∂k	] +

1− α

2
Eξ [(∂i∂j	+ ∂i	∂j	) (∂k	)]

= Eξ[

(
∂i∂j	+

1− α

2
∂i	∂j	

)
∂k	].

Proposition 1.2.8. [4] For any vector fields X, Y, Z on the statistical model S =

20



{pξ}, we have

Zg (X, Y ) = g
(
∇(α)
Z X, Y

)
+ g
(
X,∇(−α)

Z Y
)
. (1.20)

Proof. Similar to the proof to Proposition (1.2.6), it suffices to show

∂kgij = Γ
(−α)
kj,i + Γ

(α)
ki,j.

By equations (1.19) and (1.11), we find

Γ
(−α)
kj,i + Γ

(α)
ki,j = Eξ[

(
∂k∂j	+

1 + α

2
∂k	∂j	

)
∂i	] + Eξ[

(
∂k∂i	+

1− α

2
∂k	∂i	

)
∂j	]

= Eξ [∂i	∂j	∂k	] + Eξ [(∂k∂j	) ∂i	] + Eξ [(∂k∂i	) ∂j	]

= ∂kgij (ξ) .

1.2.4 Skewness Tensor

The difference of two linear connections is a tensor field.

Definition 1.2.7. We define the generalized difference tensor by

K(α,β) (X, Y ) = ∇(β)
X Y −∇(α)

X Y. (1.21)

We define a 3-covariant, symmetric tensor T with components

T (∂i, ∂j , ∂k) = Tijk = Eξ [∂i	 ∂j	 ∂k	]. (1.22)
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T is called the skewness tensor.

Proposition 1.2.9. [4] The skewness tensor T satisfies the following equation:

g
(
K(α,β) (X, Y ) , Z

)
=
α− β

2
T (X, Y, Z) , (1.23)

where g is the Fisher metric.

Proof. We prove the local coordinates version of the above equation by applying

Proposition 1.2.7:

Γ
(β)
ij,k(ξ)− Γ

(α)
ij,k(ξ) = Eξ[

(
∂i∂j	+

1− β

2
∂i	∂j	

)
∂k	]− Eξ[

(
∂i∂j	+

1− α

2
∂i	∂j	

)
∂k	]

=
α− β

2
Eξ [∂i	 ∂j	 ∂k	] .

Proposition 1.2.10. The skewness tensor is covariant under reparametrizations.

Proof. Let Tijk (ξ) = Eξ [∂i	∂j	∂k	] and ηi = ηi (ξ1, . . . , ξn) for i ∈ {1, . . . , n} be a
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reparametrization of ξ. Then, similar to the proof to Theorem1.2.2,

T̃ij,k (η) = Eη [∂i	∂j	∂k	]

=

∫
X
∂ηi ln p̃η (x) ∂ηj ln p̃η (x) ∂ηk ln p̃η (x) · p̃η (x) dx

=

∫
X

∂ηi p̃η (x) ∂ηj p̃η (x) ∂ηk p̃η (x)

(p̃η (x))
2 dx

=
∑
a,b,c

[∫
X

∂ξapξ (x) ∂ξbpξ (x) ∂ξcpξ (x)(
pξ(η) (x)

)2 dx

]
∂ξa

∂ηi
∂ξb

∂ηj
∂ξc

∂ηk

=
∑
a,b,c

[∫
X
∂ξa ln pξ (x) ∂ξb ln pξ (x) ∂ξc ln pξ (x) · pξ(η) (x) dx

]
∂ξa

∂ηi
∂ξb

∂ηj
∂ξc

∂ηk

=
∑
a,b,c

Tab,c (ξ)JaiJbjJck.

Proposition 1.2.11. The skewness tensor is invariant under transformations of the

random variable.

Proof. Consider an invertible transform of sample spaces f : X → Y , where X ,Y ⊆
R
n, defined by Y = f (X). Denote by pξ (x) and p̃ξ (y) the density functions associ-

ated with the random variables X and Y respectively. The relation between pξ (x)

and p̃ξ (y) is given by

pξ (x) = p̃ξ (y)
∂f (x)

∂x
.

Since the log-likelihood functions are given by

	 (ξ) = ln pξ (x) = ln p̃ξ (y) + ln
∂f (x)

∂x
,
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we have

∂ξi ln pξ (x) = ∂ξi ln p̃ξ (y) .

Hence,

Tij,k (ξ) =

∫
X
∂i ln pξ (x) ∂j ln pξ (x) ∂k ln pξ (x) · pξ (x) dx

=

∫
X
∂i ln p̃ξ (y) ∂j ln p̃ξ (y) ∂k ln p̃ξ (y) · p̃ξ (y) ∂f (x)

∂x
dx

=

∫
Y
∂i ln p̃ξ (y) ∂j ln p̃ξ (y) ∂k ln p̃ξ (y) · p̃ξ (y)dy

= T̃ij,k (ξ) .

1.2.5 Autoparallel Curves

A curve on the statistical model S = {pξ} is defined by

γ (s) = ι (ξ (s)) = pξ (s), s ∈ [0, T ] . (1.24)

The velocity of the curve γ (s) is given by

γ̇ (s) = ι∗
(
ξ̇ (s)

)
=

d

ds
ι
(
ξ̇ (s)

)
=

d

ds
pξ (s) . (1.25)

Definition 1.2.8. A curve γ : [0, T ] → S is called ∇(α)-autoparallel if γ̇ (s) is par-

allel transported along γ (s). So, the acceleration with respect to the ∇(α)-connection
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vanishes,

∇(α)
γ̇(s)γ̇ (s) = 0, ∀s ∈ [0, T ] . (1.26)

In local coordinates γ (s) =
(
γk (s)

)
, the autoparallelism means, for each fixed k,

γ̈k (s) +
∑
i,j

Γ
(α)
ij

kγ̇i (s)γ̇j (s) = 0, (1.27)

where, for fixed i, j, Γ
(α)
ij

k =
∑
l

Γ
(α)
ij,l g

lk is evaluated along γ (s), and g denotes the

Fisher metric. This is a Riccati system of ordinary differential equations (ODEs).

In particular, if α = 0, the autoparallel curves become geodesics with respect to the

Fisher metric g.

Proposition 1.2.12. [4] Let α 	= β. If a curve γ (s) is both ∇(α) and ∇(β)-

autoparallel, then

T (γ̇ (s) , γ̇ (s) , X) = 0,

for any vector field X along the curve γ (s).

Proof. By equation (1.26), we have ∇(α)
γ̇(s)γ̇ (s) = 0 and ∇(β)

γ̇(s)γ̇ (s) = 0. Then, by

equation (1.21), we have

K(α,β) (γ̇ (s) , γ̇ (s)) = ∇(α)
γ̇(s)γ̇ (s)−∇(β)

γ̇(s)γ̇ (s) = 0.

Hence, by Proposition 1.2.9, we obtain T (γ̇ (s) , γ̇ (s) , X) = 0 for any vector field X

along the curve γ (s).
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1.2.6 Jeffreys Prior

Definition 1.2.9. Let S = {pξ; ξ ∈ E} be a statistical model, and G (ξ) = det g (ξ)

denote the determinant of the Fisher information matrix. Assume the volume

V ol (S) =
�
E

√
G (ξ)dξ <∞. (1.28)

Then, Jeffreys prior is a probability distribution on E, defined by

Q (ξ) =
1

V ol (S)
√
G (ξ). (1.29)

Proposition 1.2.13. Jeffreys prior is invariant under reparametrizations of the pa-

rameters space E.

Proof. Let ξ = (ξ1, . . . , ξn) and η = (η1, . . . , ηn) be two sets of parameters of a

statistical model S. Suppose we have the invertible relationship ξ = ξ (η).

By Theorem 1.2.2, the Fisher metric is covariant under reparametrizations of the

parameters space, i.e.

g̃ (η) = J (ξ, η)t g (ξ (η)) J (ξ, η) .
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So, we have

G̃ (η) = det g̃ (η) = det
(
J (ξ, η)t g (ξ (η))J (ξ, η)

)
= det J (ξ, η)t det g (ξ (η)) det J (ξ, η)

= G (ξ (η)) [det J (ξ, η)]2 ,

˜V ol (S) =
�
E

√
G̃ (η)dη

=
�
E

√
G (ξ (η))| detJ (ξ, η) |dη

=
�
E

√
G (ξ)dξ

= V ol (S) .

Hence, we have

Q̃ (η)dη =

√
G̃ (η)

˜V ol (S)dη

=

√
G (ξ (η))| detJ (ξ, η) |

V ol (S) dη

= Q (ξ) dξ.
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1.3 The Geometry of Entropy on Statistical Mod-

els

1.3.1 Entropy

Definition 1.3.1. The entropy is a function H : E → R, which is defined by

H (ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− ∫X p (x, ξ) ln p (x, ξ) dx, if X is continuous;

−
∑
x∈X

p (x, ξ) ln p (x, ξ) , if X is discrete.
(1.30)

Thus, the entropy is equal to the negative of the expectation of the log-likelihood

function, H (ξ) = −Epξ [	x (ξ)].

Proposition 1.3.1. [4] The entropy is a concave function, i.e. for any densities

p1, . . . , pn on X and λi ∈ [0, 1] with
∑n

i=1 λi = 1, we have

H

(
n∑
i=1

λipi

)
≥

n∑
i=1

λiH (pi) . (1.31)

Proof. We know that f (u) = −u ln u is concave for u ∈ R
+. So, we have

f

(
n∑
i=1

λipi

)
≥

n∑
i=1

λif (pi) .

Integrating (summing in the discrete case) over X leads to

H

(
n∑
i=1

λipi

)
≥

n∑
i=1

λiH (pi) .
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Definition 1.3.2. Let S = {pξ (x) ; x ∈ X , ξ ∈ E} be a statistical model. A point

q ∈ S is a critical point for the entropy H if

X (H) = 0, ∀X ∈ TqS. (1.32)

Proposition 1.3.2. [4] The probability distribution pξ is a critical point of the en-

tropy H if and only if

∫
X
ln p (x, ξ) ∂ξip (x, ξ) dx = 0, ∀i ∈ {1, . . . , n} . (1.33)

In the discrete case, the above equation is replaced by

∑
x∈X

ln p (x, ξ) ∂ξip (x, ξ) = 0, ∀i ∈ {1, . . . , n} (1.34)

Proof. Choose X = ∂ξi = ∂i. Since {∂i} form a basis of TqS, by Definition 1.3.2, we

obtain that the point q = pξ ∈ S is a critical point for H if and only if

∂iH (ξ) = 0, ∀i ∈ {1, . . . , n} ,
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i.e.

∂iH = −∂i
∫
X
p (x, ξ) ln p (x, ξ) dx

= −
∫
X
(∂ip (x, ξ) ln p (x, ξ) dx+ ∂ip (x, ξ)) dx

= −
∫
X
ln p (x, ξ) ∂ip (x, ξ) dx = 0,

or, similarly in the discrete case,

∂iH =
∑
x∈X

ln p (x, ξ) ∂ξip (x, ξ) = 0.

Proposition 1.3.3. [4] The Hessian of the entropy is given by

∂i∂jH (ξ) = −gij (ξ)− hij(ξ),

where gij (ξ) is the Fisher-Riemann metric and

hij(ξ) = Eξ [(∂j	 (ξ)∂i	 (ξ) + ∂i∂j	 (ξ)) 	 (ξ)] .
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Proof. The first derivative of the entropy can be expressed as

∂iH (ξ) = −
∫
X
ln p (x, ξ) ∂ip (x, ξ) dx

= −
∫
X
p (x, ξ) ln p (x, ξ) ∂i ln p (x, ξ) dx

= −Eξ [	 (ξ) ∂i	 (ξ)] .

Hence the Hessian of the entropy can be expressed as

∂j∂iH (ξ) = −∂j
∫
X
p (x, ξ) 	 (ξ) ∂i	 (ξ) dx

= −
∫
X
(p (x, ξ) ∂j	 (ξ)∂i	 (ξ) + ∂jp (x, ξ) 	 (ξ) ∂i	 (ξ) + p (x, ξ) 	 (ξ) ∂j∂i	 (ξ)) dx

= −
∫
X
(p (x, ξ) ∂j	 (ξ)∂i	 (ξ) + p (x, ξ) ∂j	 (ξ) 	 (ξ) ∂i	 (ξ) + p (x, ξ) 	 (ξ) ∂j∂i	 (ξ)) dx

= −Eξ [∂i	 (ξ) ∂j	 (ξ)]−Eξ [(∂j	 (ξ) ∂i	 (ξ) + ∂i∂j	 (ξ)) 	 (ξ)]

= −gij (ξ)− hij(ξ).

1.3.2 Kullback-Leibler Relative Entropy

Definition 1.3.3. The Kullback-Leibler relative entropy is a non-commutative mea-

sure of the difference between two probability densities p and q on the same statistical
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hypersurface, and it is defined by

DKL (p||q) = Ep

[
ln
p

q

]
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
X p (x) ln

p (x)

q (x)
dx, if X is continuous;

∑
xi∈X p (x

i) ln
p (xi)

q (xi)
, if X is discrete.

The Kullback-Leibler relative entropy can also be expressed as the expectation

of the difference of two log-likelihood functions

DKL (p||q) = Ep [	p]− Ep [	q] .

Proposition 1.3.4. [4] Let S be a statistical manifold.

(i) The relative entropy DKL (p||q) ≥ 0 for any p, q ∈ S with DKL (p||q) = 0 if

and only if p = q.

(ii) The relative entropy is symmetric, i.e. DKL (p||q) = DKL (q||p) if and only

if ∫
X
(p (x) + q (x)) ln

p (x)

q (x)
dx = 0.

(iii) The relative entropy satisfies the triangle inequality, i.e. DKL (p||q)+DKL (q||r) ≥
DKL (p||r) if and only if

∫
X
(p (x)− q (x)) ln

q (x)

r (x)
dx ≤ 0.
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Proof. (i) Since ln x ≤ −1 + x for x > 0 with equality if and only if x = 1, we have

∫
X
p (x) ln

q (x)

p (x)
dx ≤

∫
X
p (x)

(
−1 +

q (x)

p (x)

)
dx

=

∫
X
q (x) dx−

∫
X
p (x) dx

= 0

with equality if and only if p = q.

(ii) and (iii) are obtained by direct computations.

Note that in the previous proposition the notations are only given for the con-

tinuous cases. This proposition shows that the Kullback-Leibler relative entropy

does not satisfy all the axioms of a metric on the manifold S. The non-symmetry

can be removed by defining the symmetric Kullback-Leibler quasimetric D (p, q),

D (p, q) = DKL (p||q) +DKL (q||p). However, in general, the problem of the triangle

inequality cannot be fixed.

Definition 1.3.4. The cross entropy of p with respect to q is defined as

S (p, q) = −Ep [ln q] =

⎧⎪⎪⎨⎪⎪⎩
− ∫X p (x) ln q (x)dx, if X is continuous;

−∑x∈X p (x) ln q (x), if X is discrete.

By direct computations, we have the following result.

Proposition 1.3.5. [4] The relative entropy DKL (p||q), the entropy H (p) and the
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cross entropy S (p, q) are related by

S (p, q) = DKL (p||q) +H (p) . (1.35)

The following proposition gives the minimum of cross entropy, i.e. min
q
S (p, q) = H (p).

Proposition 1.3.6. [4] The entropy H (p) and the cross entropy S (p, q) satisfy the

inequality

S (p, q) ≥ H (p) (1.36)

with equality if and only if p = q.

Proof. This is the result of (i) in Proposition 1.3.4 and Proposition 1.3.5.

Proposition 1.3.7. [4] The diagonal part of the first variation of the Kullback-

Leibler relative entropy is zero,

∂ξiDKL (pξ0||pξ) |ξ=ξ0 = ∂iDKL (pξ0||pξ) |ξ=ξ0 = 0. (1.37)

Proof.

∂iDKL (pξ0 ||pξ) |ξ=ξ0 = ∂i

∫
X
pξ0 (x) ln

pξ0 (x)

pξ (x)
dx|ξ=ξ0

= −
∫
X
pξ0 (x) ∂i ln pξ (x) dx|ξ=ξ0

= −
∫
X
pξ0 (x) ∂i	x (ξ0) dx

= −Eξ0 [∂i	x (ξ0)] = 0,
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by Theorem 1.1.2.

Proposition 1.3.8. [4] The diagonal part of the Hessian of the Kullback-Leibler

relative entropy is the Fisher metric,

∂i∂jDKL (pξ0 ||pξ) |ξ=ξ0 = gij (ξ0) . (1.38)

Proof. We have

∂i∂jDKL (pξ0 ||pξ)|ξ=ξ0 = ∂i∂j

∫
X
pξ0 (x) ln

pξ0 (x)

pξ (x)
dx|ξ=ξ0

= −
∫
X
pξ0 (x) ∂i∂j ln pξ (x) dx|ξ=ξ0

= −
∫
X
pξ0 (x) ∂i∂j	x (ξ0) dx

= −Eξ0 [∂i∂j	x (ξ0)] = gij (ξ0)

by Theorem 1.2.1.

Corollary 1.3.1. [4] The density pξ0 is a minimum point for the functional pξ →
DKL (pξ0 ||pξ).

Proof. By Proposition 1.2.2, the Fisher information matrix g is positive definite, and

by Proposition 1.3.8, the point pξ0 is a minimum.

Definition 1.3.5. Suppose p and q are two points on a statistical manifold S. The

Fisher distance, d (p, q), represents the information distance between densities p and

q. It is defined as the length of the shortest curve on S between p and q, i.e. the

length of the geodesic curve joining p and q.
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Proposition 1.3.9. [4] The Kullback-Leibler relative entropy and the Fisher distance

are related as

DKL (p||q) = 1

2
d2 (p, q) + o

(
d2 (p, q)

)
. (1.39)

Proof. Consider a geodesic γ (s) on the statistical model S joining densities p and q,

satisfying γ (s) = ι (ξ (s)) = pξ(s) with γ (0) = pξ0 = p and γ (t) = pξ = q. Since the

arc length along the geodesic is the Riemannian distance, we have d (p, q) = t.

Consider the function ϕ (s) = f (ξ (s)), with f (ξ) = DKL (pξ0 ||pξ). Write the

second order expansion of ϕ about t = 0,

ϕ (t) = ϕ (0) + tϕ′ (0) +
t2

2
ϕ′′ (0) + o

(
t2
)
.

By Propositions 1.3.7 and 1.3.8, we have

ϕ (0) = f (ξ (0)) = DKL (pξ0||pξ0) = 0,

ϕ′ (0) =
∑
i

∂f

∂ξi
(ξ0) ξ̇ (0) = 0,

and

ϕ′′ (0) =
∑
i,j

∂2f

∂ξi∂ξj
(ξ0) ξ̇i (0) ξ̇j (0) +

∑
i

∂f

∂ξi
(ξ0) ξ̈ (0)

=
∑
i,j

gij (ξ0) ξ̇i (0) ξ̇j (0) .
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Hence, we have

DKL (p||q) = f (ξ (t)) = ϕ (t) =
t2

2

∑
i,j

gij (ξ0) ξ̇i (0) ξ̇j (0) + o
(
t2
)

=
t2

2
g (γ̇ (0) , γ̇ (0)) + o

(
t2
)

=
t2

2
+ o
(
t2
)

=
1

2
d2 (p, q) + o

(
d2 (p, q)

)
,

where g (γ̇ (0) , γ̇ (0)) = 1 since geodesics parametrized by the arc length are unit

speed curves.

Corollary 1.3.2. [4] Let the Kullback-Leibler quasimetric D (p, q) be defined as

D (p, q) = DKL (p||q) +DKL (q||p). Then

D (p, q) = d2 (p, q) + o
(
d2 (p, q)

)
. (1.40)

Proposition 1.3.10. [4] The diagonal part of the third mixed derivatives of the

Kullback-Leibler relative entropy is the negative of the Christoffel symbol, i.e.

−∂ξk0 ∂ξi∂ξjDKL (pξ0 ||pξ) |ξ=ξ0 = Γ
(1)
ij,k (ξ0) . (1.41)
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Proof. We have

∂i∂jDKL (pξ0 ||pξ) = ∂i∂j

∫
X
pξ0 (x) ln

pξ0 (x)

pξ (x)
dx

= −
∫
X
pξ0 (x) ∂i∂j ln pξ (x) dx.

Differentiating in ξk0 yields

−∂ξk0 ∂ξi∂ξjDKL (pξ0 ||pξ) = ∂ξk0

∫
X
pξ0 (x) ∂i∂j ln pξ (x) dx

=

∫
X
∂ξk0 ln pξ0 (x) ∂i∂j ln pξ (x) pξ0 (x) dx.

Considering the diagonal part, we have

−∂ξk0 ∂ξi∂ξjDKL (pξ0 ||pξ) |ξ=ξ0 = Eξ0 [∂i∂j	 (ξ) ∂k	 (ξ)]

= Γ
(1)
ij,k (ξ0) .

1.3.3 Informational Energy

Definition 1.3.6. Let S = {pξ = p (x; ξ) | ξ = (ξ1, . . . , ξn) ∈ E} be a statistical model.

The information energy on S is a function I : E → R defined by

I (ξ) =

⎧⎪⎪⎨⎪⎪⎩
∫
X p

2 (x, ξ) dx, if X is continuous;∑
x∈X p

2 (x, ξ) , if X is discrete.

. (1.42)
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Proposition 1.3.11. [4] The informational energy of a system with n elementary

outcomes is bounded above by 1 and below by 1/n, i.e.,

1/n ≤ I ≤ 1.

The minimum of the informational energy is realized for the uniform distribution.

Proof. The information energy is bounded above by 1 since

1 =

(
n∑
i=1

pi

)2

=

n∑
i=1

p2i +

n∑
i �=j

pipj ≥
n∑
i=1

p2i = I.

Let the distribution q = {qi} with qi = pi + si, i = 1, . . . , n, be the perturbed

distribution of p = {pi}. We have sn = −∑n−1
i=1 si since

∑n
i=1 si = 0. Therefore,

I (q) =

n−1∑
i=1

q2i + q2n

=

n−1∑
i=1

(pi + si)
2 + (pn + sn)

2

=

n−1∑
i=1

(pi + si)
2 +

(
pn −

n−1∑
i=1

si

)2

.

We obtain that the uniform distribution is a critical point since

0 =
∂I

∂si
|s1=...=sn−1=0 =

[
2 (pi + si)− 2

(
pn −

n−1∑
k=1

sk

)]
|s1=...=sn−1=0, ∀i = 1, . . . , n− 1,

⇐⇒ pi = pn =
1

n
, ∀i = 1, . . . , n− 1.
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The (n− 1)× (n− 1) dimensional Hessian, (Hij) =
(

∂2I
∂si∂sj

|s1=...=sn−1=0

)
, is

Hn =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

4 2 . . . 2

2 4 . . . 2

...
...

. . .
...

2 2 . . . 4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
since

Hij =
∂2I

∂si∂sj
|s1=...=sn−1=0 = 2δij + 2.

The Hessian is non-degenerate since we have

detHn = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

4 2 . . . 2

2 4 . . . 2

...
...

. . .
...

2 2 . . . 4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= 2n−1 det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 1 . . . 1

1 2 . . . 1

...
...

. . .
...

1 1 . . . 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=2n−1 det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

n n . . . n

1 2 . . . 1

...
...

. . .
...

1 1 . . . 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= n2n−1 det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1

1 2 . . . 1

...
...

. . .
...

1 1 . . . 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= n2n−1 det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= n2n−1, ∀n ≥ 2.
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Furthermore, since all of the leading principal minors of Hn are positive, Hn is

positive-definite.

It follows that the uniform distribution realizes the minimum for the informational

energy with min I = I (p) =
∑n

i=1

(
1
n

)2
= 1

n
.

Proposition 1.3.12. [4] The informational energy functional, defined on continuous

distributions on [a, b], satisfies the inequality

1

b− a
≤ I (p) .

The minimum of the informational energy functional is realized by the uniform dis-

tribution p (x) = 1/ (b− a) .

Proof. Since, by Cauchy-Schwarz inequality,

∫ b

a

|p (x) q (x)|dx ≤
(∫ b

a

p2 (x) dx

)1/2(∫ b

a

q2 (x) dx

)1/2

,

we have, by letting q (x) = 1,

1 =

∫ b

a

p (x) dx ≤
(∫ b

a

p2 (x) dx

)1/2

(b− a)1/2 ⇐⇒ I =

∫ b

a

p2 (x) dx ≥ 1

b− a
.

The equality is reached when p (x) and q (x) = 1 are proportional, i.e., p (x) is

constant. Thus, p (x) = 1/ (b− a) .
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Chapter 2

The Informational Geometry of

Exponential Family

2.1 Exponential family

Definition 2.1.1. The exponential family is a set of probability distributions whose

probability density function (or probability mass function, for the case of a discrete

distribution) can be expressed in the form

p (x; ξ) = eC(x)+ξiFi(x)−ψ(ξ), (2.1)

where C (x) , F1 (x) , . . . , Fn (x) are real-valued smooth functions on X ⊂ R
k such

that {1} ∪ {Fi (x)} are linearly independent, and ψ (ξ) is the normalization function

such that
∫
X p (x, ξ) dx = 1. The parameter space E is chosen to be a non-empty set

of ξ with ψ (ξ) <∞.
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The exponential model S = {p (x; ξ)}, with p (x; ξ) given by equation (2.1), is also

called an exponential family and ξj are its natural parameters. The parameter space

E is an open subset of Rn and its dimension is called the order of the exponential

family.

The set S is a statistical model according to the following facts. First, consider

the mapping ι : E → S. Assume ι (ξ) = ι (θ). Then ln p (x; ξ) = ln p (x; θ), and

(ξi − θi)Fi (x) − (ψ (ξ)− ψ (θ)) = 0. By the linear independence of {1} ∪ {Fi (x)},
we have ξi = θi for all i and hence the infectivity of ι. Second, by differentiating the

logarithm of equation (2.1), we have

∂j	x (ξ) = ∂j
(
C (x) + ξiFi (x)− ψ (ξ)

)
= Fj (x)− ∂jψ (ξ) . (2.2)

Because {Fi (x)} are linearly independent, so are {∂j	x (ξ)}. This implies that ι is

also regular.

2.1.1 Examples of Exponential family

Here are some common examples of exponential family which are described in terms

of functions C (x) , {Fi (x)} and ψ (ξ). Note that reparametrizations of the usual

parameters space are often necessary to obtain the form of (2.1).

• Bernoulli Distribution
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The sample space is X = {0, 1} and the parameter space is E = [0, 1]. The Bernoulli

distribution is given by

p (x; θ) = θx (1− θ)1−x , x ∈ X , θ ∈ E. (2.3)

This forms a one-dimensional statistical model. Since

ln p (x; θ) = x ln
θ

1− θ
+ ln (1− θ) ,

we choose

ξ = ln
θ

1− θ
, C (x) = 0, F1 (x) = x, ψ (ξ) = − ln (1− θ) = ln

(
1 + eξ

)
. (2.4)

• Binomial Distribution

The sample space is X = {0, 1, . . . , n}, where n is the number of trials and is fixed,

and the parameter space is E = [0, 1]. The binomial distribution is given by

p (x; θ) =

⎛⎜⎝ n

x

⎞⎟⎠ θx (1− θ)n−x , x ∈ X , θ ∈ E. (2.5)

Since

ln p (x; θ) = ln

⎛⎜⎝ n

x

⎞⎟⎠+ x ln
θ

1− θ
+ n ln (1− θ) , (2.6)
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we choose

ξ = ln
θ

1− θ
, C (x) = ln

⎛⎜⎝ n

x

⎞⎟⎠ ,

F1 (x) = x, ψ (ξ) = −n ln (1− θ) = n ln
(
1 + eξ

)
(2.7)

• Multinomial Distribution

The sample space is X = {0, 1, . . . , n}, where n is the number of trials and is supposed

to be fixed, and the parameter space is

E =
{(
θ1, . . . , θk−1

)
; θi > 0 for i = 1, . . . , k,

∑k
i=1 θ

i = 1
}
.

The multinomial distribution is given by

p (x; θ) = ln(
n

x1 . . . xk

)
(
θ1
)x1

. . .
(
θk
)xk = ln(

n!
k∏
i=1

xi!

)

k∏
i=1

(
θi
)xi , (2.8)

where xi ∈ X , (θ1, . . . , θk−1
) ∈ E and

∑k
i=1xi = n.

This is a (k-1)-dimensional statistical model. Since

ln p (x; θ) = lnn!− ln
k∑
i=1

xi! +
k∑
i=1

xi ln θ
i, (2.9)
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we may choose

ξj = ln
θj

θk
= ln

θj

1−
k−1∑
i=1

θi

for j ∈ {1, . . . , k − 1} ,

C (x) = lnn!− ln
k∑
i=1

xi!, Fj (x) = xj for j ∈ {1, . . . , k − 1},

ψ (ξ) = −n ln θk = −n ln
(
1−

∑k−1
i=1 e

ξi

1 +
∑k−1

i=1 e
ξi

)
= n ln(1 +

k−1∑
i=1

eξ
i

). (2.10)

Note that a multinomial distribution reduces to a categorial distribution if there

is only 1 trial. In that case, let the sample space be X =
{
x1, x2, . . . , xk

}
, a set of n

individually identified items, and the parameter space

E =
{(
θ1, . . . , θk−1

)
; θi > 0 for i = 1, . . . , k,

∑k
i=1 θ

i = 1
}
,

the probability mass function of a categorial distribution is given by

p (x; θ) =
k∏
i=1

θi
[x=xi]

, (2.11)

where [x = xi] evaluates to 1 if x = xi, 0 otherwise.

This is a (k-1)-dimensional statistical model. Since

ln p (x; θ) =

k−1∑
i=1

[
x = xi

]
ln θi + [x = xn] ln

(
1−

k−1∑
i=1

θi

)
, (2.12)
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if we choose the same parametrization as in (2.10), we have

C (x) = 0, Fj (x) = [x = xj ] for j ∈ {1, . . . , k − 1},

ψ (ξ) = ln(1 +
k−1∑
i=1

eξ
i

), (2.13)

where we used the fact
∑k

i=1

[
x = xi

]
= 1.

• Geometric Distribution

The sample space is X = {0, 1, 2, ...} and the parameter space is E = [0, 1]. The

geometric distribution is given by

p (x; θ) = θ (1− θ)x−1 , x ∈ X , θ ∈ E. (2.14)

This is a one-dimensional statistical model. Since

ln p (x; θ) = ln
θ

1− θ
+ x ln (1− θ) ,

we choose

ξ = ln (1− θ) , C (x) = 0, F1 (x) = x, ψ (ξ) = ln
1− θ

θ
= ln

eξ

1− eξ
, (2.15)

where ξ ∈ (−∞, 0).

• Poisson Distribution

The sample space is X = {0, 1, 2, ...} and the parameter space is E = (0,∞). The
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Poisson distribution is given by

p (x;λ) = e−λ
λx

x!
. (2.16)

This forms a one-dimensional statistical model. Since

ln p (x;λ) = −λ+ x lnλ− ln x!,

we choose

ξ = lnλ, C (x) = − ln x!, F1 (x) = x, ψ (ξ) = λ = eξ. (2.17)

• Joint Poisson Distribution

Consider m independent Poisson distributions with parameters λi, i = 1, . . . , m. The

joint probability mass function is given by

p (x;λ) =
m∏
i=1

pλi (xi) =
m∏
i=1

e−λi
λxii
xi!

,

where λ = (λ1, . . . , λm) ∈ E = (R+)
m
, and x = (x1, . . . , xm) ∈ X = (N ∪ {0})m.

This forms an m-dimensional statistical model. Since

ln p (x;λ) = −
m∑
i=1

(λi + xi lnλi − lnxi!) ,

we choose

ξi = lnλi, C (x) = −
m∑
i=1

ln xi!, Fi (x) = xi, ψ (ξ) =

m∑
i=1

λi =

m∑
i=1

eξi . (2.18)
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• Normal Distribution

Let X = R and E = R× (0,∞). The normal distribution is defined by the formula

p (x;μ, σ) =
1

σ
√
2π
e−

(x−μ)2

2σ2 , x ∈ X , (μ, σ) ∈ E. (2.19)

Since

ln p (x;μ, σ) = − ln σ − ln
√
2π − (x− μ)2

2σ2
, (2.20)

we choose

ξ1 =
μ

σ2
, ξ2 = − 1

2σ2
,

C (x) = 0, F1 (x) = x, F2 (x) = x2,

ψ (ξ) =
μ2

2σ2
+ ln

(
σ
√
2π
)
=

− (ξ1)
2

4ξ2
+

1

2
ln

(−π
ξ2

)
, (2.21)

where (ξ1, ξ2) ∈ R× (−∞, 0).

• Multivariate Normal Distribution

The multivariate normal distribution with a mean vector μ and a covariance matrix

A is defined by

p
(
x;μ,A−1

)
=

1

(2π)k/2 (detA)1/2
e−

1
2
(x−μ)tA−1(x−μ), X = R

k (2.22)

with the parameter space

E =
{(
μ,A−1

)
;μ ∈ R

k, positive definiteA−1 ∈ R
k×k} .
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Since A−1 is symmetric, there are k +
k (k + 1)

2
independent entries in each element

of E.

The log-likelihood function for this statistical model is

	x
(
μ,A−1

)
= ln p

(
x;μ,A−1

)
= −1

2
(x− μ)tA−1 (x− μ) +

1

2
ln
(
detA−1

)− k

2
ln (2π) . (2.23)

A multivariate normal distribution is an exponential family, which can be verified

by choosing

ξ1 = A−1μ, ξ2 = −1

2
A−1, (2.24)

with

μ = −1

2

(
ξ2
)−1

ξ1, A = −1

2

(
ξ2
)−1

,

and

C (x) = −k
2
ln (2π) , F1 (x) = x, F2 (x) = xxt,

ψ (ξ) = −1

4

(
ξ1
)t (

ξ2
)−1

ξ1 − 1

2
ln det(−2ξ2). (2.25)

• Lognormal Distribution

Let X = R
+ and E = R×R

+. The lognormal distribution is defined by the formula

p (x;μ, σ) =
1√
2πσx

e−
(lnx−μ)2

2σ2 , x ∈ X , (μ, σ) ∈ E. (2.26)
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Since

ln p (x;μ, σ) = − ln x− ln
(
σ
√
2π
)
− (ln x− μ)2

2σ2
,

= − ln x− ln
(
σ
√
2π
)
+

μ

σ2
ln x− 1

2σ2
(ln x)2 − μ

2σ2
(2.27)

we choose

ξ1 =
μ

σ2
, ξ2 = − 1

2σ2
,

C (x) = − ln x, F1 (x) = ln x, F2 (x) = (ln x)2 ,

ψ (ξ) =
μ2

2σ2
+ ln

(
σ
√
2π
)
=

− (ξ1)
2

4ξ2
+

1

2
ln

(−π
ξ2

)
, (2.28)

where (ξ1, ξ2) ∈ R× (−∞, 0).

• Exponential Distribution

Let X = [0,∞) and consider the one-dimensional parameter space E = (0,∞), which

is an open interval in R. The exponential distribution with parameter ξ is given by

the formula

p (x; ξ) = ξe−ξx. (2.29)

This is corresponding to the case, in (2.1), choosing n = 1 and

C (x) = 0, F1 (x) = −x, ξ1 = ξ, ψ (ξ) = − ln ξ. (2.30)

• Gamma Distribution
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The sample space is X = [0,∞) and the parameter space is E = (0,∞) × (0,∞).

The Gamma distribution is given by

p (x;α, β) =
1

βαΓ (α)
xα−1e−x/β , x ∈ X , (α, β) ∈ E, (2.31)

where Γ (α) is defined by the Gamma function

Γ (α) =
� ∞

0
tα−1e−tdt, α > 0.

Since

ln p (x;λ) = − ln (βαΓ (α))− ln x+ α ln x− x

β
,

we choose

ξ1 = α, ξ2 =
−1

β
, C (x) = − ln x, F1 (x) = ln x, F2 (x) = x,

ψ (ξ) = ln (βαΓ (α)) = ln

((−1

ξ2

)ξ1
Γ
(
ξ1
))

. (2.32)

Since the Chi-squared distribution is a special case of Gamma distribution,

i.e. χ2 (k) = Γ (k/2, 2), so it is among the exponential family.

• Beta Distribution

The sample space is X = [0, 1] and the parameters (a, b) ∈ E = (0,∞)× (0,∞) . The

Beta distribution is given by

p (x; a, b) =
1

B (a, b)
xa−1 (1− x)b−1 , (2.33)
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where B (a, b) is defined by the Beta function

B (a, b) =
� 1

0
ta−1 (1− t)b−1 dt, a, b > 0.

Note that

B (a, b) =
Γ (a) Γ (b)

Γ (a + b)
.

Since

ln p (x;λ) = − ln (B (a, b))− ln (x (1− x)) + a lnx+ b ln (1− x) ,

we choose

ξ1 = a, ξ2 = b, C (x) = − ln (x (1− x)) , F1 (x) = ln x, F2 (x) = ln (1− x) ,

ψ (ξ) = ln (B (a, b)) . (2.34)

2.1.2 Properties of Exponential Family

The following results show that, for distributions in exponential family, the expecta-

tions of Fj with respect to pξ are the corresponding derivatives of ψ (ξ) with respect

to ξj; furthermore, their covariance matrix is exactly the Fisher information matrix.

Proposition 2.1.1. Suppose the sample space X of an exponential family is bounded

and Eξ [Fi] <∞ for all Fi (x). Then

Eξ [Fj ] = ∂jψ (ξ) , 1 ≤ j ≤ n, (2.35)
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gij (ξ) = Eξ [∂i	x (ξ) ∂j	x (ξ)] = Cov (Fi, Fj) , (2.36)

In particular,

Var (Fj) = Eξ
[
∂2j 	x (ξ)

]
. (2.37)

Proof. Differentiating
∫
X p (x, ξ) dx = 1 and using the notation ∂j =

∂
∂ξj

, we have

∫
X
∂jp (x, ξ) dx = 0 ⇔

∫
X
p (x, ξ) ∂j	 (x, ξ) dx = 0 ⇔

by (2.2), ∫
X
p (x, ξ) [Fj (x)− ∂jψ (ξ)] dx = 0 ⇔

∫
X
p (x, ξ)Fj (x) = ∂jψ (ξ)

∫
X
p (x, ξ) dx⇔

Eξ [Fj] = ∂jψ (ξ) .

By equations (2.2) and (2.35), we have ∂j	x (ξ) = Fj (x)−Eξ [Fj ] , which leads to

gij (ξ) = Eξ [∂i	x (ξ) ∂j	x (ξ)] = Eξ [(Fi (x)− Eξ [Fi]) (Fj (x)− Eξ [Fj ])]

= Cov (Fi, Fj) .

This is another way to verify that the Fisher information matrix on statistical
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models in exponential family is symmetric and positive definite.

There are several other important properties of exponential family as described

in the following results.

Proposition 2.1.2.

∂i∂j	x (ξ) = −∂i∂jψ (ξ) . (2.38)

Proof. This is the immediate result of differentiating (2.2) with respect to ξj.

Theorem 2.1.1. The Fisher information matrix for an exponential family is given

by

gij = ∂i∂jψ (ξ) , (2.39)

where ψ (ξ) is the normalization function.

Proof. By equations (1.8) and (2.38), we obtain

gij = −Eξ [∂i∂j	x (ξ)] = −Eξ [−∂i∂jψ (ξ)] = ∂i∂jψ (ξ) .

Proposition 2.1.3. In an exponential family model, the normalization function ψ (ξ)

is convex.
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Proof. By differentiating equation (2.35) with respect to ξk, we have

∂k∂jψ (ξ) = ∂k
∫
X e

C(x)+ξiFi(x)−ψ(ξ)Fj (x) dx

=
∫
X ∂k

(
eC(x)+ξiFi(x)−ψ(ξ)Fj (x)

)
dx

=
∫
X e

C(x)+ξiFi(x)−ψ(ξ)Fj (x) (Fk (x)− ∂kψ (ξ)) dx

= E [Fj (x)Fk (x)]− E [Fj (x)] ∂kψ (ξ)

= E [Fj (x)Fk (x)]− E [Fj (x)]E [Fk (x)]

= Cov [Fj (x) , Fk (x)]

=

⎧⎪⎪⎨⎪⎪⎩
Var (Fj) , if j = k;

0, if j 	= k.

This implies that the Hessian matrix of second partial derivatives of ψ (ξ) is

positive definite.

Proposition 2.1.4. The Christoffel symbols of first kind for an exponential family

can be expressed as

Γij,k =
1

2
∂i∂j∂kψ (ξ) , (2.40)

where ψ (ξ) is the normalization function.

Proof. By equations (2.2), (2.38) and (2.35), we have

Eξ [(∂i∂j	) ∂k	] = Eξ [(−∂i∂jψ) (Fk (x)− ∂kψ)]

= ∂i∂jψ (−Eξ [Fk (x)] + ∂kψ) = 0. (2.41)
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Similarly, we have

Eξ [(∂j∂k	) ∂i	] = Eξ [(∂k∂i	) ∂j	] = 0.

Substituting into equation (i) in Proposition 1.2.4, we obtain

Γij,k =
1

2
(Eξ [(∂i∂j	) ∂k	]− Eξ [(∂j∂k	) ∂i	]− Eξ [(∂k∂i	) ∂j	]−Eξ [∂i∂j∂k	])

= −1

2
Eξ [∂i (∂j∂k	)] =

1

2
Eξ [∂i (∂j∂kψ)] =

1

2
∂i∂j∂kψ (ξ) .

Proposition 2.1.5. The Christoffel symbols of first kind for an exponential family

is covariant under reparametrization.

Proof. By equation (ii) in Proposition (1.2.4) and equation (2.41), we have

Γij,k (ξ) =
1

2
Eξ [∂i	∂j	∂k	] =

1

2
Tij,k (ξ) .

From Proposition 1.2.10 we know that the skewness tensor is covariant under

reparametrization, and so is each Christoffel symbol.

2.2 The Fisher Metric

In this section, we will work on some common exponential families to derive their

Fisher information matrices. Both the method using the definition of Fisher infor-

mation matrix, equation (1.5), and that based on equation (2.39) will be applied

and, when it is necessary, be compared.
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• Binomial Distribution

Under the parametrization ξ = θ, the log-likelihood function for a binomial distri-

bution model is

ln p (x; ξ) = ln

⎛⎜⎝ n

x

⎞⎟⎠+ x ln ξ + (n− x) ln (1− ξ) . (2.42)

Hence, the Fisher information is given by

g11 (ξ) = −Eξ
[
∂2ξ 	x (ξ)

]
= −Eξ

[
− x

ξ2
− n− x

(1− ξ)2

]
=
Eξ [x]

ξ2
+
n−Eξ [x]

(1− ξ)2
=
nξ

ξ2
+

n− nξ

(1− ξ)2
=

n

ξ (1− ξ)
. (2.43)

Under the parametrization,

η = ln
θ

1− θ
, C (x) = ln(

n

x
), F1 (x) = x, ψ (η) = −n ln (1− θ) = n ln (1 + eη) ,

it is easy to obtain the Fisher information,

g̃11 (η) = ∂2ηψ (η) = ∂η

[
neη

1 + eη

]
=

neη

(1 + eη)2
. (2.44)

By Theorem 2.1.1, we can verify that Fisher matrix is covariant under reparametriza-
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tions of the parameter space,

g11 (ξ) = g̃11 (η)J11J11 =
neη

(1 + eη)2

(
1

θ (1− θ)

)2

= nθ (1− θ)

(
1

θ (1− θ)

)2

=
n

ξ (1− ξ)
,

where J11 =
∂
∂ξ
η = ∂

∂θ
ln θ

1−θ =
1

θ(1−θ) .

• Multinomial Distribution

By equation (2.9), we have

	x (θ) = ln p (x; θ) = lnn!− ln
k∑
i=1

xi! +
k∑
i=1

xi ln θ
i,

∂θi	x (θ) = ∂i	x (θ) = ∂i

[
lnn!− ln

k∑
i=1

xi! +

k−1∑
i=1

xi ln θ
i + xk ln

(
1−

k−1∑
i=1

θi

)]

=
xi
θi

− xk

1−
k−1∑
i=1

θi

,

∂j∂i	x (θ) = −xiδij
(θi)2

− xk(
1−

k−1∑
i=1

θi

)2 .
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Hence, the Fisher information under natural parametrization is given by

grs (θ) = −Eθ [∂s∂r	x (θ)] = Eθ

⎡⎢⎢⎢⎢⎢⎣
xrδrs

(θr)2
+

xk(
1−

k−1∑
i=1

θi

)2

⎤⎥⎥⎥⎥⎥⎦
=
nθrδrs

(θr)2
+

nθk(
1−

k−1∑
i=1

θi

)2

= n

⎛⎜⎜⎜⎜⎜⎝
δrs
θr

+
1

1−
k−1∑
i=1

θi

⎞⎟⎟⎟⎟⎟⎠ , r, s ∈ {1, . . . , k − 1} . (2.45)

A multinomial distribution reduces to a categorial distribution when there is only

1 trial, i.e. n = 1. For a categorial distribution with the probability mass function

given by equation (2.11), we can similarly obtain the Fisher information matrix as

grs (θ) =
δrs
θr

+
1

1−
k−1∑
i=1

θi

, r, s ∈ {1, . . . , k − 1} , r, s ∈ {1, . . . , k − 1} . (2.46)

Under the reparametrization,

ξj = ln
θj

θk
= ln

θj

1−
k−1∑
i=1

θi

for j ∈ {1, . . . , k − 1} ,
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the Jacobian matrix J (ξ, θ) is given by

⎛⎜⎜⎜⎜⎝ δrs
θr

+ 1

1−
k−1∑
i=1

θi

⎞⎟⎟⎟⎟⎠
k−1

r,s=1

.

By equation (2.10) for a multinomial distribution, we have

∂rψ (ξ) = n∂r ln(1 +
k−1∑
i=1

eξ
i

) = n
eξ

r

1 +
∑k−1

i=1 e
ξi
.

So, the Fisher information matrix is given by

g̃rs (ξ) = ∂s∂rψ (ξ) = n∂s(
eξ

r

1 +
∑k−1

i=1 e
ξi
)

=
−neξreξs(

1 +
∑k−1

i=1 e
ξi
)2 +

nδrse
ξr

1 +
∑k−1

i=1 e
ξi
, ∀r, s ∈ {1, . . . , k − 1}.

Similarly, for a categorial distribution, the Fisher information matrix is given by

g̃rs (ξ) =
−eξreξs(

1 +
∑k−1

i=1 e
ξi
)2 +

δrse
ξr

1 +
∑k−1

i=1 e
ξi
, ∀r, s ∈ {1, . . . , k − 1}. (2.47)

By Theorem 2.1.1, we confirm the same result for the parameters space E =
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{θi, i ∈ {1, . . . k − 1}},

grs (θ) =
k−1∑
p,q=1

g̃pq (ξ) |ξ=ξ(θ)JprJqs

= n
k−1∑
p,q=1

⎛⎜⎝ −eξpeξq(
1 +
∑k−1

i=1 e
ξi
)2 +

nδpqe
ξp

1 +
∑k−1

i=1 e
ξi

⎞⎟⎠(δpr
θp

+
1

θk

)(
δqs
θq

+
1

θk

)

= n

k−1∑
p,q=1

(−θpθq + δpqθ
p)

(
δpr
θp

+
1

θk

)(
δqs
θq

+
1

θk

)

= n
k−1∑
q=1

[
k−1∑
p=1

(
−δprθq − θpθq

θk
+ δpqδpr + δpq

θq

θk

)](
δqs
θq

+
1

θk

)

= n
k−1∑
q=1

[
−θq −

∑k−1
p=1 θ

pθq

θk
+ δqr +

θq

θk

](
δqs
θq

+
1

θk

)

= n

k−1∑
q=1

δqr

(
δqs
θq

+
1

θk

)
= n

(
δrs
θr

+
1

θk

)
, r, s ∈ {1, . . . , k − 1} .

A third way to compute the Fisher information matrix is using the proposition
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1.2.1,

grs (θ) = 4
∑
X
∂r
√
pθ (x)∂s

√
pθ (x)

= 4n
k∑
j=1

∂r

√
pθ (xj)∂s

√
pθ (xj)

= 4n

(
k−1∑
j=1

∂r
√
θj∂s

√
θj + ∂r

√
θk∂s

√
θk

)

= 4n

⎛⎜⎜⎜⎜⎜⎜⎝
k−1∑
j=1

δrj

2
√
θj

δsj

2
√
θj

+
−1

2

√√√√1−
k−1∑
j=1

θj

−1

2

√√√√1−
k−1∑
j=1

θj

⎞⎟⎟⎟⎟⎟⎟⎠

= n

⎛⎜⎜⎜⎜⎜⎝
δrs
θr

+
1

1−
k−1∑
j=1

θj

⎞⎟⎟⎟⎟⎟⎠ . (2.48)

where we used the fact that, for each trial among n trials, we have pθ (xj) = θj for

j = 1, . . . , k. When n = 1, the result is the Fisher information matrix of a categorial

distribution.

• Poisson Distribution

By equation (2.17), we have

∂λ	x (ξ) = −1 +
x

λ
, ∂2λ	x (ξ) = − x

λ2
.
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For the natural parameter λ, the Fisher metric is given by

g = g11 (λ) = −Eλ [∂λ	x (ξ)] = −Eλ
[
− x

λ2

]
=
Eλ [x]

λ2
=

1

λ
. (2.49)

For parameters η = lnλ, by equations (2.17) and (2.39), the Fisher metric is

given by

g̃ = g̃11 (η) = ∂21ψ (η) = ∂21 (e
η) = eη. (2.50)

By Theorem 2.1.1, we can verify that Fisher matrix is covariant under reparametriza-

tions of the parameter space,

g11 (λ) = g̃11 (η)J11J11 = eη
(
1

λ

)2

= λ

(
1

λ

)2

=
1

λ
,

where J11 =
∂
∂λ
η = ∂

∂λ
lnλ = 1

λ
.

• Joint Poisson Distribution

By applying equation (2.35) to the joint distribution of m independent Poisson dis-

tributions (see equation (2.18)), we have

Eη [xj ] = Eη [Fj ] = ∂jψ (η) = eηj , ∀j ∈ {1, . . . , m}. (2.51)

According to equation (2.18), we have

∂j	x (λ) = −1 +
xj
λj
, ∂k∂j	x (λ) = −xj

λ2j
δjk.

Then, using the natural parameters, the Fisher information for the joint distribution
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of m independent Poisson distributions is obtained as

gjk (λ) = −Eλ [∂k∂j	x (λ)] = −Eλ
[
−xj
λ2j
δjk

]
=
Eη [xj ]

λ2j
δjk =

1

λ2j
δjkλj =

1

λj
δjk, (2.52)

where we used the fact expressed in equation (2.51).

By equation (2.18), we have

∂jψ (η) = eηj , ∂k∂jψ (η) = eηjδjk.

For parameters η = {lnλi}mi=1, by equations (2.18) and (2.39), the Fisher metric

is given by

g̃jk (η) = ∂k∂jψ (η) = eηjδjk. (2.53)

Since the Jacobian of (η, λ) is

J (η, λ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
λ1

0

1
λ2

. . .

0 1
λm

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

we can verify the covariant relation between the Fisher information under reparametriza-
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tions of the parameters space,

gjk (λ) =
∑
l,m

g̃lm (η)JljJmk = g̃jk
1

λj

1

λk

= eηkδjk
1

λj

1

λk
=

1

λj
δjk.

• Normal Distribution

By Equation (2.20), we have

∂σ	x (ξ) = −1

σ
− (x− μ)2

2

(
− 2

σ3

)
= −1

σ
+

(x− μ)2

σ3
, ∂2σ	x (ξ) =

1

σ2
− 3 (x− μ)2

σ4
,

∂μ	x (ξ) =
x− μ

σ2
, ∂2μ	x (ξ) = − 1

σ2
, ∂σ∂μ	x (ξ) = ∂μ∂σ	x (ξ) = −2 (x− μ)

σ3
. (2.54)

For parameters (ξ1, ξ2) = (μ, σ), the Fisher-Riemann metric components are given

by

g11 (ξ) = −Eξ
[
∂2μ	x (ξ)

]
= −Eξ

[
− 1

σ2

]
=

1

σ2
,

g12 (ξ) = g21 (ξ) = −Eξ [∂μ∂σ	x (ξ)] = −Eξ
[
−2 (x− μ)

σ3

]
=

2 (Eξ [x]− μ)

σ3
= 0,

g22 (ξ) = −Eξ
[
∂2σ	x (ξ)

]
= −Eξ

[
1

σ2
− 3 (x− μ)2

σ4

]
= − 1

σ2
+

3

σ4
Eξ
[
(x− μ)2

]
= − 1

σ2
+

3

σ4
Var [x− μ] = − 1

σ2
+

3

σ4
Var [x] =

2

σ2
. (2.55)

For parameters (η1, η2) =
(
μ
σ2
,− 1

2σ2

)
, by equations (2.21) and (2.39), the Fisher-
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Riemann metric components are given by

g̃11 (η) = ∂21ψ (η) = ∂21

(
− (η1)

2

4η2
+

1

2
ln

(−π
η2

))
= − 1

2η2
,

g̃12 (η) = g̃21 (η) = ∂2∂1ψ (η) = ∂2

(−η1
2η2

)
=

η1

2 (η2)2
,

g̃22 (η) = ∂22ψ (η) = ∂22

(
− (η1)

2

4η2
+

1

2
ln

(−π
η2

))
= − (η1)

2

2 (η2)3
+

1

2 (η2)2
. (2.56)

By Theorem 2.1.1, we can verify that Fisher matrix is covariant under reparametriza-

tions of the parameter space,

g11 (ξ) = g̃11 (η)J11J11 + g̃12 (η)J11J21 + g̃21 (η) J21J11 + g̃22 (η)J21J21

= g̃11 (η)J11J11 = − 1

2η2
1

σ2

1

σ2
= σ2 1

σ2

1

σ2
=

1

σ2
,

g12 (ξ) = g̃11 (η)J11J12 + g̃12 (η)J11J22 + g̃21 (η) J21J12 + g̃22 (η)J21J22

= σ2 1

σ2

(
−2μ

σ3

)
+ 2μσ2 1

σ2

1

σ3
+ 0 + 0 = 0,

g21 (ξ) = g̃11 (η)J12J11 + g̃12 (η)J12J21 + g̃21 (η) J22J11 + g̃22 (η)J22J21

= g12 (ξ) = 0,
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g22 (ξ) = g̃11 (η)J12J12 + g̃12 (η)J12J22 + g̃21 (η)J22J12 + g̃22 (η)J22J22

= σ2

(
−2μ

σ3

)2

+ 2μσ2

(
−2μ

σ3

)
1

σ3
2 + 2σ2

(
2μ2 + σ2

)( 1

σ3

)2

=
2

σ2
,

where the Jacobian is

J (η, ξ) =

⎛⎜⎝ 1
σ2

−2μ
σ3

0 1
σ3

⎞⎟⎠ .

• Multivariate Normal Distribution

With the notation

μ = (μ1, . . . , μk) , A = (Aij) , A
−1 =

(
Aij
)
,

we have

∂μr	x
(
μ,A−1

)
= ∂μr

[
−1

2
(x− μ)tA−1 (x− μ)

]
= −1

2
∂μr

[
k∑

i,j=1

Aij (x− μ)i (x− μ)j

]

= −1

2

[
k∑
j=1

Arj (∂μr (x− μ)r) (x− μ)j +

k∑
i=1

Air (x− μ)i (∂μr (x− μ)r)

]

=
1

2

[
k∑
j=1

Arj (x− μ)j +

k∑
i=1

Air (x− μ)i

]

=
1

2

k∑
j=1

(
Arj + Ajr

)
(xj − μj)

=

k∑
j=1

Arj(xj − μj), ∀r ∈ {1, . . . , k}. (2.57)
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By Jacobi’s formula [5] for the differential of a determinant,

∂

∂t
detM (t) = detM (t) tr(M (t)−1 ∂

∂t
M (t)), (2.58)

we have

∂

∂Ais
detA−1 = detA−1tr

(
A

∂

∂Ais
A−1

)
= detA−1tr (AB) ,

where B = (Bpq) , andBis = 1, Bpq = 0 for p 	= i or q 	= s. Denote C = AB,

∂

∂Ais
detA−1 = detA−1tr (C) ,

where Cpq =
∑k

t=1AptBtq for p, q ∈ {1, . . . , k}. We have Cps = Api, and Ctq = 0 for

q 	= s and t ∈ {1, . . . , k}.
Since on the diagonal of C the only possible nonzero entry is Css = Asi = Ais,

we obtain

∂

∂Ais
detA−1 = detA−1Asi =

Ais
detA

, (2.59)

where we applied (detA) (detA−1) = 1.

Hence, we have

∂

∂Aαβ
ln (detA) = − ∂

∂Aαβ
ln
(
detA−1

)
= − 1

detA−1

∂

∂Aαβ
detA−1 = −Aαβ ,
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and, by equation (??),

∂Aαβ	x
(
μ,A−1

)
=

1

2
Aαβ − 1

2
∂Aαβ

[
k∑

i,j=1

Aij (x− μ)i (x− μ)j

]

=
1

2
Aαβ − 1

2
∂Aαβ

[
Aαβ (x− μ)α (x− μ)β

]
=

1

2
Aαβ − 1

2
(xα − μα)(xβ − μβ). (2.60)

We choose the components of μ and the entries of the upper triangle part of A−1

as parameters, denoted by

ξ =
(
ξ1, . . . , ξk+

k(k+1)
2

)
=
(
μ1, . . . , μk, A

11, . . . , A1k, A22, . . . , A2k, A33, . . . , A3k, . . .Akk
)
.

For 1 ≤ r, s ≤ k, by equation (2.57), we have

grs (ξ) = −Eξ [∂s∂r	 (ξ)]

= −Eξ
[
∂s

(
k∑
j=1

Arj(xj − μj)

)]

= −Eξ [−Ars] = Ars. (2.61)

For 1 ≤ r ≤ k and k + 1 ≤ s ≤ k + k(k+1)
2

, by equations (2.57) and (2.60), we
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have

grs (ξ) = gsr (ξ) = −Eξ [∂s∂r	 (ξ)]

= −Eξ
[
∂s

(
k∑
j=1

Arj(xj − μj)

)]

= −Eξ
[
xĵ − μĵ

]
= 0, (2.62)

where ĵ is an index such that Arĵ = ξs.

For k + 1 ≤ r ≤ s ≤ k + k(k+1)
2

, let Aab = ξr, Acd = ξs. By equation (2.60), we

have

grs (ξ) = −Eξ [∂s∂r	 (ξ)] = −Eξ [∂Acd∂Aab	 (ξ)]

= −Eξ
[
∂Acd

(
1

2
Aab − 1

2
(xa − μa)(xb − μb)

)]
= −1

2
Eξ [∂AcdAab] = −1

2
∂sAab (ξ) . (2.63)

Thus, we obtain the k + k(k+1)
2

-dimensional Fisher information matrix of a mul-

tivariate normal distribution:

g =

⎛⎜⎝ A−1
k×k 0

k× k(k+1)
2

0 k(k+1)
2

×k B k(k+1)
2

× k(k+1)
2

⎞⎟⎠ , (2.64)
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where

B k(k+1)
2

× k(k+1)
2

= −1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂k+1A11 (ξ) . . . ∂
k+

k(k+1)
2

A11 (ξ)

. . . . . . . . .

∂k+1A1k (ξ) . . . ∂
k+ k(k+1)

2
A1k (ξ)

∂k+1A22 (ξ) . . . ∂
k+ k(k+1)

2
A22 (ξ)

. . . . . . . . .

∂k+1Akk (ξ) . . . ∂
k+

k(k+1)
2

Akk (ξ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We can also use the vector/matrix parameters η = (μ,A−1) directly. Then, we

have

∂μ	x
(
μ,A−1

)
= ∂μ

[
−1

2
(x− μ)tA−1 (x− μ) +

1

2
ln
(
detA−1

)− k

2
ln (2π)

]
= −1

2

(
A−1 +

(
A−1
)t)

(x− μ)

= A−1 (x− μ) , (2.65)

∂A−1	x
(
μ,A−1

)
= ∂A−1

[
−1

2
(x− μ)tA−1 (x− μ) +

1

2
ln
(
detA−1

)− k

2
ln (2π)

]
= −1

2
(x− μ)t (x− μ) +

1

2
A. (2.66)

By equation (1.8), we have

g11
(
μ,A−1

)
= −Eη

[
∂2μ	x

(
μ,A−1

)]
= −Eη

[
∂μ
(
A−1 (x− μ)

)]
= −Eη

[−A−1
]

= A−1,
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g12
(
μ,A−1

)
= g21

(
μ,A−1

)
= −Eη

[
∂μ∂A−1	x

(
μ,A−1

)]
= −Eη

[
∂μ

(
−1

2
(x− μ)t (x− μ) +

1

2
A

)]
= Eη [x− μ] = 0,

g22
(
μ,A−1

)
= −Eη

[
∂2A−1	x

(
μ,A−1

)]
= −Eη

[
∂A−1

(
−1

2
(x− μ)t (x− μ) +

1

2
A

)]
=

1

2
A2.

Hence, we obtain the Fisher information matrix for the vector/matrix parameters

η = (μ,A−1):

g
(
μ,A−1

)
=

⎛⎜⎝ A−1 0

0 1
2
A2

⎞⎟⎠ . (2.67)

When k = 1, the above result reduces to the Fisher information matrix for a uni-

variate normal distribution:

g
(
μ, σ−2

)
=

⎛⎜⎝ 1
σ2

0

0 σ4

2

⎞⎟⎠ .

For this case, we confirm the covariance of the Fisher information matrix (see equa-

tion (2.55)):

g̃11 (μ, σ) =
∑
r,s

grs
(
μ, σ−2

)
Jr1Js1 = g11

(
μ, σ−2

)
=

1

σ2
,
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g̃12 (μ, σ) = g̃21 (μ, σ) = 0,

g̃22 (μ, σ) =
∑
r,s

grs
(
μ, σ−2

)
Jr2Js2 = g22

(
μ, σ−2

)(−2

σ3

)2

=
2

σ2
.

• Lognormal Distribution

By equation (2.27), the log-likelihood function of a lognormal distribution is

ln p (x;μ, σ) = − ln x− ln
(
σ
√
2π
)
+

μ

σ2
ln x− 1

2σ2
(ln x)2 − μ

2σ2
.

For parameters (ξ1, ξ2) = (μ, σ),

∂2μ	x (ξ) = ∂μ

[
− 1

σ2
(ln x− μ) (−1)

]
= − 1

σ2
,

∂2σ	x (ξ) = ∂σ

[
−1

σ
+

1

σ3
(ln x− μ)2

]
=

1

σ2
− 3

σ4
(ln x− μ)2 ,

∂μ∂σ	x (ξ) = ∂μ

[
−1

σ
+

1

σ3
(ln x− μ)2

]
= − 2

σ3
(lnx− μ) .

By equations (2.28), (2.35) and (2.37), we have

Eξ [ln x] = Eξ [F1 (x)] = ∂1ψ (ξ) = ∂1

[
− (ξ1)

2

4ξ2
+

1

2
ln

(−π
ξ2

)]
= − ξ1

2ξ2
= μ, (2.68)
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Var [ln x] = Eξ
[
(ln x)2

]− (Eξ [ln x])
2

= Eξ [F2 (x)]− (Eξ [F1 (x)])
2

= ∂2ψ (ξ)− (∂1ψ (ξ))2

= ∂2

[
− (ξ1)

2

4ξ2
+

1

2
ln

(−π
ξ2

)]
− μ2

=
(ξ1)

2

4 (ξ2)2
− 1

2ξ2
− μ2

= μ2 + σ2 − μ2 = σ2. (2.69)

The Fisher-Riemann metric of a lognormal distribution coincides with that of a

normal distribution model, as shown by

g11 (ξ) = −Eξ
[
∂2μ	x (ξ)

]
= −Eξ

[
− 1

σ2

]
=

1

σ2
,

g12 (ξ) = g21 (ξ) = −Eξ [∂μ∂σ	x (ξ)] = −Eξ
[
−2 (ln x− μ)

σ3

]
=

2 (Eξ [ln x]− μ)

σ3
= 0,

g22 (ξ) = −Eξ
[
∂2σ	x (ξ)

]
= −Eξ

[
1

σ2
− 3 (ln x− μ)2

σ4

]
= − 1

σ2
+

3

σ4
Eξ
[
(ln x− μ)2

]
= − 1

σ2
+

3

σ4
Var [ln x− μ] = − 1

σ2
+

3

σ4
Var [ln x] =

2

σ2
, (2.70)

where we applied Equations (2.68) and (2.69).

From equations (2.21) and (2.28), we see that the normalization functions of

the normal and lognormal distributions are the same. By (2.39), the Fisher metric

components are given by equation (2.55), which agree well with the result in equation
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(2.70).

• Exponential Distribution

For the exponential distribution, starting from the log-likelihood function

ln p (x;λ) = −ξx+ ln ξ,

we have

∂ξ	x (ξ) = −x+ 1

ξ
,

∂2ξ 	x (ξ) = − 1

ξ2
.

Then, the Fisher information is given by

g(ξ) = g11 (ξ) = −Eξ
[
∂2ξ 	x (ξ)

]
=

1

ξ2
. (2.71)

• Gamma Distribution

For the gamma distribution, starting from the log-likelihood function

ln p (x;λ) = −α ln β − ln Γ (α)− ln x+ α ln x− x

β
,

we have

∂β	x (ξ) = −α
β
+

x

β2
,

where ξ = (ξ1, ξ2) = (α, β),

∂α∂β	x (ξ) = − 1

β
,
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∂2β	x (ξ) =
α

β2
− 2x

β3
,

∂α	x (ξ) = − ln β − Γ
′
(α)

Γ (α)
+ ln x = − ln β − ψ (α) + ln x,

where ψ (α) = Γ
′
(α)

Γ(α)
is the digamma function of α,

∂2α	x (ξ) = −ψ′
(α) = −ψ1 (α) ,

where ψ1 (α) = ψ
′
(α) is the trigamma function of α.

Then, the Fisher information is given by

g11 (ξ) = −Eξ
[
∂2α	x (ξ)

]
= Eξ [ψ1 (α)] = ψ1 (α) ,

g21 (ξ) = g12 (ξ) = −Eξ [∂α∂β	x (ξ)] = −Eξ
[
− 1

β

]
=

1

β
,

g22 (ξ) = −Eξ
[
α

β2
− 2x

β3

]
= − α

β2
+

2Eξ [x]

β3
= − α

β2
+

2αβ

β3
=

α

β2
. (2.72)

If we choose η = (η1, η2) =
(
α,− 1

β

)
, by equation (2.32), we have

ψ (η) = ln (βαΓ (α)) = ln

((−1

η2

)η1
Γ
(
η1
))

.
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Hence, the Fisher information under this reparametrization is given by

g̃11 (η) = ∂21ψ (η) = ∂21

[
ln

((−1

η2

)η1
Γ
(
η1
))]

= ∂21
[−η1 ln (−η2)+ lnΓ

(
η1
)]

= ∂1

[
− ln

(−η2)+ Γ
′
(η1)

Γ (η1)

]
= ψ1

(
η1
)
,

g̃12 (η) = g̃21 (η) = ∂2∂1ψ (η) = ∂2

[
− ln

(−η2)+ Γ
′
(η1)

Γ (η1)

]
= − 1

η2
,

g̃22 (η) = ∂22ψ (η) = ∂22
[−η1 ln (−η2)+ lnΓ

(
η1
)]

= ∂2

[
−η

1

η2

]
=

η1

(η2)2
. (2.73)

With the Jacobian,

J (η, ξ) =

⎛⎜⎝1 0

0 1
β2

⎞⎟⎠ ,

we have

g11 (ξ) = g̃11 (η)J11J11 + g̃12 (η)J11J21 + g̃21 (η) J21J11 + g̃22 (η)J21J21

= g̃11 (η)J11J11 = ψ1

(
η1
)
= ψ1 (α) ,

g12 (ξ) = g̃11 (η)J11J12 + g̃12 (η)J11J22 + g̃21 (η) J21J12 + g̃22 (η)J21J22

= g̃12 (η)J11J22 =

(
− 1

η2

)(
1

β2

)
=

β

β2
=

1

β
,
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g21 (ξ) = g̃11 (η)J12J11 + g̃12 (η)J12J21 + g̃21 (η) J22J11 + g̃22 (η)J22J21

= g12 (ξ) = 0,

g22 (ξ) = g̃11 (η)J12J12 + g̃12 (η)J12J22 + g̃21 (η) J22J12 + g̃22 (η)J22J22

= g̃22 (η)J22J22 =
η1

(η2)2

(
1

β2

)2

=
α

β2
.

• Beta Distribution

For the beta distribution, starting from the log-likelihood function

ln p (x;λ) = − ln (B (a, b))− ln (x (1− x)) + a ln x+ b ln (1− x)

= − ln

(
Γ (a) Γ (b)

Γ (a, b)

)
− ln (x (1− x)) + a ln x+ b ln (1− x) ,

we have

∂b	x (ξ) = −Γ
′
(b)

Γ (b)
+

Γ
′
(a + b)

Γ (a+ b)
+ ln (1− x) ,

where ξ = (ξ1, ξ2) = (a, b). Therefore,

∂a∂b	x (ξ) = ψ1 (a+ b) ,

∂2b 	x (ξ) = −ψ1 (b) + ψ1 (a+ b) ,

∂a	x (ξ) = −Γ
′
(a)

Γ (a)
+

Γ
′
(a + b)

Γ (a+ b)
+ ln x,
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∂2α	x (ξ) = −ψ1 (a) + ψ1 (a+ b) ,

where ψ1 is the trigamma function.

Then, the Fisher information is given by

g11 (ξ) = −Eξ
[
∂2a	x (ξ)

]
= ψ1 (a)− ψ1 (a+ b) ,

g21 (ξ) = g12 (ξ) = −Eξ [∂a∂b	x (ξ)] = −ψ1 (a + b) ,

g22 (ξ) = −Eξ
[
∂2b 	x (ξ)

]
= ψ1 (b)− ψ1 (a+ b) . (2.74)

By equation (2.34), the normalization function for the beta distribution is given

by

ψ (ξ) = ln

(
Γ (a) Γ (b)

Γ (a, b)

)
.

We can directly compute the Fisher information under the same parametrization by

equation (2.39) and thus obtain the same results.

g11 (ξ) = ∂21ψ (ξ) = ∂21

[
ln

(
Γ (a) Γ (b)

Γ (a, b)

)]
= ψ1 (a)− ψ1 (a+ b) ,

g21 (ξ) = g12 (ξ) = ∂2∂1ψ (ξ) = ∂2∂1

[
ln

(
Γ (a) Γ (b)

Γ (a, b)

)]
= −ψ1 (a + b) ,

g22 (ξ) = ∂22ψ (ξ) = 2

[
ln

(
Γ (a) Γ (b)

Γ (a, b)

)]
= ψ1 (b)− ψ1 (a + b) .
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2.3 Christoffel Symbols

In this section, we compute the Christoffel symbols for some common statistical

models based on Definition 1.2.2 and Proposition (2.1.4).

• Binomial Distribution

We obtained the Fisher information for the binomial distribution in equation (2.43),

g (ξ) = n
ξ(1−ξ) . The inverse g−1 (ξ) is ξ(1−ξ)

n
.

The Christoffel symbols of first and second kind are given by

Γ11,1 (ξ) =
1

2
(∂1g11 + ∂1g11 − ∂1g11) =

1

2
∂ξ

(
n

ξ (1− ξ)

)
=
n (−1 + 2ξ)

2ξ2 (1− ξ)2
, (2.75)

Γ1
11 (ξ) = g11 (ξ) Γ11,1 (ξ) =

ξ (1− ξ)

n

n (−1 + 2ξ)

2ξ2 (1− ξ)2
=

−1 + 2ξ

2ξ (1− ξ)
. (2.76)

Under the parametrization η = ln θ
1−θ , by Proposition (2.1.4) and equation (2.7),

the Christoffel symbol of first kind is given by

Γ11,1 (η) =
1

2
∂31ψ (η) =

1

2
∂3η (n ln (1 + eη))

=
neη (1− eη)

2 (1 + eη)3
=

1

2
nξ (1− ξ) (1− 2ξ) .

By equations (1.9) and (2.44), we have the same result:

Γ11,1 (η) =
1

2
(∂1g11 + ∂1g11 − ∂1g11) =

1

2
∂η

(
neη

(1 + eη)2

)
=
neη (1− eη)

2 (1 + eη)3
. (2.77)

The covariance of the Christoffel symbols for an exponential family (see Proposi-
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tion 2.1.5) can be verified by the results in equations (2.75), (2.77) and the Jacobian

J11 (η, ξ) =
1

ξ(1−ξ) .

By equations (1.10), the Christoffel symbol of second kind is given by

Γ1
11 (η) = g11 (η) Γ11,1 (η) =

(1 + eη)2

neη
neη (1− eη)

2 (1 + eη)3
=

1− eη

2 (1 + eη)
. (2.78)

• Poisson Distribution

We obtained the Fisher information for the Poisson distribution in equation (2.49),

g (λ) = 1
λ
. The inverse g−1 (λ) is λ.

The Christoffel symbols of first and second kind are given by

Γ11,1 =
1

2
(∂1g11 + ∂1g11 − ∂1g11) =

1

2
∂λ

(
1

λ

)
= − 1

2λ2
,

Γ1
11 = g11Γ11,1 = λ

(
− 1

2λ2

)
= − 1

2λ
. (2.79)

• Normal Distribution

We obtained the Fisher information matrix for the normal distribution in equation

(2.55),

g (μ, σ) =

⎛⎜⎝ 1
σ2

0

0 2
σ2

⎞⎟⎠ .

The inverse matrix is given by

gpk (μ, σ) =

⎛⎜⎝ σ2 0

0 σ2

2

⎞⎟⎠ .
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By a straightforward computation, we obtain the nonzero Christoffel symbols of

first kind with parameters (ξ1, ξ2) = (μ, σ),

Γ11,2 =
1

2
(∂1g12 + ∂1g21 − ∂2g11) = −1

2
∂σ

(
1

σ2

)
=

1

σ3
,

Γ12,1 =
1

2
(∂1g21 + ∂2g11 − ∂1g12) =

1

2
∂σ

(
1

σ2

)
= − 1

σ3
,

Γ22,2 =
1

2
(∂2g22 + ∂2g22 − ∂2g22) =

1

2
∂σ

(
2

σ2

)
= − 2

σ3
. (2.80)

Accordingly, the Christoffel symbols of second kind are:

Γ1
11 = g11Γ11,1 + g12Γ11,2 = 0,

Γ1
21 = Γ1

12 = g11Γ12,1 + g12Γ12,2 = σ2

(
− 1

σ3

)
= −1

σ
,

Γ1
22 = g11Γ22,1 + g12Γ22,2 = 0,

Γ2
11 = g21Γ11,1 + g22Γ11,2 =

σ2

2

1

σ3
=

1

2σ
,

Γ2
21 = Γ2

12 = g21Γ12,1 + g22Γ12,2 = 0,

Γ2
22 = g21Γ22,1 + g22Γ22,2 =

σ2

2

(
− 2

σ3

)
= −1

σ
. (2.81)

• Exponential Distribution

We obtained the Fisher information matrix for the exponential distribution in equa-

tion (2.71), g (ξ) = 1
ξ2
. The inverse g−1 (ξ) is ξ2.
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The Christoffel symbols of first and second kind are given by

Γ11,1 =
1

2
(∂1g11 + ∂1g11 − ∂1g11) =

1

2
∂ξ

(
1

ξ2

)
= − 1

ξ3
,

Γ1
11 = g11Γ11,1 = ξ2

(
− 1

ξ3

)
= −1

ξ
. (2.82)

• Gamma Distribution

We obtained the Fisher information matrix for the gamma distribution in equation

(2.72),

g (α, β) =

⎛⎜⎝ ψ1 (α)
1
β

1
β

α
β2

⎞⎟⎠ .

The inverse matrix is given by

gpk (α, β) =
1

αψ1 (α)− 1

⎛⎜⎝ α −β
−β ψ1 (α)β

2

⎞⎟⎠ .

By a straightforward computation, we obtain the Christoffel symbols of first kind

with parameters (ξ1, ξ2) = (α, β),

Γ11,1 =
1

2
(∂1g11 + ∂1g11 − ∂1g11) =

1

2
ψ′
1 (α) ,

Γ11,2 =
1

2
(∂1g12 + ∂1g21 − ∂2g11) = 0,

Γ21,1 = Γ12,1 =
1

2
(∂1g21 + ∂2g11 − ∂1g12) = 0,

Γ21,2 = Γ12,2 =
1

2
(∂1g22 + ∂2g21 − ∂2g12) =

1

2β2
,
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Γ22,1 =
1

2
(∂2g21 + ∂2g12 − ∂1g22) = − 3

2β2
,

Γ22,2 =
1

2
(∂2g22 + ∂2g22 − ∂2g22) =

1

2
∂β

(
α

β2

)
= − α

β3
. (2.83)

Accordingly, the Christoffel symbols of second kind are:

Γ1
11 = g11Γ11,1 + g12Γ11,2 =

αψ′
1 (α)

2 (αψ1 (α)− 1)
,

Γ1
21 = Γ1

12 = g11Γ12,1 + g12Γ12,2 = − 1

2β (αψ1 (α)− 1)
,

Γ1
22 = g11Γ22,1 + g12Γ22,2 = − α

2β2 (αψ1 (α)− 1)
,

Γ2
11 = g21Γ11,1 + g22Γ11,2 = − βψ′

1 (α)

2 (αψ1 (α)− 1)
,

Γ2
21 = Γ2

12 = g21Γ12,1 + g22Γ12,2 =
ψ1 (α)

2 (αψ1 (α)− 1)
,

Γ2
22 = g21Γ22,1 + g22Γ22,2 =

σ2

2

(
− 2

σ3

)
=

3− 2αψ1 (α)

2β (αψ1 (α)− 1)
. (2.84)

• Beta Distribution

We obtained the Fisher information matrix for the beta distribution in equation

(2.74),

g (a, b) =

⎛⎜⎝ ψ1 (a)− ψ1 (a+ b) −ψ1 (a+ b)

−ψ1 (a + b) ψ1 (b)− ψ1 (a+ b)

⎞⎟⎠
=

∞∑
n=0

⎛⎜⎝ 1
(a+n)2

− 1
(a+b+n)2

− 1
(a+b+n)2

− 1
(a+b+n)2

1
(b+n)2

− 1
(a+b+n)2

⎞⎟⎠ .
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The inverse matrix is given by

gpk (α, β) =
1

det (g (a, b))

⎛⎜⎝ ψ1 (b)− ψ1 (a + b) ψ1 (a+ b)

ψ1 (a+ b) ψ1 (a)− ψ1 (a+ b)

⎞⎟⎠ ,

where det (g (a, b)) = ψ1 (a)ψ1 (b)− [ψ1 (a) + ψ1 (b)]ψ1 (a+ b) .

By a straightforward computation, we obtain the Christoffel symbols of first kind

with parameters (ξ1, ξ2) = (a, b),

Γ11,1 =
1

2
(∂1g11 + ∂1g11 − ∂1g11) =

∞∑
n=0

(
− 1

(a+ n)3
+

1

(a+ b+ n)3

)
,

Γ11,2 =
1

2
(∂1g12 + ∂1g21 − ∂2g11) =

∞∑
n=0

1

(a+ b+ n)3
,

Γ21,1 = Γ12,1 =
1

2
(∂1g21 + ∂2g11 − ∂1g12) =

∞∑
n=0

1

(a+ b+ n)3
,

Γ21,2 = Γ12,2 =
1

2
(∂1g22 + ∂2g21 − ∂2g12) =

∞∑
n=0

1

(a+ b+ n)3
,

Γ22,1 =
1

2
(∂2g21 + ∂2g12 − ∂1g22) =

∞∑
n=0

1

(a+ b+ n)3
,

Γ22,2 =
1

2
(∂2g22 + ∂2g22 − ∂2g22) =

∞∑
n=0

(
− 1

(b+ n)3
+

1

(a + b+ n)3

)
. (2.85)
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Accordingly, the Christoffel symbols of second kind are:

Γ1
11 = g11Γ11,1 + g12Γ11,2

=
ψ1 (b)− ψ1 (a + b)

ψ1 (a)ψ1 (b)− [ψ1 (a) + ψ1 (b)]ψ1 (a+ b)

∞∑
n=0

−1

(a+ n)3

+
ψ1 (b)

ψ1 (a)ψ1 (b)− [ψ1 (a) + ψ1 (b)]ψ1 (a+ b)

∞∑
n=0

1

(a+ b+ n)3
,

Γ1
21 = Γ1

12 = g11Γ12,1 + g12Γ12,2

=
ψ1 (b)

ψ1 (a)ψ1 (b)− [ψ1 (a) + ψ1 (b)]ψ1 (a + b)

∞∑
n=0

1

(a + b+ n)3
,

Γ1
22 = g11Γ22,1 + g12Γ22,2

=
ψ1 (b)

ψ1 (a)ψ1 (b)− [ψ1 (a) + ψ1 (b)]ψ1 (a+ b)

∞∑
n=0

1

(a+ b+ n)3

+
ψ1 (a+ b)

ψ1 (a)ψ1 (b)− [ψ1 (a) + ψ1 (b)]ψ1 (a+ b)

∞∑
n=0

−1

(b+ n)3
,

Γ2
11 = g21Γ11,1 + g22Γ11,2

=
ψ1 (a+ b)

ψ1 (a)ψ1 (b)− [ψ1 (a) + ψ1 (b)]ψ1 (a+ b)

∞∑
n=0

−1

(a+ n)3

+
ψ1 (a)

ψ1 (a)ψ1 (b)− [ψ1 (a) + ψ1 (b)]ψ1 (a+ b)

∞∑
n=0

1

(a+ b+ n)3
,
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Γ2
21 = Γ2

12 = g21Γ12,1 + g22Γ12,2

=
ψ1 (a)

ψ1 (a)ψ1 (b)− [ψ1 (a) + ψ1 (b)]ψ1 (a + b)

∞∑
n=0

1

(a + b+ n)3
,

Γ2
22 = g21Γ22,1 + g22Γ22,2.

=
ψ1 (a)− ψ1 (a + b)

ψ1 (a)ψ1 (b)− [ψ1 (a) + ψ1 (b)]ψ1 (a + b)

∞∑
n=0

−1

(b+ n)3

+
ψ1 (a)

ψ1 (a)ψ1 (b)− [ψ1 (a) + ψ1 (b)]ψ1 (a + b)

∞∑
n=0

1

(a+ b+ n)3
. (2.86)

2.4 Geodesics

The geodesic equations (1.27) are solutions of a Riccati ODE system. In this section,

we work on some examples of common statistical models.

• Binomial Distribution

Based on the results obtained in equation (2.78), we have

ξ̈ − −1 + 2ξ

2ξ (1− ξ)

(
ξ̇
)2

= 0. (2.87)

Let ξ̇ = u, then ξ̈ = du
ds

= du
dξ
ξ̇ = du

dξ
u. So, we have

du

dξ
u =

−1 + 2ξ

2ξ (1− ξ)
u2.

Rewrite it as d (ln u) = −1+2ξ
2ξ(1−ξ)dξ =

1
2

(
1

1−ξ − 1
ξ

)
dξ. Integrating gives
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ln |u| = 1

2
ln

1− ξ

ξ
+ C1.

So, we have

ξ̇ = u = C2

√
1− ξ

ξ
⇐⇒

√
ξ

1− ξ
dξ = C2ds⇐⇒

∫ √
ξ

1− ξ
dξ =

∫
C2ds.

Let ξ = sin2 t, then dξ = 2 sin t cos t dt, and

∫
2 sin2 t dt =

∫
(1− cos 2t) dt = C2s+ C3 ⇐⇒ sin 2t = As+B

with constants A and B. So, the geodesic equations are

ξ (s) = sin2 t =
1− cos 2t

2
=

1−
√

1− (As+B)2

2
, (2.88)

where the parameter s is at the value such that 1− (As+B)2 ≥ 0.

• Poisson Distribution

Based on the results obtained in equation (2.79), we have

λ̈− 1

2λ

(
λ̇
)2

= 0. (2.89)

Writing the equation as

λ̈

λ̇
=

λ̇

2λ

and integrating yields ln |λ̇| = ln
√
C ′λ with C ′ > 0 constant. Rewrite it as λ̇√

λ
= C
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and integrating gives the geodesic equations

λ (s) = (K1s+K2)
2 (2.90)

with K1, K2 constants.

• Normal Distribution

Based on the results obtained in equations (2.80) and (2.81), we have

μ̈− 2
1

σ
μ̇σ̇ = 0, (2.91)

σ̈ +
1

2σ
(μ̇)2 − 1

σ
(σ̇)2 = 0. (2.92)

By equation (2.91), we have

μ̇

μ
=

2σ̇

σ
⇐⇒ d ln μ̇ = 2d lnσ ⇐⇒ μ̇ = cσ2 (2.93)

with c constant.

If c = 0, then μ̇ = 0. and thus μ is a constant, which corresponds to a vertical

half line since σ > 0. By equation (2.92), we have

σ̈ =
1

σ
(σ̇)2 ⇐⇒ σ̈

σ̇
=
σ̇

σ
⇐⇒ d ln σ̇ = d ln σ.

By integrating, we have

σ (s) = K1e
C1s, s ∈ [0, T ] . (2.94)
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with C1, K1 positive constants.

Hence, the geodesics in this case have the following equations:

μ (s) = c1, (2.95)

σ (s) = σ (0) eC1s, s ∈ [0, T ] (2.96)

with constants c1 ∈ R, C1 ∈ R
+.

If c 	= 0 in equation (2.93), substituting μ̇ = cσ2 into equation (2.92) gives

σ̈ +
1

2σ

(
cσ2
)2 − 1

σ
(σ̇)2 = 0. (2.97)

Let σ̇ = u, so we have σ̈ = du
dσ
u. The above equation becomes

du

dσ
uσ +

c2σ4

2
− u2 = 0.

Multiplying by the integrant factor 1
σ3

leads to the exact equation

Mdu+Ndσ = 0.

with

M =
u

σ2
, N =

c2σ

2
− u2

σ3
, (2.98)

since

∂M

∂σ
= −2u

σ3
=
∂N

∂u
.

Now we look for the function f (σ, u) such that df (σ, u) =Mdu+Ndσ = 0. We
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start by

df (σ, u)

du
=M =

u

σ2
.

Integrating yields

f (σ, u) =
u2

2σ2
+ h (σ) (2.99)

By differentiating result with respect to σ and comparing the result to N ,

df (σ, u)

dσ
= −u

2

σ3
+ h′ (σ) =

c2σ

2
− u2

σ3
,

we obtain

h′ (σ) =
c2σ

2
,

so

h (σ) =
c2σ2

4
+ c2,

with c2 constant. Thus

f (σ, u) =
u2

2σ2
+
c2σ2

4
= K2 (2.100)

with K2 positive constant. Solving for u, we have

u2 = 2σ2

(
K2 − c2σ2

4

)
⇐⇒ σ̇

σ
=

√
2K2 − c2σ2

2
=

c√
2

√
4K2

c2
− σ2 =

c√
2

√
C2

2 − σ2

where C2
2 = 4K2

c2
. Integrating the above equation, we have

∫ σ(s)

σ(s0)

dσ

σ
√
C2

2 − σ2
=

∫ s

s0

c√
2
dt. (2.101)
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By the integral formulae

∫
dx

x
√
a2 − x2

= −1

a
sech−1

(x
a

)
+ C,

we obtain

c√
2
(s− s0) = − 1

C2
sech−1

(
σ (s)

C2

)
+K3,

where

K3 =
1

C2
sech−1

(
σ (s0)

C2

)
.

Solving for σ, we have

σ (s) = C2sech

[
C2

(
K3 − c√

2
(s− s0)

)]
. (2.102)

Since μ̇ = cσ2, we have

μ (s) =

∫ s

s0

cC2
2sech

2

[
C2

(
K3 − c√

2
(t− s0)

)]
dt

=

∫ s

s0

cC2
2sech

2

[
C2K3 − cC2√

2
(t− s0)

]
dt

= cC2
2

√
2

−cC2

{
tanh

[
C2K3 − cC2√

2
(s− s0)

]
− tanh (C2K3)

}
= −

√
2C2 tanh

[
C2K3 − cC2√

2
(s− s0)

]
+K4, (2.103)

where K4 =
√
2C2 tanh (C2K3).

Since we have

σ (s)2 +
1

2
(μ (s)−K4)

2 =
4K2

c2
,
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the geodesics are half-ellipses with σ > 0.

• Exponential Distribution

Based on the results obtained in equation (2.82), we have

ξ̈ − 1

ξ

(
ξ̇
)2

= 0. (2.104)

Writing the equation as

ξ̈

ξ̇
=
ξ̇

ξ

and integrating yields ln ξ̇ = ln (Cξ) with C > 0 constant. Rewrite it as ξ̇
ξ
= C and

Integrating gives the geodesics equation

ξ (s) = KeCs, s ∈ [0, T ] (2.105)

with C,K > 0 constants.

Gamma Distribution

Based on the results obtained in equation (2.84), the geodesic equations are the

solutions of the system of ODEs:

α̈− αψ′
1 (α)

2 (αψ1 (α)− 1)
(α̇)2− 1

β (αψ1 (α)− 1)
α̇β̇− α

2β2 (αψ1 (α)− 1)

(
β̇
)2

= 0, (2.106)

β̈− βψ′
1 (α)

2 (αψ1 (α)− 1)
(α̇)2 +

ψ1 (α)

2 (αψ1 (α)− 1)
α̇β̇ +

3− 2αψ1 (α)

2β (αψ1 (α)− 1)

(
β̇
)2

= 0. (2.107)
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2.5 α-Autotoparallel Curves

• Normal Distribution

We obtained the following results in equation (2.54):

∂σ	x (ξ) = −1

σ
− (x− μ)2

2

(
− 2

σ3

)
= −1

σ
+

(x− μ)2

σ3
, ∂2σ	x (ξ) =

1

σ2
− 3 (x− μ)2

σ4
,

∂μ	x (ξ) =
x− μ

σ2
, ∂2μ	x (ξ) = − 1

σ2
, ∂σ∂μ	x (ξ) = ∂μ∂σ	x (ξ) = −2 (x− μ)

σ3
.

By Proposition 1.2.7, we compute the components of ∇(α)-connection for the

normal distribution. We have

Γ
(α)
11,1 = Eξ

[(
∂2μ	+

1− α

2
(∂μ	)

2

)
∂μ	

]
= Eξ

[(
− 1

σ2
+

1− α

2

(
x− μ

σ2

)2
)(

x− μ

σ2

)]

= 0,

where we used the fact, Eξ

[
(x− μ)2k+1

]
= 0 for k ∈ Z. Similarly, we obtain the

other zero components:

Γ
(α)
21,2 = Γ

(α)
12,2 = Γ

(α)
22,1 = 0.
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We also have

Γ
(α)
11,2 = Eξ

[(
∂2μ	+

1− α

2
(∂μ	)

2

)
∂σ	

]
= Eξ

[(
− 1

σ2
+

1− α

2

(
x− μ

σ2

)2
)(

−1

σ
+

(x− μ)2

σ3

)]

=
1

σ3
+ Eξ

[
α− 3

2

(x− μ)2

σ5
+

1− α

2

(x− μ)4

σ7

]

=
1

σ3
+
α− 3

2

σ2

σ5
+

1− α

2

3σ4

σ7

=
1− α

σ3
.

where we used the fact, Eξ
[
(x− μ)2

]
= σ2 and Eξ

[
(x− μ)4

]
= 3σ4. Similarly, we

obtain the other nonzero components:

Γ
(α)
12,1 = Γ

(α)
21,1 = −1 + α

σ3
, Γ

(α)
22,2 = −2 (1 + 2α)

σ3
.

Based on the Christoffel symbols of first kind obtained as above, we compute the

Christoffel symbols of second kind:

Γ
(α)1
ij = g11Γαij,1 + g12Γαij,2 = σ2Γαij,1

= σ2

⎛⎜⎝ 0 −1+α
σ3

−1+α
σ3

0

⎞⎟⎠ =

⎛⎜⎝ 0 −1+α
σ

−1+α
σ

0

⎞⎟⎠ ,
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Γ
(α)2
ij = g21Γαij,1 + g22Γαij,2 =

σ2

2
Γαij,2

=
σ2

2

⎛⎜⎝ 1−α
σ3

0

0 −2(1+2α)
σ3

⎞⎟⎠ =

⎛⎜⎝ 1−α
2σ

0

0 −1+2α
σ

⎞⎟⎠ .

Hence, the Riccati equations (1.27) for the α-autoparallel curves are given by

μ̈− 2
(1 + α)

σ
μ̇σ̇ = 0, (2.108)

σ̈ +
1− σ

2σ
(μ̇)2 − 1 + 2α

σ
(σ̇)2 = 0. (2.109)

By equation (2.108), we have

μ̇

μ
=

2 ˙(1 + α)σ

σ
⇐⇒ d ln μ̇ = 2 (1 + α) d lnσ ⇐⇒ μ̇ = cσ2(1+α) (2.110)

with c constant. Substituting into equation (2.109) gives

σ̈ +
1− α

2σ
c2σ4(1+α) − 1 + 2α

σ
(σ̇)2 = 0. (2.111)

Let σ̇ = u, so we have σ̈ = du
dσ
u. The above equation becomes

du

dσ
u+

(1− α) c2σ4(1+α)

2σ
− 1 + 2α

σ
u2 = 0.

Multiplying by the integrant factor 1
σ4α+2 leads to the exact equation

Mdu+Ndσ = 0.
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with

M =
u

σ4α+2
, N =

(1− α) c2σ

2
− (1 + 2α)u2

σ4α+3
, (2.112)

since

∂M

∂σ
= −(4α + 2)u

σ4α+3
=
∂N

∂u
.

Now we look for the function f (σ, u) such that df (σ, u) =Mdu+Ndσ = 0. We

start by

df (σ, u)

du
=M =

u

σ4α+2
.

Integrating yields

f (σ, u) =
u2

2σ4α+2
+ h (σ) (2.113)

By differentiating result with respect to σ and comparing the result to N ,

df (σ, u)

dσ
= −(2α + 1)u2

σ4α+3
+ h′ (σ) =

(1− α) c2σ

2
− (1 + 2α)u2

σ4α+3
,

we obtain

h′ (σ) =
(1− α) c2σ

2
,

so

h (σ) =
(1− α) c2σ2

4
+ c2,

with c2 constant. Thus

f (σ, u) =
u2

2σ4α+2
+

(1− α) c2σ2

4
= K2 (2.114)
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with K2 positive constant. Solving for u, we have

u2 = 2σ4α+2

(
K2 − (1− α) c2σ2

4

)

⇐⇒ σ̇

σ2α+1
=

√
2K2 − (1− α) c2σ2

2
= c

√
1− α

2

√
4K2

(1− α) c2
− σ2 = c

√
1− α

2

√
C2

2 − σ2

where C2
2 = 4K2

(1−α)c2 . Integrating the above equation, we have

∫ σ(s)

σ(s0)

dσ

σ2α+1
√
C2

2 − σ2
=

∫ s

s0

c

√
1− α

2
dt. (2.115)

By equation (2.110), the μ-component is given by

μ = c

∫
σ (s)2(1+α) ds. (2.116)

If α = −1, the above equation becomes

∫ σ(s)

σ(s0)

σdσ√
C2

2 − σ2
=

∫ s

s0

c

√
1− α

2
dt.

The integrating result is

−
√
C2

2 − σ (s)2 +

√
C2

2 − σ (s0)
2 = c

√
1− α

2
(s− s0)

⇒ σ (s) =

√√√√C2
2 −
[√

C2
2 − σ (s0)

2 − c

√
1− α

2
(s− s0)

]2
(2.117)
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with C2
2 = 2K2

c2
. By equation (2.116), the μ-component is given by

μ = cs+ μ (0) . (2.118)

• Exponential Distribution

For the exponential distribution, we have the following derivatives:

∂ξ	x (ξ) = −x+ 1

ξ
,

∂2ξ 	x (ξ) = − 1

ξ2
.

By Proposition 1.2.7, the component of ∇(α)-connection for the exponential dis-

tribution is

Γ
(α)
11,1 = Eξ

[(
∂2ξ 	+

1− α

2
(∂ξ	)

2

)
∂ξ	

]
= Eξ

[(
− 1

ξ2
+

1− α

2

(
−x+ 1

ξ

)2
)(

−x +
1

ξ

)]

=
α− 1

ξ3
,

where we used the fact, Eξ [x
n] = n!

ξn
for n ∈ Z.

Based on equation (2.71) and the Christoffel symbol of first kind obtained as

above, we obtain the Christoffel symbol of second kind:

Γ
(α)1
11 = g11Γ

(α)
11,1 = ξ2

α− 1

ξ3
=
α− 1

ξ
.
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Hence, the equation (1.27) for the α-autoparallel curves is given by

ξ̈ +
α− 1

ξ

(
ξ̇
)2

= 0. (2.119)

Therefore,

ξ̈

ξ̇
= (1− α)

ξ̇

ξ
=⇒ d ln ξ̇ = (1− α) d ln ξ =⇒ ln ξ̇ = (1− α) ln (C1ξ)

with C1 > 0 constant. Rewrite it as ξ̇
ξ1−α = C1−α

1 = C2 and integrating, we have

∫
ξα−1dξ = C2s + C3.

If α 	= 0, we obtain the equation of α-autoparallel curves:

ξ (s) = (Cs+D)1/α , s ∈ [0, T ] . (2.120)

with C,D constants.

2.6 Jeffreys Prior

• Normal Distribution

We consider the prior on a normal distribution model with the mean fixed,

Sμ = {pξ;Eξ [x] = μ, V ar [x] > 1} =
{
p(μ,σ); σ > 1

}
.
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This is a vertical half line in the upper-half plane. The determinant of Fisher infor-

mation matrix is

G (ξ) = det g (ξ) = det

⎛⎜⎝ 1
σ2

0

0 2
σ2

⎞⎟⎠ =
2

σ4
.

Then the volume is

V ol (Sμ) =
� ∞

1

√
G (ξ)dσ =

� ∞

1

√
2

σ4
dσ =

√
2 <∞.

Hence, the Jeffreys prior on Sμ is given by

Q (ξ) =

√
G (ξ)

V ol (Sμ) =
1

σ2
.

• Exponential Distribution

We consider a statistical model of the exponential distribution as

Sλ =

{
pλ;Eλ [x] =

1

λ
, λ ∈ [1, e]

}
= {pλ;λ ∈ [1, e]} .

The determinant of Fisher information matrix is

G (λ) = det g (λ) =
1

λ2
.
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Then the volume is

V ol (Sλ) =
� e

1

√
G (λ)dλ =

� e

1

1

λ
dλ = 1 <∞.

Hence, the Jeffreys prior on Sλ is given by

Q (λ) =

√
G (λ)

V ol (Sλ) =
1

λ
.
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Chapter 3

The Geometry of Entropy of

Exponential Families

3.1 Entropy

In Section 1.3.1, we gave the definition of entropy on a statistical model. The en-

tropy for some distributions of the exponential family is computed in the following

examples.

• Poisson Distribution

The probability mass function of a Poisson distribution is

p (x; ξ) = e−ξ
ξx

x!
, x ∈ N, ξ ∈ R.
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The entropy is

H (ξ) = −
∑
x∈N

p (x, ξ) ln p (x, ξ)

= −
∑
x∈N

p (x, ξ) (−ξ + x ln ξ − ln x!)

= ξ − ln ξEξ [x] + e−ξ
∑
x∈N

ξx

x!
ln x!

= ξ (1− ln ξ) + e−ξ
∑
x∈N

ξx ln x!

x!
.

Note that lim
ξ→0+

H = lim
ξ→0+

1− ln ξ

1/ξ
= lim

ξ→0+

−1/ξ

−1/ξ2
= 0. Since

lim
x→∞

|
ξx+1 ln(x+1)!

(x+1)!

ξx lnx!
x!

| = ξ lim
x→∞

ln (x+ 1)!

(x+ 1) ln x!
= 0,

the series
∑
x∈N

ξx lnx!
x!

has an infinite radius of convergence. Hence, H (ξ) <∞.

• Normal Distribution

The density of a normal distribution is

p (x;μ, σ) =
1

σ
√
2π
e−

(x−μ)2

2σ2 , x ∈ X = R, (μ, σ) ∈ R× (0,∞) .

105



The entropy is

H (μ, σ) = −
∫
X
p (x;μ, σ) ln p (x;μ, σ) dx

=

∫
X
p (x;μ, σ)

(
ln σ + ln

√
2π +

(x− μ)2

2σ2

)
dx

= ln σ + ln
√
2π +

∫
X
p (x;μ, σ)

(x− μ)2

2σ2
dx

= ln σ + ln
√
2π +

1

2σ2
· σ2

= ln
(
σ
√
2πe
)
.

It follows that the entropy is independent of μ. The change of coordinates ϕ :

E → E under which the entropy is invariant are only the translations ϕ (μ, σ) =

ϕ (μ+ c, σ) , c ∈ R. Also, the entropy is increasing logarithmically as a function of

σ, with lim
σ→0+

H = −∞ and lim
σ→∞

H = ∞.

• Lognormal Distribution

The density of a lognormal distribution is

p (x;μ, σ) =
1√
2πσx

e−
(lnx−μ)2

2σ2 , x > 0, (μ, σ) ∈ R× (0,∞) .
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By equation (2.35) in Proposition 2.1.1 and equation (2.28),

E [ln x] = E [F1 (x)] = ∂1ψ (ξ)

=
∂

∂ξ1

[
− (ξ1)

2

4ξ2
+

1

2
ln

(−π
ξ2

)]

=
−ξ1
2ξ2

= μ,

E
[
(lnx)2

]
= E [F2 (x)] = ∂2ψ (ξ)

=
∂

∂ξ2

[
− (ξ1)

2

4ξ2
+

1

2
ln

(−π
ξ2

)]

=
(ξ1)

2

4 (ξ2)2
− 1

2ξ2
= μ2 + σ2.

The entropy is

H (μ, σ) = −
∫
X
p (x;μ, σ) ln p (x;μ, σ) dx

= −
∫
X
p (x;μ, σ)

(
− ln x− ln

(
σ
√
2π
)
+

μ

σ2
ln x− 1

2σ2
(ln x)2 − μ

2σ2

)
dx

=
(
1− μ

σ2

)
E [ln x] + ln

(
σ
√
2π
)
+

1

2σ2
E
[
(ln x)2

]
+

μ

2σ2

=
(
1− μ

σ2

)
μ+ ln

(
σ
√
2π
)
+

1

2σ2

(
μ2 + σ2

)
+

μ

2σ2

= μ+ ln σ +
1

2
+ ln

√
2π.

It follows that, being different from the case for a normal distribution, the entropy

of a lognormal distribution is linearly dependent on μ.
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• Exponential Distribution

The density of an exponential distribution is

p (x; ξ) = ξe−ξx, x > 0, ξ > 0.

The entropy is

H (ξ) = −
∫ ∞

0

p (x) ln p (x) dx

= −
∫ ∞

0

p (x) (ln ξ − ξx) dx

= − ln ξ + ξ

∫ ∞

0

xp (x) dx

= 1− ln ξ.

It follows that the entropy is a decreasing function of ξ. If we choose the parameter

λ = 1
ξ
, H (λ) = 1 + lnλ.

• Gamma Distribution

The density of a gamma distribution is

p (x;α, β) =
1

βαΓ (α)
xα−1e−x/β , x > 0, α > 0, β > 0.
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By equation (2.35) in Proposition 2.1.1 and equation (2.32),

E [ln x] = E [F1 (x)] = ∂αψ (ξ)

=
∂

∂α
[α ln β + lnΓ (α)]

= ln β +
Γ′ (α)
Γ (α)

= ln β + ψ (α) , (3.1)

where ψ (α) is the digamma function. Hence, the entropy is

H (α, β) = −
∫ ∞

0

p (x) ln p (x) dx

= −
∫ ∞

0

p (x)

(
− ln (βαΓ (α))− ln x+ α ln x− x

β

)
dx

= ln (βαΓ (α))− (α− 1)

∫ ∞

0

ln x p (x) dx+
1

β

∫ ∞

0

x p (x) dx

= α ln β + lnΓ (α)− (α− 1) [ln β + ψ (α)] +
1

β
αβ

= α + lnΓ (α) + (1− α)ψ (α) + ln β.

• Beta Distribution

The density of a beta distribution is

p (x; a, b) =
1

B (a, b)
xa−1 (1− x)b−1 , 0 < x < 1, a > 0, b > 0.
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where B (a, b) is defined by the Beta function

B (a, b) =
� 1

0
ta−1 (1− t)b−1 dt, a, b > 0.

Note that

B (a, b) =
Γ (a) Γ (b)

Γ (a + b)
.

By equation (2.35) in Proposition 2.1.1 and equation (2.34),

E [ln x] = E [F1 (x)] = ∂aψ (ξ)

=
∂

∂a
lnB (a, b)

=
∂

∂a
[ln Γ (a) + ln Γ (b)− ln Γ (a + b)]

= ψ (a)− ψ (a+ b) , (3.2)

E [ln (1− x)] = E [F2 (x)] = ∂bψ (ξ)

=
∂

∂b
lnB (a, b)

=
∂

∂b
[ln Γ (a) + ln Γ (b)− ln Γ (a+ b)]

= ψ (b)− ψ (a + b) . (3.3)

110



The entropy is

H (a, b) = −
∫ ∞

0

p (x) ln p (x) dx

= −
∫ ∞

0

p (x) [− lnB (a, b)− ln x− ln (1− x) + a ln x+ b ln (1− x)] dx

= lnB (a, b) + (1− a)

∫ ∞

0

p (x) ln x dx+ (1− b)

∫ ∞

0

p (x) ln (1− x) dx

= lnB (a, b) + (1− a) [ψ (a)− ψ (a+ b)] + (1− b) [ψ (b)− ψ (a+ b)]

= lnB (a, b) + (1− a)ψ (a) + (1− b)ψ (b) + (a + b− 2)ψ (a+ b) . (3.4)

3.2 Maximum Distributions

In this section, we deal with the problem of finding the density p of maximum entropy

subject to the first N moment constraints. Given the numbers m1, m2, . . . , mN , we

are interested in finding the distribution p that maximizes the following entropy

functional with Lagrange multipliers

J (p) = −
∫
X
p (x) ln p (x) dx+

N∑
j=0

λj

(∫
X
xjp (x) dx−mj

)
, (3.5)

where we choose m0 = 1 for convenience. By

∂J (p)

∂p
= − ln p (x)− 1 +

N∑
j=0

λjx
j = 0,
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we obtain that the maximum entropy distribution belongs to the following exponen-

tial family

p (x) = e−1+λ0+λ1x+λ2x2+...+λNx
N

= Ceλ1x+λ2x
2+...+λNx

N

(3.6)

with C = e−1+λ0 and Lagrange multipliers λj determined by the moment constraints.

First of all, we show that the existence of the maximum entropy distribution for

any number of constraints, i.e. among all distributions q (x) that satisfy the moment

constraints ∫
X
xjp (x) dx = mj , ∀j = 0, 1, . . . , N

wherem0 = 1, the distribution given by equation (3.6) reaches the maximum entropy.

By the non-negativity and non-degeneracy of the Kullback-Leibler relative entropy,

we have that the arbitrary entropy H (q) is less than or equal to H (p),

H (q) = −
∫
X
q ln q = −

∫
X
q ln

(
q

p
p

)
= −

∫
X
q ln

q

p
−
∫
X
q ln p

= −DKL (q||p)−
∫
X
q ln p ≤ −

∫
X
q ln p

= −
∫
X
q (x)

(−1 + λ0 + λ1x+ λ2x
2 + . . .+ λNx

N
)
dx

= − (−1 + λ0 + λ1m1 + λ2m2 + . . .+ λNmN )

= −
∫
X
p (x)

(−1 + λ0 + λ1x+ λ2x
2 + . . .+ λNx

N
)
dx

= −
∫
X
p ln p = H (p) ,

with equality when p = q.

However, the uniqueness of the maximum entropy distribution is a complicated
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problem for general N . For the cases N ≤ 2, we will show the uniqueness by showing

the uniqueness of the Lagrange multipliers λj satisfying the given constraints.

• Case N = 0: Constraint-Free Distribution

Proposition 3.2.1. [4] Among all distributions defined on the finite interval (a, b) ,

the one with maximum entropy is the uniform distribution.

Proof. In this case, the distribution given by equation (3.6) is

p (x) = e−1+λ0 = C.

By the only constraint ∫ b

a

p (x) dx = m0 = 1,

we have

∫ b

a

p (x) dx = e−1+λ0 (b− a) = 1,

λ0 = 1− ln (b− a) .

Hence, the uniform distribution is the unique constraint-free distribution with

maximum entropy.

• Case N = 1: Matching the Mean

Proposition 3.2.2. [4] Among all distributions defined on (0,∞) , with given posi-

tive mean μ, the one with maximum entropy is the exponential distribution p (x) =

1
μ
e−

x
μ .
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Proof. In this case, equation (3.5) becomes

J (p) = −
∫ ∞

0

p (x) ln p (x) dx+ λ1

(∫ ∞

0

xp (x) dx− μ

)
+ λ0

(∫ ∞

0

p (x) dx− 1

)
.

(3.7)

The maximum entropy density given by equation (3.6) is

p (x) = Ceλ1x, C = eλ0−1,

with the constants C and λ1 to be determined from the constraints

∫ ∞

0

p (x) dx =

∫ ∞

0

Ceλ1xdx = 1,

∫ ∞

0

xp (x) dx =

∫ ∞

0

xCeλ1xdx = μ.

We obtain C = 1
μ
, λ1 = − 1

μ
. Hence, the maximum entropy distribution is the expo-

nential distribution with the parameter 1
μ
.

• Case N = 2: Matching Mean and Variance

Proposition 3.2.3. [4] Among all distributions defined on R, with given positive

mean μ and variance σ2, the one with maximum entropy is the normal distribution

p (x) = 1
σ
√
2π
e−

(x−μ)2

2σ2 .

Proof. In this case, the constraints are

∫ ∞

−∞
p (x) dx = 1,

∫ ∞

−∞
xp (x) dx = μ,

∫ ∞

−∞
(x− μ)2 p (x) dx = σ2. (3.8)
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We write

J (p) = −
∫ ∞

−∞
p (x) ln p (x) dx− γ

(∫ ∞

−∞
(x− μ)2 p (x) dx− σ2

)
+β

(∫ ∞

−∞
xp (x) dx− μ

)
+ α

(∫ ∞

−∞
p (x) dx− 1

)
=

∫ ∞

−∞
[−p ln p− γ (x− μ)2 p+ β (x− μ) p+ αp+ γσ2 − α]dx. (3.9)

The Euler-Lagrange equation can be written as

∂

∂p

[−p ln p− γ (x− μ)2 p+ β (x− μ) p+ αp+ γσ2 − α
]
= 0

⇔ − ln p− 1− γ (x− μ)2 + β (x− μ) + α = 0

⇔ −γ (x− μ)2 + β (x− μ) + α− 1 = ln p.

Hence, the distribution takes the form

p (x) = Ce−γ(x−μ)
2+β(x−μ), (3.10)

where C = eα−1.

Hence, by the constraints given in equation (3.8), we have

1 =

∫ ∞

−∞
p (x) dx =

∫ ∞

−∞
eα−1e−γ(x−μ)

2+β(x−μ)dx

= eα−1

∫ ∞

−∞
e−γx

2+βxdx

=

√
π

γ
e

β2

4γ
+α−1, (3.11)
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0 =

∫ ∞

−∞
xp (x) dx− μ = eα−1

∫ ∞

−∞
(x− μ) e−γ(x−μ)

2+β(x−μ)dx

= eα−1

∫ ∞

−∞
xe−γx

2+βxdx

=

√
π

γ

(
β

2γ

)
e

β2

4γ
+α−1, (3.12)

σ2 =

∫ ∞

−∞
(x− μ)2 p (x) dx = eα−1

∫ ∞

−∞
(x− μ)2 e−γ(x−μ)

2+β(x−μ)dx

= eα−1

∫ ∞

−∞
x2e−γx

2+βxdx

=

√
π

γ

1

2γ

(
1 +

β2

2γ

)
e

β2

4γ
+α−1. (3.13)

By equation (3.12), β = 0. Substituting β = 0 into equations (3.11) and (3.13)

yields
√

π
γ
= e1−α, σ2 = 1

2γ
. Therefore, by equation (3.10), we have

p (x) = Ce−γ(x−μ)
2+β(x−μ)

=
1

σ
√
2π
e−

(x−μ)2

2σ2 .

3.3 Kullback-Leibler Relative Entropy

In Section 1.3.2, we gave the definition of Kullback-Leibler relative entropy on a

statistical model. We shall compute Kullback-Leibler relative entropy for pairs of

densities in the same class of the exponential family.
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• Poisson Distribution

Consider Poisson distributions

p (x;λ) = e−λ
λx

x!
, q (x; ξ) = e−ξ

ξx

x!
.

We have

DKL (p||q) =
∞∑
x=0

p (x) ln
p (x)

q (x)

=

∞∑
x=0

p (x)

[
(ξ − λ) + x ln

λ

ξ

]

= ξ − λ+ ln
λ

ξ

∞∑
x=0

xp (x)

= ξ − λ− λ ln
ξ

λ

= λ

(
− ln

ξ

λ
+
ξ

λ
− 1

)

Hence

DKL (p||q) = λf

(
ξ

λ

)
,

with f (x) = − ln x + x − 1 ≥ 0. This verifies DKL (p||q) ≥ 0, the equality being

reached if and only if ξ
λ
= 1, i.e. if ξ = λ.

• Normal Distribution

For two normal densities

p1 (x) =
1

σ1
√
2π
e
− (x−μ1)

2

2σ2
1 , p2 (x) =

1

σ2
√
2π
e
− (x−μ2)

2

2σ2
2 ,
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we have

DKL (p1||p2) =
∫ ∞

−∞
p1 (x) ln

p1 (x)

p2 (x)
dx

=

∫ ∞

−∞
p1 (x)

[
ln
σ2
σ1

− (x− μ1)
2

2σ2
1

+
(x− μ2)

2

2σ2
2

]
dx

= ln
σ2
σ1

− 1

2
+

1

2σ2
2

∫ ∞

−∞

1

σ1
√
2π
e
− (x−μ1)

2

2σ2
1 [(x− μ1) + (μ1 − μ2)]

2 dx

= ln
σ2
σ1

− 1

2
+

1

2σ2
2

[
σ2
1 + 0 + (μ1 − μ2)

2]
=

1

2

[
− ln

(
σ1
σ2

)2

+

(
σ1
σ2

)2

− 1

]
+

(μ1 − μ2)
2

2σ2
2

(3.14)

≥ (μ1 − μ2)
2

2σ2
2

with equality being reached for σ1
σ2

= 1, i.e. σ1 = σ2.

• Multivariate Normal Distribution

Consider two multivariate normal distributions

p1 (x;μ1, A1) =
1

(2π)n/2 (detA1)
1/2
e−

1
2
(x−μ1)tA−1

1 (x−μ1),

p2 (x;μ2, A2) =
1

(2π)n/2 (detA2)
1/2
e−

1
2
(x−μ2)tA−1

2 (x−μ2).
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Applying the following equalities,

E [trA] = trE [A] ,

tr (ABC) = tr (BCA) = tr (CAB) ,

xxt = (x− μ) (x− μ)t + μ (x− μ)t + (x− μ)μt + μμt,

where A,B,C are matrices, we have

DKL (p1||p2) = Ep1

[
ln
p1 (x)

p2 (x)

]
=

1

2
Ep1

[
ln

detA2

detA1
− (x− μ1)

tA−1
1 (x− μ1) + (x− μ2)

tA−1
2 (x− μ2)

]
=

1

2
ln

detA2

detA1
+

1

2
Ep1
[−tr

(
A−1

1 (x− μ1) (x− μ1)
t)+ tr

(
A−1

2 (x− μ2) (x− μ2)
t)]

=
1

2
ln

detA2

detA1
+

1

2
Ep1
[−tr

(
A−1

1 A1

)
+ tr

(
A−1

2

(
xxt − 2xμt2 + μ2μ

t
2

))]
=

1

2
ln

detA2

detA1
− 1

2
n+

1

2
tr
(
A−1

2

(
A1 + μ1μ

t
1 − 2μ2μ

t
1 + μ2μ

t
2

))
=

=
1

2

[
ln

detA2

detA1
− n+ tr

(
A−1

2 A1

)
+ tr

(
μt1A

−1
2 μ1 − 2μt1A

−1
2 μ2 + μt2A

−1
2 μ2

)]
=

1

2

[
ln

detA2

detA1
− n+ tr

(
A−1

2 A1

)
+ (μ2 − μ1)

tA−1
2 (μ2 − μ1)

]
, (3.15)

which, when n = 1, reduces to the univariate case in equation (3.14).

• Exponential Distribution

For two exponential densities

p (x) = ξe−ξx, q (x) = ηe−ηx,
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we have

DKL (p||q) =
∫ ∞

0

p (x) ln
p (x)

q (x)
dx

=

∫ ∞

0

ξe−ξx ln
ξe−ξx

ηe−ηx
dx

=

∫ ∞

0

ξe−ξx
[
ln
ξ

η
+ (η − ξ)x

]
dx

= ln
ξ

η
+
η

ξ
− 1.

Hence

DKL (p||q) = f

(
η

ξ

)
,

with f (x) = − ln x + x − 1 ≥ 0. This verifies DKL (p||q) ≥ 0, the equality being

reached if and only if η
ξ
= 1, i.e. if p = q.

• Gamma Distribution

Consider two gamma distributions

p (x; a, b) =
1

baΓ (a)
xa−1e−x/b,

q (x; c, d) =
1

dcΓ (c)
xc−1e−x/d.
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By applying the result in equation (3.1), we have

DKL (p||q) =
∫ ∞

0

p (x) ln
p (x)

q (x)
dx

=

∫ ∞

0

p (x)

[
ln
dcΓ (c)

baΓ (a)
+ (a− c) ln x+

(
1

d
− 1

b

)
x

]
dx

= ln
dcΓ (c)

baΓ (a)
+ (a− c) (ln b+ ψ (a)) +

(
1

d
− 1

b

)
ab

= (a− c)ψ (a)− ln Γ (a) + ln Γ (c) + c ln
d

b
+
a (b− d)

d
, (3.16)

where ψ (a) denotes the digamma function.

• Beta Distribution

Consider two gamma distributions

p (x; a, b) =
1

B (a, b)
xa−1 (1− x)b−1 ,

q (x; c, d) =
1

B (c, d)
xc−1 (1− x)d−1 .

By applying the results in equations (3.2) and (3.3), we have

DKL (p||q) =
∫ ∞

0

p (x) ln
p (x)

q (x)
dx

=

∫ ∞

0

p (x)

[
ln
B (c, d)

B (a, b)
+ (a− c) ln x+ (b− d) ln (1− x)

]
dx

= ln
B (c, d)

B (a, b)
+ (a− c) (ψ (a)− ψ (a+ b)) + (b− d) (ψ (b)− ψ (a+ b))

= ln
B (c, d)

B (a, b)
+ (a− c)ψ (a) + (b− d)ψ (b)

+ (−a− b+ c+ d)ψ (a+ b) . (3.17)
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3.4 Informational Energy

In Section 1.3.3, we gave the definition of information energy on a statistical model.

Here, we shall compute the information energy for a few distributions in the expo-

nential family.

• Poisson Distribution

Consider the Poisson distribution given by

p (n; ξ) = e−ξ
ξn

n!
.

We have

I (ξ) =

∞∑
n=0

p2 (n, ξ)

= e−2ξ

∞∑
n=0

ξ2n

(n!)2

= e−2ξI0 (2ξ) , (3.18)

where

I0 (z) =
∞∑
n=0

(z/2)2n

(n!)2

is the modified Bessel function of order 0. The informational energy decreases to 0

as ξ → ∞. Hence, I (ξ) < I (0) = 1 for any ξ > 0.

• Normal Distribution
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Consider the normal density

p (x) =
1

σ
√
2π
e−

(x−μ)2

2σ2 .

We have

I (μ, σ) =

∫
R

p2 (x;μ, σ) dx

=
1

2πσ2

∫
R

e−
(x−μ)2

σ2 dx

=
1

2πσ2
σ
√
π

=
1

2
√
πσ

. (3.19)

Note that the information energy does not depend on the mean μ and decreases by

increasing the standard deviation σ.

• Lognormal Distribution

Consider the lognormal distribution given by

p (x;μ, σ) =
1√
2πσx

e−
(lnx−μ)2

2σ2 .
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Using the substitution y = lnx− μ, we have

I (μ, σ) =

∫ ∞

0

p2 (x;μ, σ) dx

=
1

2πσ2

∫ ∞

0

1

x2
e−

(lnx−μ)2

σ2 dx

=
1

2πσ2

∫ ∞

−∞
e−

y2

σ2−2y−2μdy

=
1

2πσ2

√
πσ2eσ

2−2μ

=
1

2
√
πσ

eσ
2−2μ. (3.20)

It follows that, being different from the case for a normal distribution, the infor-

mation energy of a lognormal distribution is dependent on μ.

• Exponential Distribution

Consider the exponential density

p (x, ξ) = ξe−ξx.

We have

I (ξ) =

∫ ∞

0

p2 (x, ξ) dx

=

∫ ∞

0

ξ2e−2ξxdx

=
ξ

2
. (3.21)

Hence, the information energy of an exponential distribution is linear in ξ.
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• Gamma Distribution

Consider the gamma distribution given by

p (x;α, β) =
1

βαΓ (α)
xα−1e−x/β .

Assuming α > 1/2 and using the substitution a = 2α − 1 and b = β/2, the

information energy becomes

I (α, β) =

∫ ∞

0

p2 (x;μ, σ) dx

=
1

β2αΓ (α)2

∫ ∞

0

x2α−2e−2x/βdx

=
1

β2αΓ (α)2
baΓ (a)

∫ ∞

0

1

baΓ (a)
xa−1e−x/bdx

=
1

β2αΓ (α)2

(
β

2

)2α−1

Γ (2α− 1)

=
Γ (2α− 1)

22α−1βΓ (α)2
. (3.22)

The case α ≤ 1/2 is eliminated by the divergence of the improper integral.

By the Legendre’s duplication formula

Γ (2α) =
22α−1

√
π

Γ (α) Γ

(
α +

1

2

)
, (3.23)
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equation (3.22) becomes

I (α, β) =
Γ (2α− 1)

22α−1βΓ (α)2

=
Γ
(
α+ 1

2

)
√
π (2α− 1)βΓ (α)

=
Γ
(
α+ 1

2

)
Γ (1/2) (2α− 1)βΓ (α)

=
1

β (2α− 1)B (α, 1/2)
. (3.24)

• Beta Distribution

Consider the gamma distribution given by

p (x; a, b) =
1

B (a, b)
xa−1 (1− x)b−1 .

Assuming a > 1/2, b > 1/2 and using the substitution α = 2a − 1 and β = 2b − 1,

we have

I (a, b) =

∫ 1

0

p2 (x;μ, σ) dx

=
1

B2 (a, b)

∫ 1

0

x2a−2 (1− x)2b−2 dx

=
1

B2 (a, b)

∫ 1

0

xα−1 (1− x)β−1 dx

=
B (α, β)

B2 (a, b)
=
B (2a− 1, 2b− 1)

B2 (a, b)
. (3.25)

The case a ≤ 1/2 or b ≤ 1/2 is eliminated by the divergence of the improper

integral.
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By equation (3.23), we have

I (a, b) =
B (2a− 1, 2b− 1)

B2 (a, b)

=
Γ (2a) Γ (2b) Γ (a + b)2

(2a− 1) (2b− 1) Γ (2a+ 2b− 2) Γ (a)2 Γ (b)2

=
(2a + 2b− 1) (2a+ 2b− 2)

(2a− 1) (2b− 1)

Γ (2a) Γ (2b) Γ (a+ b)2

Γ (2a+ 2b) Γ (a)2 Γ (b)2

=
(a + b− 1/2) (a+ b− 1)

(a− 1/2) (b− 1/2)
.
Γ (a+ 1/2) Γ (b+ 1/2) Γ (a + b)

2
√
πΓ (a + b+ 1/2) Γ (a) Γ (b)

. (3.26)
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